xref: /titanic_51/usr/src/cmd/fm/modules/common/eversholt/fme.c (revision 9de6b717b8109b1c5d038a3afb9ff82efd328d25)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  *
26  * fme.c -- fault management exercise module
27  *
28  * this module provides the simulated fault management exercise.
29  */
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36 #include <strings.h>
37 #include <ctype.h>
38 #include <alloca.h>
39 #include <libnvpair.h>
40 #include <sys/fm/protocol.h>
41 #include <fm/fmd_api.h>
42 #include "alloc.h"
43 #include "out.h"
44 #include "stats.h"
45 #include "stable.h"
46 #include "literals.h"
47 #include "lut.h"
48 #include "tree.h"
49 #include "ptree.h"
50 #include "itree.h"
51 #include "ipath.h"
52 #include "fme.h"
53 #include "evnv.h"
54 #include "eval.h"
55 #include "config.h"
56 #include "platform.h"
57 
58 /* imported from eft.c... */
59 extern char *Autoclose;
60 extern int Dupclose;
61 extern hrtime_t Hesitate;
62 extern nv_alloc_t Eft_nv_hdl;
63 extern int Max_fme;
64 extern fmd_hdl_t *Hdl;
65 
66 static int Istat_need_save;
67 void istat_save(void);
68 
69 /* fme under construction is global so we can free it on module abort */
70 static struct fme *Nfmep;
71 
72 static const char *Undiag_reason;
73 
74 static int Nextid = 0;
75 
76 static int Open_fme_count = 0;	/* Count of open FMEs */
77 
78 /* list of fault management exercises underway */
79 static struct fme {
80 	struct fme *next;		/* next exercise */
81 	unsigned long long ull;		/* time when fme was created */
82 	int id;				/* FME id */
83 	struct cfgdata *cfgdata;	/* full configuration data */
84 	struct lut *eventtree;		/* propagation tree for this FME */
85 	/*
86 	 * The initial error report that created this FME is kept in
87 	 * two forms.  e0 points to the instance tree node and is used
88 	 * by fme_eval() as the starting point for the inference
89 	 * algorithm.  e0r is the event handle FMD passed to us when
90 	 * the ereport first arrived and is used when setting timers,
91 	 * which are always relative to the time of this initial
92 	 * report.
93 	 */
94 	struct event *e0;
95 	fmd_event_t *e0r;
96 
97 	id_t    timer;			/* for setting an fmd time-out */
98 
99 	struct event *ecurrent;		/* ereport under consideration */
100 	struct event *suspects;		/* current suspect list */
101 	struct event *psuspects;	/* previous suspect list */
102 	int nsuspects;			/* count of suspects */
103 	int nonfault;			/* zero if all suspects T_FAULT */
104 	int posted_suspects;		/* true if we've posted a diagnosis */
105 	int uniqobs;			/* number of unique events observed */
106 	int peek;			/* just peeking, don't track suspects */
107 	int overflow;			/* true if overflow FME */
108 	enum fme_state {
109 		FME_NOTHING = 5000,	/* not evaluated yet */
110 		FME_WAIT,		/* need to wait for more info */
111 		FME_CREDIBLE,		/* suspect list is credible */
112 		FME_DISPROVED,		/* no valid suspects found */
113 		FME_DEFERRED		/* don't know yet (k-count not met) */
114 	} state;
115 
116 	unsigned long long pull;	/* time passed since created */
117 	unsigned long long wull;	/* wait until this time for re-eval */
118 	struct event *observations;	/* observation list */
119 	struct lut *globals;		/* values of global variables */
120 	/* fmd interfacing */
121 	fmd_hdl_t *hdl;			/* handle for talking with fmd */
122 	fmd_case_t *fmcase;		/* what fmd 'case' we associate with */
123 	/* stats */
124 	struct stats *Rcount;
125 	struct stats *Hcallcount;
126 	struct stats *Rcallcount;
127 	struct stats *Ccallcount;
128 	struct stats *Ecallcount;
129 	struct stats *Tcallcount;
130 	struct stats *Marrowcount;
131 	struct stats *diags;
132 } *FMElist, *EFMElist, *ClosedFMEs;
133 
134 static struct case_list {
135 	fmd_case_t *fmcase;
136 	struct case_list *next;
137 } *Undiagablecaselist;
138 
139 static void fme_eval(struct fme *fmep, fmd_event_t *ffep);
140 static enum fme_state hypothesise(struct fme *fmep, struct event *ep,
141 	unsigned long long at_latest_by, unsigned long long *pdelay);
142 static struct node *eventprop_lookup(struct event *ep, const char *propname);
143 static struct node *pathstring2epnamenp(char *path);
144 static void publish_undiagnosable(fmd_hdl_t *hdl, fmd_event_t *ffep);
145 static void restore_suspects(struct fme *fmep);
146 static void save_suspects(struct fme *fmep);
147 static void destroy_fme(struct fme *f);
148 static void fme_receive_report(fmd_hdl_t *hdl, fmd_event_t *ffep,
149     const char *eventstring, const struct ipath *ipp, nvlist_t *nvl);
150 static void istat_counter_reset_cb(struct istat_entry *entp,
151     struct stats *statp, const struct ipath *ipp);
152 
153 static struct fme *
154 alloc_fme(void)
155 {
156 	struct fme *fmep;
157 
158 	fmep = MALLOC(sizeof (*fmep));
159 	bzero(fmep, sizeof (*fmep));
160 	return (fmep);
161 }
162 
163 /*
164  * fme_ready -- called when all initialization of the FME (except for
165  *	stats) has completed successfully.  Adds the fme to global lists
166  *	and establishes its stats.
167  */
168 static struct fme *
169 fme_ready(struct fme *fmep)
170 {
171 	char nbuf[100];
172 
173 	Nfmep = NULL;	/* don't need to free this on module abort now */
174 
175 	if (EFMElist) {
176 		EFMElist->next = fmep;
177 		EFMElist = fmep;
178 	} else
179 		FMElist = EFMElist = fmep;
180 
181 	(void) sprintf(nbuf, "fme%d.Rcount", fmep->id);
182 	fmep->Rcount = stats_new_counter(nbuf, "ereports received", 0);
183 	(void) sprintf(nbuf, "fme%d.Hcall", fmep->id);
184 	fmep->Hcallcount = stats_new_counter(nbuf, "calls to hypothesise()", 1);
185 	(void) sprintf(nbuf, "fme%d.Rcall", fmep->id);
186 	fmep->Rcallcount = stats_new_counter(nbuf,
187 	    "calls to requirements_test()", 1);
188 	(void) sprintf(nbuf, "fme%d.Ccall", fmep->id);
189 	fmep->Ccallcount = stats_new_counter(nbuf, "calls to causes_test()", 1);
190 	(void) sprintf(nbuf, "fme%d.Ecall", fmep->id);
191 	fmep->Ecallcount =
192 	    stats_new_counter(nbuf, "calls to effects_test()", 1);
193 	(void) sprintf(nbuf, "fme%d.Tcall", fmep->id);
194 	fmep->Tcallcount = stats_new_counter(nbuf, "calls to triggered()", 1);
195 	(void) sprintf(nbuf, "fme%d.Marrow", fmep->id);
196 	fmep->Marrowcount = stats_new_counter(nbuf,
197 	    "arrows marked by mark_arrows()", 1);
198 	(void) sprintf(nbuf, "fme%d.diags", fmep->id);
199 	fmep->diags = stats_new_counter(nbuf, "suspect lists diagnosed", 0);
200 
201 	out(O_ALTFP|O_VERB2, "newfme: config snapshot contains...");
202 	config_print(O_ALTFP|O_VERB2, fmep->cfgdata->cooked);
203 
204 	return (fmep);
205 }
206 
207 static struct fme *
208 newfme(const char *e0class, const struct ipath *e0ipp)
209 {
210 	struct cfgdata *cfgdata;
211 
212 	if ((cfgdata = config_snapshot()) == NULL) {
213 		out(O_ALTFP, "newfme: NULL configuration");
214 		Undiag_reason = UD_NOCONF;
215 		return (NULL);
216 	}
217 
218 	Nfmep = alloc_fme();
219 
220 	Nfmep->id = Nextid++;
221 	Nfmep->cfgdata = cfgdata;
222 	Nfmep->posted_suspects = 0;
223 	Nfmep->uniqobs = 0;
224 	Nfmep->state = FME_NOTHING;
225 	Nfmep->pull = 0ULL;
226 	Nfmep->overflow = 0;
227 
228 	Nfmep->fmcase = NULL;
229 	Nfmep->hdl = NULL;
230 
231 	if ((Nfmep->eventtree = itree_create(cfgdata->cooked)) == NULL) {
232 		out(O_ALTFP, "newfme: NULL instance tree");
233 		Undiag_reason = UD_INSTFAIL;
234 		config_free(cfgdata);
235 		FREE(Nfmep);
236 		Nfmep = NULL;
237 		return (NULL);
238 	}
239 
240 	itree_ptree(O_ALTFP|O_VERB2, Nfmep->eventtree);
241 
242 	if ((Nfmep->e0 =
243 	    itree_lookup(Nfmep->eventtree, e0class, e0ipp)) == NULL) {
244 		out(O_ALTFP, "newfme: e0 not in instance tree");
245 		Undiag_reason = UD_BADEVENTI;
246 		itree_free(Nfmep->eventtree);
247 		config_free(cfgdata);
248 		FREE(Nfmep);
249 		Nfmep = NULL;
250 		return (NULL);
251 	}
252 
253 	return (fme_ready(Nfmep));
254 }
255 
256 void
257 fme_fini(void)
258 {
259 	struct fme *sfp, *fp;
260 	struct case_list *ucasep, *nextcasep;
261 
262 	ucasep = Undiagablecaselist;
263 	while (ucasep != NULL) {
264 		nextcasep = ucasep->next;
265 		FREE(ucasep);
266 		ucasep = nextcasep;
267 	}
268 	Undiagablecaselist = NULL;
269 
270 	/* clean up closed fmes */
271 	fp = ClosedFMEs;
272 	while (fp != NULL) {
273 		sfp = fp->next;
274 		destroy_fme(fp);
275 		fp = sfp;
276 	}
277 	ClosedFMEs = NULL;
278 
279 	fp = FMElist;
280 	while (fp != NULL) {
281 		sfp = fp->next;
282 		destroy_fme(fp);
283 		fp = sfp;
284 	}
285 	FMElist = EFMElist = NULL;
286 
287 	/* if we were in the middle of creating an fme, free it now */
288 	if (Nfmep) {
289 		destroy_fme(Nfmep);
290 		Nfmep = NULL;
291 	}
292 }
293 
294 /*
295  * Allocated space for a buffer name.  20 bytes allows for
296  * a ridiculous 9,999,999 unique observations.
297  */
298 #define	OBBUFNMSZ 20
299 
300 /*
301  *  serialize_observation
302  *
303  *  Create a recoverable version of the current observation
304  *  (f->ecurrent).  We keep a serialized version of each unique
305  *  observation in order that we may resume correctly the fme in the
306  *  correct state if eft or fmd crashes and we're restarted.
307  */
308 static void
309 serialize_observation(struct fme *fp, const char *cls, const struct ipath *ipp)
310 {
311 	size_t pkdlen;
312 	char tmpbuf[OBBUFNMSZ];
313 	char *pkd = NULL;
314 	char *estr;
315 
316 	(void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d", fp->uniqobs);
317 	estr = ipath2str(cls, ipp);
318 	fmd_buf_create(fp->hdl, fp->fmcase, tmpbuf, strlen(estr) + 1);
319 	fmd_buf_write(fp->hdl, fp->fmcase, tmpbuf, (void *)estr,
320 	    strlen(estr) + 1);
321 	FREE(estr);
322 
323 	if (fp->ecurrent != NULL && fp->ecurrent->nvp != NULL) {
324 		(void) snprintf(tmpbuf,
325 		    OBBUFNMSZ, "observed%d.nvp", fp->uniqobs);
326 		if (nvlist_xpack(fp->ecurrent->nvp,
327 		    &pkd, &pkdlen, NV_ENCODE_XDR, &Eft_nv_hdl) != 0)
328 			out(O_DIE|O_SYS, "pack of observed nvl failed");
329 		fmd_buf_create(fp->hdl, fp->fmcase, tmpbuf, pkdlen);
330 		fmd_buf_write(fp->hdl, fp->fmcase, tmpbuf, (void *)pkd, pkdlen);
331 		FREE(pkd);
332 	}
333 
334 	fp->uniqobs++;
335 	fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_NOBS, (void *)&fp->uniqobs,
336 	    sizeof (fp->uniqobs));
337 }
338 
339 /*
340  *  init_fme_bufs -- We keep several bits of state about an fme for
341  *	use if eft or fmd crashes and we're restarted.
342  */
343 static void
344 init_fme_bufs(struct fme *fp)
345 {
346 	size_t cfglen = fp->cfgdata->nextfree - fp->cfgdata->begin;
347 
348 	fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_CFGLEN, sizeof (cfglen));
349 	fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_CFGLEN, (void *)&cfglen,
350 	    sizeof (cfglen));
351 	if (cfglen != 0) {
352 		fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_CFG, cfglen);
353 		fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_CFG,
354 		    fp->cfgdata->begin, cfglen);
355 	}
356 
357 	fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_PULL, sizeof (fp->pull));
358 	fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_PULL, (void *)&fp->pull,
359 	    sizeof (fp->pull));
360 
361 	fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_ID, sizeof (fp->id));
362 	fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_ID, (void *)&fp->id,
363 	    sizeof (fp->id));
364 
365 	fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_NOBS, sizeof (fp->uniqobs));
366 	fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_NOBS, (void *)&fp->uniqobs,
367 	    sizeof (fp->uniqobs));
368 
369 	fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_POSTD,
370 	    sizeof (fp->posted_suspects));
371 	fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_POSTD,
372 	    (void *)&fp->posted_suspects, sizeof (fp->posted_suspects));
373 }
374 
375 static void
376 destroy_fme_bufs(struct fme *fp)
377 {
378 	char tmpbuf[OBBUFNMSZ];
379 	int o;
380 
381 	fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_CFGLEN);
382 	fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_CFG);
383 	fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_PULL);
384 	fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_ID);
385 	fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_POSTD);
386 	fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_NOBS);
387 
388 	for (o = 0; o < fp->uniqobs; o++) {
389 		(void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d", o);
390 		fmd_buf_destroy(fp->hdl, fp->fmcase, tmpbuf);
391 		(void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d.nvp", o);
392 		fmd_buf_destroy(fp->hdl, fp->fmcase, tmpbuf);
393 	}
394 }
395 
396 /*
397  * reconstitute_observations -- convert a case's serialized observations
398  *	back into struct events.  Returns zero if all observations are
399  *	successfully reconstituted.
400  */
401 static int
402 reconstitute_observations(struct fme *fmep)
403 {
404 	struct event *ep;
405 	struct node *epnamenp = NULL;
406 	size_t pkdlen;
407 	char *pkd = NULL;
408 	char *tmpbuf = alloca(OBBUFNMSZ);
409 	char *sepptr;
410 	char *estr;
411 	int ocnt;
412 	int elen;
413 
414 	for (ocnt = 0; ocnt < fmep->uniqobs; ocnt++) {
415 		(void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d", ocnt);
416 		elen = fmd_buf_size(fmep->hdl, fmep->fmcase, tmpbuf);
417 		if (elen == 0) {
418 			out(O_ALTFP,
419 			    "reconstitute_observation: no %s buffer found.",
420 			    tmpbuf);
421 			Undiag_reason = UD_MISSINGOBS;
422 			break;
423 		}
424 
425 		estr = MALLOC(elen);
426 		fmd_buf_read(fmep->hdl, fmep->fmcase, tmpbuf, estr, elen);
427 		sepptr = strchr(estr, '@');
428 		if (sepptr == NULL) {
429 			out(O_ALTFP,
430 			    "reconstitute_observation: %s: "
431 			    "missing @ separator in %s.",
432 			    tmpbuf, estr);
433 			Undiag_reason = UD_MISSINGPATH;
434 			FREE(estr);
435 			break;
436 		}
437 
438 		*sepptr = '\0';
439 		if ((epnamenp = pathstring2epnamenp(sepptr + 1)) == NULL) {
440 			out(O_ALTFP,
441 			    "reconstitute_observation: %s: "
442 			    "trouble converting path string \"%s\" "
443 			    "to internal representation.",
444 			    tmpbuf, sepptr + 1);
445 			Undiag_reason = UD_MISSINGPATH;
446 			FREE(estr);
447 			break;
448 		}
449 
450 		/* construct the event */
451 		ep = itree_lookup(fmep->eventtree,
452 		    stable(estr), ipath(epnamenp));
453 		if (ep == NULL) {
454 			out(O_ALTFP,
455 			    "reconstitute_observation: %s: "
456 			    "lookup of  \"%s\" in itree failed.",
457 			    tmpbuf, ipath2str(estr, ipath(epnamenp)));
458 			Undiag_reason = UD_BADOBS;
459 			tree_free(epnamenp);
460 			FREE(estr);
461 			break;
462 		}
463 		tree_free(epnamenp);
464 
465 		/*
466 		 * We may or may not have a saved nvlist for the observation
467 		 */
468 		(void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d.nvp", ocnt);
469 		pkdlen = fmd_buf_size(fmep->hdl, fmep->fmcase, tmpbuf);
470 		if (pkdlen != 0) {
471 			pkd = MALLOC(pkdlen);
472 			fmd_buf_read(fmep->hdl,
473 			    fmep->fmcase, tmpbuf, pkd, pkdlen);
474 			ASSERT(ep->nvp == NULL);
475 			if (nvlist_xunpack(pkd,
476 			    pkdlen, &ep->nvp, &Eft_nv_hdl) != 0)
477 				out(O_DIE|O_SYS, "pack of observed nvl failed");
478 			FREE(pkd);
479 		}
480 
481 		if (ocnt == 0)
482 			fmep->e0 = ep;
483 
484 		FREE(estr);
485 		fmep->ecurrent = ep;
486 		ep->count++;
487 
488 		/* link it into list of observations seen */
489 		ep->observations = fmep->observations;
490 		fmep->observations = ep;
491 	}
492 
493 	if (ocnt == fmep->uniqobs) {
494 		(void) fme_ready(fmep);
495 		return (0);
496 	}
497 
498 	return (1);
499 }
500 
501 /*
502  * restart_fme -- called during eft initialization.  Reconstitutes
503  *	an in-progress fme.
504  */
505 void
506 fme_restart(fmd_hdl_t *hdl, fmd_case_t *inprogress)
507 {
508 	nvlist_t *defect;
509 	struct case_list *bad;
510 	struct fme *fmep;
511 	struct cfgdata *cfgdata = NULL;
512 	size_t rawsz;
513 
514 	fmep = alloc_fme();
515 	fmep->fmcase = inprogress;
516 	fmep->hdl = hdl;
517 
518 	if (fmd_buf_size(hdl, inprogress, WOBUF_POSTD) == 0) {
519 		out(O_ALTFP, "restart_fme: no saved posted status");
520 		Undiag_reason = UD_MISSINGINFO;
521 		goto badcase;
522 	} else {
523 		fmd_buf_read(hdl, inprogress, WOBUF_POSTD,
524 		    (void *)&fmep->posted_suspects,
525 		    sizeof (fmep->posted_suspects));
526 	}
527 
528 	/*
529 	 * ignore solved or closed cases
530 	 */
531 	if (fmep->posted_suspects ||
532 	    fmd_case_solved(fmep->hdl, fmep->fmcase) ||
533 	    fmd_case_closed(fmep->hdl, fmep->fmcase))
534 		goto badcase;
535 
536 	if (fmd_buf_size(hdl, inprogress, WOBUF_CFGLEN) != sizeof (size_t)) {
537 		out(O_ALTFP, "restart_fme: No config data");
538 		Undiag_reason = UD_MISSINGINFO;
539 		goto badcase;
540 	}
541 	fmd_buf_read(hdl, inprogress, WOBUF_CFGLEN, (void *)&rawsz,
542 	    sizeof (size_t));
543 
544 	if ((fmep->e0r = fmd_case_getprincipal(hdl, inprogress)) == NULL) {
545 		out(O_ALTFP, "restart_fme: No event zero");
546 		Undiag_reason = UD_MISSINGZERO;
547 		goto badcase;
548 	}
549 
550 	cfgdata = MALLOC(sizeof (struct cfgdata));
551 	cfgdata->cooked = NULL;
552 	cfgdata->devcache = NULL;
553 	cfgdata->cpucache = NULL;
554 	cfgdata->refcnt = 1;
555 
556 	if (rawsz > 0) {
557 		if (fmd_buf_size(hdl, inprogress, WOBUF_CFG) != rawsz) {
558 			out(O_ALTFP, "restart_fme: Config data size mismatch");
559 			Undiag_reason = UD_CFGMISMATCH;
560 			goto badcase;
561 		}
562 		cfgdata->begin = MALLOC(rawsz);
563 		cfgdata->end = cfgdata->nextfree = cfgdata->begin + rawsz;
564 		fmd_buf_read(hdl,
565 		    inprogress, WOBUF_CFG, cfgdata->begin, rawsz);
566 	} else {
567 		cfgdata->begin = cfgdata->end = cfgdata->nextfree = NULL;
568 	}
569 	fmep->cfgdata = cfgdata;
570 
571 	config_cook(cfgdata);
572 	if ((fmep->eventtree = itree_create(cfgdata->cooked)) == NULL) {
573 		/* case not properly saved or irretrievable */
574 		out(O_ALTFP, "restart_fme: NULL instance tree");
575 		Undiag_reason = UD_INSTFAIL;
576 		goto badcase;
577 	}
578 
579 	itree_ptree(O_ALTFP|O_VERB2, fmep->eventtree);
580 
581 	if (fmd_buf_size(hdl, inprogress, WOBUF_PULL) == 0) {
582 		out(O_ALTFP, "restart_fme: no saved wait time");
583 		Undiag_reason = UD_MISSINGINFO;
584 		goto badcase;
585 	} else {
586 		fmd_buf_read(hdl, inprogress, WOBUF_PULL, (void *)&fmep->pull,
587 		    sizeof (fmep->pull));
588 	}
589 
590 	if (fmd_buf_size(hdl, inprogress, WOBUF_ID) == 0) {
591 		out(O_ALTFP, "restart_fme: no saved id");
592 		Undiag_reason = UD_MISSINGINFO;
593 		goto badcase;
594 	} else {
595 		fmd_buf_read(hdl, inprogress, WOBUF_ID, (void *)&fmep->id,
596 		    sizeof (fmep->id));
597 	}
598 	if (Nextid <= fmep->id)
599 		Nextid = fmep->id + 1;
600 
601 	if (fmd_buf_size(hdl, inprogress, WOBUF_NOBS) == 0) {
602 		out(O_ALTFP, "restart_fme: no count of observations");
603 		Undiag_reason = UD_MISSINGINFO;
604 		goto badcase;
605 	} else {
606 		fmd_buf_read(hdl, inprogress, WOBUF_NOBS,
607 		    (void *)&fmep->uniqobs, sizeof (fmep->uniqobs));
608 	}
609 
610 	if (reconstitute_observations(fmep) != 0)
611 		goto badcase;
612 
613 	Open_fme_count++;
614 
615 	/* give the diagnosis algorithm a shot at the new FME state */
616 	fme_eval(fmep, fmep->e0r);
617 	return;
618 
619 badcase:
620 	if (fmep->eventtree != NULL)
621 		itree_free(fmep->eventtree);
622 	config_free(cfgdata);
623 	destroy_fme_bufs(fmep);
624 	FREE(fmep);
625 
626 	/*
627 	 * Since we're unable to restart the case, add it to the undiagable
628 	 * list and solve and close it as appropriate.
629 	 */
630 	bad = MALLOC(sizeof (struct case_list));
631 	bad->next = NULL;
632 
633 	if (Undiagablecaselist != NULL)
634 		bad->next = Undiagablecaselist;
635 	Undiagablecaselist = bad;
636 	bad->fmcase = inprogress;
637 
638 	out(O_ALTFP|O_NONL, "[case %s (unable to restart), ",
639 	    fmd_case_uuid(hdl, bad->fmcase));
640 
641 	if (fmd_case_solved(hdl, bad->fmcase)) {
642 		out(O_ALTFP|O_NONL, "already solved, ");
643 	} else {
644 		out(O_ALTFP|O_NONL, "solving, ");
645 		defect = fmd_nvl_create_fault(hdl, UNDIAGNOSABLE_DEFECT, 100,
646 		    NULL, NULL, NULL);
647 		if (Undiag_reason != NULL)
648 			(void) nvlist_add_string(defect,
649 			    UNDIAG_REASON, Undiag_reason);
650 		fmd_case_add_suspect(hdl, bad->fmcase, defect);
651 		fmd_case_solve(hdl, bad->fmcase);
652 	}
653 
654 	if (fmd_case_closed(hdl, bad->fmcase)) {
655 		out(O_ALTFP, "already closed ]");
656 	} else {
657 		out(O_ALTFP, "closing ]");
658 		fmd_case_close(hdl, bad->fmcase);
659 	}
660 }
661 
662 /*ARGSUSED*/
663 static void
664 globals_destructor(void *left, void *right, void *arg)
665 {
666 	struct evalue *evp = (struct evalue *)right;
667 	if (evp->t == NODEPTR)
668 		tree_free((struct node *)(uintptr_t)evp->v);
669 	evp->v = NULL;
670 	FREE(evp);
671 }
672 
673 void
674 destroy_fme(struct fme *f)
675 {
676 	stats_delete(f->Rcount);
677 	stats_delete(f->Hcallcount);
678 	stats_delete(f->Rcallcount);
679 	stats_delete(f->Ccallcount);
680 	stats_delete(f->Ecallcount);
681 	stats_delete(f->Tcallcount);
682 	stats_delete(f->Marrowcount);
683 	stats_delete(f->diags);
684 
685 	if (f->eventtree != NULL)
686 		itree_free(f->eventtree);
687 	if (f->cfgdata != NULL)
688 		config_free(f->cfgdata);
689 	lut_free(f->globals, globals_destructor, NULL);
690 	FREE(f);
691 }
692 
693 static const char *
694 fme_state2str(enum fme_state s)
695 {
696 	switch (s) {
697 	case FME_NOTHING:	return ("NOTHING");
698 	case FME_WAIT:		return ("WAIT");
699 	case FME_CREDIBLE:	return ("CREDIBLE");
700 	case FME_DISPROVED:	return ("DISPROVED");
701 	case FME_DEFERRED:	return ("DEFERRED");
702 	default:		return ("UNKNOWN");
703 	}
704 }
705 
706 static int
707 is_problem(enum nametype t)
708 {
709 	return (t == N_FAULT || t == N_DEFECT || t == N_UPSET);
710 }
711 
712 static int
713 is_fault(enum nametype t)
714 {
715 	return (t == N_FAULT);
716 }
717 
718 static int
719 is_defect(enum nametype t)
720 {
721 	return (t == N_DEFECT);
722 }
723 
724 static int
725 is_upset(enum nametype t)
726 {
727 	return (t == N_UPSET);
728 }
729 
730 static void
731 fme_print(int flags, struct fme *fmep)
732 {
733 	struct event *ep;
734 
735 	out(flags, "Fault Management Exercise %d", fmep->id);
736 	out(flags, "\t       State: %s", fme_state2str(fmep->state));
737 	out(flags|O_NONL, "\t  Start time: ");
738 	ptree_timeval(flags|O_NONL, &fmep->ull);
739 	out(flags, NULL);
740 	if (fmep->wull) {
741 		out(flags|O_NONL, "\t   Wait time: ");
742 		ptree_timeval(flags|O_NONL, &fmep->wull);
743 		out(flags, NULL);
744 	}
745 	out(flags|O_NONL, "\t          E0: ");
746 	if (fmep->e0)
747 		itree_pevent_brief(flags|O_NONL, fmep->e0);
748 	else
749 		out(flags|O_NONL, "NULL");
750 	out(flags, NULL);
751 	out(flags|O_NONL, "\tObservations:");
752 	for (ep = fmep->observations; ep; ep = ep->observations) {
753 		out(flags|O_NONL, " ");
754 		itree_pevent_brief(flags|O_NONL, ep);
755 	}
756 	out(flags, NULL);
757 	out(flags|O_NONL, "\tSuspect list:");
758 	for (ep = fmep->suspects; ep; ep = ep->suspects) {
759 		out(flags|O_NONL, " ");
760 		itree_pevent_brief(flags|O_NONL, ep);
761 	}
762 	out(flags, NULL);
763 	if (fmep->eventtree != NULL) {
764 		out(flags|O_VERB2, "\t        Tree:");
765 		itree_ptree(flags|O_VERB2, fmep->eventtree);
766 	}
767 }
768 
769 static struct node *
770 pathstring2epnamenp(char *path)
771 {
772 	char *sep = "/";
773 	struct node *ret;
774 	char *ptr;
775 
776 	if ((ptr = strtok(path, sep)) == NULL)
777 		out(O_DIE, "pathstring2epnamenp: invalid empty class");
778 
779 	ret = tree_iname(stable(ptr), NULL, 0);
780 
781 	while ((ptr = strtok(NULL, sep)) != NULL)
782 		ret = tree_name_append(ret,
783 		    tree_iname(stable(ptr), NULL, 0));
784 
785 	return (ret);
786 }
787 
788 /*
789  * for a given upset sp, increment the corresponding SERD engine.  if the
790  * SERD engine trips, return the ename and ipp of the resulting ereport.
791  * returns true if engine tripped and *enamep and *ippp were filled in.
792  */
793 static int
794 serd_eval(struct fme *fmep, fmd_hdl_t *hdl, fmd_event_t *ffep,
795     fmd_case_t *fmcase, struct event *sp, const char **enamep,
796     const struct ipath **ippp)
797 {
798 	struct node *serdinst;
799 	char *serdname;
800 	struct node *nid;
801 
802 	ASSERT(sp->t == N_UPSET);
803 	ASSERT(ffep != NULL);
804 
805 	/*
806 	 * obtain instanced SERD engine from the upset sp.  from this
807 	 * derive serdname, the string used to identify the SERD engine.
808 	 */
809 	serdinst = eventprop_lookup(sp, L_engine);
810 
811 	if (serdinst == NULL)
812 		return (NULL);
813 
814 	serdname = ipath2str(serdinst->u.stmt.np->u.event.ename->u.name.s,
815 	    ipath(serdinst->u.stmt.np->u.event.epname));
816 
817 	/* handle serd engine "id" property, if there is one */
818 	if ((nid =
819 	    lut_lookup(serdinst->u.stmt.lutp, (void *)L_id, NULL)) != NULL) {
820 		struct evalue *gval;
821 		char suffixbuf[200];
822 		char *suffix;
823 		char *nserdname;
824 		size_t nname;
825 
826 		out(O_ALTFP|O_NONL, "serd \"%s\" id: ", serdname);
827 		ptree_name_iter(O_ALTFP|O_NONL, nid);
828 
829 		ASSERTinfo(nid->t == T_GLOBID, ptree_nodetype2str(nid->t));
830 
831 		if ((gval = lut_lookup(fmep->globals,
832 		    (void *)nid->u.globid.s, NULL)) == NULL) {
833 			out(O_ALTFP, " undefined");
834 		} else if (gval->t == UINT64) {
835 			out(O_ALTFP, " %llu", gval->v);
836 			(void) sprintf(suffixbuf, "%llu", gval->v);
837 			suffix = suffixbuf;
838 		} else {
839 			out(O_ALTFP, " \"%s\"", (char *)(uintptr_t)gval->v);
840 			suffix = (char *)(uintptr_t)gval->v;
841 		}
842 
843 		nname = strlen(serdname) + strlen(suffix) + 2;
844 		nserdname = MALLOC(nname);
845 		(void) snprintf(nserdname, nname, "%s:%s", serdname, suffix);
846 		FREE(serdname);
847 		serdname = nserdname;
848 	}
849 
850 	if (!fmd_serd_exists(hdl, serdname)) {
851 		struct node *nN, *nT;
852 
853 		/* no SERD engine yet, so create it */
854 		nN = lut_lookup(serdinst->u.stmt.lutp, (void *)L_N, NULL);
855 		nT = lut_lookup(serdinst->u.stmt.lutp, (void *)L_T, NULL);
856 
857 		ASSERT(nN->t == T_NUM);
858 		ASSERT(nT->t == T_TIMEVAL);
859 
860 		fmd_serd_create(hdl, serdname, (uint_t)nN->u.ull,
861 		    (hrtime_t)nT->u.ull);
862 	}
863 
864 
865 	/*
866 	 * increment SERD engine.  if engine fires, reset serd
867 	 * engine and return trip_strcode
868 	 */
869 	if (fmd_serd_record(hdl, serdname, ffep)) {
870 		struct node *tripinst = lut_lookup(serdinst->u.stmt.lutp,
871 		    (void *)L_trip, NULL);
872 
873 		ASSERT(tripinst != NULL);
874 
875 		*enamep = tripinst->u.event.ename->u.name.s;
876 		*ippp = ipath(tripinst->u.event.epname);
877 
878 		fmd_case_add_serd(hdl, fmcase, serdname);
879 		fmd_serd_reset(hdl, serdname);
880 		out(O_ALTFP|O_NONL, "[engine fired: %s, sending: ", serdname);
881 		ipath_print(O_ALTFP|O_NONL, *enamep, *ippp);
882 		out(O_ALTFP, "]");
883 
884 		FREE(serdname);
885 		return (1);
886 	}
887 
888 	FREE(serdname);
889 	return (0);
890 }
891 
892 /*
893  * search a suspect list for upsets.  feed each upset to serd_eval() and
894  * build up tripped[], an array of ereports produced by the firing of
895  * any SERD engines.  then feed each ereport back into
896  * fme_receive_report().
897  *
898  * returns ntrip, the number of these ereports produced.
899  */
900 static int
901 upsets_eval(struct fme *fmep, fmd_event_t *ffep)
902 {
903 	/* we build an array of tripped ereports that we send ourselves */
904 	struct {
905 		const char *ename;
906 		const struct ipath *ipp;
907 	} *tripped;
908 	struct event *sp;
909 	int ntrip, nupset, i;
910 
911 	/*
912 	 * count the number of upsets to determine the upper limit on
913 	 * expected trip ereport strings.  remember that one upset can
914 	 * lead to at most one ereport.
915 	 */
916 	nupset = 0;
917 	for (sp = fmep->suspects; sp; sp = sp->suspects) {
918 		if (sp->t == N_UPSET)
919 			nupset++;
920 	}
921 
922 	if (nupset == 0)
923 		return (0);
924 
925 	/*
926 	 * get to this point if we have upsets and expect some trip
927 	 * ereports
928 	 */
929 	tripped = alloca(sizeof (*tripped) * nupset);
930 	bzero((void *)tripped, sizeof (*tripped) * nupset);
931 
932 	ntrip = 0;
933 	for (sp = fmep->suspects; sp; sp = sp->suspects)
934 		if (sp->t == N_UPSET &&
935 		    serd_eval(fmep, fmep->hdl, ffep, fmep->fmcase, sp,
936 			    &tripped[ntrip].ename, &tripped[ntrip].ipp))
937 			ntrip++;
938 
939 	for (i = 0; i < ntrip; i++)
940 		fme_receive_report(fmep->hdl, ffep,
941 		    tripped[i].ename, tripped[i].ipp, NULL);
942 
943 	return (ntrip);
944 }
945 
946 /*
947  * fme_receive_external_report -- call when an external ereport comes in
948  *
949  * this routine just converts the relevant information from the ereport
950  * into a format used internally and passes it on to fme_receive_report().
951  */
952 void
953 fme_receive_external_report(fmd_hdl_t *hdl, fmd_event_t *ffep, nvlist_t *nvl,
954     const char *eventstring)
955 {
956 	struct node *epnamenp = platform_getpath(nvl);
957 	const struct ipath *ipp;
958 
959 	/*
960 	 * XFILE: If we ended up without a path, it's an X-file.
961 	 * For now, use our undiagnosable interface.
962 	 */
963 	if (epnamenp == NULL) {
964 		out(O_ALTFP, "XFILE: Unable to get path from ereport");
965 		Undiag_reason = UD_NOPATH;
966 		publish_undiagnosable(hdl, ffep);
967 		return;
968 	}
969 
970 	ipp = ipath(epnamenp);
971 	tree_free(epnamenp);
972 	fme_receive_report(hdl, ffep, stable(eventstring), ipp, nvl);
973 }
974 
975 /*ARGSUSED*/
976 void
977 fme_receive_repair_list(fmd_hdl_t *hdl, fmd_event_t *ffep, nvlist_t *nvl,
978     const char *eventstring)
979 {
980 	char *uuid;
981 	nvlist_t **nva;
982 	uint_t nvc;
983 	const struct ipath *ipp;
984 
985 	if (nvlist_lookup_string(nvl, FM_SUSPECT_UUID, &uuid) != 0 ||
986 	    nvlist_lookup_nvlist_array(nvl, FM_SUSPECT_FAULT_LIST,
987 	    &nva, &nvc) != 0) {
988 		out(O_ALTFP, "No uuid or fault list for list.repaired event");
989 		return;
990 	}
991 
992 	out(O_ALTFP, "Processing list.repaired from case %s", uuid);
993 
994 	while (nvc-- != 0) {
995 		/*
996 		 * Reset any istat associated with this path.
997 		 */
998 		char *path;
999 
1000 		if ((ipp = platform_fault2ipath(*nva++)) == NULL)
1001 			continue;
1002 
1003 		path = ipath2str(NULL, ipp);
1004 		out(O_ALTFP, "fme_receive_repair_list: resetting state for %s",
1005 		    path);
1006 		FREE(path);
1007 
1008 		lut_walk(Istats, (lut_cb)istat_counter_reset_cb, (void *)ipp);
1009 		istat_save();
1010 
1011 		/*
1012 		 * We do not have a list of stat engines in a form that
1013 		 * we can readily clear any associated serd engines.  When we
1014 		 * do, this will be the place to clear them.
1015 		 */
1016 	}
1017 }
1018 
1019 static int mark_arrows(struct fme *fmep, struct event *ep, int mark,
1020     unsigned long long at_latest_by, unsigned long long *pdelay, int keep);
1021 
1022 /* ARGSUSED */
1023 static void
1024 clear_arrows(struct event *ep, struct event *ep2, struct fme *fmep)
1025 {
1026 	struct bubble *bp;
1027 	struct arrowlist *ap;
1028 
1029 	ep->cached_state = 0;
1030 	ep->keep_in_tree = 0;
1031 	for (bp = itree_next_bubble(ep, NULL); bp;
1032 	    bp = itree_next_bubble(ep, bp)) {
1033 		if (bp->t != B_FROM)
1034 			continue;
1035 		bp->mark = 0;
1036 		for (ap = itree_next_arrow(bp, NULL); ap;
1037 		    ap = itree_next_arrow(bp, ap))
1038 			ap->arrowp->mark = 0;
1039 	}
1040 }
1041 
1042 static void
1043 fme_receive_report(fmd_hdl_t *hdl, fmd_event_t *ffep,
1044     const char *eventstring, const struct ipath *ipp, nvlist_t *nvl)
1045 {
1046 	struct event *ep;
1047 	struct fme *fmep = NULL;
1048 	struct fme *ofmep = NULL;
1049 	struct fme *cfmep, *svfmep;
1050 	int matched = 0;
1051 	nvlist_t *defect;
1052 
1053 	out(O_ALTFP|O_NONL, "fme_receive_report: ");
1054 	ipath_print(O_ALTFP|O_NONL, eventstring, ipp);
1055 	out(O_ALTFP|O_STAMP, NULL);
1056 
1057 	/* decide which FME it goes to */
1058 	for (fmep = FMElist; fmep; fmep = fmep->next) {
1059 		int prev_verbose;
1060 		unsigned long long my_delay = TIMEVAL_EVENTUALLY;
1061 		enum fme_state state;
1062 		nvlist_t *pre_peek_nvp = NULL;
1063 
1064 		if (fmep->overflow) {
1065 			if (!(fmd_case_closed(fmep->hdl, fmep->fmcase)))
1066 				ofmep = fmep;
1067 
1068 			continue;
1069 		}
1070 
1071 		/*
1072 		 * ignore solved or closed cases
1073 		 */
1074 		if (fmep->posted_suspects ||
1075 		    fmd_case_solved(fmep->hdl, fmep->fmcase) ||
1076 		    fmd_case_closed(fmep->hdl, fmep->fmcase))
1077 			continue;
1078 
1079 		/* look up event in event tree for this FME */
1080 		if ((ep = itree_lookup(fmep->eventtree,
1081 		    eventstring, ipp)) == NULL)
1082 			continue;
1083 
1084 		/* note observation */
1085 		fmep->ecurrent = ep;
1086 		if (ep->count++ == 0) {
1087 			/* link it into list of observations seen */
1088 			ep->observations = fmep->observations;
1089 			fmep->observations = ep;
1090 			ep->nvp = evnv_dupnvl(nvl);
1091 		} else {
1092 			/* use new payload values for peek */
1093 			pre_peek_nvp = ep->nvp;
1094 			ep->nvp = evnv_dupnvl(nvl);
1095 		}
1096 
1097 		/* tell hypothesise() not to mess with suspect list */
1098 		fmep->peek = 1;
1099 
1100 		/* don't want this to be verbose (unless Debug is set) */
1101 		prev_verbose = Verbose;
1102 		if (Debug == 0)
1103 			Verbose = 0;
1104 
1105 		lut_walk(fmep->eventtree, (lut_cb)clear_arrows, (void *)fmep);
1106 		state = hypothesise(fmep, fmep->e0, fmep->ull, &my_delay);
1107 
1108 		fmep->peek = 0;
1109 
1110 		/* put verbose flag back */
1111 		Verbose = prev_verbose;
1112 
1113 		if (state != FME_DISPROVED) {
1114 			/* found an FME that explains the ereport */
1115 			matched++;
1116 			out(O_ALTFP|O_NONL, "[");
1117 			ipath_print(O_ALTFP|O_NONL, eventstring, ipp);
1118 			out(O_ALTFP, " explained by FME%d]", fmep->id);
1119 
1120 			if (pre_peek_nvp)
1121 				nvlist_free(pre_peek_nvp);
1122 
1123 			if (ep->count == 1)
1124 				serialize_observation(fmep, eventstring, ipp);
1125 
1126 			if (ffep)
1127 				fmd_case_add_ereport(hdl, fmep->fmcase, ffep);
1128 
1129 			stats_counter_bump(fmep->Rcount);
1130 
1131 			/* re-eval FME */
1132 			fme_eval(fmep, ffep);
1133 		} else {
1134 
1135 			/* not a match, undo noting of observation */
1136 			fmep->ecurrent = NULL;
1137 			if (--ep->count == 0) {
1138 				/* unlink it from observations */
1139 				fmep->observations = ep->observations;
1140 				ep->observations = NULL;
1141 				nvlist_free(ep->nvp);
1142 				ep->nvp = NULL;
1143 			} else {
1144 				nvlist_free(ep->nvp);
1145 				ep->nvp = pre_peek_nvp;
1146 			}
1147 		}
1148 	}
1149 
1150 	if (matched)
1151 		return;	/* explained by at least one existing FME */
1152 
1153 	/* clean up closed fmes */
1154 	cfmep = ClosedFMEs;
1155 	while (cfmep != NULL) {
1156 		svfmep = cfmep->next;
1157 		destroy_fme(cfmep);
1158 		cfmep = svfmep;
1159 	}
1160 	ClosedFMEs = NULL;
1161 
1162 	if (ofmep) {
1163 		out(O_ALTFP|O_NONL, "[");
1164 		ipath_print(O_ALTFP|O_NONL, eventstring, ipp);
1165 		out(O_ALTFP, " ADDING TO OVERFLOW FME]");
1166 		if (ffep)
1167 			fmd_case_add_ereport(hdl, ofmep->fmcase, ffep);
1168 
1169 		return;
1170 
1171 	} else if (Max_fme && (Open_fme_count >= Max_fme)) {
1172 		out(O_ALTFP|O_NONL, "[");
1173 		ipath_print(O_ALTFP|O_NONL, eventstring, ipp);
1174 		out(O_ALTFP, " MAX OPEN FME REACHED]");
1175 		/* Create overflow fme */
1176 		if ((fmep = newfme(eventstring, ipp)) == NULL) {
1177 			out(O_ALTFP|O_NONL, "[");
1178 			ipath_print(O_ALTFP|O_NONL, eventstring, ipp);
1179 			out(O_ALTFP, " CANNOT OPEN OVERFLOW FME]");
1180 			publish_undiagnosable(hdl, ffep);
1181 			return;
1182 		}
1183 
1184 		Open_fme_count++;
1185 
1186 		fmep->fmcase = fmd_case_open(hdl, NULL);
1187 		fmep->hdl = hdl;
1188 		init_fme_bufs(fmep);
1189 		fmep->overflow = B_TRUE;
1190 
1191 		if (ffep)
1192 			fmd_case_add_ereport(hdl, fmep->fmcase, ffep);
1193 
1194 		defect = fmd_nvl_create_fault(hdl, UNDIAGNOSABLE_DEFECT, 100,
1195 		    NULL, NULL, NULL);
1196 		(void) nvlist_add_string(defect, UNDIAG_REASON, UD_MAXFME);
1197 		fmd_case_add_suspect(hdl, fmep->fmcase, defect);
1198 		fmd_case_solve(hdl, fmep->fmcase);
1199 		return;
1200 	}
1201 
1202 	/* start a new FME */
1203 	if ((fmep = newfme(eventstring, ipp)) == NULL) {
1204 		out(O_ALTFP|O_NONL, "[");
1205 		ipath_print(O_ALTFP|O_NONL, eventstring, ipp);
1206 		out(O_ALTFP, " CANNOT DIAGNOSE]");
1207 		publish_undiagnosable(hdl, ffep);
1208 		return;
1209 	}
1210 
1211 	Open_fme_count++;
1212 
1213 	/* open a case */
1214 	fmep->fmcase = fmd_case_open(hdl, NULL);
1215 	fmep->hdl = hdl;
1216 	init_fme_bufs(fmep);
1217 
1218 	out(O_ALTFP|O_NONL, "[");
1219 	ipath_print(O_ALTFP|O_NONL, eventstring, ipp);
1220 	out(O_ALTFP, " created FME%d, case %s]", fmep->id,
1221 	    fmd_case_uuid(hdl, fmep->fmcase));
1222 
1223 	ep = fmep->e0;
1224 	ASSERT(ep != NULL);
1225 
1226 	/* note observation */
1227 	fmep->ecurrent = ep;
1228 	if (ep->count++ == 0) {
1229 		/* link it into list of observations seen */
1230 		ep->observations = fmep->observations;
1231 		fmep->observations = ep;
1232 		ep->nvp = evnv_dupnvl(nvl);
1233 		serialize_observation(fmep, eventstring, ipp);
1234 	} else {
1235 		/* new payload overrides any previous */
1236 		nvlist_free(ep->nvp);
1237 		ep->nvp = evnv_dupnvl(nvl);
1238 	}
1239 
1240 	stats_counter_bump(fmep->Rcount);
1241 
1242 	if (ffep) {
1243 		fmd_case_add_ereport(hdl, fmep->fmcase, ffep);
1244 		fmd_case_setprincipal(hdl, fmep->fmcase, ffep);
1245 		fmep->e0r = ffep;
1246 	}
1247 
1248 	/* give the diagnosis algorithm a shot at the new FME state */
1249 	fme_eval(fmep, ffep);
1250 }
1251 
1252 void
1253 fme_status(int flags)
1254 {
1255 	struct fme *fmep;
1256 
1257 	if (FMElist == NULL) {
1258 		out(flags, "No fault management exercises underway.");
1259 		return;
1260 	}
1261 
1262 	for (fmep = FMElist; fmep; fmep = fmep->next)
1263 		fme_print(flags, fmep);
1264 }
1265 
1266 /*
1267  * "indent" routines used mostly for nicely formatted debug output, but also
1268  * for sanity checking for infinite recursion bugs.
1269  */
1270 
1271 #define	MAX_INDENT 1024
1272 static const char *indent_s[MAX_INDENT];
1273 static int current_indent;
1274 
1275 static void
1276 indent_push(const char *s)
1277 {
1278 	if (current_indent < MAX_INDENT)
1279 		indent_s[current_indent++] = s;
1280 	else
1281 		out(O_DIE, "unexpected recursion depth (%d)", current_indent);
1282 }
1283 
1284 static void
1285 indent_set(const char *s)
1286 {
1287 	current_indent = 0;
1288 	indent_push(s);
1289 }
1290 
1291 static void
1292 indent_pop(void)
1293 {
1294 	if (current_indent > 0)
1295 		current_indent--;
1296 	else
1297 		out(O_DIE, "recursion underflow");
1298 }
1299 
1300 static void
1301 indent(void)
1302 {
1303 	int i;
1304 	if (!Verbose)
1305 		return;
1306 	for (i = 0; i < current_indent; i++)
1307 		out(O_ALTFP|O_VERB|O_NONL, indent_s[i]);
1308 }
1309 
1310 #define	SLNEW		1
1311 #define	SLCHANGED	2
1312 #define	SLWAIT		3
1313 #define	SLDISPROVED	4
1314 
1315 static void
1316 print_suspects(int circumstance, struct fme *fmep)
1317 {
1318 	struct event *ep;
1319 
1320 	out(O_ALTFP|O_NONL, "[");
1321 	if (circumstance == SLCHANGED) {
1322 		out(O_ALTFP|O_NONL, "FME%d diagnosis changed. state: %s, "
1323 		    "suspect list:", fmep->id, fme_state2str(fmep->state));
1324 	} else if (circumstance == SLWAIT) {
1325 		out(O_ALTFP|O_NONL, "FME%d set wait timer ", fmep->id);
1326 		ptree_timeval(O_ALTFP|O_NONL, &fmep->wull);
1327 	} else if (circumstance == SLDISPROVED) {
1328 		out(O_ALTFP|O_NONL, "FME%d DIAGNOSIS UNKNOWN", fmep->id);
1329 	} else {
1330 		out(O_ALTFP|O_NONL, "FME%d DIAGNOSIS PRODUCED:", fmep->id);
1331 	}
1332 
1333 	if (circumstance == SLWAIT || circumstance == SLDISPROVED) {
1334 		out(O_ALTFP, "]");
1335 		return;
1336 	}
1337 
1338 	for (ep = fmep->suspects; ep; ep = ep->suspects) {
1339 		out(O_ALTFP|O_NONL, " ");
1340 		itree_pevent_brief(O_ALTFP|O_NONL, ep);
1341 	}
1342 	out(O_ALTFP, "]");
1343 }
1344 
1345 static struct node *
1346 eventprop_lookup(struct event *ep, const char *propname)
1347 {
1348 	return (lut_lookup(ep->props, (void *)propname, NULL));
1349 }
1350 
1351 #define	MAXDIGITIDX	23
1352 static char numbuf[MAXDIGITIDX + 1];
1353 
1354 static int
1355 node2uint(struct node *n, uint_t *valp)
1356 {
1357 	struct evalue value;
1358 	struct lut *globals = NULL;
1359 
1360 	if (n == NULL)
1361 		return (1);
1362 
1363 	/*
1364 	 * check value.v since we are being asked to convert an unsigned
1365 	 * long long int to an unsigned int
1366 	 */
1367 	if (! eval_expr(n, NULL, NULL, &globals, NULL, NULL, 0, &value) ||
1368 	    value.t != UINT64 || value.v > (1ULL << 32))
1369 		return (1);
1370 
1371 	*valp = (uint_t)value.v;
1372 
1373 	return (0);
1374 }
1375 
1376 static nvlist_t *
1377 node2fmri(struct node *n)
1378 {
1379 	nvlist_t **pa, *f, *p;
1380 	struct node *nc;
1381 	uint_t depth = 0;
1382 	char *numstr, *nullbyte;
1383 	char *failure;
1384 	int err, i;
1385 
1386 	/* XXX do we need to be able to handle a non-T_NAME node? */
1387 	if (n == NULL || n->t != T_NAME)
1388 		return (NULL);
1389 
1390 	for (nc = n; nc != NULL; nc = nc->u.name.next) {
1391 		if (nc->u.name.child == NULL || nc->u.name.child->t != T_NUM)
1392 			break;
1393 		depth++;
1394 	}
1395 
1396 	if (nc != NULL) {
1397 		/* We bailed early, something went wrong */
1398 		return (NULL);
1399 	}
1400 
1401 	if ((err = nvlist_xalloc(&f, NV_UNIQUE_NAME, &Eft_nv_hdl)) != 0)
1402 		out(O_DIE|O_SYS, "alloc of fmri nvl failed");
1403 	pa = alloca(depth * sizeof (nvlist_t *));
1404 	for (i = 0; i < depth; i++)
1405 		pa[i] = NULL;
1406 
1407 	err = nvlist_add_string(f, FM_FMRI_SCHEME, FM_FMRI_SCHEME_HC);
1408 	err |= nvlist_add_uint8(f, FM_VERSION, FM_HC_SCHEME_VERSION);
1409 	err |= nvlist_add_string(f, FM_FMRI_HC_ROOT, "");
1410 	err |= nvlist_add_uint32(f, FM_FMRI_HC_LIST_SZ, depth);
1411 	if (err != 0) {
1412 		failure = "basic construction of FMRI failed";
1413 		goto boom;
1414 	}
1415 
1416 	numbuf[MAXDIGITIDX] = '\0';
1417 	nullbyte = &numbuf[MAXDIGITIDX];
1418 	i = 0;
1419 
1420 	for (nc = n; nc != NULL; nc = nc->u.name.next) {
1421 		err = nvlist_xalloc(&p, NV_UNIQUE_NAME, &Eft_nv_hdl);
1422 		if (err != 0) {
1423 			failure = "alloc of an hc-pair failed";
1424 			goto boom;
1425 		}
1426 		err = nvlist_add_string(p, FM_FMRI_HC_NAME, nc->u.name.s);
1427 		numstr = ulltostr(nc->u.name.child->u.ull, nullbyte);
1428 		err |= nvlist_add_string(p, FM_FMRI_HC_ID, numstr);
1429 		if (err != 0) {
1430 			failure = "construction of an hc-pair failed";
1431 			goto boom;
1432 		}
1433 		pa[i++] = p;
1434 	}
1435 
1436 	err = nvlist_add_nvlist_array(f, FM_FMRI_HC_LIST, pa, depth);
1437 	if (err == 0) {
1438 		for (i = 0; i < depth; i++)
1439 			if (pa[i] != NULL)
1440 				nvlist_free(pa[i]);
1441 		return (f);
1442 	}
1443 	failure = "addition of hc-pair array to FMRI failed";
1444 
1445 boom:
1446 	for (i = 0; i < depth; i++)
1447 		if (pa[i] != NULL)
1448 			nvlist_free(pa[i]);
1449 	nvlist_free(f);
1450 	out(O_DIE, "%s", failure);
1451 	/*NOTREACHED*/
1452 	return (NULL);
1453 }
1454 
1455 static uint_t
1456 avg(uint_t sum, uint_t cnt)
1457 {
1458 	unsigned long long s = sum * 10;
1459 
1460 	return ((s / cnt / 10) + (((s / cnt % 10) >= 5) ? 1 : 0));
1461 }
1462 
1463 static uint8_t
1464 percentof(uint_t part, uint_t whole)
1465 {
1466 	unsigned long long p = part * 1000;
1467 
1468 	return ((p / whole / 10) + (((p / whole % 10) >= 5) ? 1 : 0));
1469 }
1470 
1471 struct rsl {
1472 	struct event *suspect;
1473 	nvlist_t *asru;
1474 	nvlist_t *fru;
1475 	nvlist_t *rsrc;
1476 };
1477 
1478 /*
1479  *  rslfree -- free internal members of struct rsl not expected to be
1480  *	freed elsewhere.
1481  */
1482 static void
1483 rslfree(struct rsl *freeme)
1484 {
1485 	if (freeme->asru != NULL)
1486 		nvlist_free(freeme->asru);
1487 	if (freeme->fru != NULL)
1488 		nvlist_free(freeme->fru);
1489 	if (freeme->rsrc != NULL && freeme->rsrc != freeme->asru)
1490 		nvlist_free(freeme->rsrc);
1491 }
1492 
1493 /*
1494  *  rslcmp -- compare two rsl structures.  Use the following
1495  *	comparisons to establish cardinality:
1496  *
1497  *	1. Name of the suspect's class. (simple strcmp)
1498  *	2. Name of the suspect's ASRU. (trickier, since nvlist)
1499  *
1500  */
1501 static int
1502 rslcmp(const void *a, const void *b)
1503 {
1504 	struct rsl *r1 = (struct rsl *)a;
1505 	struct rsl *r2 = (struct rsl *)b;
1506 	int rv;
1507 
1508 	rv = strcmp(r1->suspect->enode->u.event.ename->u.name.s,
1509 	    r2->suspect->enode->u.event.ename->u.name.s);
1510 	if (rv != 0)
1511 		return (rv);
1512 
1513 	if (r1->asru == NULL && r2->asru == NULL)
1514 		return (0);
1515 	if (r1->asru == NULL)
1516 		return (-1);
1517 	if (r2->asru == NULL)
1518 		return (1);
1519 	return (evnv_cmpnvl(r1->asru, r2->asru, 0));
1520 }
1521 
1522 /*
1523  *  rsluniq -- given an array of rsl structures, seek out and "remove"
1524  *	any duplicates.  Dups are "remove"d by NULLing the suspect pointer
1525  *	of the array element.  Removal also means updating the number of
1526  *	problems and the number of problems which are not faults.  User
1527  *	provides the first and last element pointers.
1528  */
1529 static void
1530 rsluniq(struct rsl *first, struct rsl *last, int *nprobs, int *nnonf)
1531 {
1532 	struct rsl *cr;
1533 
1534 	if (*nprobs == 1)
1535 		return;
1536 
1537 	/*
1538 	 *  At this point, we only expect duplicate defects.
1539 	 *  Eversholt's diagnosis algorithm prevents duplicate
1540 	 *  suspects, but we rewrite defects in the platform code after
1541 	 *  the diagnosis is made, and that can introduce new
1542 	 *  duplicates.
1543 	 */
1544 	while (first <= last) {
1545 		if (first->suspect == NULL || !is_defect(first->suspect->t)) {
1546 			first++;
1547 			continue;
1548 		}
1549 		cr = first + 1;
1550 		while (cr <= last) {
1551 			if (is_defect(first->suspect->t)) {
1552 				if (rslcmp(first, cr) == 0) {
1553 					cr->suspect = NULL;
1554 					rslfree(cr);
1555 					(*nprobs)--;
1556 					(*nnonf)--;
1557 				}
1558 			}
1559 			/*
1560 			 * assume all defects are in order after our
1561 			 * sort and short circuit here with "else break" ?
1562 			 */
1563 			cr++;
1564 		}
1565 		first++;
1566 	}
1567 }
1568 
1569 /*
1570  * get_resources -- for a given suspect, determine what ASRU, FRU and
1571  *     RSRC nvlists should be advertised in the final suspect list.
1572  */
1573 void
1574 get_resources(struct event *sp, struct rsl *rsrcs, struct config *croot)
1575 {
1576 	struct node *asrudef, *frudef;
1577 	nvlist_t *asru, *fru;
1578 	nvlist_t *rsrc = NULL;
1579 	char *pathstr;
1580 
1581 	/*
1582 	 * First find any ASRU and/or FRU defined in the
1583 	 * initial fault tree.
1584 	 */
1585 	asrudef = eventprop_lookup(sp, L_ASRU);
1586 	frudef = eventprop_lookup(sp, L_FRU);
1587 
1588 	/*
1589 	 * Create FMRIs based on those definitions
1590 	 */
1591 	asru = node2fmri(asrudef);
1592 	fru = node2fmri(frudef);
1593 	pathstr = ipath2str(NULL, sp->ipp);
1594 
1595 	/*
1596 	 * Allow for platform translations of the FMRIs
1597 	 */
1598 	platform_units_translate(is_defect(sp->t), croot, &asru, &fru, &rsrc,
1599 	    pathstr);
1600 
1601 	FREE(pathstr);
1602 	rsrcs->suspect = sp;
1603 	rsrcs->asru = asru;
1604 	rsrcs->fru = fru;
1605 	rsrcs->rsrc = rsrc;
1606 }
1607 
1608 /*
1609  * trim_suspects -- prior to publishing, we may need to remove some
1610  *    suspects from the list.  If we're auto-closing upsets, we don't
1611  *    want any of those in the published list.  If the ASRUs for multiple
1612  *    defects resolve to the same ASRU (driver) we only want to publish
1613  *    that as a single suspect.
1614  */
1615 static void
1616 trim_suspects(struct fme *fmep, boolean_t no_upsets, struct rsl **begin,
1617     struct rsl **end)
1618 {
1619 	struct event *ep;
1620 	struct rsl *rp;
1621 	int rpcnt;
1622 
1623 	/*
1624 	 * First save the suspects in the psuspects, then copy back
1625 	 * only the ones we wish to retain.  This resets nsuspects to
1626 	 * zero.
1627 	 */
1628 	rpcnt = fmep->nsuspects;
1629 	save_suspects(fmep);
1630 
1631 	/*
1632 	 * allocate an array of resource pointers for the suspects.
1633 	 * We may end up using less than the full allocation, but this
1634 	 * is a very short-lived array.  publish_suspects() will free
1635 	 * this array when it's done using it.
1636 	 */
1637 	rp = *begin = MALLOC(rpcnt * sizeof (struct rsl));
1638 	bzero(rp, rpcnt * sizeof (struct rsl));
1639 
1640 	/* first pass, remove any unwanted upsets and populate our array */
1641 	for (ep = fmep->psuspects; ep; ep = ep->psuspects) {
1642 		if (no_upsets && is_upset(ep->t))
1643 			continue;
1644 		get_resources(ep, rp, fmep->cfgdata->cooked);
1645 		rp++;
1646 		fmep->nsuspects++;
1647 		if (!is_fault(ep->t))
1648 			fmep->nonfault++;
1649 	}
1650 
1651 	/* if all we had was unwanted upsets, we're done */
1652 	if (fmep->nsuspects == 0)
1653 		return;
1654 
1655 	*end = rp - 1;
1656 
1657 	/* sort the array */
1658 	qsort(*begin, fmep->nsuspects, sizeof (struct rsl), rslcmp);
1659 	rsluniq(*begin, *end, &fmep->nsuspects, &fmep->nonfault);
1660 }
1661 
1662 /*
1663  * addpayloadprop -- add a payload prop to a problem
1664  */
1665 static void
1666 addpayloadprop(const char *lhs, struct evalue *rhs, nvlist_t *fault)
1667 {
1668 	ASSERT(fault != NULL);
1669 	ASSERT(lhs != NULL);
1670 	ASSERT(rhs != NULL);
1671 
1672 	if (rhs->t == UINT64) {
1673 		out(O_ALTFP|O_VERB2, "addpayloadprop: %s=%llu", lhs, rhs->v);
1674 
1675 		if (nvlist_add_uint64(fault, lhs, rhs->v) != 0)
1676 			out(O_DIE,
1677 			    "cannot add payloadprop \"%s\" to fault", lhs);
1678 	} else {
1679 		out(O_ALTFP|O_VERB2, "addpayloadprop: %s=\"%s\"",
1680 		    lhs, (char *)(uintptr_t)rhs->v);
1681 
1682 		if (nvlist_add_string(fault, lhs, (char *)(uintptr_t)rhs->v) !=
1683 		    0)
1684 			out(O_DIE,
1685 			    "cannot add payloadprop \"%s\" to fault", lhs);
1686 	}
1687 }
1688 
1689 static char *Istatbuf;
1690 static char *Istatbufptr;
1691 static int Istatsz;
1692 
1693 /*
1694  * istataddsize -- calculate size of istat and add it to Istatsz
1695  */
1696 /*ARGSUSED2*/
1697 static void
1698 istataddsize(const struct istat_entry *lhs, struct stats *rhs, void *arg)
1699 {
1700 	int val;
1701 
1702 	ASSERT(lhs != NULL);
1703 	ASSERT(rhs != NULL);
1704 
1705 	if ((val = stats_counter_value(rhs)) == 0)
1706 		return;	/* skip zero-valued stats */
1707 
1708 	/* count up the size of the stat name */
1709 	Istatsz += ipath2strlen(lhs->ename, lhs->ipath);
1710 	Istatsz++;	/* for the trailing NULL byte */
1711 
1712 	/* count up the size of the stat value */
1713 	Istatsz += snprintf(NULL, 0, "%d", val);
1714 	Istatsz++;	/* for the trailing NULL byte */
1715 }
1716 
1717 /*
1718  * istat2str -- serialize an istat, writing result to *Istatbufptr
1719  */
1720 /*ARGSUSED2*/
1721 static void
1722 istat2str(const struct istat_entry *lhs, struct stats *rhs, void *arg)
1723 {
1724 	char *str;
1725 	int len;
1726 	int val;
1727 
1728 	ASSERT(lhs != NULL);
1729 	ASSERT(rhs != NULL);
1730 
1731 	if ((val = stats_counter_value(rhs)) == 0)
1732 		return;	/* skip zero-valued stats */
1733 
1734 	/* serialize the stat name */
1735 	str = ipath2str(lhs->ename, lhs->ipath);
1736 	len = strlen(str);
1737 
1738 	ASSERT(Istatbufptr + len + 1 < &Istatbuf[Istatsz]);
1739 	(void) strlcpy(Istatbufptr, str, &Istatbuf[Istatsz] - Istatbufptr);
1740 	Istatbufptr += len;
1741 	FREE(str);
1742 	*Istatbufptr++ = '\0';
1743 
1744 	/* serialize the stat value */
1745 	Istatbufptr += snprintf(Istatbufptr, &Istatbuf[Istatsz] - Istatbufptr,
1746 	    "%d", val);
1747 	*Istatbufptr++ = '\0';
1748 
1749 	ASSERT(Istatbufptr <= &Istatbuf[Istatsz]);
1750 }
1751 
1752 void
1753 istat_save()
1754 {
1755 	if (Istat_need_save == 0)
1756 		return;
1757 
1758 	/* figure out how big the serialzed info is */
1759 	Istatsz = 0;
1760 	lut_walk(Istats, (lut_cb)istataddsize, NULL);
1761 
1762 	if (Istatsz == 0) {
1763 		/* no stats to save */
1764 		fmd_buf_destroy(Hdl, NULL, WOBUF_ISTATS);
1765 		return;
1766 	}
1767 
1768 	/* create the serialized buffer */
1769 	Istatbufptr = Istatbuf = MALLOC(Istatsz);
1770 	lut_walk(Istats, (lut_cb)istat2str, NULL);
1771 
1772 	/* clear out current saved stats */
1773 	fmd_buf_destroy(Hdl, NULL, WOBUF_ISTATS);
1774 
1775 	/* write out the new version */
1776 	fmd_buf_write(Hdl, NULL, WOBUF_ISTATS, Istatbuf, Istatsz);
1777 	FREE(Istatbuf);
1778 
1779 	Istat_need_save = 0;
1780 }
1781 
1782 int
1783 istat_cmp(struct istat_entry *ent1, struct istat_entry *ent2)
1784 {
1785 	if (ent1->ename != ent2->ename)
1786 		return (ent2->ename - ent1->ename);
1787 	if (ent1->ipath != ent2->ipath)
1788 		return ((char *)ent2->ipath - (char *)ent1->ipath);
1789 
1790 	return (0);
1791 }
1792 
1793 /*
1794  * istat-verify -- verify the component associated with a stat still exists
1795  *
1796  * if the component no longer exists, this routine resets the stat and
1797  * returns 0.  if the component still exists, it returns 1.
1798  */
1799 static int
1800 istat_verify(struct node *snp, struct istat_entry *entp)
1801 {
1802 	struct stats *statp;
1803 	nvlist_t *fmri;
1804 
1805 	fmri = node2fmri(snp->u.event.epname);
1806 	if (platform_path_exists(fmri)) {
1807 		nvlist_free(fmri);
1808 		return (1);
1809 	}
1810 	nvlist_free(fmri);
1811 
1812 	/* component no longer in system.  zero out the associated stats */
1813 	if ((statp = (struct stats *)
1814 	    lut_lookup(Istats, entp, (lut_cmp)istat_cmp)) == NULL ||
1815 	    stats_counter_value(statp) == 0)
1816 		return (0);	/* stat is already reset */
1817 
1818 	Istat_need_save = 1;
1819 	stats_counter_reset(statp);
1820 	return (0);
1821 }
1822 
1823 static void
1824 istat_bump(struct node *snp, int n)
1825 {
1826 	struct stats *statp;
1827 	struct istat_entry ent;
1828 
1829 	ASSERT(snp != NULL);
1830 	ASSERTinfo(snp->t == T_EVENT, ptree_nodetype2str(snp->t));
1831 	ASSERT(snp->u.event.epname != NULL);
1832 
1833 	/* class name should be hoisted into a single stable entry */
1834 	ASSERT(snp->u.event.ename->u.name.next == NULL);
1835 	ent.ename = snp->u.event.ename->u.name.s;
1836 	ent.ipath = ipath(snp->u.event.epname);
1837 
1838 	if (!istat_verify(snp, &ent)) {
1839 		/* component no longer exists in system, nothing to do */
1840 		return;
1841 	}
1842 
1843 	if ((statp = (struct stats *)
1844 	    lut_lookup(Istats, &ent, (lut_cmp)istat_cmp)) == NULL) {
1845 		/* need to create the counter */
1846 		int cnt = 0;
1847 		struct node *np;
1848 		char *sname;
1849 		char *snamep;
1850 		struct istat_entry *newentp;
1851 
1852 		/* count up the size of the stat name */
1853 		np = snp->u.event.ename;
1854 		while (np != NULL) {
1855 			cnt += strlen(np->u.name.s);
1856 			cnt++;	/* for the '.' or '@' */
1857 			np = np->u.name.next;
1858 		}
1859 		np = snp->u.event.epname;
1860 		while (np != NULL) {
1861 			cnt += snprintf(NULL, 0, "%s%llu",
1862 			    np->u.name.s, np->u.name.child->u.ull);
1863 			cnt++;	/* for the '/' or trailing NULL byte */
1864 			np = np->u.name.next;
1865 		}
1866 
1867 		/* build the stat name */
1868 		snamep = sname = alloca(cnt);
1869 		np = snp->u.event.ename;
1870 		while (np != NULL) {
1871 			snamep += snprintf(snamep, &sname[cnt] - snamep,
1872 			    "%s", np->u.name.s);
1873 			np = np->u.name.next;
1874 			if (np)
1875 				*snamep++ = '.';
1876 		}
1877 		*snamep++ = '@';
1878 		np = snp->u.event.epname;
1879 		while (np != NULL) {
1880 			snamep += snprintf(snamep, &sname[cnt] - snamep,
1881 			    "%s%llu", np->u.name.s, np->u.name.child->u.ull);
1882 			np = np->u.name.next;
1883 			if (np)
1884 				*snamep++ = '/';
1885 		}
1886 		*snamep++ = '\0';
1887 
1888 		/* create the new stat & add it to our list */
1889 		newentp = MALLOC(sizeof (*newentp));
1890 		*newentp = ent;
1891 		statp = stats_new_counter(NULL, sname, 0);
1892 		Istats = lut_add(Istats, (void *)newentp, (void *)statp,
1893 		    (lut_cmp)istat_cmp);
1894 	}
1895 
1896 	/* if n is non-zero, set that value instead of bumping */
1897 	if (n) {
1898 		stats_counter_reset(statp);
1899 		stats_counter_add(statp, n);
1900 	} else
1901 		stats_counter_bump(statp);
1902 	Istat_need_save = 1;
1903 
1904 	ipath_print(O_ALTFP|O_VERB2, ent.ename, ent.ipath);
1905 	out(O_ALTFP|O_VERB2, " %s to value %d", n ? "set" : "incremented",
1906 	    stats_counter_value(statp));
1907 }
1908 
1909 /*ARGSUSED*/
1910 static void
1911 istat_destructor(void *left, void *right, void *arg)
1912 {
1913 	struct istat_entry *entp = (struct istat_entry *)left;
1914 	struct stats *statp = (struct stats *)right;
1915 	FREE(entp);
1916 	stats_delete(statp);
1917 }
1918 
1919 /*
1920  * Callback used in a walk of the Istats to reset matching stat counters.
1921  */
1922 static void
1923 istat_counter_reset_cb(struct istat_entry *entp, struct stats *statp,
1924     const struct ipath *ipp)
1925 {
1926 	char *path;
1927 
1928 	if (entp->ipath == ipp) {
1929 		path = ipath2str(entp->ename, ipp);
1930 		out(O_ALTFP, "istat_counter_reset_cb: resetting %s", path);
1931 		FREE(path);
1932 		stats_counter_reset(statp);
1933 		Istat_need_save = 1;
1934 	}
1935 }
1936 
1937 void
1938 istat_fini(void)
1939 {
1940 	lut_free(Istats, istat_destructor, NULL);
1941 }
1942 
1943 static void
1944 publish_suspects(struct fme *fmep)
1945 {
1946 	struct rsl *srl = NULL;
1947 	struct rsl *erl;
1948 	struct rsl *rp;
1949 	nvlist_t *fault;
1950 	uint8_t cert;
1951 	uint_t *frs;
1952 	uint_t fravg, frsum, fr;
1953 	uint_t messval;
1954 	struct node *snp;
1955 	int frcnt, fridx;
1956 	boolean_t no_upsets = B_FALSE;
1957 	boolean_t allfaulty = B_TRUE;
1958 
1959 	stats_counter_bump(fmep->diags);
1960 
1961 	/*
1962 	 * If we're auto-closing upsets, we don't want to include them
1963 	 * in any produced suspect lists or certainty accounting.
1964 	 */
1965 	if (Autoclose != NULL)
1966 		if (strcmp(Autoclose, "true") == 0 ||
1967 		    strcmp(Autoclose, "all") == 0 ||
1968 		    strcmp(Autoclose, "upsets") == 0)
1969 			no_upsets = B_TRUE;
1970 
1971 	trim_suspects(fmep, no_upsets, &srl, &erl);
1972 
1973 	/*
1974 	 * If the resulting suspect list has no members, we're
1975 	 * done.  Returning here will simply close the case.
1976 	 */
1977 	if (fmep->nsuspects == 0) {
1978 		out(O_ALTFP,
1979 		    "[FME%d, case %s (all suspects are upsets)]",
1980 		    fmep->id, fmd_case_uuid(fmep->hdl, fmep->fmcase));
1981 		FREE(srl);
1982 		restore_suspects(fmep);
1983 		return;
1984 	}
1985 
1986 	/*
1987 	 * If the suspect list is all faults, then for a given fault,
1988 	 * say X of N, X's certainty is computed via:
1989 	 *
1990 	 * fitrate(X) / (fitrate(1) + ... + fitrate(N)) * 100
1991 	 *
1992 	 * If none of the suspects are faults, and there are N suspects,
1993 	 * the certainty of a given suspect is 100/N.
1994 	 *
1995 	 * If there are are a mixture of faults and other problems in
1996 	 * the suspect list, we take an average of the faults'
1997 	 * FITrates and treat this average as the FITrate for any
1998 	 * non-faults.  The fitrate of any given suspect is then
1999 	 * computed per the first formula above.
2000 	 */
2001 	if (fmep->nonfault == fmep->nsuspects) {
2002 		/* NO faults in the suspect list */
2003 		cert = percentof(1, fmep->nsuspects);
2004 	} else {
2005 		/* sum the fitrates */
2006 		frs = alloca(fmep->nsuspects * sizeof (uint_t));
2007 		fridx = frcnt = frsum = 0;
2008 
2009 		for (rp = srl; rp <= erl; rp++) {
2010 			struct node *n;
2011 
2012 			if (rp->suspect == NULL)
2013 				continue;
2014 			if (!is_fault(rp->suspect->t)) {
2015 				frs[fridx++] = 0;
2016 				continue;
2017 			}
2018 			n = eventprop_lookup(rp->suspect, L_FITrate);
2019 			if (node2uint(n, &fr) != 0) {
2020 				out(O_DEBUG|O_NONL, "event ");
2021 				ipath_print(O_DEBUG|O_NONL,
2022 				    rp->suspect->enode->u.event.ename->u.name.s,
2023 				    rp->suspect->ipp);
2024 				out(O_DEBUG, " has no FITrate (using 1)");
2025 				fr = 1;
2026 			} else if (fr == 0) {
2027 				out(O_DEBUG|O_NONL, "event ");
2028 				ipath_print(O_DEBUG|O_NONL,
2029 				    rp->suspect->enode->u.event.ename->u.name.s,
2030 				    rp->suspect->ipp);
2031 				out(O_DEBUG, " has zero FITrate (using 1)");
2032 				fr = 1;
2033 			}
2034 
2035 			frs[fridx++] = fr;
2036 			frsum += fr;
2037 			frcnt++;
2038 		}
2039 		fravg = avg(frsum, frcnt);
2040 		for (fridx = 0; fridx < fmep->nsuspects; fridx++)
2041 			if (frs[fridx] == 0) {
2042 				frs[fridx] = fravg;
2043 				frsum += fravg;
2044 			}
2045 	}
2046 
2047 	/* Add them in reverse order of our sort, as fmd reverses order */
2048 	for (rp = erl; rp >= srl; rp--) {
2049 		if (rp->suspect == NULL)
2050 			continue;
2051 		if (!is_fault(rp->suspect->t))
2052 			allfaulty = B_FALSE;
2053 		if (fmep->nonfault != fmep->nsuspects)
2054 			cert = percentof(frs[--fridx], frsum);
2055 		fault = fmd_nvl_create_fault(fmep->hdl,
2056 		    rp->suspect->enode->u.event.ename->u.name.s,
2057 		    cert,
2058 		    rp->asru,
2059 		    rp->fru,
2060 		    rp->rsrc);
2061 		if (fault == NULL)
2062 			out(O_DIE, "fault creation failed");
2063 		/* if "message" property exists, add it to the fault */
2064 		if (node2uint(eventprop_lookup(rp->suspect, L_message),
2065 		    &messval) == 0) {
2066 
2067 			out(O_ALTFP,
2068 			    "[FME%d, %s adds message=%d to suspect list]",
2069 			    fmep->id,
2070 			    rp->suspect->enode->u.event.ename->u.name.s,
2071 			    messval);
2072 			if (nvlist_add_boolean_value(fault,
2073 			    FM_SUSPECT_MESSAGE,
2074 			    (messval) ? B_TRUE : B_FALSE) != 0) {
2075 				out(O_DIE, "cannot add no-message to fault");
2076 			}
2077 		}
2078 		/* add any payload properties */
2079 		lut_walk(rp->suspect->payloadprops,
2080 		    (lut_cb)addpayloadprop, (void *)fault);
2081 		fmd_case_add_suspect(fmep->hdl, fmep->fmcase, fault);
2082 		rp->suspect->fault = fault;
2083 		rslfree(rp);
2084 
2085 		/*
2086 		 * If "action" property exists, evaluate it;  this must be done
2087 		 * before the dupclose check below since some actions may
2088 		 * modify the asru to be used in fmd_nvl_fmri_faulty.  This
2089 		 * needs to be restructured if any new actions are introduced
2090 		 * that have effects that we do not want to be visible if
2091 		 * we decide not to publish in the dupclose check below.
2092 		 */
2093 		if ((snp = eventprop_lookup(rp->suspect, L_action)) != NULL) {
2094 			struct evalue evalue;
2095 
2096 			out(O_ALTFP|O_NONL,
2097 			    "[FME%d, %s action ", fmep->id,
2098 			    rp->suspect->enode->u.event.ename->u.name.s);
2099 			ptree_name_iter(O_ALTFP|O_NONL, snp);
2100 			out(O_ALTFP, "]");
2101 			Action_nvl = fault;
2102 			(void) eval_expr(snp, NULL, NULL, NULL, NULL,
2103 			    NULL, 0, &evalue);
2104 		}
2105 
2106 		/*
2107 		 * if "dupclose" tunable is set, check if the asru is
2108 		 * already marked as "faulty".
2109 		 */
2110 		if (Dupclose && allfaulty) {
2111 			nvlist_t *asru;
2112 
2113 			out(O_ALTFP|O_VERB, "FMD%d dupclose check ", fmep->id);
2114 			itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, rp->suspect);
2115 			out(O_ALTFP|O_VERB|O_NONL, " ");
2116 			if (nvlist_lookup_nvlist(fault,
2117 			    FM_FAULT_ASRU, &asru) != 0) {
2118 				out(O_ALTFP|O_VERB, "NULL asru");
2119 				allfaulty = B_FALSE;
2120 			} else if (fmd_nvl_fmri_faulty(fmep->hdl, asru)) {
2121 				out(O_ALTFP|O_VERB, "faulty");
2122 			} else {
2123 				out(O_ALTFP|O_VERB, "not faulty");
2124 				allfaulty = B_FALSE;
2125 			}
2126 		}
2127 
2128 	}
2129 
2130 	/*
2131 	 * Close the case if all asrus are already known to be faulty and if
2132 	 * Dupclose is enabled.  Otherwise we are going to publish so take
2133 	 * any pre-publication actions.
2134 	 */
2135 	if (Dupclose && allfaulty) {
2136 		out(O_ALTFP, "[dupclose FME%d, case %s]", fmep->id,
2137 		    fmd_case_uuid(fmep->hdl, fmep->fmcase));
2138 		fmd_case_close(fmep->hdl, fmep->fmcase);
2139 	} else {
2140 		for (rp = erl; rp >= srl; rp--) {
2141 			struct event *suspect = rp->suspect;
2142 
2143 			if (suspect == NULL)
2144 				continue;
2145 
2146 			fault = suspect->fault;
2147 
2148 			/* if "count" exists, increment the appropriate stat */
2149 			if ((snp = eventprop_lookup(suspect,
2150 			    L_count)) != NULL) {
2151 				out(O_ALTFP|O_NONL,
2152 				    "[FME%d, %s count ", fmep->id,
2153 				    suspect->enode->u.event.ename->u.name.s);
2154 				ptree_name_iter(O_ALTFP|O_NONL, snp);
2155 				out(O_ALTFP, "]");
2156 				istat_bump(snp, 0);
2157 
2158 			}
2159 		}
2160 		istat_save();	/* write out any istat changes */
2161 
2162 		out(O_ALTFP, "[solving FME%d, case %s]", fmep->id,
2163 		    fmd_case_uuid(fmep->hdl, fmep->fmcase));
2164 		fmd_case_solve(fmep->hdl, fmep->fmcase);
2165 	}
2166 
2167 	/*
2168 	 * revert to the original suspect list
2169 	 */
2170 	FREE(srl);
2171 	restore_suspects(fmep);
2172 }
2173 
2174 static void
2175 publish_undiagnosable(fmd_hdl_t *hdl, fmd_event_t *ffep)
2176 {
2177 	struct case_list *newcase;
2178 	nvlist_t *defect;
2179 
2180 	out(O_ALTFP,
2181 	    "[undiagnosable ereport received, "
2182 	    "creating and closing a new case (%s)]",
2183 	    Undiag_reason ? Undiag_reason : "reason not provided");
2184 
2185 	newcase = MALLOC(sizeof (struct case_list));
2186 	newcase->next = NULL;
2187 
2188 	newcase->fmcase = fmd_case_open(hdl, NULL);
2189 	if (Undiagablecaselist != NULL)
2190 		newcase->next = Undiagablecaselist;
2191 	Undiagablecaselist = newcase;
2192 
2193 	if (ffep != NULL)
2194 		fmd_case_add_ereport(hdl, newcase->fmcase, ffep);
2195 
2196 	defect = fmd_nvl_create_fault(hdl, UNDIAGNOSABLE_DEFECT, 100,
2197 	    NULL, NULL, NULL);
2198 	if (Undiag_reason != NULL)
2199 		(void) nvlist_add_string(defect, UNDIAG_REASON, Undiag_reason);
2200 	fmd_case_add_suspect(hdl, newcase->fmcase, defect);
2201 
2202 	fmd_case_solve(hdl, newcase->fmcase);
2203 	fmd_case_close(hdl, newcase->fmcase);
2204 }
2205 
2206 static void
2207 fme_undiagnosable(struct fme *f)
2208 {
2209 	nvlist_t *defect;
2210 
2211 	out(O_ALTFP, "[solving/closing FME%d, case %s (%s)]",
2212 	    f->id, fmd_case_uuid(f->hdl, f->fmcase),
2213 	    Undiag_reason ? Undiag_reason : "undiagnosable");
2214 
2215 	defect = fmd_nvl_create_fault(f->hdl, UNDIAGNOSABLE_DEFECT, 100,
2216 	    NULL, NULL, NULL);
2217 	if (Undiag_reason != NULL)
2218 		(void) nvlist_add_string(defect, UNDIAG_REASON, Undiag_reason);
2219 	fmd_case_add_suspect(f->hdl, f->fmcase, defect);
2220 	fmd_case_solve(f->hdl, f->fmcase);
2221 	destroy_fme_bufs(f);
2222 	fmd_case_close(f->hdl, f->fmcase);
2223 }
2224 
2225 /*
2226  * fme_close_case
2227  *
2228  *	Find the requested case amongst our fmes and close it.  Free up
2229  *	the related fme.
2230  */
2231 void
2232 fme_close_case(fmd_hdl_t *hdl, fmd_case_t *fmcase)
2233 {
2234 	struct case_list *ucasep, *prevcasep = NULL;
2235 	struct fme *prev = NULL;
2236 	struct fme *fmep;
2237 
2238 	for (ucasep = Undiagablecaselist; ucasep; ucasep = ucasep->next) {
2239 		if (fmcase != ucasep->fmcase) {
2240 			prevcasep = ucasep;
2241 			continue;
2242 		}
2243 
2244 		if (prevcasep == NULL)
2245 			Undiagablecaselist = Undiagablecaselist->next;
2246 		else
2247 			prevcasep->next = ucasep->next;
2248 
2249 		FREE(ucasep);
2250 		return;
2251 	}
2252 
2253 	for (fmep = FMElist; fmep; fmep = fmep->next) {
2254 		if (fmep->hdl == hdl && fmep->fmcase == fmcase)
2255 			break;
2256 		prev = fmep;
2257 	}
2258 
2259 	if (fmep == NULL) {
2260 		out(O_WARN, "Eft asked to close unrecognized case [%s].",
2261 		    fmd_case_uuid(hdl, fmcase));
2262 		return;
2263 	}
2264 
2265 	if (EFMElist == fmep)
2266 		EFMElist = prev;
2267 
2268 	if (prev == NULL)
2269 		FMElist = FMElist->next;
2270 	else
2271 		prev->next = fmep->next;
2272 
2273 	fmep->next = NULL;
2274 
2275 	/* Get rid of any timer this fme has set */
2276 	if (fmep->wull != 0)
2277 		fmd_timer_remove(fmep->hdl, fmep->timer);
2278 
2279 	if (ClosedFMEs == NULL) {
2280 		ClosedFMEs = fmep;
2281 	} else {
2282 		fmep->next = ClosedFMEs;
2283 		ClosedFMEs = fmep;
2284 	}
2285 
2286 	Open_fme_count--;
2287 
2288 	/* See if we can close the overflow FME */
2289 	if (Open_fme_count <= Max_fme) {
2290 		for (fmep = FMElist; fmep; fmep = fmep->next) {
2291 			if (fmep->overflow && !(fmd_case_closed(fmep->hdl,
2292 			    fmep->fmcase)))
2293 				break;
2294 		}
2295 
2296 		if (fmep != NULL)
2297 			fmd_case_close(fmep->hdl, fmep->fmcase);
2298 	}
2299 }
2300 
2301 /*
2302  * fme_set_timer()
2303  *	If the time we need to wait for the given FME is less than the
2304  *	current timer, kick that old timer out and establish a new one.
2305  */
2306 static int
2307 fme_set_timer(struct fme *fmep, unsigned long long wull)
2308 {
2309 	out(O_ALTFP|O_VERB|O_NONL, " fme_set_timer: request to wait ");
2310 	ptree_timeval(O_ALTFP|O_VERB, &wull);
2311 
2312 	if (wull <= fmep->pull) {
2313 		out(O_ALTFP|O_VERB|O_NONL, "already have waited at least ");
2314 		ptree_timeval(O_ALTFP|O_VERB, &fmep->pull);
2315 		out(O_ALTFP|O_VERB, NULL);
2316 		/* we've waited at least wull already, don't need timer */
2317 		return (0);
2318 	}
2319 
2320 	out(O_ALTFP|O_VERB|O_NONL, " currently ");
2321 	if (fmep->wull != 0) {
2322 		out(O_ALTFP|O_VERB|O_NONL, "waiting ");
2323 		ptree_timeval(O_ALTFP|O_VERB, &fmep->wull);
2324 		out(O_ALTFP|O_VERB, NULL);
2325 	} else {
2326 		out(O_ALTFP|O_VERB|O_NONL, "not waiting");
2327 		out(O_ALTFP|O_VERB, NULL);
2328 	}
2329 
2330 	if (fmep->wull != 0)
2331 		if (wull >= fmep->wull)
2332 			/* New timer would fire later than established timer */
2333 			return (0);
2334 
2335 	if (fmep->wull != 0) {
2336 		fmd_timer_remove(fmep->hdl, fmep->timer);
2337 	}
2338 
2339 	fmep->timer = fmd_timer_install(fmep->hdl, (void *)fmep,
2340 	    fmep->e0r, wull);
2341 	out(O_ALTFP|O_VERB, "timer set, id is %ld", fmep->timer);
2342 	fmep->wull = wull;
2343 	return (1);
2344 }
2345 
2346 void
2347 fme_timer_fired(struct fme *fmep, id_t tid)
2348 {
2349 	struct fme *ffmep = NULL;
2350 
2351 	for (ffmep = FMElist; ffmep; ffmep = ffmep->next)
2352 		if (ffmep == fmep)
2353 			break;
2354 
2355 	if (ffmep == NULL) {
2356 		out(O_WARN, "Timer fired for an FME (%p) not in FMEs list.",
2357 		    (void *)fmep);
2358 		return;
2359 	}
2360 
2361 	out(O_ALTFP, "Timer fired %lx", tid);
2362 	fmep->pull = fmep->wull;
2363 	fmep->wull = 0;
2364 	fmd_buf_write(fmep->hdl, fmep->fmcase,
2365 	    WOBUF_PULL, (void *)&fmep->pull, sizeof (fmep->pull));
2366 	fme_eval(fmep, fmep->e0r);
2367 }
2368 
2369 /*
2370  * Preserve the fme's suspect list in its psuspects list, NULLing the
2371  * suspects list in the meantime.
2372  */
2373 static void
2374 save_suspects(struct fme *fmep)
2375 {
2376 	struct event *ep;
2377 	struct event *nextep;
2378 
2379 	/* zero out the previous suspect list */
2380 	for (ep = fmep->psuspects; ep; ep = nextep) {
2381 		nextep = ep->psuspects;
2382 		ep->psuspects = NULL;
2383 	}
2384 	fmep->psuspects = NULL;
2385 
2386 	/* zero out the suspect list, copying it to previous suspect list */
2387 	fmep->psuspects = fmep->suspects;
2388 	for (ep = fmep->suspects; ep; ep = nextep) {
2389 		nextep = ep->suspects;
2390 		ep->psuspects = ep->suspects;
2391 		ep->suspects = NULL;
2392 		ep->is_suspect = 0;
2393 	}
2394 	fmep->suspects = NULL;
2395 	fmep->nsuspects = 0;
2396 	fmep->nonfault = 0;
2397 }
2398 
2399 /*
2400  * Retrieve the fme's suspect list from its psuspects list.
2401  */
2402 static void
2403 restore_suspects(struct fme *fmep)
2404 {
2405 	struct event *ep;
2406 	struct event *nextep;
2407 
2408 	fmep->nsuspects = fmep->nonfault = 0;
2409 	fmep->suspects = fmep->psuspects;
2410 	for (ep = fmep->psuspects; ep; ep = nextep) {
2411 		fmep->nsuspects++;
2412 		if (!is_fault(ep->t))
2413 			fmep->nonfault++;
2414 		nextep = ep->psuspects;
2415 		ep->suspects = ep->psuspects;
2416 	}
2417 }
2418 
2419 /*
2420  * this is what we use to call the Emrys prototype code instead of main()
2421  */
2422 static void
2423 fme_eval(struct fme *fmep, fmd_event_t *ffep)
2424 {
2425 	struct event *ep;
2426 	unsigned long long my_delay = TIMEVAL_EVENTUALLY;
2427 
2428 	save_suspects(fmep);
2429 
2430 	out(O_ALTFP|O_VERB, "Evaluate FME %d", fmep->id);
2431 	indent_set("  ");
2432 
2433 	lut_walk(fmep->eventtree, (lut_cb)clear_arrows, (void *)fmep);
2434 	fmep->state = hypothesise(fmep, fmep->e0, fmep->ull, &my_delay);
2435 
2436 	out(O_ALTFP|O_VERB|O_NONL, "FME%d state: %s, suspect list:", fmep->id,
2437 	    fme_state2str(fmep->state));
2438 	for (ep = fmep->suspects; ep; ep = ep->suspects) {
2439 		out(O_ALTFP|O_VERB|O_NONL, " ");
2440 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
2441 	}
2442 	out(O_ALTFP|O_VERB, NULL);
2443 
2444 	switch (fmep->state) {
2445 	case FME_CREDIBLE:
2446 		print_suspects(SLNEW, fmep);
2447 		(void) upsets_eval(fmep, ffep);
2448 
2449 		/*
2450 		 * we may have already posted suspects in upsets_eval() which
2451 		 * can recurse into fme_eval() again. If so then just return.
2452 		 */
2453 		if (fmep->posted_suspects)
2454 			return;
2455 
2456 		publish_suspects(fmep);
2457 		fmep->posted_suspects = 1;
2458 		fmd_buf_write(fmep->hdl, fmep->fmcase,
2459 		    WOBUF_POSTD,
2460 		    (void *)&fmep->posted_suspects,
2461 		    sizeof (fmep->posted_suspects));
2462 
2463 		/*
2464 		 * Now the suspects have been posted, we can clear up
2465 		 * the instance tree as we won't be looking at it again.
2466 		 * Also cancel the timer as the case is now solved.
2467 		 */
2468 		if (fmep->wull != 0) {
2469 			fmd_timer_remove(fmep->hdl, fmep->timer);
2470 			fmep->wull = 0;
2471 		}
2472 		break;
2473 
2474 	case FME_WAIT:
2475 		ASSERT(my_delay > fmep->ull);
2476 		(void) fme_set_timer(fmep, my_delay);
2477 		print_suspects(SLWAIT, fmep);
2478 		break;
2479 
2480 	case FME_DISPROVED:
2481 		print_suspects(SLDISPROVED, fmep);
2482 		Undiag_reason = UD_UNSOLVD;
2483 		fme_undiagnosable(fmep);
2484 		break;
2485 	}
2486 
2487 	if (fmep->posted_suspects == 1 && Autoclose != NULL) {
2488 		int doclose = 0;
2489 
2490 		if (strcmp(Autoclose, "true") == 0 ||
2491 		    strcmp(Autoclose, "all") == 0)
2492 			doclose = 1;
2493 
2494 		if (strcmp(Autoclose, "upsets") == 0) {
2495 			doclose = 1;
2496 			for (ep = fmep->suspects; ep; ep = ep->suspects) {
2497 				if (ep->t != N_UPSET) {
2498 					doclose = 0;
2499 					break;
2500 				}
2501 			}
2502 		}
2503 
2504 		if (doclose) {
2505 			out(O_ALTFP, "[closing FME%d, case %s (autoclose)]",
2506 			    fmep->id, fmd_case_uuid(fmep->hdl, fmep->fmcase));
2507 
2508 			destroy_fme_bufs(fmep);
2509 			fmd_case_close(fmep->hdl, fmep->fmcase);
2510 		}
2511 	}
2512 	if (fmep->posted_suspects == 1) {
2513 		itree_free(fmep->eventtree);
2514 		fmep->eventtree = NULL;
2515 		config_free(fmep->cfgdata);
2516 		fmep->cfgdata = NULL;
2517 	} else {
2518 		itree_prune(fmep->eventtree);
2519 	}
2520 }
2521 
2522 static void indent(void);
2523 static int triggered(struct fme *fmep, struct event *ep, int mark);
2524 static enum fme_state effects_test(struct fme *fmep,
2525     struct event *fault_event, unsigned long long at_latest_by,
2526     unsigned long long *pdelay);
2527 static enum fme_state requirements_test(struct fme *fmep, struct event *ep,
2528     unsigned long long at_latest_by, unsigned long long *pdelay);
2529 static enum fme_state causes_test(struct fme *fmep, struct event *ep,
2530     unsigned long long at_latest_by, unsigned long long *pdelay);
2531 
2532 static int
2533 checkconstraints(struct fme *fmep, struct arrow *arrowp)
2534 {
2535 	struct constraintlist *ctp;
2536 	struct evalue value;
2537 
2538 	if (arrowp->forever_false) {
2539 		char *sep = "";
2540 		indent();
2541 		out(O_ALTFP|O_VERB|O_NONL, "  Forever false constraint: ");
2542 		for (ctp = arrowp->constraints; ctp != NULL; ctp = ctp->next) {
2543 			out(O_ALTFP|O_VERB|O_NONL, sep);
2544 			ptree(O_ALTFP|O_VERB|O_NONL, ctp->cnode, 1, 0);
2545 			sep = ", ";
2546 		}
2547 		out(O_ALTFP|O_VERB, NULL);
2548 		return (0);
2549 	}
2550 
2551 	for (ctp = arrowp->constraints; ctp != NULL; ctp = ctp->next) {
2552 		if (eval_expr(ctp->cnode, NULL, NULL,
2553 		    &fmep->globals, fmep->cfgdata->cooked,
2554 		    arrowp, 0, &value)) {
2555 			/* evaluation successful */
2556 			if (value.t == UNDEFINED || value.v == 0) {
2557 				/* known false */
2558 				arrowp->forever_false = 1;
2559 				indent();
2560 				out(O_ALTFP|O_VERB|O_NONL,
2561 				    "  False constraint: ");
2562 				ptree(O_ALTFP|O_VERB|O_NONL, ctp->cnode, 1, 0);
2563 				out(O_ALTFP|O_VERB, NULL);
2564 				return (0);
2565 			}
2566 		} else {
2567 			/* evaluation unsuccessful -- unknown value */
2568 			indent();
2569 			out(O_ALTFP|O_VERB|O_NONL,
2570 			    "  Deferred constraint: ");
2571 			ptree(O_ALTFP|O_VERB|O_NONL, ctp->cnode, 1, 0);
2572 			out(O_ALTFP|O_VERB, NULL);
2573 			return (2);
2574 		}
2575 	}
2576 	/* known true */
2577 	return (1);
2578 }
2579 
2580 static int
2581 triggered(struct fme *fmep, struct event *ep, int mark)
2582 {
2583 	struct bubble *bp;
2584 	struct arrowlist *ap;
2585 	int count = 0;
2586 
2587 	stats_counter_bump(fmep->Tcallcount);
2588 	for (bp = itree_next_bubble(ep, NULL); bp;
2589 	    bp = itree_next_bubble(ep, bp)) {
2590 		if (bp->t != B_TO)
2591 			continue;
2592 		for (ap = itree_next_arrow(bp, NULL); ap;
2593 		    ap = itree_next_arrow(bp, ap)) {
2594 			/* check count of marks against K in the bubble */
2595 			if ((ap->arrowp->mark & mark) &&
2596 			    ++count >= bp->nork)
2597 				return (1);
2598 		}
2599 	}
2600 	return (0);
2601 }
2602 
2603 static int
2604 mark_arrows(struct fme *fmep, struct event *ep, int mark,
2605     unsigned long long at_latest_by, unsigned long long *pdelay, int keep)
2606 {
2607 	struct bubble *bp;
2608 	struct arrowlist *ap;
2609 	unsigned long long overall_delay = TIMEVAL_EVENTUALLY;
2610 	unsigned long long my_delay;
2611 	enum fme_state result;
2612 	int retval = 0;
2613 
2614 	for (bp = itree_next_bubble(ep, NULL); bp;
2615 	    bp = itree_next_bubble(ep, bp)) {
2616 		if (bp->t != B_FROM)
2617 			continue;
2618 		stats_counter_bump(fmep->Marrowcount);
2619 		for (ap = itree_next_arrow(bp, NULL); ap;
2620 		    ap = itree_next_arrow(bp, ap)) {
2621 			struct event *ep2 = ap->arrowp->head->myevent;
2622 			/*
2623 			 * if we're clearing marks, we can avoid doing
2624 			 * all that work evaluating constraints.
2625 			 */
2626 			if (mark == 0) {
2627 				ap->arrowp->mark &= ~EFFECTS_COUNTER;
2628 				if (keep && (ep2->cached_state &
2629 				    (WAIT_EFFECT|CREDIBLE_EFFECT|PARENT_WAIT)))
2630 					ep2->keep_in_tree = 1;
2631 				ep2->cached_state &=
2632 				    ~(WAIT_EFFECT|CREDIBLE_EFFECT|PARENT_WAIT);
2633 				(void) mark_arrows(fmep, ep2, mark, 0, NULL,
2634 				    keep);
2635 				continue;
2636 			}
2637 			if (ep2->cached_state & REQMNTS_DISPROVED) {
2638 				indent();
2639 				out(O_ALTFP|O_VERB|O_NONL,
2640 				    "  ALREADY DISPROVED ");
2641 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2);
2642 				out(O_ALTFP|O_VERB, NULL);
2643 				continue;
2644 			}
2645 			if (ep2->cached_state & WAIT_EFFECT) {
2646 				indent();
2647 				out(O_ALTFP|O_VERB|O_NONL,
2648 				    "  ALREADY EFFECTS WAIT ");
2649 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2);
2650 				out(O_ALTFP|O_VERB, NULL);
2651 				continue;
2652 			}
2653 			if (ep2->cached_state & CREDIBLE_EFFECT) {
2654 				indent();
2655 				out(O_ALTFP|O_VERB|O_NONL,
2656 				    "  ALREADY EFFECTS CREDIBLE ");
2657 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2);
2658 				out(O_ALTFP|O_VERB, NULL);
2659 				continue;
2660 			}
2661 			if ((ep2->cached_state & PARENT_WAIT) &&
2662 			    (mark & PARENT_WAIT)) {
2663 				indent();
2664 				out(O_ALTFP|O_VERB|O_NONL,
2665 				    "  ALREADY PARENT EFFECTS WAIT ");
2666 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2);
2667 				out(O_ALTFP|O_VERB, NULL);
2668 				continue;
2669 			}
2670 			platform_set_payloadnvp(ep2->nvp);
2671 			if (checkconstraints(fmep, ap->arrowp) == 0) {
2672 				platform_set_payloadnvp(NULL);
2673 				indent();
2674 				out(O_ALTFP|O_VERB|O_NONL,
2675 				    "  CONSTRAINTS FAIL ");
2676 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2);
2677 				out(O_ALTFP|O_VERB, NULL);
2678 				continue;
2679 			}
2680 			platform_set_payloadnvp(NULL);
2681 			ap->arrowp->mark |= EFFECTS_COUNTER;
2682 			if (!triggered(fmep, ep2, EFFECTS_COUNTER)) {
2683 				indent();
2684 				out(O_ALTFP|O_VERB|O_NONL,
2685 				    "  K-COUNT NOT YET MET ");
2686 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2);
2687 				out(O_ALTFP|O_VERB, NULL);
2688 				continue;
2689 			}
2690 			ep2->cached_state &= ~PARENT_WAIT;
2691 			/*
2692 			 * if we've reached an ereport and no propagation time
2693 			 * is specified, use the Hesitate value
2694 			 */
2695 			if (ep2->t == N_EREPORT && at_latest_by == 0ULL &&
2696 			    ap->arrowp->maxdelay == 0ULL) {
2697 				result = requirements_test(fmep, ep2, Hesitate,
2698 				    &my_delay);
2699 				out(O_ALTFP|O_VERB|O_NONL, "  default wait ");
2700 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2);
2701 				out(O_ALTFP|O_VERB, NULL);
2702 			} else {
2703 				result = requirements_test(fmep, ep2,
2704 				    at_latest_by + ap->arrowp->maxdelay,
2705 				    &my_delay);
2706 			}
2707 			if (result == FME_WAIT) {
2708 				retval = WAIT_EFFECT;
2709 				if (overall_delay > my_delay)
2710 					overall_delay = my_delay;
2711 				ep2->cached_state |= WAIT_EFFECT;
2712 				indent();
2713 				out(O_ALTFP|O_VERB|O_NONL, "  EFFECTS WAIT ");
2714 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2);
2715 				out(O_ALTFP|O_VERB, NULL);
2716 				indent_push("  E");
2717 				if (mark_arrows(fmep, ep2, PARENT_WAIT,
2718 				    at_latest_by, &my_delay, 0) ==
2719 				    WAIT_EFFECT) {
2720 					retval = WAIT_EFFECT;
2721 					if (overall_delay > my_delay)
2722 						overall_delay = my_delay;
2723 				}
2724 				indent_pop();
2725 			} else if (result == FME_DISPROVED) {
2726 				indent();
2727 				out(O_ALTFP|O_VERB|O_NONL,
2728 				    "  EFFECTS DISPROVED ");
2729 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2);
2730 				out(O_ALTFP|O_VERB, NULL);
2731 			} else {
2732 				ep2->cached_state |= mark;
2733 				indent();
2734 				if (mark == CREDIBLE_EFFECT)
2735 					out(O_ALTFP|O_VERB|O_NONL,
2736 					    "  EFFECTS CREDIBLE ");
2737 				else
2738 					out(O_ALTFP|O_VERB|O_NONL,
2739 					    "  PARENT EFFECTS WAIT ");
2740 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2);
2741 				out(O_ALTFP|O_VERB, NULL);
2742 				indent_push("  E");
2743 				if (mark_arrows(fmep, ep2, mark, at_latest_by,
2744 				    &my_delay, 0) == WAIT_EFFECT) {
2745 					retval = WAIT_EFFECT;
2746 					if (overall_delay > my_delay)
2747 						overall_delay = my_delay;
2748 				}
2749 				indent_pop();
2750 			}
2751 		}
2752 	}
2753 	if (retval == WAIT_EFFECT)
2754 		*pdelay = overall_delay;
2755 	return (retval);
2756 }
2757 
2758 static enum fme_state
2759 effects_test(struct fme *fmep, struct event *fault_event,
2760     unsigned long long at_latest_by, unsigned long long *pdelay)
2761 {
2762 	struct event *error_event;
2763 	enum fme_state return_value = FME_CREDIBLE;
2764 	unsigned long long overall_delay = TIMEVAL_EVENTUALLY;
2765 	unsigned long long my_delay;
2766 
2767 	stats_counter_bump(fmep->Ecallcount);
2768 	indent_push("  E");
2769 	indent();
2770 	out(O_ALTFP|O_VERB|O_NONL, "->");
2771 	itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, fault_event);
2772 	out(O_ALTFP|O_VERB, NULL);
2773 
2774 	if (mark_arrows(fmep, fault_event, CREDIBLE_EFFECT, at_latest_by,
2775 	    &my_delay, 0) == WAIT_EFFECT) {
2776 		return_value = FME_WAIT;
2777 		if (overall_delay > my_delay)
2778 			overall_delay = my_delay;
2779 	}
2780 	for (error_event = fmep->observations;
2781 	    error_event; error_event = error_event->observations) {
2782 		indent();
2783 		out(O_ALTFP|O_VERB|O_NONL, " ");
2784 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, error_event);
2785 		if (!(error_event->cached_state & CREDIBLE_EFFECT)) {
2786 			if (error_event->cached_state &
2787 			    (PARENT_WAIT|WAIT_EFFECT)) {
2788 				out(O_ALTFP|O_VERB, " NOT YET triggered");
2789 				continue;
2790 			}
2791 			return_value = FME_DISPROVED;
2792 			out(O_ALTFP|O_VERB, " NOT triggered");
2793 			break;
2794 		} else {
2795 			out(O_ALTFP|O_VERB, " triggered");
2796 		}
2797 	}
2798 	if (return_value == FME_DISPROVED) {
2799 		(void) mark_arrows(fmep, fault_event, 0, 0, NULL, 0);
2800 	} else {
2801 		fault_event->keep_in_tree = 1;
2802 		(void) mark_arrows(fmep, fault_event, 0, 0, NULL, 1);
2803 	}
2804 
2805 	indent();
2806 	out(O_ALTFP|O_VERB|O_NONL, "<-EFFECTS %s ",
2807 	    fme_state2str(return_value));
2808 	itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, fault_event);
2809 	out(O_ALTFP|O_VERB, NULL);
2810 	indent_pop();
2811 	if (return_value == FME_WAIT)
2812 		*pdelay = overall_delay;
2813 	return (return_value);
2814 }
2815 
2816 static enum fme_state
2817 requirements_test(struct fme *fmep, struct event *ep,
2818     unsigned long long at_latest_by, unsigned long long *pdelay)
2819 {
2820 	int waiting_events;
2821 	int credible_events;
2822 	int deferred_events;
2823 	enum fme_state return_value = FME_CREDIBLE;
2824 	unsigned long long overall_delay = TIMEVAL_EVENTUALLY;
2825 	unsigned long long arrow_delay;
2826 	unsigned long long my_delay;
2827 	struct event *ep2;
2828 	struct bubble *bp;
2829 	struct arrowlist *ap;
2830 
2831 	if (ep->cached_state & REQMNTS_CREDIBLE) {
2832 		indent();
2833 		out(O_ALTFP|O_VERB|O_NONL, "  REQMNTS ALREADY CREDIBLE ");
2834 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
2835 		out(O_ALTFP|O_VERB, NULL);
2836 		return (FME_CREDIBLE);
2837 	}
2838 	if (ep->cached_state & REQMNTS_DISPROVED) {
2839 		indent();
2840 		out(O_ALTFP|O_VERB|O_NONL, "  REQMNTS ALREADY DISPROVED ");
2841 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
2842 		out(O_ALTFP|O_VERB, NULL);
2843 		return (FME_DISPROVED);
2844 	}
2845 	if (ep->cached_state & REQMNTS_WAIT) {
2846 		indent();
2847 		*pdelay = ep->cached_delay;
2848 		out(O_ALTFP|O_VERB|O_NONL, "  REQMNTS ALREADY WAIT ");
2849 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
2850 		out(O_ALTFP|O_VERB|O_NONL, ", wait for: ");
2851 		ptree_timeval(O_ALTFP|O_VERB|O_NONL, &at_latest_by);
2852 		out(O_ALTFP|O_VERB, NULL);
2853 		return (FME_WAIT);
2854 	}
2855 	stats_counter_bump(fmep->Rcallcount);
2856 	indent_push("  R");
2857 	indent();
2858 	out(O_ALTFP|O_VERB|O_NONL, "->");
2859 	itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
2860 	out(O_ALTFP|O_VERB|O_NONL, ", at latest by: ");
2861 	ptree_timeval(O_ALTFP|O_VERB|O_NONL, &at_latest_by);
2862 	out(O_ALTFP|O_VERB, NULL);
2863 
2864 	if (ep->t == N_EREPORT) {
2865 		if (ep->count == 0) {
2866 			if (fmep->pull >= at_latest_by) {
2867 				return_value = FME_DISPROVED;
2868 			} else {
2869 				ep->cached_delay = *pdelay = at_latest_by;
2870 				return_value = FME_WAIT;
2871 			}
2872 		}
2873 
2874 		indent();
2875 		switch (return_value) {
2876 		case FME_CREDIBLE:
2877 			ep->cached_state |= REQMNTS_CREDIBLE;
2878 			out(O_ALTFP|O_VERB|O_NONL, "<-REQMNTS CREDIBLE ");
2879 			itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
2880 			break;
2881 		case FME_DISPROVED:
2882 			ep->cached_state |= REQMNTS_DISPROVED;
2883 			out(O_ALTFP|O_VERB|O_NONL, "<-REQMNTS DISPROVED ");
2884 			itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
2885 			break;
2886 		case FME_WAIT:
2887 			ep->cached_state |= REQMNTS_WAIT;
2888 			out(O_ALTFP|O_VERB|O_NONL, "<-REQMNTS WAIT ");
2889 			itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
2890 			out(O_ALTFP|O_VERB|O_NONL, " to ");
2891 			ptree_timeval(O_ALTFP|O_VERB|O_NONL, &at_latest_by);
2892 			break;
2893 		default:
2894 			out(O_DIE, "requirements_test: unexpected fme_state");
2895 			break;
2896 		}
2897 		out(O_ALTFP|O_VERB, NULL);
2898 		indent_pop();
2899 
2900 		return (return_value);
2901 	}
2902 
2903 	/* this event is not a report, descend the tree */
2904 	for (bp = itree_next_bubble(ep, NULL); bp;
2905 	    bp = itree_next_bubble(ep, bp)) {
2906 		int n;
2907 
2908 		if (bp->t != B_FROM)
2909 			continue;
2910 
2911 		n = bp->nork;
2912 
2913 		credible_events = 0;
2914 		waiting_events = 0;
2915 		deferred_events = 0;
2916 		arrow_delay = TIMEVAL_EVENTUALLY;
2917 		/*
2918 		 * n is -1 for 'A' so adjust it.
2919 		 * XXX just count up the arrows for now.
2920 		 */
2921 		if (n < 0) {
2922 			n = 0;
2923 			for (ap = itree_next_arrow(bp, NULL); ap;
2924 			    ap = itree_next_arrow(bp, ap))
2925 				n++;
2926 			indent();
2927 			out(O_ALTFP|O_VERB, " Bubble Counted N=%d", n);
2928 		} else {
2929 			indent();
2930 			out(O_ALTFP|O_VERB, " Bubble N=%d", n);
2931 		}
2932 
2933 		if (n == 0)
2934 			continue;
2935 		if (!(bp->mark & (BUBBLE_ELIDED|BUBBLE_OK))) {
2936 			for (ap = itree_next_arrow(bp, NULL); ap;
2937 			    ap = itree_next_arrow(bp, ap)) {
2938 				ep2 = ap->arrowp->head->myevent;
2939 				platform_set_payloadnvp(ep2->nvp);
2940 				if (checkconstraints(fmep, ap->arrowp) == 0) {
2941 					/*
2942 					 * if any arrow is invalidated by the
2943 					 * constraints, then we should elide the
2944 					 * whole bubble to be consistant with
2945 					 * the tree creation time behaviour
2946 					 */
2947 					bp->mark |= BUBBLE_ELIDED;
2948 					platform_set_payloadnvp(NULL);
2949 					break;
2950 				}
2951 				platform_set_payloadnvp(NULL);
2952 			}
2953 		}
2954 		if (bp->mark & BUBBLE_ELIDED)
2955 			continue;
2956 		bp->mark |= BUBBLE_OK;
2957 		for (ap = itree_next_arrow(bp, NULL); ap;
2958 		    ap = itree_next_arrow(bp, ap)) {
2959 			ep2 = ap->arrowp->head->myevent;
2960 			if (n <= credible_events)
2961 				break;
2962 
2963 			ap->arrowp->mark |= REQMNTS_COUNTER;
2964 			if (triggered(fmep, ep2, REQMNTS_COUNTER))
2965 				/* XXX adding max timevals! */
2966 				switch (requirements_test(fmep, ep2,
2967 				    at_latest_by + ap->arrowp->maxdelay,
2968 				    &my_delay)) {
2969 				case FME_DEFERRED:
2970 					deferred_events++;
2971 					break;
2972 				case FME_CREDIBLE:
2973 					credible_events++;
2974 					break;
2975 				case FME_DISPROVED:
2976 					break;
2977 				case FME_WAIT:
2978 					if (my_delay < arrow_delay)
2979 						arrow_delay = my_delay;
2980 					waiting_events++;
2981 					break;
2982 				default:
2983 					out(O_DIE,
2984 					"Bug in requirements_test.");
2985 				}
2986 			else
2987 				deferred_events++;
2988 		}
2989 		indent();
2990 		out(O_ALTFP|O_VERB, " Credible: %d Waiting %d",
2991 		    credible_events + deferred_events, waiting_events);
2992 		if (credible_events + deferred_events + waiting_events < n) {
2993 			/* Can never meet requirements */
2994 			ep->cached_state |= REQMNTS_DISPROVED;
2995 			indent();
2996 			out(O_ALTFP|O_VERB|O_NONL, "<-REQMNTS DISPROVED ");
2997 			itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
2998 			out(O_ALTFP|O_VERB, NULL);
2999 			indent_pop();
3000 			return (FME_DISPROVED);
3001 		}
3002 		if (credible_events + deferred_events < n) {
3003 			/* will have to wait */
3004 			/* wait time is shortest known */
3005 			if (arrow_delay < overall_delay)
3006 				overall_delay = arrow_delay;
3007 			return_value = FME_WAIT;
3008 		} else if (credible_events < n) {
3009 			if (return_value != FME_WAIT)
3010 				return_value = FME_DEFERRED;
3011 		}
3012 	}
3013 
3014 	/*
3015 	 * don't mark as FME_DEFERRED. If this event isn't reached by another
3016 	 * path, then this will be considered FME_CREDIBLE. But if it is
3017 	 * reached by a different path so the K-count is met, then might
3018 	 * get overridden by FME_WAIT or FME_DISPROVED.
3019 	 */
3020 	if (return_value == FME_WAIT) {
3021 		ep->cached_state |= REQMNTS_WAIT;
3022 		ep->cached_delay = *pdelay = overall_delay;
3023 	} else if (return_value == FME_CREDIBLE) {
3024 		ep->cached_state |= REQMNTS_CREDIBLE;
3025 	}
3026 	indent();
3027 	out(O_ALTFP|O_VERB|O_NONL, "<-REQMNTS %s ",
3028 	    fme_state2str(return_value));
3029 	itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3030 	out(O_ALTFP|O_VERB, NULL);
3031 	indent_pop();
3032 	return (return_value);
3033 }
3034 
3035 static enum fme_state
3036 causes_test(struct fme *fmep, struct event *ep,
3037     unsigned long long at_latest_by, unsigned long long *pdelay)
3038 {
3039 	unsigned long long overall_delay = TIMEVAL_EVENTUALLY;
3040 	unsigned long long my_delay;
3041 	int credible_results = 0;
3042 	int waiting_results = 0;
3043 	enum fme_state fstate;
3044 	struct event *tail_event;
3045 	struct bubble *bp;
3046 	struct arrowlist *ap;
3047 	int k = 1;
3048 
3049 	stats_counter_bump(fmep->Ccallcount);
3050 	indent_push("  C");
3051 	indent();
3052 	out(O_ALTFP|O_VERB|O_NONL, "->");
3053 	itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3054 	out(O_ALTFP|O_VERB, NULL);
3055 
3056 	for (bp = itree_next_bubble(ep, NULL); bp;
3057 	    bp = itree_next_bubble(ep, bp)) {
3058 		if (bp->t != B_TO)
3059 			continue;
3060 		k = bp->nork;	/* remember the K value */
3061 		for (ap = itree_next_arrow(bp, NULL); ap;
3062 		    ap = itree_next_arrow(bp, ap)) {
3063 			int do_not_follow = 0;
3064 
3065 			/*
3066 			 * if we get to the same event multiple times
3067 			 * only worry about the first one.
3068 			 */
3069 			if (ap->arrowp->tail->myevent->cached_state &
3070 			    CAUSES_TESTED) {
3071 				indent();
3072 				out(O_ALTFP|O_VERB|O_NONL,
3073 				    "  causes test already run for ");
3074 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL,
3075 				    ap->arrowp->tail->myevent);
3076 				out(O_ALTFP|O_VERB, NULL);
3077 				continue;
3078 			}
3079 
3080 			/*
3081 			 * see if false constraint prevents us
3082 			 * from traversing this arrow
3083 			 */
3084 			platform_set_payloadnvp(ep->nvp);
3085 			if (checkconstraints(fmep, ap->arrowp) == 0)
3086 				do_not_follow = 1;
3087 			platform_set_payloadnvp(NULL);
3088 			if (do_not_follow) {
3089 				indent();
3090 				out(O_ALTFP|O_VERB|O_NONL,
3091 				    "  False arrow from ");
3092 				itree_pevent_brief(O_ALTFP|O_VERB|O_NONL,
3093 				    ap->arrowp->tail->myevent);
3094 				out(O_ALTFP|O_VERB, NULL);
3095 				continue;
3096 			}
3097 
3098 			ap->arrowp->tail->myevent->cached_state |=
3099 			    CAUSES_TESTED;
3100 			tail_event = ap->arrowp->tail->myevent;
3101 			fstate = hypothesise(fmep, tail_event, at_latest_by,
3102 			    &my_delay);
3103 
3104 			switch (fstate) {
3105 			case FME_WAIT:
3106 				if (my_delay < overall_delay)
3107 					overall_delay = my_delay;
3108 				waiting_results++;
3109 				break;
3110 			case FME_CREDIBLE:
3111 				credible_results++;
3112 				break;
3113 			case FME_DISPROVED:
3114 				break;
3115 			default:
3116 				out(O_DIE, "Bug in causes_test");
3117 			}
3118 		}
3119 	}
3120 	/* compare against K */
3121 	if (credible_results + waiting_results < k) {
3122 		indent();
3123 		out(O_ALTFP|O_VERB|O_NONL, "<-CAUSES DISPROVED ");
3124 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3125 		out(O_ALTFP|O_VERB, NULL);
3126 		indent_pop();
3127 		return (FME_DISPROVED);
3128 	}
3129 	if (waiting_results != 0) {
3130 		*pdelay = overall_delay;
3131 		indent();
3132 		out(O_ALTFP|O_VERB|O_NONL, "<-CAUSES WAIT ");
3133 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3134 		out(O_ALTFP|O_VERB|O_NONL, " to ");
3135 		ptree_timeval(O_ALTFP|O_VERB|O_NONL, &at_latest_by);
3136 		out(O_ALTFP|O_VERB, NULL);
3137 		indent_pop();
3138 		return (FME_WAIT);
3139 	}
3140 	indent();
3141 	out(O_ALTFP|O_VERB|O_NONL, "<-CAUSES CREDIBLE ");
3142 	itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3143 	out(O_ALTFP|O_VERB, NULL);
3144 	indent_pop();
3145 	return (FME_CREDIBLE);
3146 }
3147 
3148 static enum fme_state
3149 hypothesise(struct fme *fmep, struct event *ep,
3150 	unsigned long long at_latest_by, unsigned long long *pdelay)
3151 {
3152 	enum fme_state rtr, otr;
3153 	unsigned long long my_delay;
3154 	unsigned long long overall_delay = TIMEVAL_EVENTUALLY;
3155 
3156 	stats_counter_bump(fmep->Hcallcount);
3157 	indent_push("  H");
3158 	indent();
3159 	out(O_ALTFP|O_VERB|O_NONL, "->");
3160 	itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3161 	out(O_ALTFP|O_VERB|O_NONL, ", at latest by: ");
3162 	ptree_timeval(O_ALTFP|O_VERB|O_NONL, &at_latest_by);
3163 	out(O_ALTFP|O_VERB, NULL);
3164 
3165 	rtr = requirements_test(fmep, ep, at_latest_by, &my_delay);
3166 	if ((rtr == FME_WAIT) && (my_delay < overall_delay))
3167 		overall_delay = my_delay;
3168 	if (rtr != FME_DISPROVED) {
3169 		if (is_problem(ep->t)) {
3170 			otr = effects_test(fmep, ep, at_latest_by, &my_delay);
3171 			if (otr != FME_DISPROVED) {
3172 				if (fmep->peek == 0 && ep->is_suspect++ == 0) {
3173 					ep->suspects = fmep->suspects;
3174 					fmep->suspects = ep;
3175 					fmep->nsuspects++;
3176 					if (!is_fault(ep->t))
3177 						fmep->nonfault++;
3178 				}
3179 			}
3180 		} else
3181 			otr = causes_test(fmep, ep, at_latest_by, &my_delay);
3182 		if ((otr == FME_WAIT) && (my_delay < overall_delay))
3183 			overall_delay = my_delay;
3184 		if ((otr != FME_DISPROVED) &&
3185 		    ((rtr == FME_WAIT) || (otr == FME_WAIT)))
3186 			*pdelay = overall_delay;
3187 	}
3188 	if (rtr == FME_DISPROVED) {
3189 		indent();
3190 		out(O_ALTFP|O_VERB|O_NONL, "<-DISPROVED ");
3191 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3192 		out(O_ALTFP|O_VERB, " (doesn't meet requirements)");
3193 		indent_pop();
3194 		return (FME_DISPROVED);
3195 	}
3196 	if ((otr == FME_DISPROVED) && is_problem(ep->t)) {
3197 		indent();
3198 		out(O_ALTFP|O_VERB|O_NONL, "<-DISPROVED ");
3199 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3200 		out(O_ALTFP|O_VERB, " (doesn't explain all reports)");
3201 		indent_pop();
3202 		return (FME_DISPROVED);
3203 	}
3204 	if (otr == FME_DISPROVED) {
3205 		indent();
3206 		out(O_ALTFP|O_VERB|O_NONL, "<-DISPROVED ");
3207 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3208 		out(O_ALTFP|O_VERB, " (causes are not credible)");
3209 		indent_pop();
3210 		return (FME_DISPROVED);
3211 	}
3212 	if ((rtr == FME_WAIT) || (otr == FME_WAIT)) {
3213 		indent();
3214 		out(O_ALTFP|O_VERB|O_NONL, "<-WAIT ");
3215 		itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3216 		out(O_ALTFP|O_VERB|O_NONL, " to ");
3217 		ptree_timeval(O_ALTFP|O_VERB|O_NONL, &overall_delay);
3218 		out(O_ALTFP|O_VERB, NULL);
3219 		indent_pop();
3220 		return (FME_WAIT);
3221 	}
3222 	indent();
3223 	out(O_ALTFP|O_VERB|O_NONL, "<-CREDIBLE ");
3224 	itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep);
3225 	out(O_ALTFP|O_VERB, NULL);
3226 	indent_pop();
3227 	return (FME_CREDIBLE);
3228 }
3229 
3230 /*
3231  * fme_istat_load -- reconstitute any persistent istats
3232  */
3233 void
3234 fme_istat_load(fmd_hdl_t *hdl)
3235 {
3236 	int sz;
3237 	char *sbuf;
3238 	char *ptr;
3239 
3240 	if ((sz = fmd_buf_size(hdl, NULL, WOBUF_ISTATS)) == 0) {
3241 		out(O_ALTFP, "fme_istat_load: No stats");
3242 		return;
3243 	}
3244 
3245 	sbuf = alloca(sz);
3246 
3247 	fmd_buf_read(hdl, NULL, WOBUF_ISTATS, sbuf, sz);
3248 
3249 	/*
3250 	 * pick apart the serialized stats
3251 	 *
3252 	 * format is:
3253 	 *	<class-name>, '@', <path>, '\0', <value>, '\0'
3254 	 * for example:
3255 	 *	"stat.first@stat0/path0\02\0stat.second@stat0/path1\023\0"
3256 	 *
3257 	 * since this is parsing our own serialized data, any parsing issues
3258 	 * are fatal, so we check for them all with ASSERT() below.
3259 	 */
3260 	ptr = sbuf;
3261 	while (ptr < &sbuf[sz]) {
3262 		char *sepptr;
3263 		struct node *np;
3264 		int val;
3265 
3266 		sepptr = strchr(ptr, '@');
3267 		ASSERT(sepptr != NULL);
3268 		*sepptr = '\0';
3269 
3270 		/* construct the event */
3271 		np = newnode(T_EVENT, NULL, 0);
3272 		np->u.event.ename = newnode(T_NAME, NULL, 0);
3273 		np->u.event.ename->u.name.t = N_STAT;
3274 		np->u.event.ename->u.name.s = stable(ptr);
3275 		np->u.event.ename->u.name.it = IT_ENAME;
3276 		np->u.event.ename->u.name.last = np->u.event.ename;
3277 
3278 		ptr = sepptr + 1;
3279 		ASSERT(ptr < &sbuf[sz]);
3280 		ptr += strlen(ptr);
3281 		ptr++;	/* move past the '\0' separating path from value */
3282 		ASSERT(ptr < &sbuf[sz]);
3283 		ASSERT(isdigit(*ptr));
3284 		val = atoi(ptr);
3285 		ASSERT(val > 0);
3286 		ptr += strlen(ptr);
3287 		ptr++;	/* move past the final '\0' for this entry */
3288 
3289 		np->u.event.epname = pathstring2epnamenp(sepptr + 1);
3290 		ASSERT(np->u.event.epname != NULL);
3291 
3292 		istat_bump(np, val);
3293 		tree_free(np);
3294 	}
3295 
3296 	istat_save();
3297 }
3298