xref: /titanic_50/usr/src/uts/sun4v/vm/mach_vm_dep.c (revision 7243fb49732852c0e9ce39939a905b2a40f2ddeb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
27 /*	All Rights Reserved   */
28 
29 /*
30  * Portions of this source code were derived from Berkeley 4.3 BSD
31  * under license from the Regents of the University of California.
32  */
33 
34 #pragma ident	"%Z%%M%	%I%	%E% SMI"
35 
36 /*
37  * UNIX machine dependent virtual memory support.
38  */
39 
40 #include <sys/vm.h>
41 #include <sys/exec.h>
42 #include <sys/cmn_err.h>
43 #include <sys/cpu_module.h>
44 #include <sys/cpu.h>
45 #include <sys/elf_SPARC.h>
46 #include <sys/archsystm.h>
47 #include <vm/hat_sfmmu.h>
48 #include <sys/memnode.h>
49 #include <sys/mem_cage.h>
50 #include <vm/vm_dep.h>
51 #include <sys/error.h>
52 #include <sys/machsystm.h>
53 #include <vm/seg_kmem.h>
54 
55 uint_t page_colors = 0;
56 uint_t page_colors_mask = 0;
57 uint_t page_coloring_shift = 0;
58 int consistent_coloring;
59 
60 uint_t mmu_page_sizes = MMU_PAGE_SIZES;
61 uint_t max_mmu_page_sizes = MMU_PAGE_SIZES;
62 uint_t mmu_hashcnt = MAX_HASHCNT;
63 uint_t max_mmu_hashcnt = MAX_HASHCNT;
64 size_t mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE;
65 
66 /*
67  * A bitmask of the page sizes supported by hardware based upon szc.
68  * The base pagesize (p_szc == 0) must always be supported by the hardware.
69  */
70 int mmu_exported_pagesize_mask;
71 uint_t mmu_exported_page_sizes;
72 
73 uint_t szc_2_userszc[MMU_PAGE_SIZES];
74 uint_t userszc_2_szc[MMU_PAGE_SIZES];
75 
76 extern uint_t vac_colors_mask;
77 extern int vac_shift;
78 
79 hw_pagesize_t hw_page_array[] = {
80 	{MMU_PAGESIZE, MMU_PAGESHIFT, 0, MMU_PAGESIZE >> MMU_PAGESHIFT},
81 	{MMU_PAGESIZE64K, MMU_PAGESHIFT64K, 0,
82 	    MMU_PAGESIZE64K >> MMU_PAGESHIFT},
83 	{MMU_PAGESIZE512K, MMU_PAGESHIFT512K, 0,
84 	    MMU_PAGESIZE512K >> MMU_PAGESHIFT},
85 	{MMU_PAGESIZE4M, MMU_PAGESHIFT4M, 0, MMU_PAGESIZE4M >> MMU_PAGESHIFT},
86 	{MMU_PAGESIZE32M, MMU_PAGESHIFT32M, 0,
87 	    MMU_PAGESIZE32M >> MMU_PAGESHIFT},
88 	{MMU_PAGESIZE256M, MMU_PAGESHIFT256M, 0,
89 	    MMU_PAGESIZE256M >> MMU_PAGESHIFT},
90 	{0, 0, 0, 0}
91 };
92 
93 /*
94  * Maximum and default segment size tunables for user heap, stack, private
95  * and shared anonymous memory, and user text and initialized data.
96  */
97 size_t max_uheap_lpsize = MMU_PAGESIZE64K;
98 size_t default_uheap_lpsize = MMU_PAGESIZE64K;
99 size_t max_ustack_lpsize = MMU_PAGESIZE64K;
100 size_t default_ustack_lpsize = MMU_PAGESIZE64K;
101 size_t max_privmap_lpsize = MMU_PAGESIZE64K;
102 size_t max_uidata_lpsize = MMU_PAGESIZE64K;
103 size_t max_utext_lpsize = MMU_PAGESIZE4M;
104 size_t max_shm_lpsize = MMU_PAGESIZE4M;
105 
106 /*
107  * map_addr_proc() is the routine called when the system is to
108  * choose an address for the user.  We will pick an address
109  * range which is just below the current stack limit.  The
110  * algorithm used for cache consistency on machines with virtual
111  * address caches is such that offset 0 in the vnode is always
112  * on a shm_alignment'ed aligned address.  Unfortunately, this
113  * means that vnodes which are demand paged will not be mapped
114  * cache consistently with the executable images.  When the
115  * cache alignment for a given object is inconsistent, the
116  * lower level code must manage the translations so that this
117  * is not seen here (at the cost of efficiency, of course).
118  *
119  * addrp is a value/result parameter.
120  *	On input it is a hint from the user to be used in a completely
121  *	machine dependent fashion.  For MAP_ALIGN, addrp contains the
122  *	minimal alignment.
123  *
124  *	On output it is NULL if no address can be found in the current
125  *	processes address space or else an address that is currently
126  *	not mapped for len bytes with a page of red zone on either side.
127  *	If vacalign is true, then the selected address will obey the alignment
128  *	constraints of a vac machine based on the given off value.
129  */
130 /*ARGSUSED3*/
131 void
132 map_addr_proc(caddr_t *addrp, size_t len, offset_t off, int vacalign,
133     caddr_t userlimit, struct proc *p, uint_t flags)
134 {
135 	struct as *as = p->p_as;
136 	caddr_t addr;
137 	caddr_t base;
138 	size_t slen;
139 	uintptr_t align_amount;
140 	int allow_largepage_alignment = 1;
141 
142 	base = p->p_brkbase;
143 	if (userlimit < as->a_userlimit) {
144 		/*
145 		 * This happens when a program wants to map something in
146 		 * a range that's accessible to a program in a smaller
147 		 * address space.  For example, a 64-bit program might
148 		 * be calling mmap32(2) to guarantee that the returned
149 		 * address is below 4Gbytes.
150 		 */
151 		ASSERT(userlimit > base);
152 		slen = userlimit - base;
153 	} else {
154 		slen = p->p_usrstack - base - (((size_t)rctl_enforced_value(
155 		    rctlproc_legacy[RLIMIT_STACK], p->p_rctls, p) + PAGEOFFSET)
156 		    & PAGEMASK);
157 	}
158 	len = (len + PAGEOFFSET) & PAGEMASK;
159 
160 	/*
161 	 * Redzone for each side of the request. This is done to leave
162 	 * one page unmapped between segments. This is not required, but
163 	 * it's useful for the user because if their program strays across
164 	 * a segment boundary, it will catch a fault immediately making
165 	 * debugging a little easier.
166 	 */
167 	len += (2 * PAGESIZE);
168 
169 	/*
170 	 *  If the request is larger than the size of a particular
171 	 *  mmu level, then we use that level to map the request.
172 	 *  But this requires that both the virtual and the physical
173 	 *  addresses be aligned with respect to that level, so we
174 	 *  do the virtual bit of nastiness here.
175 	 *
176 	 *  For 32-bit processes, only those which have specified
177 	 *  MAP_ALIGN or an addr will be aligned on a page size > 4MB. Otherwise
178 	 *  we can potentially waste up to 256MB of the 4G process address
179 	 *  space just for alignment.
180 	 *
181 	 * XXXQ Should iterate trough hw_page_array here to catch
182 	 * all supported pagesizes
183 	 */
184 	if (p->p_model == DATAMODEL_ILP32 && ((flags & MAP_ALIGN) == 0 ||
185 	    ((uintptr_t)*addrp) != 0)) {
186 		allow_largepage_alignment = 0;
187 	}
188 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
189 	    allow_largepage_alignment &&
190 		(len >= MMU_PAGESIZE256M)) {	/* 256MB mappings */
191 		align_amount = MMU_PAGESIZE256M;
192 	} else if ((mmu_page_sizes == max_mmu_page_sizes) &&
193 	    allow_largepage_alignment &&
194 		(len >= MMU_PAGESIZE32M)) {	/* 32MB mappings */
195 		align_amount = MMU_PAGESIZE32M;
196 	} else if (len >= MMU_PAGESIZE4M) {  /* 4MB mappings */
197 		align_amount = MMU_PAGESIZE4M;
198 	} else if (len >= MMU_PAGESIZE512K) { /* 512KB mappings */
199 		align_amount = MMU_PAGESIZE512K;
200 	} else if (len >= MMU_PAGESIZE64K) { /* 64KB mappings */
201 		align_amount = MMU_PAGESIZE64K;
202 	} else  {
203 		/*
204 		 * Align virtual addresses on a 64K boundary to ensure
205 		 * that ELF shared libraries are mapped with the appropriate
206 		 * alignment constraints by the run-time linker.
207 		 */
208 		align_amount = ELF_SPARC_MAXPGSZ;
209 		if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp != 0) &&
210 			((uintptr_t)*addrp < align_amount))
211 			align_amount = (uintptr_t)*addrp;
212 	}
213 
214 	/*
215 	 * 64-bit processes require 1024K alignment of ELF shared libraries.
216 	 */
217 	if (p->p_model == DATAMODEL_LP64)
218 		align_amount = MAX(align_amount, ELF_SPARCV9_MAXPGSZ);
219 #ifdef VAC
220 	if (vac && vacalign && (align_amount < shm_alignment))
221 		align_amount = shm_alignment;
222 #endif
223 
224 	if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) {
225 		align_amount = (uintptr_t)*addrp;
226 	}
227 	len += align_amount;
228 
229 	/*
230 	 * Look for a large enough hole starting below the stack limit.
231 	 * After finding it, use the upper part.  Addition of PAGESIZE is
232 	 * for the redzone as described above.
233 	 */
234 	as_purge(as);
235 	if (as_gap(as, len, &base, &slen, AH_HI, NULL) == 0) {
236 		caddr_t as_addr;
237 
238 		addr = base + slen - len + PAGESIZE;
239 		as_addr = addr;
240 		/*
241 		 * Round address DOWN to the alignment amount,
242 		 * add the offset, and if this address is less
243 		 * than the original address, add alignment amount.
244 		 */
245 		addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1l)));
246 		addr += (long)(off & (align_amount - 1l));
247 		if (addr < as_addr) {
248 			addr += align_amount;
249 		}
250 
251 		ASSERT(addr <= (as_addr + align_amount));
252 		ASSERT(((uintptr_t)addr & (align_amount - 1l)) ==
253 		    ((uintptr_t)(off & (align_amount - 1l))));
254 		*addrp = addr;
255 
256 	} else {
257 		*addrp = NULL;	/* no more virtual space */
258 	}
259 }
260 
261 /*
262  * Platform-dependent page scrub call.
263  * We call hypervisor to scrub the page.
264  */
265 void
266 pagescrub(page_t *pp, uint_t off, uint_t len)
267 {
268 	uint64_t pa, length;
269 
270 	pa = (uint64_t)(pp->p_pagenum << MMU_PAGESHIFT + off);
271 	length = (uint64_t)len;
272 
273 	(void) mem_scrub(pa, length);
274 }
275 
276 void
277 sync_data_memory(caddr_t va, size_t len)
278 {
279 	/* Call memory sync function */
280 	mem_sync(va, len);
281 }
282 
283 size_t
284 mmu_get_kernel_lpsize(size_t lpsize)
285 {
286 	extern int mmu_exported_pagesize_mask;
287 	uint_t tte;
288 
289 	if (lpsize == 0) {
290 		/* no setting for segkmem_lpsize in /etc/system: use default */
291 		if (mmu_exported_pagesize_mask & (1 << TTE256M)) {
292 			lpsize = MMU_PAGESIZE256M;
293 		} else if (mmu_exported_pagesize_mask & (1 << TTE4M)) {
294 			lpsize = MMU_PAGESIZE4M;
295 		} else if (mmu_exported_pagesize_mask & (1 << TTE64K)) {
296 			lpsize = MMU_PAGESIZE64K;
297 		} else {
298 			lpsize = MMU_PAGESIZE;
299 		}
300 
301 		return (lpsize);
302 	}
303 
304 	for (tte = TTE8K; tte <= TTE256M; tte++) {
305 
306 		if ((mmu_exported_pagesize_mask & (1 << tte)) == 0)
307 			continue;
308 
309 		if (lpsize == TTEBYTES(tte))
310 			return (lpsize);
311 	}
312 
313 	lpsize = TTEBYTES(TTE8K);
314 	return (lpsize);
315 }
316 
317 void
318 mmu_init_kcontext()
319 {
320 }
321 
322 /*ARGSUSED*/
323 void
324 mmu_init_kernel_pgsz(struct hat *hat)
325 {
326 }
327 
328 #define	QUANTUM_SIZE	64
329 
330 static	vmem_t	*contig_mem_slab_arena;
331 static	vmem_t	*contig_mem_arena;
332 
333 uint_t contig_mem_slab_size = MMU_PAGESIZE4M;
334 
335 static void *
336 contig_mem_span_alloc(vmem_t *vmp, size_t size, int vmflag)
337 {
338 	page_t *ppl;
339 	page_t *rootpp;
340 	caddr_t addr = NULL;
341 	pgcnt_t npages = btopr(size);
342 	page_t **ppa;
343 	int pgflags;
344 	int i = 0;
345 
346 
347 	/*
348 	 * The import request should be at least
349 	 * contig_mem_slab_size because that is the
350 	 * slab arena's quantum. The size can be
351 	 * further restricted since contiguous
352 	 * allocations larger than contig_mem_slab_size
353 	 * are not supported here.
354 	 */
355 	ASSERT(size == contig_mem_slab_size);
356 
357 	if ((addr = vmem_xalloc(vmp, size, size, 0, 0,
358 	    NULL, NULL, vmflag)) == NULL) {
359 		return (NULL);
360 	}
361 
362 	/* The address should be slab-size aligned. */
363 	ASSERT(((uintptr_t)addr & (contig_mem_slab_size - 1)) == 0);
364 
365 	if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
366 		vmem_xfree(vmp, addr, size);
367 		return (NULL);
368 	}
369 
370 	pgflags = PG_EXCL;
371 	if ((vmflag & VM_NOSLEEP) == 0)
372 		pgflags |= PG_WAIT;
373 	if (vmflag & VM_PANIC)
374 		pgflags |= PG_PANIC;
375 	if (vmflag & VM_PUSHPAGE)
376 		pgflags |= PG_PUSHPAGE;
377 
378 	ppl = page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size,
379 	    pgflags, &kvseg, addr, NULL);
380 
381 	if (ppl == NULL) {
382 		vmem_xfree(vmp, addr, size);
383 		page_unresv(npages);
384 		return (NULL);
385 	}
386 
387 	rootpp = ppl;
388 	ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP);
389 	while (ppl != NULL) {
390 		page_t *pp = ppl;
391 		ppa[i++] = pp;
392 		page_sub(&ppl, pp);
393 		ASSERT(page_iolock_assert(pp));
394 		page_io_unlock(pp);
395 	}
396 
397 	/*
398 	 * Load the locked entry.  It's OK to preload the entry into
399 	 * the TSB since we now support large mappings in the kernel TSB.
400 	 */
401 	hat_memload_array(kas.a_hat, (caddr_t)rootpp->p_offset, size,
402 	    ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC, HAT_LOAD_LOCK);
403 
404 	for (--i; i >= 0; --i) {
405 		(void) page_pp_lock(ppa[i], 0, 1);
406 		page_unlock(ppa[i]);
407 	}
408 
409 	kmem_free(ppa, npages * sizeof (page_t *));
410 	return (addr);
411 }
412 
413 void
414 contig_mem_span_free(vmem_t *vmp, void *inaddr, size_t size)
415 {
416 	page_t *pp;
417 	caddr_t addr = inaddr;
418 	caddr_t eaddr;
419 	pgcnt_t npages = btopr(size);
420 	pgcnt_t pgs_left = npages;
421 	page_t *rootpp = NULL;
422 
423 	ASSERT(((uintptr_t)addr & (contig_mem_slab_size - 1)) == 0);
424 
425 	hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
426 
427 	for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
428 		pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL);
429 		if (pp == NULL)
430 			panic("contig_mem_span_free: page not found");
431 
432 		ASSERT(PAGE_EXCL(pp));
433 		page_pp_unlock(pp, 0, 1);
434 
435 		if (rootpp == NULL)
436 			rootpp = pp;
437 		if (--pgs_left == 0) {
438 			/*
439 			 * similar logic to segspt_free_pages, but we know we
440 			 * have one large page.
441 			 */
442 			page_destroy_pages(rootpp);
443 		}
444 	}
445 	page_unresv(npages);
446 
447 	if (vmp != NULL)
448 		vmem_xfree(vmp, inaddr, size);
449 }
450 
451 static void *
452 contig_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
453 {
454 	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
455 }
456 
457 /*
458  * conting_mem_alloc_align allocates real contiguous memory with the specified
459  * alignment upto contig_mem_slab_size. The alignment must be a power of 2.
460  */
461 void *
462 contig_mem_alloc_align(size_t size, size_t align)
463 {
464 	ASSERT(align <= contig_mem_slab_size);
465 
466 	if ((align & (align - 1)) != 0)
467 		return (NULL);
468 
469 	return (vmem_xalloc(contig_mem_arena, size, align, 0, 0,
470 	    NULL, NULL, VM_NOSLEEP));
471 }
472 
473 /*
474  * Allocates size aligned contiguous memory upto contig_mem_slab_size.
475  * Size must be a power of 2.
476  */
477 void *
478 contig_mem_alloc(size_t size)
479 {
480 	ASSERT((size & (size - 1)) == 0);
481 	return (contig_mem_alloc_align(size, size));
482 }
483 
484 void
485 contig_mem_free(void *vaddr, size_t size)
486 {
487 	vmem_xfree(contig_mem_arena, vaddr, size);
488 }
489 
490 /*
491  * We create a set of stacked vmem arenas to enable us to
492  * allocate large >PAGESIZE chucks of contiguous Real Address space
493  * This is  what the Dynamics TSB support does for TSBs.
494  * The contig_mem_arena import functions are exactly the same as the
495  * TSB kmem_default arena import functions.
496  */
497 void
498 contig_mem_init(void)
499 {
500 
501 	contig_mem_slab_arena = vmem_create("contig_mem_slab_arena", NULL, 0,
502 	    contig_mem_slab_size, contig_vmem_xalloc_aligned_wrapper,
503 	    vmem_xfree, heap_arena, 0, VM_SLEEP);
504 
505 	contig_mem_arena = vmem_create("contig_mem_arena", NULL, 0,
506 	    QUANTUM_SIZE, contig_mem_span_alloc, contig_mem_span_free,
507 	    contig_mem_slab_arena, 0, VM_SLEEP | VM_BESTFIT);
508 
509 }
510