1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/systm.h> 30 #include <sys/archsystm.h> 31 #include <sys/t_lock.h> 32 #include <sys/uadmin.h> 33 #include <sys/panic.h> 34 #include <sys/reboot.h> 35 #include <sys/autoconf.h> 36 #include <sys/machsystm.h> 37 #include <sys/promif.h> 38 #include <sys/membar.h> 39 #include <vm/hat_sfmmu.h> 40 #include <sys/cpu_module.h> 41 #include <sys/cpu_sgnblk_defs.h> 42 #include <sys/intreg.h> 43 #include <sys/consdev.h> 44 #include <sys/kdi_impl.h> 45 #include <sys/traptrace.h> 46 #include <sys/hypervisor_api.h> 47 #include <sys/vmsystm.h> 48 #include <sys/dtrace.h> 49 #include <sys/xc_impl.h> 50 #include <sys/callb.h> 51 #include <sys/mdesc.h> 52 #include <sys/mach_descrip.h> 53 #include <sys/wdt.h> 54 #include <sys/soft_state.h> 55 #include <sys/promimpl.h> 56 #include <sys/hsvc.h> 57 #include <sys/ldoms.h> 58 59 /* 60 * hvdump_buf_va is a pointer to the currently-configured hvdump_buf. 61 * A value of NULL indicates that this area is not configured. 62 * hvdump_buf_sz is tunable but will be clamped to HVDUMP_SIZE_MAX. 63 */ 64 65 caddr_t hvdump_buf_va; 66 uint64_t hvdump_buf_sz = HVDUMP_SIZE_DEFAULT; 67 static uint64_t hvdump_buf_pa; 68 69 u_longlong_t panic_tick; 70 71 extern u_longlong_t gettick(); 72 static void reboot_machine(char *); 73 static void update_hvdump_buffer(void); 74 75 /* 76 * For xt_sync synchronization. 77 */ 78 extern uint64_t xc_tick_limit; 79 extern uint64_t xc_tick_jump_limit; 80 81 /* 82 * We keep our own copies, used for cache flushing, because we can be called 83 * before cpu_fiximpl(). 84 */ 85 static int kdi_dcache_size; 86 static int kdi_dcache_linesize; 87 static int kdi_icache_size; 88 static int kdi_icache_linesize; 89 90 /* 91 * Assembly support for generic modules in sun4v/ml/mach_xc.s 92 */ 93 extern void init_mondo_nocheck(xcfunc_t *func, uint64_t arg1, uint64_t arg2); 94 extern void kdi_flush_idcache(int, int, int, int); 95 extern uint64_t get_cpuaddr(uint64_t, uint64_t); 96 97 98 #define BOOT_CMD_MAX_LEN 256 99 #define BOOT_CMD_BASE "boot " 100 101 /* 102 * In an LDoms system we do not save the user's boot args in NVRAM 103 * as is done on legacy systems. Instead, we format and send a 104 * 'reboot-command' variable to the variable service. The contents 105 * of the variable are retrieved by OBP and used verbatim for 106 * the next boot. 107 */ 108 static void 109 store_boot_cmd(char *args) 110 { 111 static char cmd_buf[BOOT_CMD_MAX_LEN]; 112 size_t len; 113 pnode_t node; 114 size_t base_len; 115 size_t args_len; 116 size_t args_max; 117 118 (void) strcpy(cmd_buf, BOOT_CMD_BASE); 119 120 base_len = strlen(BOOT_CMD_BASE); 121 len = base_len + 1; 122 123 if (args != NULL) { 124 args_len = strlen(args); 125 args_max = BOOT_CMD_MAX_LEN - len; 126 127 if (args_len > args_max) { 128 cmn_err(CE_WARN, "Reboot command too long (%ld), " 129 "truncating command arguments", len + args_len); 130 131 args_len = args_max; 132 } 133 134 len += args_len; 135 (void) strncpy(&cmd_buf[base_len], args, args_len); 136 } 137 138 node = prom_optionsnode(); 139 if ((node == OBP_NONODE) || (node == OBP_BADNODE) || 140 prom_setprop(node, "reboot-command", cmd_buf, len) == -1) 141 cmn_err(CE_WARN, "Unable to store boot command for " 142 "use on reboot"); 143 } 144 145 146 /* 147 * Machine dependent code to reboot. 148 * 149 * "bootstr", when non-null, points to a string to be used as the 150 * argument string when rebooting. 151 * 152 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 153 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 154 * we are in a normal shutdown sequence (interrupts are not blocked, the 155 * system is not panic'ing or being suspended). 156 */ 157 /*ARGSUSED*/ 158 void 159 mdboot(int cmd, int fcn, char *bootstr, boolean_t invoke_cb) 160 { 161 extern void pm_cfb_check_and_powerup(void); 162 163 /* 164 * XXX - rconsvp is set to NULL to ensure that output messages 165 * are sent to the underlying "hardware" device using the 166 * monitor's printf routine since we are in the process of 167 * either rebooting or halting the machine. 168 */ 169 rconsvp = NULL; 170 171 switch (fcn) { 172 case AD_HALT: 173 case AD_POWEROFF: 174 break; 175 default: 176 if (bootstr == NULL) { 177 switch (fcn) { 178 179 case AD_BOOT: 180 bootstr = ""; 181 break; 182 183 case AD_IBOOT: 184 bootstr = "-a"; 185 break; 186 187 case AD_SBOOT: 188 bootstr = "-s"; 189 break; 190 191 case AD_SIBOOT: 192 bootstr = "-sa"; 193 break; 194 default: 195 cmn_err(CE_WARN, 196 "mdboot: invalid function %d", fcn); 197 bootstr = ""; 198 break; 199 } 200 } 201 202 /* 203 * If LDoms is running, we must save the boot string 204 * before we enter restricted mode. This is possible 205 * only if we are not being called from panic. 206 */ 207 if (domaining_enabled() && invoke_cb) 208 store_boot_cmd(bootstr); 209 210 } 211 212 /* 213 * At a high interrupt level we can't: 214 * 1) bring up the console 215 * or 216 * 2) wait for pending interrupts prior to redistribution 217 * to the current CPU 218 * 219 * so we do them now. 220 */ 221 pm_cfb_check_and_powerup(); 222 223 /* make sure there are no more changes to the device tree */ 224 devtree_freeze(); 225 226 if (invoke_cb) 227 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 228 229 /* 230 * Clear any unresolved UEs from memory. 231 */ 232 page_retire_mdboot(); 233 234 /* 235 * stop other cpus which also raise our priority. since there is only 236 * one active cpu after this, and our priority will be too high 237 * for us to be preempted, we're essentially single threaded 238 * from here on out. 239 */ 240 stop_other_cpus(); 241 242 /* 243 * try and reset leaf devices. reset_leaves() should only 244 * be called when there are no other threads that could be 245 * accessing devices 246 */ 247 reset_leaves(); 248 249 watchdog_clear(); 250 251 if (fcn == AD_HALT) { 252 mach_set_soft_state(SIS_TRANSITION, 253 &SOLARIS_SOFT_STATE_HALT_MSG); 254 halt((char *)NULL); 255 } else if (fcn == AD_POWEROFF) { 256 mach_set_soft_state(SIS_TRANSITION, 257 &SOLARIS_SOFT_STATE_POWER_MSG); 258 power_down(NULL); 259 } else { 260 mach_set_soft_state(SIS_TRANSITION, 261 &SOLARIS_SOFT_STATE_REBOOT_MSG); 262 reboot_machine(bootstr); 263 } 264 /* MAYBE REACHED */ 265 } 266 267 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 268 /*ARGSUSED*/ 269 void 270 mdpreboot(int cmd, int fcn, char *bootstr) 271 { 272 } 273 274 /* 275 * Halt the machine and then reboot with the device 276 * and arguments specified in bootstr. 277 */ 278 static void 279 reboot_machine(char *bootstr) 280 { 281 flush_windows(); 282 stop_other_cpus(); /* send stop signal to other CPUs */ 283 prom_printf("rebooting...\n"); 284 /* 285 * For platforms that use CPU signatures, we 286 * need to set the signature block to OS and 287 * the state to exiting for all the processors. 288 */ 289 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_REBOOT, -1); 290 prom_reboot(bootstr); 291 /*NOTREACHED*/ 292 } 293 294 /* 295 * We use the x-trap mechanism and idle_stop_xcall() to stop the other CPUs. 296 * Once in panic_idle() they raise spl, record their location, and spin. 297 */ 298 static void 299 panic_idle(void) 300 { 301 (void) spl7(); 302 303 debug_flush_windows(); 304 (void) setjmp(&curthread->t_pcb); 305 306 CPU->cpu_m.in_prom = 1; 307 membar_stld(); 308 309 for (;;) 310 continue; 311 } 312 313 /* 314 * Force the other CPUs to trap into panic_idle(), and then remove them 315 * from the cpu_ready_set so they will no longer receive cross-calls. 316 */ 317 /*ARGSUSED*/ 318 void 319 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 320 { 321 cpuset_t cps; 322 int i; 323 324 (void) splzs(); 325 CPUSET_ALL_BUT(cps, cp->cpu_id); 326 xt_some(cps, (xcfunc_t *)idle_stop_xcall, (uint64_t)&panic_idle, NULL); 327 328 for (i = 0; i < NCPU; i++) { 329 if (i != cp->cpu_id && CPU_XCALL_READY(i)) { 330 int ntries = 0x10000; 331 332 while (!cpu[i]->cpu_m.in_prom && ntries) { 333 DELAY(50); 334 ntries--; 335 } 336 337 if (!cpu[i]->cpu_m.in_prom) 338 printf("panic: failed to stop cpu%d\n", i); 339 340 cpu[i]->cpu_flags &= ~CPU_READY; 341 cpu[i]->cpu_flags |= CPU_QUIESCED; 342 CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id); 343 } 344 } 345 } 346 347 /* 348 * Platform callback following each entry to panicsys(). If we've panicked at 349 * level 14, we examine t_panic_trap to see if a fatal trap occurred. If so, 350 * we disable further %tick_cmpr interrupts. If not, an explicit call to panic 351 * was made and so we re-enqueue an interrupt request structure to allow 352 * further level 14 interrupts to be processed once we lower PIL. This allows 353 * us to handle panics from the deadman() CY_HIGH_LEVEL cyclic. 354 */ 355 void 356 panic_enter_hw(int spl) 357 { 358 if (!panic_tick) { 359 panic_tick = gettick(); 360 if (mach_htraptrace_enable) { 361 uint64_t prev_freeze; 362 363 /* there are no possible error codes for this hcall */ 364 (void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL, 365 &prev_freeze); 366 } 367 #ifdef TRAPTRACE 368 TRAPTRACE_FREEZE; 369 #endif 370 } 371 372 mach_set_soft_state(SIS_TRANSITION, &SOLARIS_SOFT_STATE_PANIC_MSG); 373 374 if (spl == ipltospl(PIL_14)) { 375 uint_t opstate = disable_vec_intr(); 376 377 if (curthread->t_panic_trap != NULL) { 378 tickcmpr_disable(); 379 intr_dequeue_req(PIL_14, cbe_level14_inum); 380 } else { 381 if (!tickcmpr_disabled()) 382 intr_enqueue_req(PIL_14, cbe_level14_inum); 383 /* 384 * Clear SOFTINT<14>, SOFTINT<0> (TICK_INT) 385 * and SOFTINT<16> (STICK_INT) to indicate 386 * that the current level 14 has been serviced. 387 */ 388 wr_clr_softint((1 << PIL_14) | 389 TICK_INT_MASK | STICK_INT_MASK); 390 } 391 392 enable_vec_intr(opstate); 393 } 394 } 395 396 /* 397 * Miscellaneous hardware-specific code to execute after panicstr is set 398 * by the panic code: we also print and record PTL1 panic information here. 399 */ 400 /*ARGSUSED*/ 401 void 402 panic_quiesce_hw(panic_data_t *pdp) 403 { 404 extern uint_t getpstate(void); 405 extern void setpstate(uint_t); 406 407 /* 408 * Turn off TRAPTRACE and save the current %tick value in panic_tick. 409 */ 410 if (!panic_tick) { 411 panic_tick = gettick(); 412 if (mach_htraptrace_enable) { 413 uint64_t prev_freeze; 414 415 /* there are no possible error codes for this hcall */ 416 (void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL, 417 &prev_freeze); 418 } 419 #ifdef TRAPTRACE 420 TRAPTRACE_FREEZE; 421 #endif 422 } 423 /* 424 * For Platforms that use CPU signatures, we 425 * need to set the signature block to OS, the state to 426 * exiting, and the substate to panic for all the processors. 427 */ 428 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_PANIC, -1); 429 430 update_hvdump_buffer(); 431 432 /* 433 * Disable further ECC errors from the bus nexus. 434 */ 435 (void) bus_func_invoke(BF_TYPE_ERRDIS); 436 437 /* 438 * Redirect all interrupts to the current CPU. 439 */ 440 intr_redist_all_cpus_shutdown(); 441 442 /* 443 * This call exists solely to support dumps to network 444 * devices after sync from OBP. 445 * 446 * If we came here via the sync callback, then on some 447 * platforms, interrupts may have arrived while we were 448 * stopped in OBP. OBP will arrange for those interrupts to 449 * be redelivered if you say "go", but not if you invoke a 450 * client callback like 'sync'. For some dump devices 451 * (network swap devices), we need interrupts to be 452 * delivered in order to dump, so we have to call the bus 453 * nexus driver to reset the interrupt state machines. 454 */ 455 (void) bus_func_invoke(BF_TYPE_RESINTR); 456 457 setpstate(getpstate() | PSTATE_IE); 458 } 459 460 /* 461 * Platforms that use CPU signatures need to set the signature block to OS and 462 * the state to exiting for all CPUs. PANIC_CONT indicates that we're about to 463 * write the crash dump, which tells the SSP/SMS to begin a timeout routine to 464 * reboot the machine if the dump never completes. 465 */ 466 /*ARGSUSED*/ 467 void 468 panic_dump_hw(int spl) 469 { 470 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1); 471 } 472 473 /* 474 * for ptl1_panic 475 */ 476 void 477 ptl1_init_cpu(struct cpu *cpu) 478 { 479 ptl1_state_t *pstate = &cpu->cpu_m.ptl1_state; 480 481 /*CONSTCOND*/ 482 if (sizeof (struct cpu) + PTL1_SSIZE > CPU_ALLOC_SIZE) { 483 panic("ptl1_init_cpu: not enough space left for ptl1_panic " 484 "stack, sizeof (struct cpu) = %lu", 485 (unsigned long)sizeof (struct cpu)); 486 } 487 488 pstate->ptl1_stktop = (uintptr_t)cpu + CPU_ALLOC_SIZE; 489 cpu_pa[cpu->cpu_id] = va_to_pa(cpu); 490 } 491 492 void 493 ptl1_panic_handler(ptl1_state_t *pstate) 494 { 495 static const char *ptl1_reasons[] = { 496 #ifdef PTL1_PANIC_DEBUG 497 "trap for debug purpose", /* PTL1_BAD_DEBUG */ 498 #else 499 "unknown trap", /* PTL1_BAD_DEBUG */ 500 #endif 501 "register window trap", /* PTL1_BAD_WTRAP */ 502 "kernel MMU miss", /* PTL1_BAD_KMISS */ 503 "kernel protection fault", /* PTL1_BAD_KPROT_FAULT */ 504 "ISM MMU miss", /* PTL1_BAD_ISM */ 505 "kernel MMU trap", /* PTL1_BAD_MMUTRAP */ 506 "kernel trap handler state", /* PTL1_BAD_TRAP */ 507 "floating point trap", /* PTL1_BAD_FPTRAP */ 508 #ifdef DEBUG 509 "pointer to intr_vec", /* PTL1_BAD_INTR_VEC */ 510 #else 511 "unknown trap", /* PTL1_BAD_INTR_VEC */ 512 #endif 513 #ifdef TRAPTRACE 514 "TRACE_PTR state", /* PTL1_BAD_TRACE_PTR */ 515 #else 516 "unknown trap", /* PTL1_BAD_TRACE_PTR */ 517 #endif 518 "stack overflow", /* PTL1_BAD_STACK */ 519 "DTrace flags", /* PTL1_BAD_DTRACE_FLAGS */ 520 "attempt to steal locked ctx", /* PTL1_BAD_CTX_STEAL */ 521 "CPU ECC error loop", /* PTL1_BAD_ECC */ 522 "unexpected error from hypervisor call", /* PTL1_BAD_HCALL */ 523 "unexpected global level(%gl)", /* PTL1_BAD_GL */ 524 "Watchdog Reset", /* PTL1_BAD_WATCHDOG */ 525 "unexpected RED mode trap", /* PTL1_BAD_RED */ 526 "return value EINVAL from hcall: "\ 527 "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_EINVAL */ 528 "return value ENOMAP from hcall: "\ 529 "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_ENOMAP */ 530 }; 531 532 uint_t reason = pstate->ptl1_regs.ptl1_gregs[0].ptl1_g1; 533 uint_t tl = pstate->ptl1_regs.ptl1_trap_regs[0].ptl1_tl; 534 struct panic_trap_info ti = { 0 }; 535 536 /* 537 * Use trap_info for a place holder to call panic_savetrap() and 538 * panic_showtrap() to save and print out ptl1_panic information. 539 */ 540 if (curthread->t_panic_trap == NULL) 541 curthread->t_panic_trap = &ti; 542 543 if (reason < sizeof (ptl1_reasons) / sizeof (ptl1_reasons[0])) 544 panic("bad %s at TL %u", ptl1_reasons[reason], tl); 545 else 546 panic("ptl1_panic reason 0x%x at TL %u", reason, tl); 547 } 548 549 void 550 clear_watchdog_on_exit(void) 551 { 552 if (watchdog_enabled && watchdog_activated) { 553 prom_printf("Debugging requested; hardware watchdog " 554 "suspended.\n"); 555 (void) watchdog_suspend(); 556 } 557 } 558 559 /* 560 * Restore the watchdog timer when returning from a debugger 561 * after a panic or L1-A and resume watchdog pat. 562 */ 563 void 564 restore_watchdog_on_entry() 565 { 566 watchdog_resume(); 567 } 568 569 int 570 kdi_watchdog_disable(void) 571 { 572 watchdog_suspend(); 573 574 return (0); 575 } 576 577 void 578 kdi_watchdog_restore(void) 579 { 580 watchdog_resume(); 581 } 582 583 void 584 mach_dump_buffer_init(void) 585 { 586 uint64_t ret, minsize = 0; 587 588 if (hvdump_buf_sz > HVDUMP_SIZE_MAX) 589 hvdump_buf_sz = HVDUMP_SIZE_MAX; 590 591 hvdump_buf_va = contig_mem_alloc_align(hvdump_buf_sz, PAGESIZE); 592 if (hvdump_buf_va == NULL) 593 return; 594 595 hvdump_buf_pa = va_to_pa(hvdump_buf_va); 596 597 ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz, 598 &minsize); 599 600 if (ret != H_EOK) { 601 contig_mem_free(hvdump_buf_va, hvdump_buf_sz); 602 hvdump_buf_va = NULL; 603 cmn_err(CE_NOTE, "!Error in setting up hvstate" 604 "dump buffer. Error = 0x%lx, size = 0x%lx," 605 "buf_pa = 0x%lx", ret, hvdump_buf_sz, 606 hvdump_buf_pa); 607 608 if (ret == H_EINVAL) { 609 cmn_err(CE_NOTE, "!Buffer size too small." 610 "Available buffer size = 0x%lx," 611 "Minimum buffer size required = 0x%lx", 612 hvdump_buf_sz, minsize); 613 } 614 } 615 } 616 617 618 static void 619 update_hvdump_buffer(void) 620 { 621 uint64_t ret, dummy_val; 622 623 if (hvdump_buf_va == NULL) 624 return; 625 626 ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz, 627 &dummy_val); 628 if (ret != H_EOK) { 629 cmn_err(CE_NOTE, "!Cannot update hvstate dump" 630 "buffer. Error = 0x%lx", ret); 631 } 632 } 633 634 635 static int 636 getintprop(pnode_t node, char *name, int deflt) 637 { 638 int value; 639 640 switch (prom_getproplen(node, name)) { 641 case 0: 642 value = 1; /* boolean properties */ 643 break; 644 645 case sizeof (int): 646 (void) prom_getprop(node, name, (caddr_t)&value); 647 break; 648 649 default: 650 value = deflt; 651 break; 652 } 653 654 return (value); 655 } 656 657 /* 658 * Called by setcpudelay 659 */ 660 void 661 cpu_init_tick_freq(void) 662 { 663 md_t *mdp; 664 mde_cookie_t rootnode; 665 int listsz; 666 mde_cookie_t *listp = NULL; 667 int num_nodes; 668 uint64_t stick_prop; 669 670 if (broken_md_flag) { 671 sys_tick_freq = cpunodes[CPU->cpu_id].clock_freq; 672 return; 673 } 674 675 if ((mdp = md_get_handle()) == NULL) 676 panic("stick_frequency property not found in MD"); 677 678 rootnode = md_root_node(mdp); 679 ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE); 680 681 num_nodes = md_node_count(mdp); 682 683 ASSERT(num_nodes > 0); 684 listsz = num_nodes * sizeof (mde_cookie_t); 685 listp = (mde_cookie_t *)prom_alloc((caddr_t)0, listsz, 0); 686 687 if (listp == NULL) 688 panic("cannot allocate list for MD properties"); 689 690 num_nodes = md_scan_dag(mdp, rootnode, md_find_name(mdp, "platform"), 691 md_find_name(mdp, "fwd"), listp); 692 693 ASSERT(num_nodes == 1); 694 695 if (md_get_prop_val(mdp, *listp, "stick-frequency", &stick_prop) != 0) 696 panic("stick_frequency property not found in MD"); 697 698 sys_tick_freq = stick_prop; 699 700 prom_free((caddr_t)listp, listsz); 701 (void) md_fini_handle(mdp); 702 } 703 704 int shipit(int n, uint64_t cpu_list_ra); 705 extern uint64_t xc_tick_limit; 706 extern uint64_t xc_tick_jump_limit; 707 708 #ifdef DEBUG 709 #define SEND_MONDO_STATS 1 710 #endif 711 712 #ifdef SEND_MONDO_STATS 713 uint32_t x_one_stimes[64]; 714 uint32_t x_one_ltimes[16]; 715 uint32_t x_set_stimes[64]; 716 uint32_t x_set_ltimes[16]; 717 uint32_t x_set_cpus[NCPU]; 718 #endif 719 720 void 721 send_one_mondo(int cpuid) 722 { 723 int retries, stat; 724 uint64_t starttick, endtick, tick, lasttick; 725 struct machcpu *mcpup = &(CPU->cpu_m); 726 727 CPU_STATS_ADDQ(CPU, sys, xcalls, 1); 728 starttick = lasttick = gettick(); 729 mcpup->cpu_list[0] = (uint16_t)cpuid; 730 stat = shipit(1, mcpup->cpu_list_ra); 731 endtick = starttick + xc_tick_limit; 732 retries = 0; 733 while (stat != H_EOK) { 734 if (stat != H_EWOULDBLOCK) { 735 if (panic_quiesce) 736 return; 737 if (stat == H_ECPUERROR) 738 cmn_err(CE_PANIC, "send_one_mondo: " 739 "cpuid: 0x%x has been marked in " 740 "error", cpuid); 741 else 742 cmn_err(CE_PANIC, "send_one_mondo: " 743 "unexpected hypervisor error 0x%x " 744 "while sending a mondo to cpuid: " 745 "0x%x", stat, cpuid); 746 } 747 tick = gettick(); 748 /* 749 * If there is a big jump between the current tick 750 * count and lasttick, we have probably hit a break 751 * point. Adjust endtick accordingly to avoid panic. 752 */ 753 if (tick > (lasttick + xc_tick_jump_limit)) 754 endtick += (tick - lasttick); 755 lasttick = tick; 756 if (tick > endtick) { 757 if (panic_quiesce) 758 return; 759 cmn_err(CE_PANIC, "send mondo timeout " 760 "(target 0x%x) [retries: 0x%x hvstat: 0x%x]", 761 cpuid, retries, stat); 762 } 763 drv_usecwait(1); 764 stat = shipit(1, mcpup->cpu_list_ra); 765 retries++; 766 } 767 #ifdef SEND_MONDO_STATS 768 { 769 uint64_t n = gettick() - starttick; 770 if (n < 8192) 771 x_one_stimes[n >> 7]++; 772 else if (n < 15*8192) 773 x_one_ltimes[n >> 13]++; 774 else 775 x_one_ltimes[0xf]++; 776 } 777 #endif 778 } 779 780 void 781 send_mondo_set(cpuset_t set) 782 { 783 uint64_t starttick, endtick, tick, lasttick; 784 uint_t largestid, smallestid; 785 int i, j; 786 int ncpuids = 0; 787 int shipped = 0; 788 int retries = 0; 789 struct machcpu *mcpup = &(CPU->cpu_m); 790 791 ASSERT(!CPUSET_ISNULL(set)); 792 CPUSET_BOUNDS(set, smallestid, largestid); 793 if (smallestid == CPUSET_NOTINSET) { 794 return; 795 } 796 797 starttick = lasttick = gettick(); 798 endtick = starttick + xc_tick_limit; 799 800 /* 801 * Assemble CPU list for HV argument. We already know 802 * smallestid and largestid are members of set. 803 */ 804 mcpup->cpu_list[ncpuids++] = (uint16_t)smallestid; 805 if (largestid != smallestid) { 806 for (i = smallestid+1; i <= largestid-1; i++) { 807 if (CPU_IN_SET(set, i)) { 808 mcpup->cpu_list[ncpuids++] = (uint16_t)i; 809 } 810 } 811 mcpup->cpu_list[ncpuids++] = (uint16_t)largestid; 812 } 813 814 do { 815 int stat; 816 817 stat = shipit(ncpuids, mcpup->cpu_list_ra); 818 if (stat == H_EOK) { 819 shipped += ncpuids; 820 break; 821 } 822 823 /* 824 * Either not all CPU mondos were sent, or an 825 * error occurred. CPUs that were sent mondos 826 * have their CPU IDs overwritten in cpu_list. 827 * Reset cpu_list so that it only holds those 828 * CPU IDs that still need to be sent. 829 */ 830 for (i = 0, j = 0; i < ncpuids; i++) { 831 if (mcpup->cpu_list[i] == HV_SEND_MONDO_ENTRYDONE) { 832 shipped++; 833 } else { 834 mcpup->cpu_list[j++] = mcpup->cpu_list[i]; 835 } 836 } 837 ncpuids = j; 838 839 /* 840 * Now handle possible errors returned 841 * from hypervisor. 842 */ 843 if (stat == H_ECPUERROR) { 844 int errorcpus; 845 846 if (!panic_quiesce) 847 cmn_err(CE_CONT, "send_mondo_set: cpuid(s) "); 848 849 /* 850 * Remove any CPUs in the error state from 851 * cpu_list. At this point cpu_list only 852 * contains the CPU IDs for mondos not 853 * succesfully sent. 854 */ 855 for (i = 0, errorcpus = 0; i < ncpuids; i++) { 856 uint64_t state = CPU_STATE_INVALID; 857 uint16_t id = mcpup->cpu_list[i]; 858 859 (void) hv_cpu_state(id, &state); 860 if (state == CPU_STATE_ERROR) { 861 if (!panic_quiesce) 862 cmn_err(CE_CONT, "0x%x ", id); 863 errorcpus++; 864 } else if (errorcpus > 0) { 865 mcpup->cpu_list[i - errorcpus] = 866 mcpup->cpu_list[i]; 867 } 868 } 869 ncpuids -= errorcpus; 870 871 if (!panic_quiesce) { 872 if (errorcpus == 0) { 873 cmn_err(CE_CONT, "<none> have been " 874 "marked in error\n"); 875 cmn_err(CE_PANIC, "send_mondo_set: " 876 "hypervisor returned " 877 "H_ECPUERROR but no CPU in " 878 "cpu_list in error state"); 879 } else { 880 cmn_err(CE_CONT, "have been marked in " 881 "error\n"); 882 cmn_err(CE_PANIC, "send_mondo_set: " 883 "CPU(s) in error state"); 884 } 885 } 886 } else if (stat != H_EWOULDBLOCK) { 887 if (panic_quiesce) 888 return; 889 /* 890 * For all other errors, panic. 891 */ 892 cmn_err(CE_CONT, "send_mondo_set: unexpected " 893 "hypervisor error 0x%x while sending a " 894 "mondo to cpuid(s):", stat); 895 for (i = 0; i < ncpuids; i++) { 896 cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]); 897 } 898 cmn_err(CE_CONT, "\n"); 899 cmn_err(CE_PANIC, "send_mondo_set: unexpected " 900 "hypervisor error"); 901 } 902 903 tick = gettick(); 904 /* 905 * If there is a big jump between the current tick 906 * count and lasttick, we have probably hit a break 907 * point. Adjust endtick accordingly to avoid panic. 908 */ 909 if (tick > (lasttick + xc_tick_jump_limit)) 910 endtick += (tick - lasttick); 911 lasttick = tick; 912 if (tick > endtick) { 913 if (panic_quiesce) 914 return; 915 cmn_err(CE_CONT, "send mondo timeout " 916 "[retries: 0x%x] cpuids: ", retries); 917 for (i = 0; i < ncpuids; i++) 918 cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]); 919 cmn_err(CE_CONT, "\n"); 920 cmn_err(CE_PANIC, "send_mondo_set: timeout"); 921 } 922 923 while (gettick() < (tick + sys_clock_mhz)) 924 ; 925 retries++; 926 } while (ncpuids > 0); 927 928 CPU_STATS_ADDQ(CPU, sys, xcalls, shipped); 929 930 #ifdef SEND_MONDO_STATS 931 { 932 uint64_t n = gettick() - starttick; 933 if (n < 8192) 934 x_set_stimes[n >> 7]++; 935 else if (n < 15*8192) 936 x_set_ltimes[n >> 13]++; 937 else 938 x_set_ltimes[0xf]++; 939 } 940 x_set_cpus[shipped]++; 941 #endif 942 } 943 944 void 945 syncfpu(void) 946 { 947 } 948 949 void 950 sticksync_slave(void) 951 {} 952 953 void 954 sticksync_master(void) 955 {} 956 957 void 958 cpu_init_cache_scrub(void) 959 { 960 mach_set_soft_state(SIS_NORMAL, &SOLARIS_SOFT_STATE_RUN_MSG); 961 } 962 963 int 964 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data) 965 { 966 int ret, watched; 967 968 watched = watch_disable_addr((void *)addr, 4, S_WRITE); 969 ret = dtrace_blksuword32(addr, data, 0); 970 if (watched) 971 watch_enable_addr((void *)addr, 4, S_WRITE); 972 973 return (ret); 974 } 975 976 int 977 dtrace_blksuword32(uintptr_t addr, uint32_t *data, int tryagain) 978 { 979 if (suword32((void *)addr, *data) == -1) 980 return (tryagain ? dtrace_blksuword32_err(addr, data) : -1); 981 dtrace_flush_sec(addr); 982 983 return (0); 984 } 985 986 /*ARGSUSED*/ 987 void 988 cpu_faulted_enter(struct cpu *cp) 989 { 990 } 991 992 /*ARGSUSED*/ 993 void 994 cpu_faulted_exit(struct cpu *cp) 995 { 996 } 997 998 static int 999 kdi_cpu_ready_iter(int (*cb)(int, void *), void *arg) 1000 { 1001 int rc, i; 1002 1003 for (rc = 0, i = 0; i < NCPU; i++) { 1004 if (CPU_IN_SET(cpu_ready_set, i)) 1005 rc += cb(i, arg); 1006 } 1007 1008 return (rc); 1009 } 1010 1011 /* 1012 * Sends a cross-call to a specified processor. The caller assumes 1013 * responsibility for repetition of cross-calls, as appropriate (MARSA for 1014 * debugging). 1015 */ 1016 static int 1017 kdi_xc_one(int cpuid, void (*func)(uintptr_t, uintptr_t), uintptr_t arg1, 1018 uintptr_t arg2) 1019 { 1020 int stat; 1021 struct machcpu *mcpup; 1022 uint64_t cpuaddr_reg = 0, cpuaddr_scr = 0; 1023 1024 mcpup = &(((cpu_t *)get_cpuaddr(cpuaddr_reg, cpuaddr_scr))->cpu_m); 1025 1026 /* 1027 * if (idsr_busy()) 1028 * return (KDI_XC_RES_ERR); 1029 */ 1030 1031 init_mondo_nocheck((xcfunc_t *)func, arg1, arg2); 1032 1033 mcpup->cpu_list[0] = (uint16_t)cpuid; 1034 stat = shipit(1, mcpup->cpu_list_ra); 1035 1036 if (stat == 0) 1037 return (KDI_XC_RES_OK); 1038 else 1039 return (KDI_XC_RES_NACK); 1040 } 1041 1042 static void 1043 kdi_tickwait(clock_t nticks) 1044 { 1045 clock_t endtick = gettick() + nticks; 1046 1047 while (gettick() < endtick) 1048 continue; 1049 } 1050 1051 static void 1052 kdi_cpu_init(int dcache_size, int dcache_linesize, int icache_size, 1053 int icache_linesize) 1054 { 1055 kdi_dcache_size = dcache_size; 1056 kdi_dcache_linesize = dcache_linesize; 1057 kdi_icache_size = icache_size; 1058 kdi_icache_linesize = icache_linesize; 1059 } 1060 1061 /* used directly by kdi_read/write_phys */ 1062 void 1063 kdi_flush_caches(void) 1064 { 1065 /* Not required on sun4v architecture. */ 1066 } 1067 1068 /*ARGSUSED*/ 1069 int 1070 kdi_get_stick(uint64_t *stickp) 1071 { 1072 return (-1); 1073 } 1074 1075 void 1076 cpu_kdi_init(kdi_t *kdi) 1077 { 1078 kdi->kdi_flush_caches = kdi_flush_caches; 1079 kdi->mkdi_cpu_init = kdi_cpu_init; 1080 kdi->mkdi_cpu_ready_iter = kdi_cpu_ready_iter; 1081 kdi->mkdi_xc_one = kdi_xc_one; 1082 kdi->mkdi_tickwait = kdi_tickwait; 1083 kdi->mkdi_get_stick = kdi_get_stick; 1084 } 1085 1086 uint64_t soft_state_message_ra[SOLARIS_SOFT_STATE_MSG_CNT]; 1087 static uint64_t soft_state_saved_state = (uint64_t)-1; 1088 static int soft_state_initialized = 0; 1089 static uint64_t soft_state_sup_minor; /* Supported minor number */ 1090 static hsvc_info_t soft_state_hsvc = { 1091 HSVC_REV_1, NULL, HSVC_GROUP_SOFT_STATE, 1, 0, NULL }; 1092 1093 1094 static void 1095 sun4v_system_claim(void) 1096 { 1097 watchdog_suspend(); 1098 /* 1099 * For "mdb -K", set soft state to debugging 1100 */ 1101 if (soft_state_saved_state == -1) { 1102 mach_get_soft_state(&soft_state_saved_state, 1103 &SOLARIS_SOFT_STATE_SAVED_MSG); 1104 } 1105 /* 1106 * check again as the read above may or may not have worked and if 1107 * it didn't then soft state will still be -1 1108 */ 1109 if (soft_state_saved_state != -1) { 1110 mach_set_soft_state(SIS_TRANSITION, 1111 &SOLARIS_SOFT_STATE_DEBUG_MSG); 1112 } 1113 } 1114 1115 static void 1116 sun4v_system_release(void) 1117 { 1118 watchdog_resume(); 1119 /* 1120 * For "mdb -K", set soft_state state back to original state on exit 1121 */ 1122 if (soft_state_saved_state != -1) { 1123 mach_set_soft_state(soft_state_saved_state, 1124 &SOLARIS_SOFT_STATE_SAVED_MSG); 1125 soft_state_saved_state = -1; 1126 } 1127 } 1128 1129 void 1130 plat_kdi_init(kdi_t *kdi) 1131 { 1132 kdi->pkdi_system_claim = sun4v_system_claim; 1133 kdi->pkdi_system_release = sun4v_system_release; 1134 } 1135 1136 /* 1137 * Routine to return memory information associated 1138 * with a physical address and syndrome. 1139 */ 1140 /* ARGSUSED */ 1141 int 1142 cpu_get_mem_info(uint64_t synd, uint64_t afar, 1143 uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep, 1144 int *segsp, int *banksp, int *mcidp) 1145 { 1146 return (ENOTSUP); 1147 } 1148 1149 /* 1150 * This routine returns the size of the kernel's FRU name buffer. 1151 */ 1152 size_t 1153 cpu_get_name_bufsize() 1154 { 1155 return (UNUM_NAMLEN); 1156 } 1157 1158 /* 1159 * This routine is a more generic interface to cpu_get_mem_unum(), 1160 * that may be used by other modules (e.g. mm). 1161 */ 1162 /* ARGSUSED */ 1163 int 1164 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar, 1165 char *buf, int buflen, int *lenp) 1166 { 1167 return (ENOTSUP); 1168 } 1169 1170 /* ARGSUSED */ 1171 int 1172 cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp) 1173 { 1174 return (ENOTSUP); 1175 } 1176 1177 /* ARGSUSED */ 1178 int 1179 cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp) 1180 { 1181 return (ENOTSUP); 1182 } 1183 1184 /* 1185 * xt_sync - wait for previous x-traps to finish 1186 */ 1187 void 1188 xt_sync(cpuset_t cpuset) 1189 { 1190 union { 1191 uint8_t volatile byte[NCPU]; 1192 uint64_t volatile xword[NCPU / 8]; 1193 } cpu_sync; 1194 uint64_t starttick, endtick, tick, lasttick, traptrace_id; 1195 uint_t largestid, smallestid; 1196 int i, j; 1197 1198 kpreempt_disable(); 1199 CPUSET_DEL(cpuset, CPU->cpu_id); 1200 CPUSET_AND(cpuset, cpu_ready_set); 1201 1202 CPUSET_BOUNDS(cpuset, smallestid, largestid); 1203 if (smallestid == CPUSET_NOTINSET) 1204 goto out; 1205 1206 /* 1207 * Sun4v uses a queue for receiving mondos. Successful 1208 * transmission of a mondo only indicates that the mondo 1209 * has been written into the queue. 1210 * 1211 * We use an array of bytes to let each cpu to signal back 1212 * to the cross trap sender that the cross trap has been 1213 * executed. Set the byte to 1 before sending the cross trap 1214 * and wait until other cpus reset it to 0. 1215 */ 1216 bzero((void *)&cpu_sync, NCPU); 1217 cpu_sync.byte[smallestid] = 1; 1218 if (largestid != smallestid) { 1219 for (i = (smallestid + 1); i <= (largestid - 1); i++) 1220 if (CPU_IN_SET(cpuset, i)) 1221 cpu_sync.byte[i] = 1; 1222 cpu_sync.byte[largestid] = 1; 1223 } 1224 1225 /* 1226 * To help debug xt_sync panic, each mondo is uniquely identified 1227 * by passing the tick value, traptrace_id as the second mondo 1228 * argument to xt_some which is logged in CPU's mondo queue, 1229 * traptrace buffer and the panic message. 1230 */ 1231 traptrace_id = gettick(); 1232 xt_some(cpuset, (xcfunc_t *)xt_sync_tl1, 1233 (uint64_t)cpu_sync.byte, traptrace_id); 1234 1235 starttick = lasttick = gettick(); 1236 endtick = starttick + xc_tick_limit; 1237 1238 for (i = (smallestid / 8); i <= (largestid / 8); i++) { 1239 while (cpu_sync.xword[i] != 0) { 1240 tick = gettick(); 1241 /* 1242 * If there is a big jump between the current tick 1243 * count and lasttick, we have probably hit a break 1244 * point. Adjust endtick accordingly to avoid panic. 1245 */ 1246 if (tick > (lasttick + xc_tick_jump_limit)) { 1247 endtick += (tick - lasttick); 1248 } 1249 lasttick = tick; 1250 if (tick > endtick) { 1251 if (panic_quiesce) 1252 goto out; 1253 cmn_err(CE_CONT, "Cross trap sync timeout: " 1254 "at cpu_sync.xword[%d]: 0x%lx " 1255 "cpu_sync.byte: 0x%lx " 1256 "starttick: 0x%lx endtick: 0x%lx " 1257 "traptrace_id = 0x%lx\n", 1258 i, cpu_sync.xword[i], 1259 (uint64_t)cpu_sync.byte, 1260 starttick, endtick, traptrace_id); 1261 cmn_err(CE_CONT, "CPUIDs:"); 1262 for (j = (i * 8); j <= largestid; j++) { 1263 if (cpu_sync.byte[j] != 0) 1264 cmn_err(CE_CONT, " 0x%x", j); 1265 } 1266 cmn_err(CE_PANIC, "xt_sync: timeout"); 1267 } 1268 } 1269 } 1270 1271 out: 1272 kpreempt_enable(); 1273 } 1274 1275 /* 1276 * Recalculate the values of the cross-call timeout variables based 1277 * on the value of the 'inter-cpu-latency' property of the platform node. 1278 * The property sets the number of nanosec to wait for a cross-call 1279 * to be acknowledged. Other timeout variables are derived from it. 1280 * 1281 * N.B. This implementation is aware of the internals of xc_init() 1282 * and updates many of the same variables. 1283 */ 1284 void 1285 recalc_xc_timeouts(void) 1286 { 1287 typedef union { 1288 uint64_t whole; 1289 struct { 1290 uint_t high; 1291 uint_t low; 1292 } half; 1293 } u_number; 1294 1295 /* See x_call.c for descriptions of these extern variables. */ 1296 extern uint64_t xc_tick_limit_scale; 1297 extern uint64_t xc_mondo_time_limit; 1298 extern uint64_t xc_func_time_limit; 1299 extern uint64_t xc_scale; 1300 extern uint64_t xc_mondo_multiplier; 1301 extern uint_t nsec_shift; 1302 1303 /* Temp versions of the target variables */ 1304 uint64_t tick_limit; 1305 uint64_t tick_jump_limit; 1306 uint64_t mondo_time_limit; 1307 uint64_t func_time_limit; 1308 uint64_t scale; 1309 1310 uint64_t latency; /* nanoseconds */ 1311 uint64_t maxfreq; 1312 uint64_t tick_limit_save = xc_tick_limit; 1313 uint_t tick_scale; 1314 uint64_t top; 1315 uint64_t bottom; 1316 u_number tk; 1317 1318 md_t *mdp; 1319 int nrnode; 1320 mde_cookie_t *platlist; 1321 1322 /* 1323 * Look up the 'inter-cpu-latency' (optional) property in the 1324 * platform node of the MD. The units are nanoseconds. 1325 */ 1326 if ((mdp = md_get_handle()) == NULL) { 1327 cmn_err(CE_WARN, "recalc_xc_timeouts: " 1328 "Unable to initialize machine description"); 1329 return; 1330 } 1331 1332 nrnode = md_alloc_scan_dag(mdp, 1333 md_root_node(mdp), "platform", "fwd", &platlist); 1334 1335 ASSERT(nrnode == 1); 1336 if (nrnode < 1) { 1337 cmn_err(CE_WARN, "recalc_xc_timeouts: platform node missing"); 1338 goto done; 1339 } 1340 1341 if (md_get_prop_val(mdp, platlist[0], 1342 "inter-cpu-latency", &latency) == -1) 1343 goto done; 1344 1345 /* 1346 * clock.h defines an assembly-language macro 1347 * (NATIVE_TIME_TO_NSEC_SCALE) to convert from %stick 1348 * units to nanoseconds. Since the inter-cpu-latency 1349 * units are nanoseconds and the xc_* variables require 1350 * %stick units, we need the inverse of that function. 1351 * The trick is to perform the calculation without 1352 * floating point, but also without integer truncation 1353 * or overflow. To understand the calculation below, 1354 * please read the discussion of the macro in clock.h. 1355 * Since this new code will be invoked infrequently, 1356 * we can afford to implement it in C. 1357 * 1358 * tick_scale is the reciprocal of nsec_scale which is 1359 * calculated at startup in setcpudelay(). The calc 1360 * of tick_limit parallels that of NATIVE_TIME_TO_NSEC_SCALE 1361 * except we use tick_scale instead of nsec_scale and 1362 * C instead of assembler. 1363 */ 1364 tick_scale = (uint_t)(((u_longlong_t)sys_tick_freq 1365 << (32 - nsec_shift)) / NANOSEC); 1366 1367 tk.whole = latency; 1368 top = ((uint64_t)tk.half.high << 4) * tick_scale; 1369 bottom = (((uint64_t)tk.half.low << 4) * (uint64_t)tick_scale) >> 32; 1370 tick_limit = top + bottom; 1371 1372 1373 /* 1374 * xc_init() calculated 'maxfreq' by looking at all the cpus, 1375 * and used it to derive some of the timeout variables that we 1376 * recalculate below. We can back into the original value by 1377 * using the inverse of one of those calculations. 1378 */ 1379 maxfreq = xc_mondo_time_limit / xc_scale; 1380 1381 /* 1382 * Don't allow the new timeout (xc_tick_limit) to fall below 1383 * the system tick frequency (stick). Allowing the timeout 1384 * to be set more tightly than this empirically determined 1385 * value may cause panics. 1386 */ 1387 tick_limit = tick_limit < sys_tick_freq ? sys_tick_freq : tick_limit; 1388 1389 tick_jump_limit = tick_limit / 32; 1390 tick_limit *= xc_tick_limit_scale; 1391 1392 /* 1393 * Recalculate xc_scale since it is used in a callback function 1394 * (xc_func_timeout_adj) to adjust two of the timeouts dynamically. 1395 * Make the change in xc_scale proportional to the change in 1396 * xc_tick_limit. 1397 */ 1398 scale = (xc_scale * tick_limit + sys_tick_freq / 2) / tick_limit_save; 1399 if (scale == 0) 1400 scale = 1; 1401 1402 mondo_time_limit = maxfreq * scale; 1403 func_time_limit = mondo_time_limit * xc_mondo_multiplier; 1404 1405 /* 1406 * Don't modify the timeouts if nothing has changed. Else, 1407 * stuff the variables with the freshly calculated (temp) 1408 * variables. This minimizes the window where the set of 1409 * values could be inconsistent. 1410 */ 1411 if (tick_limit != xc_tick_limit) { 1412 xc_tick_limit = tick_limit; 1413 xc_tick_jump_limit = tick_jump_limit; 1414 xc_scale = scale; 1415 xc_mondo_time_limit = mondo_time_limit; 1416 xc_func_time_limit = func_time_limit; 1417 /* 1418 * Force the new values to be used for future cross 1419 * calls. This is necessary only when we increase 1420 * the timeouts. 1421 */ 1422 if (tick_limit > tick_limit_save) { 1423 cpuset_t cpuset = cpu_ready_set; 1424 1425 xt_sync(cpuset); 1426 } 1427 } 1428 1429 done: 1430 if (nrnode > 0) 1431 md_free_scan_dag(mdp, &platlist); 1432 (void) md_fini_handle(mdp); 1433 } 1434 1435 void 1436 mach_soft_state_init(void) 1437 { 1438 int i; 1439 uint64_t ra; 1440 1441 /* 1442 * Try to register soft_state api. If it fails, soft_state api has not 1443 * been implemented in the firmware, so do not bother to setup 1444 * soft_state in the kernel. 1445 */ 1446 if ((i = hsvc_register(&soft_state_hsvc, &soft_state_sup_minor)) != 0) { 1447 return; 1448 } 1449 for (i = 0; i < SOLARIS_SOFT_STATE_MSG_CNT; i++) { 1450 ASSERT(strlen((const char *)(void *) 1451 soft_state_message_strings + i) < SSM_SIZE); 1452 if ((ra = va_to_pa( 1453 (void *)(soft_state_message_strings + i))) == -1ll) { 1454 return; 1455 } 1456 soft_state_message_ra[i] = ra; 1457 } 1458 /* 1459 * Tell OBP that we are supporting Guest State 1460 */ 1461 prom_sun4v_soft_state_supported(); 1462 soft_state_initialized = 1; 1463 } 1464 1465 void 1466 mach_set_soft_state(uint64_t state, uint64_t *string_ra) 1467 { 1468 uint64_t rc; 1469 1470 if (soft_state_initialized && *string_ra) { 1471 rc = hv_soft_state_set(state, *string_ra); 1472 if (rc != H_EOK) { 1473 cmn_err(CE_WARN, 1474 "hv_soft_state_set returned %ld\n", rc); 1475 } 1476 } 1477 } 1478 1479 void 1480 mach_get_soft_state(uint64_t *state, uint64_t *string_ra) 1481 { 1482 uint64_t rc; 1483 1484 if (soft_state_initialized && *string_ra) { 1485 rc = hv_soft_state_get(*string_ra, state); 1486 if (rc != H_EOK) { 1487 cmn_err(CE_WARN, 1488 "hv_soft_state_get returned %ld\n", rc); 1489 *state = -1; 1490 } 1491 } 1492 } 1493