xref: /titanic_51/usr/src/boot/lib/libz/doc/algorithm.txt (revision 4a5d661a82b942b6538acd26209d959ce98b593a)
1*4a5d661aSToomas Soome1. Compression algorithm (deflate)
2*4a5d661aSToomas Soome
3*4a5d661aSToomas SoomeThe deflation algorithm used by gzip (also zip and zlib) is a variation of
4*4a5d661aSToomas SoomeLZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in
5*4a5d661aSToomas Soomethe input data.  The second occurrence of a string is replaced by a
6*4a5d661aSToomas Soomepointer to the previous string, in the form of a pair (distance,
7*4a5d661aSToomas Soomelength).  Distances are limited to 32K bytes, and lengths are limited
8*4a5d661aSToomas Soometo 258 bytes. When a string does not occur anywhere in the previous
9*4a5d661aSToomas Soome32K bytes, it is emitted as a sequence of literal bytes.  (In this
10*4a5d661aSToomas Soomedescription, `string' must be taken as an arbitrary sequence of bytes,
11*4a5d661aSToomas Soomeand is not restricted to printable characters.)
12*4a5d661aSToomas Soome
13*4a5d661aSToomas SoomeLiterals or match lengths are compressed with one Huffman tree, and
14*4a5d661aSToomas Soomematch distances are compressed with another tree. The trees are stored
15*4a5d661aSToomas Soomein a compact form at the start of each block. The blocks can have any
16*4a5d661aSToomas Soomesize (except that the compressed data for one block must fit in
17*4a5d661aSToomas Soomeavailable memory). A block is terminated when deflate() determines that
18*4a5d661aSToomas Soomeit would be useful to start another block with fresh trees. (This is
19*4a5d661aSToomas Soomesomewhat similar to the behavior of LZW-based _compress_.)
20*4a5d661aSToomas Soome
21*4a5d661aSToomas SoomeDuplicated strings are found using a hash table. All input strings of
22*4a5d661aSToomas Soomelength 3 are inserted in the hash table. A hash index is computed for
23*4a5d661aSToomas Soomethe next 3 bytes. If the hash chain for this index is not empty, all
24*4a5d661aSToomas Soomestrings in the chain are compared with the current input string, and
25*4a5d661aSToomas Soomethe longest match is selected.
26*4a5d661aSToomas Soome
27*4a5d661aSToomas SoomeThe hash chains are searched starting with the most recent strings, to
28*4a5d661aSToomas Soomefavor small distances and thus take advantage of the Huffman encoding.
29*4a5d661aSToomas SoomeThe hash chains are singly linked. There are no deletions from the
30*4a5d661aSToomas Soomehash chains, the algorithm simply discards matches that are too old.
31*4a5d661aSToomas Soome
32*4a5d661aSToomas SoomeTo avoid a worst-case situation, very long hash chains are arbitrarily
33*4a5d661aSToomas Soometruncated at a certain length, determined by a runtime option (level
34*4a5d661aSToomas Soomeparameter of deflateInit). So deflate() does not always find the longest
35*4a5d661aSToomas Soomepossible match but generally finds a match which is long enough.
36*4a5d661aSToomas Soome
37*4a5d661aSToomas Soomedeflate() also defers the selection of matches with a lazy evaluation
38*4a5d661aSToomas Soomemechanism. After a match of length N has been found, deflate() searches for
39*4a5d661aSToomas Soomea longer match at the next input byte. If a longer match is found, the
40*4a5d661aSToomas Soomeprevious match is truncated to a length of one (thus producing a single
41*4a5d661aSToomas Soomeliteral byte) and the process of lazy evaluation begins again. Otherwise,
42*4a5d661aSToomas Soomethe original match is kept, and the next match search is attempted only N
43*4a5d661aSToomas Soomesteps later.
44*4a5d661aSToomas Soome
45*4a5d661aSToomas SoomeThe lazy match evaluation is also subject to a runtime parameter. If
46*4a5d661aSToomas Soomethe current match is long enough, deflate() reduces the search for a longer
47*4a5d661aSToomas Soomematch, thus speeding up the whole process. If compression ratio is more
48*4a5d661aSToomas Soomeimportant than speed, deflate() attempts a complete second search even if
49*4a5d661aSToomas Soomethe first match is already long enough.
50*4a5d661aSToomas Soome
51*4a5d661aSToomas SoomeThe lazy match evaluation is not performed for the fastest compression
52*4a5d661aSToomas Soomemodes (level parameter 1 to 3). For these fast modes, new strings
53*4a5d661aSToomas Soomeare inserted in the hash table only when no match was found, or
54*4a5d661aSToomas Soomewhen the match is not too long. This degrades the compression ratio
55*4a5d661aSToomas Soomebut saves time since there are both fewer insertions and fewer searches.
56*4a5d661aSToomas Soome
57*4a5d661aSToomas Soome
58*4a5d661aSToomas Soome2. Decompression algorithm (inflate)
59*4a5d661aSToomas Soome
60*4a5d661aSToomas Soome2.1 Introduction
61*4a5d661aSToomas Soome
62*4a5d661aSToomas SoomeThe key question is how to represent a Huffman code (or any prefix code) so
63*4a5d661aSToomas Soomethat you can decode fast.  The most important characteristic is that shorter
64*4a5d661aSToomas Soomecodes are much more common than longer codes, so pay attention to decoding the
65*4a5d661aSToomas Soomeshort codes fast, and let the long codes take longer to decode.
66*4a5d661aSToomas Soome
67*4a5d661aSToomas Soomeinflate() sets up a first level table that covers some number of bits of
68*4a5d661aSToomas Soomeinput less than the length of longest code.  It gets that many bits from the
69*4a5d661aSToomas Soomestream, and looks it up in the table.  The table will tell if the next
70*4a5d661aSToomas Soomecode is that many bits or less and how many, and if it is, it will tell
71*4a5d661aSToomas Soomethe value, else it will point to the next level table for which inflate()
72*4a5d661aSToomas Soomegrabs more bits and tries to decode a longer code.
73*4a5d661aSToomas Soome
74*4a5d661aSToomas SoomeHow many bits to make the first lookup is a tradeoff between the time it
75*4a5d661aSToomas Soometakes to decode and the time it takes to build the table.  If building the
76*4a5d661aSToomas Soometable took no time (and if you had infinite memory), then there would only
77*4a5d661aSToomas Soomebe a first level table to cover all the way to the longest code.  However,
78*4a5d661aSToomas Soomebuilding the table ends up taking a lot longer for more bits since short
79*4a5d661aSToomas Soomecodes are replicated many times in such a table.  What inflate() does is
80*4a5d661aSToomas Soomesimply to make the number of bits in the first table a variable, and  then
81*4a5d661aSToomas Soometo set that variable for the maximum speed.
82*4a5d661aSToomas Soome
83*4a5d661aSToomas SoomeFor inflate, which has 286 possible codes for the literal/length tree, the size
84*4a5d661aSToomas Soomeof the first table is nine bits.  Also the distance trees have 30 possible
85*4a5d661aSToomas Soomevalues, and the size of the first table is six bits.  Note that for each of
86*4a5d661aSToomas Soomethose cases, the table ended up one bit longer than the ``average'' code
87*4a5d661aSToomas Soomelength, i.e. the code length of an approximately flat code which would be a
88*4a5d661aSToomas Soomelittle more than eight bits for 286 symbols and a little less than five bits
89*4a5d661aSToomas Soomefor 30 symbols.
90*4a5d661aSToomas Soome
91*4a5d661aSToomas Soome
92*4a5d661aSToomas Soome2.2 More details on the inflate table lookup
93*4a5d661aSToomas Soome
94*4a5d661aSToomas SoomeOk, you want to know what this cleverly obfuscated inflate tree actually
95*4a5d661aSToomas Soomelooks like.  You are correct that it's not a Huffman tree.  It is simply a
96*4a5d661aSToomas Soomelookup table for the first, let's say, nine bits of a Huffman symbol.  The
97*4a5d661aSToomas Soomesymbol could be as short as one bit or as long as 15 bits.  If a particular
98*4a5d661aSToomas Soomesymbol is shorter than nine bits, then that symbol's translation is duplicated
99*4a5d661aSToomas Soomein all those entries that start with that symbol's bits.  For example, if the
100*4a5d661aSToomas Soomesymbol is four bits, then it's duplicated 32 times in a nine-bit table.  If a
101*4a5d661aSToomas Soomesymbol is nine bits long, it appears in the table once.
102*4a5d661aSToomas Soome
103*4a5d661aSToomas SoomeIf the symbol is longer than nine bits, then that entry in the table points
104*4a5d661aSToomas Soometo another similar table for the remaining bits.  Again, there are duplicated
105*4a5d661aSToomas Soomeentries as needed.  The idea is that most of the time the symbol will be short
106*4a5d661aSToomas Soomeand there will only be one table look up.  (That's whole idea behind data
107*4a5d661aSToomas Soomecompression in the first place.)  For the less frequent long symbols, there
108*4a5d661aSToomas Soomewill be two lookups.  If you had a compression method with really long
109*4a5d661aSToomas Soomesymbols, you could have as many levels of lookups as is efficient.  For
110*4a5d661aSToomas Soomeinflate, two is enough.
111*4a5d661aSToomas Soome
112*4a5d661aSToomas SoomeSo a table entry either points to another table (in which case nine bits in
113*4a5d661aSToomas Soomethe above example are gobbled), or it contains the translation for the symbol
114*4a5d661aSToomas Soomeand the number of bits to gobble.  Then you start again with the next
115*4a5d661aSToomas Soomeungobbled bit.
116*4a5d661aSToomas Soome
117*4a5d661aSToomas SoomeYou may wonder: why not just have one lookup table for how ever many bits the
118*4a5d661aSToomas Soomelongest symbol is?  The reason is that if you do that, you end up spending
119*4a5d661aSToomas Soomemore time filling in duplicate symbol entries than you do actually decoding.
120*4a5d661aSToomas SoomeAt least for deflate's output that generates new trees every several 10's of
121*4a5d661aSToomas Soomekbytes.  You can imagine that filling in a 2^15 entry table for a 15-bit code
122*4a5d661aSToomas Soomewould take too long if you're only decoding several thousand symbols.  At the
123*4a5d661aSToomas Soomeother extreme, you could make a new table for every bit in the code.  In fact,
124*4a5d661aSToomas Soomethat's essentially a Huffman tree.  But then you spend too much time
125*4a5d661aSToomas Soometraversing the tree while decoding, even for short symbols.
126*4a5d661aSToomas Soome
127*4a5d661aSToomas SoomeSo the number of bits for the first lookup table is a trade of the time to
128*4a5d661aSToomas Soomefill out the table vs. the time spent looking at the second level and above of
129*4a5d661aSToomas Soomethe table.
130*4a5d661aSToomas Soome
131*4a5d661aSToomas SoomeHere is an example, scaled down:
132*4a5d661aSToomas Soome
133*4a5d661aSToomas SoomeThe code being decoded, with 10 symbols, from 1 to 6 bits long:
134*4a5d661aSToomas Soome
135*4a5d661aSToomas SoomeA: 0
136*4a5d661aSToomas SoomeB: 10
137*4a5d661aSToomas SoomeC: 1100
138*4a5d661aSToomas SoomeD: 11010
139*4a5d661aSToomas SoomeE: 11011
140*4a5d661aSToomas SoomeF: 11100
141*4a5d661aSToomas SoomeG: 11101
142*4a5d661aSToomas SoomeH: 11110
143*4a5d661aSToomas SoomeI: 111110
144*4a5d661aSToomas SoomeJ: 111111
145*4a5d661aSToomas Soome
146*4a5d661aSToomas SoomeLet's make the first table three bits long (eight entries):
147*4a5d661aSToomas Soome
148*4a5d661aSToomas Soome000: A,1
149*4a5d661aSToomas Soome001: A,1
150*4a5d661aSToomas Soome010: A,1
151*4a5d661aSToomas Soome011: A,1
152*4a5d661aSToomas Soome100: B,2
153*4a5d661aSToomas Soome101: B,2
154*4a5d661aSToomas Soome110: -> table X (gobble 3 bits)
155*4a5d661aSToomas Soome111: -> table Y (gobble 3 bits)
156*4a5d661aSToomas Soome
157*4a5d661aSToomas SoomeEach entry is what the bits decode as and how many bits that is, i.e. how
158*4a5d661aSToomas Soomemany bits to gobble.  Or the entry points to another table, with the number of
159*4a5d661aSToomas Soomebits to gobble implicit in the size of the table.
160*4a5d661aSToomas Soome
161*4a5d661aSToomas SoomeTable X is two bits long since the longest code starting with 110 is five bits
162*4a5d661aSToomas Soomelong:
163*4a5d661aSToomas Soome
164*4a5d661aSToomas Soome00: C,1
165*4a5d661aSToomas Soome01: C,1
166*4a5d661aSToomas Soome10: D,2
167*4a5d661aSToomas Soome11: E,2
168*4a5d661aSToomas Soome
169*4a5d661aSToomas SoomeTable Y is three bits long since the longest code starting with 111 is six
170*4a5d661aSToomas Soomebits long:
171*4a5d661aSToomas Soome
172*4a5d661aSToomas Soome000: F,2
173*4a5d661aSToomas Soome001: F,2
174*4a5d661aSToomas Soome010: G,2
175*4a5d661aSToomas Soome011: G,2
176*4a5d661aSToomas Soome100: H,2
177*4a5d661aSToomas Soome101: H,2
178*4a5d661aSToomas Soome110: I,3
179*4a5d661aSToomas Soome111: J,3
180*4a5d661aSToomas Soome
181*4a5d661aSToomas SoomeSo what we have here are three tables with a total of 20 entries that had to
182*4a5d661aSToomas Soomebe constructed.  That's compared to 64 entries for a single table.  Or
183*4a5d661aSToomas Soomecompared to 16 entries for a Huffman tree (six two entry tables and one four
184*4a5d661aSToomas Soomeentry table).  Assuming that the code ideally represents the probability of
185*4a5d661aSToomas Soomethe symbols, it takes on the average 1.25 lookups per symbol.  That's compared
186*4a5d661aSToomas Soometo one lookup for the single table, or 1.66 lookups per symbol for the
187*4a5d661aSToomas SoomeHuffman tree.
188*4a5d661aSToomas Soome
189*4a5d661aSToomas SoomeThere, I think that gives you a picture of what's going on.  For inflate, the
190*4a5d661aSToomas Soomemeaning of a particular symbol is often more than just a letter.  It can be a
191*4a5d661aSToomas Soomebyte (a "literal"), or it can be either a length or a distance which
192*4a5d661aSToomas Soomeindicates a base value and a number of bits to fetch after the code that is
193*4a5d661aSToomas Soomeadded to the base value.  Or it might be the special end-of-block code.  The
194*4a5d661aSToomas Soomedata structures created in inftrees.c try to encode all that information
195*4a5d661aSToomas Soomecompactly in the tables.
196*4a5d661aSToomas Soome
197*4a5d661aSToomas Soome
198*4a5d661aSToomas SoomeJean-loup Gailly        Mark Adler
199*4a5d661aSToomas Soomejloup@gzip.org          madler@alumni.caltech.edu
200*4a5d661aSToomas Soome
201*4a5d661aSToomas Soome
202*4a5d661aSToomas SoomeReferences:
203*4a5d661aSToomas Soome
204*4a5d661aSToomas Soome[LZ77] Ziv J., Lempel A., ``A Universal Algorithm for Sequential Data
205*4a5d661aSToomas SoomeCompression,'' IEEE Transactions on Information Theory, Vol. 23, No. 3,
206*4a5d661aSToomas Soomepp. 337-343.
207*4a5d661aSToomas Soome
208*4a5d661aSToomas Soome``DEFLATE Compressed Data Format Specification'' available in
209*4a5d661aSToomas Soomehttp://tools.ietf.org/html/rfc1951
210