xref: /titanic_51/usr/src/cmd/acct/acctprc.c (revision bbaa8b60dd95d714741fc474adad3cf710ef4efd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
23 /*	  All Rights Reserved  	*/
24 
25 
26 /*
27  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 /*
33  *      acctprc
34  *      reads std. input (acct.h format),
35  *      writes std. output (tacct format)
36  *      sorted by uid
37  *      adds login names
38  */
39 
40 #include <stdio.h>
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include "acctdef.h"
44 #include <sys/acct.h>
45 #include <string.h>
46 #include <search.h>
47 #include <stdlib.h>
48 
49 struct  acct    ab;
50 struct  ptmp    pb;
51 struct  tacct   tb;
52 
53 struct  utab    {
54         uid_t   ut_uid;
55         char    ut_name[NSZ];
56         float   ut_cpu[2];      /* cpu time (mins) */
57         float   ut_kcore[2];    /* kcore-mins */
58         long    ut_pc;          /* # processes */
59 } * ub;
60 static int usize;
61 void **root = NULL;
62 
63 void output(void);
64 void enter(struct ptmp *);
65 
66 int
67 main(int argc, char **argv)
68 {
69 	long		elaps[2];
70 	ulong_t		etime, stime;
71 	unsigned long	mem;
72 #ifdef uts
73 	float   expand();
74 #else
75 	ulong_t expand();
76 #endif
77 
78         while (fread(&ab, sizeof(ab), 1, stdin) == 1) {
79                 if (!MYKIND(ab.ac_flag))
80                         continue;
81                 pb.pt_uid = ab.ac_uid;
82                 CPYN(pb.pt_name, NULL);
83                 /*
84                  * approximate cpu P/NP split as same as elapsed time
85                  */
86                 if ((etime = SECS(expand(ab.ac_etime))) == 0)
87                         etime = 1;
88                 stime = expand(ab.ac_stime) + expand(ab.ac_utime);
89                 mem = expand(ab.ac_mem);
90                 if(pnpsplit(ab.ac_btime, etime, elaps) == 0) {
91 			fprintf(stderr, "acctprc: could not calculate prime/non-prime hours\n");
92 
93 			exit(1);
94 		}
95                 pb.pt_cpu[0] = (double)stime * (double)elaps[0] / etime;
96                 pb.pt_cpu[1] = (stime > pb.pt_cpu[0])? stime - pb.pt_cpu[0] : 0;
97                 pb.pt_cpu[1] = stime - pb.pt_cpu[0];
98                 if (stime)
99                         pb.pt_mem = (mem + stime - 1) / stime;
100                 else
101                         pb.pt_mem = 0;  /* unlikely */
102                 enter(&pb);
103         }
104         output();
105 	exit(0);
106 }
107 
108 int node_compare(const void *node1, const void *node2)
109 {
110 	if (((const struct utab *)node1)->ut_uid > \
111 		((const struct utab *)node2)->ut_uid)
112 		return(1);
113 	else if (((const struct utab *)node1)->ut_uid < \
114 		((const struct utab *)node2)->ut_uid)
115 		return(-1);
116 	else	return(0);
117 }
118 
119 void
120 enter(struct ptmp *p)
121 {
122         double memk;
123         struct utab **pt;
124 
125 	if ((ub = (struct utab *)malloc(sizeof (struct utab))) == NULL) {
126 		fprintf(stderr, "acctprc: malloc fail!\n");
127 		exit(2);
128 	}
129 
130         ub->ut_uid = p->pt_uid;
131         CPYN(ub->ut_name, p->pt_name);
132         ub->ut_cpu[0] = MINT(p->pt_cpu[0]);
133         ub->ut_cpu[1] = MINT(p->pt_cpu[1]);
134         memk = KCORE(pb.pt_mem);
135         ub->ut_kcore[0] = memk * MINT(p->pt_cpu[0]);
136         ub->ut_kcore[1] = memk * MINT(p->pt_cpu[1]);
137         ub->ut_pc = 1;
138 
139         if (*(pt = (struct utab **)tsearch((void *)ub, (void **)&root,  \
140                 node_compare)) == NULL) {
141                 fprintf(stderr, "Not enough space available to build tree\n");
142                 exit(1);
143 	}
144 
145 	if (*pt != ub) {
146         	(*pt)->ut_cpu[0] += MINT(p->pt_cpu[0]);
147         	(*pt)->ut_cpu[1] += MINT(p->pt_cpu[1]);
148         	(*pt)->ut_kcore[0] += memk * MINT(p->pt_cpu[0]);
149         	(*pt)->ut_kcore[1] += memk * MINT(p->pt_cpu[1]);
150 		(*pt)->ut_pc++;
151 		free(ub);
152         }
153 }
154 
155 void print_node(const void *node, VISIT order, int level) {
156 
157 	if (order == postorder || order == leaf) {
158 		tb.ta_uid = (*(struct utab **)node)->ut_uid;
159 		CPYN(tb.ta_name, (char *)uidtonam((*(struct utab **)node)->ut_uid));
160 		tb.ta_cpu[0] = (*(struct utab **)node)->ut_cpu[0];
161 		tb.ta_cpu[1] = (*(struct utab **)node)->ut_cpu[1];
162                 tb.ta_kcore[0] = (*(struct utab **)node)->ut_kcore[0];
163                 tb.ta_kcore[1] = (*(struct utab **)node)->ut_kcore[1];
164                 tb.ta_pc = (*(struct utab **)node)->ut_pc;
165                 fwrite(&tb, sizeof(tb), 1, stdout);
166 	}
167 }
168 
169 void
170 output(void)
171 {
172                 twalk((struct utab *)root, print_node);
173 }
174