xref: /titanic_50/usr/src/uts/sun4v/os/mach_startup.c (revision c8e880c1386b032ac975c61826ba3bc0d8dce5ac)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/machsystm.h>
30 #include <sys/archsystm.h>
31 #include <sys/prom_plat.h>
32 #include <sys/promif.h>
33 #include <sys/vm.h>
34 #include <sys/cpu.h>
35 #include <sys/atomic.h>
36 #include <sys/cpupart.h>
37 #include <sys/disp.h>
38 #include <sys/hypervisor_api.h>
39 #include <sys/traptrace.h>
40 #include <sys/modctl.h>
41 #include <sys/ldoms.h>
42 #include <vm/vm_dep.h>
43 
44 #ifdef TRAPTRACE
45 int mach_htraptrace_enable = 1;
46 #else
47 int mach_htraptrace_enable = 0;
48 #endif
49 int htrap_tr0_inuse = 0;
50 extern char htrap_tr0[];	/* prealloc buf for boot cpu */
51 
52 caddr_t	mmu_fault_status_area;
53 
54 extern void sfmmu_set_tsbs(void);
55 /*
56  * CPU IDLE optimization variables/routines
57  */
58 static int enable_halt_idle_cpus = 1;
59 
60 void
61 setup_trap_table(void)
62 {
63 	caddr_t mmfsa_va;
64 	extern	 caddr_t mmu_fault_status_area;
65 	mmfsa_va =
66 	    mmu_fault_status_area + (MMFSA_SIZE * CPU->cpu_id);
67 
68 	intr_init(CPU);		/* init interrupt request free list */
69 	setwstate(WSTATE_KERN);
70 	set_mmfsa_scratchpad(mmfsa_va);
71 	prom_set_mmfsa_traptable(&trap_table, va_to_pa(mmfsa_va));
72 	sfmmu_set_tsbs();
73 }
74 
75 void
76 phys_install_has_changed(void)
77 {
78 
79 }
80 
81 /*
82  * Halt the present CPU until awoken via an interrupt
83  */
84 static void
85 cpu_halt(void)
86 {
87 	cpu_t *cpup = CPU;
88 	processorid_t cpun = cpup->cpu_id;
89 	cpupart_t *cp = cpup->cpu_part;
90 	int hset_update = 1;
91 	volatile int *p = &cpup->cpu_disp->disp_nrunnable;
92 	uint_t s;
93 
94 	/*
95 	 * If this CPU is online, and there's multiple CPUs
96 	 * in the system, then we should notate our halting
97 	 * by adding ourselves to the partition's halted CPU
98 	 * bitmap. This allows other CPUs to find/awaken us when
99 	 * work becomes available.
100 	 */
101 	if (CPU->cpu_flags & CPU_OFFLINE || ncpus == 1)
102 		hset_update = 0;
103 
104 	/*
105 	 * Add ourselves to the partition's halted CPUs bitmask
106 	 * and set our HALTED flag, if necessary.
107 	 *
108 	 * When a thread becomes runnable, it is placed on the queue
109 	 * and then the halted cpuset is checked to determine who
110 	 * (if anyone) should be awoken. We therefore need to first
111 	 * add ourselves to the halted cpuset, and then check if there
112 	 * is any work available.
113 	 */
114 	if (hset_update) {
115 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
116 		membar_producer();
117 		CPUSET_ATOMIC_ADD(cp->cp_mach->mc_haltset, cpun);
118 	}
119 
120 	/*
121 	 * Check to make sure there's really nothing to do.
122 	 * Work destined for this CPU may become available after
123 	 * this check. We'll be notified through the clearing of our
124 	 * bit in the halted CPU bitmask, and a poke.
125 	 */
126 	if (disp_anywork()) {
127 		if (hset_update) {
128 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
129 			CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
130 		}
131 		return;
132 	}
133 
134 	/*
135 	 * We're on our way to being halted.  Wait until something becomes
136 	 * runnable locally or we are awaken (i.e. removed from the halt set).
137 	 * Note that the call to hv_cpu_yield() can return even if we have
138 	 * nothing to do.
139 	 *
140 	 * Disable interrupts now, so that we'll awaken immediately
141 	 * after halting if someone tries to poke us between now and
142 	 * the time we actually halt.
143 	 *
144 	 * We check for the presence of our bit after disabling interrupts.
145 	 * If it's cleared, we'll return. If the bit is cleared after
146 	 * we check then the poke will pop us out of the halted state.
147 	 * Also, if the offlined CPU has been brought back on-line, then
148 	 * we return as well.
149 	 *
150 	 * The ordering of the poke and the clearing of the bit by cpu_wakeup
151 	 * is important.
152 	 * cpu_wakeup() must clear, then poke.
153 	 * cpu_halt() must disable interrupts, then check for the bit.
154 	 *
155 	 * The check for anything locally runnable is here for performance
156 	 * and isn't needed for correctness. disp_nrunnable ought to be
157 	 * in our cache still, so it's inexpensive to check, and if there
158 	 * is anything runnable we won't have to wait for the poke.
159 	 *
160 	 */
161 	s = disable_vec_intr();
162 	while (*p == 0 &&
163 	    ((hset_update && CPU_IN_SET(cp->cp_mach->mc_haltset, cpun)) ||
164 	    (!hset_update && (CPU->cpu_flags & CPU_OFFLINE)))) {
165 		(void) hv_cpu_yield();
166 		enable_vec_intr(s);
167 		s = disable_vec_intr();
168 	}
169 
170 	/*
171 	 * We're no longer halted
172 	 */
173 	enable_vec_intr(s);
174 	if (hset_update) {
175 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
176 		CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
177 	}
178 }
179 
180 /*
181  * If "cpu" is halted, then wake it up clearing its halted bit in advance.
182  * Otherwise, see if other CPUs in the cpu partition are halted and need to
183  * be woken up so that they can steal the thread we placed on this CPU.
184  * This function is only used on MP systems.
185  */
186 static void
187 cpu_wakeup(cpu_t *cpu, int bound)
188 {
189 	uint_t		cpu_found;
190 	int		result;
191 	cpupart_t	*cp;
192 
193 	cp = cpu->cpu_part;
194 	if (CPU_IN_SET(cp->cp_mach->mc_haltset, cpu->cpu_id)) {
195 		/*
196 		 * Clear the halted bit for that CPU since it will be
197 		 * poked in a moment.
198 		 */
199 		CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpu->cpu_id);
200 		/*
201 		 * We may find the current CPU present in the halted cpuset
202 		 * if we're in the context of an interrupt that occurred
203 		 * before we had a chance to clear our bit in cpu_halt().
204 		 * Poking ourself is obviously unnecessary, since if
205 		 * we're here, we're not halted.
206 		 */
207 		if (cpu != CPU)
208 			poke_cpu(cpu->cpu_id);
209 		return;
210 	} else {
211 		/*
212 		 * This cpu isn't halted, but it's idle or undergoing a
213 		 * context switch. No need to awaken anyone else.
214 		 */
215 		if (cpu->cpu_thread == cpu->cpu_idle_thread ||
216 		    cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL)
217 			return;
218 	}
219 
220 	/*
221 	 * No need to wake up other CPUs if the thread we just enqueued
222 	 * is bound.
223 	 */
224 	if (bound)
225 		return;
226 
227 	/*
228 	 * See if there's any other halted CPUs. If there are, then
229 	 * select one, and awaken it.
230 	 * It's possible that after we find a CPU, somebody else
231 	 * will awaken it before we get the chance.
232 	 * In that case, look again.
233 	 */
234 	do {
235 		CPUSET_FIND(cp->cp_mach->mc_haltset, cpu_found);
236 		if (cpu_found == CPUSET_NOTINSET)
237 			return;
238 
239 		ASSERT(cpu_found >= 0 && cpu_found < NCPU);
240 		CPUSET_ATOMIC_XDEL(cp->cp_mach->mc_haltset, cpu_found, result);
241 	} while (result < 0);
242 
243 	if (cpu_found != CPU->cpu_id)
244 		poke_cpu(cpu_found);
245 }
246 
247 void
248 mach_cpu_halt_idle()
249 {
250 	if (enable_halt_idle_cpus) {
251 		idle_cpu = cpu_halt;
252 		disp_enq_thread = cpu_wakeup;
253 	}
254 }
255 
256 int
257 ndata_alloc_mmfsa(struct memlist *ndata)
258 {
259 	size_t	size;
260 
261 	size = MMFSA_SIZE * max_ncpus;
262 	mmu_fault_status_area = ndata_alloc(ndata, size, ecache_alignsize);
263 	if (mmu_fault_status_area == NULL)
264 		return (-1);
265 	return (0);
266 }
267 
268 void
269 mach_memscrub(void)
270 {
271 	/* no memscrub support for sun4v for now */
272 }
273 
274 void
275 mach_fpras()
276 {
277 	/* no fpras support for sun4v for now */
278 }
279 
280 void
281 mach_hw_copy_limit(void)
282 {
283 	/* HW copy limits set by individual CPU module */
284 }
285 
286 /*
287  * We need to enable soft ring functionality on Niagara platform since
288  * one strand can't handle interrupts for a 1Gb NIC. Set the tunable
289  * ip_squeue_soft_ring by default on this platform. We can also set
290  * ip_threads_per_cpu to track number of threads per core. The variables
291  * themselves are defined in space.c and used by IP module
292  */
293 extern uint_t ip_threads_per_cpu;
294 extern boolean_t ip_squeue_soft_ring;
295 void
296 startup_platform(void)
297 {
298 	ip_squeue_soft_ring = B_TRUE;
299 }
300 
301 /*
302  * This function sets up hypervisor traptrace buffer
303  * This routine is called by the boot cpu only
304  */
305 void
306 mach_htraptrace_setup(int cpuid)
307 {
308 	TRAP_TRACE_CTL	*ctlp;
309 	int bootcpuid = getprocessorid(); /* invoked on boot cpu only */
310 
311 	if (mach_htraptrace_enable && ((cpuid != bootcpuid) ||
312 	    !htrap_tr0_inuse)) {
313 		ctlp = &trap_trace_ctl[cpuid];
314 		ctlp->d.hvaddr_base = (cpuid == bootcpuid) ? htrap_tr0 :
315 		    contig_mem_alloc_align(HTRAP_TSIZE, HTRAP_TSIZE);
316 		if (ctlp->d.hvaddr_base == NULL) {
317 			ctlp->d.hlimit = 0;
318 			ctlp->d.hpaddr_base = NULL;
319 			cmn_err(CE_WARN, "!cpu%d: failed to allocate HV "
320 			    "traptrace buffer", cpuid);
321 		} else {
322 			ctlp->d.hlimit = HTRAP_TSIZE;
323 			ctlp->d.hpaddr_base = va_to_pa(ctlp->d.hvaddr_base);
324 		}
325 	}
326 }
327 
328 /*
329  * This function enables or disables the hypervisor traptracing
330  */
331 void
332 mach_htraptrace_configure(int cpuid)
333 {
334 	uint64_t ret;
335 	uint64_t prev_buf, prev_bufsize;
336 	uint64_t prev_enable;
337 	uint64_t size;
338 	TRAP_TRACE_CTL	*ctlp;
339 
340 	ctlp = &trap_trace_ctl[cpuid];
341 	if (mach_htraptrace_enable) {
342 		if ((ctlp->d.hvaddr_base != NULL) &&
343 		    ((ctlp->d.hvaddr_base != htrap_tr0) ||
344 		    (!htrap_tr0_inuse))) {
345 			ret = hv_ttrace_buf_info(&prev_buf, &prev_bufsize);
346 			if ((ret == H_EOK) && (prev_bufsize != 0)) {
347 				cmn_err(CE_CONT,
348 				    "!cpu%d: previous HV traptrace buffer of "
349 				    "size 0x%lx at address 0x%lx", cpuid,
350 				    prev_bufsize, prev_buf);
351 			}
352 
353 			ret = hv_ttrace_buf_conf(ctlp->d.hpaddr_base,
354 			    ctlp->d.hlimit /
355 			    (sizeof (struct htrap_trace_record)), &size);
356 			if (ret == H_EOK) {
357 				ret = hv_ttrace_enable(\
358 				    (uint64_t)TRAP_TENABLE_ALL, &prev_enable);
359 				if (ret != H_EOK) {
360 					cmn_err(CE_WARN,
361 					    "!cpu%d: HV traptracing not "
362 					    "enabled, ta: 0x%x returned error: "
363 					    "%ld", cpuid, TTRACE_ENABLE, ret);
364 				} else {
365 					if (ctlp->d.hvaddr_base == htrap_tr0)
366 						htrap_tr0_inuse = 1;
367 				}
368 			} else {
369 				cmn_err(CE_WARN,
370 				    "!cpu%d: HV traptrace buffer not "
371 				    "configured, ta: 0x%x returned error: %ld",
372 				    cpuid, TTRACE_BUF_CONF, ret);
373 			}
374 			/*
375 			 * set hvaddr_base to NULL when traptrace buffer
376 			 * registration fails
377 			 */
378 			if (ret != H_EOK) {
379 				ctlp->d.hvaddr_base = NULL;
380 				ctlp->d.hlimit = 0;
381 				ctlp->d.hpaddr_base = NULL;
382 			}
383 		}
384 	} else {
385 		ret = hv_ttrace_buf_info(&prev_buf, &prev_bufsize);
386 		if ((ret == H_EOK) && (prev_bufsize != 0)) {
387 			ret = hv_ttrace_enable((uint64_t)TRAP_TDISABLE_ALL,
388 			    &prev_enable);
389 			if (ret == H_EOK) {
390 				if (ctlp->d.hvaddr_base == htrap_tr0)
391 					htrap_tr0_inuse = 0;
392 				ctlp->d.hvaddr_base = NULL;
393 				ctlp->d.hlimit = 0;
394 				ctlp->d.hpaddr_base = NULL;
395 			} else
396 				cmn_err(CE_WARN,
397 				    "!cpu%d: HV traptracing is not disabled, "
398 				    "ta: 0x%x returned error: %ld",
399 				    cpuid, TTRACE_ENABLE, ret);
400 		}
401 	}
402 }
403 
404 /*
405  * This function cleans up the hypervisor traptrace buffer
406  */
407 void
408 mach_htraptrace_cleanup(int cpuid)
409 {
410 	if (mach_htraptrace_enable) {
411 		TRAP_TRACE_CTL *ctlp;
412 		caddr_t httrace_buf_va;
413 
414 		ASSERT(cpuid < max_ncpus);
415 		ctlp = &trap_trace_ctl[cpuid];
416 		httrace_buf_va = ctlp->d.hvaddr_base;
417 		if (httrace_buf_va == htrap_tr0) {
418 			bzero(httrace_buf_va, HTRAP_TSIZE);
419 		} else if (httrace_buf_va != NULL) {
420 			contig_mem_free(httrace_buf_va, HTRAP_TSIZE);
421 		}
422 		ctlp->d.hvaddr_base = NULL;
423 		ctlp->d.hlimit = 0;
424 		ctlp->d.hpaddr_base = NULL;
425 	}
426 }
427 
428 /*
429  * Load any required machine class (sun4v) specific drivers.
430  */
431 void
432 load_mach_drivers(void)
433 {
434 	/*
435 	 * We don't want to load these LDOMs-specific
436 	 * modules if domaining is not supported.  Also,
437 	 * we must be able to run on non-LDOMs firmware.
438 	 */
439 	if (!domaining_supported())
440 		return;
441 
442 	/*
443 	 * Load the core domain services module
444 	 */
445 	if (modload("misc", "ds") == -1)
446 		cmn_err(CE_NOTE, "!'ds' module failed to load");
447 
448 	/*
449 	 * Load the rest of the domain services
450 	 */
451 	if (modload("misc", "fault_iso") == -1)
452 		cmn_err(CE_NOTE, "!'fault_iso' module failed to load");
453 
454 	if (modload("misc", "platsvc") == -1)
455 		cmn_err(CE_NOTE, "!'platsvc' module failed to load");
456 
457 	if (domaining_enabled() && modload("misc", "dr_cpu") == -1)
458 		cmn_err(CE_NOTE, "!'dr_cpu' module failed to load");
459 
460 	/*
461 	 * Attempt to attach any virtual device servers. These
462 	 * drivers must be loaded at start of day so that they
463 	 * can respond to any updates to the machine description.
464 	 *
465 	 * Since it is quite likely that a domain will not support
466 	 * one or more of these servers, failures are ignored.
467 	 */
468 
469 	/* virtual disk server */
470 	(void) i_ddi_attach_hw_nodes("vds");
471 
472 	/* virtual network switch */
473 	(void) i_ddi_attach_hw_nodes("vsw");
474 
475 	/* virtual console concentrator */
476 	(void) i_ddi_attach_hw_nodes("vcc");
477 }
478