xref: /titanic_50/usr/src/uts/sun4v/os/mach_cpu_states.c (revision c73a93f2f62aa040c7fc1755230b787b0ad03967)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/archsystm.h>
31 #include <sys/t_lock.h>
32 #include <sys/uadmin.h>
33 #include <sys/panic.h>
34 #include <sys/reboot.h>
35 #include <sys/autoconf.h>
36 #include <sys/machsystm.h>
37 #include <sys/promif.h>
38 #include <sys/membar.h>
39 #include <vm/hat_sfmmu.h>
40 #include <sys/cpu_module.h>
41 #include <sys/cpu_sgnblk_defs.h>
42 #include <sys/intreg.h>
43 #include <sys/consdev.h>
44 #include <sys/kdi_impl.h>
45 #include <sys/traptrace.h>
46 #include <sys/hypervisor_api.h>
47 #include <sys/vmsystm.h>
48 #include <sys/dtrace.h>
49 #include <sys/xc_impl.h>
50 #include <sys/callb.h>
51 #include <sys/mdesc.h>
52 #include <sys/mach_descrip.h>
53 
54 /*
55  * hvdump_buf_va is a pointer to the currently-configured hvdump_buf.
56  * A value of NULL indicates that this area is not configured.
57  * hvdump_buf_sz is tunable but will be clamped to HVDUMP_SIZE_MAX.
58  */
59 
60 caddr_t hvdump_buf_va;
61 uint64_t hvdump_buf_sz = HVDUMP_SIZE_DEFAULT;
62 static uint64_t hvdump_buf_pa;
63 
64 u_longlong_t panic_tick;
65 
66 extern u_longlong_t gettick();
67 static void reboot_machine(char *);
68 static void update_hvdump_buffer(void);
69 
70 /*
71  * For xt_sync synchronization.
72  */
73 extern uint64_t xc_tick_limit;
74 extern uint64_t xc_tick_jump_limit;
75 
76 /*
77  * We keep our own copies, used for cache flushing, because we can be called
78  * before cpu_fiximpl().
79  */
80 static int kdi_dcache_size;
81 static int kdi_dcache_linesize;
82 static int kdi_icache_size;
83 static int kdi_icache_linesize;
84 
85 /*
86  * Assembly support for generic modules in sun4v/ml/mach_xc.s
87  */
88 extern void init_mondo_nocheck(xcfunc_t *func, uint64_t arg1, uint64_t arg2);
89 extern void kdi_flush_idcache(int, int, int, int);
90 extern uint64_t get_cpuaddr(uint64_t, uint64_t);
91 
92 /*
93  * Machine dependent code to reboot.
94  * "mdep" is interpreted as a character pointer; if non-null, it is a pointer
95  * to a string to be used as the argument string when rebooting.
96  *
97  * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
98  * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
99  * we are in a normal shutdown sequence (interrupts are not blocked, the
100  * system is not panic'ing or being suspended).
101  */
102 /*ARGSUSED*/
103 void
104 mdboot(int cmd, int fcn, char *bootstr, boolean_t invoke_cb)
105 {
106 	extern void pm_cfb_check_and_powerup(void);
107 
108 	/*
109 	 * XXX - rconsvp is set to NULL to ensure that output messages
110 	 * are sent to the underlying "hardware" device using the
111 	 * monitor's printf routine since we are in the process of
112 	 * either rebooting or halting the machine.
113 	 */
114 	rconsvp = NULL;
115 
116 	/*
117 	 * At a high interrupt level we can't:
118 	 *	1) bring up the console
119 	 * or
120 	 *	2) wait for pending interrupts prior to redistribution
121 	 *	   to the current CPU
122 	 *
123 	 * so we do them now.
124 	 */
125 	pm_cfb_check_and_powerup();
126 
127 	/* make sure there are no more changes to the device tree */
128 	devtree_freeze();
129 
130 	if (invoke_cb)
131 		(void) callb_execute_class(CB_CL_MDBOOT, NULL);
132 
133 	/*
134 	 * Clear any unresolved UEs from memory.
135 	 */
136 	if (memsegs != NULL)
137 		page_retire_hunt(page_retire_mdboot_cb);
138 
139 	/*
140 	 * stop other cpus which also raise our priority. since there is only
141 	 * one active cpu after this, and our priority will be too high
142 	 * for us to be preempted, we're essentially single threaded
143 	 * from here on out.
144 	 */
145 	stop_other_cpus();
146 
147 	/*
148 	 * try and reset leaf devices.  reset_leaves() should only
149 	 * be called when there are no other threads that could be
150 	 * accessing devices
151 	 */
152 	reset_leaves();
153 
154 	if (fcn == AD_HALT) {
155 		halt((char *)NULL);
156 	} else if (fcn == AD_POWEROFF) {
157 		power_down(NULL);
158 	} else {
159 		if (bootstr == NULL) {
160 			switch (fcn) {
161 
162 			case AD_BOOT:
163 				bootstr = "";
164 				break;
165 
166 			case AD_IBOOT:
167 				bootstr = "-a";
168 				break;
169 
170 			case AD_SBOOT:
171 				bootstr = "-s";
172 				break;
173 
174 			case AD_SIBOOT:
175 				bootstr = "-sa";
176 				break;
177 			default:
178 				cmn_err(CE_WARN,
179 				    "mdboot: invalid function %d", fcn);
180 				bootstr = "";
181 				break;
182 			}
183 		}
184 		reboot_machine(bootstr);
185 	}
186 	/* MAYBE REACHED */
187 }
188 
189 /* mdpreboot - may be called prior to mdboot while root fs still mounted */
190 /*ARGSUSED*/
191 void
192 mdpreboot(int cmd, int fcn, char *bootstr)
193 {
194 }
195 
196 /*
197  * Halt the machine and then reboot with the device
198  * and arguments specified in bootstr.
199  */
200 static void
201 reboot_machine(char *bootstr)
202 {
203 	flush_windows();
204 	stop_other_cpus();		/* send stop signal to other CPUs */
205 	prom_printf("rebooting...\n");
206 	/*
207 	 * For platforms that use CPU signatures, we
208 	 * need to set the signature block to OS and
209 	 * the state to exiting for all the processors.
210 	 */
211 	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_REBOOT, -1);
212 	prom_reboot(bootstr);
213 	/*NOTREACHED*/
214 }
215 
216 /*
217  * We use the x-trap mechanism and idle_stop_xcall() to stop the other CPUs.
218  * Once in panic_idle() they raise spl, record their location, and spin.
219  */
220 static void
221 panic_idle(void)
222 {
223 	(void) spl7();
224 
225 	debug_flush_windows();
226 	(void) setjmp(&curthread->t_pcb);
227 
228 	CPU->cpu_m.in_prom = 1;
229 	membar_stld();
230 
231 	for (;;);
232 }
233 
234 /*
235  * Force the other CPUs to trap into panic_idle(), and then remove them
236  * from the cpu_ready_set so they will no longer receive cross-calls.
237  */
238 /*ARGSUSED*/
239 void
240 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
241 {
242 	cpuset_t cps;
243 	int i;
244 
245 	(void) splzs();
246 	CPUSET_ALL_BUT(cps, cp->cpu_id);
247 	xt_some(cps, (xcfunc_t *)idle_stop_xcall, (uint64_t)&panic_idle, NULL);
248 
249 	for (i = 0; i < NCPU; i++) {
250 		if (i != cp->cpu_id && CPU_XCALL_READY(i)) {
251 			int ntries = 0x10000;
252 
253 			while (!cpu[i]->cpu_m.in_prom && ntries) {
254 				DELAY(50);
255 				ntries--;
256 			}
257 
258 			if (!cpu[i]->cpu_m.in_prom)
259 				printf("panic: failed to stop cpu%d\n", i);
260 
261 			cpu[i]->cpu_flags &= ~CPU_READY;
262 			cpu[i]->cpu_flags |= CPU_QUIESCED;
263 			CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
264 		}
265 	}
266 }
267 
268 /*
269  * Platform callback following each entry to panicsys().  If we've panicked at
270  * level 14, we examine t_panic_trap to see if a fatal trap occurred.  If so,
271  * we disable further %tick_cmpr interrupts.  If not, an explicit call to panic
272  * was made and so we re-enqueue an interrupt request structure to allow
273  * further level 14 interrupts to be processed once we lower PIL.  This allows
274  * us to handle panics from the deadman() CY_HIGH_LEVEL cyclic.
275  */
276 void
277 panic_enter_hw(int spl)
278 {
279 	if (!panic_tick) {
280 		panic_tick = gettick();
281 		if (mach_htraptrace_enable) {
282 			uint64_t prev_freeze;
283 
284 			/*  there are no possible error codes for this hcall */
285 			(void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL,
286 			    &prev_freeze);
287 		}
288 #ifdef TRAPTRACE
289 		TRAPTRACE_FREEZE;
290 #endif
291 	}
292 	if (spl == ipltospl(PIL_14)) {
293 		uint_t opstate = disable_vec_intr();
294 
295 		if (curthread->t_panic_trap != NULL) {
296 			tickcmpr_disable();
297 			intr_dequeue_req(PIL_14, cbe_level14_inum);
298 		} else {
299 			if (!tickcmpr_disabled())
300 				intr_enqueue_req(PIL_14, cbe_level14_inum);
301 			/*
302 			 * Clear SOFTINT<14>, SOFTINT<0> (TICK_INT)
303 			 * and SOFTINT<16> (STICK_INT) to indicate
304 			 * that the current level 14 has been serviced.
305 			 */
306 			wr_clr_softint((1 << PIL_14) |
307 				TICK_INT_MASK | STICK_INT_MASK);
308 		}
309 
310 		enable_vec_intr(opstate);
311 	}
312 }
313 
314 /*
315  * Miscellaneous hardware-specific code to execute after panicstr is set
316  * by the panic code: we also print and record PTL1 panic information here.
317  */
318 /*ARGSUSED*/
319 void
320 panic_quiesce_hw(panic_data_t *pdp)
321 {
322 	extern uint_t getpstate(void);
323 	extern void setpstate(uint_t);
324 
325 	/*
326 	 * Turn off TRAPTRACE and save the current %tick value in panic_tick.
327 	 */
328 	if (!panic_tick) {
329 		panic_tick = gettick();
330 		if (mach_htraptrace_enable) {
331 			uint64_t prev_freeze;
332 
333 			/*  there are no possible error codes for this hcall */
334 			(void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL,
335 			    &prev_freeze);
336 		}
337 #ifdef TRAPTRACE
338 		TRAPTRACE_FREEZE;
339 #endif
340 	}
341 	/*
342 	 * For Platforms that use CPU signatures, we
343 	 * need to set the signature block to OS, the state to
344 	 * exiting, and the substate to panic for all the processors.
345 	 */
346 	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_PANIC, -1);
347 
348 	update_hvdump_buffer();
349 
350 	/*
351 	 * Disable further ECC errors from the bus nexus.
352 	 */
353 	(void) bus_func_invoke(BF_TYPE_ERRDIS);
354 
355 	/*
356 	 * Redirect all interrupts to the current CPU.
357 	 */
358 	intr_redist_all_cpus_shutdown();
359 
360 	/*
361 	 * This call exists solely to support dumps to network
362 	 * devices after sync from OBP.
363 	 *
364 	 * If we came here via the sync callback, then on some
365 	 * platforms, interrupts may have arrived while we were
366 	 * stopped in OBP.  OBP will arrange for those interrupts to
367 	 * be redelivered if you say "go", but not if you invoke a
368 	 * client callback like 'sync'.	 For some dump devices
369 	 * (network swap devices), we need interrupts to be
370 	 * delivered in order to dump, so we have to call the bus
371 	 * nexus driver to reset the interrupt state machines.
372 	 */
373 	(void) bus_func_invoke(BF_TYPE_RESINTR);
374 
375 	setpstate(getpstate() | PSTATE_IE);
376 }
377 
378 /*
379  * Platforms that use CPU signatures need to set the signature block to OS and
380  * the state to exiting for all CPUs. PANIC_CONT indicates that we're about to
381  * write the crash dump, which tells the SSP/SMS to begin a timeout routine to
382  * reboot the machine if the dump never completes.
383  */
384 /*ARGSUSED*/
385 void
386 panic_dump_hw(int spl)
387 {
388 	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
389 }
390 
391 /*
392  * for ptl1_panic
393  */
394 void
395 ptl1_init_cpu(struct cpu *cpu)
396 {
397 	ptl1_state_t *pstate = &cpu->cpu_m.ptl1_state;
398 
399 	/*CONSTCOND*/
400 	if (sizeof (struct cpu) + PTL1_SSIZE > CPU_ALLOC_SIZE) {
401 		panic("ptl1_init_cpu: not enough space left for ptl1_panic "
402 		    "stack, sizeof (struct cpu) = %lu",
403 		    (unsigned long)sizeof (struct cpu));
404 	}
405 
406 	pstate->ptl1_stktop = (uintptr_t)cpu + CPU_ALLOC_SIZE;
407 	cpu_pa[cpu->cpu_id] = va_to_pa(cpu);
408 }
409 
410 void
411 ptl1_panic_handler(ptl1_state_t *pstate)
412 {
413 	static const char *ptl1_reasons[] = {
414 #ifdef	PTL1_PANIC_DEBUG
415 		"trap for debug purpose",	/* PTL1_BAD_DEBUG */
416 #else
417 		"unknown trap",			/* PTL1_BAD_DEBUG */
418 #endif
419 		"register window trap",		/* PTL1_BAD_WTRAP */
420 		"kernel MMU miss",		/* PTL1_BAD_KMISS */
421 		"kernel protection fault",	/* PTL1_BAD_KPROT_FAULT */
422 		"ISM MMU miss",			/* PTL1_BAD_ISM */
423 		"kernel MMU trap",		/* PTL1_BAD_MMUTRAP */
424 		"kernel trap handler state",	/* PTL1_BAD_TRAP */
425 		"floating point trap",		/* PTL1_BAD_FPTRAP */
426 #ifdef	DEBUG
427 		"pointer to intr_req",		/* PTL1_BAD_INTR_REQ */
428 #else
429 		"unknown trap",			/* PTL1_BAD_INTR_REQ */
430 #endif
431 #ifdef	TRAPTRACE
432 		"TRACE_PTR state",		/* PTL1_BAD_TRACE_PTR */
433 #else
434 		"unknown trap",			/* PTL1_BAD_TRACE_PTR */
435 #endif
436 		"stack overflow",		/* PTL1_BAD_STACK */
437 		"DTrace flags",			/* PTL1_BAD_DTRACE_FLAGS */
438 		"attempt to steal locked ctx",  /* PTL1_BAD_CTX_STEAL */
439 		"CPU ECC error loop",		/* PTL1_BAD_ECC */
440 		"unexpected error from hypervisor call", /* PTL1_BAD_HCALL */
441 		"unexpected global level(%gl)", /* PTL1_BAD_GL */
442 		"Watchdog Reset", 		/* PTL1_BAD_WATCHDOG */
443 		"unexpected RED mode trap", 	/* PTL1_BAD_RED */
444 		"return value EINVAL from hcall: "\
445 		    "UNMAP_PERM_ADDR",	/* PTL1_BAD_HCALL_UNMAP_PERM_EINVAL */
446 		"return value ENOMAP from hcall: "\
447 		    "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_ENOMAP */
448 	};
449 
450 	uint_t reason = pstate->ptl1_regs.ptl1_gregs[0].ptl1_g1;
451 	uint_t tl = pstate->ptl1_regs.ptl1_trap_regs[0].ptl1_tl;
452 	struct trap_info ti = { 0 };
453 
454 	/*
455 	 * Use trap_info for a place holder to call panic_savetrap() and
456 	 * panic_showtrap() to save and print out ptl1_panic information.
457 	 */
458 	if (curthread->t_panic_trap == NULL)
459 		curthread->t_panic_trap = &ti;
460 
461 	if (reason < sizeof (ptl1_reasons) / sizeof (ptl1_reasons[0]))
462 		panic("bad %s at TL %u", ptl1_reasons[reason], tl);
463 	else
464 		panic("ptl1_panic reason 0x%x at TL %u", reason, tl);
465 }
466 
467 void
468 clear_watchdog_on_exit(void)
469 {
470 }
471 
472 void
473 clear_watchdog_timer(void)
474 {
475 }
476 
477 int
478 kdi_watchdog_disable(void)
479 {
480 	return (0);	/* sun4v has no watchdog */
481 }
482 
483 void
484 kdi_watchdog_restore(void)
485 {
486 	/* nothing to do -- no watchdog to re-enable */
487 }
488 
489 void
490 mach_dump_buffer_init(void)
491 {
492 	uint64_t  ret, minsize = 0;
493 
494 	if (hvdump_buf_sz > HVDUMP_SIZE_MAX)
495 		hvdump_buf_sz = HVDUMP_SIZE_MAX;
496 
497 	hvdump_buf_va = contig_mem_alloc_align(hvdump_buf_sz, PAGESIZE);
498 	if (hvdump_buf_va == NULL)
499 		return;
500 
501 	hvdump_buf_pa = va_to_pa(hvdump_buf_va);
502 
503 	ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz,
504 	    &minsize);
505 
506 	if (ret != H_EOK) {
507 		contig_mem_free(hvdump_buf_va, hvdump_buf_sz);
508 		hvdump_buf_va = NULL;
509 		cmn_err(CE_NOTE, "!Error in setting up hvstate"
510 		    "dump buffer. Error = 0x%lx, size = 0x%lx,"
511 		    "buf_pa = 0x%lx", ret, hvdump_buf_sz,
512 		    hvdump_buf_pa);
513 
514 		if (ret == H_EINVAL) {
515 			cmn_err(CE_NOTE, "!Buffer size too small."
516 			    "Available buffer size = 0x%lx,"
517 			    "Minimum buffer size required = 0x%lx",
518 			    hvdump_buf_sz, minsize);
519 		}
520 	}
521 }
522 
523 
524 static void
525 update_hvdump_buffer(void)
526 {
527 	uint64_t ret, dummy_val;
528 
529 	if (hvdump_buf_va == NULL)
530 		return;
531 
532 	ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz,
533 	    &dummy_val);
534 	if (ret != H_EOK) {
535 		cmn_err(CE_NOTE, "!Cannot update hvstate dump"
536 		    "buffer. Error = 0x%lx", ret);
537 	}
538 }
539 
540 
541 static int
542 getintprop(pnode_t node, char *name, int deflt)
543 {
544 	int	value;
545 
546 	switch (prom_getproplen(node, name)) {
547 	case 0:
548 		value = 1;	/* boolean properties */
549 		break;
550 
551 	case sizeof (int):
552 		(void) prom_getprop(node, name, (caddr_t)&value);
553 		break;
554 
555 	default:
556 		value = deflt;
557 		break;
558 	}
559 
560 	return (value);
561 }
562 
563 /*
564  * Called by setcpudelay
565  */
566 void
567 cpu_init_tick_freq(void)
568 {
569 	md_t *mdp;
570 	mde_cookie_t rootnode;
571 	int		listsz;
572 	mde_cookie_t	*listp = NULL;
573 	int	num_nodes;
574 	uint64_t stick_prop;
575 
576 	if (broken_md_flag) {
577 		sys_tick_freq = cpunodes[CPU->cpu_id].clock_freq;
578 		return;
579 	}
580 
581 	if ((mdp = md_get_handle()) == NULL)
582 		panic("stick_frequency property not found in MD");
583 
584 	rootnode = md_root_node(mdp);
585 	ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
586 
587 	num_nodes = md_node_count(mdp);
588 
589 	ASSERT(num_nodes > 0);
590 	listsz = num_nodes * sizeof (mde_cookie_t);
591 	listp = (mde_cookie_t *)prom_alloc((caddr_t)0, listsz, 0);
592 
593 	if (listp == NULL)
594 		panic("cannot allocate list for MD properties");
595 
596 	num_nodes = md_scan_dag(mdp, rootnode, md_find_name(mdp, "platform"),
597 	    md_find_name(mdp, "fwd"), listp);
598 
599 	ASSERT(num_nodes == 1);
600 
601 	if (md_get_prop_val(mdp, *listp, "stick-frequency", &stick_prop) != 0)
602 		panic("stick_frequency property not found in MD");
603 
604 	sys_tick_freq = stick_prop;
605 
606 	prom_free((caddr_t)listp, listsz);
607 	(void) md_fini_handle(mdp);
608 }
609 
610 int shipit(int n, uint64_t cpu_list_ra);
611 extern uint64_t xc_tick_limit;
612 extern uint64_t xc_tick_jump_limit;
613 
614 #ifdef DEBUG
615 #define	SEND_MONDO_STATS	1
616 #endif
617 
618 #ifdef SEND_MONDO_STATS
619 uint32_t x_one_stimes[64];
620 uint32_t x_one_ltimes[16];
621 uint32_t x_set_stimes[64];
622 uint32_t x_set_ltimes[16];
623 uint32_t x_set_cpus[NCPU];
624 #endif
625 
626 void
627 send_one_mondo(int cpuid)
628 {
629 	int retries, stat;
630 	uint64_t starttick, endtick, tick, lasttick;
631 	struct machcpu	*mcpup = &(CPU->cpu_m);
632 
633 	CPU_STATS_ADDQ(CPU, sys, xcalls, 1);
634 	starttick = lasttick = gettick();
635 	mcpup->cpu_list[0] = (uint16_t)cpuid;
636 	stat = shipit(1, mcpup->cpu_list_ra);
637 	endtick = starttick + xc_tick_limit;
638 	retries = 0;
639 	while (stat != H_EOK) {
640 		if (stat != H_EWOULDBLOCK) {
641 			if (panic_quiesce)
642 				return;
643 			if (stat == H_ECPUERROR)
644 				cmn_err(CE_PANIC, "send_one_mondo: "
645 				    "cpuid: 0x%x has been marked in "
646 				    "error", cpuid);
647 			else
648 				cmn_err(CE_PANIC, "send_one_mondo: "
649 				    "unexpected hypervisor error 0x%x "
650 				    "while sending a mondo to cpuid: "
651 				    "0x%x", stat, cpuid);
652 		}
653 		tick = gettick();
654 		/*
655 		 * If there is a big jump between the current tick
656 		 * count and lasttick, we have probably hit a break
657 		 * point.  Adjust endtick accordingly to avoid panic.
658 		 */
659 		if (tick > (lasttick + xc_tick_jump_limit))
660 			endtick += (tick - lasttick);
661 		lasttick = tick;
662 		if (tick > endtick) {
663 			if (panic_quiesce)
664 				return;
665 			cmn_err(CE_PANIC, "send mondo timeout "
666 			    "(target 0x%x) [retries: 0x%x hvstat: 0x%x]",
667 			    cpuid, retries, stat);
668 		}
669 		drv_usecwait(1);
670 		stat = shipit(1, mcpup->cpu_list_ra);
671 		retries++;
672 	}
673 #ifdef SEND_MONDO_STATS
674 	{
675 		uint64_t n = gettick() - starttick;
676 		if (n < 8192)
677 			x_one_stimes[n >> 7]++;
678 		else if (n < 15*8192)
679 			x_one_ltimes[n >> 13]++;
680 		else
681 			x_one_ltimes[0xf]++;
682 	}
683 #endif
684 }
685 
686 void
687 send_mondo_set(cpuset_t set)
688 {
689 	uint64_t starttick, endtick, tick, lasttick;
690 	int shipped = 0;
691 	int retries = 0;
692 	struct machcpu	*mcpup = &(CPU->cpu_m);
693 
694 	ASSERT(!CPUSET_ISNULL(set));
695 	starttick = lasttick = gettick();
696 	endtick = starttick + xc_tick_limit;
697 
698 	do {
699 		int ncpuids = 0;
700 		int i, stat;
701 
702 		/* assemble CPU list for HV argument */
703 		for (i = 0; i < NCPU; i++) {
704 			if (CPU_IN_SET(set, i)) {
705 				mcpup->cpu_list[ncpuids] = (uint16_t)i;
706 				ncpuids++;
707 			}
708 		}
709 
710 		stat = shipit(ncpuids, mcpup->cpu_list_ra);
711 		if (stat == H_EOK) {
712 			shipped += ncpuids;
713 			break;
714 		}
715 
716 		/*
717 		 * Either not all CPU mondos were sent, or an
718 		 * error occurred. CPUs that were sent mondos
719 		 * have their CPU IDs overwritten in cpu_list.
720 		 * Reset the cpuset so that its only members
721 		 * are those CPU IDs that still need to be sent.
722 		 */
723 		CPUSET_ZERO(set);
724 		for (i = 0; i < ncpuids; i++) {
725 			if (mcpup->cpu_list[i] == HV_SEND_MONDO_ENTRYDONE) {
726 				shipped++;
727 			} else {
728 				CPUSET_ADD(set, mcpup->cpu_list[i]);
729 			}
730 		}
731 
732 		/*
733 		 * Now handle possible errors returned
734 		 * from hypervisor.
735 		 */
736 		if (stat == H_ECPUERROR) {
737 			cpuset_t error_set;
738 
739 			/*
740 			 * One or more of the CPUs passed to HV is
741 			 * in the error state. Remove those CPUs from
742 			 * set and record them in error_set.
743 			 */
744 			CPUSET_ZERO(error_set);
745 			for (i = 0; i < NCPU; i++) {
746 				if (CPU_IN_SET(set, i)) {
747 					uint64_t state = CPU_STATE_INVALID;
748 					(void) hv_cpu_state(i, &state);
749 					if (state == CPU_STATE_ERROR) {
750 						CPUSET_ADD(error_set, i);
751 						CPUSET_DEL(set, i);
752 					}
753 				}
754 			}
755 
756 			if (!panic_quiesce) {
757 				if (CPUSET_ISNULL(error_set)) {
758 					cmn_err(CE_PANIC, "send_mondo_set: "
759 					    "hypervisor returned "
760 					    "H_ECPUERROR but no CPU in "
761 					    "cpu_list in error state");
762 				}
763 
764 				cmn_err(CE_CONT, "send_mondo_set: cpuid(s) ");
765 				for (i = 0; i < NCPU; i++) {
766 					if (CPU_IN_SET(error_set, i)) {
767 						cmn_err(CE_CONT, "0x%x ", i);
768 					}
769 				}
770 				cmn_err(CE_CONT, "have been marked in "
771 				    "error\n");
772 				cmn_err(CE_PANIC, "send_mondo_set: CPU(s) "
773 				    "in error state");
774 			}
775 		} else if (stat != H_EWOULDBLOCK) {
776 			if (panic_quiesce)
777 				return;
778 			/*
779 			 * For all other errors, panic.
780 			 */
781 			cmn_err(CE_CONT, "send_mondo_set: unexpected "
782 			    "hypervisor error 0x%x while sending a "
783 			    "mondo to cpuid(s):", stat);
784 			for (i = 0; i < NCPU; i++) {
785 				if (CPU_IN_SET(set, i)) {
786 					cmn_err(CE_CONT, " 0x%x", i);
787 				}
788 			}
789 			cmn_err(CE_CONT, "\n");
790 			cmn_err(CE_PANIC, "send_mondo_set: unexpected "
791 			    "hypervisor error");
792 		}
793 
794 		tick = gettick();
795 		/*
796 		 * If there is a big jump between the current tick
797 		 * count and lasttick, we have probably hit a break
798 		 * point.  Adjust endtick accordingly to avoid panic.
799 		 */
800 		if (tick > (lasttick + xc_tick_jump_limit))
801 			endtick += (tick - lasttick);
802 		lasttick = tick;
803 		if (tick > endtick) {
804 			if (panic_quiesce)
805 				return;
806 			cmn_err(CE_CONT, "send mondo timeout "
807 			    "[retries: 0x%x]  cpuids: ", retries);
808 			for (i = 0; i < NCPU; i++)
809 				if (CPU_IN_SET(set, i))
810 					cmn_err(CE_CONT, " 0x%x", i);
811 			cmn_err(CE_CONT, "\n");
812 			cmn_err(CE_PANIC, "send_mondo_set: timeout");
813 		}
814 
815 		while (gettick() < (tick + sys_clock_mhz))
816 			;
817 		retries++;
818 	} while (!CPUSET_ISNULL(set));
819 
820 	CPU_STATS_ADDQ(CPU, sys, xcalls, shipped);
821 
822 #ifdef SEND_MONDO_STATS
823 	{
824 		uint64_t n = gettick() - starttick;
825 		if (n < 8192)
826 			x_set_stimes[n >> 7]++;
827 		else if (n < 15*8192)
828 			x_set_ltimes[n >> 13]++;
829 		else
830 			x_set_ltimes[0xf]++;
831 	}
832 	x_set_cpus[shipped]++;
833 #endif
834 }
835 
836 void
837 syncfpu(void)
838 {
839 }
840 
841 void
842 cpu_flush_ecache(void)
843 {
844 }
845 
846 void
847 sticksync_slave(void)
848 {}
849 
850 void
851 sticksync_master(void)
852 {}
853 
854 void
855 cpu_init_cache_scrub(void)
856 {}
857 
858 int
859 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data)
860 {
861 	int ret, watched;
862 
863 	watched = watch_disable_addr((void *)addr, 4, S_WRITE);
864 	ret = dtrace_blksuword32(addr, data, 0);
865 	if (watched)
866 		watch_enable_addr((void *)addr, 4, S_WRITE);
867 
868 	return (ret);
869 }
870 
871 int
872 dtrace_blksuword32(uintptr_t addr, uint32_t *data, int tryagain)
873 {
874 	if (suword32((void *)addr, *data) == -1)
875 		return (tryagain ? dtrace_blksuword32_err(addr, data) : -1);
876 	dtrace_flush_sec(addr);
877 
878 	return (0);
879 }
880 
881 /*ARGSUSED*/
882 void
883 cpu_faulted_enter(struct cpu *cp)
884 {
885 }
886 
887 /*ARGSUSED*/
888 void
889 cpu_faulted_exit(struct cpu *cp)
890 {
891 }
892 
893 static int
894 kdi_cpu_ready_iter(int (*cb)(int, void *), void *arg)
895 {
896 	int rc, i;
897 
898 	for (rc = 0, i = 0; i < NCPU; i++) {
899 		if (CPU_IN_SET(cpu_ready_set, i))
900 			rc += cb(i, arg);
901 	}
902 
903 	return (rc);
904 }
905 
906 /*
907  * Sends a cross-call to a specified processor.  The caller assumes
908  * responsibility for repetition of cross-calls, as appropriate (MARSA for
909  * debugging).
910  */
911 static int
912 kdi_xc_one(int cpuid, void (*func)(uintptr_t, uintptr_t), uintptr_t arg1,
913     uintptr_t arg2)
914 {
915 	int stat;
916 	struct machcpu	*mcpup;
917 	uint64_t cpuaddr_reg = 0, cpuaddr_scr = 0;
918 
919 	mcpup = &(((cpu_t *)get_cpuaddr(cpuaddr_reg, cpuaddr_scr))->cpu_m);
920 
921 	/*
922 	 * if (idsr_busy())
923 	 *	return (KDI_XC_RES_ERR);
924 	 */
925 
926 	init_mondo_nocheck((xcfunc_t *)func, arg1, arg2);
927 
928 	mcpup->cpu_list[0] = (uint16_t)cpuid;
929 	stat = shipit(1, mcpup->cpu_list_ra);
930 
931 	if (stat == 0)
932 		return (KDI_XC_RES_OK);
933 	else
934 		return (KDI_XC_RES_NACK);
935 }
936 
937 static void
938 kdi_tickwait(clock_t nticks)
939 {
940 	clock_t endtick = gettick() + nticks;
941 
942 	while (gettick() < endtick);
943 }
944 
945 static void
946 kdi_cpu_init(int dcache_size, int dcache_linesize, int icache_size,
947     int icache_linesize)
948 {
949 	kdi_dcache_size = dcache_size;
950 	kdi_dcache_linesize = dcache_linesize;
951 	kdi_icache_size = icache_size;
952 	kdi_icache_linesize = icache_linesize;
953 }
954 
955 /* used directly by kdi_read/write_phys */
956 void
957 kdi_flush_caches(void)
958 {
959 	/* Not required on sun4v architecture. */
960 }
961 
962 /*ARGSUSED*/
963 int
964 kdi_get_stick(uint64_t *stickp)
965 {
966 	return (-1);
967 }
968 
969 void
970 cpu_kdi_init(kdi_t *kdi)
971 {
972 	kdi->kdi_flush_caches = kdi_flush_caches;
973 	kdi->mkdi_cpu_init = kdi_cpu_init;
974 	kdi->mkdi_cpu_ready_iter = kdi_cpu_ready_iter;
975 	kdi->mkdi_xc_one = kdi_xc_one;
976 	kdi->mkdi_tickwait = kdi_tickwait;
977 	kdi->mkdi_get_stick = kdi_get_stick;
978 }
979 
980 /*
981  * Routine to return memory information associated
982  * with a physical address and syndrome.
983  */
984 /* ARGSUSED */
985 int
986 cpu_get_mem_info(uint64_t synd, uint64_t afar,
987     uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
988     int *segsp, int *banksp, int *mcidp)
989 {
990 	return (ENOTSUP);
991 }
992 
993 /*
994  * This routine returns the size of the kernel's FRU name buffer.
995  */
996 size_t
997 cpu_get_name_bufsize()
998 {
999 	return (UNUM_NAMLEN);
1000 }
1001 
1002 /*
1003  * This routine is a more generic interface to cpu_get_mem_unum(),
1004  * that may be used by other modules (e.g. mm).
1005  */
1006 /* ARGSUSED */
1007 int
1008 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar,
1009     char *buf, int buflen, int *lenp)
1010 {
1011 	return (ENOTSUP);
1012 }
1013 
1014 /* ARGSUSED */
1015 int
1016 cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
1017 {
1018 	return (ENOTSUP);
1019 }
1020 
1021 /* ARGSUSED */
1022 int
1023 cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
1024 {
1025 	return (ENOTSUP);
1026 }
1027 
1028 /*
1029  * xt_sync - wait for previous x-traps to finish
1030  */
1031 void
1032 xt_sync(cpuset_t cpuset)
1033 {
1034 	union {
1035 		uint8_t volatile byte[NCPU];
1036 		uint64_t volatile xword[NCPU / 8];
1037 	} cpu_sync;
1038 	uint64_t starttick, endtick, tick, lasttick;
1039 	int i;
1040 
1041 	kpreempt_disable();
1042 	CPUSET_DEL(cpuset, CPU->cpu_id);
1043 	CPUSET_AND(cpuset, cpu_ready_set);
1044 
1045 	/*
1046 	 * Sun4v uses a queue for receiving mondos. Successful
1047 	 * transmission of a mondo only indicates that the mondo
1048 	 * has been written into the queue.
1049 	 *
1050 	 * We use an array of bytes to let each cpu to signal back
1051 	 * to the cross trap sender that the cross trap has been
1052 	 * executed. Set the byte to 1 before sending the cross trap
1053 	 * and wait until other cpus reset it to 0.
1054 	 */
1055 	bzero((void *)&cpu_sync, NCPU);
1056 	for (i = 0; i < NCPU; i++)
1057 		if (CPU_IN_SET(cpuset, i))
1058 			cpu_sync.byte[i] = 1;
1059 
1060 	xt_some(cpuset, (xcfunc_t *)xt_sync_tl1,
1061 	    (uint64_t)cpu_sync.byte, 0);
1062 
1063 	starttick = lasttick = gettick();
1064 	endtick = starttick + xc_tick_limit;
1065 
1066 	for (i = 0; i < (NCPU / 8); i ++) {
1067 		while (cpu_sync.xword[i] != 0) {
1068 			tick = gettick();
1069 			/*
1070 			 * If there is a big jump between the current tick
1071 			 * count and lasttick, we have probably hit a break
1072 			 * point. Adjust endtick accordingly to avoid panic.
1073 			 */
1074 			if (tick > (lasttick + xc_tick_jump_limit)) {
1075 				endtick += (tick - lasttick);
1076 			}
1077 			lasttick = tick;
1078 			if (tick > endtick) {
1079 				if (panic_quiesce)
1080 					goto out;
1081 				cmn_err(CE_CONT, "Cross trap sync timeout "
1082 				    "at cpu_sync.xword[%d]: 0x%lx\n",
1083 				    i, cpu_sync.xword[i]);
1084 				cmn_err(CE_PANIC, "xt_sync: timeout");
1085 			}
1086 		}
1087 	}
1088 
1089 out:
1090 	kpreempt_enable();
1091 }
1092