xref: /titanic_51/usr/src/cmd/acct/acctprc.c (revision 8eea8e29cc4374d1ee24c25a07f45af132db3499)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
23 /*	  All Rights Reserved  	*/
24 
25 
26 /*
27  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"	/* SVr4.0 1.3	*/
31 
32 /*
33  *      acctprc
34  *      reads std. input (acct.h format),
35  *      writes std. output (tacct format)
36  *      sorted by uid
37  *      adds login names
38  */
39 
40 #include <stdio.h>
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include "acctdef.h"
44 #include <sys/acct.h>
45 #include <string.h>
46 #include <search.h>
47 
48 struct  acct    ab;
49 struct  ptmp    pb;
50 struct  tacct   tb;
51 
52 struct  utab    {
53         uid_t   ut_uid;
54         char    ut_name[NSZ];
55         float   ut_cpu[2];      /* cpu time (mins) */
56         float   ut_kcore[2];    /* kcore-mins */
57         long    ut_pc;          /* # processes */
58 } * ub;
59 static  usize;
60 char	*strncpy();
61 void **root = NULL;
62 
63 main()
64 {
65 	long		elaps[2];
66 	ulong_t		etime, stime;
67 	unsigned long	mem;
68 #ifdef uts
69 	float   expand();
70 #else
71 	ulong_t expand();
72 #endif
73 
74         while (fread(&ab, sizeof(ab), 1, stdin) == 1) {
75                 if (!MYKIND(ab.ac_flag))
76                         continue;
77                 pb.pt_uid = ab.ac_uid;
78                 CPYN(pb.pt_name, NULL);
79                 /*
80                  * approximate cpu P/NP split as same as elapsed time
81                  */
82                 if ((etime = SECS(expand(ab.ac_etime))) == 0)
83                         etime = 1;
84                 stime = expand(ab.ac_stime) + expand(ab.ac_utime);
85                 mem = expand(ab.ac_mem);
86                 if(pnpsplit(ab.ac_btime, etime, elaps) == 0) {
87 			fprintf(stderr, "acctprc: could not calculate prime/non-prime hours\n");
88 
89 			exit(1);
90 		}
91                 pb.pt_cpu[0] = (double)stime * (double)elaps[0] / etime;
92                 pb.pt_cpu[1] = (stime > pb.pt_cpu[0])? stime - pb.pt_cpu[0] : 0;
93                 pb.pt_cpu[1] = stime - pb.pt_cpu[0];
94                 if (stime)
95                         pb.pt_mem = (mem + stime - 1) / stime;
96                 else
97                         pb.pt_mem = 0;  /* unlikely */
98                 enter(&pb);
99         }
100         output();
101 	exit(0);
102 }
103 
104 int node_compare(const void *node1, const void *node2)
105 {
106 	if (((const struct utab *)node1)->ut_uid > \
107 		((const struct utab *)node2)->ut_uid)
108 		return(1);
109 	else if (((const struct utab *)node1)->ut_uid < \
110 		((const struct utab *)node2)->ut_uid)
111 		return(-1);
112 	else	return(0);
113 }
114 
115 enter(p)
116 register struct ptmp *p;
117 {
118         double memk;
119         struct utab **pt;
120 
121 	if ((ub = (struct utab *)malloc(sizeof (struct utab))) == NULL) {
122 		fprintf(stderr, "acctprc: malloc fail!\n");
123 		exit(2);
124 	}
125 
126         ub->ut_uid = p->pt_uid;
127         CPYN(ub->ut_name, p->pt_name);
128         ub->ut_cpu[0] = MINT(p->pt_cpu[0]);
129         ub->ut_cpu[1] = MINT(p->pt_cpu[1]);
130         memk = KCORE(pb.pt_mem);
131         ub->ut_kcore[0] = memk * MINT(p->pt_cpu[0]);
132         ub->ut_kcore[1] = memk * MINT(p->pt_cpu[1]);
133         ub->ut_pc = 1;
134 
135         if (*(pt = (struct utab **)tsearch((void *)ub, (void **)&root,  \
136                 node_compare)) == NULL) {
137                 fprintf(stderr, "Not enough space available to build tree\n");
138                 exit(1);
139 	}
140 
141 	if (*pt != ub) {
142         	(*pt)->ut_cpu[0] += MINT(p->pt_cpu[0]);
143         	(*pt)->ut_cpu[1] += MINT(p->pt_cpu[1]);
144         	(*pt)->ut_kcore[0] += memk * MINT(p->pt_cpu[0]);
145         	(*pt)->ut_kcore[1] += memk * MINT(p->pt_cpu[1]);
146 		(*pt)->ut_pc++;
147 		free(ub);
148         }
149 }
150 
151 void print_node(const void *node, VISIT order, int level) {
152 
153 	if (order == postorder || order == leaf) {
154 		tb.ta_uid = (*(struct utab **)node)->ut_uid;
155 		CPYN(tb.ta_name, (char *)uidtonam((*(struct utab **)node)->ut_uid));
156 		tb.ta_cpu[0] = (*(struct utab **)node)->ut_cpu[0];
157 		tb.ta_cpu[1] = (*(struct utab **)node)->ut_cpu[1];
158                 tb.ta_kcore[0] = (*(struct utab **)node)->ut_kcore[0];
159                 tb.ta_kcore[1] = (*(struct utab **)node)->ut_kcore[1];
160                 tb.ta_pc = (*(struct utab **)node)->ut_pc;
161                 fwrite(&tb, sizeof(tb), 1, stdout);
162 	}
163 }
164 
165 output()
166 {
167                 twalk((struct utab *)root, print_node);
168 }
169