xref: /titanic_50/usr/src/uts/sun4v/os/mach_cpu_states.c (revision ae115bc77f6fcde83175c75b4206dc2e50747966)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/archsystm.h>
31 #include <sys/t_lock.h>
32 #include <sys/uadmin.h>
33 #include <sys/panic.h>
34 #include <sys/reboot.h>
35 #include <sys/autoconf.h>
36 #include <sys/machsystm.h>
37 #include <sys/promif.h>
38 #include <sys/membar.h>
39 #include <vm/hat_sfmmu.h>
40 #include <sys/cpu_module.h>
41 #include <sys/cpu_sgnblk_defs.h>
42 #include <sys/intreg.h>
43 #include <sys/consdev.h>
44 #include <sys/kdi_impl.h>
45 #include <sys/traptrace.h>
46 #include <sys/hypervisor_api.h>
47 #include <sys/vmsystm.h>
48 #include <sys/dtrace.h>
49 #include <sys/xc_impl.h>
50 #include <sys/callb.h>
51 #include <sys/mdesc.h>
52 #include <sys/mach_descrip.h>
53 #include <sys/wdt.h>
54 #include <sys/soft_state.h>
55 #include <sys/promimpl.h>
56 #include <sys/hsvc.h>
57 
58 /*
59  * hvdump_buf_va is a pointer to the currently-configured hvdump_buf.
60  * A value of NULL indicates that this area is not configured.
61  * hvdump_buf_sz is tunable but will be clamped to HVDUMP_SIZE_MAX.
62  */
63 
64 caddr_t hvdump_buf_va;
65 uint64_t hvdump_buf_sz = HVDUMP_SIZE_DEFAULT;
66 static uint64_t hvdump_buf_pa;
67 
68 u_longlong_t panic_tick;
69 
70 extern u_longlong_t gettick();
71 static void reboot_machine(char *);
72 static void update_hvdump_buffer(void);
73 
74 /*
75  * For xt_sync synchronization.
76  */
77 extern uint64_t xc_tick_limit;
78 extern uint64_t xc_tick_jump_limit;
79 
80 /*
81  * We keep our own copies, used for cache flushing, because we can be called
82  * before cpu_fiximpl().
83  */
84 static int kdi_dcache_size;
85 static int kdi_dcache_linesize;
86 static int kdi_icache_size;
87 static int kdi_icache_linesize;
88 
89 /*
90  * Assembly support for generic modules in sun4v/ml/mach_xc.s
91  */
92 extern void init_mondo_nocheck(xcfunc_t *func, uint64_t arg1, uint64_t arg2);
93 extern void kdi_flush_idcache(int, int, int, int);
94 extern uint64_t get_cpuaddr(uint64_t, uint64_t);
95 
96 /*
97  * Machine dependent code to reboot.
98  * "mdep" is interpreted as a character pointer; if non-null, it is a pointer
99  * to a string to be used as the argument string when rebooting.
100  *
101  * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
102  * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
103  * we are in a normal shutdown sequence (interrupts are not blocked, the
104  * system is not panic'ing or being suspended).
105  */
106 /*ARGSUSED*/
107 void
108 mdboot(int cmd, int fcn, char *bootstr, boolean_t invoke_cb)
109 {
110 	extern void pm_cfb_check_and_powerup(void);
111 
112 	/*
113 	 * XXX - rconsvp is set to NULL to ensure that output messages
114 	 * are sent to the underlying "hardware" device using the
115 	 * monitor's printf routine since we are in the process of
116 	 * either rebooting or halting the machine.
117 	 */
118 	rconsvp = NULL;
119 
120 	/*
121 	 * At a high interrupt level we can't:
122 	 *	1) bring up the console
123 	 * or
124 	 *	2) wait for pending interrupts prior to redistribution
125 	 *	   to the current CPU
126 	 *
127 	 * so we do them now.
128 	 */
129 	pm_cfb_check_and_powerup();
130 
131 	/* make sure there are no more changes to the device tree */
132 	devtree_freeze();
133 
134 	if (invoke_cb)
135 		(void) callb_execute_class(CB_CL_MDBOOT, NULL);
136 
137 	/*
138 	 * Clear any unresolved UEs from memory.
139 	 */
140 	page_retire_mdboot();
141 
142 	/*
143 	 * stop other cpus which also raise our priority. since there is only
144 	 * one active cpu after this, and our priority will be too high
145 	 * for us to be preempted, we're essentially single threaded
146 	 * from here on out.
147 	 */
148 	stop_other_cpus();
149 
150 	/*
151 	 * try and reset leaf devices.  reset_leaves() should only
152 	 * be called when there are no other threads that could be
153 	 * accessing devices
154 	 */
155 	reset_leaves();
156 
157 	watchdog_clear();
158 
159 	if (fcn == AD_HALT) {
160 		mach_set_soft_state(SIS_TRANSITION,
161 				&SOLARIS_SOFT_STATE_HALT_MSG);
162 		halt((char *)NULL);
163 	} else if (fcn == AD_POWEROFF) {
164 		mach_set_soft_state(SIS_TRANSITION,
165 				&SOLARIS_SOFT_STATE_POWER_MSG);
166 		power_down(NULL);
167 	} else {
168 		if (bootstr == NULL) {
169 			switch (fcn) {
170 
171 			case AD_BOOT:
172 				bootstr = "";
173 				break;
174 
175 			case AD_IBOOT:
176 				bootstr = "-a";
177 				break;
178 
179 			case AD_SBOOT:
180 				bootstr = "-s";
181 				break;
182 
183 			case AD_SIBOOT:
184 				bootstr = "-sa";
185 				break;
186 			default:
187 				cmn_err(CE_WARN,
188 				    "mdboot: invalid function %d", fcn);
189 				bootstr = "";
190 				break;
191 			}
192 		}
193 		mach_set_soft_state(SIS_TRANSITION,
194 				&SOLARIS_SOFT_STATE_REBOOT_MSG);
195 		reboot_machine(bootstr);
196 	}
197 	/* MAYBE REACHED */
198 }
199 
200 /* mdpreboot - may be called prior to mdboot while root fs still mounted */
201 /*ARGSUSED*/
202 void
203 mdpreboot(int cmd, int fcn, char *bootstr)
204 {
205 }
206 
207 /*
208  * Halt the machine and then reboot with the device
209  * and arguments specified in bootstr.
210  */
211 static void
212 reboot_machine(char *bootstr)
213 {
214 	flush_windows();
215 	stop_other_cpus();		/* send stop signal to other CPUs */
216 	prom_printf("rebooting...\n");
217 	/*
218 	 * For platforms that use CPU signatures, we
219 	 * need to set the signature block to OS and
220 	 * the state to exiting for all the processors.
221 	 */
222 	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_REBOOT, -1);
223 	prom_reboot(bootstr);
224 	/*NOTREACHED*/
225 }
226 
227 /*
228  * We use the x-trap mechanism and idle_stop_xcall() to stop the other CPUs.
229  * Once in panic_idle() they raise spl, record their location, and spin.
230  */
231 static void
232 panic_idle(void)
233 {
234 	(void) spl7();
235 
236 	debug_flush_windows();
237 	(void) setjmp(&curthread->t_pcb);
238 
239 	CPU->cpu_m.in_prom = 1;
240 	membar_stld();
241 
242 	for (;;);
243 }
244 
245 /*
246  * Force the other CPUs to trap into panic_idle(), and then remove them
247  * from the cpu_ready_set so they will no longer receive cross-calls.
248  */
249 /*ARGSUSED*/
250 void
251 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
252 {
253 	cpuset_t cps;
254 	int i;
255 
256 	(void) splzs();
257 	CPUSET_ALL_BUT(cps, cp->cpu_id);
258 	xt_some(cps, (xcfunc_t *)idle_stop_xcall, (uint64_t)&panic_idle, NULL);
259 
260 	for (i = 0; i < NCPU; i++) {
261 		if (i != cp->cpu_id && CPU_XCALL_READY(i)) {
262 			int ntries = 0x10000;
263 
264 			while (!cpu[i]->cpu_m.in_prom && ntries) {
265 				DELAY(50);
266 				ntries--;
267 			}
268 
269 			if (!cpu[i]->cpu_m.in_prom)
270 				printf("panic: failed to stop cpu%d\n", i);
271 
272 			cpu[i]->cpu_flags &= ~CPU_READY;
273 			cpu[i]->cpu_flags |= CPU_QUIESCED;
274 			CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
275 		}
276 	}
277 }
278 
279 /*
280  * Platform callback following each entry to panicsys().  If we've panicked at
281  * level 14, we examine t_panic_trap to see if a fatal trap occurred.  If so,
282  * we disable further %tick_cmpr interrupts.  If not, an explicit call to panic
283  * was made and so we re-enqueue an interrupt request structure to allow
284  * further level 14 interrupts to be processed once we lower PIL.  This allows
285  * us to handle panics from the deadman() CY_HIGH_LEVEL cyclic.
286  */
287 void
288 panic_enter_hw(int spl)
289 {
290 	if (!panic_tick) {
291 		panic_tick = gettick();
292 		if (mach_htraptrace_enable) {
293 			uint64_t prev_freeze;
294 
295 			/*  there are no possible error codes for this hcall */
296 			(void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL,
297 			    &prev_freeze);
298 		}
299 #ifdef TRAPTRACE
300 		TRAPTRACE_FREEZE;
301 #endif
302 	}
303 
304 	mach_set_soft_state(SIS_TRANSITION, &SOLARIS_SOFT_STATE_PANIC_MSG);
305 
306 	if (spl == ipltospl(PIL_14)) {
307 		uint_t opstate = disable_vec_intr();
308 
309 		if (curthread->t_panic_trap != NULL) {
310 			tickcmpr_disable();
311 			intr_dequeue_req(PIL_14, cbe_level14_inum);
312 		} else {
313 			if (!tickcmpr_disabled())
314 				intr_enqueue_req(PIL_14, cbe_level14_inum);
315 			/*
316 			 * Clear SOFTINT<14>, SOFTINT<0> (TICK_INT)
317 			 * and SOFTINT<16> (STICK_INT) to indicate
318 			 * that the current level 14 has been serviced.
319 			 */
320 			wr_clr_softint((1 << PIL_14) |
321 				TICK_INT_MASK | STICK_INT_MASK);
322 		}
323 
324 		enable_vec_intr(opstate);
325 	}
326 }
327 
328 /*
329  * Miscellaneous hardware-specific code to execute after panicstr is set
330  * by the panic code: we also print and record PTL1 panic information here.
331  */
332 /*ARGSUSED*/
333 void
334 panic_quiesce_hw(panic_data_t *pdp)
335 {
336 	extern uint_t getpstate(void);
337 	extern void setpstate(uint_t);
338 
339 	/*
340 	 * Turn off TRAPTRACE and save the current %tick value in panic_tick.
341 	 */
342 	if (!panic_tick) {
343 		panic_tick = gettick();
344 		if (mach_htraptrace_enable) {
345 			uint64_t prev_freeze;
346 
347 			/*  there are no possible error codes for this hcall */
348 			(void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL,
349 			    &prev_freeze);
350 		}
351 #ifdef TRAPTRACE
352 		TRAPTRACE_FREEZE;
353 #endif
354 	}
355 	/*
356 	 * For Platforms that use CPU signatures, we
357 	 * need to set the signature block to OS, the state to
358 	 * exiting, and the substate to panic for all the processors.
359 	 */
360 	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_PANIC, -1);
361 
362 	update_hvdump_buffer();
363 
364 	/*
365 	 * Disable further ECC errors from the bus nexus.
366 	 */
367 	(void) bus_func_invoke(BF_TYPE_ERRDIS);
368 
369 	/*
370 	 * Redirect all interrupts to the current CPU.
371 	 */
372 	intr_redist_all_cpus_shutdown();
373 
374 	/*
375 	 * This call exists solely to support dumps to network
376 	 * devices after sync from OBP.
377 	 *
378 	 * If we came here via the sync callback, then on some
379 	 * platforms, interrupts may have arrived while we were
380 	 * stopped in OBP.  OBP will arrange for those interrupts to
381 	 * be redelivered if you say "go", but not if you invoke a
382 	 * client callback like 'sync'.	 For some dump devices
383 	 * (network swap devices), we need interrupts to be
384 	 * delivered in order to dump, so we have to call the bus
385 	 * nexus driver to reset the interrupt state machines.
386 	 */
387 	(void) bus_func_invoke(BF_TYPE_RESINTR);
388 
389 	setpstate(getpstate() | PSTATE_IE);
390 }
391 
392 /*
393  * Platforms that use CPU signatures need to set the signature block to OS and
394  * the state to exiting for all CPUs. PANIC_CONT indicates that we're about to
395  * write the crash dump, which tells the SSP/SMS to begin a timeout routine to
396  * reboot the machine if the dump never completes.
397  */
398 /*ARGSUSED*/
399 void
400 panic_dump_hw(int spl)
401 {
402 	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
403 }
404 
405 /*
406  * for ptl1_panic
407  */
408 void
409 ptl1_init_cpu(struct cpu *cpu)
410 {
411 	ptl1_state_t *pstate = &cpu->cpu_m.ptl1_state;
412 
413 	/*CONSTCOND*/
414 	if (sizeof (struct cpu) + PTL1_SSIZE > CPU_ALLOC_SIZE) {
415 		panic("ptl1_init_cpu: not enough space left for ptl1_panic "
416 		    "stack, sizeof (struct cpu) = %lu",
417 		    (unsigned long)sizeof (struct cpu));
418 	}
419 
420 	pstate->ptl1_stktop = (uintptr_t)cpu + CPU_ALLOC_SIZE;
421 	cpu_pa[cpu->cpu_id] = va_to_pa(cpu);
422 }
423 
424 void
425 ptl1_panic_handler(ptl1_state_t *pstate)
426 {
427 	static const char *ptl1_reasons[] = {
428 #ifdef	PTL1_PANIC_DEBUG
429 		"trap for debug purpose",	/* PTL1_BAD_DEBUG */
430 #else
431 		"unknown trap",			/* PTL1_BAD_DEBUG */
432 #endif
433 		"register window trap",		/* PTL1_BAD_WTRAP */
434 		"kernel MMU miss",		/* PTL1_BAD_KMISS */
435 		"kernel protection fault",	/* PTL1_BAD_KPROT_FAULT */
436 		"ISM MMU miss",			/* PTL1_BAD_ISM */
437 		"kernel MMU trap",		/* PTL1_BAD_MMUTRAP */
438 		"kernel trap handler state",	/* PTL1_BAD_TRAP */
439 		"floating point trap",		/* PTL1_BAD_FPTRAP */
440 #ifdef	DEBUG
441 		"pointer to intr_vec",		/* PTL1_BAD_INTR_VEC */
442 #else
443 		"unknown trap",			/* PTL1_BAD_INTR_VEC */
444 #endif
445 #ifdef	TRAPTRACE
446 		"TRACE_PTR state",		/* PTL1_BAD_TRACE_PTR */
447 #else
448 		"unknown trap",			/* PTL1_BAD_TRACE_PTR */
449 #endif
450 		"stack overflow",		/* PTL1_BAD_STACK */
451 		"DTrace flags",			/* PTL1_BAD_DTRACE_FLAGS */
452 		"attempt to steal locked ctx",  /* PTL1_BAD_CTX_STEAL */
453 		"CPU ECC error loop",		/* PTL1_BAD_ECC */
454 		"unexpected error from hypervisor call", /* PTL1_BAD_HCALL */
455 		"unexpected global level(%gl)", /* PTL1_BAD_GL */
456 		"Watchdog Reset", 		/* PTL1_BAD_WATCHDOG */
457 		"unexpected RED mode trap", 	/* PTL1_BAD_RED */
458 		"return value EINVAL from hcall: "\
459 		    "UNMAP_PERM_ADDR",	/* PTL1_BAD_HCALL_UNMAP_PERM_EINVAL */
460 		"return value ENOMAP from hcall: "\
461 		    "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_ENOMAP */
462 	};
463 
464 	uint_t reason = pstate->ptl1_regs.ptl1_gregs[0].ptl1_g1;
465 	uint_t tl = pstate->ptl1_regs.ptl1_trap_regs[0].ptl1_tl;
466 	struct trap_info ti = { 0 };
467 
468 	/*
469 	 * Use trap_info for a place holder to call panic_savetrap() and
470 	 * panic_showtrap() to save and print out ptl1_panic information.
471 	 */
472 	if (curthread->t_panic_trap == NULL)
473 		curthread->t_panic_trap = &ti;
474 
475 	if (reason < sizeof (ptl1_reasons) / sizeof (ptl1_reasons[0]))
476 		panic("bad %s at TL %u", ptl1_reasons[reason], tl);
477 	else
478 		panic("ptl1_panic reason 0x%x at TL %u", reason, tl);
479 }
480 
481 void
482 clear_watchdog_on_exit(void)
483 {
484 	if (watchdog_enabled && watchdog_activated) {
485 		prom_printf("Debugging requested; hardware watchdog "
486 			"suspended.\n");
487 		(void) watchdog_suspend();
488 	}
489 }
490 
491 /*
492  * Restore the watchdog timer when returning from a debugger
493  * after a panic or L1-A and resume watchdog pat.
494  */
495 void
496 restore_watchdog_on_entry()
497 {
498 	watchdog_resume();
499 }
500 
501 int
502 kdi_watchdog_disable(void)
503 {
504 	watchdog_suspend();
505 
506 	return (0);
507 }
508 
509 void
510 kdi_watchdog_restore(void)
511 {
512 	watchdog_resume();
513 }
514 
515 void
516 mach_dump_buffer_init(void)
517 {
518 	uint64_t  ret, minsize = 0;
519 
520 	if (hvdump_buf_sz > HVDUMP_SIZE_MAX)
521 		hvdump_buf_sz = HVDUMP_SIZE_MAX;
522 
523 	hvdump_buf_va = contig_mem_alloc_align(hvdump_buf_sz, PAGESIZE);
524 	if (hvdump_buf_va == NULL)
525 		return;
526 
527 	hvdump_buf_pa = va_to_pa(hvdump_buf_va);
528 
529 	ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz,
530 	    &minsize);
531 
532 	if (ret != H_EOK) {
533 		contig_mem_free(hvdump_buf_va, hvdump_buf_sz);
534 		hvdump_buf_va = NULL;
535 		cmn_err(CE_NOTE, "!Error in setting up hvstate"
536 		    "dump buffer. Error = 0x%lx, size = 0x%lx,"
537 		    "buf_pa = 0x%lx", ret, hvdump_buf_sz,
538 		    hvdump_buf_pa);
539 
540 		if (ret == H_EINVAL) {
541 			cmn_err(CE_NOTE, "!Buffer size too small."
542 			    "Available buffer size = 0x%lx,"
543 			    "Minimum buffer size required = 0x%lx",
544 			    hvdump_buf_sz, minsize);
545 		}
546 	}
547 }
548 
549 
550 static void
551 update_hvdump_buffer(void)
552 {
553 	uint64_t ret, dummy_val;
554 
555 	if (hvdump_buf_va == NULL)
556 		return;
557 
558 	ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz,
559 	    &dummy_val);
560 	if (ret != H_EOK) {
561 		cmn_err(CE_NOTE, "!Cannot update hvstate dump"
562 		    "buffer. Error = 0x%lx", ret);
563 	}
564 }
565 
566 
567 static int
568 getintprop(pnode_t node, char *name, int deflt)
569 {
570 	int	value;
571 
572 	switch (prom_getproplen(node, name)) {
573 	case 0:
574 		value = 1;	/* boolean properties */
575 		break;
576 
577 	case sizeof (int):
578 		(void) prom_getprop(node, name, (caddr_t)&value);
579 		break;
580 
581 	default:
582 		value = deflt;
583 		break;
584 	}
585 
586 	return (value);
587 }
588 
589 /*
590  * Called by setcpudelay
591  */
592 void
593 cpu_init_tick_freq(void)
594 {
595 	md_t *mdp;
596 	mde_cookie_t rootnode;
597 	int		listsz;
598 	mde_cookie_t	*listp = NULL;
599 	int	num_nodes;
600 	uint64_t stick_prop;
601 
602 	if (broken_md_flag) {
603 		sys_tick_freq = cpunodes[CPU->cpu_id].clock_freq;
604 		return;
605 	}
606 
607 	if ((mdp = md_get_handle()) == NULL)
608 		panic("stick_frequency property not found in MD");
609 
610 	rootnode = md_root_node(mdp);
611 	ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
612 
613 	num_nodes = md_node_count(mdp);
614 
615 	ASSERT(num_nodes > 0);
616 	listsz = num_nodes * sizeof (mde_cookie_t);
617 	listp = (mde_cookie_t *)prom_alloc((caddr_t)0, listsz, 0);
618 
619 	if (listp == NULL)
620 		panic("cannot allocate list for MD properties");
621 
622 	num_nodes = md_scan_dag(mdp, rootnode, md_find_name(mdp, "platform"),
623 	    md_find_name(mdp, "fwd"), listp);
624 
625 	ASSERT(num_nodes == 1);
626 
627 	if (md_get_prop_val(mdp, *listp, "stick-frequency", &stick_prop) != 0)
628 		panic("stick_frequency property not found in MD");
629 
630 	sys_tick_freq = stick_prop;
631 
632 	prom_free((caddr_t)listp, listsz);
633 	(void) md_fini_handle(mdp);
634 }
635 
636 int shipit(int n, uint64_t cpu_list_ra);
637 extern uint64_t xc_tick_limit;
638 extern uint64_t xc_tick_jump_limit;
639 
640 #ifdef DEBUG
641 #define	SEND_MONDO_STATS	1
642 #endif
643 
644 #ifdef SEND_MONDO_STATS
645 uint32_t x_one_stimes[64];
646 uint32_t x_one_ltimes[16];
647 uint32_t x_set_stimes[64];
648 uint32_t x_set_ltimes[16];
649 uint32_t x_set_cpus[NCPU];
650 #endif
651 
652 void
653 send_one_mondo(int cpuid)
654 {
655 	int retries, stat;
656 	uint64_t starttick, endtick, tick, lasttick;
657 	struct machcpu	*mcpup = &(CPU->cpu_m);
658 
659 	CPU_STATS_ADDQ(CPU, sys, xcalls, 1);
660 	starttick = lasttick = gettick();
661 	mcpup->cpu_list[0] = (uint16_t)cpuid;
662 	stat = shipit(1, mcpup->cpu_list_ra);
663 	endtick = starttick + xc_tick_limit;
664 	retries = 0;
665 	while (stat != H_EOK) {
666 		if (stat != H_EWOULDBLOCK) {
667 			if (panic_quiesce)
668 				return;
669 			if (stat == H_ECPUERROR)
670 				cmn_err(CE_PANIC, "send_one_mondo: "
671 				    "cpuid: 0x%x has been marked in "
672 				    "error", cpuid);
673 			else
674 				cmn_err(CE_PANIC, "send_one_mondo: "
675 				    "unexpected hypervisor error 0x%x "
676 				    "while sending a mondo to cpuid: "
677 				    "0x%x", stat, cpuid);
678 		}
679 		tick = gettick();
680 		/*
681 		 * If there is a big jump between the current tick
682 		 * count and lasttick, we have probably hit a break
683 		 * point.  Adjust endtick accordingly to avoid panic.
684 		 */
685 		if (tick > (lasttick + xc_tick_jump_limit))
686 			endtick += (tick - lasttick);
687 		lasttick = tick;
688 		if (tick > endtick) {
689 			if (panic_quiesce)
690 				return;
691 			cmn_err(CE_PANIC, "send mondo timeout "
692 			    "(target 0x%x) [retries: 0x%x hvstat: 0x%x]",
693 			    cpuid, retries, stat);
694 		}
695 		drv_usecwait(1);
696 		stat = shipit(1, mcpup->cpu_list_ra);
697 		retries++;
698 	}
699 #ifdef SEND_MONDO_STATS
700 	{
701 		uint64_t n = gettick() - starttick;
702 		if (n < 8192)
703 			x_one_stimes[n >> 7]++;
704 		else if (n < 15*8192)
705 			x_one_ltimes[n >> 13]++;
706 		else
707 			x_one_ltimes[0xf]++;
708 	}
709 #endif
710 }
711 
712 void
713 send_mondo_set(cpuset_t set)
714 {
715 	uint64_t starttick, endtick, tick, lasttick;
716 	uint_t largestid, smallestid;
717 	int i, j;
718 	int ncpuids = 0;
719 	int shipped = 0;
720 	int retries = 0;
721 	struct machcpu	*mcpup = &(CPU->cpu_m);
722 
723 	ASSERT(!CPUSET_ISNULL(set));
724 	CPUSET_BOUNDS(set, smallestid, largestid);
725 	if (smallestid == CPUSET_NOTINSET) {
726 		return;
727 	}
728 
729 	starttick = lasttick = gettick();
730 	endtick = starttick + xc_tick_limit;
731 
732 	/*
733 	 * Assemble CPU list for HV argument. We already know
734 	 * smallestid and largestid are members of set.
735 	 */
736 	mcpup->cpu_list[ncpuids++] = (uint16_t)smallestid;
737 	if (largestid != smallestid) {
738 		for (i = smallestid+1; i <= largestid-1; i++) {
739 			if (CPU_IN_SET(set, i)) {
740 				mcpup->cpu_list[ncpuids++] = (uint16_t)i;
741 			}
742 		}
743 		mcpup->cpu_list[ncpuids++] = (uint16_t)largestid;
744 	}
745 
746 	do {
747 		int stat;
748 
749 		stat = shipit(ncpuids, mcpup->cpu_list_ra);
750 		if (stat == H_EOK) {
751 			shipped += ncpuids;
752 			break;
753 		}
754 
755 		/*
756 		 * Either not all CPU mondos were sent, or an
757 		 * error occurred. CPUs that were sent mondos
758 		 * have their CPU IDs overwritten in cpu_list.
759 		 * Reset cpu_list so that it only holds those
760 		 * CPU IDs that still need to be sent.
761 		 */
762 		for (i = 0, j = 0; i < ncpuids; i++) {
763 			if (mcpup->cpu_list[i] == HV_SEND_MONDO_ENTRYDONE) {
764 				shipped++;
765 			} else {
766 				mcpup->cpu_list[j++] = mcpup->cpu_list[i];
767 			}
768 		}
769 		ncpuids = j;
770 
771 		/*
772 		 * Now handle possible errors returned
773 		 * from hypervisor.
774 		 */
775 		if (stat == H_ECPUERROR) {
776 			int errorcpus;
777 
778 			if (!panic_quiesce)
779 				cmn_err(CE_CONT, "send_mondo_set: cpuid(s) ");
780 
781 			/*
782 			 * Remove any CPUs in the error state from
783 			 * cpu_list. At this point cpu_list only
784 			 * contains the CPU IDs for mondos not
785 			 * succesfully sent.
786 			 */
787 			for (i = 0, errorcpus = 0; i < ncpuids; i++) {
788 				uint64_t state = CPU_STATE_INVALID;
789 				uint16_t id = mcpup->cpu_list[i];
790 
791 				(void) hv_cpu_state(id, &state);
792 				if (state == CPU_STATE_ERROR) {
793 					if (!panic_quiesce)
794 						cmn_err(CE_CONT, "0x%x ", id);
795 					errorcpus++;
796 				} else if (errorcpus > 0) {
797 					mcpup->cpu_list[i - errorcpus] =
798 					    mcpup->cpu_list[i];
799 				}
800 			}
801 			ncpuids -= errorcpus;
802 
803 			if (!panic_quiesce) {
804 				if (errorcpus == 0) {
805 					cmn_err(CE_CONT, "<none> have been "
806 					    "marked in error\n");
807 					cmn_err(CE_PANIC, "send_mondo_set: "
808 					    "hypervisor returned "
809 					    "H_ECPUERROR but no CPU in "
810 					    "cpu_list in error state");
811 				} else {
812 					cmn_err(CE_CONT, "have been marked in "
813 					    "error\n");
814 					cmn_err(CE_PANIC, "send_mondo_set: "
815 					    "CPU(s) in error state");
816 				}
817 			}
818 		} else if (stat != H_EWOULDBLOCK) {
819 			if (panic_quiesce)
820 				return;
821 			/*
822 			 * For all other errors, panic.
823 			 */
824 			cmn_err(CE_CONT, "send_mondo_set: unexpected "
825 			    "hypervisor error 0x%x while sending a "
826 			    "mondo to cpuid(s):", stat);
827 			for (i = 0; i < ncpuids; i++) {
828 				cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]);
829 			}
830 			cmn_err(CE_CONT, "\n");
831 			cmn_err(CE_PANIC, "send_mondo_set: unexpected "
832 			    "hypervisor error");
833 		}
834 
835 		tick = gettick();
836 		/*
837 		 * If there is a big jump between the current tick
838 		 * count and lasttick, we have probably hit a break
839 		 * point.  Adjust endtick accordingly to avoid panic.
840 		 */
841 		if (tick > (lasttick + xc_tick_jump_limit))
842 			endtick += (tick - lasttick);
843 		lasttick = tick;
844 		if (tick > endtick) {
845 			if (panic_quiesce)
846 				return;
847 			cmn_err(CE_CONT, "send mondo timeout "
848 			    "[retries: 0x%x]  cpuids: ", retries);
849 			for (i = 0; i < ncpuids; i++)
850 				cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]);
851 			cmn_err(CE_CONT, "\n");
852 			cmn_err(CE_PANIC, "send_mondo_set: timeout");
853 		}
854 
855 		while (gettick() < (tick + sys_clock_mhz))
856 			;
857 		retries++;
858 	} while (ncpuids > 0);
859 
860 	CPU_STATS_ADDQ(CPU, sys, xcalls, shipped);
861 
862 #ifdef SEND_MONDO_STATS
863 	{
864 		uint64_t n = gettick() - starttick;
865 		if (n < 8192)
866 			x_set_stimes[n >> 7]++;
867 		else if (n < 15*8192)
868 			x_set_ltimes[n >> 13]++;
869 		else
870 			x_set_ltimes[0xf]++;
871 	}
872 	x_set_cpus[shipped]++;
873 #endif
874 }
875 
876 void
877 syncfpu(void)
878 {
879 }
880 
881 void
882 cpu_flush_ecache(void)
883 {
884 }
885 
886 void
887 sticksync_slave(void)
888 {}
889 
890 void
891 sticksync_master(void)
892 {}
893 
894 void
895 cpu_init_cache_scrub(void)
896 {
897 	mach_set_soft_state(SIS_NORMAL, &SOLARIS_SOFT_STATE_RUN_MSG);
898 }
899 
900 int
901 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data)
902 {
903 	int ret, watched;
904 
905 	watched = watch_disable_addr((void *)addr, 4, S_WRITE);
906 	ret = dtrace_blksuword32(addr, data, 0);
907 	if (watched)
908 		watch_enable_addr((void *)addr, 4, S_WRITE);
909 
910 	return (ret);
911 }
912 
913 int
914 dtrace_blksuword32(uintptr_t addr, uint32_t *data, int tryagain)
915 {
916 	if (suword32((void *)addr, *data) == -1)
917 		return (tryagain ? dtrace_blksuword32_err(addr, data) : -1);
918 	dtrace_flush_sec(addr);
919 
920 	return (0);
921 }
922 
923 /*ARGSUSED*/
924 void
925 cpu_faulted_enter(struct cpu *cp)
926 {
927 }
928 
929 /*ARGSUSED*/
930 void
931 cpu_faulted_exit(struct cpu *cp)
932 {
933 }
934 
935 static int
936 kdi_cpu_ready_iter(int (*cb)(int, void *), void *arg)
937 {
938 	int rc, i;
939 
940 	for (rc = 0, i = 0; i < NCPU; i++) {
941 		if (CPU_IN_SET(cpu_ready_set, i))
942 			rc += cb(i, arg);
943 	}
944 
945 	return (rc);
946 }
947 
948 /*
949  * Sends a cross-call to a specified processor.  The caller assumes
950  * responsibility for repetition of cross-calls, as appropriate (MARSA for
951  * debugging).
952  */
953 static int
954 kdi_xc_one(int cpuid, void (*func)(uintptr_t, uintptr_t), uintptr_t arg1,
955     uintptr_t arg2)
956 {
957 	int stat;
958 	struct machcpu	*mcpup;
959 	uint64_t cpuaddr_reg = 0, cpuaddr_scr = 0;
960 
961 	mcpup = &(((cpu_t *)get_cpuaddr(cpuaddr_reg, cpuaddr_scr))->cpu_m);
962 
963 	/*
964 	 * if (idsr_busy())
965 	 *	return (KDI_XC_RES_ERR);
966 	 */
967 
968 	init_mondo_nocheck((xcfunc_t *)func, arg1, arg2);
969 
970 	mcpup->cpu_list[0] = (uint16_t)cpuid;
971 	stat = shipit(1, mcpup->cpu_list_ra);
972 
973 	if (stat == 0)
974 		return (KDI_XC_RES_OK);
975 	else
976 		return (KDI_XC_RES_NACK);
977 }
978 
979 static void
980 kdi_tickwait(clock_t nticks)
981 {
982 	clock_t endtick = gettick() + nticks;
983 
984 	while (gettick() < endtick);
985 }
986 
987 static void
988 kdi_cpu_init(int dcache_size, int dcache_linesize, int icache_size,
989     int icache_linesize)
990 {
991 	kdi_dcache_size = dcache_size;
992 	kdi_dcache_linesize = dcache_linesize;
993 	kdi_icache_size = icache_size;
994 	kdi_icache_linesize = icache_linesize;
995 }
996 
997 /* used directly by kdi_read/write_phys */
998 void
999 kdi_flush_caches(void)
1000 {
1001 	/* Not required on sun4v architecture. */
1002 }
1003 
1004 /*ARGSUSED*/
1005 int
1006 kdi_get_stick(uint64_t *stickp)
1007 {
1008 	return (-1);
1009 }
1010 
1011 void
1012 cpu_kdi_init(kdi_t *kdi)
1013 {
1014 	kdi->kdi_flush_caches = kdi_flush_caches;
1015 	kdi->mkdi_cpu_init = kdi_cpu_init;
1016 	kdi->mkdi_cpu_ready_iter = kdi_cpu_ready_iter;
1017 	kdi->mkdi_xc_one = kdi_xc_one;
1018 	kdi->mkdi_tickwait = kdi_tickwait;
1019 	kdi->mkdi_get_stick = kdi_get_stick;
1020 }
1021 
1022 uint64_t	soft_state_message_ra[SOLARIS_SOFT_STATE_MSG_CNT];
1023 static uint64_t	soft_state_saved_state = (uint64_t)-1;
1024 static int	soft_state_initialized = 0;
1025 static uint64_t soft_state_sup_minor;		/* Supported minor number */
1026 static hsvc_info_t soft_state_hsvc = {
1027 			HSVC_REV_1, NULL, HSVC_GROUP_SOFT_STATE, 1, 0, NULL };
1028 
1029 
1030 static void
1031 sun4v_system_claim(void)
1032 {
1033 	watchdog_suspend();
1034 	/*
1035 	 * For "mdb -K", set soft state to debugging
1036 	 */
1037 	if (soft_state_saved_state == -1) {
1038 		mach_get_soft_state(&soft_state_saved_state,
1039 				&SOLARIS_SOFT_STATE_SAVED_MSG);
1040 	}
1041 	/*
1042 	 * check again as the read above may or may not have worked and if
1043 	 * it didn't then soft state will still be -1
1044 	 */
1045 	if (soft_state_saved_state != -1) {
1046 		mach_set_soft_state(SIS_TRANSITION,
1047 				&SOLARIS_SOFT_STATE_DEBUG_MSG);
1048 	}
1049 }
1050 
1051 static void
1052 sun4v_system_release(void)
1053 {
1054 	watchdog_resume();
1055 	/*
1056 	 * For "mdb -K", set soft_state state back to original state on exit
1057 	 */
1058 	if (soft_state_saved_state != -1) {
1059 		mach_set_soft_state(soft_state_saved_state,
1060 					&SOLARIS_SOFT_STATE_SAVED_MSG);
1061 		soft_state_saved_state = -1;
1062 	}
1063 }
1064 
1065 void
1066 plat_kdi_init(kdi_t *kdi)
1067 {
1068 	kdi->pkdi_system_claim = sun4v_system_claim;
1069 	kdi->pkdi_system_release = sun4v_system_release;
1070 }
1071 
1072 /*
1073  * Routine to return memory information associated
1074  * with a physical address and syndrome.
1075  */
1076 /* ARGSUSED */
1077 int
1078 cpu_get_mem_info(uint64_t synd, uint64_t afar,
1079     uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
1080     int *segsp, int *banksp, int *mcidp)
1081 {
1082 	return (ENOTSUP);
1083 }
1084 
1085 /*
1086  * This routine returns the size of the kernel's FRU name buffer.
1087  */
1088 size_t
1089 cpu_get_name_bufsize()
1090 {
1091 	return (UNUM_NAMLEN);
1092 }
1093 
1094 /*
1095  * This routine is a more generic interface to cpu_get_mem_unum(),
1096  * that may be used by other modules (e.g. mm).
1097  */
1098 /* ARGSUSED */
1099 int
1100 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar,
1101     char *buf, int buflen, int *lenp)
1102 {
1103 	return (ENOTSUP);
1104 }
1105 
1106 /* ARGSUSED */
1107 int
1108 cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
1109 {
1110 	return (ENOTSUP);
1111 }
1112 
1113 /* ARGSUSED */
1114 int
1115 cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
1116 {
1117 	return (ENOTSUP);
1118 }
1119 
1120 /*
1121  * xt_sync - wait for previous x-traps to finish
1122  */
1123 void
1124 xt_sync(cpuset_t cpuset)
1125 {
1126 	union {
1127 		uint8_t volatile byte[NCPU];
1128 		uint64_t volatile xword[NCPU / 8];
1129 	} cpu_sync;
1130 	uint64_t starttick, endtick, tick, lasttick;
1131 	uint_t largestid, smallestid;
1132 	int i, j;
1133 
1134 	kpreempt_disable();
1135 	CPUSET_DEL(cpuset, CPU->cpu_id);
1136 	CPUSET_AND(cpuset, cpu_ready_set);
1137 
1138 	CPUSET_BOUNDS(cpuset, smallestid, largestid);
1139 	if (smallestid == CPUSET_NOTINSET)
1140 		goto out;
1141 
1142 	/*
1143 	 * Sun4v uses a queue for receiving mondos. Successful
1144 	 * transmission of a mondo only indicates that the mondo
1145 	 * has been written into the queue.
1146 	 *
1147 	 * We use an array of bytes to let each cpu to signal back
1148 	 * to the cross trap sender that the cross trap has been
1149 	 * executed. Set the byte to 1 before sending the cross trap
1150 	 * and wait until other cpus reset it to 0.
1151 	 */
1152 	bzero((void *)&cpu_sync, NCPU);
1153 	cpu_sync.byte[smallestid] = 1;
1154 	if (largestid != smallestid) {
1155 		for (i = (smallestid + 1); i <= (largestid - 1); i++)
1156 			if (CPU_IN_SET(cpuset, i))
1157 				cpu_sync.byte[i] = 1;
1158 		cpu_sync.byte[largestid] = 1;
1159 	}
1160 
1161 	xt_some(cpuset, (xcfunc_t *)xt_sync_tl1,
1162 	    (uint64_t)cpu_sync.byte, 0);
1163 
1164 	starttick = lasttick = gettick();
1165 	endtick = starttick + xc_tick_limit;
1166 
1167 	for (i = (smallestid / 8); i <= (largestid / 8); i++) {
1168 		while (cpu_sync.xword[i] != 0) {
1169 			tick = gettick();
1170 			/*
1171 			 * If there is a big jump between the current tick
1172 			 * count and lasttick, we have probably hit a break
1173 			 * point. Adjust endtick accordingly to avoid panic.
1174 			 */
1175 			if (tick > (lasttick + xc_tick_jump_limit)) {
1176 				endtick += (tick - lasttick);
1177 			}
1178 			lasttick = tick;
1179 			if (tick > endtick) {
1180 				if (panic_quiesce)
1181 					goto out;
1182 				cmn_err(CE_CONT, "Cross trap sync timeout:  "
1183 				    "cpuids:");
1184 				for (j = (i * 8); j <= largestid; j++) {
1185 					if (cpu_sync.byte[j] != 0)
1186 						cmn_err(CE_CONT, " 0x%x", j);
1187 				}
1188 				cmn_err(CE_CONT, "\n");
1189 				cmn_err(CE_PANIC, "xt_sync: timeout");
1190 			}
1191 		}
1192 	}
1193 
1194 out:
1195 	kpreempt_enable();
1196 }
1197 
1198 /*
1199  * Recalculate the values of the cross-call timeout variables based
1200  * on the value of the 'inter-cpu-latency' property of the platform node.
1201  * The property sets the number of nanosec to wait for a cross-call
1202  * to be acknowledged.  Other timeout variables are derived from it.
1203  *
1204  * N.B. This implementation is aware of the internals of xc_init()
1205  * and updates many of the same variables.
1206  */
1207 void
1208 recalc_xc_timeouts(void)
1209 {
1210 	typedef union {
1211 		uint64_t whole;
1212 		struct {
1213 			uint_t high;
1214 			uint_t low;
1215 		} half;
1216 	} u_number;
1217 
1218 	/* See x_call.c for descriptions of these extern variables. */
1219 	extern uint64_t xc_tick_limit_scale;
1220 	extern uint64_t xc_mondo_time_limit;
1221 	extern uint64_t xc_func_time_limit;
1222 	extern uint64_t xc_scale;
1223 	extern uint64_t xc_mondo_multiplier;
1224 	extern uint_t   nsec_shift;
1225 
1226 	/* Temp versions of the target variables */
1227 	uint64_t tick_limit;
1228 	uint64_t tick_jump_limit;
1229 	uint64_t mondo_time_limit;
1230 	uint64_t func_time_limit;
1231 	uint64_t scale;
1232 
1233 	uint64_t latency;	/* nanoseconds */
1234 	uint64_t maxfreq;
1235 	uint64_t tick_limit_save = xc_tick_limit;
1236 	uint_t   tick_scale;
1237 	uint64_t top;
1238 	uint64_t bottom;
1239 	u_number tk;
1240 
1241 	md_t *mdp;
1242 	int nrnode;
1243 	mde_cookie_t *platlist;
1244 
1245 	/*
1246 	 * Look up the 'inter-cpu-latency' (optional) property in the
1247 	 * platform node of the MD.  The units are nanoseconds.
1248 	 */
1249 	if ((mdp = md_get_handle()) == NULL) {
1250 		cmn_err(CE_WARN, "recalc_xc_timeouts: "
1251 		    "Unable to initialize machine description");
1252 		return;
1253 	}
1254 
1255 	nrnode = md_alloc_scan_dag(mdp,
1256 	    md_root_node(mdp), "platform", "fwd", &platlist);
1257 
1258 	ASSERT(nrnode == 1);
1259 	if (nrnode < 1) {
1260 		cmn_err(CE_WARN, "recalc_xc_timeouts: platform node missing");
1261 		goto done;
1262 	}
1263 
1264 	if (md_get_prop_val(mdp, platlist[0],
1265 	    "inter-cpu-latency", &latency) == -1)
1266 		goto done;
1267 
1268 	/*
1269 	 * clock.h defines an assembly-language macro
1270 	 * (NATIVE_TIME_TO_NSEC_SCALE) to convert from %stick
1271 	 * units to nanoseconds.  Since the inter-cpu-latency
1272 	 * units are nanoseconds and the xc_* variables require
1273 	 * %stick units, we need the inverse of that function.
1274 	 * The trick is to perform the calculation without
1275 	 * floating point, but also without integer truncation
1276 	 * or overflow.  To understand the calculation below,
1277 	 * please read the discussion of the macro in clock.h.
1278 	 * Since this new code will be invoked infrequently,
1279 	 * we can afford to implement it in C.
1280 	 *
1281 	 * tick_scale is the reciprocal of nsec_scale which is
1282 	 * calculated at startup in setcpudelay().  The calc
1283 	 * of tick_limit parallels that of NATIVE_TIME_TO_NSEC_SCALE
1284 	 * except we use tick_scale instead of nsec_scale and
1285 	 * C instead of assembler.
1286 	 */
1287 	tick_scale = (uint_t)(((u_longlong_t)sys_tick_freq
1288 	    << (32 - nsec_shift)) / NANOSEC);
1289 
1290 	tk.whole = latency;
1291 	top = ((uint64_t)tk.half.high << 4) * tick_scale;
1292 	bottom = (((uint64_t)tk.half.low << 4) * (uint64_t)tick_scale) >> 32;
1293 	tick_limit = top + bottom;
1294 
1295 
1296 	/*
1297 	 * xc_init() calculated 'maxfreq' by looking at all the cpus,
1298 	 * and used it to derive some of the timeout variables that we
1299 	 * recalculate below.  We can back into the original value by
1300 	 * using the inverse of one of those calculations.
1301 	 */
1302 	maxfreq = xc_mondo_time_limit / xc_scale;
1303 
1304 	/*
1305 	 * Don't allow the new timeout (xc_tick_limit) to fall below
1306 	 * the system tick frequency (stick).  Allowing the timeout
1307 	 * to be set more tightly than this empirically determined
1308 	 * value may cause panics.
1309 	 */
1310 	tick_limit = tick_limit < sys_tick_freq ? sys_tick_freq : tick_limit;
1311 
1312 	tick_jump_limit = tick_limit / 32;
1313 	tick_limit *= xc_tick_limit_scale;
1314 
1315 	/*
1316 	 * Recalculate xc_scale since it is used in a callback function
1317 	 * (xc_func_timeout_adj) to adjust two of the timeouts dynamically.
1318 	 * Make the change in xc_scale proportional to the change in
1319 	 * xc_tick_limit.
1320 	 */
1321 	scale = (xc_scale * tick_limit + sys_tick_freq / 2) / tick_limit_save;
1322 	if (scale == 0)
1323 		scale = 1;
1324 
1325 	mondo_time_limit = maxfreq * scale;
1326 	func_time_limit = mondo_time_limit * xc_mondo_multiplier;
1327 
1328 	/*
1329 	 * Don't modify the timeouts if nothing has changed.  Else,
1330 	 * stuff the variables with the freshly calculated (temp)
1331 	 * variables.  This minimizes the window where the set of
1332 	 * values could be inconsistent.
1333 	 */
1334 	if (tick_limit != xc_tick_limit) {
1335 		xc_tick_limit = tick_limit;
1336 		xc_tick_jump_limit = tick_jump_limit;
1337 		xc_scale = scale;
1338 		xc_mondo_time_limit = mondo_time_limit;
1339 		xc_func_time_limit = func_time_limit;
1340 		/*
1341 		 * Force the new values to be used for future cross
1342 		 * calls.  This is necessary only when we increase
1343 		 * the timeouts.
1344 		 */
1345 		if (tick_limit > tick_limit_save) {
1346 			cpuset_t cpuset = cpu_ready_set;
1347 
1348 			xt_sync(cpuset);
1349 		}
1350 	}
1351 
1352 done:
1353 	if (nrnode > 0)
1354 		md_free_scan_dag(mdp, &platlist);
1355 	(void) md_fini_handle(mdp);
1356 }
1357 
1358 void
1359 mach_soft_state_init(void)
1360 {
1361 	int		i;
1362 	uint64_t	ra;
1363 
1364 	/*
1365 	 * Try to register soft_state api. If it fails, soft_state api has not
1366 	 * been implemented in the firmware, so do not bother to setup
1367 	 * soft_state in the kernel.
1368 	 */
1369 	if ((i = hsvc_register(&soft_state_hsvc, &soft_state_sup_minor)) != 0) {
1370 		return;
1371 	}
1372 	for (i = 0; i < SOLARIS_SOFT_STATE_MSG_CNT; i++) {
1373 		ASSERT(strlen((const char *)(void *)
1374 				soft_state_message_strings + i) < SSM_SIZE);
1375 		if ((ra = va_to_pa((void *)(soft_state_message_strings + i))) ==
1376 									-1ll) {
1377 			return;
1378 		}
1379 		soft_state_message_ra[i] = ra;
1380 	}
1381 	/*
1382 	 * Tell OBP that we are supporting Guest State
1383 	 */
1384 	prom_sun4v_soft_state_supported();
1385 	soft_state_initialized = 1;
1386 }
1387 
1388 void
1389 mach_set_soft_state(uint64_t state, uint64_t *string_ra)
1390 {
1391 	uint64_t	rc;
1392 
1393 	if (soft_state_initialized && *string_ra) {
1394 		rc = hv_soft_state_set(state, *string_ra);
1395 
1396 		if (rc != H_EOK) {
1397 			cmn_err(CE_WARN, "hv_soft_state_set returned %ld\n",
1398 				rc);
1399 		}
1400 	}
1401 }
1402 
1403 void
1404 mach_get_soft_state(uint64_t *state, uint64_t *string_ra)
1405 {
1406 	int	rc;
1407 
1408 	if (soft_state_initialized && *string_ra) {
1409 		rc = hv_soft_state_get(*string_ra, state);
1410 		if (rc != H_EOK) {
1411 			cmn_err(CE_WARN, "hv_soft_state_get returned %d\n",
1412 				rc);
1413 			*state = -1;
1414 		}
1415 	}
1416 }
1417