xref: /titanic_51/usr/src/cmd/fm/modules/common/eversholt/fme.c (revision ccbf80fa3b6bf6b986dca9037e5ad9d6c9f9fa65)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  *
26  * fme.c -- fault management exercise module
27  *
28  * this module provides the simulated fault management exercise.
29  */
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36 #include <strings.h>
37 #include <ctype.h>
38 #include <alloca.h>
39 #include <libnvpair.h>
40 #include <sys/fm/protocol.h>
41 #include <fm/fmd_api.h>
42 #include "alloc.h"
43 #include "out.h"
44 #include "stats.h"
45 #include "stable.h"
46 #include "literals.h"
47 #include "lut.h"
48 #include "tree.h"
49 #include "ptree.h"
50 #include "itree.h"
51 #include "ipath.h"
52 #include "fme.h"
53 #include "evnv.h"
54 #include "eval.h"
55 #include "config.h"
56 #include "platform.h"
57 
58 /* imported from eft.c... */
59 extern char *Autoclose;
60 extern int Dupclose;
61 extern hrtime_t Hesitate;
62 extern nv_alloc_t Eft_nv_hdl;
63 extern int Max_fme;
64 extern fmd_hdl_t *Hdl;
65 
66 static int Istat_need_save;
67 void istat_save(void);
68 
69 /* fme under construction is global so we can free it on module abort */
70 static struct fme *Nfmep;
71 
72 static const char *Undiag_reason;
73 
74 static int Nextid = 0;
75 
76 static int Open_fme_count = 0;	/* Count of open FMEs */
77 
78 /* list of fault management exercises underway */
79 static struct fme {
80 	struct fme *next;		/* next exercise */
81 	unsigned long long ull;		/* time when fme was created */
82 	int id;				/* FME id */
83 	struct cfgdata *cfgdata;	/* full configuration data */
84 	struct lut *eventtree;		/* propagation tree for this FME */
85 	/*
86 	 * The initial error report that created this FME is kept in
87 	 * two forms.  e0 points to the instance tree node and is used
88 	 * by fme_eval() as the starting point for the inference
89 	 * algorithm.  e0r is the event handle FMD passed to us when
90 	 * the ereport first arrived and is used when setting timers,
91 	 * which are always relative to the time of this initial
92 	 * report.
93 	 */
94 	struct event *e0;
95 	fmd_event_t *e0r;
96 
97 	id_t    timer;			/* for setting an fmd time-out */
98 
99 	struct event *ecurrent;		/* ereport under consideration */
100 	struct event *suspects;		/* current suspect list */
101 	struct event *psuspects;	/* previous suspect list */
102 	int nsuspects;			/* count of suspects */
103 	int nonfault;			/* zero if all suspects T_FAULT */
104 	int posted_suspects;		/* true if we've posted a diagnosis */
105 	int uniqobs;			/* number of unique events observed */
106 	int peek;			/* just peeking, don't track suspects */
107 	int overflow;			/* true if overflow FME */
108 	enum fme_state {
109 		FME_NOTHING = 5000,	/* not evaluated yet */
110 		FME_WAIT,		/* need to wait for more info */
111 		FME_CREDIBLE,		/* suspect list is credible */
112 		FME_DISPROVED,		/* no valid suspects found */
113 		FME_DEFERRED		/* don't know yet (k-count not met) */
114 	} state;
115 
116 	unsigned long long pull;	/* time passed since created */
117 	unsigned long long wull;	/* wait until this time for re-eval */
118 	struct event *observations;	/* observation list */
119 	struct lut *globals;		/* values of global variables */
120 	/* fmd interfacing */
121 	fmd_hdl_t *hdl;			/* handle for talking with fmd */
122 	fmd_case_t *fmcase;		/* what fmd 'case' we associate with */
123 	/* stats */
124 	struct stats *Rcount;
125 	struct stats *Hcallcount;
126 	struct stats *Rcallcount;
127 	struct stats *Ccallcount;
128 	struct stats *Ecallcount;
129 	struct stats *Tcallcount;
130 	struct stats *Marrowcount;
131 	struct stats *diags;
132 } *FMElist, *EFMElist, *ClosedFMEs;
133 
134 static struct case_list {
135 	fmd_case_t *fmcase;
136 	struct case_list *next;
137 } *Undiagablecaselist;
138 
139 static void fme_eval(struct fme *fmep, fmd_event_t *ffep);
140 static enum fme_state hypothesise(struct fme *fmep, struct event *ep,
141 	unsigned long long at_latest_by, unsigned long long *pdelay);
142 static struct node *eventprop_lookup(struct event *ep, const char *propname);
143 static struct node *pathstring2epnamenp(char *path);
144 static void publish_undiagnosable(fmd_hdl_t *hdl, fmd_event_t *ffep);
145 static void restore_suspects(struct fme *fmep);
146 static void save_suspects(struct fme *fmep);
147 static void destroy_fme(struct fme *f);
148 static void fme_receive_report(fmd_hdl_t *hdl, fmd_event_t *ffep,
149     const char *eventstring, const struct ipath *ipp, nvlist_t *nvl);
150 static void istat_counter_reset_cb(struct istat_entry *entp,
151     struct stats *statp, const struct ipath *ipp);
152 
153 static struct fme *
154 alloc_fme(void)
155 {
156 	struct fme *fmep;
157 
158 	fmep = MALLOC(sizeof (*fmep));
159 	bzero(fmep, sizeof (*fmep));
160 	return (fmep);
161 }
162 
163 /*
164  * fme_ready -- called when all initialization of the FME (except for
165  *	stats) has completed successfully.  Adds the fme to global lists
166  *	and establishes its stats.
167  */
168 static struct fme *
169 fme_ready(struct fme *fmep)
170 {
171 	char nbuf[100];
172 
173 	Nfmep = NULL;	/* don't need to free this on module abort now */
174 
175 	if (EFMElist) {
176 		EFMElist->next = fmep;
177 		EFMElist = fmep;
178 	} else
179 		FMElist = EFMElist = fmep;
180 
181 	(void) sprintf(nbuf, "fme%d.Rcount", fmep->id);
182 	fmep->Rcount = stats_new_counter(nbuf, "ereports received", 0);
183 	(void) sprintf(nbuf, "fme%d.Hcall", fmep->id);
184 	fmep->Hcallcount = stats_new_counter(nbuf, "calls to hypothesise()", 1);
185 	(void) sprintf(nbuf, "fme%d.Rcall", fmep->id);
186 	fmep->Rcallcount = stats_new_counter(nbuf,
187 	    "calls to requirements_test()", 1);
188 	(void) sprintf(nbuf, "fme%d.Ccall", fmep->id);
189 	fmep->Ccallcount = stats_new_counter(nbuf, "calls to causes_test()", 1);
190 	(void) sprintf(nbuf, "fme%d.Ecall", fmep->id);
191 	fmep->Ecallcount =
192 	    stats_new_counter(nbuf, "calls to effects_test()", 1);
193 	(void) sprintf(nbuf, "fme%d.Tcall", fmep->id);
194 	fmep->Tcallcount = stats_new_counter(nbuf, "calls to triggered()", 1);
195 	(void) sprintf(nbuf, "fme%d.Marrow", fmep->id);
196 	fmep->Marrowcount = stats_new_counter(nbuf,
197 	    "arrows marked by mark_arrows()", 1);
198 	(void) sprintf(nbuf, "fme%d.diags", fmep->id);
199 	fmep->diags = stats_new_counter(nbuf, "suspect lists diagnosed", 0);
200 
201 	out(O_ALTFP|O_VERB2, "newfme: config snapshot contains...");
202 	config_print(O_ALTFP|O_VERB2, fmep->cfgdata->cooked);
203 
204 	return (fmep);
205 }
206 
207 static struct fme *
208 newfme(const char *e0class, const struct ipath *e0ipp)
209 {
210 	struct cfgdata *cfgdata;
211 
212 	if ((cfgdata = config_snapshot()) == NULL) {
213 		out(O_ALTFP, "newfme: NULL configuration");
214 		Undiag_reason = UD_NOCONF;
215 		return (NULL);
216 	}
217 
218 	Nfmep = alloc_fme();
219 
220 	Nfmep->id = Nextid++;
221 	Nfmep->cfgdata = cfgdata;
222 	Nfmep->posted_suspects = 0;
223 	Nfmep->uniqobs = 0;
224 	Nfmep->state = FME_NOTHING;
225 	Nfmep->pull = 0ULL;
226 	Nfmep->overflow = 0;
227 
228 	Nfmep->fmcase = NULL;
229 	Nfmep->hdl = NULL;
230 
231 	if ((Nfmep->eventtree = itree_create(cfgdata->cooked)) == NULL) {
232 		out(O_ALTFP, "newfme: NULL instance tree");
233 		Undiag_reason = UD_INSTFAIL;
234 		config_free(cfgdata);
235 		FREE(Nfmep);
236 		Nfmep = NULL;
237 		return (NULL);
238 	}
239 
240 	itree_ptree(O_ALTFP|O_VERB2, Nfmep->eventtree);
241 
242 	if ((Nfmep->e0 =
243 	    itree_lookup(Nfmep->eventtree, e0class, e0ipp)) == NULL) {
244 		out(O_ALTFP, "newfme: e0 not in instance tree");
245 		Undiag_reason = UD_BADEVENTI;
246 		itree_free(Nfmep->eventtree);
247 		config_free(cfgdata);
248 		FREE(Nfmep);
249 		Nfmep = NULL;
250 		return (NULL);
251 	}
252 
253 	return (fme_ready(Nfmep));
254 }
255 
256 void
257 fme_fini(void)
258 {
259 	struct fme *sfp, *fp;
260 	struct case_list *ucasep, *nextcasep;
261 
262 	ucasep = Undiagablecaselist;
263 	while (ucasep != NULL) {
264 		nextcasep = ucasep->next;
265 		FREE(ucasep);
266 		ucasep = nextcasep;
267 	}
268 	Undiagablecaselist = NULL;
269 
270 	/* clean up closed fmes */
271 	fp = ClosedFMEs;
272 	while (fp != NULL) {
273 		sfp = fp->next;
274 		destroy_fme(fp);
275 		fp = sfp;
276 	}
277 	ClosedFMEs = NULL;
278 
279 	fp = FMElist;
280 	while (fp != NULL) {
281 		sfp = fp->next;
282 		destroy_fme(fp);
283 		fp = sfp;
284 	}
285 	FMElist = EFMElist = NULL;
286 
287 	/* if we were in the middle of creating an fme, free it now */
288 	if (Nfmep) {
289 		destroy_fme(Nfmep);
290 		Nfmep = NULL;
291 	}
292 }
293 
294 /*
295  * Allocated space for a buffer name.  20 bytes allows for
296  * a ridiculous 9,999,999 unique observations.
297  */
298 #define	OBBUFNMSZ 20
299 
300 /*
301  *  serialize_observation
302  *
303  *  Create a recoverable version of the current observation
304  *  (f->ecurrent).  We keep a serialized version of each unique
305  *  observation in order that we may resume correctly the fme in the
306  *  correct state if eft or fmd crashes and we're restarted.
307  */
308 static void
309 serialize_observation(struct fme *fp, const char *cls, const struct ipath *ipp)
310 {
311 	size_t pkdlen;
312 	char tmpbuf[OBBUFNMSZ];
313 	char *pkd = NULL;
314 	char *estr;
315 
316 	(void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d", fp->uniqobs);
317 	estr = ipath2str(cls, ipp);
318 	fmd_buf_create(fp->hdl, fp->fmcase, tmpbuf, strlen(estr) + 1);
319 	fmd_buf_write(fp->hdl, fp->fmcase, tmpbuf, (void *)estr,
320 	    strlen(estr) + 1);
321 	FREE(estr);
322 
323 	if (fp->ecurrent != NULL && fp->ecurrent->nvp != NULL) {
324 		(void) snprintf(tmpbuf,
325 		    OBBUFNMSZ, "observed%d.nvp", fp->uniqobs);
326 		if (nvlist_xpack(fp->ecurrent->nvp,
327 		    &pkd, &pkdlen, NV_ENCODE_XDR, &Eft_nv_hdl) != 0)
328 			out(O_DIE|O_SYS, "pack of observed nvl failed");
329 		fmd_buf_create(fp->hdl, fp->fmcase, tmpbuf, pkdlen);
330 		fmd_buf_write(fp->hdl, fp->fmcase, tmpbuf, (void *)pkd, pkdlen);
331 		FREE(pkd);
332 	}
333 
334 	fp->uniqobs++;
335 	fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_NOBS, (void *)&fp->uniqobs,
336 	    sizeof (fp->uniqobs));
337 }
338 
339 /*
340  *  init_fme_bufs -- We keep several bits of state about an fme for
341  *	use if eft or fmd crashes and we're restarted.
342  */
343 static void
344 init_fme_bufs(struct fme *fp)
345 {
346 	size_t cfglen = fp->cfgdata->nextfree - fp->cfgdata->begin;
347 
348 	fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_CFGLEN, sizeof (cfglen));
349 	fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_CFGLEN, (void *)&cfglen,
350 	    sizeof (cfglen));
351 	if (cfglen != 0) {
352 		fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_CFG, cfglen);
353 		fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_CFG,
354 		    fp->cfgdata->begin, cfglen);
355 	}
356 
357 	fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_PULL, sizeof (fp->pull));
358 	fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_PULL, (void *)&fp->pull,
359 	    sizeof (fp->pull));
360 
361 	fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_ID, sizeof (fp->id));
362 	fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_ID, (void *)&fp->id,
363 	    sizeof (fp->id));
364 
365 	fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_NOBS, sizeof (fp->uniqobs));
366 	fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_NOBS, (void *)&fp->uniqobs,
367 	    sizeof (fp->uniqobs));
368 
369 	fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_POSTD,
370 	    sizeof (fp->posted_suspects));
371 	fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_POSTD,
372 	    (void *)&fp->posted_suspects, sizeof (fp->posted_suspects));
373 }
374 
375 static void
376 destroy_fme_bufs(struct fme *fp)
377 {
378 	char tmpbuf[OBBUFNMSZ];
379 	int o;
380 
381 	fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_CFGLEN);
382 	fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_CFG);
383 	fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_PULL);
384 	fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_ID);
385 	fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_POSTD);
386 	fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_NOBS);
387 
388 	for (o = 0; o < fp->uniqobs; o++) {
389 		(void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d", o);
390 		fmd_buf_destroy(fp->hdl, fp->fmcase, tmpbuf);
391 		(void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d.nvp", o);
392 		fmd_buf_destroy(fp->hdl, fp->fmcase, tmpbuf);
393 	}
394 }
395 
396 /*
397  * reconstitute_observations -- convert a case's serialized observations
398  *	back into struct events.  Returns zero if all observations are
399  *	successfully reconstituted.
400  */
401 static int
402 reconstitute_observations(struct fme *fmep)
403 {
404 	struct event *ep;
405 	struct node *epnamenp = NULL;
406 	size_t pkdlen;
407 	char *pkd = NULL;
408 	char *tmpbuf = alloca(OBBUFNMSZ);
409 	char *sepptr;
410 	char *estr;
411 	int ocnt;
412 	int elen;
413 
414 	for (ocnt = 0; ocnt < fmep->uniqobs; ocnt++) {
415 		(void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d", ocnt);
416 		elen = fmd_buf_size(fmep->hdl, fmep->fmcase, tmpbuf);
417 		if (elen == 0) {
418 			out(O_ALTFP,
419 			    "reconstitute_observation: no %s buffer found.",
420 			    tmpbuf);
421 			Undiag_reason = UD_MISSINGOBS;
422 			break;
423 		}
424 
425 		estr = MALLOC(elen);
426 		fmd_buf_read(fmep->hdl, fmep->fmcase, tmpbuf, estr, elen);
427 		sepptr = strchr(estr, '@');
428 		if (sepptr == NULL) {
429 			out(O_ALTFP,
430 			    "reconstitute_observation: %s: "
431 			    "missing @ separator in %s.",
432 			    tmpbuf, estr);
433 			Undiag_reason = UD_MISSINGPATH;
434 			FREE(estr);
435 			break;
436 		}
437 
438 		*sepptr = '\0';
439 		if ((epnamenp = pathstring2epnamenp(sepptr + 1)) == NULL) {
440 			out(O_ALTFP,
441 			    "reconstitute_observation: %s: "
442 			    "trouble converting path string \"%s\" "
443 			    "to internal representation.",
444 			    tmpbuf, sepptr + 1);
445 			Undiag_reason = UD_MISSINGPATH;
446 			FREE(estr);
447 			break;
448 		}
449 
450 		/* construct the event */
451 		ep = itree_lookup(fmep->eventtree,
452 		    stable(estr), ipath(epnamenp));
453 		if (ep == NULL) {
454 			out(O_ALTFP,
455 			    "reconstitute_observation: %s: "
456 			    "lookup of  \"%s\" in itree failed.",
457 			    tmpbuf, ipath2str(estr, ipath(epnamenp)));
458 			Undiag_reason = UD_BADOBS;
459 			tree_free(epnamenp);
460 			FREE(estr);
461 			break;
462 		}
463 		tree_free(epnamenp);
464 
465 		/*
466 		 * We may or may not have a saved nvlist for the observation
467 		 */
468 		(void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d.nvp", ocnt);
469 		pkdlen = fmd_buf_size(fmep->hdl, fmep->fmcase, tmpbuf);
470 		if (pkdlen != 0) {
471 			pkd = MALLOC(pkdlen);
472 			fmd_buf_read(fmep->hdl,
473 			    fmep->fmcase, tmpbuf, pkd, pkdlen);
474 			ASSERT(ep->nvp == NULL);
475 			if (nvlist_xunpack(pkd,
476 			    pkdlen, &ep->nvp, &Eft_nv_hdl) != 0)
477 				out(O_DIE|O_SYS, "pack of observed nvl failed");
478 			FREE(pkd);
479 		}
480 
481 		if (ocnt == 0)
482 			fmep->e0 = ep;
483 
484 		FREE(estr);
485 		fmep->ecurrent = ep;
486 		ep->count++;
487 
488 		/* link it into list of observations seen */
489 		ep->observations = fmep->observations;
490 		fmep->observations = ep;
491 	}
492 
493 	if (ocnt == fmep->uniqobs) {
494 		(void) fme_ready(fmep);
495 		return (0);
496 	}
497 
498 	return (1);
499 }
500 
501 /*
502  * restart_fme -- called during eft initialization.  Reconstitutes
503  *	an in-progress fme.
504  */
505 void
506 fme_restart(fmd_hdl_t *hdl, fmd_case_t *inprogress)
507 {
508 	nvlist_t *defect;
509 	struct case_list *bad;
510 	struct fme *fmep;
511 	struct cfgdata *cfgdata = NULL;
512 	size_t rawsz;
513 
514 	fmep = alloc_fme();
515 	fmep->fmcase = inprogress;
516 	fmep->hdl = hdl;
517 
518 	if (fmd_buf_size(hdl, inprogress, WOBUF_CFGLEN) != sizeof (size_t)) {
519 		out(O_ALTFP, "restart_fme: No config data");
520 		Undiag_reason = UD_MISSINGINFO;
521 		goto badcase;
522 	}
523 	fmd_buf_read(hdl, inprogress, WOBUF_CFGLEN, (void *)&rawsz,
524 	    sizeof (size_t));
525 
526 	if ((fmep->e0r = fmd_case_getprincipal(hdl, inprogress)) == NULL) {
527 		out(O_ALTFP, "restart_fme: No event zero");
528 		Undiag_reason = UD_MISSINGZERO;
529 		goto badcase;
530 	}
531 
532 	cfgdata = MALLOC(sizeof (struct cfgdata));
533 	cfgdata->cooked = NULL;
534 	cfgdata->devcache = NULL;
535 	cfgdata->cpucache = NULL;
536 	cfgdata->refcnt = 1;
537 
538 	if (rawsz > 0) {
539 		if (fmd_buf_size(hdl, inprogress, WOBUF_CFG) != rawsz) {
540 			out(O_ALTFP, "restart_fme: Config data size mismatch");
541 			Undiag_reason = UD_CFGMISMATCH;
542 			goto badcase;
543 		}
544 		cfgdata->begin = MALLOC(rawsz);
545 		cfgdata->end = cfgdata->nextfree = cfgdata->begin + rawsz;
546 		fmd_buf_read(hdl,
547 		    inprogress, WOBUF_CFG, cfgdata->begin, rawsz);
548 	} else {
549 		cfgdata->begin = cfgdata->end = cfgdata->nextfree = NULL;
550 	}
551 	fmep->cfgdata = cfgdata;
552 
553 	config_cook(cfgdata);
554 	if ((fmep->eventtree = itree_create(cfgdata->cooked)) == NULL) {
555 		/* case not properly saved or irretrievable */
556 		out(O_ALTFP, "restart_fme: NULL instance tree");
557 		Undiag_reason = UD_INSTFAIL;
558 		goto badcase;
559 	}
560 
561 	itree_ptree(O_ALTFP|O_VERB2, fmep->eventtree);
562 
563 	if (fmd_buf_size(hdl, inprogress, WOBUF_PULL) == 0) {
564 		out(O_ALTFP, "restart_fme: no saved wait time");
565 		Undiag_reason = UD_MISSINGINFO;
566 		goto badcase;
567 	} else {
568 		fmd_buf_read(hdl, inprogress, WOBUF_PULL, (void *)&fmep->pull,
569 		    sizeof (fmep->pull));
570 	}
571 
572 	if (fmd_buf_size(hdl, inprogress, WOBUF_POSTD) == 0) {
573 		out(O_ALTFP, "restart_fme: no saved posted status");
574 		Undiag_reason = UD_MISSINGINFO;
575 		goto badcase;
576 	} else {
577 		fmd_buf_read(hdl, inprogress, WOBUF_POSTD,
578 		    (void *)&fmep->posted_suspects,
579 		    sizeof (fmep->posted_suspects));
580 	}
581 
582 	if (fmd_buf_size(hdl, inprogress, WOBUF_ID) == 0) {
583 		out(O_ALTFP, "restart_fme: no saved id");
584 		Undiag_reason = UD_MISSINGINFO;
585 		goto badcase;
586 	} else {
587 		fmd_buf_read(hdl, inprogress, WOBUF_ID, (void *)&fmep->id,
588 		    sizeof (fmep->id));
589 	}
590 	if (Nextid <= fmep->id)
591 		Nextid = fmep->id + 1;
592 
593 	if (fmd_buf_size(hdl, inprogress, WOBUF_NOBS) == 0) {
594 		out(O_ALTFP, "restart_fme: no count of observations");
595 		Undiag_reason = UD_MISSINGINFO;
596 		goto badcase;
597 	} else {
598 		fmd_buf_read(hdl, inprogress, WOBUF_NOBS,
599 		    (void *)&fmep->uniqobs, sizeof (fmep->uniqobs));
600 	}
601 
602 	if (reconstitute_observations(fmep) != 0)
603 		goto badcase;
604 
605 	Open_fme_count++;
606 
607 	/*
608 	 * ignore solved or closed cases
609 	 */
610 	if (fmep->posted_suspects ||
611 	    fmd_case_solved(fmep->hdl, fmep->fmcase) ||
612 	    fmd_case_closed(fmep->hdl, fmep->fmcase))
613 		return;
614 
615 	/* give the diagnosis algorithm a shot at the new FME state */
616 	fme_eval(fmep, NULL);
617 	return;
618 
619 badcase:
620 	if (fmep->eventtree != NULL)
621 		itree_free(fmep->eventtree);
622 	config_free(cfgdata);
623 	destroy_fme_bufs(fmep);
624 	FREE(fmep);
625 
626 	/*
627 	 * Since we're unable to restart the case, add it to the undiagable
628 	 * list and solve and close it as appropriate.
629 	 */
630 	bad = MALLOC(sizeof (struct case_list));
631 	bad->next = NULL;
632 
633 	if (Undiagablecaselist != NULL)
634 		bad->next = Undiagablecaselist;
635 	Undiagablecaselist = bad;
636 	bad->fmcase = inprogress;
637 
638 	out(O_ALTFP, "[case %s (unable to restart), ",
639 	    fmd_case_uuid(hdl, bad->fmcase));
640 
641 	if (fmd_case_solved(hdl, bad->fmcase)) {
642 		out(O_ALTFP, "already solved, ");
643 	} else {
644 		out(O_ALTFP, "solving, ");
645 		defect = fmd_nvl_create_fault(hdl, UNDIAGNOSABLE_DEFECT, 100,
646 		    NULL, NULL, NULL);
647 		if (Undiag_reason != NULL)
648 			(void) nvlist_add_string(defect,
649 			    UNDIAG_REASON, Undiag_reason);
650 		fmd_case_add_suspect(hdl, bad->fmcase, defect);
651 		fmd_case_solve(hdl, bad->fmcase);
652 	}
653 
654 	if (fmd_case_closed(hdl, bad->fmcase)) {
655 		out(O_ALTFP, "already closed ]");
656 	} else {
657 		out(O_ALTFP, "closing ]");
658 		fmd_case_close(hdl, bad->fmcase);
659 	}
660 }
661 
662 /*ARGSUSED*/
663 static void
664 globals_destructor(void *left, void *right, void *arg)
665 {
666 	struct evalue *evp = (struct evalue *)right;
667 	if (evp->t == NODEPTR)
668 		tree_free((struct node *)(uintptr_t)evp->v);
669 	evp->v = NULL;
670 	FREE(evp);
671 }
672 
673 void
674 destroy_fme(struct fme *f)
675 {
676 	stats_delete(f->Rcount);
677 	stats_delete(f->Hcallcount);
678 	stats_delete(f->Rcallcount);
679 	stats_delete(f->Ccallcount);
680 	stats_delete(f->Ecallcount);
681 	stats_delete(f->Tcallcount);
682 	stats_delete(f->Marrowcount);
683 	stats_delete(f->diags);
684 
685 	itree_free(f->eventtree);
686 	config_free(f->cfgdata);
687 	lut_free(f->globals, globals_destructor, NULL);
688 	FREE(f);
689 }
690 
691 static const char *
692 fme_state2str(enum fme_state s)
693 {
694 	switch (s) {
695 	case FME_NOTHING:	return ("NOTHING");
696 	case FME_WAIT:		return ("WAIT");
697 	case FME_CREDIBLE:	return ("CREDIBLE");
698 	case FME_DISPROVED:	return ("DISPROVED");
699 	case FME_DEFERRED:	return ("DEFERRED");
700 	default:		return ("UNKNOWN");
701 	}
702 }
703 
704 static int
705 is_problem(enum nametype t)
706 {
707 	return (t == N_FAULT || t == N_DEFECT || t == N_UPSET);
708 }
709 
710 static int
711 is_fault(enum nametype t)
712 {
713 	return (t == N_FAULT);
714 }
715 
716 static int
717 is_defect(enum nametype t)
718 {
719 	return (t == N_DEFECT);
720 }
721 
722 static int
723 is_upset(enum nametype t)
724 {
725 	return (t == N_UPSET);
726 }
727 
728 static void
729 fme_print(int flags, struct fme *fmep)
730 {
731 	struct event *ep;
732 
733 	out(flags, "Fault Management Exercise %d", fmep->id);
734 	out(flags, "\t       State: %s", fme_state2str(fmep->state));
735 	out(flags|O_NONL, "\t  Start time: ");
736 	ptree_timeval(flags|O_NONL, &fmep->ull);
737 	out(flags, NULL);
738 	if (fmep->wull) {
739 		out(flags|O_NONL, "\t   Wait time: ");
740 		ptree_timeval(flags|O_NONL, &fmep->wull);
741 		out(flags, NULL);
742 	}
743 	out(flags|O_NONL, "\t          E0: ");
744 	if (fmep->e0)
745 		itree_pevent_brief(flags|O_NONL, fmep->e0);
746 	else
747 		out(flags|O_NONL, "NULL");
748 	out(flags, NULL);
749 	out(flags|O_NONL, "\tObservations:");
750 	for (ep = fmep->observations; ep; ep = ep->observations) {
751 		out(flags|O_NONL, " ");
752 		itree_pevent_brief(flags|O_NONL, ep);
753 	}
754 	out(flags, NULL);
755 	out(flags|O_NONL, "\tSuspect list:");
756 	for (ep = fmep->suspects; ep; ep = ep->suspects) {
757 		out(flags|O_NONL, " ");
758 		itree_pevent_brief(flags|O_NONL, ep);
759 	}
760 	out(flags, NULL);
761 	out(flags|O_VERB2, "\t        Tree:");
762 	itree_ptree(flags|O_VERB2, fmep->eventtree);
763 }
764 
765 static struct node *
766 pathstring2epnamenp(char *path)
767 {
768 	char *sep = "/";
769 	struct node *ret;
770 	char *ptr;
771 
772 	if ((ptr = strtok(path, sep)) == NULL)
773 		out(O_DIE, "pathstring2epnamenp: invalid empty class");
774 
775 	ret = tree_iname(stable(ptr), NULL, 0);
776 
777 	while ((ptr = strtok(NULL, sep)) != NULL)
778 		ret = tree_name_append(ret,
779 		    tree_iname(stable(ptr), NULL, 0));
780 
781 	return (ret);
782 }
783 
784 /*
785  * for a given upset sp, increment the corresponding SERD engine.  if the
786  * SERD engine trips, return the ename and ipp of the resulting ereport.
787  * returns true if engine tripped and *enamep and *ippp were filled in.
788  */
789 static int
790 serd_eval(struct fme *fmep, fmd_hdl_t *hdl, fmd_event_t *ffep,
791     fmd_case_t *fmcase, struct event *sp, const char **enamep,
792     const struct ipath **ippp)
793 {
794 	struct node *serdinst;
795 	char *serdname;
796 	struct node *nid;
797 
798 	ASSERT(sp->t == N_UPSET);
799 	ASSERT(ffep != NULL);
800 
801 	/*
802 	 * obtain instanced SERD engine from the upset sp.  from this
803 	 * derive serdname, the string used to identify the SERD engine.
804 	 */
805 	serdinst = eventprop_lookup(sp, L_engine);
806 
807 	if (serdinst == NULL)
808 		return (NULL);
809 
810 	serdname = ipath2str(serdinst->u.stmt.np->u.event.ename->u.name.s,
811 	    ipath(serdinst->u.stmt.np->u.event.epname));
812 
813 	/* handle serd engine "id" property, if there is one */
814 	if ((nid =
815 	    lut_lookup(serdinst->u.stmt.lutp, (void *)L_id, NULL)) != NULL) {
816 		struct evalue *gval;
817 		char suffixbuf[200];
818 		char *suffix;
819 		char *nserdname;
820 		size_t nname;
821 
822 		out(O_ALTFP|O_NONL, "serd \"%s\" id: ", serdname);
823 		ptree_name_iter(O_ALTFP|O_NONL, nid);
824 
825 		ASSERTinfo(nid->t == T_GLOBID, ptree_nodetype2str(nid->t));
826 
827 		if ((gval = lut_lookup(fmep->globals,
828 		    (void *)nid->u.globid.s, NULL)) == NULL) {
829 			out(O_ALTFP, " undefined");
830 		} else if (gval->t == UINT64) {
831 			out(O_ALTFP, " %llu", gval->v);
832 			(void) sprintf(suffixbuf, "%llu", gval->v);
833 			suffix = suffixbuf;
834 		} else {
835 			out(O_ALTFP, " \"%s\"", (char *)(uintptr_t)gval->v);
836 			suffix = (char *)(uintptr_t)gval->v;
837 		}
838 
839 		nname = strlen(serdname) + strlen(suffix) + 2;
840 		nserdname = MALLOC(nname);
841 		(void) snprintf(nserdname, nname, "%s:%s", serdname, suffix);
842 		FREE(serdname);
843 		serdname = nserdname;
844 	}
845 
846 	if (!fmd_serd_exists(hdl, serdname)) {
847 		struct node *nN, *nT;
848 
849 		/* no SERD engine yet, so create it */
850 		nN = lut_lookup(serdinst->u.stmt.lutp, (void *)L_N, NULL);
851 		nT = lut_lookup(serdinst->u.stmt.lutp, (void *)L_T, NULL);
852 
853 		ASSERT(nN->t == T_NUM);
854 		ASSERT(nT->t == T_TIMEVAL);
855 
856 		fmd_serd_create(hdl, serdname, (uint_t)nN->u.ull,
857 		    (hrtime_t)nT->u.ull);
858 	}
859 
860 
861 	/*
862 	 * increment SERD engine.  if engine fires, reset serd
863 	 * engine and return trip_strcode
864 	 */
865 	if (fmd_serd_record(hdl, serdname, ffep)) {
866 		struct node *tripinst = lut_lookup(serdinst->u.stmt.lutp,
867 		    (void *)L_trip, NULL);
868 
869 		ASSERT(tripinst != NULL);
870 
871 		*enamep = tripinst->u.event.ename->u.name.s;
872 		*ippp = ipath(tripinst->u.event.epname);
873 
874 		fmd_case_add_serd(hdl, fmcase, serdname);
875 		fmd_serd_reset(hdl, serdname);
876 		out(O_ALTFP|O_NONL, "[engine fired: %s, sending: ", serdname);
877 		ipath_print(O_ALTFP|O_NONL, *enamep, *ippp);
878 		out(O_ALTFP, "]");
879 
880 		FREE(serdname);
881 		return (1);
882 	}
883 
884 	FREE(serdname);
885 	return (0);
886 }
887 
888 /*
889  * search a suspect list for upsets.  feed each upset to serd_eval() and
890  * build up tripped[], an array of ereports produced by the firing of
891  * any SERD engines.  then feed each ereport back into
892  * fme_receive_report().
893  *
894  * returns ntrip, the number of these ereports produced.
895  */
896 static int
897 upsets_eval(struct fme *fmep, fmd_event_t *ffep)
898 {
899 	/* we build an array of tripped ereports that we send ourselves */
900 	struct {
901 		const char *ename;
902 		const struct ipath *ipp;
903 	} *tripped;
904 	struct event *sp;
905 	int ntrip, nupset, i;
906 
907 	/*
908 	 * count the number of upsets to determine the upper limit on
909 	 * expected trip ereport strings.  remember that one upset can
910 	 * lead to at most one ereport.
911 	 */
912 	nupset = 0;
913 	for (sp = fmep->suspects; sp; sp = sp->suspects) {
914 		if (sp->t == N_UPSET)
915 			nupset++;
916 	}
917 
918 	if (nupset == 0)
919 		return (0);
920 
921 	/*
922 	 * get to this point if we have upsets and expect some trip
923 	 * ereports
924 	 */
925 	tripped = alloca(sizeof (*tripped) * nupset);
926 	bzero((void *)tripped, sizeof (*tripped) * nupset);
927 
928 	ntrip = 0;
929 	for (sp = fmep->suspects; sp; sp = sp->suspects)
930 		if (sp->t == N_UPSET &&
931 		    serd_eval(fmep, fmep->hdl, ffep, fmep->fmcase, sp,
932 			    &tripped[ntrip].ename, &tripped[ntrip].ipp))
933 			ntrip++;
934 
935 	for (i = 0; i < ntrip; i++)
936 		fme_receive_report(fmep->hdl, ffep,
937 		    tripped[i].ename, tripped[i].ipp, NULL);
938 
939 	return (ntrip);
940 }
941 
942 /*
943  * fme_receive_external_report -- call when an external ereport comes in
944  *
945  * this routine just converts the relevant information from the ereport
946  * into a format used internally and passes it on to fme_receive_report().
947  */
948 void
949 fme_receive_external_report(fmd_hdl_t *hdl, fmd_event_t *ffep, nvlist_t *nvl,
950     const char *eventstring)
951 {
952 	struct node *epnamenp = platform_getpath(nvl);
953 	const struct ipath *ipp;
954 
955 	/*
956 	 * XFILE: If we ended up without a path, it's an X-file.
957 	 * For now, use our undiagnosable interface.
958 	 */
959 	if (epnamenp == NULL) {
960 		out(O_ALTFP, "XFILE: Unable to get path from ereport");
961 		Undiag_reason = UD_NOPATH;
962 		publish_undiagnosable(hdl, ffep);
963 		return;
964 	}
965 
966 	ipp = ipath(epnamenp);
967 	tree_free(epnamenp);
968 	fme_receive_report(hdl, ffep, stable(eventstring), ipp, nvl);
969 }
970 
971 /*ARGSUSED*/
972 void
973 fme_receive_repair_list(fmd_hdl_t *hdl, fmd_event_t *ffep, nvlist_t *nvl,
974     const char *eventstring)
975 {
976 	char *uuid;
977 	nvlist_t **nva;
978 	uint_t nvc;
979 	const struct ipath *ipp;
980 
981 	if (nvlist_lookup_string(nvl, FM_SUSPECT_UUID, &uuid) != 0 ||
982 	    nvlist_lookup_nvlist_array(nvl, FM_SUSPECT_FAULT_LIST,
983 	    &nva, &nvc) != 0) {
984 		out(O_ALTFP, "No uuid or fault list for list.repaired event");
985 		return;
986 	}
987 
988 	out(O_ALTFP, "Processing list.repaired from case %s", uuid);
989 
990 	while (nvc-- != 0) {
991 		/*
992 		 * Reset any istat associated with this path.
993 		 */
994 		char *path;
995 
996 		if ((ipp = platform_fault2ipath(*nva++)) == NULL)
997 			continue;
998 
999 		path = ipath2str(NULL, ipp);
1000 		out(O_ALTFP, "fme_receive_repair_list: resetting state for %s",
1001 		    path);
1002 		FREE(path);
1003 
1004 		lut_walk(Istats, (lut_cb)istat_counter_reset_cb, (void *)ipp);
1005 		istat_save();
1006 
1007 		/*
1008 		 * We do not have a list of stat engines in a form that
1009 		 * we can readily clear any associated serd engines.  When we
1010 		 * do, this will be the place to clear them.
1011 		 */
1012 	}
1013 }
1014 
1015 static int mark_arrows(struct fme *fmep, struct event *ep, int mark,
1016     unsigned long long at_latest_by, unsigned long long *pdelay, int keep);
1017 
1018 /* ARGSUSED */
1019 static void
1020 clear_arrows(struct event *ep, struct event *ep2, struct fme *fmep)
1021 {
1022 	struct bubble *bp;
1023 	struct arrowlist *ap;
1024 
1025 	ep->cached_state = 0;
1026 	ep->keep_in_tree = 0;
1027 	for (bp = itree_next_bubble(ep, NULL); bp;
1028 	    bp = itree_next_bubble(ep, bp)) {
1029 		if (bp->t != B_FROM)
1030 			continue;
1031 		bp->mark = 0;
1032 		for (ap = itree_next_arrow(bp, NULL); ap;
1033 		    ap = itree_next_arrow(bp, ap))
1034 			ap->arrowp->mark = 0;
1035 	}
1036 }
1037 
1038 static void
1039 fme_receive_report(fmd_hdl_t *hdl, fmd_event_t *ffep,
1040     const char *eventstring, const struct ipath *ipp, nvlist_t *nvl)
1041 {
1042 	struct event *ep;
1043 	struct fme *fmep = NULL;
1044 	struct fme *ofmep = NULL;
1045 	struct fme *cfmep, *svfmep;
1046 	int matched = 0;
1047 	nvlist_t *defect;
1048 
1049 	out(O_ALTFP|O_NONL, "fme_receive_report: ");
1050 	ipath_print(O_ALTFP|O_NONL, eventstring, ipp);
1051 	out(O_ALTFP|O_STAMP, NULL);
1052 
1053 	/* decide which FME it goes to */
1054 	for (fmep = FMElist; fmep; fmep = fmep->next) {
1055 		int prev_verbose;
1056 		unsigned long long my_delay = TIMEVAL_EVENTUALLY;
1057 		enum fme_state state;
1058 		nvlist_t *pre_peek_nvp = NULL;
1059 
1060 		if (fmep->overflow) {
1061 			if (!(fmd_case_closed(fmep->hdl, fmep->fmcase)))
1062 				ofmep = fmep;
1063 
1064 			continue;
1065 		}
1066 
1067 		/*
1068 		 * ignore solved or closed cases
1069 		 */
1070 		if (fmep->posted_suspects ||
1071 		    fmd_case_solved(fmep->hdl, fmep->fmcase) ||
1072 		    fmd_case_closed(fmep->hdl, fmep->fmcase))
1073 			continue;
1074 
1075 		/* look up event in event tree for this FME */
1076 		if ((ep = itree_lookup(fmep->eventtree,
1077 		    eventstring, ipp)) == NULL)
1078 			continue;
1079 
1080 		/* note observation */
1081 		fmep->ecurrent = ep;
1082 		if (ep->count++ == 0) {
1083 			/* link it into list of observations seen */
1084 			ep->observations = fmep->observations;
1085 			fmep->observations = ep;
1086 			ep->nvp = evnv_dupnvl(nvl);
1087 		} else {
1088 			/* use new payload values for peek */
1089 			pre_peek_nvp = ep->nvp;
1090 			ep->nvp = evnv_dupnvl(nvl);
1091 		}
1092 
1093 		/* tell hypothesise() not to mess with suspect list */
1094 		fmep->peek = 1;
1095 
1096 		/* don't want this to be verbose (unless Debug is set) */
1097 		prev_verbose = Verbose;
1098 		if (Debug == 0)
1099 			Verbose = 0;
1100 
1101 		lut_walk(fmep->eventtree, (lut_cb)clear_arrows, (void *)fmep);
1102 		state = hypothesise(fmep, fmep->e0, fmep->ull, &my_delay);
1103 
1104 		fmep->peek = 0;
1105 
1106 		/* put verbose flag back */
1107 		Verbose = prev_verbose;
1108 
1109 		if (state != FME_DISPROVED) {
1110 			/* found an FME that explains the ereport */
1111 			matched++;
1112 			out(O_ALTFP|O_NONL, "[");
1113 			ipath_print(O_ALTFP|O_NONL, eventstring, ipp);
1114 			out(O_ALTFP, " explained by FME%d]", fmep->id);
1115 
1116 			if (pre_peek_nvp)
1117 				nvlist_free(pre_peek_nvp);
1118 
1119 			if (ep->count == 1)
1120 				serialize_observation(fmep, eventstring, ipp);
1121 
1122 			if (ffep)
1123 				fmd_case_add_ereport(hdl, fmep->fmcase, ffep);
1124 
1125 			stats_counter_bump(fmep->Rcount);
1126 
1127 			/* re-eval FME */
1128 			fme_eval(fmep, ffep);
1129 		} else {
1130 
1131 			/* not a match, undo noting of observation */
1132 			fmep->ecurrent = NULL;
1133 			if (--ep->count == 0) {
1134 				/* unlink it from observations */
1135 				fmep->observations = ep->observations;
1136 				ep->observations = NULL;
1137 				nvlist_free(ep->nvp);
1138 				ep->nvp = NULL;
1139 			} else {
1140 				nvlist_free(ep->nvp);
1141 				ep->nvp = pre_peek_nvp;
1142 			}
1143 		}
1144 	}
1145 
1146 	if (matched)
1147 		return;	/* explained by at least one existing FME */
1148 
1149 	/* clean up closed fmes */
1150 	cfmep = ClosedFMEs;
1151 	while (cfmep != NULL) {
1152 		svfmep = cfmep->next;
1153 		destroy_fme(cfmep);
1154 		cfmep = svfmep;
1155 	}
1156 	ClosedFMEs = NULL;
1157 
1158 	if (ofmep) {
1159 		out(O_ALTFP|O_NONL, "[");
1160 		ipath_print(O_ALTFP|O_NONL, eventstring, ipp);
1161 		out(O_ALTFP, " ADDING TO OVERFLOW FME]");
1162 		if (ffep)
1163 			fmd_case_add_ereport(hdl, ofmep->fmcase, ffep);
1164 
1165 		return;
1166 
1167 	} else if (Max_fme && (Open_fme_count >= Max_fme)) {
1168 		out(O_ALTFP|O_NONL, "[");
1169 		ipath_print(O_ALTFP|O_NONL, eventstring, ipp);
1170 		out(O_ALTFP, " MAX OPEN FME REACHED]");
1171 		/* Create overflow fme */
1172 		if ((fmep = newfme(eventstring, ipp)) == NULL) {
1173 			out(O_ALTFP|O_NONL, "[");
1174 			ipath_print(O_ALTFP|O_NONL, eventstring, ipp);
1175 			out(O_ALTFP, " CANNOT OPEN OVERFLOW FME]");
1176 			publish_undiagnosable(hdl, ffep);
1177 			return;
1178 		}
1179 
1180 		Open_fme_count++;
1181 
1182 		fmep->fmcase = fmd_case_open(hdl, NULL);
1183 		fmep->hdl = hdl;
1184 		init_fme_bufs(fmep);
1185 		fmep->overflow = B_TRUE;
1186 
1187 		if (ffep)
1188 			fmd_case_add_ereport(hdl, fmep->fmcase, ffep);
1189 
1190 		defect = fmd_nvl_create_fault(hdl, UNDIAGNOSABLE_DEFECT, 100,
1191 		    NULL, NULL, NULL);
1192 		(void) nvlist_add_string(defect, UNDIAG_REASON, UD_MAXFME);
1193 		fmd_case_add_suspect(hdl, fmep->fmcase, defect);
1194 		fmd_case_solve(hdl, fmep->fmcase);
1195 		return;
1196 	}
1197 
1198 	/* start a new FME */
1199 	if ((fmep = newfme(eventstring, ipp)) == NULL) {
1200 		out(O_ALTFP|O_NONL, "[");
1201 		ipath_print(O_ALTFP|O_NONL, eventstring, ipp);
1202 		out(O_ALTFP, " CANNOT DIAGNOSE]");
1203 		publish_undiagnosable(hdl, ffep);
1204 		return;
1205 	}
1206 
1207 	Open_fme_count++;
1208 
1209 	/* open a case */
1210 	fmep->fmcase = fmd_case_open(hdl, NULL);
1211 	fmep->hdl = hdl;
1212 	init_fme_bufs(fmep);
1213 
1214 	out(O_ALTFP|O_NONL, "[");
1215 	ipath_print(O_ALTFP|O_NONL, eventstring, ipp);
1216 	out(O_ALTFP, " created FME%d, case %s]", fmep->id,
1217 	    fmd_case_uuid(hdl, fmep->fmcase));
1218 
1219 	ep = fmep->e0;
1220 	ASSERT(ep != NULL);
1221 
1222 	/* note observation */
1223 	fmep->ecurrent = ep;
1224 	if (ep->count++ == 0) {
1225 		/* link it into list of observations seen */
1226 		ep->observations = fmep->observations;
1227 		fmep->observations = ep;
1228 		ep->nvp = evnv_dupnvl(nvl);
1229 		serialize_observation(fmep, eventstring, ipp);
1230 	} else {
1231 		/* new payload overrides any previous */
1232 		nvlist_free(ep->nvp);
1233 		ep->nvp = evnv_dupnvl(nvl);
1234 	}
1235 
1236 	stats_counter_bump(fmep->Rcount);
1237 
1238 	if (ffep) {
1239 		fmd_case_add_ereport(hdl, fmep->fmcase, ffep);
1240 		fmd_case_setprincipal(hdl, fmep->fmcase, ffep);
1241 		fmep->e0r = ffep;
1242 	}
1243 
1244 	/* give the diagnosis algorithm a shot at the new FME state */
1245 	fme_eval(fmep, ffep);
1246 }
1247 
1248 void
1249 fme_status(int flags)
1250 {
1251 	struct fme *fmep;
1252 
1253 	if (FMElist == NULL) {
1254 		out(flags, "No fault management exercises underway.");
1255 		return;
1256 	}
1257 
1258 	for (fmep = FMElist; fmep; fmep = fmep->next)
1259 		fme_print(flags, fmep);
1260 }
1261 
1262 /*
1263  * "indent" routines used mostly for nicely formatted debug output, but also
1264  * for sanity checking for infinite recursion bugs.
1265  */
1266 
1267 #define	MAX_INDENT 1024
1268 static const char *indent_s[MAX_INDENT];
1269 static int current_indent;
1270 
1271 static void
1272 indent_push(const char *s)
1273 {
1274 	if (current_indent < MAX_INDENT)
1275 		indent_s[current_indent++] = s;
1276 	else
1277 		out(O_DIE, "unexpected recursion depth (%d)", current_indent);
1278 }
1279 
1280 static void
1281 indent_set(const char *s)
1282 {
1283 	current_indent = 0;
1284 	indent_push(s);
1285 }
1286 
1287 static void
1288 indent_pop(void)
1289 {
1290 	if (current_indent > 0)
1291 		current_indent--;
1292 	else
1293 		out(O_DIE, "recursion underflow");
1294 }
1295 
1296 static void
1297 indent(void)
1298 {
1299 	int i;
1300 	if (!Verbose)
1301 		return;
1302 	for (i = 0; i < current_indent; i++)
1303 		out(O_ALTFP|O_VERB|O_NONL, indent_s[i]);
1304 }
1305 
1306 #define	SLNEW		1
1307 #define	SLCHANGED	2
1308 #define	SLWAIT		3
1309 #define	SLDISPROVED	4
1310 
1311 static void
1312 print_suspects(int circumstance, struct fme *fmep)
1313 {
1314 	struct event *ep;
1315 
1316 	out(O_ALTFP|O_NONL, "[");
1317 	if (circumstance == SLCHANGED) {
1318 		out(O_ALTFP|O_NONL, "FME%d diagnosis changed. state: %s, "
1319 		    "suspect list:", fmep->id, fme_state2str(fmep->state));
1320 	} else if (circumstance == SLWAIT) {
1321 		out(O_ALTFP|O_NONL, "FME%d set wait timer ", fmep->id);
1322 		ptree_timeval(O_ALTFP|O_NONL, &fmep->wull);
1323 	} else if (circumstance == SLDISPROVED) {
1324 		out(O_ALTFP|O_NONL, "FME%d DIAGNOSIS UNKNOWN", fmep->id);
1325 	} else {
1326 		out(O_ALTFP|O_NONL, "FME%d DIAGNOSIS PRODUCED:", fmep->id);
1327 	}
1328 
1329 	if (circumstance == SLWAIT || circumstance == SLDISPROVED) {
1330 		out(O_ALTFP, "]");
1331 		return;
1332 	}
1333 
1334 	for (ep = fmep->suspects; ep; ep = ep->suspects) {
1335 		out(O_ALTFP|O_NONL, " ");
1336 		itree_pevent_brief(O_ALTFP|O_NONL, ep);
1337 	}
1338 	out(O_ALTFP, "]");
1339 }
1340 
1341 static struct node *
1342 eventprop_lookup(struct event *ep, const char *propname)
1343 {
1344 	return (lut_lookup(ep->props, (void *)propname, NULL));
1345 }
1346 
1347 #define	MAXDIGITIDX	23
1348 static char numbuf[MAXDIGITIDX + 1];
1349 
1350 static int
1351 node2uint(struct node *n, uint_t *valp)
1352 {
1353 	struct evalue value;
1354 	struct lut *globals = NULL;
1355 
1356 	if (n == NULL)
1357 		return (1);
1358 
1359 	/*
1360 	 * check value.v since we are being asked to convert an unsigned
1361 	 * long long int to an unsigned int
1362 	 */
1363 	if (! eval_expr(n, NULL, NULL, &globals, NULL, NULL, 0, &value) ||
1364 	    value.t != UINT64 || value.v > (1ULL << 32))
1365 		return (1);
1366 
1367 	*valp = (uint_t)value.v;
1368 
1369 	return (0);
1370 }
1371 
1372 static nvlist_t *
1373 node2fmri(struct node *n)
1374 {
1375 	nvlist_t **pa, *f, *p;
1376 	struct node *nc;
1377 	uint_t depth = 0;
1378 	char *numstr, *nullbyte;
1379 	char *failure;
1380 	int err, i;
1381 
1382 	/* XXX do we need to be able to handle a non-T_NAME node? */
1383 	if (n == NULL || n->t != T_NAME)
1384 		return (NULL);
1385 
1386 	for (nc = n; nc != NULL; nc = nc->u.name.next) {
1387 		if (nc->u.name.child == NULL || nc->u.name.child->t != T_NUM)
1388 			break;
1389 		depth++;
1390 	}
1391 
1392 	if (nc != NULL) {
1393 		/* We bailed early, something went wrong */
1394 		return (NULL);
1395 	}
1396 
1397 	if ((err = nvlist_xalloc(&f, NV_UNIQUE_NAME, &Eft_nv_hdl)) != 0)
1398 		out(O_DIE|O_SYS, "alloc of fmri nvl failed");
1399 	pa = alloca(depth * sizeof (nvlist_t *));
1400 	for (i = 0; i < depth; i++)
1401 		pa[i] = NULL;
1402 
1403 	err = nvlist_add_string(f, FM_FMRI_SCHEME, FM_FMRI_SCHEME_HC);
1404 	err |= nvlist_add_uint8(f, FM_VERSION, FM_HC_SCHEME_VERSION);
1405 	err |= nvlist_add_string(f, FM_FMRI_HC_ROOT, "");
1406 	err |= nvlist_add_uint32(f, FM_FMRI_HC_LIST_SZ, depth);
1407 	if (err != 0) {
1408 		failure = "basic construction of FMRI failed";
1409 		goto boom;
1410 	}
1411 
1412 	numbuf[MAXDIGITIDX] = '\0';
1413 	nullbyte = &numbuf[MAXDIGITIDX];
1414 	i = 0;
1415 
1416 	for (nc = n; nc != NULL; nc = nc->u.name.next) {
1417 		err = nvlist_xalloc(&p, NV_UNIQUE_NAME, &Eft_nv_hdl);
1418 		if (err != 0) {
1419 			failure = "alloc of an hc-pair failed";
1420 			goto boom;
1421 		}
1422 		err = nvlist_add_string(p, FM_FMRI_HC_NAME, nc->u.name.s);
1423 		numstr = ulltostr(nc->u.name.child->u.ull, nullbyte);
1424 		err |= nvlist_add_string(p, FM_FMRI_HC_ID, numstr);
1425 		if (err != 0) {
1426 			failure = "construction of an hc-pair failed";
1427 			goto boom;
1428 		}
1429 		pa[i++] = p;
1430 	}
1431 
1432 	err = nvlist_add_nvlist_array(f, FM_FMRI_HC_LIST, pa, depth);
1433 	if (err == 0) {
1434 		for (i = 0; i < depth; i++)
1435 			if (pa[i] != NULL)
1436 				nvlist_free(pa[i]);
1437 		return (f);
1438 	}
1439 	failure = "addition of hc-pair array to FMRI failed";
1440 
1441 boom:
1442 	for (i = 0; i < depth; i++)
1443 		if (pa[i] != NULL)
1444 			nvlist_free(pa[i]);
1445 	nvlist_free(f);
1446 	out(O_DIE, "%s", failure);
1447 	/*NOTREACHED*/
1448 	return (NULL);
1449 }
1450 
1451 static uint_t
1452 avg(uint_t sum, uint_t cnt)
1453 {
1454 	unsigned long long s = sum * 10;
1455 
1456 	return ((s / cnt / 10) + (((s / cnt % 10) >= 5) ? 1 : 0));
1457 }
1458 
1459 static uint8_t
1460 percentof(uint_t part, uint_t whole)
1461 {
1462 	unsigned long long p = part * 1000;
1463 
1464 	return ((p / whole / 10) + (((p / whole % 10) >= 5) ? 1 : 0));
1465 }
1466 
1467 struct rsl {
1468 	struct event *suspect;
1469 	nvlist_t *asru;
1470 	nvlist_t *fru;
1471 	nvlist_t *rsrc;
1472 };
1473 
1474 /*
1475  *  rslfree -- free internal members of struct rsl not expected to be
1476  *	freed elsewhere.
1477  */
1478 static void
1479 rslfree(struct rsl *freeme)
1480 {
1481 	if (freeme->asru != NULL)
1482 		nvlist_free(freeme->asru);
1483 	if (freeme->fru != NULL)
1484 		nvlist_free(freeme->fru);
1485 	if (freeme->rsrc != NULL && freeme->rsrc != freeme->asru)
1486 		nvlist_free(freeme->rsrc);
1487 }
1488 
1489 /*
1490  *  rslcmp -- compare two rsl structures.  Use the following
1491  *	comparisons to establish cardinality:
1492  *
1493  *	1. Name of the suspect's class. (simple strcmp)
1494  *	2. Name of the suspect's ASRU. (trickier, since nvlist)
1495  *
1496  */
1497 static int
1498 rslcmp(const void *a, const void *b)
1499 {
1500 	struct rsl *r1 = (struct rsl *)a;
1501 	struct rsl *r2 = (struct rsl *)b;
1502 	int rv;
1503 
1504 	rv = strcmp(r1->suspect->enode->u.event.ename->u.name.s,
1505 	    r2->suspect->enode->u.event.ename->u.name.s);
1506 	if (rv != 0)
1507 		return (rv);
1508 
1509 	if (r1->asru == NULL && r2->asru == NULL)
1510 		return (0);
1511 	if (r1->asru == NULL)
1512 		return (-1);
1513 	if (r2->asru == NULL)
1514 		return (1);
1515 	return (evnv_cmpnvl(r1->asru, r2->asru, 0));
1516 }
1517 
1518 /*
1519  *  rsluniq -- given an array of rsl structures, seek out and "remove"
1520  *	any duplicates.  Dups are "remove"d by NULLing the suspect pointer
1521  *	of the array element.  Removal also means updating the number of
1522  *	problems and the number of problems which are not faults.  User
1523  *	provides the first and last element pointers.
1524  */
1525 static void
1526 rsluniq(struct rsl *first, struct rsl *last, int *nprobs, int *nnonf)
1527 {
1528 	struct rsl *cr;
1529 
1530 	if (*nprobs == 1)
1531 		return;
1532 
1533 	/*
1534 	 *  At this point, we only expect duplicate defects.
1535 	 *  Eversholt's diagnosis algorithm prevents duplicate
1536 	 *  suspects, but we rewrite defects in the platform code after
1537 	 *  the diagnosis is made, and that can introduce new
1538 	 *  duplicates.
1539 	 */
1540 	while (first <= last) {
1541 		if (first->suspect == NULL || !is_defect(first->suspect->t)) {
1542 			first++;
1543 			continue;
1544 		}
1545 		cr = first + 1;
1546 		while (cr <= last) {
1547 			if (is_defect(first->suspect->t)) {
1548 				if (rslcmp(first, cr) == 0) {
1549 					cr->suspect = NULL;
1550 					rslfree(cr);
1551 					(*nprobs)--;
1552 					(*nnonf)--;
1553 				}
1554 			}
1555 			/*
1556 			 * assume all defects are in order after our
1557 			 * sort and short circuit here with "else break" ?
1558 			 */
1559 			cr++;
1560 		}
1561 		first++;
1562 	}
1563 }
1564 
1565 /*
1566  * get_resources -- for a given suspect, determine what ASRU, FRU and
1567  *     RSRC nvlists should be advertised in the final suspect list.
1568  */
1569 void
1570 get_resources(struct event *sp, struct rsl *rsrcs, struct config *croot)
1571 {
1572 	struct node *asrudef, *frudef;
1573 	nvlist_t *asru, *fru;
1574 	nvlist_t *rsrc = NULL;
1575 	char *pathstr;
1576 
1577 	/*
1578 	 * First find any ASRU and/or FRU defined in the
1579 	 * initial fault tree.
1580 	 */
1581 	asrudef = eventprop_lookup(sp, L_ASRU);
1582 	frudef = eventprop_lookup(sp, L_FRU);
1583 
1584 	/*
1585 	 * Create FMRIs based on those definitions
1586 	 */
1587 	asru = node2fmri(asrudef);
1588 	fru = node2fmri(frudef);
1589 	pathstr = ipath2str(NULL, sp->ipp);
1590 
1591 	/*
1592 	 * Allow for platform translations of the FMRIs
1593 	 */
1594 	platform_units_translate(is_defect(sp->t), croot, &asru, &fru, &rsrc,
1595 	    pathstr);
1596 
1597 	FREE(pathstr);
1598 	rsrcs->suspect = sp;
1599 	rsrcs->asru = asru;
1600 	rsrcs->fru = fru;
1601 	rsrcs->rsrc = rsrc;
1602 }
1603 
1604 /*
1605  * trim_suspects -- prior to publishing, we may need to remove some
1606  *    suspects from the list.  If we're auto-closing upsets, we don't
1607  *    want any of those in the published list.  If the ASRUs for multiple
1608  *    defects resolve to the same ASRU (driver) we only want to publish
1609  *    that as a single suspect.
1610  */
1611 static void
1612 trim_suspects(struct fme *fmep, boolean_t no_upsets, struct rsl **begin,
1613     struct rsl **end)
1614 {
1615 	struct event *ep;
1616 	struct rsl *rp;
1617 	int rpcnt;
1618 
1619 	/*
1620 	 * First save the suspects in the psuspects, then copy back
1621 	 * only the ones we wish to retain.  This resets nsuspects to
1622 	 * zero.
1623 	 */
1624 	rpcnt = fmep->nsuspects;
1625 	save_suspects(fmep);
1626 
1627 	/*
1628 	 * allocate an array of resource pointers for the suspects.
1629 	 * We may end up using less than the full allocation, but this
1630 	 * is a very short-lived array.  publish_suspects() will free
1631 	 * this array when it's done using it.
1632 	 */
1633 	rp = *begin = MALLOC(rpcnt * sizeof (struct rsl));
1634 	bzero(rp, rpcnt * sizeof (struct rsl));
1635 
1636 	/* first pass, remove any unwanted upsets and populate our array */
1637 	for (ep = fmep->psuspects; ep; ep = ep->psuspects) {
1638 		if (no_upsets && is_upset(ep->t))
1639 			continue;
1640 		get_resources(ep, rp, fmep->cfgdata->cooked);
1641 		rp++;
1642 		fmep->nsuspects++;
1643 		if (!is_fault(ep->t))
1644 			fmep->nonfault++;
1645 	}
1646 
1647 	/* if all we had was unwanted upsets, we're done */
1648 	if (fmep->nsuspects == 0)
1649 		return;
1650 
1651 	*end = rp - 1;
1652 
1653 	/* sort the array */
1654 	qsort(*begin, fmep->nsuspects, sizeof (struct rsl), rslcmp);
1655 	rsluniq(*begin, *end, &fmep->nsuspects, &fmep->nonfault);
1656 }
1657 
1658 /*
1659  * addpayloadprop -- add a payload prop to a problem
1660  */
1661 static void
1662 addpayloadprop(const char *lhs, struct evalue *rhs, nvlist_t *fault)
1663 {
1664 	ASSERT(fault != NULL);
1665 	ASSERT(lhs != NULL);
1666 	ASSERT(rhs != NULL);
1667 
1668 	if (rhs->t == UINT64) {
1669 		out(O_ALTFP|O_VERB2, "addpayloadprop: %s=%llu", lhs, rhs->v);
1670 
1671 		if (nvlist_add_uint64(fault, lhs, rhs->v) != 0)
1672 			out(O_DIE,
1673 			    "cannot add payloadprop \"%s\" to fault", lhs);
1674 	} else {
1675 		out(O_ALTFP|O_VERB2, "addpayloadprop: %s=\"%s\"",
1676 		    lhs, (char *)(uintptr_t)rhs->v);
1677 
1678 		if (nvlist_add_string(fault, lhs, (char *)(uintptr_t)rhs->v) !=
1679 		    0)
1680 			out(O_DIE,
1681 			    "cannot add payloadprop \"%s\" to fault", lhs);
1682 	}
1683 }
1684 
1685 static char *Istatbuf;
1686 static char *Istatbufptr;
1687 static int Istatsz;
1688 
1689 /*
1690  * istataddsize -- calculate size of istat and add it to Istatsz
1691  */
1692 /*ARGSUSED2*/
1693 static void
1694 istataddsize(const struct istat_entry *lhs, struct stats *rhs, void *arg)
1695 {
1696 	int val;
1697 
1698 	ASSERT(lhs != NULL);
1699 	ASSERT(rhs != NULL);
1700 
1701 	if ((val = stats_counter_value(rhs)) == 0)
1702 		return;	/* skip zero-valued stats */
1703 
1704 	/* count up the size of the stat name */
1705 	Istatsz += ipath2strlen(lhs->ename, lhs->ipath);
1706 	Istatsz++;	/* for the trailing NULL byte */
1707 
1708 	/* count up the size of the stat value */
1709 	Istatsz += snprintf(NULL, 0, "%d", val);
1710 	Istatsz++;	/* for the trailing NULL byte */
1711 }
1712 
1713 /*
1714  * istat2str -- serialize an istat, writing result to *Istatbufptr
1715  */
1716 /*ARGSUSED2*/
1717 static void
1718 istat2str(const struct istat_entry *lhs, struct stats *rhs, void *arg)
1719 {
1720 	char *str;
1721 	int len;
1722 	int val;
1723 
1724 	ASSERT(lhs != NULL);
1725 	ASSERT(rhs != NULL);
1726 
1727 	if ((val = stats_counter_value(rhs)) == 0)
1728 		return;	/* skip zero-valued stats */
1729 
1730 	/* serialize the stat name */
1731 	str = ipath2str(lhs->ename, lhs->ipath);
1732 	len = strlen(str);
1733 
1734 	ASSERT(Istatbufptr + len + 1 < &Istatbuf[Istatsz]);
1735 	(void) strlcpy(Istatbufptr, str, &Istatbuf[Istatsz] - Istatbufptr);
1736 	Istatbufptr += len;
1737 	FREE(str);
1738 	*Istatbufptr++ = '\0';
1739 
1740 	/* serialize the stat value */
1741 	Istatbufptr += snprintf(Istatbufptr, &Istatbuf[Istatsz] - Istatbufptr,
1742 	    "%d", val);
1743 	*Istatbufptr++ = '\0';
1744 
1745 	ASSERT(Istatbufptr <= &Istatbuf[Istatsz]);
1746 }
1747 
1748 void
1749 istat_save()
1750 {
1751 	if (Istat_need_save == 0)
1752 		return;
1753 
1754 	/* figure out how big the serialzed info is */
1755 	Istatsz = 0;
1756 	lut_walk(Istats, (lut_cb)istataddsize, NULL);
1757 
1758 	if (Istatsz == 0) {
1759 		/* no stats to save */
1760 		fmd_buf_destroy(Hdl, NULL, WOBUF_ISTATS);
1761 		return;
1762 	}
1763 
1764 	/* create the serialized buffer */
1765 	Istatbufptr = Istatbuf = MALLOC(Istatsz);
1766 	lut_walk(Istats, (lut_cb)istat2str, NULL);
1767 
1768 	/* clear out current saved stats */
1769 	fmd_buf_destroy(Hdl, NULL, WOBUF_ISTATS);
1770 
1771 	/* write out the new version */
1772 	fmd_buf_write(Hdl, NULL, WOBUF_ISTATS, Istatbuf, Istatsz);
1773 	FREE(Istatbuf);
1774 
1775 	Istat_need_save = 0;
1776 }
1777 
1778 int
1779 istat_cmp(struct istat_entry *ent1, struct istat_entry *ent2)
1780 {
1781 	if (ent1->ename != ent2->ename)
1782 		return (ent2->ename - ent1->ename);
1783 	if (ent1->ipath != ent2->ipath)
1784 		return ((char *)ent2->ipath - (char *)ent1->ipath);
1785 
1786 	return (0);
1787 }
1788 
1789 /*
1790  * istat-verify -- verify the component associated with a stat still exists
1791  *
1792  * if the component no longer exists, this routine resets the stat and
1793  * returns 0.  if the component still exists, it returns 1.
1794  */
1795 static int
1796 istat_verify(struct node *snp, struct istat_entry *entp)
1797 {
1798 	struct stats *statp;
1799 	nvlist_t *fmri;
1800 
1801 	fmri = node2fmri(snp->u.event.epname);
1802 	if (platform_path_exists(fmri)) {
1803 		nvlist_free(fmri);
1804 		return (1);
1805 	}
1806 	nvlist_free(fmri);
1807 
1808 	/* component no longer in system.  zero out the associated stats */
1809 	if ((statp = (struct stats *)
1810 	    lut_lookup(Istats, entp, (lut_cmp)istat_cmp)) == NULL ||
1811 	    stats_counter_value(statp) == 0)
1812 		return (0);	/* stat is already reset */
1813 
1814 	Istat_need_save = 1;
1815 	stats_counter_reset(statp);
1816 	return (0);
1817 }
1818 
1819 static void
1820 istat_bump(struct node *snp, int n)
1821 {
1822 	struct stats *statp;
1823 	struct istat_entry ent;
1824 
1825 	ASSERT(snp != NULL);
1826 	ASSERTinfo(snp->t == T_EVENT, ptree_nodetype2str(snp->t));
1827 	ASSERT(snp->u.event.epname != NULL);
1828 
1829 	/* class name should be hoisted into a single stable entry */
1830 	ASSERT(snp->u.event.ename->u.name.next == NULL);
1831 	ent.ename = snp->u.event.ename->u.name.s;
1832 	ent.ipath = ipath(snp->u.event.epname);
1833 
1834 	if (!istat_verify(snp, &ent)) {
1835 		/* component no longer exists in system, nothing to do */
1836 		return;
1837 	}
1838 
1839 	if ((statp = (struct stats *)
1840 	    lut_lookup(Istats, &ent, (lut_cmp)istat_cmp)) == NULL) {
1841 		/* need to create the counter */
1842 		int cnt = 0;
1843 		struct node *np;
1844 		char *sname;
1845 		char *snamep;
1846 		struct istat_entry *newentp;
1847 
1848 		/* count up the size of the stat name */
1849 		np = snp->u.event.ename;
1850 		while (np != NULL) {
1851 			cnt += strlen(np->u.name.s);
1852 			cnt++;	/* for the '.' or '@' */
1853 			np = np->u.name.next;
1854 		}
1855 		np = snp->u.event.epname;
1856 		while (np != NULL) {
1857 			cnt += snprintf(NULL, 0, "%s%llu",
1858 			    np->u.name.s, np->u.name.child->u.ull);
1859 			cnt++;	/* for the '/' or trailing NULL byte */
1860 			np = np->u.name.next;
1861 		}
1862 
1863 		/* build the stat name */
1864 		snamep = sname = alloca(cnt);
1865 		np = snp->u.event.ename;
1866 		while (np != NULL) {
1867 			snamep += snprintf(snamep, &sname[cnt] - snamep,
1868 			    "%s", np->u.name.s);
1869 			np = np->u.name.next;
1870 			if (np)
1871 				*snamep++ = '.';
1872 		}
1873 		*snamep++ = '@';
1874 		np = snp->u.event.epname;
1875 		while (np != NULL) {
1876 			snamep += snprintf(snamep, &sname[cnt] - snamep,
1877 			    "%s%llu", np->u.name.s, np->u.name.child->u.ull);
1878 			np = np->u.name.next;
1879 			if (np)
1880 				*snamep++ = '/';
1881 		}
1882 		*snamep++ = '\0';
1883 
1884 		/* create the new stat & add it to our list */
1885 		newentp = MALLOC(sizeof (*newentp));
1886 		*newentp = ent;
1887 		statp = stats_new_counter(NULL, sname, 0);
1888 		Istats = lut_add(Istats, (void *)newentp, (void *)statp,
1889 		    (lut_cmp)istat_cmp);
1890 	}
1891 
1892 	/* if n is non-zero, set that value instead of bumping */
1893 	if (n) {
1894 		stats_counter_reset(statp);
1895 		stats_counter_add(statp, n);
1896 	} else
1897 		stats_counter_bump(statp);
1898 	Istat_need_save = 1;
1899 }
1900 
1901 /*ARGSUSED*/
1902 static void
1903 istat_destructor(void *left, void *right, void *arg)
1904 {
1905 	struct istat_entry *entp = (struct istat_entry *)left;
1906 	struct stats *statp = (struct stats *)right;
1907 	FREE(entp);
1908 	stats_delete(statp);
1909 }
1910 
1911 /*
1912  * Callback used in a walk of the Istats to reset matching stat counters.
1913  */
1914 static void
1915 istat_counter_reset_cb(struct istat_entry *entp, struct stats *statp,
1916     const struct ipath *ipp)
1917 {
1918 	char *path;
1919 
1920 	if (entp->ipath == ipp) {
1921 		path = ipath2str(entp->ename, ipp);
1922 		out(O_ALTFP, "istat_counter_reset_cb: resetting %s", path);
1923 		FREE(path);
1924 		stats_counter_reset(statp);
1925 		Istat_need_save = 1;
1926 	}
1927 }
1928 
1929 void
1930 istat_fini(void)
1931 {
1932 	lut_free(Istats, istat_destructor, NULL);
1933 }
1934 
1935 static void
1936 publish_suspects(struct fme *fmep)
1937 {
1938 	struct rsl *srl = NULL;
1939 	struct rsl *erl;
1940 	struct rsl *rp;
1941 	nvlist_t *fault;
1942 	uint8_t cert;
1943 	uint_t *frs;
1944 	uint_t fravg, frsum, fr;
1945 	uint_t messval;
1946 	struct node *snp;
1947 	int frcnt, fridx;
1948 	boolean_t no_upsets = B_FALSE;
1949 	boolean_t allfaulty = B_TRUE;
1950 
1951 	stats_counter_bump(fmep->diags);
1952 
1953 	/*
1954 	 * If we're auto-closing upsets, we don't want to include them
1955 	 * in any produced suspect lists or certainty accounting.
1956 	 */
1957 	if (Autoclose != NULL)
1958 		if (strcmp(Autoclose, "true") == 0 ||
1959 		    strcmp(Autoclose, "all") == 0 ||
1960 		    strcmp(Autoclose, "upsets") == 0)
1961 			no_upsets = B_TRUE;
1962 
1963 	trim_suspects(fmep, no_upsets, &srl, &erl);
1964 
1965 	/*
1966 	 * If the resulting suspect list has no members, we're
1967 	 * done.  Returning here will simply close the case.
1968 	 */
1969 	if (fmep->nsuspects == 0) {
1970 		out(O_ALTFP,
1971 		    "[FME%d, case %s (all suspects are upsets)]",
1972 		    fmep->id, fmd_case_uuid(fmep->hdl, fmep->fmcase));
1973 		FREE(srl);
1974 		restore_suspects(fmep);
1975 		return;
1976 	}
1977 
1978 	/*
1979 	 * If the suspect list is all faults, then for a given fault,
1980 	 * say X of N, X's certainty is computed via:
1981 	 *
1982 	 * fitrate(X) / (fitrate(1) + ... + fitrate(N)) * 100
1983 	 *
1984 	 * If none of the suspects are faults, and there are N suspects,
1985 	 * the certainty of a given suspect is 100/N.
1986 	 *
1987 	 * If there are are a mixture of faults and other problems in
1988 	 * the suspect list, we take an average of the faults'
1989 	 * FITrates and treat this average as the FITrate for any
1990 	 * non-faults.  The fitrate of any given suspect is then
1991 	 * computed per the first formula above.
1992 	 */
1993 	if (fmep->nonfault == fmep->nsuspects) {
1994 		/* NO faults in the suspect list */
1995 		cert = percentof(1, fmep->nsuspects);
1996 	} else {
1997 		/* sum the fitrates */
1998 		frs = alloca(fmep->nsuspects * sizeof (uint_t));
1999 		fridx = frcnt = frsum = 0;
2000 
2001 		for (rp = srl; rp <= erl; rp++) {
2002 			struct node *n;
2003 
2004 			if (rp->suspect == NULL)
2005 				continue;
2006 			if (!is_fault(rp->suspect->t)) {
2007 				frs[fridx++] = 0;
2008 				continue;
2009 			}
2010 			n = eventprop_lookup(rp->suspect, L_FITrate);
2011 			if (node2uint(n, &fr) != 0) {
2012 				out(O_DEBUG|O_NONL, "event ");
2013 				ipath_print(O_DEBUG|O_NONL,
2014 				    rp->suspect->enode->u.event.ename->u.name.s,
2015 				    rp->suspect->ipp);
2016 				out(O_DEBUG, " has no FITrate (using 1)");
2017 				fr = 1;
2018 			} else if (fr == 0) {
2019 				out(O_DEBUG|O_NONL, "event ");
2020 				ipath_print(O_DEBUG|O_NONL,
2021 				    rp->suspect->enode->u.event.ename->u.name.s,
2022 				    rp->suspect->ipp);
2023 				out(O_DEBUG, " has zero FITrate (using 1)");
2024 				fr = 1;
2025 			}
2026 
2027 			frs[fridx++] = fr;
2028 			frsum += fr;
2029 			frcnt++;
2030 		}
2031 		fravg = avg(frsum, frcnt);
2032 		for (fridx = 0; fridx < fmep->nsuspects; fridx++)
2033 			if (frs[fridx] == 0) {
2034 				frs[fridx] = fravg;
2035 				frsum += fravg;
2036 			}
2037 	}
2038 
2039 	/* Add them in reverse order of our sort, as fmd reverses order */
2040 	for (rp = erl; rp >= srl; rp--) {
2041 		if (rp->suspect == NULL)
2042 			continue;
2043 		if (!is_fault(rp->suspect->t))
2044 			allfaulty = B_FALSE;
2045 		if (fmep->nonfault != fmep->nsuspects)
2046 			cert = percentof(frs[--fridx], frsum);
2047 		fault = fmd_nvl_create_fault(fmep->hdl,
2048 		    rp->suspect->enode->u.event.ename->u.name.s,
2049 		    cert,
2050 		    rp->asru,
2051 		    rp->fru,
2052 		    rp->rsrc);
2053 		if (fault == NULL)
2054 			out(O_DIE, "fault creation failed");
2055 		/* if "message" property exists, add it to the fault */
2056 		if (node2uint(eventprop_lookup(rp->suspect, L_message),
2057 		    &messval) == 0) {
2058 
2059 			out(O_ALTFP,
2060 			    "[FME%d, %s adds message=%d to suspect list]",
2061 			    fmep->id,
2062 			    rp->suspect->enode->u.event.ename->u.name.s,
2063 			    messval);
2064 			if (nvlist_add_boolean_value(fault,
2065 			    FM_SUSPECT_MESSAGE,
2066 			    (messval) ? B_TRUE : B_FALSE) != 0) {
2067 				out(O_DIE, "cannot add no-message to fault");
2068 			}
2069 		}
2070 		/* add any payload properties */
2071 		lut_walk(rp->suspect->payloadprops,
2072 		    (lut_cb)addpayloadprop, (void *)fault);
2073 		fmd_case_add_suspect(fmep->hdl, fmep->fmcase, fault);
2074 		rp->suspect->fault = fault;
2075 		rslfree(rp);
2076 
2077 		/*
2078 		 * If "action" property exists, evaluate it;  this must be done
2079 		 * before the dupclose check below since some actions may
2080 		 * modify the asru to be used in fmd_nvl_fmri_faulty.  This
2081 		 * needs to be restructured if any new actions are introduced
2082 		 * that have effects that we do not want to be visible if
2083 		 * we decide not to publish in the dupclose check below.
2084 		 */
2085 		if ((snp = eventprop_lookup(rp->suspect, L_action)) != NULL) {
2086 			struct evalue evalue;
2087 
2088 			out(O_ALTFP|O_NONL,
2089 			    "[FME%d, %s action ", fmep->id,
2090 			    rp->suspect->enode->u.event.ename->u.name.s);
2091 			ptree_name_iter(O_ALTFP|O_NONL, snp);
2092 			out(O_ALTFP, "]");
2093 			Action_nvl = fault;
2094 			(void) eval_expr(snp, NULL, NULL, NULL, NULL,
2095 			    NULL, 0, &evalue);
2096 		}
2097 
2098 		/*
2099 		 * if "dupclose" tunable is set, check if the asru is
2100 		 * already marked as "faulty".
2101 		 */
2102 		if (Dupclose && allfaulty) {
2103 			nvlist_t *asru;
2104 
2105 			out(O_ALTFP|O_VERB, "FMD%d dupclose check ", fmep->id);
2106 			itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, rp->suspect);
2107 			out(O_ALTFP|O_VERB|O_NONL, " ");
2108 			if (nvlist_lookup_nvlist(fault,
2109 			    FM_FAULT_ASRU, &asru) != 0) {
2110 				out(O_ALTFP|O_VERB, "NULL asru");
2111 				allfaulty = B_FALSE;
2112 			} else if (fmd_nvl_fmri_faulty(fmep->hdl, asru)) {
2113 				out(O_ALTFP|O_VERB, "faulty");
2114 			} else {
2115 				out(O_ALTFP|O_VERB, "not faulty");
2116 				allfaulty = B_FALSE;
2117 			}
2118 		}
2119 
2120 	}
2121 
2122 	/*
2123 	 * Close the case if all asrus are already known to be faulty and if
2124 	 * Dupclose is enabled.  Otherwise we are going to publish so take
2125 	 * any pre-publication actions.
2126 	 */
2127 	if (Dupclose && allfaulty) {
2128 		out(O_ALTFP, "[dupclose FME%d, case %s]", fmep->id,
2129 		    fmd_case_uuid(fmep->hdl, fmep->fmcase));
2130 		fmd_case_close(fmep->hdl, fmep->fmcase);
2131 	} else {
2132 		for (rp = erl; rp >= srl; rp--) {
2133 			struct event *suspect = rp->suspect;
2134 
2135 			if (suspect == NULL)
2136 				continue;
2137 
2138 			fault = suspect->fault;
2139 
2140 			/* if "count" exists, increment the appropriate stat */
2141 			if ((snp = eventprop_lookup(suspect,
2142 			    L_count)) != NULL) {
2143 				out(O_ALTFP|O_NONL,
2144 				    "[FME%d, %s count ", fmep->id,
2145 				    suspect->enode->u.event.ename->u.name.s);
2146 				ptree_name_iter(O_ALTFP|O_NONL, snp);
2147 				out(O_ALTFP, "]");
2148 				istat_bump(snp, 0);
2149 
2150 			}
2151 		}
2152 		istat_save();	/* write out any istat changes */
2153 
2154 		out(O_ALTFP, "[solving FME%d, case %s]", fmep->id,
2155 		    fmd_case_uuid(fmep->hdl, fmep->fmcase));
2156 		fmd_case_solve(fmep->hdl, fmep->fmcase);
2157 	}
2158 
2159 	/*
2160 	 * revert to the original suspect list
2161 	 */
2162 	FREE(srl);
2163 	restore_suspects(fmep);
2164 }
2165 
2166 static void
2167 publish_undiagnosable(fmd_hdl_t *hdl, fmd_event_t *ffep)
2168 {
2169 	struct case_list *newcase;
2170 	nvlist_t *defect;
2171 
2172 	out(O_ALTFP,
2173 	    "[undiagnosable ereport received, "
2174 	    "creating and closing a new case (%s)]",
2175 	    Undiag_reason ? Undiag_reason : "reason not provided");
2176 
2177 	newcase = MALLOC(sizeof (struct case_list));
2178 	newcase->next = NULL;
2179 
2180 	newcase->fmcase = fmd_case_open(hdl, NULL);
2181 	if (Undiagablecaselist != NULL)
2182 		newcase->next = Undiagablecaselist;
2183 	Undiagablecaselist = newcase;
2184 
2185 	if (ffep != NULL)
2186 		fmd_case_add_ereport(hdl, newcase->fmcase, ffep);
2187 
2188 	defect = fmd_nvl_create_fault(hdl, UNDIAGNOSABLE_DEFECT, 100,
2189 	    NULL, NULL, NULL);
2190 	if (Undiag_reason != NULL)
2191 		(void) nvlist_add_string(defect, UNDIAG_REASON, Undiag_reason);
2192 	fmd_case_add_suspect(hdl, newcase->fmcase, defect);
2193 
2194 	fmd_case_solve(hdl, newcase->fmcase);
2195 	fmd_case_close(hdl, newcase->fmcase);
2196 }
2197 
2198 static void
2199 fme_undiagnosable(struct fme *f)
2200 {
2201 	nvlist_t *defect;
2202 
2203 	out(O_ALTFP, "[solving/closing FME%d, case %s (%s)]",
2204 	    f->id, fmd_case_uuid(f->hdl, f->fmcase),
2205 	    Undiag_reason ? Undiag_reason : "undiagnosable");
2206 
2207 	defect = fmd_nvl_create_fault(f->hdl, UNDIAGNOSABLE_DEFECT, 100,
2208 	    NULL, NULL, NULL);
2209 	if (Undiag_reason != NULL)
2210 		(void) nvlist_add_string(defect, UNDIAG_REASON, Undiag_reason);
2211 	fmd_case_add_suspect(f->hdl, f->fmcase, defect);
2212 	fmd_case_solve(f->hdl, f->fmcase);
2213 	destroy_fme_bufs(f);
2214 	fmd_case_close(f->hdl, f->fmcase);
2215 }
2216 
2217 /*
2218  * fme_close_case
2219  *
2220  *	Find the requested case amongst our fmes and close it.  Free up
2221  *	the related fme.
2222  */
2223 void
2224 fme_close_case(fmd_hdl_t *hdl, fmd_case_t *fmcase)
2225 {
2226 	struct case_list *ucasep, *prevcasep = NULL;
2227 	struct fme *prev = NULL;
2228 	struct fme *fmep;
2229 
2230 	for (ucasep = Undiagablecaselist; ucasep; ucasep = ucasep->next) {
2231 		if (fmcase != ucasep->fmcase) {
2232 			prevcasep = ucasep;
2233 			continue;
2234 		}
2235 
2236 		if (prevcasep == NULL)
2237 			Undiagablecaselist = Undiagablecaselist->next;
2238 		else
2239 			prevcasep->next = ucasep->next;
2240 
2241 		FREE(ucasep);
2242 		return;
2243 	}
2244 
2245 	for (fmep = FMElist; fmep; fmep = fmep->next) {
2246 		if (fmep->hdl == hdl && fmep->fmcase == fmcase)
2247 			break;
2248 		prev = fmep;
2249 	}
2250 
2251 	if (fmep == NULL) {
2252 		out(O_WARN, "Eft asked to close unrecognized case [%s].",
2253 		    fmd_case_uuid(hdl, fmcase));
2254 		return;
2255 	}
2256 
2257 	if (EFMElist == fmep)
2258 		EFMElist = prev;
2259 
2260 	if (prev == NULL)
2261 		FMElist = FMElist->next;
2262 	else
2263 		prev->next = fmep->next;
2264 
2265 	fmep->next = NULL;
2266 
2267 	/* Get rid of any timer this fme has set */
2268 	if (fmep->wull != 0)
2269 		fmd_timer_remove(fmep->hdl, fmep->timer);
2270 
2271 	if (ClosedFMEs == NULL) {
2272 		ClosedFMEs = fmep;
2273 	} else {
2274 		fmep->next = ClosedFMEs;
2275 		ClosedFMEs = fmep;
2276 	}
2277 
2278 	Open_fme_count--;
2279 
2280 	/* See if we can close the overflow FME */
2281 	if (Open_fme_count <= Max_fme) {
2282 		for (fmep = FMElist; fmep; fmep = fmep->next) {
2283 			if (fmep->overflow && !(fmd_case_closed(fmep->hdl,
2284 			    fmep->fmcase)))
2285 				break;
2286 		}
2287 
2288 		if (fmep != NULL)
2289 			fmd_case_close(fmep->hdl, fmep->fmcase);
2290 	}
2291 }
2292 
2293 /*
2294  * fme_set_timer()
2295  *	If the time we need to wait for the given FME is less than the
2296  *	current timer, kick that old timer out and establish a new one.
2297  */
2298 static int
2299 fme_set_timer(struct fme *fmep, unsigned long long wull)
2300 {
2301 	out(O_ALTFP|O_VERB|O_NONL, " fme_set_timer: request to wait ");
2302 	ptree_timeval(O_ALTFP|O_VERB, &wull);
2303 
2304 	if (wull <= fmep->pull) {
2305 		out(O_ALTFP|O_VERB|O_NONL, "already have waited at least ");
2306 		ptree_timeval(O_ALTFP|O_VERB, &fmep->pull);
2307 		out(O_ALTFP|O_VERB, NULL);
2308 		/* we've waited at least wull already, don't need timer */
2309 		return (0);
2310 	}
2311 
2312 	out(O_ALTFP|O_VERB|O_NONL, " currently ");
2313 	if (fmep->wull != 0) {
2314 		out(O_ALTFP|O_VERB|O_NONL, "waiting ");
2315 		ptree_timeval(O_ALTFP|O_VERB, &fmep->wull);
2316 		out(O_ALTFP|O_VERB, NULL);
2317 	} else {
2318 		out(O_ALTFP|O_VERB|O_NONL, "not waiting");
2319 		out(O_ALTFP|O_VERB, NULL);
2320 	}
2321 
2322 	if (fmep->wull != 0)
2323 		if (wull >= fmep->wull)
2324 			/* New timer would fire later than established timer */
2325 			return (0);
2326 
2327 	if (fmep->wull != 0) {
2328 		fmd_timer_remove(fmep->hdl, fmep->timer);
2329 	}
2330 
2331 	fmep->timer = fmd_timer_install(fmep->hdl, (void *)fmep,
2332 	    fmep->e0r, wull);
2333 	out(O_ALTFP|O_VERB, "timer set, id is %ld", fmep->timer);
2334 	fmep->wull = wull;
2335 	return (1);
2336 }
2337 
2338 void
2339 fme_timer_fired(struct fme *fmep, id_t tid)
2340 {
2341 	struct fme *ffmep = NULL;
2342 
2343 	for (ffmep = FMElist; ffmep; ffmep = ffmep->next)
2344 		if (ffmep == fmep)
2345 			break;
2346 
2347 	if (ffmep == NULL) {
2348 		out(O_WARN, "Timer fired for an FME (%p) not in FMEs list.",
2349 		    (void *)fmep);
2350 		return;
2351 	}
2352 
2353 	out(O_ALTFP, "Timer fired %lx", tid);
2354 	fmep->pull = fmep->wull;
2355 	fmep->wull = 0;
2356 	fmd_buf_write(fmep->hdl, fmep->fmcase,
2357 	    WOBUF_PULL, (void *)&fmep->pull, sizeof (fmep->pull));
2358 	fme_eval(fmep, fmep->e0r);
2359 }
2360 
2361 /*
2362  * Preserve the fme's suspect list in its psuspects list, NULLing the
2363  * suspects list in the meantime.
2364  */
2365 static void
2366 save_suspects(struct fme *fmep)
2367 {
2368 	struct event *ep;
2369 	struct event *nextep;
2370 
2371 	/* zero out the previous suspect list */
2372 	for (ep = fmep->psuspects; ep; ep = nextep) {
2373 		nextep = ep->psuspects;
2374 		ep->psuspects = NULL;
2375 	}
2376 	fmep->psuspects = NULL;
2377 
2378 	/* zero out the suspect list, copying it to previous suspect list */
2379 	fmep->psuspects = fmep->suspects;
2380 	for (ep = fmep->suspects; ep; ep = nextep) {
2381 		nextep = ep->suspects;
2382 		ep->psuspects = ep->suspects;
2383 		ep->suspects = NULL;
2384 		ep->is_suspect = 0;
2385 	}
2386 	fmep->suspects = NULL;
2387 	fmep->nsuspects = 0;
2388 	fmep->nonfault = 0;
2389 }
2390 
2391 /*
2392  * Retrieve the fme's suspect list from its psuspects list.
2393  */
2394 static void
2395 restore_suspects(struct fme *fmep)
2396 {
2397 	struct event *ep;
2398 	struct event *nextep;
2399 
2400 	fmep->nsuspects = fmep->nonfault = 0;
2401 	fmep->suspects = fmep->psuspects;
2402 	for (ep = fmep->psuspects; ep; ep = nextep) {
2403 		fmep->nsuspects++;
2404 		if (!is_fault(ep->t))
2405 			fmep->nonfault++;
2406 		nextep = ep->psuspects;
2407 		ep->suspects = ep->psuspects;
2408 	}
2409 }
2410 
2411 /*
2412  * this is what we use to call the Emrys prototype code instead of main()
2413  */
2414 static void
2415 fme_eval(struct fme *fmep, fmd_event_t *ffep)
2416 {
2417 	struct event *ep;
2418 	unsigned long long my_delay = TIMEVAL_EVENTUALLY;
2419 
2420 	save_suspects(fmep);
2421 
2422 	out(O_ALTFP|O_VERB, "Evaluate FME %d", fmep->id);
2423 	indent_set("  ");
2424 
2425 	lut_walk(fmep->eventtree, (lut_cb)clear_arrows, (void *)fmep);
2426 	fmep->state = hypothesise(fmep, fmep->e0, fmep->ull, &my_delay);
2427 
2428 	out(O_ALTFP|O_VERB|O_NONL, "FME%d state: %s, suspect list:", fmep->id,
2429 	    fme_state2str(fmep->state));
2430 	for (ep = fmep->suspects; ep; ep = ep->suspects) {
2431 		out(O_ALTFP|O_VERB|O_NONL, " ");
2432 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
2433 	}
2434 	out(O_ALTFP|O_VERB, NULL);
2435 
2436 	switch (fmep->state) {
2437 	case FME_CREDIBLE:
2438 		print_suspects(SLNEW, fmep);
2439 		(void) upsets_eval(fmep, ffep);
2440 
2441 		/*
2442 		 * we may have already posted suspects in upsets_eval() which
2443 		 * can recurse into fme_eval() again. If so then just return.
2444 		 */
2445 		if (fmep->posted_suspects)
2446 			return;
2447 
2448 		publish_suspects(fmep);
2449 		fmep->posted_suspects = 1;
2450 		fmd_buf_write(fmep->hdl, fmep->fmcase,
2451 		    WOBUF_POSTD,
2452 		    (void *)&fmep->posted_suspects,
2453 		    sizeof (fmep->posted_suspects));
2454 
2455 		/*
2456 		 * Now the suspects have been posted, we can clear up
2457 		 * the instance tree as we won't be looking at it again.
2458 		 * Also cancel the timer as the case is now solved.
2459 		 */
2460 		if (fmep->wull != 0) {
2461 			fmd_timer_remove(fmep->hdl, fmep->timer);
2462 			fmep->wull = 0;
2463 		}
2464 		lut_walk(fmep->eventtree, (lut_cb)clear_arrows,
2465 		    (void *)fmep);
2466 		break;
2467 
2468 	case FME_WAIT:
2469 		ASSERT(my_delay > fmep->ull);
2470 		(void) fme_set_timer(fmep, my_delay);
2471 		print_suspects(SLWAIT, fmep);
2472 		break;
2473 
2474 	case FME_DISPROVED:
2475 		print_suspects(SLDISPROVED, fmep);
2476 		Undiag_reason = UD_UNSOLVD;
2477 		fme_undiagnosable(fmep);
2478 		break;
2479 	}
2480 
2481 	if (fmep->posted_suspects == 1 && Autoclose != NULL) {
2482 		int doclose = 0;
2483 
2484 		if (strcmp(Autoclose, "true") == 0 ||
2485 		    strcmp(Autoclose, "all") == 0)
2486 			doclose = 1;
2487 
2488 		if (strcmp(Autoclose, "upsets") == 0) {
2489 			doclose = 1;
2490 			for (ep = fmep->suspects; ep; ep = ep->suspects) {
2491 				if (ep->t != N_UPSET) {
2492 					doclose = 0;
2493 					break;
2494 				}
2495 			}
2496 		}
2497 
2498 		if (doclose) {
2499 			out(O_ALTFP, "[closing FME%d, case %s (autoclose)]",
2500 			    fmep->id, fmd_case_uuid(fmep->hdl, fmep->fmcase));
2501 
2502 			destroy_fme_bufs(fmep);
2503 			fmd_case_close(fmep->hdl, fmep->fmcase);
2504 		}
2505 	}
2506 	itree_prune(fmep->eventtree);
2507 }
2508 
2509 static void indent(void);
2510 static int triggered(struct fme *fmep, struct event *ep, int mark);
2511 static enum fme_state effects_test(struct fme *fmep,
2512     struct event *fault_event, unsigned long long at_latest_by,
2513     unsigned long long *pdelay);
2514 static enum fme_state requirements_test(struct fme *fmep, struct event *ep,
2515     unsigned long long at_latest_by, unsigned long long *pdelay);
2516 static enum fme_state causes_test(struct fme *fmep, struct event *ep,
2517     unsigned long long at_latest_by, unsigned long long *pdelay);
2518 
2519 static int
2520 checkconstraints(struct fme *fmep, struct arrow *arrowp)
2521 {
2522 	struct constraintlist *ctp;
2523 	struct evalue value;
2524 
2525 	if (arrowp->forever_false) {
2526 		char *sep = "";
2527 		indent();
2528 		out(O_ALTFP|O_VERB|O_NONL, "  Forever false constraint: ");
2529 		for (ctp = arrowp->constraints; ctp != NULL; ctp = ctp->next) {
2530 			out(O_ALTFP|O_VERB|O_NONL, sep);
2531 			ptree(O_ALTFP|O_VERB|O_NONL, ctp->cnode, 1, 0);
2532 			sep = ", ";
2533 		}
2534 		out(O_ALTFP|O_VERB, NULL);
2535 		return (0);
2536 	}
2537 
2538 	for (ctp = arrowp->constraints; ctp != NULL; ctp = ctp->next) {
2539 		if (eval_expr(ctp->cnode, NULL, NULL,
2540 		    &fmep->globals, fmep->cfgdata->cooked,
2541 		    arrowp, 0, &value)) {
2542 			/* evaluation successful */
2543 			if (value.t == UNDEFINED || value.v == 0) {
2544 				/* known false */
2545 				arrowp->forever_false = 1;
2546 				indent();
2547 				out(O_ALTFP|O_VERB|O_NONL,
2548 				    "  False constraint: ");
2549 				ptree(O_ALTFP|O_VERB|O_NONL, ctp->cnode, 1, 0);
2550 				out(O_ALTFP|O_VERB, NULL);
2551 				return (0);
2552 			}
2553 		} else {
2554 			/* evaluation unsuccessful -- unknown value */
2555 			indent();
2556 			out(O_ALTFP|O_VERB|O_NONL,
2557 			    "  Deferred constraint: ");
2558 			ptree(O_ALTFP|O_VERB|O_NONL, ctp->cnode, 1, 0);
2559 			out(O_ALTFP|O_VERB, NULL);
2560 			return (2);
2561 		}
2562 	}
2563 	/* known true */
2564 	return (1);
2565 }
2566 
2567 static int
2568 triggered(struct fme *fmep, struct event *ep, int mark)
2569 {
2570 	struct bubble *bp;
2571 	struct arrowlist *ap;
2572 	int count = 0;
2573 
2574 	stats_counter_bump(fmep->Tcallcount);
2575 	for (bp = itree_next_bubble(ep, NULL); bp;
2576 	    bp = itree_next_bubble(ep, bp)) {
2577 		if (bp->t != B_TO)
2578 			continue;
2579 		for (ap = itree_next_arrow(bp, NULL); ap;
2580 		    ap = itree_next_arrow(bp, ap)) {
2581 			/* check count of marks against K in the bubble */
2582 			if ((ap->arrowp->mark & mark) &&
2583 			    ++count >= bp->nork)
2584 				return (1);
2585 		}
2586 	}
2587 	return (0);
2588 }
2589 
2590 static int
2591 mark_arrows(struct fme *fmep, struct event *ep, int mark,
2592     unsigned long long at_latest_by, unsigned long long *pdelay, int keep)
2593 {
2594 	struct bubble *bp;
2595 	struct arrowlist *ap;
2596 	unsigned long long overall_delay = TIMEVAL_EVENTUALLY;
2597 	unsigned long long my_delay;
2598 	enum fme_state result;
2599 	int retval = 0;
2600 
2601 	for (bp = itree_next_bubble(ep, NULL); bp;
2602 	    bp = itree_next_bubble(ep, bp)) {
2603 		if (bp->t != B_FROM)
2604 			continue;
2605 		stats_counter_bump(fmep->Marrowcount);
2606 		for (ap = itree_next_arrow(bp, NULL); ap;
2607 		    ap = itree_next_arrow(bp, ap)) {
2608 			struct event *ep2 = ap->arrowp->head->myevent;
2609 			/*
2610 			 * if we're clearing marks, we can avoid doing
2611 			 * all that work evaluating constraints.
2612 			 */
2613 			if (mark == 0) {
2614 				ap->arrowp->mark &= ~EFFECTS_COUNTER;
2615 				if (keep && (ep2->cached_state &
2616 				    (WAIT_EFFECT|CREDIBLE_EFFECT|PARENT_WAIT)))
2617 					ep2->keep_in_tree = 1;
2618 				ep2->cached_state &=
2619 				    ~(WAIT_EFFECT|CREDIBLE_EFFECT|PARENT_WAIT);
2620 				(void) mark_arrows(fmep, ep2, mark, 0, NULL,
2621 				    keep);
2622 				continue;
2623 			}
2624 			if (ep2->cached_state & REQMNTS_DISPROVED) {
2625 				indent();
2626 				out(O_ALTFP|O_VERB|O_NONL,
2627 				    "  ALREADY DISPROVED ");
2628 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2);
2629 				out(O_ALTFP|O_VERB, NULL);
2630 				continue;
2631 			}
2632 			if (ep2->cached_state & WAIT_EFFECT) {
2633 				indent();
2634 				out(O_ALTFP|O_VERB|O_NONL,
2635 				    "  ALREADY EFFECTS WAIT ");
2636 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2);
2637 				out(O_ALTFP|O_VERB, NULL);
2638 				continue;
2639 			}
2640 			if (ep2->cached_state & CREDIBLE_EFFECT) {
2641 				indent();
2642 				out(O_ALTFP|O_VERB|O_NONL,
2643 				    "  ALREADY EFFECTS CREDIBLE ");
2644 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2);
2645 				out(O_ALTFP|O_VERB, NULL);
2646 				continue;
2647 			}
2648 			if ((ep2->cached_state & PARENT_WAIT) &&
2649 			    (mark & PARENT_WAIT)) {
2650 				indent();
2651 				out(O_ALTFP|O_VERB|O_NONL,
2652 				    "  ALREADY PARENT EFFECTS WAIT ");
2653 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2);
2654 				out(O_ALTFP|O_VERB, NULL);
2655 				continue;
2656 			}
2657 			platform_set_payloadnvp(ep2->nvp);
2658 			if (checkconstraints(fmep, ap->arrowp) == 0) {
2659 				platform_set_payloadnvp(NULL);
2660 				indent();
2661 				out(O_ALTFP|O_VERB|O_NONL,
2662 				    "  CONSTRAINTS FAIL ");
2663 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2);
2664 				out(O_ALTFP|O_VERB, NULL);
2665 				continue;
2666 			}
2667 			platform_set_payloadnvp(NULL);
2668 			ap->arrowp->mark |= EFFECTS_COUNTER;
2669 			if (!triggered(fmep, ep2, EFFECTS_COUNTER)) {
2670 				indent();
2671 				out(O_ALTFP|O_VERB|O_NONL,
2672 				    "  K-COUNT NOT YET MET ");
2673 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2);
2674 				out(O_ALTFP|O_VERB, NULL);
2675 				continue;
2676 			}
2677 			ep2->cached_state &= ~PARENT_WAIT;
2678 			/*
2679 			 * if we've reached an ereport and no propagation time
2680 			 * is specified, use the Hesitate value
2681 			 */
2682 			if (ep2->t == N_EREPORT && at_latest_by == 0ULL &&
2683 			    ap->arrowp->maxdelay == 0ULL) {
2684 				result = requirements_test(fmep, ep2, Hesitate,
2685 				    &my_delay);
2686 				out(O_ALTFP|O_VERB|O_NONL, "  default wait ");
2687 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2);
2688 				out(O_ALTFP|O_VERB, NULL);
2689 			} else {
2690 				result = requirements_test(fmep, ep2,
2691 				    at_latest_by + ap->arrowp->maxdelay,
2692 				    &my_delay);
2693 			}
2694 			if (result == FME_WAIT) {
2695 				retval = WAIT_EFFECT;
2696 				if (overall_delay > my_delay)
2697 					overall_delay = my_delay;
2698 				ep2->cached_state |= WAIT_EFFECT;
2699 				indent();
2700 				out(O_ALTFP|O_VERB|O_NONL, "  EFFECTS WAIT ");
2701 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2);
2702 				out(O_ALTFP|O_VERB, NULL);
2703 				indent_push("  E");
2704 				if (mark_arrows(fmep, ep2, PARENT_WAIT,
2705 				    at_latest_by, &my_delay, 0) ==
2706 				    WAIT_EFFECT) {
2707 					retval = WAIT_EFFECT;
2708 					if (overall_delay > my_delay)
2709 						overall_delay = my_delay;
2710 				}
2711 				indent_pop();
2712 			} else if (result == FME_DISPROVED) {
2713 				indent();
2714 				out(O_ALTFP|O_VERB|O_NONL,
2715 				    "  EFFECTS DISPROVED ");
2716 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2);
2717 				out(O_ALTFP|O_VERB, NULL);
2718 			} else {
2719 				ep2->cached_state |= mark;
2720 				indent();
2721 				if (mark == CREDIBLE_EFFECT)
2722 					out(O_ALTFP|O_VERB|O_NONL,
2723 					    "  EFFECTS CREDIBLE ");
2724 				else
2725 					out(O_ALTFP|O_VERB|O_NONL,
2726 					    "  PARENT EFFECTS WAIT ");
2727 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2);
2728 				out(O_ALTFP|O_VERB, NULL);
2729 				indent_push("  E");
2730 				if (mark_arrows(fmep, ep2, mark, at_latest_by,
2731 				    &my_delay, 0) == WAIT_EFFECT) {
2732 					retval = WAIT_EFFECT;
2733 					if (overall_delay > my_delay)
2734 						overall_delay = my_delay;
2735 				}
2736 				indent_pop();
2737 			}
2738 		}
2739 	}
2740 	if (retval == WAIT_EFFECT)
2741 		*pdelay = overall_delay;
2742 	return (retval);
2743 }
2744 
2745 static enum fme_state
2746 effects_test(struct fme *fmep, struct event *fault_event,
2747     unsigned long long at_latest_by, unsigned long long *pdelay)
2748 {
2749 	struct event *error_event;
2750 	enum fme_state return_value = FME_CREDIBLE;
2751 	unsigned long long overall_delay = TIMEVAL_EVENTUALLY;
2752 	unsigned long long my_delay;
2753 
2754 	stats_counter_bump(fmep->Ecallcount);
2755 	indent_push("  E");
2756 	indent();
2757 	out(O_ALTFP|O_VERB|O_NONL, "->");
2758 	itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, fault_event);
2759 	out(O_ALTFP|O_VERB, NULL);
2760 
2761 	if (mark_arrows(fmep, fault_event, CREDIBLE_EFFECT, at_latest_by,
2762 	    &my_delay, 0) == WAIT_EFFECT) {
2763 		return_value = FME_WAIT;
2764 		if (overall_delay > my_delay)
2765 			overall_delay = my_delay;
2766 	}
2767 	for (error_event = fmep->observations;
2768 	    error_event; error_event = error_event->observations) {
2769 		indent();
2770 		out(O_ALTFP|O_VERB|O_NONL, " ");
2771 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, error_event);
2772 		if (!(error_event->cached_state & CREDIBLE_EFFECT)) {
2773 			if (error_event->cached_state &
2774 			    (PARENT_WAIT|WAIT_EFFECT)) {
2775 				out(O_ALTFP|O_VERB, " NOT YET triggered");
2776 				continue;
2777 			}
2778 			return_value = FME_DISPROVED;
2779 			out(O_ALTFP|O_VERB, " NOT triggered");
2780 			break;
2781 		} else {
2782 			out(O_ALTFP|O_VERB, " triggered");
2783 		}
2784 	}
2785 	if (return_value == FME_DISPROVED) {
2786 		(void) mark_arrows(fmep, fault_event, 0, 0, NULL, 0);
2787 	} else {
2788 		fault_event->keep_in_tree = 1;
2789 		(void) mark_arrows(fmep, fault_event, 0, 0, NULL, 1);
2790 	}
2791 
2792 	indent();
2793 	out(O_ALTFP|O_VERB|O_NONL, "<-EFFECTS %s ",
2794 	    fme_state2str(return_value));
2795 	itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, fault_event);
2796 	out(O_ALTFP|O_VERB, NULL);
2797 	indent_pop();
2798 	if (return_value == FME_WAIT)
2799 		*pdelay = overall_delay;
2800 	return (return_value);
2801 }
2802 
2803 static enum fme_state
2804 requirements_test(struct fme *fmep, struct event *ep,
2805     unsigned long long at_latest_by, unsigned long long *pdelay)
2806 {
2807 	int waiting_events;
2808 	int credible_events;
2809 	int deferred_events;
2810 	enum fme_state return_value = FME_CREDIBLE;
2811 	unsigned long long overall_delay = TIMEVAL_EVENTUALLY;
2812 	unsigned long long arrow_delay;
2813 	unsigned long long my_delay;
2814 	struct event *ep2;
2815 	struct bubble *bp;
2816 	struct arrowlist *ap;
2817 
2818 	if (ep->cached_state & REQMNTS_CREDIBLE) {
2819 		indent();
2820 		out(O_ALTFP|O_VERB|O_NONL, "  REQMNTS ALREADY CREDIBLE ");
2821 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
2822 		out(O_ALTFP|O_VERB, NULL);
2823 		return (FME_CREDIBLE);
2824 	}
2825 	if (ep->cached_state & REQMNTS_DISPROVED) {
2826 		indent();
2827 		out(O_ALTFP|O_VERB|O_NONL, "  REQMNTS ALREADY DISPROVED ");
2828 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
2829 		out(O_ALTFP|O_VERB, NULL);
2830 		return (FME_DISPROVED);
2831 	}
2832 	if (ep->cached_state & REQMNTS_WAIT) {
2833 		indent();
2834 		*pdelay = ep->cached_delay;
2835 		out(O_ALTFP|O_VERB|O_NONL, "  REQMNTS ALREADY WAIT ");
2836 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
2837 		out(O_ALTFP|O_VERB|O_NONL, ", wait for: ");
2838 		ptree_timeval(O_ALTFP|O_VERB|O_NONL, &at_latest_by);
2839 		out(O_ALTFP|O_VERB, NULL);
2840 		return (FME_WAIT);
2841 	}
2842 	stats_counter_bump(fmep->Rcallcount);
2843 	indent_push("  R");
2844 	indent();
2845 	out(O_ALTFP|O_VERB|O_NONL, "->");
2846 	itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
2847 	out(O_ALTFP|O_VERB|O_NONL, ", at latest by: ");
2848 	ptree_timeval(O_ALTFP|O_VERB|O_NONL, &at_latest_by);
2849 	out(O_ALTFP|O_VERB, NULL);
2850 
2851 	if (ep->t == N_EREPORT) {
2852 		if (ep->count == 0) {
2853 			if (fmep->pull >= at_latest_by) {
2854 				return_value = FME_DISPROVED;
2855 			} else {
2856 				ep->cached_delay = *pdelay = at_latest_by;
2857 				return_value = FME_WAIT;
2858 			}
2859 		}
2860 
2861 		indent();
2862 		switch (return_value) {
2863 		case FME_CREDIBLE:
2864 			ep->cached_state |= REQMNTS_CREDIBLE;
2865 			out(O_ALTFP|O_VERB|O_NONL, "<-REQMNTS CREDIBLE ");
2866 			itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
2867 			break;
2868 		case FME_DISPROVED:
2869 			ep->cached_state |= REQMNTS_DISPROVED;
2870 			out(O_ALTFP|O_VERB|O_NONL, "<-REQMNTS DISPROVED ");
2871 			itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
2872 			break;
2873 		case FME_WAIT:
2874 			ep->cached_state |= REQMNTS_WAIT;
2875 			out(O_ALTFP|O_VERB|O_NONL, "<-REQMNTS WAIT ");
2876 			itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
2877 			out(O_ALTFP|O_VERB|O_NONL, " to ");
2878 			ptree_timeval(O_ALTFP|O_VERB|O_NONL, &at_latest_by);
2879 			break;
2880 		default:
2881 			out(O_DIE, "requirements_test: unexpected fme_state");
2882 			break;
2883 		}
2884 		out(O_ALTFP|O_VERB, NULL);
2885 		indent_pop();
2886 
2887 		return (return_value);
2888 	}
2889 
2890 	/* this event is not a report, descend the tree */
2891 	for (bp = itree_next_bubble(ep, NULL); bp;
2892 	    bp = itree_next_bubble(ep, bp)) {
2893 		int n;
2894 
2895 		if (bp->t != B_FROM)
2896 			continue;
2897 
2898 		n = bp->nork;
2899 
2900 		credible_events = 0;
2901 		waiting_events = 0;
2902 		deferred_events = 0;
2903 		arrow_delay = TIMEVAL_EVENTUALLY;
2904 		/*
2905 		 * n is -1 for 'A' so adjust it.
2906 		 * XXX just count up the arrows for now.
2907 		 */
2908 		if (n < 0) {
2909 			n = 0;
2910 			for (ap = itree_next_arrow(bp, NULL); ap;
2911 			    ap = itree_next_arrow(bp, ap))
2912 				n++;
2913 			indent();
2914 			out(O_ALTFP|O_VERB, " Bubble Counted N=%d", n);
2915 		} else {
2916 			indent();
2917 			out(O_ALTFP|O_VERB, " Bubble N=%d", n);
2918 		}
2919 
2920 		if (n == 0)
2921 			continue;
2922 		if (!(bp->mark & (BUBBLE_ELIDED|BUBBLE_OK))) {
2923 			for (ap = itree_next_arrow(bp, NULL); ap;
2924 			    ap = itree_next_arrow(bp, ap)) {
2925 				ep2 = ap->arrowp->head->myevent;
2926 				platform_set_payloadnvp(ep2->nvp);
2927 				if (checkconstraints(fmep, ap->arrowp) == 0) {
2928 					/*
2929 					 * if any arrow is invalidated by the
2930 					 * constraints, then we should elide the
2931 					 * whole bubble to be consistant with
2932 					 * the tree creation time behaviour
2933 					 */
2934 					bp->mark |= BUBBLE_ELIDED;
2935 					platform_set_payloadnvp(NULL);
2936 					break;
2937 				}
2938 				platform_set_payloadnvp(NULL);
2939 			}
2940 		}
2941 		if (bp->mark & BUBBLE_ELIDED)
2942 			continue;
2943 		bp->mark |= BUBBLE_OK;
2944 		for (ap = itree_next_arrow(bp, NULL); ap;
2945 		    ap = itree_next_arrow(bp, ap)) {
2946 			ep2 = ap->arrowp->head->myevent;
2947 			if (n <= credible_events)
2948 				break;
2949 
2950 			ap->arrowp->mark |= REQMNTS_COUNTER;
2951 			if (triggered(fmep, ep2, REQMNTS_COUNTER))
2952 				/* XXX adding max timevals! */
2953 				switch (requirements_test(fmep, ep2,
2954 				    at_latest_by + ap->arrowp->maxdelay,
2955 				    &my_delay)) {
2956 				case FME_DEFERRED:
2957 					deferred_events++;
2958 					break;
2959 				case FME_CREDIBLE:
2960 					credible_events++;
2961 					break;
2962 				case FME_DISPROVED:
2963 					break;
2964 				case FME_WAIT:
2965 					if (my_delay < arrow_delay)
2966 						arrow_delay = my_delay;
2967 					waiting_events++;
2968 					break;
2969 				default:
2970 					out(O_DIE,
2971 					"Bug in requirements_test.");
2972 				}
2973 			else
2974 				deferred_events++;
2975 		}
2976 		indent();
2977 		out(O_ALTFP|O_VERB, " Credible: %d Waiting %d",
2978 		    credible_events + deferred_events, waiting_events);
2979 		if (credible_events + deferred_events + waiting_events < n) {
2980 			/* Can never meet requirements */
2981 			ep->cached_state |= REQMNTS_DISPROVED;
2982 			indent();
2983 			out(O_ALTFP|O_VERB|O_NONL, "<-REQMNTS DISPROVED ");
2984 			itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
2985 			out(O_ALTFP|O_VERB, NULL);
2986 			indent_pop();
2987 			return (FME_DISPROVED);
2988 		}
2989 		if (credible_events + deferred_events < n) {
2990 			/* will have to wait */
2991 			/* wait time is shortest known */
2992 			if (arrow_delay < overall_delay)
2993 				overall_delay = arrow_delay;
2994 			return_value = FME_WAIT;
2995 		} else if (credible_events < n) {
2996 			if (return_value != FME_WAIT)
2997 				return_value = FME_DEFERRED;
2998 		}
2999 	}
3000 
3001 	/*
3002 	 * don't mark as FME_DEFERRED. If this event isn't reached by another
3003 	 * path, then this will be considered FME_CREDIBLE. But if it is
3004 	 * reached by a different path so the K-count is met, then might
3005 	 * get overridden by FME_WAIT or FME_DISPROVED.
3006 	 */
3007 	if (return_value == FME_WAIT) {
3008 		ep->cached_state |= REQMNTS_WAIT;
3009 		ep->cached_delay = *pdelay = overall_delay;
3010 	} else if (return_value == FME_CREDIBLE) {
3011 		ep->cached_state |= REQMNTS_CREDIBLE;
3012 	}
3013 	indent();
3014 	out(O_ALTFP|O_VERB|O_NONL, "<-REQMNTS %s ",
3015 	    fme_state2str(return_value));
3016 	itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3017 	out(O_ALTFP|O_VERB, NULL);
3018 	indent_pop();
3019 	return (return_value);
3020 }
3021 
3022 static enum fme_state
3023 causes_test(struct fme *fmep, struct event *ep,
3024     unsigned long long at_latest_by, unsigned long long *pdelay)
3025 {
3026 	unsigned long long overall_delay = TIMEVAL_EVENTUALLY;
3027 	unsigned long long my_delay;
3028 	int credible_results = 0;
3029 	int waiting_results = 0;
3030 	enum fme_state fstate;
3031 	struct event *tail_event;
3032 	struct bubble *bp;
3033 	struct arrowlist *ap;
3034 	int k = 1;
3035 
3036 	stats_counter_bump(fmep->Ccallcount);
3037 	indent_push("  C");
3038 	indent();
3039 	out(O_ALTFP|O_VERB|O_NONL, "->");
3040 	itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3041 	out(O_ALTFP|O_VERB, NULL);
3042 
3043 	for (bp = itree_next_bubble(ep, NULL); bp;
3044 	    bp = itree_next_bubble(ep, bp)) {
3045 		if (bp->t != B_TO)
3046 			continue;
3047 		k = bp->nork;	/* remember the K value */
3048 		for (ap = itree_next_arrow(bp, NULL); ap;
3049 		    ap = itree_next_arrow(bp, ap)) {
3050 			int do_not_follow = 0;
3051 
3052 			/*
3053 			 * if we get to the same event multiple times
3054 			 * only worry about the first one.
3055 			 */
3056 			if (ap->arrowp->tail->myevent->cached_state &
3057 			    CAUSES_TESTED) {
3058 				indent();
3059 				out(O_ALTFP|O_VERB|O_NONL,
3060 				    "  causes test already run for ");
3061 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL,
3062 				    ap->arrowp->tail->myevent);
3063 				out(O_ALTFP|O_VERB, NULL);
3064 				continue;
3065 			}
3066 
3067 			/*
3068 			 * see if false constraint prevents us
3069 			 * from traversing this arrow
3070 			 */
3071 			platform_set_payloadnvp(ep->nvp);
3072 			if (checkconstraints(fmep, ap->arrowp) == 0)
3073 				do_not_follow = 1;
3074 			platform_set_payloadnvp(NULL);
3075 			if (do_not_follow) {
3076 				indent();
3077 				out(O_ALTFP|O_VERB|O_NONL,
3078 				    "  False arrow from ");
3079 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL,
3080 				    ap->arrowp->tail->myevent);
3081 				out(O_ALTFP|O_VERB, NULL);
3082 				continue;
3083 			}
3084 
3085 			ap->arrowp->tail->myevent->cached_state |=
3086 			    CAUSES_TESTED;
3087 			tail_event = ap->arrowp->tail->myevent;
3088 			fstate = hypothesise(fmep, tail_event, at_latest_by,
3089 			    &my_delay);
3090 
3091 			switch (fstate) {
3092 			case FME_WAIT:
3093 				if (my_delay < overall_delay)
3094 					overall_delay = my_delay;
3095 				waiting_results++;
3096 				break;
3097 			case FME_CREDIBLE:
3098 				credible_results++;
3099 				break;
3100 			case FME_DISPROVED:
3101 				break;
3102 			default:
3103 				out(O_DIE, "Bug in causes_test");
3104 			}
3105 		}
3106 	}
3107 	/* compare against K */
3108 	if (credible_results + waiting_results < k) {
3109 		indent();
3110 		out(O_ALTFP|O_VERB|O_NONL, "<-CAUSES DISPROVED ");
3111 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3112 		out(O_ALTFP|O_VERB, NULL);
3113 		indent_pop();
3114 		return (FME_DISPROVED);
3115 	}
3116 	if (waiting_results != 0) {
3117 		*pdelay = overall_delay;
3118 		indent();
3119 		out(O_ALTFP|O_VERB|O_NONL, "<-CAUSES WAIT ");
3120 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3121 		out(O_ALTFP|O_VERB|O_NONL, " to ");
3122 		ptree_timeval(O_ALTFP|O_VERB|O_NONL, &at_latest_by);
3123 		out(O_ALTFP|O_VERB, NULL);
3124 		indent_pop();
3125 		return (FME_WAIT);
3126 	}
3127 	indent();
3128 	out(O_ALTFP|O_VERB|O_NONL, "<-CAUSES CREDIBLE ");
3129 	itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3130 	out(O_ALTFP|O_VERB, NULL);
3131 	indent_pop();
3132 	return (FME_CREDIBLE);
3133 }
3134 
3135 static enum fme_state
3136 hypothesise(struct fme *fmep, struct event *ep,
3137 	unsigned long long at_latest_by, unsigned long long *pdelay)
3138 {
3139 	enum fme_state rtr, otr;
3140 	unsigned long long my_delay;
3141 	unsigned long long overall_delay = TIMEVAL_EVENTUALLY;
3142 
3143 	stats_counter_bump(fmep->Hcallcount);
3144 	indent_push("  H");
3145 	indent();
3146 	out(O_ALTFP|O_VERB|O_NONL, "->");
3147 	itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3148 	out(O_ALTFP|O_VERB|O_NONL, ", at latest by: ");
3149 	ptree_timeval(O_ALTFP|O_VERB|O_NONL, &at_latest_by);
3150 	out(O_ALTFP|O_VERB, NULL);
3151 
3152 	rtr = requirements_test(fmep, ep, at_latest_by, &my_delay);
3153 	if ((rtr == FME_WAIT) && (my_delay < overall_delay))
3154 		overall_delay = my_delay;
3155 	if (rtr != FME_DISPROVED) {
3156 		if (is_problem(ep->t)) {
3157 			otr = effects_test(fmep, ep, at_latest_by, &my_delay);
3158 			if (otr != FME_DISPROVED) {
3159 				if (fmep->peek == 0 && ep->is_suspect++ == 0) {
3160 					ep->suspects = fmep->suspects;
3161 					fmep->suspects = ep;
3162 					fmep->nsuspects++;
3163 					if (!is_fault(ep->t))
3164 						fmep->nonfault++;
3165 				}
3166 			}
3167 		} else
3168 			otr = causes_test(fmep, ep, at_latest_by, &my_delay);
3169 		if ((otr == FME_WAIT) && (my_delay < overall_delay))
3170 			overall_delay = my_delay;
3171 		if ((otr != FME_DISPROVED) &&
3172 		    ((rtr == FME_WAIT) || (otr == FME_WAIT)))
3173 			*pdelay = overall_delay;
3174 	}
3175 	if (rtr == FME_DISPROVED) {
3176 		indent();
3177 		out(O_ALTFP|O_VERB|O_NONL, "<-DISPROVED ");
3178 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3179 		out(O_ALTFP|O_VERB, " (doesn't meet requirements)");
3180 		indent_pop();
3181 		return (FME_DISPROVED);
3182 	}
3183 	if ((otr == FME_DISPROVED) && is_problem(ep->t)) {
3184 		indent();
3185 		out(O_ALTFP|O_VERB|O_NONL, "<-DISPROVED ");
3186 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3187 		out(O_ALTFP|O_VERB, " (doesn't explain all reports)");
3188 		indent_pop();
3189 		return (FME_DISPROVED);
3190 	}
3191 	if (otr == FME_DISPROVED) {
3192 		indent();
3193 		out(O_ALTFP|O_VERB|O_NONL, "<-DISPROVED ");
3194 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3195 		out(O_ALTFP|O_VERB, " (causes are not credible)");
3196 		indent_pop();
3197 		return (FME_DISPROVED);
3198 	}
3199 	if ((rtr == FME_WAIT) || (otr == FME_WAIT)) {
3200 		indent();
3201 		out(O_ALTFP|O_VERB|O_NONL, "<-WAIT ");
3202 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3203 		out(O_ALTFP|O_VERB|O_NONL, " to ");
3204 		ptree_timeval(O_ALTFP|O_VERB|O_NONL, &overall_delay);
3205 		out(O_ALTFP|O_VERB, NULL);
3206 		indent_pop();
3207 		return (FME_WAIT);
3208 	}
3209 	indent();
3210 	out(O_ALTFP|O_VERB|O_NONL, "<-CREDIBLE ");
3211 	itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3212 	out(O_ALTFP|O_VERB, NULL);
3213 	indent_pop();
3214 	return (FME_CREDIBLE);
3215 }
3216 
3217 /*
3218  * fme_istat_load -- reconstitute any persistent istats
3219  */
3220 void
3221 fme_istat_load(fmd_hdl_t *hdl)
3222 {
3223 	int sz;
3224 	char *sbuf;
3225 	char *ptr;
3226 
3227 	if ((sz = fmd_buf_size(hdl, NULL, WOBUF_ISTATS)) == 0) {
3228 		out(O_ALTFP, "fme_istat_load: No stats");
3229 		return;
3230 	}
3231 
3232 	sbuf = alloca(sz);
3233 
3234 	fmd_buf_read(hdl, NULL, WOBUF_ISTATS, sbuf, sz);
3235 
3236 	/*
3237 	 * pick apart the serialized stats
3238 	 *
3239 	 * format is:
3240 	 *	<class-name>, '@', <path>, '\0', <value>, '\0'
3241 	 * for example:
3242 	 *	"stat.first@stat0/path0\02\0stat.second@stat0/path1\023\0"
3243 	 *
3244 	 * since this is parsing our own serialized data, any parsing issues
3245 	 * are fatal, so we check for them all with ASSERT() below.
3246 	 */
3247 	ptr = sbuf;
3248 	while (ptr < &sbuf[sz]) {
3249 		char *sepptr;
3250 		struct node *np;
3251 		int val;
3252 
3253 		sepptr = strchr(ptr, '@');
3254 		ASSERT(sepptr != NULL);
3255 		*sepptr = '\0';
3256 
3257 		/* construct the event */
3258 		np = newnode(T_EVENT, NULL, 0);
3259 		np->u.event.ename = newnode(T_NAME, NULL, 0);
3260 		np->u.event.ename->u.name.t = N_STAT;
3261 		np->u.event.ename->u.name.s = stable(ptr);
3262 		np->u.event.ename->u.name.it = IT_ENAME;
3263 		np->u.event.ename->u.name.last = np->u.event.ename;
3264 
3265 		ptr = sepptr + 1;
3266 		ASSERT(ptr < &sbuf[sz]);
3267 		ptr += strlen(ptr);
3268 		ptr++;	/* move past the '\0' separating path from value */
3269 		ASSERT(ptr < &sbuf[sz]);
3270 		ASSERT(isdigit(*ptr));
3271 		val = atoi(ptr);
3272 		ASSERT(val > 0);
3273 		ptr += strlen(ptr);
3274 		ptr++;	/* move past the final '\0' for this entry */
3275 
3276 		np->u.event.epname = pathstring2epnamenp(sepptr + 1);
3277 		ASSERT(np->u.event.epname != NULL);
3278 
3279 		istat_bump(np, val);
3280 		tree_free(np);
3281 	}
3282 
3283 	istat_save();
3284 }
3285