1*4a5d661aSToomas Soome /*- 2*4a5d661aSToomas Soome * Copyright (c) 1992, 1993 3*4a5d661aSToomas Soome * The Regents of the University of California. All rights reserved. 4*4a5d661aSToomas Soome * 5*4a5d661aSToomas Soome * This software was developed by the Computer Systems Engineering group 6*4a5d661aSToomas Soome * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 7*4a5d661aSToomas Soome * contributed to Berkeley. 8*4a5d661aSToomas Soome * 9*4a5d661aSToomas Soome * Redistribution and use in source and binary forms, with or without 10*4a5d661aSToomas Soome * modification, are permitted provided that the following conditions 11*4a5d661aSToomas Soome * are met: 12*4a5d661aSToomas Soome * 1. Redistributions of source code must retain the above copyright 13*4a5d661aSToomas Soome * notice, this list of conditions and the following disclaimer. 14*4a5d661aSToomas Soome * 2. Redistributions in binary form must reproduce the above copyright 15*4a5d661aSToomas Soome * notice, this list of conditions and the following disclaimer in the 16*4a5d661aSToomas Soome * documentation and/or other materials provided with the distribution. 17*4a5d661aSToomas Soome * 4. Neither the name of the University nor the names of its contributors 18*4a5d661aSToomas Soome * may be used to endorse or promote products derived from this software 19*4a5d661aSToomas Soome * without specific prior written permission. 20*4a5d661aSToomas Soome * 21*4a5d661aSToomas Soome * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22*4a5d661aSToomas Soome * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23*4a5d661aSToomas Soome * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24*4a5d661aSToomas Soome * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25*4a5d661aSToomas Soome * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26*4a5d661aSToomas Soome * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27*4a5d661aSToomas Soome * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28*4a5d661aSToomas Soome * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29*4a5d661aSToomas Soome * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30*4a5d661aSToomas Soome * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31*4a5d661aSToomas Soome * SUCH DAMAGE. 32*4a5d661aSToomas Soome * 33*4a5d661aSToomas Soome * From: Id: qdivrem.c,v 1.7 1997/11/07 09:20:40 phk Exp 34*4a5d661aSToomas Soome */ 35*4a5d661aSToomas Soome 36*4a5d661aSToomas Soome #include <sys/cdefs.h> 37*4a5d661aSToomas Soome __FBSDID("$FreeBSD$"); 38*4a5d661aSToomas Soome 39*4a5d661aSToomas Soome /* 40*4a5d661aSToomas Soome * Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed), 41*4a5d661aSToomas Soome * section 4.3.1, pp. 257--259. 42*4a5d661aSToomas Soome */ 43*4a5d661aSToomas Soome 44*4a5d661aSToomas Soome #include "quad.h" 45*4a5d661aSToomas Soome 46*4a5d661aSToomas Soome #define B (1 << HALF_BITS) /* digit base */ 47*4a5d661aSToomas Soome 48*4a5d661aSToomas Soome /* Combine two `digits' to make a single two-digit number. */ 49*4a5d661aSToomas Soome #define COMBINE(a, b) (((u_int)(a) << HALF_BITS) | (b)) 50*4a5d661aSToomas Soome 51*4a5d661aSToomas Soome _Static_assert(sizeof(int) / 2 == sizeof(short), 52*4a5d661aSToomas Soome "Bitwise functions in libstand are broken on this architecture\n"); 53*4a5d661aSToomas Soome 54*4a5d661aSToomas Soome /* select a type for digits in base B: use unsigned short if they fit */ 55*4a5d661aSToomas Soome typedef unsigned short digit; 56*4a5d661aSToomas Soome 57*4a5d661aSToomas Soome /* 58*4a5d661aSToomas Soome * Shift p[0]..p[len] left `sh' bits, ignoring any bits that 59*4a5d661aSToomas Soome * `fall out' the left (there never will be any such anyway). 60*4a5d661aSToomas Soome * We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS. 61*4a5d661aSToomas Soome */ 62*4a5d661aSToomas Soome static void 63*4a5d661aSToomas Soome shl(digit *p, int len, int sh) 64*4a5d661aSToomas Soome { 65*4a5d661aSToomas Soome int i; 66*4a5d661aSToomas Soome 67*4a5d661aSToomas Soome for (i = 0; i < len; i++) 68*4a5d661aSToomas Soome p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh)); 69*4a5d661aSToomas Soome p[i] = LHALF(p[i] << sh); 70*4a5d661aSToomas Soome } 71*4a5d661aSToomas Soome 72*4a5d661aSToomas Soome /* 73*4a5d661aSToomas Soome * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v. 74*4a5d661aSToomas Soome * 75*4a5d661aSToomas Soome * We do this in base 2-sup-HALF_BITS, so that all intermediate products 76*4a5d661aSToomas Soome * fit within u_int. As a consequence, the maximum length dividend and 77*4a5d661aSToomas Soome * divisor are 4 `digits' in this base (they are shorter if they have 78*4a5d661aSToomas Soome * leading zeros). 79*4a5d661aSToomas Soome */ 80*4a5d661aSToomas Soome u_quad_t 81*4a5d661aSToomas Soome __qdivrem(uq, vq, arq) 82*4a5d661aSToomas Soome u_quad_t uq, vq, *arq; 83*4a5d661aSToomas Soome { 84*4a5d661aSToomas Soome union uu tmp; 85*4a5d661aSToomas Soome digit *u, *v, *q; 86*4a5d661aSToomas Soome digit v1, v2; 87*4a5d661aSToomas Soome u_int qhat, rhat, t; 88*4a5d661aSToomas Soome int m, n, d, j, i; 89*4a5d661aSToomas Soome digit uspace[5], vspace[5], qspace[5]; 90*4a5d661aSToomas Soome 91*4a5d661aSToomas Soome /* 92*4a5d661aSToomas Soome * Take care of special cases: divide by zero, and u < v. 93*4a5d661aSToomas Soome */ 94*4a5d661aSToomas Soome if (vq == 0) { 95*4a5d661aSToomas Soome /* divide by zero. */ 96*4a5d661aSToomas Soome static volatile const unsigned int zero = 0; 97*4a5d661aSToomas Soome 98*4a5d661aSToomas Soome tmp.ul[H] = tmp.ul[L] = 1 / zero; 99*4a5d661aSToomas Soome if (arq) 100*4a5d661aSToomas Soome *arq = uq; 101*4a5d661aSToomas Soome return (tmp.q); 102*4a5d661aSToomas Soome } 103*4a5d661aSToomas Soome if (uq < vq) { 104*4a5d661aSToomas Soome if (arq) 105*4a5d661aSToomas Soome *arq = uq; 106*4a5d661aSToomas Soome return (0); 107*4a5d661aSToomas Soome } 108*4a5d661aSToomas Soome u = &uspace[0]; 109*4a5d661aSToomas Soome v = &vspace[0]; 110*4a5d661aSToomas Soome q = &qspace[0]; 111*4a5d661aSToomas Soome 112*4a5d661aSToomas Soome /* 113*4a5d661aSToomas Soome * Break dividend and divisor into digits in base B, then 114*4a5d661aSToomas Soome * count leading zeros to determine m and n. When done, we 115*4a5d661aSToomas Soome * will have: 116*4a5d661aSToomas Soome * u = (u[1]u[2]...u[m+n]) sub B 117*4a5d661aSToomas Soome * v = (v[1]v[2]...v[n]) sub B 118*4a5d661aSToomas Soome * v[1] != 0 119*4a5d661aSToomas Soome * 1 < n <= 4 (if n = 1, we use a different division algorithm) 120*4a5d661aSToomas Soome * m >= 0 (otherwise u < v, which we already checked) 121*4a5d661aSToomas Soome * m + n = 4 122*4a5d661aSToomas Soome * and thus 123*4a5d661aSToomas Soome * m = 4 - n <= 2 124*4a5d661aSToomas Soome */ 125*4a5d661aSToomas Soome tmp.uq = uq; 126*4a5d661aSToomas Soome u[0] = 0; 127*4a5d661aSToomas Soome u[1] = HHALF(tmp.ul[H]); 128*4a5d661aSToomas Soome u[2] = LHALF(tmp.ul[H]); 129*4a5d661aSToomas Soome u[3] = HHALF(tmp.ul[L]); 130*4a5d661aSToomas Soome u[4] = LHALF(tmp.ul[L]); 131*4a5d661aSToomas Soome tmp.uq = vq; 132*4a5d661aSToomas Soome v[1] = HHALF(tmp.ul[H]); 133*4a5d661aSToomas Soome v[2] = LHALF(tmp.ul[H]); 134*4a5d661aSToomas Soome v[3] = HHALF(tmp.ul[L]); 135*4a5d661aSToomas Soome v[4] = LHALF(tmp.ul[L]); 136*4a5d661aSToomas Soome for (n = 4; v[1] == 0; v++) { 137*4a5d661aSToomas Soome if (--n == 1) { 138*4a5d661aSToomas Soome u_int rbj; /* r*B+u[j] (not root boy jim) */ 139*4a5d661aSToomas Soome digit q1, q2, q3, q4; 140*4a5d661aSToomas Soome 141*4a5d661aSToomas Soome /* 142*4a5d661aSToomas Soome * Change of plan, per exercise 16. 143*4a5d661aSToomas Soome * r = 0; 144*4a5d661aSToomas Soome * for j = 1..4: 145*4a5d661aSToomas Soome * q[j] = floor((r*B + u[j]) / v), 146*4a5d661aSToomas Soome * r = (r*B + u[j]) % v; 147*4a5d661aSToomas Soome * We unroll this completely here. 148*4a5d661aSToomas Soome */ 149*4a5d661aSToomas Soome t = v[2]; /* nonzero, by definition */ 150*4a5d661aSToomas Soome q1 = u[1] / t; 151*4a5d661aSToomas Soome rbj = COMBINE(u[1] % t, u[2]); 152*4a5d661aSToomas Soome q2 = rbj / t; 153*4a5d661aSToomas Soome rbj = COMBINE(rbj % t, u[3]); 154*4a5d661aSToomas Soome q3 = rbj / t; 155*4a5d661aSToomas Soome rbj = COMBINE(rbj % t, u[4]); 156*4a5d661aSToomas Soome q4 = rbj / t; 157*4a5d661aSToomas Soome if (arq) 158*4a5d661aSToomas Soome *arq = rbj % t; 159*4a5d661aSToomas Soome tmp.ul[H] = COMBINE(q1, q2); 160*4a5d661aSToomas Soome tmp.ul[L] = COMBINE(q3, q4); 161*4a5d661aSToomas Soome return (tmp.q); 162*4a5d661aSToomas Soome } 163*4a5d661aSToomas Soome } 164*4a5d661aSToomas Soome 165*4a5d661aSToomas Soome /* 166*4a5d661aSToomas Soome * By adjusting q once we determine m, we can guarantee that 167*4a5d661aSToomas Soome * there is a complete four-digit quotient at &qspace[1] when 168*4a5d661aSToomas Soome * we finally stop. 169*4a5d661aSToomas Soome */ 170*4a5d661aSToomas Soome for (m = 4 - n; u[1] == 0; u++) 171*4a5d661aSToomas Soome m--; 172*4a5d661aSToomas Soome for (i = 4 - m; --i >= 0;) 173*4a5d661aSToomas Soome q[i] = 0; 174*4a5d661aSToomas Soome q += 4 - m; 175*4a5d661aSToomas Soome 176*4a5d661aSToomas Soome /* 177*4a5d661aSToomas Soome * Here we run Program D, translated from MIX to C and acquiring 178*4a5d661aSToomas Soome * a few minor changes. 179*4a5d661aSToomas Soome * 180*4a5d661aSToomas Soome * D1: choose multiplier 1 << d to ensure v[1] >= B/2. 181*4a5d661aSToomas Soome */ 182*4a5d661aSToomas Soome d = 0; 183*4a5d661aSToomas Soome for (t = v[1]; t < B / 2; t <<= 1) 184*4a5d661aSToomas Soome d++; 185*4a5d661aSToomas Soome if (d > 0) { 186*4a5d661aSToomas Soome shl(&u[0], m + n, d); /* u <<= d */ 187*4a5d661aSToomas Soome shl(&v[1], n - 1, d); /* v <<= d */ 188*4a5d661aSToomas Soome } 189*4a5d661aSToomas Soome /* 190*4a5d661aSToomas Soome * D2: j = 0. 191*4a5d661aSToomas Soome */ 192*4a5d661aSToomas Soome j = 0; 193*4a5d661aSToomas Soome v1 = v[1]; /* for D3 -- note that v[1..n] are constant */ 194*4a5d661aSToomas Soome v2 = v[2]; /* for D3 */ 195*4a5d661aSToomas Soome do { 196*4a5d661aSToomas Soome digit uj0, uj1, uj2; 197*4a5d661aSToomas Soome 198*4a5d661aSToomas Soome /* 199*4a5d661aSToomas Soome * D3: Calculate qhat (\^q, in TeX notation). 200*4a5d661aSToomas Soome * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and 201*4a5d661aSToomas Soome * let rhat = (u[j]*B + u[j+1]) mod v[1]. 202*4a5d661aSToomas Soome * While rhat < B and v[2]*qhat > rhat*B+u[j+2], 203*4a5d661aSToomas Soome * decrement qhat and increase rhat correspondingly. 204*4a5d661aSToomas Soome * Note that if rhat >= B, v[2]*qhat < rhat*B. 205*4a5d661aSToomas Soome */ 206*4a5d661aSToomas Soome uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */ 207*4a5d661aSToomas Soome uj1 = u[j + 1]; /* for D3 only */ 208*4a5d661aSToomas Soome uj2 = u[j + 2]; /* for D3 only */ 209*4a5d661aSToomas Soome if (uj0 == v1) { 210*4a5d661aSToomas Soome qhat = B; 211*4a5d661aSToomas Soome rhat = uj1; 212*4a5d661aSToomas Soome goto qhat_too_big; 213*4a5d661aSToomas Soome } else { 214*4a5d661aSToomas Soome u_int nn = COMBINE(uj0, uj1); 215*4a5d661aSToomas Soome qhat = nn / v1; 216*4a5d661aSToomas Soome rhat = nn % v1; 217*4a5d661aSToomas Soome } 218*4a5d661aSToomas Soome while (v2 * qhat > COMBINE(rhat, uj2)) { 219*4a5d661aSToomas Soome qhat_too_big: 220*4a5d661aSToomas Soome qhat--; 221*4a5d661aSToomas Soome if ((rhat += v1) >= B) 222*4a5d661aSToomas Soome break; 223*4a5d661aSToomas Soome } 224*4a5d661aSToomas Soome /* 225*4a5d661aSToomas Soome * D4: Multiply and subtract. 226*4a5d661aSToomas Soome * The variable `t' holds any borrows across the loop. 227*4a5d661aSToomas Soome * We split this up so that we do not require v[0] = 0, 228*4a5d661aSToomas Soome * and to eliminate a final special case. 229*4a5d661aSToomas Soome */ 230*4a5d661aSToomas Soome for (t = 0, i = n; i > 0; i--) { 231*4a5d661aSToomas Soome t = u[i + j] - v[i] * qhat - t; 232*4a5d661aSToomas Soome u[i + j] = LHALF(t); 233*4a5d661aSToomas Soome t = (B - HHALF(t)) & (B - 1); 234*4a5d661aSToomas Soome } 235*4a5d661aSToomas Soome t = u[j] - t; 236*4a5d661aSToomas Soome u[j] = LHALF(t); 237*4a5d661aSToomas Soome /* 238*4a5d661aSToomas Soome * D5: test remainder. 239*4a5d661aSToomas Soome * There is a borrow if and only if HHALF(t) is nonzero; 240*4a5d661aSToomas Soome * in that (rare) case, qhat was too large (by exactly 1). 241*4a5d661aSToomas Soome * Fix it by adding v[1..n] to u[j..j+n]. 242*4a5d661aSToomas Soome */ 243*4a5d661aSToomas Soome if (HHALF(t)) { 244*4a5d661aSToomas Soome qhat--; 245*4a5d661aSToomas Soome for (t = 0, i = n; i > 0; i--) { /* D6: add back. */ 246*4a5d661aSToomas Soome t += u[i + j] + v[i]; 247*4a5d661aSToomas Soome u[i + j] = LHALF(t); 248*4a5d661aSToomas Soome t = HHALF(t); 249*4a5d661aSToomas Soome } 250*4a5d661aSToomas Soome u[j] = LHALF(u[j] + t); 251*4a5d661aSToomas Soome } 252*4a5d661aSToomas Soome q[j] = qhat; 253*4a5d661aSToomas Soome } while (++j <= m); /* D7: loop on j. */ 254*4a5d661aSToomas Soome 255*4a5d661aSToomas Soome /* 256*4a5d661aSToomas Soome * If caller wants the remainder, we have to calculate it as 257*4a5d661aSToomas Soome * u[m..m+n] >> d (this is at most n digits and thus fits in 258*4a5d661aSToomas Soome * u[m+1..m+n], but we may need more source digits). 259*4a5d661aSToomas Soome */ 260*4a5d661aSToomas Soome if (arq) { 261*4a5d661aSToomas Soome if (d) { 262*4a5d661aSToomas Soome for (i = m + n; i > m; --i) 263*4a5d661aSToomas Soome u[i] = (u[i] >> d) | 264*4a5d661aSToomas Soome LHALF(u[i - 1] << (HALF_BITS - d)); 265*4a5d661aSToomas Soome u[i] = 0; 266*4a5d661aSToomas Soome } 267*4a5d661aSToomas Soome tmp.ul[H] = COMBINE(uspace[1], uspace[2]); 268*4a5d661aSToomas Soome tmp.ul[L] = COMBINE(uspace[3], uspace[4]); 269*4a5d661aSToomas Soome *arq = tmp.q; 270*4a5d661aSToomas Soome } 271*4a5d661aSToomas Soome 272*4a5d661aSToomas Soome tmp.ul[H] = COMBINE(qspace[1], qspace[2]); 273*4a5d661aSToomas Soome tmp.ul[L] = COMBINE(qspace[3], qspace[4]); 274*4a5d661aSToomas Soome return (tmp.q); 275*4a5d661aSToomas Soome } 276*4a5d661aSToomas Soome 277*4a5d661aSToomas Soome /* 278*4a5d661aSToomas Soome * Divide two unsigned quads. 279*4a5d661aSToomas Soome */ 280*4a5d661aSToomas Soome 281*4a5d661aSToomas Soome u_quad_t 282*4a5d661aSToomas Soome __udivdi3(a, b) 283*4a5d661aSToomas Soome u_quad_t a, b; 284*4a5d661aSToomas Soome { 285*4a5d661aSToomas Soome 286*4a5d661aSToomas Soome return (__qdivrem(a, b, (u_quad_t *)0)); 287*4a5d661aSToomas Soome } 288*4a5d661aSToomas Soome 289*4a5d661aSToomas Soome /* 290*4a5d661aSToomas Soome * Return remainder after dividing two unsigned quads. 291*4a5d661aSToomas Soome */ 292*4a5d661aSToomas Soome u_quad_t 293*4a5d661aSToomas Soome __umoddi3(a, b) 294*4a5d661aSToomas Soome u_quad_t a, b; 295*4a5d661aSToomas Soome { 296*4a5d661aSToomas Soome u_quad_t r; 297*4a5d661aSToomas Soome 298*4a5d661aSToomas Soome (void)__qdivrem(a, b, &r); 299*4a5d661aSToomas Soome return (r); 300*4a5d661aSToomas Soome } 301*4a5d661aSToomas Soome 302*4a5d661aSToomas Soome /* 303*4a5d661aSToomas Soome * Divide two signed quads. 304*4a5d661aSToomas Soome * ??? if -1/2 should produce -1 on this machine, this code is wrong 305*4a5d661aSToomas Soome */ 306*4a5d661aSToomas Soome quad_t 307*4a5d661aSToomas Soome __divdi3(a, b) 308*4a5d661aSToomas Soome quad_t a, b; 309*4a5d661aSToomas Soome { 310*4a5d661aSToomas Soome u_quad_t ua, ub, uq; 311*4a5d661aSToomas Soome int neg; 312*4a5d661aSToomas Soome 313*4a5d661aSToomas Soome if (a < 0) 314*4a5d661aSToomas Soome ua = -(u_quad_t)a, neg = 1; 315*4a5d661aSToomas Soome else 316*4a5d661aSToomas Soome ua = a, neg = 0; 317*4a5d661aSToomas Soome if (b < 0) 318*4a5d661aSToomas Soome ub = -(u_quad_t)b, neg ^= 1; 319*4a5d661aSToomas Soome else 320*4a5d661aSToomas Soome ub = b; 321*4a5d661aSToomas Soome uq = __qdivrem(ua, ub, (u_quad_t *)0); 322*4a5d661aSToomas Soome return (neg ? -uq : uq); 323*4a5d661aSToomas Soome } 324*4a5d661aSToomas Soome 325*4a5d661aSToomas Soome /* 326*4a5d661aSToomas Soome * Return remainder after dividing two signed quads. 327*4a5d661aSToomas Soome * 328*4a5d661aSToomas Soome * XXX 329*4a5d661aSToomas Soome * If -1/2 should produce -1 on this machine, this code is wrong. 330*4a5d661aSToomas Soome */ 331*4a5d661aSToomas Soome quad_t 332*4a5d661aSToomas Soome __moddi3(a, b) 333*4a5d661aSToomas Soome quad_t a, b; 334*4a5d661aSToomas Soome { 335*4a5d661aSToomas Soome u_quad_t ua, ub, ur; 336*4a5d661aSToomas Soome int neg; 337*4a5d661aSToomas Soome 338*4a5d661aSToomas Soome if (a < 0) 339*4a5d661aSToomas Soome ua = -(u_quad_t)a, neg = 1; 340*4a5d661aSToomas Soome else 341*4a5d661aSToomas Soome ua = a, neg = 0; 342*4a5d661aSToomas Soome if (b < 0) 343*4a5d661aSToomas Soome ub = -(u_quad_t)b; 344*4a5d661aSToomas Soome else 345*4a5d661aSToomas Soome ub = b; 346*4a5d661aSToomas Soome (void)__qdivrem(ua, ub, &ur); 347*4a5d661aSToomas Soome return (neg ? -ur : ur); 348*4a5d661aSToomas Soome } 349