1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/machsystm.h> 30 #include <sys/archsystm.h> 31 #include <sys/prom_plat.h> 32 #include <sys/promif.h> 33 #include <sys/vm.h> 34 #include <sys/cpu.h> 35 #include <sys/atomic.h> 36 #include <sys/cpupart.h> 37 #include <sys/disp.h> 38 #include <sys/hypervisor_api.h> 39 #include <sys/traptrace.h> 40 #include <sys/modctl.h> 41 #include <sys/ldoms.h> 42 43 #ifdef TRAPTRACE 44 int mach_htraptrace_enable = 1; 45 #else 46 int mach_htraptrace_enable = 0; 47 #endif 48 int htrap_tr0_inuse = 0; 49 extern char htrap_tr0[]; /* prealloc buf for boot cpu */ 50 51 caddr_t mmu_fault_status_area; 52 53 extern void sfmmu_set_tsbs(void); 54 /* 55 * CPU IDLE optimization variables/routines 56 */ 57 static int enable_halt_idle_cpus = 1; 58 59 void 60 setup_trap_table(void) 61 { 62 caddr_t mmfsa_va; 63 extern caddr_t mmu_fault_status_area; 64 mmfsa_va = 65 mmu_fault_status_area + (MMFSA_SIZE * CPU->cpu_id); 66 67 intr_init(CPU); /* init interrupt request free list */ 68 setwstate(WSTATE_KERN); 69 set_mmfsa_scratchpad(mmfsa_va); 70 prom_set_mmfsa_traptable(&trap_table, va_to_pa(mmfsa_va)); 71 sfmmu_set_tsbs(); 72 } 73 74 void 75 phys_install_has_changed(void) 76 { 77 78 } 79 80 #ifdef N2_IDLE_WORKAROUND 81 /* 82 * Tuneable to control enabling of IDLE loop workaround on Niagara2 1.x parts. 83 * This workaround will be removed before the RR. 84 */ 85 int n2_idle_workaround; 86 #endif 87 88 /* 89 * Halt the present CPU until awoken via an interrupt 90 */ 91 static void 92 cpu_halt(void) 93 { 94 cpu_t *cpup = CPU; 95 processorid_t cpun = cpup->cpu_id; 96 cpupart_t *cp = cpup->cpu_part; 97 int hset_update = 1; 98 volatile int *p = &cpup->cpu_disp->disp_nrunnable; 99 uint_t s; 100 101 /* 102 * If this CPU is online, and there's multiple CPUs 103 * in the system, then we should notate our halting 104 * by adding ourselves to the partition's halted CPU 105 * bitmap. This allows other CPUs to find/awaken us when 106 * work becomes available. 107 */ 108 if (CPU->cpu_flags & CPU_OFFLINE || ncpus == 1) 109 hset_update = 0; 110 111 /* 112 * Add ourselves to the partition's halted CPUs bitmask 113 * and set our HALTED flag, if necessary. 114 * 115 * When a thread becomes runnable, it is placed on the queue 116 * and then the halted cpuset is checked to determine who 117 * (if anyone) should be awoken. We therefore need to first 118 * add ourselves to the halted cpuset, and then check if there 119 * is any work available. 120 */ 121 if (hset_update) { 122 cpup->cpu_disp_flags |= CPU_DISP_HALTED; 123 membar_producer(); 124 CPUSET_ATOMIC_ADD(cp->cp_mach->mc_haltset, cpun); 125 } 126 127 /* 128 * Check to make sure there's really nothing to do. 129 * Work destined for this CPU may become available after 130 * this check. We'll be notified through the clearing of our 131 * bit in the halted CPU bitmask, and a poke. 132 */ 133 if (disp_anywork()) { 134 if (hset_update) { 135 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 136 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun); 137 } 138 return; 139 } 140 141 #ifdef N2_IDLE_WORKAROUND 142 /* 143 * The following workaround for Niagara2, when enabled, forces the 144 * IDLE CPU to wait in a tight loop until something becomes runnable 145 * locally, minimizing the overall CPU usage on an IDLE CPU. 146 */ 147 if (n2_idle_workaround) { 148 while (cpup->cpu_disp->disp_nrunnable == 0) { 149 (void) hv_cpu_yield(); 150 } 151 } 152 #endif 153 154 /* 155 * We're on our way to being halted. Wait until something becomes 156 * runnable locally or we are awaken (i.e. removed from the halt set). 157 * Note that the call to hv_cpu_yield() can return even if we have 158 * nothing to do. 159 * 160 * Disable interrupts now, so that we'll awaken immediately 161 * after halting if someone tries to poke us between now and 162 * the time we actually halt. 163 * 164 * We check for the presence of our bit after disabling interrupts. 165 * If it's cleared, we'll return. If the bit is cleared after 166 * we check then the poke will pop us out of the halted state. 167 * 168 * The ordering of the poke and the clearing of the bit by cpu_wakeup 169 * is important. 170 * cpu_wakeup() must clear, then poke. 171 * cpu_halt() must disable interrupts, then check for the bit. 172 * 173 * The check for anything locally runnable is here for performance 174 * and isn't needed for correctness. disp_nrunnable ought to be 175 * in our cache still, so it's inexpensive to check, and if there 176 * is anything runnable we won't have to wait for the poke. 177 * 178 */ 179 s = disable_vec_intr(); 180 while (*p == 0 && 181 (!hset_update || CPU_IN_SET(cp->cp_mach->mc_haltset, cpun))) { 182 (void) hv_cpu_yield(); 183 enable_vec_intr(s); 184 s = disable_vec_intr(); 185 } 186 187 /* 188 * We're no longer halted 189 */ 190 enable_vec_intr(s); 191 if (hset_update) { 192 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 193 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun); 194 } 195 } 196 197 /* 198 * If "cpu" is halted, then wake it up clearing its halted bit in advance. 199 * Otherwise, see if other CPUs in the cpu partition are halted and need to 200 * be woken up so that they can steal the thread we placed on this CPU. 201 * This function is only used on MP systems. 202 */ 203 static void 204 cpu_wakeup(cpu_t *cpu, int bound) 205 { 206 uint_t cpu_found; 207 int result; 208 cpupart_t *cp; 209 210 cp = cpu->cpu_part; 211 if (CPU_IN_SET(cp->cp_mach->mc_haltset, cpu->cpu_id)) { 212 /* 213 * Clear the halted bit for that CPU since it will be 214 * poked in a moment. 215 */ 216 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpu->cpu_id); 217 /* 218 * We may find the current CPU present in the halted cpuset 219 * if we're in the context of an interrupt that occurred 220 * before we had a chance to clear our bit in cpu_halt(). 221 * Poking ourself is obviously unnecessary, since if 222 * we're here, we're not halted. 223 */ 224 if (cpu != CPU) 225 poke_cpu(cpu->cpu_id); 226 return; 227 } else { 228 /* 229 * This cpu isn't halted, but it's idle or undergoing a 230 * context switch. No need to awaken anyone else. 231 */ 232 if (cpu->cpu_thread == cpu->cpu_idle_thread || 233 cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL) 234 return; 235 } 236 237 /* 238 * No need to wake up other CPUs if the thread we just enqueued 239 * is bound. 240 */ 241 if (bound) 242 return; 243 244 /* 245 * See if there's any other halted CPUs. If there are, then 246 * select one, and awaken it. 247 * It's possible that after we find a CPU, somebody else 248 * will awaken it before we get the chance. 249 * In that case, look again. 250 */ 251 do { 252 CPUSET_FIND(cp->cp_mach->mc_haltset, cpu_found); 253 if (cpu_found == CPUSET_NOTINSET) 254 return; 255 256 ASSERT(cpu_found >= 0 && cpu_found < NCPU); 257 CPUSET_ATOMIC_XDEL(cp->cp_mach->mc_haltset, cpu_found, result); 258 } while (result < 0); 259 260 if (cpu_found != CPU->cpu_id) 261 poke_cpu(cpu_found); 262 } 263 264 void 265 mach_cpu_halt_idle() 266 { 267 if (enable_halt_idle_cpus) { 268 idle_cpu = cpu_halt; 269 disp_enq_thread = cpu_wakeup; 270 } 271 } 272 273 int 274 ndata_alloc_mmfsa(struct memlist *ndata) 275 { 276 size_t size; 277 278 size = MMFSA_SIZE * max_ncpus; 279 mmu_fault_status_area = ndata_alloc(ndata, size, ecache_alignsize); 280 if (mmu_fault_status_area == NULL) 281 return (-1); 282 return (0); 283 } 284 285 void 286 mach_memscrub(void) 287 { 288 /* no memscrub support for sun4v for now */ 289 } 290 291 void 292 mach_fpras() 293 { 294 /* no fpras support for sun4v for now */ 295 } 296 297 void 298 mach_hw_copy_limit(void) 299 { 300 /* HW copy limits set by individual CPU module */ 301 } 302 303 /* 304 * We need to enable soft ring functionality on Niagara platform since 305 * one strand can't handle interrupts for a 1Gb NIC. Set the tunable 306 * ip_squeue_soft_ring by default on this platform. We can also set 307 * ip_threads_per_cpu to track number of threads per core. The variables 308 * themselves are defined in space.c and used by IP module 309 */ 310 extern uint_t ip_threads_per_cpu; 311 extern boolean_t ip_squeue_soft_ring; 312 void 313 startup_platform(void) 314 { 315 ip_squeue_soft_ring = B_TRUE; 316 } 317 318 /* 319 * This function sets up hypervisor traptrace buffer 320 * This routine is called by the boot cpu only 321 */ 322 void 323 mach_htraptrace_setup(int cpuid) 324 { 325 TRAP_TRACE_CTL *ctlp; 326 int bootcpuid = getprocessorid(); /* invoked on boot cpu only */ 327 328 if (mach_htraptrace_enable && ((cpuid != bootcpuid) || 329 !htrap_tr0_inuse)) { 330 ctlp = &trap_trace_ctl[cpuid]; 331 ctlp->d.hvaddr_base = (cpuid == bootcpuid) ? htrap_tr0 : 332 contig_mem_alloc_align(HTRAP_TSIZE, HTRAP_TSIZE); 333 if (ctlp->d.hvaddr_base == NULL) { 334 ctlp->d.hlimit = 0; 335 ctlp->d.hpaddr_base = NULL; 336 cmn_err(CE_WARN, "!cpu%d: failed to allocate HV " 337 "traptrace buffer", cpuid); 338 } else { 339 ctlp->d.hlimit = HTRAP_TSIZE; 340 ctlp->d.hpaddr_base = va_to_pa(ctlp->d.hvaddr_base); 341 } 342 } 343 } 344 345 /* 346 * This function enables or disables the hypervisor traptracing 347 */ 348 void 349 mach_htraptrace_configure(int cpuid) 350 { 351 uint64_t ret; 352 uint64_t prev_buf, prev_bufsize; 353 uint64_t prev_enable; 354 uint64_t size; 355 TRAP_TRACE_CTL *ctlp; 356 357 ctlp = &trap_trace_ctl[cpuid]; 358 if (mach_htraptrace_enable) { 359 if ((ctlp->d.hvaddr_base != NULL) && 360 ((ctlp->d.hvaddr_base != htrap_tr0) || 361 (!htrap_tr0_inuse))) { 362 ret = hv_ttrace_buf_info(&prev_buf, &prev_bufsize); 363 if ((ret == H_EOK) && (prev_bufsize != 0)) { 364 cmn_err(CE_CONT, 365 "!cpu%d: previous HV traptrace buffer of " 366 "size 0x%lx at address 0x%lx", cpuid, 367 prev_bufsize, prev_buf); 368 } 369 370 ret = hv_ttrace_buf_conf(ctlp->d.hpaddr_base, 371 ctlp->d.hlimit / 372 (sizeof (struct htrap_trace_record)), &size); 373 if (ret == H_EOK) { 374 ret = hv_ttrace_enable(\ 375 (uint64_t)TRAP_TENABLE_ALL, &prev_enable); 376 if (ret != H_EOK) { 377 cmn_err(CE_WARN, 378 "!cpu%d: HV traptracing not " 379 "enabled, ta: 0x%x returned error: " 380 "%ld", cpuid, TTRACE_ENABLE, ret); 381 } else { 382 if (ctlp->d.hvaddr_base == htrap_tr0) 383 htrap_tr0_inuse = 1; 384 } 385 } else { 386 cmn_err(CE_WARN, 387 "!cpu%d: HV traptrace buffer not " 388 "configured, ta: 0x%x returned error: %ld", 389 cpuid, TTRACE_BUF_CONF, ret); 390 } 391 /* 392 * set hvaddr_base to NULL when traptrace buffer 393 * registration fails 394 */ 395 if (ret != H_EOK) { 396 ctlp->d.hvaddr_base = NULL; 397 ctlp->d.hlimit = 0; 398 ctlp->d.hpaddr_base = NULL; 399 } 400 } 401 } else { 402 ret = hv_ttrace_buf_info(&prev_buf, &prev_bufsize); 403 if ((ret == H_EOK) && (prev_bufsize != 0)) { 404 ret = hv_ttrace_enable((uint64_t)TRAP_TDISABLE_ALL, 405 &prev_enable); 406 if (ret == H_EOK) { 407 if (ctlp->d.hvaddr_base == htrap_tr0) 408 htrap_tr0_inuse = 0; 409 ctlp->d.hvaddr_base = NULL; 410 ctlp->d.hlimit = 0; 411 ctlp->d.hpaddr_base = NULL; 412 } else 413 cmn_err(CE_WARN, 414 "!cpu%d: HV traptracing is not disabled, " 415 "ta: 0x%x returned error: %ld", 416 cpuid, TTRACE_ENABLE, ret); 417 } 418 } 419 } 420 421 /* 422 * This function cleans up the hypervisor traptrace buffer 423 */ 424 void 425 mach_htraptrace_cleanup(int cpuid) 426 { 427 if (mach_htraptrace_enable) { 428 TRAP_TRACE_CTL *ctlp; 429 caddr_t httrace_buf_va; 430 431 ASSERT(cpuid < max_ncpus); 432 ctlp = &trap_trace_ctl[cpuid]; 433 httrace_buf_va = ctlp->d.hvaddr_base; 434 if (httrace_buf_va == htrap_tr0) { 435 bzero(httrace_buf_va, HTRAP_TSIZE); 436 } else if (httrace_buf_va != NULL) { 437 contig_mem_free(httrace_buf_va, HTRAP_TSIZE); 438 } 439 ctlp->d.hvaddr_base = NULL; 440 ctlp->d.hlimit = 0; 441 ctlp->d.hpaddr_base = NULL; 442 } 443 } 444 445 /* 446 * Load any required machine class (sun4v) specific drivers. 447 */ 448 void 449 load_mach_drivers(void) 450 { 451 /* 452 * We don't want to load these LDOMs-specific 453 * modules if domaining is not supported. Also, 454 * we must be able to run on non-LDOMs firmware. 455 */ 456 if (!(domaining_capabilities & DOMAINING_SUPPORTED)) 457 return; 458 459 /* 460 * Load the core domain services module 461 */ 462 if (modload("misc", "ds") == -1) 463 cmn_err(CE_NOTE, "!'ds' module failed to load"); 464 465 /* 466 * Load the rest of the domain services 467 */ 468 if (modload("misc", "fault_iso") == -1) 469 cmn_err(CE_NOTE, "!'fault_iso' module failed to load"); 470 471 if (modload("misc", "platsvc") == -1) 472 cmn_err(CE_NOTE, "!'platsvc' module failed to load"); 473 474 if ((domaining_capabilities & DOMAINING_ENABLED) && 475 modload("misc", "dr_cpu") == -1) 476 cmn_err(CE_NOTE, "!'dr_cpu' module failed to load"); 477 478 /* 479 * Attempt to attach any virtual device servers. These 480 * drivers must be loaded at start of day so that they 481 * can respond to any updates to the machine description. 482 * 483 * Since it is quite likely that a domain will not support 484 * one or more of these servers, failures are ignored. 485 */ 486 487 /* virtual disk server */ 488 (void) i_ddi_attach_hw_nodes("vds"); 489 490 /* virtual network switch */ 491 (void) i_ddi_attach_hw_nodes("vsw"); 492 493 /* virtual console concentrator */ 494 (void) i_ddi_attach_hw_nodes("vcc"); 495 } 496