xref: /titanic_50/usr/src/uts/sun4v/vm/mach_sfmmu.c (revision eb2b0a6162b47bdee86cc3d2e844dc8f89d95371)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <vm/hat.h>
30 #include <vm/hat_sfmmu.h>
31 #include <vm/page.h>
32 #include <sys/pte.h>
33 #include <sys/systm.h>
34 #include <sys/mman.h>
35 #include <sys/sysmacros.h>
36 #include <sys/machparam.h>
37 #include <sys/vtrace.h>
38 #include <sys/kmem.h>
39 #include <sys/mmu.h>
40 #include <sys/cmn_err.h>
41 #include <sys/cpu.h>
42 #include <sys/cpuvar.h>
43 #include <sys/debug.h>
44 #include <sys/lgrp.h>
45 #include <sys/archsystm.h>
46 #include <sys/machsystm.h>
47 #include <sys/vmsystm.h>
48 #include <sys/bitmap.h>
49 #include <vm/rm.h>
50 #include <sys/t_lock.h>
51 #include <sys/vm_machparam.h>
52 #include <sys/promif.h>
53 #include <sys/prom_isa.h>
54 #include <sys/prom_plat.h>
55 #include <sys/prom_debug.h>
56 #include <sys/privregs.h>
57 #include <sys/bootconf.h>
58 #include <sys/memlist.h>
59 #include <sys/memlist_plat.h>
60 #include <sys/cpu_module.h>
61 #include <sys/reboot.h>
62 #include <sys/kdi.h>
63 #include <sys/hypervisor_api.h>
64 
65 /*
66  * External routines and data structures
67  */
68 extern void	sfmmu_cache_flushcolor(int, pfn_t);
69 
70 /*
71  * Static routines
72  */
73 static void	sfmmu_set_tlb(void);
74 
75 /*
76  * Global Data:
77  */
78 caddr_t	textva, datava;
79 tte_t	ktext_tte, kdata_tte;		/* ttes for kernel text and data */
80 
81 int	enable_bigktsb = 1;
82 
83 tte_t bigktsb_ttes[MAX_BIGKTSB_TTES];
84 int bigktsb_nttes = 0;
85 
86 
87 /*
88  * Controls the logic which enables the use of the
89  * QUAD_LDD_PHYS ASI for TSB accesses.
90  */
91 int	ktsb_phys = 1;
92 
93 #ifdef SET_MMU_STATS
94 struct mmu_stat	mmu_stat_area[NCPU];
95 #endif /* SET_MMU_STATS */
96 
97 #ifdef DEBUG
98 /*
99  * The following two variables control if the hypervisor/hardware will
100  * be used to do the TSB table walk for kernel and user contexts.
101  */
102 int hv_use_0_tsb = 1;
103 int hv_use_non0_tsb = 1;
104 #endif /* DEBUG */
105 
106 static void
107 sfmmu_set_fault_status_area(void)
108 {
109 	caddr_t mmfsa_va;
110 	extern	caddr_t mmu_fault_status_area;
111 
112 	mmfsa_va =
113 	    mmu_fault_status_area + (MMFSA_SIZE  * getprocessorid());
114 	set_mmfsa_scratchpad(mmfsa_va);
115 	prom_set_mmfsa_traptable(&trap_table, va_to_pa(mmfsa_va));
116 }
117 
118 void
119 sfmmu_set_tsbs()
120 {
121 	uint64_t rv;
122 	struct hv_tsb_block *hvbp = &ksfmmup->sfmmu_hvblock;
123 
124 #ifdef DEBUG
125 	if (hv_use_0_tsb == 0)
126 		return;
127 #endif /* DEBUG */
128 
129 	rv = hv_set_ctx0(hvbp->hv_tsb_info_cnt,
130 	    hvbp->hv_tsb_info_pa);
131 	if (rv != H_EOK)
132 		prom_printf("cpu%d: hv_set_ctx0() returned %lx\n",
133 		    getprocessorid(), rv);
134 
135 #ifdef SET_MMU_STATS
136 	ASSERT(getprocessorid() < NCPU);
137 	rv = hv_mmu_set_stat_area(va_to_pa(&mmu_stat_area[getprocessorid()]),
138 	    sizeof (mmu_stat_area[0]));
139 	if (rv != H_EOK)
140 		prom_printf("cpu%d: hv_mmu_set_stat_area() returned %lx\n",
141 		    getprocessorid(), rv);
142 #endif /* SET_MMU_STATS */
143 }
144 
145 /*
146  * This routine remaps the kernel using large ttes
147  * All entries except locked ones will be removed from the tlb.
148  * It assumes that both the text and data segments reside in a separate
149  * 4mb virtual and physical contigous memory chunk.  This routine
150  * is only executed by the first cpu.  The remaining cpus execute
151  * sfmmu_mp_startup() instead.
152  * XXX It assumes that the start of the text segment is KERNELBASE.  It should
153  * actually be based on start.
154  */
155 void
156 sfmmu_remap_kernel(void)
157 {
158 	pfn_t	pfn;
159 	uint_t	attr;
160 	int	flags;
161 
162 	extern char end[];
163 	extern struct as kas;
164 
165 	textva = (caddr_t)(KERNELBASE & MMU_PAGEMASK4M);
166 	pfn = va_to_pfn(textva);
167 	if (pfn == PFN_INVALID)
168 		prom_panic("can't find kernel text pfn");
169 	pfn &= TTE_PFNMASK(TTE4M);
170 
171 	attr = PROC_TEXT | HAT_NOSYNC;
172 	flags = HAT_LOAD_LOCK | SFMMU_NO_TSBLOAD;
173 	sfmmu_memtte(&ktext_tte, pfn, attr, TTE4M);
174 	/*
175 	 * We set the lock bit in the tte to lock the translation in
176 	 * the tlb.
177 	 */
178 	TTE_SET_LOCKED(&ktext_tte);
179 	sfmmu_tteload(kas.a_hat, &ktext_tte, textva, NULL, flags);
180 
181 	datava = (caddr_t)((uintptr_t)end & MMU_PAGEMASK4M);
182 	pfn = va_to_pfn(datava);
183 	if (pfn == PFN_INVALID)
184 		prom_panic("can't find kernel data pfn");
185 	pfn &= TTE_PFNMASK(TTE4M);
186 
187 	attr = PROC_DATA | HAT_NOSYNC;
188 	sfmmu_memtte(&kdata_tte, pfn, attr, TTE4M);
189 	/*
190 	 * We set the lock bit in the tte to lock the translation in
191 	 * the tlb.  We also set the mod bit to avoid taking dirty bit
192 	 * traps on kernel data.
193 	 */
194 	TTE_SET_LOCKED(&kdata_tte);
195 	TTE_SET_LOFLAGS(&kdata_tte, 0, TTE_HWWR_INT);
196 	sfmmu_tteload(kas.a_hat, &kdata_tte, datava,
197 	    (struct page *)NULL, flags);
198 
199 	/*
200 	 * create bigktsb ttes if necessary.
201 	 */
202 	if (enable_bigktsb) {
203 		int i = 0;
204 		caddr_t va = ktsb_base;
205 		size_t tsbsz = ktsb_sz;
206 		tte_t tte;
207 
208 		ASSERT(va >= datava + MMU_PAGESIZE4M);
209 		ASSERT(tsbsz >= MMU_PAGESIZE4M);
210 		ASSERT(IS_P2ALIGNED(tsbsz, tsbsz));
211 		ASSERT(IS_P2ALIGNED(va, tsbsz));
212 		attr = PROC_DATA | HAT_NOSYNC;
213 		while (tsbsz != 0) {
214 			ASSERT(i < MAX_BIGKTSB_TTES);
215 			pfn = va_to_pfn(va);
216 			ASSERT(pfn != PFN_INVALID);
217 			ASSERT((pfn & ~TTE_PFNMASK(TTE4M)) == 0);
218 			sfmmu_memtte(&tte, pfn, attr, TTE4M);
219 			ASSERT(TTE_IS_MOD(&tte));
220 			/*
221 			 * No need to lock if we use physical addresses.
222 			 * Since we invalidate the kernel TSB using virtual
223 			 * addresses, it's an optimization to load them now
224 			 * so that we won't have to load them later.
225 			 */
226 			if (!ktsb_phys) {
227 				TTE_SET_LOCKED(&tte);
228 			}
229 			sfmmu_tteload(kas.a_hat, &tte, va, NULL, flags);
230 			bigktsb_ttes[i] = tte;
231 			va += MMU_PAGESIZE4M;
232 			tsbsz -= MMU_PAGESIZE4M;
233 			i++;
234 		}
235 		bigktsb_nttes = i;
236 	}
237 
238 	sfmmu_set_tlb();
239 }
240 
241 /*
242  * Setup the kernel's locked tte's
243  */
244 void
245 sfmmu_set_tlb(void)
246 {
247 	(void) hv_mmu_map_perm_addr(textva, KCONTEXT, *(uint64_t *)&ktext_tte,
248 	    MAP_ITLB | MAP_DTLB);
249 	(void) hv_mmu_map_perm_addr(datava, KCONTEXT, *(uint64_t *)&kdata_tte,
250 	    MAP_DTLB);
251 
252 	if (!ktsb_phys && enable_bigktsb) {
253 		int i;
254 		caddr_t va = ktsb_base;
255 		uint64_t tte;
256 
257 		ASSERT(bigktsb_nttes <= MAX_BIGKTSB_TTES);
258 		for (i = 0; i < bigktsb_nttes; i++) {
259 			tte = *(uint64_t *)&bigktsb_ttes[i];
260 			(void) hv_mmu_map_perm_addr(va, KCONTEXT, tte,
261 			    MAP_DTLB);
262 			va += MMU_PAGESIZE4M;
263 		}
264 	}
265 }
266 
267 /*
268  * This routine is executed by all other cpus except the first one
269  * at initialization time.  It is responsible for taking over the
270  * mmu from the prom.  We follow these steps.
271  * Lock the kernel's ttes in the TLB
272  * Initialize the tsb hardware registers
273  * Take over the trap table
274  * Flush the prom's locked entries from the TLB
275  */
276 void
277 sfmmu_mp_startup(void)
278 {
279 	sfmmu_set_tlb();
280 	setwstate(WSTATE_KERN);
281 	/*
282 	 * sfmmu_set_fault_status_area() takes over trap_table
283 	 */
284 	sfmmu_set_fault_status_area();
285 	sfmmu_set_tsbs();
286 	install_va_to_tte();
287 }
288 
289 void
290 kdi_tlb_page_lock(caddr_t va, int do_dtlb)
291 {
292 	tte_t tte;
293 	pfn_t pfn = va_to_pfn(va);
294 	uint64_t ret;
295 
296 	sfmmu_memtte(&tte, pfn, (PROC_TEXT | HAT_NOSYNC), TTE8K);
297 	ret = hv_mmu_map_perm_addr(va, KCONTEXT, *(uint64_t *)&tte,
298 	    MAP_ITLB | (do_dtlb ? MAP_DTLB : 0));
299 
300 	if (ret != H_EOK) {
301 		cmn_err(CE_PANIC, "cpu%d: cannot set permanent mapping for "
302 		    "va=0x%p, hv error code 0x%lux",
303 		    getprocessorid(), (void *)va, ret);
304 	}
305 }
306 
307 void
308 kdi_tlb_page_unlock(caddr_t va, int do_dtlb)
309 {
310 	(void) hv_mmu_unmap_perm_addr(va, KCONTEXT,
311 	    MAP_ITLB | (do_dtlb ? MAP_DTLB : 0));
312 }
313 
314 /*
315  * Clear machine specific TSB information for a user process
316  */
317 void
318 sfmmu_clear_utsbinfo()
319 {
320 	(void) hv_set_ctxnon0(0, NULL);
321 }
322 
323 /*
324  * Invalidate machine specific TSB information, indicates all TSB memory
325  * is being freed by hat_swapout().
326  */
327 void
328 sfmmu_invalidate_tsbinfo(sfmmu_t *sfmmup)
329 {
330 	ASSERT(sfmmup->sfmmu_tsb != NULL &&
331 	    sfmmup->sfmmu_tsb->tsb_flags & TSB_SWAPPED);
332 
333 	sfmmup->sfmmu_hvblock.hv_tsb_info_pa = (uint64_t)-1;
334 	sfmmup->sfmmu_hvblock.hv_tsb_info_cnt = 0;
335 }
336 
337 /*
338  * Set machine specific TSB information
339  */
340 void
341 sfmmu_setup_tsbinfo(sfmmu_t *sfmmup)
342 {
343 	struct tsb_info *tsbinfop;
344 	hv_tsb_info_t *tdp;
345 
346 	tsbinfop = sfmmup->sfmmu_tsb;
347 	if (tsbinfop == NULL) {
348 		sfmmup->sfmmu_hvblock.hv_tsb_info_pa = (uint64_t)-1;
349 		sfmmup->sfmmu_hvblock.hv_tsb_info_cnt = 0;
350 		return;
351 	}
352 	tdp = &sfmmup->sfmmu_hvblock.hv_tsb_info[0];
353 	sfmmup->sfmmu_hvblock.hv_tsb_info_pa = va_to_pa(tdp);
354 	sfmmup->sfmmu_hvblock.hv_tsb_info_cnt = 1;
355 	tdp->hvtsb_idxpgsz = TTE8K;
356 	tdp->hvtsb_assoc = 1;
357 	tdp->hvtsb_ntte = TSB_ENTRIES(tsbinfop->tsb_szc);
358 	tdp->hvtsb_ctx_index = 0;
359 	tdp->hvtsb_pgszs = tsbinfop->tsb_ttesz_mask;
360 	tdp->hvtsb_rsvd = 0;
361 	tdp->hvtsb_pa = tsbinfop->tsb_pa;
362 	if ((tsbinfop = tsbinfop->tsb_next) == NULL)
363 		return;
364 	sfmmup->sfmmu_hvblock.hv_tsb_info_cnt++;
365 	tdp++;
366 	tdp->hvtsb_idxpgsz = TTE4M;
367 	tdp->hvtsb_assoc = 1;
368 	tdp->hvtsb_ntte = TSB_ENTRIES(tsbinfop->tsb_szc);
369 	tdp->hvtsb_ctx_index = 0;
370 	tdp->hvtsb_pgszs = tsbinfop->tsb_ttesz_mask;
371 	tdp->hvtsb_rsvd = 0;
372 	tdp->hvtsb_pa = tsbinfop->tsb_pa;
373 	/* Only allow for 2 TSBs */
374 	ASSERT(tsbinfop->tsb_next == NULL);
375 }
376 
377 /*
378  * Invalidate a TSB via processor specific TSB invalidation routine
379  */
380 void
381 sfmmu_inv_tsb(caddr_t tsb_base, uint_t tsb_bytes)
382 {
383 	extern void cpu_inv_tsb(caddr_t, uint_t);
384 
385 	cpu_inv_tsb(tsb_base, tsb_bytes);
386 }
387 
388 /*
389  * Completely flush the D-cache on all cpus.
390  * Not applicable to sun4v.
391  */
392 void
393 sfmmu_cache_flushall()
394 {
395 }
396