xref: /titanic_51/usr/src/boot/lib/libz/doc/rfc1951.txt (revision 4a5d661a82b942b6538acd26209d959ce98b593a)
1*4a5d661aSToomas Soome
2*4a5d661aSToomas Soome
3*4a5d661aSToomas Soome
4*4a5d661aSToomas Soome
5*4a5d661aSToomas Soome
6*4a5d661aSToomas Soome
7*4a5d661aSToomas SoomeNetwork Working Group                                         P. Deutsch
8*4a5d661aSToomas SoomeRequest for Comments: 1951                           Aladdin Enterprises
9*4a5d661aSToomas SoomeCategory: Informational                                         May 1996
10*4a5d661aSToomas Soome
11*4a5d661aSToomas Soome
12*4a5d661aSToomas Soome        DEFLATE Compressed Data Format Specification version 1.3
13*4a5d661aSToomas Soome
14*4a5d661aSToomas SoomeStatus of This Memo
15*4a5d661aSToomas Soome
16*4a5d661aSToomas Soome   This memo provides information for the Internet community.  This memo
17*4a5d661aSToomas Soome   does not specify an Internet standard of any kind.  Distribution of
18*4a5d661aSToomas Soome   this memo is unlimited.
19*4a5d661aSToomas Soome
20*4a5d661aSToomas SoomeIESG Note:
21*4a5d661aSToomas Soome
22*4a5d661aSToomas Soome   The IESG takes no position on the validity of any Intellectual
23*4a5d661aSToomas Soome   Property Rights statements contained in this document.
24*4a5d661aSToomas Soome
25*4a5d661aSToomas SoomeNotices
26*4a5d661aSToomas Soome
27*4a5d661aSToomas Soome   Copyright (c) 1996 L. Peter Deutsch
28*4a5d661aSToomas Soome
29*4a5d661aSToomas Soome   Permission is granted to copy and distribute this document for any
30*4a5d661aSToomas Soome   purpose and without charge, including translations into other
31*4a5d661aSToomas Soome   languages and incorporation into compilations, provided that the
32*4a5d661aSToomas Soome   copyright notice and this notice are preserved, and that any
33*4a5d661aSToomas Soome   substantive changes or deletions from the original are clearly
34*4a5d661aSToomas Soome   marked.
35*4a5d661aSToomas Soome
36*4a5d661aSToomas Soome   A pointer to the latest version of this and related documentation in
37*4a5d661aSToomas Soome   HTML format can be found at the URL
38*4a5d661aSToomas Soome   <ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
39*4a5d661aSToomas Soome
40*4a5d661aSToomas SoomeAbstract
41*4a5d661aSToomas Soome
42*4a5d661aSToomas Soome   This specification defines a lossless compressed data format that
43*4a5d661aSToomas Soome   compresses data using a combination of the LZ77 algorithm and Huffman
44*4a5d661aSToomas Soome   coding, with efficiency comparable to the best currently available
45*4a5d661aSToomas Soome   general-purpose compression methods.  The data can be produced or
46*4a5d661aSToomas Soome   consumed, even for an arbitrarily long sequentially presented input
47*4a5d661aSToomas Soome   data stream, using only an a priori bounded amount of intermediate
48*4a5d661aSToomas Soome   storage.  The format can be implemented readily in a manner not
49*4a5d661aSToomas Soome   covered by patents.
50*4a5d661aSToomas Soome
51*4a5d661aSToomas Soome
52*4a5d661aSToomas Soome
53*4a5d661aSToomas Soome
54*4a5d661aSToomas Soome
55*4a5d661aSToomas Soome
56*4a5d661aSToomas Soome
57*4a5d661aSToomas Soome
58*4a5d661aSToomas SoomeDeutsch                      Informational                      [Page 1]
59*4a5d661aSToomas Soome
60*4a5d661aSToomas SoomeRFC 1951      DEFLATE Compressed Data Format Specification      May 1996
61*4a5d661aSToomas Soome
62*4a5d661aSToomas Soome
63*4a5d661aSToomas SoomeTable of Contents
64*4a5d661aSToomas Soome
65*4a5d661aSToomas Soome   1. Introduction ................................................... 2
66*4a5d661aSToomas Soome      1.1. Purpose ................................................... 2
67*4a5d661aSToomas Soome      1.2. Intended audience ......................................... 3
68*4a5d661aSToomas Soome      1.3. Scope ..................................................... 3
69*4a5d661aSToomas Soome      1.4. Compliance ................................................ 3
70*4a5d661aSToomas Soome      1.5.  Definitions of terms and conventions used ................ 3
71*4a5d661aSToomas Soome      1.6. Changes from previous versions ............................ 4
72*4a5d661aSToomas Soome   2. Compressed representation overview ............................. 4
73*4a5d661aSToomas Soome   3. Detailed specification ......................................... 5
74*4a5d661aSToomas Soome      3.1. Overall conventions ....................................... 5
75*4a5d661aSToomas Soome          3.1.1. Packing into bytes .................................. 5
76*4a5d661aSToomas Soome      3.2. Compressed block format ................................... 6
77*4a5d661aSToomas Soome          3.2.1. Synopsis of prefix and Huffman coding ............... 6
78*4a5d661aSToomas Soome          3.2.2. Use of Huffman coding in the "deflate" format ....... 7
79*4a5d661aSToomas Soome          3.2.3. Details of block format ............................. 9
80*4a5d661aSToomas Soome          3.2.4. Non-compressed blocks (BTYPE=00) ................... 11
81*4a5d661aSToomas Soome          3.2.5. Compressed blocks (length and distance codes) ...... 11
82*4a5d661aSToomas Soome          3.2.6. Compression with fixed Huffman codes (BTYPE=01) .... 12
83*4a5d661aSToomas Soome          3.2.7. Compression with dynamic Huffman codes (BTYPE=10) .. 13
84*4a5d661aSToomas Soome      3.3. Compliance ............................................... 14
85*4a5d661aSToomas Soome   4. Compression algorithm details ................................. 14
86*4a5d661aSToomas Soome   5. References .................................................... 16
87*4a5d661aSToomas Soome   6. Security Considerations ....................................... 16
88*4a5d661aSToomas Soome   7. Source code ................................................... 16
89*4a5d661aSToomas Soome   8. Acknowledgements .............................................. 16
90*4a5d661aSToomas Soome   9. Author's Address .............................................. 17
91*4a5d661aSToomas Soome
92*4a5d661aSToomas Soome1. Introduction
93*4a5d661aSToomas Soome
94*4a5d661aSToomas Soome   1.1. Purpose
95*4a5d661aSToomas Soome
96*4a5d661aSToomas Soome      The purpose of this specification is to define a lossless
97*4a5d661aSToomas Soome      compressed data format that:
98*4a5d661aSToomas Soome          * Is independent of CPU type, operating system, file system,
99*4a5d661aSToomas Soome            and character set, and hence can be used for interchange;
100*4a5d661aSToomas Soome          * Can be produced or consumed, even for an arbitrarily long
101*4a5d661aSToomas Soome            sequentially presented input data stream, using only an a
102*4a5d661aSToomas Soome            priori bounded amount of intermediate storage, and hence
103*4a5d661aSToomas Soome            can be used in data communications or similar structures
104*4a5d661aSToomas Soome            such as Unix filters;
105*4a5d661aSToomas Soome          * Compresses data with efficiency comparable to the best
106*4a5d661aSToomas Soome            currently available general-purpose compression methods,
107*4a5d661aSToomas Soome            and in particular considerably better than the "compress"
108*4a5d661aSToomas Soome            program;
109*4a5d661aSToomas Soome          * Can be implemented readily in a manner not covered by
110*4a5d661aSToomas Soome            patents, and hence can be practiced freely;
111*4a5d661aSToomas Soome
112*4a5d661aSToomas Soome
113*4a5d661aSToomas Soome
114*4a5d661aSToomas SoomeDeutsch                      Informational                      [Page 2]
115*4a5d661aSToomas Soome
116*4a5d661aSToomas SoomeRFC 1951      DEFLATE Compressed Data Format Specification      May 1996
117*4a5d661aSToomas Soome
118*4a5d661aSToomas Soome
119*4a5d661aSToomas Soome          * Is compatible with the file format produced by the current
120*4a5d661aSToomas Soome            widely used gzip utility, in that conforming decompressors
121*4a5d661aSToomas Soome            will be able to read data produced by the existing gzip
122*4a5d661aSToomas Soome            compressor.
123*4a5d661aSToomas Soome
124*4a5d661aSToomas Soome      The data format defined by this specification does not attempt to:
125*4a5d661aSToomas Soome
126*4a5d661aSToomas Soome          * Allow random access to compressed data;
127*4a5d661aSToomas Soome          * Compress specialized data (e.g., raster graphics) as well
128*4a5d661aSToomas Soome            as the best currently available specialized algorithms.
129*4a5d661aSToomas Soome
130*4a5d661aSToomas Soome      A simple counting argument shows that no lossless compression
131*4a5d661aSToomas Soome      algorithm can compress every possible input data set.  For the
132*4a5d661aSToomas Soome      format defined here, the worst case expansion is 5 bytes per 32K-
133*4a5d661aSToomas Soome      byte block, i.e., a size increase of 0.015% for large data sets.
134*4a5d661aSToomas Soome      English text usually compresses by a factor of 2.5 to 3;
135*4a5d661aSToomas Soome      executable files usually compress somewhat less; graphical data
136*4a5d661aSToomas Soome      such as raster images may compress much more.
137*4a5d661aSToomas Soome
138*4a5d661aSToomas Soome   1.2. Intended audience
139*4a5d661aSToomas Soome
140*4a5d661aSToomas Soome      This specification is intended for use by implementors of software
141*4a5d661aSToomas Soome      to compress data into "deflate" format and/or decompress data from
142*4a5d661aSToomas Soome      "deflate" format.
143*4a5d661aSToomas Soome
144*4a5d661aSToomas Soome      The text of the specification assumes a basic background in
145*4a5d661aSToomas Soome      programming at the level of bits and other primitive data
146*4a5d661aSToomas Soome      representations.  Familiarity with the technique of Huffman coding
147*4a5d661aSToomas Soome      is helpful but not required.
148*4a5d661aSToomas Soome
149*4a5d661aSToomas Soome   1.3. Scope
150*4a5d661aSToomas Soome
151*4a5d661aSToomas Soome      The specification specifies a method for representing a sequence
152*4a5d661aSToomas Soome      of bytes as a (usually shorter) sequence of bits, and a method for
153*4a5d661aSToomas Soome      packing the latter bit sequence into bytes.
154*4a5d661aSToomas Soome
155*4a5d661aSToomas Soome   1.4. Compliance
156*4a5d661aSToomas Soome
157*4a5d661aSToomas Soome      Unless otherwise indicated below, a compliant decompressor must be
158*4a5d661aSToomas Soome      able to accept and decompress any data set that conforms to all
159*4a5d661aSToomas Soome      the specifications presented here; a compliant compressor must
160*4a5d661aSToomas Soome      produce data sets that conform to all the specifications presented
161*4a5d661aSToomas Soome      here.
162*4a5d661aSToomas Soome
163*4a5d661aSToomas Soome   1.5.  Definitions of terms and conventions used
164*4a5d661aSToomas Soome
165*4a5d661aSToomas Soome      Byte: 8 bits stored or transmitted as a unit (same as an octet).
166*4a5d661aSToomas Soome      For this specification, a byte is exactly 8 bits, even on machines
167*4a5d661aSToomas Soome
168*4a5d661aSToomas Soome
169*4a5d661aSToomas Soome
170*4a5d661aSToomas SoomeDeutsch                      Informational                      [Page 3]
171*4a5d661aSToomas Soome
172*4a5d661aSToomas SoomeRFC 1951      DEFLATE Compressed Data Format Specification      May 1996
173*4a5d661aSToomas Soome
174*4a5d661aSToomas Soome
175*4a5d661aSToomas Soome      which store a character on a number of bits different from eight.
176*4a5d661aSToomas Soome      See below, for the numbering of bits within a byte.
177*4a5d661aSToomas Soome
178*4a5d661aSToomas Soome      String: a sequence of arbitrary bytes.
179*4a5d661aSToomas Soome
180*4a5d661aSToomas Soome   1.6. Changes from previous versions
181*4a5d661aSToomas Soome
182*4a5d661aSToomas Soome      There have been no technical changes to the deflate format since
183*4a5d661aSToomas Soome      version 1.1 of this specification.  In version 1.2, some
184*4a5d661aSToomas Soome      terminology was changed.  Version 1.3 is a conversion of the
185*4a5d661aSToomas Soome      specification to RFC style.
186*4a5d661aSToomas Soome
187*4a5d661aSToomas Soome2. Compressed representation overview
188*4a5d661aSToomas Soome
189*4a5d661aSToomas Soome   A compressed data set consists of a series of blocks, corresponding
190*4a5d661aSToomas Soome   to successive blocks of input data.  The block sizes are arbitrary,
191*4a5d661aSToomas Soome   except that non-compressible blocks are limited to 65,535 bytes.
192*4a5d661aSToomas Soome
193*4a5d661aSToomas Soome   Each block is compressed using a combination of the LZ77 algorithm
194*4a5d661aSToomas Soome   and Huffman coding. The Huffman trees for each block are independent
195*4a5d661aSToomas Soome   of those for previous or subsequent blocks; the LZ77 algorithm may
196*4a5d661aSToomas Soome   use a reference to a duplicated string occurring in a previous block,
197*4a5d661aSToomas Soome   up to 32K input bytes before.
198*4a5d661aSToomas Soome
199*4a5d661aSToomas Soome   Each block consists of two parts: a pair of Huffman code trees that
200*4a5d661aSToomas Soome   describe the representation of the compressed data part, and a
201*4a5d661aSToomas Soome   compressed data part.  (The Huffman trees themselves are compressed
202*4a5d661aSToomas Soome   using Huffman encoding.)  The compressed data consists of a series of
203*4a5d661aSToomas Soome   elements of two types: literal bytes (of strings that have not been
204*4a5d661aSToomas Soome   detected as duplicated within the previous 32K input bytes), and
205*4a5d661aSToomas Soome   pointers to duplicated strings, where a pointer is represented as a
206*4a5d661aSToomas Soome   pair <length, backward distance>.  The representation used in the
207*4a5d661aSToomas Soome   "deflate" format limits distances to 32K bytes and lengths to 258
208*4a5d661aSToomas Soome   bytes, but does not limit the size of a block, except for
209*4a5d661aSToomas Soome   uncompressible blocks, which are limited as noted above.
210*4a5d661aSToomas Soome
211*4a5d661aSToomas Soome   Each type of value (literals, distances, and lengths) in the
212*4a5d661aSToomas Soome   compressed data is represented using a Huffman code, using one code
213*4a5d661aSToomas Soome   tree for literals and lengths and a separate code tree for distances.
214*4a5d661aSToomas Soome   The code trees for each block appear in a compact form just before
215*4a5d661aSToomas Soome   the compressed data for that block.
216*4a5d661aSToomas Soome
217*4a5d661aSToomas Soome
218*4a5d661aSToomas Soome
219*4a5d661aSToomas Soome
220*4a5d661aSToomas Soome
221*4a5d661aSToomas Soome
222*4a5d661aSToomas Soome
223*4a5d661aSToomas Soome
224*4a5d661aSToomas Soome
225*4a5d661aSToomas Soome
226*4a5d661aSToomas SoomeDeutsch                      Informational                      [Page 4]
227*4a5d661aSToomas Soome
228*4a5d661aSToomas SoomeRFC 1951      DEFLATE Compressed Data Format Specification      May 1996
229*4a5d661aSToomas Soome
230*4a5d661aSToomas Soome
231*4a5d661aSToomas Soome3. Detailed specification
232*4a5d661aSToomas Soome
233*4a5d661aSToomas Soome   3.1. Overall conventions In the diagrams below, a box like this:
234*4a5d661aSToomas Soome
235*4a5d661aSToomas Soome         +---+
236*4a5d661aSToomas Soome         |   | <-- the vertical bars might be missing
237*4a5d661aSToomas Soome         +---+
238*4a5d661aSToomas Soome
239*4a5d661aSToomas Soome      represents one byte; a box like this:
240*4a5d661aSToomas Soome
241*4a5d661aSToomas Soome         +==============+
242*4a5d661aSToomas Soome         |              |
243*4a5d661aSToomas Soome         +==============+
244*4a5d661aSToomas Soome
245*4a5d661aSToomas Soome      represents a variable number of bytes.
246*4a5d661aSToomas Soome
247*4a5d661aSToomas Soome      Bytes stored within a computer do not have a "bit order", since
248*4a5d661aSToomas Soome      they are always treated as a unit.  However, a byte considered as
249*4a5d661aSToomas Soome      an integer between 0 and 255 does have a most- and least-
250*4a5d661aSToomas Soome      significant bit, and since we write numbers with the most-
251*4a5d661aSToomas Soome      significant digit on the left, we also write bytes with the most-
252*4a5d661aSToomas Soome      significant bit on the left.  In the diagrams below, we number the
253*4a5d661aSToomas Soome      bits of a byte so that bit 0 is the least-significant bit, i.e.,
254*4a5d661aSToomas Soome      the bits are numbered:
255*4a5d661aSToomas Soome
256*4a5d661aSToomas Soome         +--------+
257*4a5d661aSToomas Soome         |76543210|
258*4a5d661aSToomas Soome         +--------+
259*4a5d661aSToomas Soome
260*4a5d661aSToomas Soome      Within a computer, a number may occupy multiple bytes.  All
261*4a5d661aSToomas Soome      multi-byte numbers in the format described here are stored with
262*4a5d661aSToomas Soome      the least-significant byte first (at the lower memory address).
263*4a5d661aSToomas Soome      For example, the decimal number 520 is stored as:
264*4a5d661aSToomas Soome
265*4a5d661aSToomas Soome             0        1
266*4a5d661aSToomas Soome         +--------+--------+
267*4a5d661aSToomas Soome         |00001000|00000010|
268*4a5d661aSToomas Soome         +--------+--------+
269*4a5d661aSToomas Soome          ^        ^
270*4a5d661aSToomas Soome          |        |
271*4a5d661aSToomas Soome          |        + more significant byte = 2 x 256
272*4a5d661aSToomas Soome          + less significant byte = 8
273*4a5d661aSToomas Soome
274*4a5d661aSToomas Soome      3.1.1. Packing into bytes
275*4a5d661aSToomas Soome
276*4a5d661aSToomas Soome         This document does not address the issue of the order in which
277*4a5d661aSToomas Soome         bits of a byte are transmitted on a bit-sequential medium,
278*4a5d661aSToomas Soome         since the final data format described here is byte- rather than
279*4a5d661aSToomas Soome
280*4a5d661aSToomas Soome
281*4a5d661aSToomas Soome
282*4a5d661aSToomas SoomeDeutsch                      Informational                      [Page 5]
283*4a5d661aSToomas Soome
284*4a5d661aSToomas SoomeRFC 1951      DEFLATE Compressed Data Format Specification      May 1996
285*4a5d661aSToomas Soome
286*4a5d661aSToomas Soome
287*4a5d661aSToomas Soome         bit-oriented.  However, we describe the compressed block format
288*4a5d661aSToomas Soome         in below, as a sequence of data elements of various bit
289*4a5d661aSToomas Soome         lengths, not a sequence of bytes.  We must therefore specify
290*4a5d661aSToomas Soome         how to pack these data elements into bytes to form the final
291*4a5d661aSToomas Soome         compressed byte sequence:
292*4a5d661aSToomas Soome
293*4a5d661aSToomas Soome             * Data elements are packed into bytes in order of
294*4a5d661aSToomas Soome               increasing bit number within the byte, i.e., starting
295*4a5d661aSToomas Soome               with the least-significant bit of the byte.
296*4a5d661aSToomas Soome             * Data elements other than Huffman codes are packed
297*4a5d661aSToomas Soome               starting with the least-significant bit of the data
298*4a5d661aSToomas Soome               element.
299*4a5d661aSToomas Soome             * Huffman codes are packed starting with the most-
300*4a5d661aSToomas Soome               significant bit of the code.
301*4a5d661aSToomas Soome
302*4a5d661aSToomas Soome         In other words, if one were to print out the compressed data as
303*4a5d661aSToomas Soome         a sequence of bytes, starting with the first byte at the
304*4a5d661aSToomas Soome         *right* margin and proceeding to the *left*, with the most-
305*4a5d661aSToomas Soome         significant bit of each byte on the left as usual, one would be
306*4a5d661aSToomas Soome         able to parse the result from right to left, with fixed-width
307*4a5d661aSToomas Soome         elements in the correct MSB-to-LSB order and Huffman codes in
308*4a5d661aSToomas Soome         bit-reversed order (i.e., with the first bit of the code in the
309*4a5d661aSToomas Soome         relative LSB position).
310*4a5d661aSToomas Soome
311*4a5d661aSToomas Soome   3.2. Compressed block format
312*4a5d661aSToomas Soome
313*4a5d661aSToomas Soome      3.2.1. Synopsis of prefix and Huffman coding
314*4a5d661aSToomas Soome
315*4a5d661aSToomas Soome         Prefix coding represents symbols from an a priori known
316*4a5d661aSToomas Soome         alphabet by bit sequences (codes), one code for each symbol, in
317*4a5d661aSToomas Soome         a manner such that different symbols may be represented by bit
318*4a5d661aSToomas Soome         sequences of different lengths, but a parser can always parse
319*4a5d661aSToomas Soome         an encoded string unambiguously symbol-by-symbol.
320*4a5d661aSToomas Soome
321*4a5d661aSToomas Soome         We define a prefix code in terms of a binary tree in which the
322*4a5d661aSToomas Soome         two edges descending from each non-leaf node are labeled 0 and
323*4a5d661aSToomas Soome         1 and in which the leaf nodes correspond one-for-one with (are
324*4a5d661aSToomas Soome         labeled with) the symbols of the alphabet; then the code for a
325*4a5d661aSToomas Soome         symbol is the sequence of 0's and 1's on the edges leading from
326*4a5d661aSToomas Soome         the root to the leaf labeled with that symbol.  For example:
327*4a5d661aSToomas Soome
328*4a5d661aSToomas Soome
329*4a5d661aSToomas Soome
330*4a5d661aSToomas Soome
331*4a5d661aSToomas Soome
332*4a5d661aSToomas Soome
333*4a5d661aSToomas Soome
334*4a5d661aSToomas Soome
335*4a5d661aSToomas Soome
336*4a5d661aSToomas Soome
337*4a5d661aSToomas Soome
338*4a5d661aSToomas SoomeDeutsch                      Informational                      [Page 6]
339*4a5d661aSToomas Soome
340*4a5d661aSToomas SoomeRFC 1951      DEFLATE Compressed Data Format Specification      May 1996
341*4a5d661aSToomas Soome
342*4a5d661aSToomas Soome
343*4a5d661aSToomas Soome                          /\              Symbol    Code
344*4a5d661aSToomas Soome                         0  1             ------    ----
345*4a5d661aSToomas Soome                        /    \                A      00
346*4a5d661aSToomas Soome                       /\     B               B       1
347*4a5d661aSToomas Soome                      0  1                    C     011
348*4a5d661aSToomas Soome                     /    \                   D     010
349*4a5d661aSToomas Soome                    A     /\
350*4a5d661aSToomas Soome                         0  1
351*4a5d661aSToomas Soome                        /    \
352*4a5d661aSToomas Soome                       D      C
353*4a5d661aSToomas Soome
354*4a5d661aSToomas Soome         A parser can decode the next symbol from an encoded input
355*4a5d661aSToomas Soome         stream by walking down the tree from the root, at each step
356*4a5d661aSToomas Soome         choosing the edge corresponding to the next input bit.
357*4a5d661aSToomas Soome
358*4a5d661aSToomas Soome         Given an alphabet with known symbol frequencies, the Huffman
359*4a5d661aSToomas Soome         algorithm allows the construction of an optimal prefix code
360*4a5d661aSToomas Soome         (one which represents strings with those symbol frequencies
361*4a5d661aSToomas Soome         using the fewest bits of any possible prefix codes for that
362*4a5d661aSToomas Soome         alphabet).  Such a code is called a Huffman code.  (See
363*4a5d661aSToomas Soome         reference [1] in Chapter 5, references for additional
364*4a5d661aSToomas Soome         information on Huffman codes.)
365*4a5d661aSToomas Soome
366*4a5d661aSToomas Soome         Note that in the "deflate" format, the Huffman codes for the
367*4a5d661aSToomas Soome         various alphabets must not exceed certain maximum code lengths.
368*4a5d661aSToomas Soome         This constraint complicates the algorithm for computing code
369*4a5d661aSToomas Soome         lengths from symbol frequencies.  Again, see Chapter 5,
370*4a5d661aSToomas Soome         references for details.
371*4a5d661aSToomas Soome
372*4a5d661aSToomas Soome      3.2.2. Use of Huffman coding in the "deflate" format
373*4a5d661aSToomas Soome
374*4a5d661aSToomas Soome         The Huffman codes used for each alphabet in the "deflate"
375*4a5d661aSToomas Soome         format have two additional rules:
376*4a5d661aSToomas Soome
377*4a5d661aSToomas Soome             * All codes of a given bit length have lexicographically
378*4a5d661aSToomas Soome               consecutive values, in the same order as the symbols
379*4a5d661aSToomas Soome               they represent;
380*4a5d661aSToomas Soome
381*4a5d661aSToomas Soome             * Shorter codes lexicographically precede longer codes.
382*4a5d661aSToomas Soome
383*4a5d661aSToomas Soome
384*4a5d661aSToomas Soome
385*4a5d661aSToomas Soome
386*4a5d661aSToomas Soome
387*4a5d661aSToomas Soome
388*4a5d661aSToomas Soome
389*4a5d661aSToomas Soome
390*4a5d661aSToomas Soome
391*4a5d661aSToomas Soome
392*4a5d661aSToomas Soome
393*4a5d661aSToomas Soome
394*4a5d661aSToomas SoomeDeutsch                      Informational                      [Page 7]
395*4a5d661aSToomas Soome
396*4a5d661aSToomas SoomeRFC 1951      DEFLATE Compressed Data Format Specification      May 1996
397*4a5d661aSToomas Soome
398*4a5d661aSToomas Soome
399*4a5d661aSToomas Soome         We could recode the example above to follow this rule as
400*4a5d661aSToomas Soome         follows, assuming that the order of the alphabet is ABCD:
401*4a5d661aSToomas Soome
402*4a5d661aSToomas Soome            Symbol  Code
403*4a5d661aSToomas Soome            ------  ----
404*4a5d661aSToomas Soome            A       10
405*4a5d661aSToomas Soome            B       0
406*4a5d661aSToomas Soome            C       110
407*4a5d661aSToomas Soome            D       111
408*4a5d661aSToomas Soome
409*4a5d661aSToomas Soome         I.e., 0 precedes 10 which precedes 11x, and 110 and 111 are
410*4a5d661aSToomas Soome         lexicographically consecutive.
411*4a5d661aSToomas Soome
412*4a5d661aSToomas Soome         Given this rule, we can define the Huffman code for an alphabet
413*4a5d661aSToomas Soome         just by giving the bit lengths of the codes for each symbol of
414*4a5d661aSToomas Soome         the alphabet in order; this is sufficient to determine the
415*4a5d661aSToomas Soome         actual codes.  In our example, the code is completely defined
416*4a5d661aSToomas Soome         by the sequence of bit lengths (2, 1, 3, 3).  The following
417*4a5d661aSToomas Soome         algorithm generates the codes as integers, intended to be read
418*4a5d661aSToomas Soome         from most- to least-significant bit.  The code lengths are
419*4a5d661aSToomas Soome         initially in tree[I].Len; the codes are produced in
420*4a5d661aSToomas Soome         tree[I].Code.
421*4a5d661aSToomas Soome
422*4a5d661aSToomas Soome         1)  Count the number of codes for each code length.  Let
423*4a5d661aSToomas Soome             bl_count[N] be the number of codes of length N, N >= 1.
424*4a5d661aSToomas Soome
425*4a5d661aSToomas Soome         2)  Find the numerical value of the smallest code for each
426*4a5d661aSToomas Soome             code length:
427*4a5d661aSToomas Soome
428*4a5d661aSToomas Soome                code = 0;
429*4a5d661aSToomas Soome                bl_count[0] = 0;
430*4a5d661aSToomas Soome                for (bits = 1; bits <= MAX_BITS; bits++) {
431*4a5d661aSToomas Soome                    code = (code + bl_count[bits-1]) << 1;
432*4a5d661aSToomas Soome                    next_code[bits] = code;
433*4a5d661aSToomas Soome                }
434*4a5d661aSToomas Soome
435*4a5d661aSToomas Soome         3)  Assign numerical values to all codes, using consecutive
436*4a5d661aSToomas Soome             values for all codes of the same length with the base
437*4a5d661aSToomas Soome             values determined at step 2. Codes that are never used
438*4a5d661aSToomas Soome             (which have a bit length of zero) must not be assigned a
439*4a5d661aSToomas Soome             value.
440*4a5d661aSToomas Soome
441*4a5d661aSToomas Soome                for (n = 0;  n <= max_code; n++) {
442*4a5d661aSToomas Soome                    len = tree[n].Len;
443*4a5d661aSToomas Soome                    if (len != 0) {
444*4a5d661aSToomas Soome                        tree[n].Code = next_code[len];
445*4a5d661aSToomas Soome                        next_code[len]++;
446*4a5d661aSToomas Soome                    }
447*4a5d661aSToomas Soome
448*4a5d661aSToomas Soome
449*4a5d661aSToomas Soome
450*4a5d661aSToomas SoomeDeutsch                      Informational                      [Page 8]
451*4a5d661aSToomas Soome
452*4a5d661aSToomas SoomeRFC 1951      DEFLATE Compressed Data Format Specification      May 1996
453*4a5d661aSToomas Soome
454*4a5d661aSToomas Soome
455*4a5d661aSToomas Soome                }
456*4a5d661aSToomas Soome
457*4a5d661aSToomas Soome         Example:
458*4a5d661aSToomas Soome
459*4a5d661aSToomas Soome         Consider the alphabet ABCDEFGH, with bit lengths (3, 3, 3, 3,
460*4a5d661aSToomas Soome         3, 2, 4, 4).  After step 1, we have:
461*4a5d661aSToomas Soome
462*4a5d661aSToomas Soome            N      bl_count[N]
463*4a5d661aSToomas Soome            -      -----------
464*4a5d661aSToomas Soome            2      1
465*4a5d661aSToomas Soome            3      5
466*4a5d661aSToomas Soome            4      2
467*4a5d661aSToomas Soome
468*4a5d661aSToomas Soome         Step 2 computes the following next_code values:
469*4a5d661aSToomas Soome
470*4a5d661aSToomas Soome            N      next_code[N]
471*4a5d661aSToomas Soome            -      ------------
472*4a5d661aSToomas Soome            1      0
473*4a5d661aSToomas Soome            2      0
474*4a5d661aSToomas Soome            3      2
475*4a5d661aSToomas Soome            4      14
476*4a5d661aSToomas Soome
477*4a5d661aSToomas Soome         Step 3 produces the following code values:
478*4a5d661aSToomas Soome
479*4a5d661aSToomas Soome            Symbol Length   Code
480*4a5d661aSToomas Soome            ------ ------   ----
481*4a5d661aSToomas Soome            A       3        010
482*4a5d661aSToomas Soome            B       3        011
483*4a5d661aSToomas Soome            C       3        100
484*4a5d661aSToomas Soome            D       3        101
485*4a5d661aSToomas Soome            E       3        110
486*4a5d661aSToomas Soome            F       2         00
487*4a5d661aSToomas Soome            G       4       1110
488*4a5d661aSToomas Soome            H       4       1111
489*4a5d661aSToomas Soome
490*4a5d661aSToomas Soome      3.2.3. Details of block format
491*4a5d661aSToomas Soome
492*4a5d661aSToomas Soome         Each block of compressed data begins with 3 header bits
493*4a5d661aSToomas Soome         containing the following data:
494*4a5d661aSToomas Soome
495*4a5d661aSToomas Soome            first bit       BFINAL
496*4a5d661aSToomas Soome            next 2 bits     BTYPE
497*4a5d661aSToomas Soome
498*4a5d661aSToomas Soome         Note that the header bits do not necessarily begin on a byte
499*4a5d661aSToomas Soome         boundary, since a block does not necessarily occupy an integral
500*4a5d661aSToomas Soome         number of bytes.
501*4a5d661aSToomas Soome
502*4a5d661aSToomas Soome
503*4a5d661aSToomas Soome
504*4a5d661aSToomas Soome
505*4a5d661aSToomas Soome
506*4a5d661aSToomas SoomeDeutsch                      Informational                      [Page 9]
507*4a5d661aSToomas Soome
508*4a5d661aSToomas SoomeRFC 1951      DEFLATE Compressed Data Format Specification      May 1996
509*4a5d661aSToomas Soome
510*4a5d661aSToomas Soome
511*4a5d661aSToomas Soome         BFINAL is set if and only if this is the last block of the data
512*4a5d661aSToomas Soome         set.
513*4a5d661aSToomas Soome
514*4a5d661aSToomas Soome         BTYPE specifies how the data are compressed, as follows:
515*4a5d661aSToomas Soome
516*4a5d661aSToomas Soome            00 - no compression
517*4a5d661aSToomas Soome            01 - compressed with fixed Huffman codes
518*4a5d661aSToomas Soome            10 - compressed with dynamic Huffman codes
519*4a5d661aSToomas Soome            11 - reserved (error)
520*4a5d661aSToomas Soome
521*4a5d661aSToomas Soome         The only difference between the two compressed cases is how the
522*4a5d661aSToomas Soome         Huffman codes for the literal/length and distance alphabets are
523*4a5d661aSToomas Soome         defined.
524*4a5d661aSToomas Soome
525*4a5d661aSToomas Soome         In all cases, the decoding algorithm for the actual data is as
526*4a5d661aSToomas Soome         follows:
527*4a5d661aSToomas Soome
528*4a5d661aSToomas Soome            do
529*4a5d661aSToomas Soome               read block header from input stream.
530*4a5d661aSToomas Soome               if stored with no compression
531*4a5d661aSToomas Soome                  skip any remaining bits in current partially
532*4a5d661aSToomas Soome                     processed byte
533*4a5d661aSToomas Soome                  read LEN and NLEN (see next section)
534*4a5d661aSToomas Soome                  copy LEN bytes of data to output
535*4a5d661aSToomas Soome               otherwise
536*4a5d661aSToomas Soome                  if compressed with dynamic Huffman codes
537*4a5d661aSToomas Soome                     read representation of code trees (see
538*4a5d661aSToomas Soome                        subsection below)
539*4a5d661aSToomas Soome                  loop (until end of block code recognized)
540*4a5d661aSToomas Soome                     decode literal/length value from input stream
541*4a5d661aSToomas Soome                     if value < 256
542*4a5d661aSToomas Soome                        copy value (literal byte) to output stream
543*4a5d661aSToomas Soome                     otherwise
544*4a5d661aSToomas Soome                        if value = end of block (256)
545*4a5d661aSToomas Soome                           break from loop
546*4a5d661aSToomas Soome                        otherwise (value = 257..285)
547*4a5d661aSToomas Soome                           decode distance from input stream
548*4a5d661aSToomas Soome
549*4a5d661aSToomas Soome                           move backwards distance bytes in the output
550*4a5d661aSToomas Soome                           stream, and copy length bytes from this
551*4a5d661aSToomas Soome                           position to the output stream.
552*4a5d661aSToomas Soome                  end loop
553*4a5d661aSToomas Soome            while not last block
554*4a5d661aSToomas Soome
555*4a5d661aSToomas Soome         Note that a duplicated string reference may refer to a string
556*4a5d661aSToomas Soome         in a previous block; i.e., the backward distance may cross one
557*4a5d661aSToomas Soome         or more block boundaries.  However a distance cannot refer past
558*4a5d661aSToomas Soome         the beginning of the output stream.  (An application using a
559*4a5d661aSToomas Soome
560*4a5d661aSToomas Soome
561*4a5d661aSToomas Soome
562*4a5d661aSToomas SoomeDeutsch                      Informational                     [Page 10]
563*4a5d661aSToomas Soome
564*4a5d661aSToomas SoomeRFC 1951      DEFLATE Compressed Data Format Specification      May 1996
565*4a5d661aSToomas Soome
566*4a5d661aSToomas Soome
567*4a5d661aSToomas Soome         preset dictionary might discard part of the output stream; a
568*4a5d661aSToomas Soome         distance can refer to that part of the output stream anyway)
569*4a5d661aSToomas Soome         Note also that the referenced string may overlap the current
570*4a5d661aSToomas Soome         position; for example, if the last 2 bytes decoded have values
571*4a5d661aSToomas Soome         X and Y, a string reference with <length = 5, distance = 2>
572*4a5d661aSToomas Soome         adds X,Y,X,Y,X to the output stream.
573*4a5d661aSToomas Soome
574*4a5d661aSToomas Soome         We now specify each compression method in turn.
575*4a5d661aSToomas Soome
576*4a5d661aSToomas Soome      3.2.4. Non-compressed blocks (BTYPE=00)
577*4a5d661aSToomas Soome
578*4a5d661aSToomas Soome         Any bits of input up to the next byte boundary are ignored.
579*4a5d661aSToomas Soome         The rest of the block consists of the following information:
580*4a5d661aSToomas Soome
581*4a5d661aSToomas Soome              0   1   2   3   4...
582*4a5d661aSToomas Soome            +---+---+---+---+================================+
583*4a5d661aSToomas Soome            |  LEN  | NLEN  |... LEN bytes of literal data...|
584*4a5d661aSToomas Soome            +---+---+---+---+================================+
585*4a5d661aSToomas Soome
586*4a5d661aSToomas Soome         LEN is the number of data bytes in the block.  NLEN is the
587*4a5d661aSToomas Soome         one's complement of LEN.
588*4a5d661aSToomas Soome
589*4a5d661aSToomas Soome      3.2.5. Compressed blocks (length and distance codes)
590*4a5d661aSToomas Soome
591*4a5d661aSToomas Soome         As noted above, encoded data blocks in the "deflate" format
592*4a5d661aSToomas Soome         consist of sequences of symbols drawn from three conceptually
593*4a5d661aSToomas Soome         distinct alphabets: either literal bytes, from the alphabet of
594*4a5d661aSToomas Soome         byte values (0..255), or <length, backward distance> pairs,
595*4a5d661aSToomas Soome         where the length is drawn from (3..258) and the distance is
596*4a5d661aSToomas Soome         drawn from (1..32,768).  In fact, the literal and length
597*4a5d661aSToomas Soome         alphabets are merged into a single alphabet (0..285), where
598*4a5d661aSToomas Soome         values 0..255 represent literal bytes, the value 256 indicates
599*4a5d661aSToomas Soome         end-of-block, and values 257..285 represent length codes
600*4a5d661aSToomas Soome         (possibly in conjunction with extra bits following the symbol
601*4a5d661aSToomas Soome         code) as follows:
602*4a5d661aSToomas Soome
603*4a5d661aSToomas Soome
604*4a5d661aSToomas Soome
605*4a5d661aSToomas Soome
606*4a5d661aSToomas Soome
607*4a5d661aSToomas Soome
608*4a5d661aSToomas Soome
609*4a5d661aSToomas Soome
610*4a5d661aSToomas Soome
611*4a5d661aSToomas Soome
612*4a5d661aSToomas Soome
613*4a5d661aSToomas Soome
614*4a5d661aSToomas Soome
615*4a5d661aSToomas Soome
616*4a5d661aSToomas Soome
617*4a5d661aSToomas Soome
618*4a5d661aSToomas SoomeDeutsch                      Informational                     [Page 11]
619*4a5d661aSToomas Soome
620*4a5d661aSToomas SoomeRFC 1951      DEFLATE Compressed Data Format Specification      May 1996
621*4a5d661aSToomas Soome
622*4a5d661aSToomas Soome
623*4a5d661aSToomas Soome                 Extra               Extra               Extra
624*4a5d661aSToomas Soome            Code Bits Length(s) Code Bits Lengths   Code Bits Length(s)
625*4a5d661aSToomas Soome            ---- ---- ------     ---- ---- -------   ---- ---- -------
626*4a5d661aSToomas Soome             257   0     3       267   1   15,16     277   4   67-82
627*4a5d661aSToomas Soome             258   0     4       268   1   17,18     278   4   83-98
628*4a5d661aSToomas Soome             259   0     5       269   2   19-22     279   4   99-114
629*4a5d661aSToomas Soome             260   0     6       270   2   23-26     280   4  115-130
630*4a5d661aSToomas Soome             261   0     7       271   2   27-30     281   5  131-162
631*4a5d661aSToomas Soome             262   0     8       272   2   31-34     282   5  163-194
632*4a5d661aSToomas Soome             263   0     9       273   3   35-42     283   5  195-226
633*4a5d661aSToomas Soome             264   0    10       274   3   43-50     284   5  227-257
634*4a5d661aSToomas Soome             265   1  11,12      275   3   51-58     285   0    258
635*4a5d661aSToomas Soome             266   1  13,14      276   3   59-66
636*4a5d661aSToomas Soome
637*4a5d661aSToomas Soome         The extra bits should be interpreted as a machine integer
638*4a5d661aSToomas Soome         stored with the most-significant bit first, e.g., bits 1110
639*4a5d661aSToomas Soome         represent the value 14.
640*4a5d661aSToomas Soome
641*4a5d661aSToomas Soome                  Extra           Extra               Extra
642*4a5d661aSToomas Soome             Code Bits Dist  Code Bits   Dist     Code Bits Distance
643*4a5d661aSToomas Soome             ---- ---- ----  ---- ----  ------    ---- ---- --------
644*4a5d661aSToomas Soome               0   0    1     10   4     33-48    20    9   1025-1536
645*4a5d661aSToomas Soome               1   0    2     11   4     49-64    21    9   1537-2048
646*4a5d661aSToomas Soome               2   0    3     12   5     65-96    22   10   2049-3072
647*4a5d661aSToomas Soome               3   0    4     13   5     97-128   23   10   3073-4096
648*4a5d661aSToomas Soome               4   1   5,6    14   6    129-192   24   11   4097-6144
649*4a5d661aSToomas Soome               5   1   7,8    15   6    193-256   25   11   6145-8192
650*4a5d661aSToomas Soome               6   2   9-12   16   7    257-384   26   12  8193-12288
651*4a5d661aSToomas Soome               7   2  13-16   17   7    385-512   27   12 12289-16384
652*4a5d661aSToomas Soome               8   3  17-24   18   8    513-768   28   13 16385-24576
653*4a5d661aSToomas Soome               9   3  25-32   19   8   769-1024   29   13 24577-32768
654*4a5d661aSToomas Soome
655*4a5d661aSToomas Soome      3.2.6. Compression with fixed Huffman codes (BTYPE=01)
656*4a5d661aSToomas Soome
657*4a5d661aSToomas Soome         The Huffman codes for the two alphabets are fixed, and are not
658*4a5d661aSToomas Soome         represented explicitly in the data.  The Huffman code lengths
659*4a5d661aSToomas Soome         for the literal/length alphabet are:
660*4a5d661aSToomas Soome
661*4a5d661aSToomas Soome                   Lit Value    Bits        Codes
662*4a5d661aSToomas Soome                   ---------    ----        -----
663*4a5d661aSToomas Soome                     0 - 143     8          00110000 through
664*4a5d661aSToomas Soome                                            10111111
665*4a5d661aSToomas Soome                   144 - 255     9          110010000 through
666*4a5d661aSToomas Soome                                            111111111
667*4a5d661aSToomas Soome                   256 - 279     7          0000000 through
668*4a5d661aSToomas Soome                                            0010111
669*4a5d661aSToomas Soome                   280 - 287     8          11000000 through
670*4a5d661aSToomas Soome                                            11000111
671*4a5d661aSToomas Soome
672*4a5d661aSToomas Soome
673*4a5d661aSToomas Soome
674*4a5d661aSToomas SoomeDeutsch                      Informational                     [Page 12]
675*4a5d661aSToomas Soome
676*4a5d661aSToomas SoomeRFC 1951      DEFLATE Compressed Data Format Specification      May 1996
677*4a5d661aSToomas Soome
678*4a5d661aSToomas Soome
679*4a5d661aSToomas Soome         The code lengths are sufficient to generate the actual codes,
680*4a5d661aSToomas Soome         as described above; we show the codes in the table for added
681*4a5d661aSToomas Soome         clarity.  Literal/length values 286-287 will never actually
682*4a5d661aSToomas Soome         occur in the compressed data, but participate in the code
683*4a5d661aSToomas Soome         construction.
684*4a5d661aSToomas Soome
685*4a5d661aSToomas Soome         Distance codes 0-31 are represented by (fixed-length) 5-bit
686*4a5d661aSToomas Soome         codes, with possible additional bits as shown in the table
687*4a5d661aSToomas Soome         shown in Paragraph 3.2.5, above.  Note that distance codes 30-
688*4a5d661aSToomas Soome         31 will never actually occur in the compressed data.
689*4a5d661aSToomas Soome
690*4a5d661aSToomas Soome      3.2.7. Compression with dynamic Huffman codes (BTYPE=10)
691*4a5d661aSToomas Soome
692*4a5d661aSToomas Soome         The Huffman codes for the two alphabets appear in the block
693*4a5d661aSToomas Soome         immediately after the header bits and before the actual
694*4a5d661aSToomas Soome         compressed data, first the literal/length code and then the
695*4a5d661aSToomas Soome         distance code.  Each code is defined by a sequence of code
696*4a5d661aSToomas Soome         lengths, as discussed in Paragraph 3.2.2, above.  For even
697*4a5d661aSToomas Soome         greater compactness, the code length sequences themselves are
698*4a5d661aSToomas Soome         compressed using a Huffman code.  The alphabet for code lengths
699*4a5d661aSToomas Soome         is as follows:
700*4a5d661aSToomas Soome
701*4a5d661aSToomas Soome               0 - 15: Represent code lengths of 0 - 15
702*4a5d661aSToomas Soome                   16: Copy the previous code length 3 - 6 times.
703*4a5d661aSToomas Soome                       The next 2 bits indicate repeat length
704*4a5d661aSToomas Soome                             (0 = 3, ... , 3 = 6)
705*4a5d661aSToomas Soome                          Example:  Codes 8, 16 (+2 bits 11),
706*4a5d661aSToomas Soome                                    16 (+2 bits 10) will expand to
707*4a5d661aSToomas Soome                                    12 code lengths of 8 (1 + 6 + 5)
708*4a5d661aSToomas Soome                   17: Repeat a code length of 0 for 3 - 10 times.
709*4a5d661aSToomas Soome                       (3 bits of length)
710*4a5d661aSToomas Soome                   18: Repeat a code length of 0 for 11 - 138 times
711*4a5d661aSToomas Soome                       (7 bits of length)
712*4a5d661aSToomas Soome
713*4a5d661aSToomas Soome         A code length of 0 indicates that the corresponding symbol in
714*4a5d661aSToomas Soome         the literal/length or distance alphabet will not occur in the
715*4a5d661aSToomas Soome         block, and should not participate in the Huffman code
716*4a5d661aSToomas Soome         construction algorithm given earlier.  If only one distance
717*4a5d661aSToomas Soome         code is used, it is encoded using one bit, not zero bits; in
718*4a5d661aSToomas Soome         this case there is a single code length of one, with one unused
719*4a5d661aSToomas Soome         code.  One distance code of zero bits means that there are no
720*4a5d661aSToomas Soome         distance codes used at all (the data is all literals).
721*4a5d661aSToomas Soome
722*4a5d661aSToomas Soome         We can now define the format of the block:
723*4a5d661aSToomas Soome
724*4a5d661aSToomas Soome               5 Bits: HLIT, # of Literal/Length codes - 257 (257 - 286)
725*4a5d661aSToomas Soome               5 Bits: HDIST, # of Distance codes - 1        (1 - 32)
726*4a5d661aSToomas Soome               4 Bits: HCLEN, # of Code Length codes - 4     (4 - 19)
727*4a5d661aSToomas Soome
728*4a5d661aSToomas Soome
729*4a5d661aSToomas Soome
730*4a5d661aSToomas SoomeDeutsch                      Informational                     [Page 13]
731*4a5d661aSToomas Soome
732*4a5d661aSToomas SoomeRFC 1951      DEFLATE Compressed Data Format Specification      May 1996
733*4a5d661aSToomas Soome
734*4a5d661aSToomas Soome
735*4a5d661aSToomas Soome               (HCLEN + 4) x 3 bits: code lengths for the code length
736*4a5d661aSToomas Soome                  alphabet given just above, in the order: 16, 17, 18,
737*4a5d661aSToomas Soome                  0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
738*4a5d661aSToomas Soome
739*4a5d661aSToomas Soome                  These code lengths are interpreted as 3-bit integers
740*4a5d661aSToomas Soome                  (0-7); as above, a code length of 0 means the
741*4a5d661aSToomas Soome                  corresponding symbol (literal/length or distance code
742*4a5d661aSToomas Soome                  length) is not used.
743*4a5d661aSToomas Soome
744*4a5d661aSToomas Soome               HLIT + 257 code lengths for the literal/length alphabet,
745*4a5d661aSToomas Soome                  encoded using the code length Huffman code
746*4a5d661aSToomas Soome
747*4a5d661aSToomas Soome               HDIST + 1 code lengths for the distance alphabet,
748*4a5d661aSToomas Soome                  encoded using the code length Huffman code
749*4a5d661aSToomas Soome
750*4a5d661aSToomas Soome               The actual compressed data of the block,
751*4a5d661aSToomas Soome                  encoded using the literal/length and distance Huffman
752*4a5d661aSToomas Soome                  codes
753*4a5d661aSToomas Soome
754*4a5d661aSToomas Soome               The literal/length symbol 256 (end of data),
755*4a5d661aSToomas Soome                  encoded using the literal/length Huffman code
756*4a5d661aSToomas Soome
757*4a5d661aSToomas Soome         The code length repeat codes can cross from HLIT + 257 to the
758*4a5d661aSToomas Soome         HDIST + 1 code lengths.  In other words, all code lengths form
759*4a5d661aSToomas Soome         a single sequence of HLIT + HDIST + 258 values.
760*4a5d661aSToomas Soome
761*4a5d661aSToomas Soome   3.3. Compliance
762*4a5d661aSToomas Soome
763*4a5d661aSToomas Soome      A compressor may limit further the ranges of values specified in
764*4a5d661aSToomas Soome      the previous section and still be compliant; for example, it may
765*4a5d661aSToomas Soome      limit the range of backward pointers to some value smaller than
766*4a5d661aSToomas Soome      32K.  Similarly, a compressor may limit the size of blocks so that
767*4a5d661aSToomas Soome      a compressible block fits in memory.
768*4a5d661aSToomas Soome
769*4a5d661aSToomas Soome      A compliant decompressor must accept the full range of possible
770*4a5d661aSToomas Soome      values defined in the previous section, and must accept blocks of
771*4a5d661aSToomas Soome      arbitrary size.
772*4a5d661aSToomas Soome
773*4a5d661aSToomas Soome4. Compression algorithm details
774*4a5d661aSToomas Soome
775*4a5d661aSToomas Soome   While it is the intent of this document to define the "deflate"
776*4a5d661aSToomas Soome   compressed data format without reference to any particular
777*4a5d661aSToomas Soome   compression algorithm, the format is related to the compressed
778*4a5d661aSToomas Soome   formats produced by LZ77 (Lempel-Ziv 1977, see reference [2] below);
779*4a5d661aSToomas Soome   since many variations of LZ77 are patented, it is strongly
780*4a5d661aSToomas Soome   recommended that the implementor of a compressor follow the general
781*4a5d661aSToomas Soome   algorithm presented here, which is known not to be patented per se.
782*4a5d661aSToomas Soome   The material in this section is not part of the definition of the
783*4a5d661aSToomas Soome
784*4a5d661aSToomas Soome
785*4a5d661aSToomas Soome
786*4a5d661aSToomas SoomeDeutsch                      Informational                     [Page 14]
787*4a5d661aSToomas Soome
788*4a5d661aSToomas SoomeRFC 1951      DEFLATE Compressed Data Format Specification      May 1996
789*4a5d661aSToomas Soome
790*4a5d661aSToomas Soome
791*4a5d661aSToomas Soome   specification per se, and a compressor need not follow it in order to
792*4a5d661aSToomas Soome   be compliant.
793*4a5d661aSToomas Soome
794*4a5d661aSToomas Soome   The compressor terminates a block when it determines that starting a
795*4a5d661aSToomas Soome   new block with fresh trees would be useful, or when the block size
796*4a5d661aSToomas Soome   fills up the compressor's block buffer.
797*4a5d661aSToomas Soome
798*4a5d661aSToomas Soome   The compressor uses a chained hash table to find duplicated strings,
799*4a5d661aSToomas Soome   using a hash function that operates on 3-byte sequences.  At any
800*4a5d661aSToomas Soome   given point during compression, let XYZ be the next 3 input bytes to
801*4a5d661aSToomas Soome   be examined (not necessarily all different, of course).  First, the
802*4a5d661aSToomas Soome   compressor examines the hash chain for XYZ.  If the chain is empty,
803*4a5d661aSToomas Soome   the compressor simply writes out X as a literal byte and advances one
804*4a5d661aSToomas Soome   byte in the input.  If the hash chain is not empty, indicating that
805*4a5d661aSToomas Soome   the sequence XYZ (or, if we are unlucky, some other 3 bytes with the
806*4a5d661aSToomas Soome   same hash function value) has occurred recently, the compressor
807*4a5d661aSToomas Soome   compares all strings on the XYZ hash chain with the actual input data
808*4a5d661aSToomas Soome   sequence starting at the current point, and selects the longest
809*4a5d661aSToomas Soome   match.
810*4a5d661aSToomas Soome
811*4a5d661aSToomas Soome   The compressor searches the hash chains starting with the most recent
812*4a5d661aSToomas Soome   strings, to favor small distances and thus take advantage of the
813*4a5d661aSToomas Soome   Huffman encoding.  The hash chains are singly linked. There are no
814*4a5d661aSToomas Soome   deletions from the hash chains; the algorithm simply discards matches
815*4a5d661aSToomas Soome   that are too old.  To avoid a worst-case situation, very long hash
816*4a5d661aSToomas Soome   chains are arbitrarily truncated at a certain length, determined by a
817*4a5d661aSToomas Soome   run-time parameter.
818*4a5d661aSToomas Soome
819*4a5d661aSToomas Soome   To improve overall compression, the compressor optionally defers the
820*4a5d661aSToomas Soome   selection of matches ("lazy matching"): after a match of length N has
821*4a5d661aSToomas Soome   been found, the compressor searches for a longer match starting at
822*4a5d661aSToomas Soome   the next input byte.  If it finds a longer match, it truncates the
823*4a5d661aSToomas Soome   previous match to a length of one (thus producing a single literal
824*4a5d661aSToomas Soome   byte) and then emits the longer match.  Otherwise, it emits the
825*4a5d661aSToomas Soome   original match, and, as described above, advances N bytes before
826*4a5d661aSToomas Soome   continuing.
827*4a5d661aSToomas Soome
828*4a5d661aSToomas Soome   Run-time parameters also control this "lazy match" procedure.  If
829*4a5d661aSToomas Soome   compression ratio is most important, the compressor attempts a
830*4a5d661aSToomas Soome   complete second search regardless of the length of the first match.
831*4a5d661aSToomas Soome   In the normal case, if the current match is "long enough", the
832*4a5d661aSToomas Soome   compressor reduces the search for a longer match, thus speeding up
833*4a5d661aSToomas Soome   the process.  If speed is most important, the compressor inserts new
834*4a5d661aSToomas Soome   strings in the hash table only when no match was found, or when the
835*4a5d661aSToomas Soome   match is not "too long".  This degrades the compression ratio but
836*4a5d661aSToomas Soome   saves time since there are both fewer insertions and fewer searches.
837*4a5d661aSToomas Soome
838*4a5d661aSToomas Soome
839*4a5d661aSToomas Soome
840*4a5d661aSToomas Soome
841*4a5d661aSToomas Soome
842*4a5d661aSToomas SoomeDeutsch                      Informational                     [Page 15]
843*4a5d661aSToomas Soome
844*4a5d661aSToomas SoomeRFC 1951      DEFLATE Compressed Data Format Specification      May 1996
845*4a5d661aSToomas Soome
846*4a5d661aSToomas Soome
847*4a5d661aSToomas Soome5. References
848*4a5d661aSToomas Soome
849*4a5d661aSToomas Soome   [1] Huffman, D. A., "A Method for the Construction of Minimum
850*4a5d661aSToomas Soome       Redundancy Codes", Proceedings of the Institute of Radio
851*4a5d661aSToomas Soome       Engineers, September 1952, Volume 40, Number 9, pp. 1098-1101.
852*4a5d661aSToomas Soome
853*4a5d661aSToomas Soome   [2] Ziv J., Lempel A., "A Universal Algorithm for Sequential Data
854*4a5d661aSToomas Soome       Compression", IEEE Transactions on Information Theory, Vol. 23,
855*4a5d661aSToomas Soome       No. 3, pp. 337-343.
856*4a5d661aSToomas Soome
857*4a5d661aSToomas Soome   [3] Gailly, J.-L., and Adler, M., ZLIB documentation and sources,
858*4a5d661aSToomas Soome       available in ftp://ftp.uu.net/pub/archiving/zip/doc/
859*4a5d661aSToomas Soome
860*4a5d661aSToomas Soome   [4] Gailly, J.-L., and Adler, M., GZIP documentation and sources,
861*4a5d661aSToomas Soome       available as gzip-*.tar in ftp://prep.ai.mit.edu/pub/gnu/
862*4a5d661aSToomas Soome
863*4a5d661aSToomas Soome   [5] Schwartz, E. S., and Kallick, B. "Generating a canonical prefix
864*4a5d661aSToomas Soome       encoding." Comm. ACM, 7,3 (Mar. 1964), pp. 166-169.
865*4a5d661aSToomas Soome
866*4a5d661aSToomas Soome   [6] Hirschberg and Lelewer, "Efficient decoding of prefix codes,"
867*4a5d661aSToomas Soome       Comm. ACM, 33,4, April 1990, pp. 449-459.
868*4a5d661aSToomas Soome
869*4a5d661aSToomas Soome6. Security Considerations
870*4a5d661aSToomas Soome
871*4a5d661aSToomas Soome   Any data compression method involves the reduction of redundancy in
872*4a5d661aSToomas Soome   the data.  Consequently, any corruption of the data is likely to have
873*4a5d661aSToomas Soome   severe effects and be difficult to correct.  Uncompressed text, on
874*4a5d661aSToomas Soome   the other hand, will probably still be readable despite the presence
875*4a5d661aSToomas Soome   of some corrupted bytes.
876*4a5d661aSToomas Soome
877*4a5d661aSToomas Soome   It is recommended that systems using this data format provide some
878*4a5d661aSToomas Soome   means of validating the integrity of the compressed data.  See
879*4a5d661aSToomas Soome   reference [3], for example.
880*4a5d661aSToomas Soome
881*4a5d661aSToomas Soome7. Source code
882*4a5d661aSToomas Soome
883*4a5d661aSToomas Soome   Source code for a C language implementation of a "deflate" compliant
884*4a5d661aSToomas Soome   compressor and decompressor is available within the zlib package at
885*4a5d661aSToomas Soome   ftp://ftp.uu.net/pub/archiving/zip/zlib/.
886*4a5d661aSToomas Soome
887*4a5d661aSToomas Soome8. Acknowledgements
888*4a5d661aSToomas Soome
889*4a5d661aSToomas Soome   Trademarks cited in this document are the property of their
890*4a5d661aSToomas Soome   respective owners.
891*4a5d661aSToomas Soome
892*4a5d661aSToomas Soome   Phil Katz designed the deflate format.  Jean-Loup Gailly and Mark
893*4a5d661aSToomas Soome   Adler wrote the related software described in this specification.
894*4a5d661aSToomas Soome   Glenn Randers-Pehrson converted this document to RFC and HTML format.
895*4a5d661aSToomas Soome
896*4a5d661aSToomas Soome
897*4a5d661aSToomas Soome
898*4a5d661aSToomas SoomeDeutsch                      Informational                     [Page 16]
899*4a5d661aSToomas Soome
900*4a5d661aSToomas SoomeRFC 1951      DEFLATE Compressed Data Format Specification      May 1996
901*4a5d661aSToomas Soome
902*4a5d661aSToomas Soome
903*4a5d661aSToomas Soome9. Author's Address
904*4a5d661aSToomas Soome
905*4a5d661aSToomas Soome   L. Peter Deutsch
906*4a5d661aSToomas Soome   Aladdin Enterprises
907*4a5d661aSToomas Soome   203 Santa Margarita Ave.
908*4a5d661aSToomas Soome   Menlo Park, CA 94025
909*4a5d661aSToomas Soome
910*4a5d661aSToomas Soome   Phone: (415) 322-0103 (AM only)
911*4a5d661aSToomas Soome   FAX:   (415) 322-1734
912*4a5d661aSToomas Soome   EMail: <ghost@aladdin.com>
913*4a5d661aSToomas Soome
914*4a5d661aSToomas Soome   Questions about the technical content of this specification can be
915*4a5d661aSToomas Soome   sent by email to:
916*4a5d661aSToomas Soome
917*4a5d661aSToomas Soome   Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
918*4a5d661aSToomas Soome   Mark Adler <madler@alumni.caltech.edu>
919*4a5d661aSToomas Soome
920*4a5d661aSToomas Soome   Editorial comments on this specification can be sent by email to:
921*4a5d661aSToomas Soome
922*4a5d661aSToomas Soome   L. Peter Deutsch <ghost@aladdin.com> and
923*4a5d661aSToomas Soome   Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
924*4a5d661aSToomas Soome
925*4a5d661aSToomas Soome
926*4a5d661aSToomas Soome
927*4a5d661aSToomas Soome
928*4a5d661aSToomas Soome
929*4a5d661aSToomas Soome
930*4a5d661aSToomas Soome
931*4a5d661aSToomas Soome
932*4a5d661aSToomas Soome
933*4a5d661aSToomas Soome
934*4a5d661aSToomas Soome
935*4a5d661aSToomas Soome
936*4a5d661aSToomas Soome
937*4a5d661aSToomas Soome
938*4a5d661aSToomas Soome
939*4a5d661aSToomas Soome
940*4a5d661aSToomas Soome
941*4a5d661aSToomas Soome
942*4a5d661aSToomas Soome
943*4a5d661aSToomas Soome
944*4a5d661aSToomas Soome
945*4a5d661aSToomas Soome
946*4a5d661aSToomas Soome
947*4a5d661aSToomas Soome
948*4a5d661aSToomas Soome
949*4a5d661aSToomas Soome
950*4a5d661aSToomas Soome
951*4a5d661aSToomas Soome
952*4a5d661aSToomas Soome
953*4a5d661aSToomas Soome
954*4a5d661aSToomas SoomeDeutsch                      Informational                     [Page 17]
955*4a5d661aSToomas Soome
956