1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved. 24 * 25 * Copyright 2011 Jason King. All rights reserved. 26 */ 27 28 #include <assert.h> 29 #include <errno.h> 30 #include <fcntl.h> 31 #include <gelf.h> 32 #include <libelf.h> 33 #include <stdlib.h> 34 #include <string.h> 35 #include <unistd.h> 36 37 #include <sys/fcntl.h> 38 #include <sys/stat.h> 39 #include <sys/sysmacros.h> 40 #include <sys/types.h> 41 42 #include "dis_target.h" 43 #include "dis_util.h" 44 45 /* 46 * Standard ELF disassembler target. 47 * 48 * We only support disassembly of ELF files, though this target interface could 49 * be extended in the future. Each basic type (target, func, section) contains 50 * enough information to uniquely identify the location within the file. The 51 * interfaces use libelf(3LIB) to do the actual processing of the file. 52 */ 53 54 /* 55 * Symbol table entry type. We maintain our own symbol table sorted by address, 56 * with the symbol name already resolved against the ELF symbol table. 57 */ 58 typedef struct sym_entry { 59 GElf_Sym se_sym; /* value of symbol */ 60 char *se_name; /* name of symbol */ 61 int se_shndx; /* section where symbol is located */ 62 } sym_entry_t; 63 64 /* 65 * Create a map of the virtual address ranges of every section. This will 66 * allow us to create dummpy mappings for unassigned addresses. Otherwise 67 * multiple sections with unassigned addresses will appear to overlap and 68 * mess up symbol resolution (which uses the virtual address). 69 */ 70 typedef struct dis_shnmap { 71 const char *dm_name; /* name of section */ 72 uint64_t dm_start; /* virtual address of section */ 73 size_t dm_length; /* address length */ 74 boolean_t dm_mapped; /* did we assign the mapping */ 75 } dis_shnmap_t; 76 77 /* 78 * Target data structure. This structure keeps track of the ELF file 79 * information, a few bits of pre-processed section index information, and 80 * sorted versions of the symbol table. We also keep track of the last symbol 81 * looked up, as the majority of lookups remain within the same symbol. 82 */ 83 struct dis_tgt { 84 Elf *dt_elf; /* libelf handle */ 85 Elf *dt_elf_root; /* main libelf handle (for archives) */ 86 const char *dt_filename; /* name of file */ 87 int dt_fd; /* underlying file descriptor */ 88 size_t dt_shstrndx; /* section index of .shstrtab */ 89 size_t dt_symidx; /* section index of symbol table */ 90 sym_entry_t *dt_symcache; /* last symbol looked up */ 91 sym_entry_t *dt_symtab; /* sorted symbol table */ 92 int dt_symcount; /* # of symbol table entries */ 93 struct dis_tgt *dt_next; /* next target (for archives) */ 94 Elf_Arhdr *dt_arhdr; /* archive header (for archives) */ 95 dis_shnmap_t *dt_shnmap; /* section address map */ 96 size_t dt_shncount; /* # of sections in target */ 97 }; 98 99 /* 100 * Function data structure. We resolve the symbol and lookup the associated ELF 101 * data when building this structure. The offset is calculated based on the 102 * section's starting address. 103 */ 104 struct dis_func { 105 sym_entry_t *df_sym; /* symbol table reference */ 106 Elf_Data *df_data; /* associated ELF data */ 107 size_t df_offset; /* offset within data */ 108 }; 109 110 /* 111 * Section data structure. We store the entire section header so that we can 112 * determine some properties (such as whether or not it contains text) after 113 * building the structure. 114 */ 115 struct dis_scn { 116 GElf_Shdr ds_shdr; 117 const char *ds_name; 118 Elf_Data *ds_data; 119 }; 120 121 /* Lifted from Psymtab.c, omitting STT_TLS */ 122 #define DATA_TYPES \ 123 ((1 << STT_OBJECT) | (1 << STT_FUNC) | (1 << STT_COMMON)) 124 #define IS_DATA_TYPE(tp) (((1 << (tp)) & DATA_TYPES) != 0) 125 126 /* 127 * Save the virtual address range for this section and select the 128 * best section to use as the symbol table. We prefer SHT_SYMTAB 129 * over SHT_DYNSYM. 130 */ 131 /* ARGSUSED */ 132 static void 133 tgt_scn_init(dis_tgt_t *tgt, dis_scn_t *scn, void *data) 134 { 135 int *index = data; 136 137 *index += 1; 138 139 tgt->dt_shnmap[*index].dm_name = scn->ds_name; 140 tgt->dt_shnmap[*index].dm_start = scn->ds_shdr.sh_addr; 141 tgt->dt_shnmap[*index].dm_length = scn->ds_shdr.sh_size; 142 tgt->dt_shnmap[*index].dm_mapped = B_FALSE; 143 144 /* 145 * Prefer SHT_SYMTAB over SHT_DYNSYM 146 */ 147 if (scn->ds_shdr.sh_type == SHT_DYNSYM && tgt->dt_symidx == 0) 148 tgt->dt_symidx = *index; 149 else if (scn->ds_shdr.sh_type == SHT_SYMTAB) 150 tgt->dt_symidx = *index; 151 } 152 153 static int 154 sym_compare(const void *a, const void *b) 155 { 156 const sym_entry_t *syma = a; 157 const sym_entry_t *symb = b; 158 const char *aname = syma->se_name; 159 const char *bname = symb->se_name; 160 161 if (syma->se_sym.st_value < symb->se_sym.st_value) 162 return (-1); 163 164 if (syma->se_sym.st_value > symb->se_sym.st_value) 165 return (1); 166 167 /* 168 * Prefer functions over non-functions 169 */ 170 if (GELF_ST_TYPE(syma->se_sym.st_info) != 171 GELF_ST_TYPE(symb->se_sym.st_info)) { 172 if (GELF_ST_TYPE(syma->se_sym.st_info) == STT_FUNC) 173 return (-1); 174 if (GELF_ST_TYPE(symb->se_sym.st_info) == STT_FUNC) 175 return (1); 176 } 177 178 /* 179 * For symbols with the same address and type, we sort them according to 180 * a hierarchy: 181 * 182 * 1. weak symbols (common name) 183 * 2. global symbols (external name) 184 * 3. local symbols 185 */ 186 if (GELF_ST_BIND(syma->se_sym.st_info) != 187 GELF_ST_BIND(symb->se_sym.st_info)) { 188 if (GELF_ST_BIND(syma->se_sym.st_info) == STB_WEAK) 189 return (-1); 190 if (GELF_ST_BIND(symb->se_sym.st_info) == STB_WEAK) 191 return (1); 192 193 if (GELF_ST_BIND(syma->se_sym.st_info) == STB_GLOBAL) 194 return (-1); 195 if (GELF_ST_BIND(symb->se_sym.st_info) == STB_GLOBAL) 196 return (1); 197 } 198 199 /* 200 * As a last resort, if we have multiple symbols of the same type at the 201 * same address, prefer the version with the fewest leading underscores. 202 */ 203 if (aname == NULL) 204 return (-1); 205 if (bname == NULL) 206 return (1); 207 208 while (*aname == '_' && *bname == '_') { 209 aname++; 210 bname++; 211 } 212 213 if (*bname == '_') 214 return (-1); 215 if (*aname == '_') 216 return (1); 217 218 /* 219 * Prefer the symbol with the smaller size. 220 */ 221 if (syma->se_sym.st_size < symb->se_sym.st_size) 222 return (-1); 223 if (syma->se_sym.st_size > symb->se_sym.st_size) 224 return (1); 225 226 /* 227 * We really do have two identical symbols for some reason. Just report 228 * them as equal, and to the lucky one go the spoils. 229 */ 230 return (0); 231 } 232 233 /* 234 * Construct an optimized symbol table sorted by starting address. 235 */ 236 static void 237 construct_symtab(dis_tgt_t *tgt) 238 { 239 Elf_Scn *scn; 240 GElf_Shdr shdr; 241 Elf_Data *symdata; 242 int i; 243 GElf_Word *symshndx = NULL; 244 int symshndx_size; 245 sym_entry_t *sym; 246 sym_entry_t *p_symtab = NULL; 247 int nsym = 0; /* count of symbols we're not interested in */ 248 249 /* 250 * Find the symshndx section, if any 251 */ 252 for (scn = elf_nextscn(tgt->dt_elf, NULL); scn != NULL; 253 scn = elf_nextscn(tgt->dt_elf, scn)) { 254 if (gelf_getshdr(scn, &shdr) == NULL) 255 break; 256 if (shdr.sh_type == SHT_SYMTAB_SHNDX && 257 shdr.sh_link == tgt->dt_symidx) { 258 Elf_Data *data; 259 260 if ((data = elf_getdata(scn, NULL)) != NULL) { 261 symshndx = (GElf_Word *)data->d_buf; 262 symshndx_size = data->d_size / 263 sizeof (GElf_Word); 264 break; 265 } 266 } 267 } 268 269 if ((scn = elf_getscn(tgt->dt_elf, tgt->dt_symidx)) == NULL) 270 die("%s: failed to get section information", tgt->dt_filename); 271 if (gelf_getshdr(scn, &shdr) == NULL) 272 die("%s: failed to get section header", tgt->dt_filename); 273 if (shdr.sh_entsize == 0) 274 die("%s: symbol table has zero size", tgt->dt_filename); 275 276 if ((symdata = elf_getdata(scn, NULL)) == NULL) 277 die("%s: failed to get symbol table", tgt->dt_filename); 278 279 tgt->dt_symcount = symdata->d_size / gelf_fsize(tgt->dt_elf, ELF_T_SYM, 280 1, EV_CURRENT); 281 282 p_symtab = safe_malloc(tgt->dt_symcount * sizeof (sym_entry_t)); 283 284 for (i = 0, sym = p_symtab; i < tgt->dt_symcount; i++) { 285 if (gelf_getsym(symdata, i, &(sym->se_sym)) == NULL) { 286 warn("%s: gelf_getsym returned NULL for %d", 287 tgt->dt_filename, i); 288 nsym++; 289 continue; 290 } 291 292 /* 293 * We're only interested in data symbols. 294 */ 295 if (!IS_DATA_TYPE(GELF_ST_TYPE(sym->se_sym.st_info))) { 296 nsym++; 297 continue; 298 } 299 300 if (sym->se_sym.st_shndx == SHN_XINDEX && symshndx != NULL) { 301 if (i > symshndx_size) { 302 warn("%s: bad SHNX_XINDEX %d", 303 tgt->dt_filename, i); 304 sym->se_shndx = -1; 305 } else { 306 sym->se_shndx = symshndx[i]; 307 } 308 } else { 309 sym->se_shndx = sym->se_sym.st_shndx; 310 } 311 312 if ((sym->se_name = elf_strptr(tgt->dt_elf, shdr.sh_link, 313 (size_t)sym->se_sym.st_name)) == NULL) { 314 warn("%s: failed to lookup symbol %d name", 315 tgt->dt_filename, i); 316 nsym++; 317 continue; 318 } 319 320 /* 321 * If we had to map this section, its symbol value 322 * also needs to be mapped. 323 */ 324 if (tgt->dt_shnmap[sym->se_shndx].dm_mapped) 325 sym->se_sym.st_value += 326 tgt->dt_shnmap[sym->se_shndx].dm_start; 327 328 sym++; 329 } 330 331 tgt->dt_symcount -= nsym; 332 tgt->dt_symtab = realloc(p_symtab, tgt->dt_symcount * 333 sizeof (sym_entry_t)); 334 335 qsort(tgt->dt_symtab, tgt->dt_symcount, sizeof (sym_entry_t), 336 sym_compare); 337 } 338 339 /* 340 * Assign virtual address ranges for sections that need it 341 */ 342 static void 343 create_addrmap(dis_tgt_t *tgt) 344 { 345 uint64_t addr; 346 int i; 347 348 if (tgt->dt_shnmap == NULL) 349 return; 350 351 /* find the greatest used address */ 352 for (addr = 0, i = 1; i < tgt->dt_shncount; i++) 353 if (tgt->dt_shnmap[i].dm_start > addr) 354 addr = tgt->dt_shnmap[i].dm_start + 355 tgt->dt_shnmap[i].dm_length; 356 357 addr = P2ROUNDUP(addr, 0x1000); 358 359 /* 360 * Assign section a starting address beyond the largest mapped section 361 * if no address was given. 362 */ 363 for (i = 1; i < tgt->dt_shncount; i++) { 364 if (tgt->dt_shnmap[i].dm_start != 0) 365 continue; 366 367 tgt->dt_shnmap[i].dm_start = addr; 368 tgt->dt_shnmap[i].dm_mapped = B_TRUE; 369 addr = P2ROUNDUP(addr + tgt->dt_shnmap[i].dm_length, 0x1000); 370 } 371 } 372 373 /* 374 * Create a target backed by an ELF file. 375 */ 376 dis_tgt_t * 377 dis_tgt_create(const char *file) 378 { 379 dis_tgt_t *tgt, *current; 380 int idx; 381 Elf *elf; 382 GElf_Ehdr ehdr; 383 Elf_Arhdr *arhdr = NULL; 384 int cmd; 385 386 if (elf_version(EV_CURRENT) == EV_NONE) 387 die("libelf(3ELF) out of date"); 388 389 tgt = safe_malloc(sizeof (dis_tgt_t)); 390 391 if ((tgt->dt_fd = open(file, O_RDONLY)) < 0) { 392 warn("%s: failed opening file, reason: %s", file, 393 strerror(errno)); 394 free(tgt); 395 return (NULL); 396 } 397 398 if ((tgt->dt_elf_root = 399 elf_begin(tgt->dt_fd, ELF_C_READ, NULL)) == NULL) { 400 warn("%s: invalid or corrupt ELF file", file); 401 dis_tgt_destroy(tgt); 402 return (NULL); 403 } 404 405 current = tgt; 406 cmd = ELF_C_READ; 407 while ((elf = elf_begin(tgt->dt_fd, cmd, tgt->dt_elf_root)) != NULL) { 408 409 if (elf_kind(tgt->dt_elf_root) == ELF_K_AR && 410 (arhdr = elf_getarhdr(elf)) == NULL) { 411 warn("%s: malformed archive", file); 412 dis_tgt_destroy(tgt); 413 return (NULL); 414 } 415 416 /* 417 * Make sure that this Elf file is sane 418 */ 419 if (gelf_getehdr(elf, &ehdr) == NULL) { 420 if (arhdr != NULL) { 421 /* 422 * For archives, we drive on in the face of bad 423 * members. The "/" and "//" members are 424 * special, and should be silently ignored. 425 */ 426 if (strcmp(arhdr->ar_name, "/") != 0 && 427 strcmp(arhdr->ar_name, "//") != 0) 428 warn("%s[%s]: invalid file type", 429 file, arhdr->ar_name); 430 cmd = elf_next(elf); 431 (void) elf_end(elf); 432 continue; 433 } 434 435 warn("%s: invalid file type", file); 436 dis_tgt_destroy(tgt); 437 return (NULL); 438 } 439 440 /* 441 * If we're seeing a new Elf object, then we have an 442 * archive. In this case, we create a new target, and chain it 443 * off the master target. We can later iterate over these 444 * targets using dis_tgt_next(). 445 */ 446 if (current->dt_elf != NULL) { 447 dis_tgt_t *next = safe_malloc(sizeof (dis_tgt_t)); 448 next->dt_elf_root = tgt->dt_elf_root; 449 next->dt_fd = -1; 450 current->dt_next = next; 451 current = next; 452 } 453 current->dt_elf = elf; 454 current->dt_arhdr = arhdr; 455 456 if (elf_getshdrstrndx(elf, ¤t->dt_shstrndx) == -1) { 457 warn("%s: failed to get section string table for " 458 "file", file); 459 dis_tgt_destroy(tgt); 460 return (NULL); 461 } 462 463 current->dt_shnmap = safe_malloc(sizeof (dis_shnmap_t) * 464 ehdr.e_shnum); 465 current->dt_shncount = ehdr.e_shnum; 466 467 idx = 0; 468 dis_tgt_section_iter(current, tgt_scn_init, &idx); 469 470 create_addrmap(current); 471 if (current->dt_symidx != 0) 472 construct_symtab(current); 473 474 current->dt_filename = file; 475 476 cmd = elf_next(elf); 477 } 478 479 /* 480 * Final sanity check. If we had an archive with no members, then bail 481 * out with a nice message. 482 */ 483 if (tgt->dt_elf == NULL) { 484 warn("%s: empty archive\n", file); 485 dis_tgt_destroy(tgt); 486 return (NULL); 487 } 488 489 return (tgt); 490 } 491 492 /* 493 * Return the filename associated with the target. 494 */ 495 const char * 496 dis_tgt_name(dis_tgt_t *tgt) 497 { 498 return (tgt->dt_filename); 499 } 500 501 /* 502 * Return the archive member name, if any. 503 */ 504 const char * 505 dis_tgt_member(dis_tgt_t *tgt) 506 { 507 if (tgt->dt_arhdr) 508 return (tgt->dt_arhdr->ar_name); 509 else 510 return (NULL); 511 } 512 513 /* 514 * Return the Elf_Ehdr associated with this target. Needed to determine which 515 * disassembler to use. 516 */ 517 void 518 dis_tgt_ehdr(dis_tgt_t *tgt, GElf_Ehdr *ehdr) 519 { 520 (void) gelf_getehdr(tgt->dt_elf, ehdr); 521 } 522 523 /* 524 * Return the next target in the list, if this is an archive. 525 */ 526 dis_tgt_t * 527 dis_tgt_next(dis_tgt_t *tgt) 528 { 529 return (tgt->dt_next); 530 } 531 532 /* 533 * Destroy a target and free up any associated memory. 534 */ 535 void 536 dis_tgt_destroy(dis_tgt_t *tgt) 537 { 538 dis_tgt_t *current, *next; 539 540 current = tgt->dt_next; 541 while (current != NULL) { 542 next = current->dt_next; 543 if (current->dt_elf) 544 (void) elf_end(current->dt_elf); 545 if (current->dt_symtab) 546 free(current->dt_symtab); 547 free(current); 548 current = next; 549 } 550 551 if (tgt->dt_elf) 552 (void) elf_end(tgt->dt_elf); 553 if (tgt->dt_elf_root) 554 (void) elf_end(tgt->dt_elf_root); 555 556 if (tgt->dt_symtab) 557 free(tgt->dt_symtab); 558 559 free(tgt); 560 } 561 562 /* 563 * Given an address, return the section it is in and set the offset within 564 * the section. 565 */ 566 const char * 567 dis_find_section(dis_tgt_t *tgt, uint64_t addr, off_t *offset) 568 { 569 int i; 570 571 for (i = 1; i < tgt->dt_shncount; i++) { 572 if ((addr >= tgt->dt_shnmap[i].dm_start) && 573 (addr < tgt->dt_shnmap[i].dm_start + 574 tgt->dt_shnmap[i].dm_length)) { 575 *offset = addr - tgt->dt_shnmap[i].dm_start; 576 return (tgt->dt_shnmap[i].dm_name); 577 } 578 } 579 580 *offset = 0; 581 return (NULL); 582 } 583 584 /* 585 * Given an address, returns the name of the corresponding symbol, as well as 586 * the offset within that symbol. If no matching symbol is found, then NULL is 587 * returned. 588 * 589 * If 'cache_result' is specified, then we keep track of the resulting symbol. 590 * This cached result is consulted first on subsequent lookups in order to avoid 591 * unecessary lookups. This flag should be used for resolving the current PC, 592 * as the majority of addresses stay within the current function. 593 */ 594 const char * 595 dis_tgt_lookup(dis_tgt_t *tgt, uint64_t addr, off_t *offset, int cache_result, 596 size_t *size, int *isfunc) 597 { 598 int lo, hi, mid; 599 sym_entry_t *sym, *osym, *match; 600 int found; 601 602 if (tgt->dt_symcache != NULL && 603 addr >= tgt->dt_symcache->se_sym.st_value && 604 addr < tgt->dt_symcache->se_sym.st_value + 605 tgt->dt_symcache->se_sym.st_size) { 606 *offset = addr - tgt->dt_symcache->se_sym.st_value; 607 *size = tgt->dt_symcache->se_sym.st_size; 608 return (tgt->dt_symcache->se_name); 609 } 610 611 lo = 0; 612 hi = (tgt->dt_symcount - 1); 613 found = 0; 614 match = osym = NULL; 615 while (lo <= hi) { 616 mid = (lo + hi) / 2; 617 618 sym = &tgt->dt_symtab[mid]; 619 620 if (addr >= sym->se_sym.st_value && 621 addr < sym->se_sym.st_value + sym->se_sym.st_size && 622 (!found || sym->se_sym.st_value > osym->se_sym.st_value)) { 623 osym = sym; 624 found = 1; 625 } else if (addr == sym->se_sym.st_value) { 626 /* 627 * Particularly for .plt objects, it's possible to have 628 * a zero sized object. We want to return this, but we 629 * want it to be a last resort. 630 */ 631 match = sym; 632 } 633 634 if (addr < sym->se_sym.st_value) 635 hi = mid - 1; 636 else 637 lo = mid + 1; 638 } 639 640 if (!found) { 641 if (match) 642 osym = match; 643 else 644 return (NULL); 645 } 646 647 /* 648 * Walk backwards to find the best match. 649 */ 650 do { 651 sym = osym; 652 653 if (osym == tgt->dt_symtab) 654 break; 655 656 osym = osym - 1; 657 } while ((sym->se_sym.st_value == osym->se_sym.st_value) && 658 (addr >= osym->se_sym.st_value) && 659 (addr < osym->se_sym.st_value + osym->se_sym.st_size)); 660 661 if (cache_result) 662 tgt->dt_symcache = sym; 663 664 *offset = addr - sym->se_sym.st_value; 665 *size = sym->se_sym.st_size; 666 if (isfunc) 667 *isfunc = (GELF_ST_TYPE(sym->se_sym.st_info) == STT_FUNC); 668 669 return (sym->se_name); 670 } 671 672 /* 673 * Given an address, return the starting offset of the next symbol in the file. 674 */ 675 off_t 676 dis_tgt_next_symbol(dis_tgt_t *tgt, uint64_t addr) 677 { 678 sym_entry_t *sym; 679 680 for (sym = tgt->dt_symcache; 681 sym != tgt->dt_symtab + tgt->dt_symcount; 682 sym++) { 683 if (sym->se_sym.st_value >= addr) 684 return (sym->se_sym.st_value - addr); 685 } 686 687 return (0); 688 } 689 690 /* 691 * Iterate over all sections in the target, executing the given callback for 692 * each. 693 */ 694 void 695 dis_tgt_section_iter(dis_tgt_t *tgt, section_iter_f func, void *data) 696 { 697 dis_scn_t sdata; 698 Elf_Scn *scn; 699 int idx; 700 701 for (scn = elf_nextscn(tgt->dt_elf, NULL), idx = 1; scn != NULL; 702 scn = elf_nextscn(tgt->dt_elf, scn), idx++) { 703 704 if (gelf_getshdr(scn, &sdata.ds_shdr) == NULL) { 705 warn("%s: failed to get section %d header", 706 tgt->dt_filename, idx); 707 continue; 708 } 709 710 if ((sdata.ds_name = elf_strptr(tgt->dt_elf, tgt->dt_shstrndx, 711 sdata.ds_shdr.sh_name)) == NULL) { 712 warn("%s: failed to get section %d name", 713 tgt->dt_filename, idx); 714 continue; 715 } 716 717 if ((sdata.ds_data = elf_getdata(scn, NULL)) == NULL) { 718 warn("%s: failed to get data for section '%s'", 719 tgt->dt_filename, sdata.ds_name); 720 continue; 721 } 722 723 /* 724 * dis_tgt_section_iter is also used before the section map 725 * is initialized, so only check when we need to. If the 726 * section map is uninitialized, it will return 0 and have 727 * no net effect. 728 */ 729 if (sdata.ds_shdr.sh_addr == 0) 730 sdata.ds_shdr.sh_addr = tgt->dt_shnmap[idx].dm_start; 731 732 func(tgt, &sdata, data); 733 } 734 } 735 736 /* 737 * Return 1 if the given section contains text, 0 otherwise. 738 */ 739 int 740 dis_section_istext(dis_scn_t *scn) 741 { 742 return ((scn->ds_shdr.sh_type == SHT_PROGBITS) && 743 (scn->ds_shdr.sh_flags == (SHF_ALLOC | SHF_EXECINSTR))); 744 } 745 746 /* 747 * Return a pointer to the section data. 748 */ 749 void * 750 dis_section_data(dis_scn_t *scn) 751 { 752 return (scn->ds_data->d_buf); 753 } 754 755 /* 756 * Return the size of the section data. 757 */ 758 size_t 759 dis_section_size(dis_scn_t *scn) 760 { 761 return (scn->ds_data->d_size); 762 } 763 764 /* 765 * Return the address for the given section. 766 */ 767 uint64_t 768 dis_section_addr(dis_scn_t *scn) 769 { 770 return (scn->ds_shdr.sh_addr); 771 } 772 773 /* 774 * Return the name of the current section. 775 */ 776 const char * 777 dis_section_name(dis_scn_t *scn) 778 { 779 return (scn->ds_name); 780 } 781 782 /* 783 * Create an allocated copy of the given section 784 */ 785 dis_scn_t * 786 dis_section_copy(dis_scn_t *scn) 787 { 788 dis_scn_t *new; 789 790 new = safe_malloc(sizeof (dis_scn_t)); 791 (void) memcpy(new, scn, sizeof (dis_scn_t)); 792 793 return (new); 794 } 795 796 /* 797 * Free section memory 798 */ 799 void 800 dis_section_free(dis_scn_t *scn) 801 { 802 free(scn); 803 } 804 805 /* 806 * Iterate over all functions in the target, executing the given callback for 807 * each one. 808 */ 809 void 810 dis_tgt_function_iter(dis_tgt_t *tgt, function_iter_f func, void *data) 811 { 812 int i; 813 sym_entry_t *sym; 814 dis_func_t df; 815 Elf_Scn *scn; 816 GElf_Shdr shdr; 817 818 for (i = 0, sym = tgt->dt_symtab; i < tgt->dt_symcount; i++, sym++) { 819 820 /* ignore non-functions */ 821 if ((GELF_ST_TYPE(sym->se_sym.st_info) != STT_FUNC) || 822 (sym->se_name == NULL) || 823 (sym->se_sym.st_size == 0) || 824 (sym->se_shndx >= SHN_LORESERVE)) 825 continue; 826 827 /* get the ELF data associated with this function */ 828 if ((scn = elf_getscn(tgt->dt_elf, sym->se_shndx)) == NULL || 829 gelf_getshdr(scn, &shdr) == NULL || 830 (df.df_data = elf_getdata(scn, NULL)) == NULL || 831 df.df_data->d_size == 0) { 832 warn("%s: failed to read section %d", 833 tgt->dt_filename, sym->se_shndx); 834 continue; 835 } 836 837 if (tgt->dt_shnmap[sym->se_shndx].dm_mapped) 838 shdr.sh_addr = tgt->dt_shnmap[sym->se_shndx].dm_start; 839 840 /* 841 * Verify that the address lies within the section that we think 842 * it does. 843 */ 844 if (sym->se_sym.st_value < shdr.sh_addr || 845 (sym->se_sym.st_value + sym->se_sym.st_size) > 846 (shdr.sh_addr + shdr.sh_size)) { 847 warn("%s: bad section %d for address %p", 848 tgt->dt_filename, sym->se_sym.st_shndx, 849 sym->se_sym.st_value); 850 continue; 851 } 852 853 df.df_sym = sym; 854 df.df_offset = sym->se_sym.st_value - shdr.sh_addr; 855 856 func(tgt, &df, data); 857 } 858 } 859 860 /* 861 * Return the data associated with a given function. 862 */ 863 void * 864 dis_function_data(dis_func_t *func) 865 { 866 return ((char *)func->df_data->d_buf + func->df_offset); 867 } 868 869 /* 870 * Return the size of a function. 871 */ 872 size_t 873 dis_function_size(dis_func_t *func) 874 { 875 return (func->df_sym->se_sym.st_size); 876 } 877 878 /* 879 * Return the address of a function. 880 */ 881 uint64_t 882 dis_function_addr(dis_func_t *func) 883 { 884 return (func->df_sym->se_sym.st_value); 885 } 886 887 /* 888 * Return the name of the function 889 */ 890 const char * 891 dis_function_name(dis_func_t *func) 892 { 893 return (func->df_sym->se_name); 894 } 895 896 /* 897 * Return a copy of a function. 898 */ 899 dis_func_t * 900 dis_function_copy(dis_func_t *func) 901 { 902 dis_func_t *new; 903 904 new = safe_malloc(sizeof (dis_func_t)); 905 (void) memcpy(new, func, sizeof (dis_func_t)); 906 907 return (new); 908 } 909 910 /* 911 * Free function memory 912 */ 913 void 914 dis_function_free(dis_func_t *func) 915 { 916 free(func); 917 } 918