1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/systm.h> 30 #include <sys/archsystm.h> 31 #include <sys/t_lock.h> 32 #include <sys/uadmin.h> 33 #include <sys/panic.h> 34 #include <sys/reboot.h> 35 #include <sys/autoconf.h> 36 #include <sys/machsystm.h> 37 #include <sys/promif.h> 38 #include <sys/membar.h> 39 #include <vm/hat_sfmmu.h> 40 #include <sys/cpu_module.h> 41 #include <sys/cpu_sgnblk_defs.h> 42 #include <sys/intreg.h> 43 #include <sys/consdev.h> 44 #include <sys/kdi_impl.h> 45 #include <sys/traptrace.h> 46 #include <sys/hypervisor_api.h> 47 #include <sys/vmsystm.h> 48 #include <sys/dtrace.h> 49 #include <sys/xc_impl.h> 50 #include <sys/callb.h> 51 #include <sys/mdesc.h> 52 #include <sys/mach_descrip.h> 53 #include <sys/wdt.h> 54 #include <sys/soft_state.h> 55 #include <sys/promimpl.h> 56 #include <sys/hsvc.h> 57 #include <sys/ldoms.h> 58 59 /* 60 * hvdump_buf_va is a pointer to the currently-configured hvdump_buf. 61 * A value of NULL indicates that this area is not configured. 62 * hvdump_buf_sz is tunable but will be clamped to HVDUMP_SIZE_MAX. 63 */ 64 65 caddr_t hvdump_buf_va; 66 uint64_t hvdump_buf_sz = HVDUMP_SIZE_DEFAULT; 67 static uint64_t hvdump_buf_pa; 68 69 u_longlong_t panic_tick; 70 71 extern u_longlong_t gettick(); 72 static void reboot_machine(char *); 73 static void update_hvdump_buffer(void); 74 75 /* 76 * For xt_sync synchronization. 77 */ 78 extern uint64_t xc_tick_limit; 79 extern uint64_t xc_tick_jump_limit; 80 81 /* 82 * We keep our own copies, used for cache flushing, because we can be called 83 * before cpu_fiximpl(). 84 */ 85 static int kdi_dcache_size; 86 static int kdi_dcache_linesize; 87 static int kdi_icache_size; 88 static int kdi_icache_linesize; 89 90 /* 91 * Assembly support for generic modules in sun4v/ml/mach_xc.s 92 */ 93 extern void init_mondo_nocheck(xcfunc_t *func, uint64_t arg1, uint64_t arg2); 94 extern void kdi_flush_idcache(int, int, int, int); 95 extern uint64_t get_cpuaddr(uint64_t, uint64_t); 96 97 98 #define BOOT_CMD_MAX_LEN 256 99 #define BOOT_CMD_BASE "boot " 100 101 /* 102 * In an LDoms system we do not save the user's boot args in NVRAM 103 * as is done on legacy systems. Instead, we format and send a 104 * 'reboot-command' variable to the variable service. The contents 105 * of the variable are retrieved by OBP and used verbatim for 106 * the next boot. 107 */ 108 static void 109 store_boot_cmd(char *args) 110 { 111 static char cmd_buf[BOOT_CMD_MAX_LEN]; 112 size_t len; 113 pnode_t node; 114 size_t base_len; 115 size_t args_len; 116 size_t args_max; 117 118 (void) strcpy(cmd_buf, BOOT_CMD_BASE); 119 120 base_len = strlen(BOOT_CMD_BASE); 121 len = base_len + 1; 122 123 if (args != NULL) { 124 args_len = strlen(args); 125 args_max = BOOT_CMD_MAX_LEN - len; 126 127 if (args_len > args_max) { 128 cmn_err(CE_WARN, "Reboot command too long (%ld), " 129 "truncating command arguments", len + args_len); 130 131 args_len = args_max; 132 } 133 134 len += args_len; 135 (void) strncpy(&cmd_buf[base_len], args, args_len); 136 } 137 138 node = prom_optionsnode(); 139 if ((node == OBP_NONODE) || (node == OBP_BADNODE) || 140 prom_setprop(node, "reboot-command", cmd_buf, len) == -1) 141 cmn_err(CE_WARN, "Unable to store boot command for " 142 "use on reboot"); 143 } 144 145 146 /* 147 * Machine dependent code to reboot. 148 * 149 * "bootstr", when non-null, points to a string to be used as the 150 * argument string when rebooting. 151 * 152 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 153 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 154 * we are in a normal shutdown sequence (interrupts are not blocked, the 155 * system is not panic'ing or being suspended). 156 */ 157 /*ARGSUSED*/ 158 void 159 mdboot(int cmd, int fcn, char *bootstr, boolean_t invoke_cb) 160 { 161 extern void pm_cfb_check_and_powerup(void); 162 163 /* 164 * XXX - rconsvp is set to NULL to ensure that output messages 165 * are sent to the underlying "hardware" device using the 166 * monitor's printf routine since we are in the process of 167 * either rebooting or halting the machine. 168 */ 169 rconsvp = NULL; 170 171 switch (fcn) { 172 case AD_HALT: 173 case AD_POWEROFF: 174 break; 175 default: 176 if (bootstr == NULL) { 177 switch (fcn) { 178 179 case AD_BOOT: 180 bootstr = ""; 181 break; 182 183 case AD_IBOOT: 184 bootstr = "-a"; 185 break; 186 187 case AD_SBOOT: 188 bootstr = "-s"; 189 break; 190 191 case AD_SIBOOT: 192 bootstr = "-sa"; 193 break; 194 default: 195 cmn_err(CE_WARN, 196 "mdboot: invalid function %d", fcn); 197 bootstr = ""; 198 break; 199 } 200 } 201 } 202 203 /* 204 * If LDoms is running, we must save the boot string before we 205 * enter restricted mode. This is possible only if we are not 206 * being called from panic. 207 */ 208 if (domaining_enabled() && invoke_cb) 209 store_boot_cmd(bootstr); 210 211 /* 212 * At a high interrupt level we can't: 213 * 1) bring up the console 214 * or 215 * 2) wait for pending interrupts prior to redistribution 216 * to the current CPU 217 * 218 * so we do them now. 219 */ 220 pm_cfb_check_and_powerup(); 221 222 /* make sure there are no more changes to the device tree */ 223 devtree_freeze(); 224 225 if (invoke_cb) 226 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 227 228 /* 229 * Clear any unresolved UEs from memory. 230 */ 231 page_retire_mdboot(); 232 233 /* 234 * stop other cpus which also raise our priority. since there is only 235 * one active cpu after this, and our priority will be too high 236 * for us to be preempted, we're essentially single threaded 237 * from here on out. 238 */ 239 stop_other_cpus(); 240 241 /* 242 * try and reset leaf devices. reset_leaves() should only 243 * be called when there are no other threads that could be 244 * accessing devices 245 */ 246 reset_leaves(); 247 248 watchdog_clear(); 249 250 if (fcn == AD_HALT) { 251 mach_set_soft_state(SIS_TRANSITION, 252 &SOLARIS_SOFT_STATE_HALT_MSG); 253 halt((char *)NULL); 254 } else if (fcn == AD_POWEROFF) { 255 mach_set_soft_state(SIS_TRANSITION, 256 &SOLARIS_SOFT_STATE_POWER_MSG); 257 power_down(NULL); 258 } else { 259 mach_set_soft_state(SIS_TRANSITION, 260 &SOLARIS_SOFT_STATE_REBOOT_MSG); 261 reboot_machine(bootstr); 262 } 263 /* MAYBE REACHED */ 264 } 265 266 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 267 /*ARGSUSED*/ 268 void 269 mdpreboot(int cmd, int fcn, char *bootstr) 270 { 271 } 272 273 /* 274 * Halt the machine and then reboot with the device 275 * and arguments specified in bootstr. 276 */ 277 static void 278 reboot_machine(char *bootstr) 279 { 280 flush_windows(); 281 stop_other_cpus(); /* send stop signal to other CPUs */ 282 prom_printf("rebooting...\n"); 283 /* 284 * For platforms that use CPU signatures, we 285 * need to set the signature block to OS and 286 * the state to exiting for all the processors. 287 */ 288 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_REBOOT, -1); 289 prom_reboot(bootstr); 290 /*NOTREACHED*/ 291 } 292 293 /* 294 * We use the x-trap mechanism and idle_stop_xcall() to stop the other CPUs. 295 * Once in panic_idle() they raise spl, record their location, and spin. 296 */ 297 static void 298 panic_idle(void) 299 { 300 (void) spl7(); 301 302 debug_flush_windows(); 303 (void) setjmp(&curthread->t_pcb); 304 305 CPU->cpu_m.in_prom = 1; 306 membar_stld(); 307 308 for (;;) 309 continue; 310 } 311 312 /* 313 * Force the other CPUs to trap into panic_idle(), and then remove them 314 * from the cpu_ready_set so they will no longer receive cross-calls. 315 */ 316 /*ARGSUSED*/ 317 void 318 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 319 { 320 cpuset_t cps; 321 int i; 322 323 (void) splzs(); 324 CPUSET_ALL_BUT(cps, cp->cpu_id); 325 xt_some(cps, (xcfunc_t *)idle_stop_xcall, (uint64_t)&panic_idle, NULL); 326 327 for (i = 0; i < NCPU; i++) { 328 if (i != cp->cpu_id && CPU_XCALL_READY(i)) { 329 int ntries = 0x10000; 330 331 while (!cpu[i]->cpu_m.in_prom && ntries) { 332 DELAY(50); 333 ntries--; 334 } 335 336 if (!cpu[i]->cpu_m.in_prom) 337 printf("panic: failed to stop cpu%d\n", i); 338 339 cpu[i]->cpu_flags &= ~CPU_READY; 340 cpu[i]->cpu_flags |= CPU_QUIESCED; 341 CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id); 342 } 343 } 344 } 345 346 /* 347 * Platform callback following each entry to panicsys(). If we've panicked at 348 * level 14, we examine t_panic_trap to see if a fatal trap occurred. If so, 349 * we disable further %tick_cmpr interrupts. If not, an explicit call to panic 350 * was made and so we re-enqueue an interrupt request structure to allow 351 * further level 14 interrupts to be processed once we lower PIL. This allows 352 * us to handle panics from the deadman() CY_HIGH_LEVEL cyclic. 353 */ 354 void 355 panic_enter_hw(int spl) 356 { 357 if (!panic_tick) { 358 panic_tick = gettick(); 359 if (mach_htraptrace_enable) { 360 uint64_t prev_freeze; 361 362 /* there are no possible error codes for this hcall */ 363 (void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL, 364 &prev_freeze); 365 } 366 #ifdef TRAPTRACE 367 TRAPTRACE_FREEZE; 368 #endif 369 } 370 371 mach_set_soft_state(SIS_TRANSITION, &SOLARIS_SOFT_STATE_PANIC_MSG); 372 373 if (spl == ipltospl(PIL_14)) { 374 uint_t opstate = disable_vec_intr(); 375 376 if (curthread->t_panic_trap != NULL) { 377 tickcmpr_disable(); 378 intr_dequeue_req(PIL_14, cbe_level14_inum); 379 } else { 380 if (!tickcmpr_disabled()) 381 intr_enqueue_req(PIL_14, cbe_level14_inum); 382 /* 383 * Clear SOFTINT<14>, SOFTINT<0> (TICK_INT) 384 * and SOFTINT<16> (STICK_INT) to indicate 385 * that the current level 14 has been serviced. 386 */ 387 wr_clr_softint((1 << PIL_14) | 388 TICK_INT_MASK | STICK_INT_MASK); 389 } 390 391 enable_vec_intr(opstate); 392 } 393 } 394 395 /* 396 * Miscellaneous hardware-specific code to execute after panicstr is set 397 * by the panic code: we also print and record PTL1 panic information here. 398 */ 399 /*ARGSUSED*/ 400 void 401 panic_quiesce_hw(panic_data_t *pdp) 402 { 403 extern uint_t getpstate(void); 404 extern void setpstate(uint_t); 405 406 /* 407 * Turn off TRAPTRACE and save the current %tick value in panic_tick. 408 */ 409 if (!panic_tick) { 410 panic_tick = gettick(); 411 if (mach_htraptrace_enable) { 412 uint64_t prev_freeze; 413 414 /* there are no possible error codes for this hcall */ 415 (void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL, 416 &prev_freeze); 417 } 418 #ifdef TRAPTRACE 419 TRAPTRACE_FREEZE; 420 #endif 421 } 422 /* 423 * For Platforms that use CPU signatures, we 424 * need to set the signature block to OS, the state to 425 * exiting, and the substate to panic for all the processors. 426 */ 427 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_PANIC, -1); 428 429 update_hvdump_buffer(); 430 431 /* 432 * Disable further ECC errors from the bus nexus. 433 */ 434 (void) bus_func_invoke(BF_TYPE_ERRDIS); 435 436 /* 437 * Redirect all interrupts to the current CPU. 438 */ 439 intr_redist_all_cpus_shutdown(); 440 441 /* 442 * This call exists solely to support dumps to network 443 * devices after sync from OBP. 444 * 445 * If we came here via the sync callback, then on some 446 * platforms, interrupts may have arrived while we were 447 * stopped in OBP. OBP will arrange for those interrupts to 448 * be redelivered if you say "go", but not if you invoke a 449 * client callback like 'sync'. For some dump devices 450 * (network swap devices), we need interrupts to be 451 * delivered in order to dump, so we have to call the bus 452 * nexus driver to reset the interrupt state machines. 453 */ 454 (void) bus_func_invoke(BF_TYPE_RESINTR); 455 456 setpstate(getpstate() | PSTATE_IE); 457 } 458 459 /* 460 * Platforms that use CPU signatures need to set the signature block to OS and 461 * the state to exiting for all CPUs. PANIC_CONT indicates that we're about to 462 * write the crash dump, which tells the SSP/SMS to begin a timeout routine to 463 * reboot the machine if the dump never completes. 464 */ 465 /*ARGSUSED*/ 466 void 467 panic_dump_hw(int spl) 468 { 469 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1); 470 } 471 472 /* 473 * for ptl1_panic 474 */ 475 void 476 ptl1_init_cpu(struct cpu *cpu) 477 { 478 ptl1_state_t *pstate = &cpu->cpu_m.ptl1_state; 479 480 /*CONSTCOND*/ 481 if (sizeof (struct cpu) + PTL1_SSIZE > CPU_ALLOC_SIZE) { 482 panic("ptl1_init_cpu: not enough space left for ptl1_panic " 483 "stack, sizeof (struct cpu) = %lu", 484 (unsigned long)sizeof (struct cpu)); 485 } 486 487 pstate->ptl1_stktop = (uintptr_t)cpu + CPU_ALLOC_SIZE; 488 cpu_pa[cpu->cpu_id] = va_to_pa(cpu); 489 } 490 491 void 492 ptl1_panic_handler(ptl1_state_t *pstate) 493 { 494 static const char *ptl1_reasons[] = { 495 #ifdef PTL1_PANIC_DEBUG 496 "trap for debug purpose", /* PTL1_BAD_DEBUG */ 497 #else 498 "unknown trap", /* PTL1_BAD_DEBUG */ 499 #endif 500 "register window trap", /* PTL1_BAD_WTRAP */ 501 "kernel MMU miss", /* PTL1_BAD_KMISS */ 502 "kernel protection fault", /* PTL1_BAD_KPROT_FAULT */ 503 "ISM MMU miss", /* PTL1_BAD_ISM */ 504 "kernel MMU trap", /* PTL1_BAD_MMUTRAP */ 505 "kernel trap handler state", /* PTL1_BAD_TRAP */ 506 "floating point trap", /* PTL1_BAD_FPTRAP */ 507 #ifdef DEBUG 508 "pointer to intr_vec", /* PTL1_BAD_INTR_VEC */ 509 #else 510 "unknown trap", /* PTL1_BAD_INTR_VEC */ 511 #endif 512 #ifdef TRAPTRACE 513 "TRACE_PTR state", /* PTL1_BAD_TRACE_PTR */ 514 #else 515 "unknown trap", /* PTL1_BAD_TRACE_PTR */ 516 #endif 517 "stack overflow", /* PTL1_BAD_STACK */ 518 "DTrace flags", /* PTL1_BAD_DTRACE_FLAGS */ 519 "attempt to steal locked ctx", /* PTL1_BAD_CTX_STEAL */ 520 "CPU ECC error loop", /* PTL1_BAD_ECC */ 521 "unexpected error from hypervisor call", /* PTL1_BAD_HCALL */ 522 "unexpected global level(%gl)", /* PTL1_BAD_GL */ 523 "Watchdog Reset", /* PTL1_BAD_WATCHDOG */ 524 "unexpected RED mode trap", /* PTL1_BAD_RED */ 525 "return value EINVAL from hcall: "\ 526 "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_EINVAL */ 527 "return value ENOMAP from hcall: "\ 528 "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_ENOMAP */ 529 }; 530 531 uint_t reason = pstate->ptl1_regs.ptl1_gregs[0].ptl1_g1; 532 uint_t tl = pstate->ptl1_regs.ptl1_trap_regs[0].ptl1_tl; 533 struct panic_trap_info ti = { 0 }; 534 535 /* 536 * Use trap_info for a place holder to call panic_savetrap() and 537 * panic_showtrap() to save and print out ptl1_panic information. 538 */ 539 if (curthread->t_panic_trap == NULL) 540 curthread->t_panic_trap = &ti; 541 542 if (reason < sizeof (ptl1_reasons) / sizeof (ptl1_reasons[0])) 543 panic("bad %s at TL %u", ptl1_reasons[reason], tl); 544 else 545 panic("ptl1_panic reason 0x%x at TL %u", reason, tl); 546 } 547 548 void 549 clear_watchdog_on_exit(void) 550 { 551 if (watchdog_enabled && watchdog_activated) { 552 prom_printf("Debugging requested; hardware watchdog " 553 "suspended.\n"); 554 (void) watchdog_suspend(); 555 } 556 } 557 558 /* 559 * Restore the watchdog timer when returning from a debugger 560 * after a panic or L1-A and resume watchdog pat. 561 */ 562 void 563 restore_watchdog_on_entry() 564 { 565 watchdog_resume(); 566 } 567 568 int 569 kdi_watchdog_disable(void) 570 { 571 watchdog_suspend(); 572 573 return (0); 574 } 575 576 void 577 kdi_watchdog_restore(void) 578 { 579 watchdog_resume(); 580 } 581 582 void 583 mach_dump_buffer_init(void) 584 { 585 uint64_t ret, minsize = 0; 586 587 if (hvdump_buf_sz > HVDUMP_SIZE_MAX) 588 hvdump_buf_sz = HVDUMP_SIZE_MAX; 589 590 hvdump_buf_va = contig_mem_alloc_align(hvdump_buf_sz, PAGESIZE); 591 if (hvdump_buf_va == NULL) 592 return; 593 594 hvdump_buf_pa = va_to_pa(hvdump_buf_va); 595 596 ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz, 597 &minsize); 598 599 if (ret != H_EOK) { 600 contig_mem_free(hvdump_buf_va, hvdump_buf_sz); 601 hvdump_buf_va = NULL; 602 cmn_err(CE_NOTE, "!Error in setting up hvstate" 603 "dump buffer. Error = 0x%lx, size = 0x%lx," 604 "buf_pa = 0x%lx", ret, hvdump_buf_sz, 605 hvdump_buf_pa); 606 607 if (ret == H_EINVAL) { 608 cmn_err(CE_NOTE, "!Buffer size too small." 609 "Available buffer size = 0x%lx," 610 "Minimum buffer size required = 0x%lx", 611 hvdump_buf_sz, minsize); 612 } 613 } 614 } 615 616 617 static void 618 update_hvdump_buffer(void) 619 { 620 uint64_t ret, dummy_val; 621 622 if (hvdump_buf_va == NULL) 623 return; 624 625 ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz, 626 &dummy_val); 627 if (ret != H_EOK) { 628 cmn_err(CE_NOTE, "!Cannot update hvstate dump" 629 "buffer. Error = 0x%lx", ret); 630 } 631 } 632 633 634 static int 635 getintprop(pnode_t node, char *name, int deflt) 636 { 637 int value; 638 639 switch (prom_getproplen(node, name)) { 640 case 0: 641 value = 1; /* boolean properties */ 642 break; 643 644 case sizeof (int): 645 (void) prom_getprop(node, name, (caddr_t)&value); 646 break; 647 648 default: 649 value = deflt; 650 break; 651 } 652 653 return (value); 654 } 655 656 /* 657 * Called by setcpudelay 658 */ 659 void 660 cpu_init_tick_freq(void) 661 { 662 md_t *mdp; 663 mde_cookie_t rootnode; 664 int listsz; 665 mde_cookie_t *listp = NULL; 666 int num_nodes; 667 uint64_t stick_prop; 668 669 if (broken_md_flag) { 670 sys_tick_freq = cpunodes[CPU->cpu_id].clock_freq; 671 return; 672 } 673 674 if ((mdp = md_get_handle()) == NULL) 675 panic("stick_frequency property not found in MD"); 676 677 rootnode = md_root_node(mdp); 678 ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE); 679 680 num_nodes = md_node_count(mdp); 681 682 ASSERT(num_nodes > 0); 683 listsz = num_nodes * sizeof (mde_cookie_t); 684 listp = (mde_cookie_t *)prom_alloc((caddr_t)0, listsz, 0); 685 686 if (listp == NULL) 687 panic("cannot allocate list for MD properties"); 688 689 num_nodes = md_scan_dag(mdp, rootnode, md_find_name(mdp, "platform"), 690 md_find_name(mdp, "fwd"), listp); 691 692 ASSERT(num_nodes == 1); 693 694 if (md_get_prop_val(mdp, *listp, "stick-frequency", &stick_prop) != 0) 695 panic("stick_frequency property not found in MD"); 696 697 sys_tick_freq = stick_prop; 698 699 prom_free((caddr_t)listp, listsz); 700 (void) md_fini_handle(mdp); 701 } 702 703 int shipit(int n, uint64_t cpu_list_ra); 704 extern uint64_t xc_tick_limit; 705 extern uint64_t xc_tick_jump_limit; 706 707 #ifdef DEBUG 708 #define SEND_MONDO_STATS 1 709 #endif 710 711 #ifdef SEND_MONDO_STATS 712 uint32_t x_one_stimes[64]; 713 uint32_t x_one_ltimes[16]; 714 uint32_t x_set_stimes[64]; 715 uint32_t x_set_ltimes[16]; 716 uint32_t x_set_cpus[NCPU]; 717 #endif 718 719 void 720 send_one_mondo(int cpuid) 721 { 722 int retries, stat; 723 uint64_t starttick, endtick, tick, lasttick; 724 struct machcpu *mcpup = &(CPU->cpu_m); 725 726 CPU_STATS_ADDQ(CPU, sys, xcalls, 1); 727 starttick = lasttick = gettick(); 728 mcpup->cpu_list[0] = (uint16_t)cpuid; 729 stat = shipit(1, mcpup->cpu_list_ra); 730 endtick = starttick + xc_tick_limit; 731 retries = 0; 732 while (stat != H_EOK) { 733 if (stat != H_EWOULDBLOCK) { 734 if (panic_quiesce) 735 return; 736 if (stat == H_ECPUERROR) 737 cmn_err(CE_PANIC, "send_one_mondo: " 738 "cpuid: 0x%x has been marked in " 739 "error", cpuid); 740 else 741 cmn_err(CE_PANIC, "send_one_mondo: " 742 "unexpected hypervisor error 0x%x " 743 "while sending a mondo to cpuid: " 744 "0x%x", stat, cpuid); 745 } 746 tick = gettick(); 747 /* 748 * If there is a big jump between the current tick 749 * count and lasttick, we have probably hit a break 750 * point. Adjust endtick accordingly to avoid panic. 751 */ 752 if (tick > (lasttick + xc_tick_jump_limit)) 753 endtick += (tick - lasttick); 754 lasttick = tick; 755 if (tick > endtick) { 756 if (panic_quiesce) 757 return; 758 cmn_err(CE_PANIC, "send mondo timeout " 759 "(target 0x%x) [retries: 0x%x hvstat: 0x%x]", 760 cpuid, retries, stat); 761 } 762 drv_usecwait(1); 763 stat = shipit(1, mcpup->cpu_list_ra); 764 retries++; 765 } 766 #ifdef SEND_MONDO_STATS 767 { 768 uint64_t n = gettick() - starttick; 769 if (n < 8192) 770 x_one_stimes[n >> 7]++; 771 else if (n < 15*8192) 772 x_one_ltimes[n >> 13]++; 773 else 774 x_one_ltimes[0xf]++; 775 } 776 #endif 777 } 778 779 void 780 send_mondo_set(cpuset_t set) 781 { 782 uint64_t starttick, endtick, tick, lasttick; 783 uint_t largestid, smallestid; 784 int i, j; 785 int ncpuids = 0; 786 int shipped = 0; 787 int retries = 0; 788 struct machcpu *mcpup = &(CPU->cpu_m); 789 790 ASSERT(!CPUSET_ISNULL(set)); 791 CPUSET_BOUNDS(set, smallestid, largestid); 792 if (smallestid == CPUSET_NOTINSET) { 793 return; 794 } 795 796 starttick = lasttick = gettick(); 797 endtick = starttick + xc_tick_limit; 798 799 /* 800 * Assemble CPU list for HV argument. We already know 801 * smallestid and largestid are members of set. 802 */ 803 mcpup->cpu_list[ncpuids++] = (uint16_t)smallestid; 804 if (largestid != smallestid) { 805 for (i = smallestid+1; i <= largestid-1; i++) { 806 if (CPU_IN_SET(set, i)) { 807 mcpup->cpu_list[ncpuids++] = (uint16_t)i; 808 } 809 } 810 mcpup->cpu_list[ncpuids++] = (uint16_t)largestid; 811 } 812 813 do { 814 int stat; 815 816 stat = shipit(ncpuids, mcpup->cpu_list_ra); 817 if (stat == H_EOK) { 818 shipped += ncpuids; 819 break; 820 } 821 822 /* 823 * Either not all CPU mondos were sent, or an 824 * error occurred. CPUs that were sent mondos 825 * have their CPU IDs overwritten in cpu_list. 826 * Reset cpu_list so that it only holds those 827 * CPU IDs that still need to be sent. 828 */ 829 for (i = 0, j = 0; i < ncpuids; i++) { 830 if (mcpup->cpu_list[i] == HV_SEND_MONDO_ENTRYDONE) { 831 shipped++; 832 } else { 833 mcpup->cpu_list[j++] = mcpup->cpu_list[i]; 834 } 835 } 836 ncpuids = j; 837 838 /* 839 * Now handle possible errors returned 840 * from hypervisor. 841 */ 842 if (stat == H_ECPUERROR) { 843 int errorcpus; 844 845 if (!panic_quiesce) 846 cmn_err(CE_CONT, "send_mondo_set: cpuid(s) "); 847 848 /* 849 * Remove any CPUs in the error state from 850 * cpu_list. At this point cpu_list only 851 * contains the CPU IDs for mondos not 852 * succesfully sent. 853 */ 854 for (i = 0, errorcpus = 0; i < ncpuids; i++) { 855 uint64_t state = CPU_STATE_INVALID; 856 uint16_t id = mcpup->cpu_list[i]; 857 858 (void) hv_cpu_state(id, &state); 859 if (state == CPU_STATE_ERROR) { 860 if (!panic_quiesce) 861 cmn_err(CE_CONT, "0x%x ", id); 862 errorcpus++; 863 } else if (errorcpus > 0) { 864 mcpup->cpu_list[i - errorcpus] = 865 mcpup->cpu_list[i]; 866 } 867 } 868 ncpuids -= errorcpus; 869 870 if (!panic_quiesce) { 871 if (errorcpus == 0) { 872 cmn_err(CE_CONT, "<none> have been " 873 "marked in error\n"); 874 cmn_err(CE_PANIC, "send_mondo_set: " 875 "hypervisor returned " 876 "H_ECPUERROR but no CPU in " 877 "cpu_list in error state"); 878 } else { 879 cmn_err(CE_CONT, "have been marked in " 880 "error\n"); 881 cmn_err(CE_PANIC, "send_mondo_set: " 882 "CPU(s) in error state"); 883 } 884 } 885 } else if (stat != H_EWOULDBLOCK) { 886 if (panic_quiesce) 887 return; 888 /* 889 * For all other errors, panic. 890 */ 891 cmn_err(CE_CONT, "send_mondo_set: unexpected " 892 "hypervisor error 0x%x while sending a " 893 "mondo to cpuid(s):", stat); 894 for (i = 0; i < ncpuids; i++) { 895 cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]); 896 } 897 cmn_err(CE_CONT, "\n"); 898 cmn_err(CE_PANIC, "send_mondo_set: unexpected " 899 "hypervisor error"); 900 } 901 902 tick = gettick(); 903 /* 904 * If there is a big jump between the current tick 905 * count and lasttick, we have probably hit a break 906 * point. Adjust endtick accordingly to avoid panic. 907 */ 908 if (tick > (lasttick + xc_tick_jump_limit)) 909 endtick += (tick - lasttick); 910 lasttick = tick; 911 if (tick > endtick) { 912 if (panic_quiesce) 913 return; 914 cmn_err(CE_CONT, "send mondo timeout " 915 "[retries: 0x%x] cpuids: ", retries); 916 for (i = 0; i < ncpuids; i++) 917 cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]); 918 cmn_err(CE_CONT, "\n"); 919 cmn_err(CE_PANIC, "send_mondo_set: timeout"); 920 } 921 922 while (gettick() < (tick + sys_clock_mhz)) 923 ; 924 retries++; 925 } while (ncpuids > 0); 926 927 CPU_STATS_ADDQ(CPU, sys, xcalls, shipped); 928 929 #ifdef SEND_MONDO_STATS 930 { 931 uint64_t n = gettick() - starttick; 932 if (n < 8192) 933 x_set_stimes[n >> 7]++; 934 else if (n < 15*8192) 935 x_set_ltimes[n >> 13]++; 936 else 937 x_set_ltimes[0xf]++; 938 } 939 x_set_cpus[shipped]++; 940 #endif 941 } 942 943 void 944 syncfpu(void) 945 { 946 } 947 948 void 949 sticksync_slave(void) 950 {} 951 952 void 953 sticksync_master(void) 954 {} 955 956 void 957 cpu_init_cache_scrub(void) 958 { 959 mach_set_soft_state(SIS_NORMAL, &SOLARIS_SOFT_STATE_RUN_MSG); 960 } 961 962 int 963 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data) 964 { 965 int ret, watched; 966 967 watched = watch_disable_addr((void *)addr, 4, S_WRITE); 968 ret = dtrace_blksuword32(addr, data, 0); 969 if (watched) 970 watch_enable_addr((void *)addr, 4, S_WRITE); 971 972 return (ret); 973 } 974 975 int 976 dtrace_blksuword32(uintptr_t addr, uint32_t *data, int tryagain) 977 { 978 if (suword32((void *)addr, *data) == -1) 979 return (tryagain ? dtrace_blksuword32_err(addr, data) : -1); 980 dtrace_flush_sec(addr); 981 982 return (0); 983 } 984 985 /*ARGSUSED*/ 986 void 987 cpu_faulted_enter(struct cpu *cp) 988 { 989 } 990 991 /*ARGSUSED*/ 992 void 993 cpu_faulted_exit(struct cpu *cp) 994 { 995 } 996 997 static int 998 kdi_cpu_ready_iter(int (*cb)(int, void *), void *arg) 999 { 1000 int rc, i; 1001 1002 for (rc = 0, i = 0; i < NCPU; i++) { 1003 if (CPU_IN_SET(cpu_ready_set, i)) 1004 rc += cb(i, arg); 1005 } 1006 1007 return (rc); 1008 } 1009 1010 /* 1011 * Sends a cross-call to a specified processor. The caller assumes 1012 * responsibility for repetition of cross-calls, as appropriate (MARSA for 1013 * debugging). 1014 */ 1015 static int 1016 kdi_xc_one(int cpuid, void (*func)(uintptr_t, uintptr_t), uintptr_t arg1, 1017 uintptr_t arg2) 1018 { 1019 int stat; 1020 struct machcpu *mcpup; 1021 uint64_t cpuaddr_reg = 0, cpuaddr_scr = 0; 1022 1023 mcpup = &(((cpu_t *)get_cpuaddr(cpuaddr_reg, cpuaddr_scr))->cpu_m); 1024 1025 /* 1026 * if (idsr_busy()) 1027 * return (KDI_XC_RES_ERR); 1028 */ 1029 1030 init_mondo_nocheck((xcfunc_t *)func, arg1, arg2); 1031 1032 mcpup->cpu_list[0] = (uint16_t)cpuid; 1033 stat = shipit(1, mcpup->cpu_list_ra); 1034 1035 if (stat == 0) 1036 return (KDI_XC_RES_OK); 1037 else 1038 return (KDI_XC_RES_NACK); 1039 } 1040 1041 static void 1042 kdi_tickwait(clock_t nticks) 1043 { 1044 clock_t endtick = gettick() + nticks; 1045 1046 while (gettick() < endtick) 1047 continue; 1048 } 1049 1050 static void 1051 kdi_cpu_init(int dcache_size, int dcache_linesize, int icache_size, 1052 int icache_linesize) 1053 { 1054 kdi_dcache_size = dcache_size; 1055 kdi_dcache_linesize = dcache_linesize; 1056 kdi_icache_size = icache_size; 1057 kdi_icache_linesize = icache_linesize; 1058 } 1059 1060 /* used directly by kdi_read/write_phys */ 1061 void 1062 kdi_flush_caches(void) 1063 { 1064 /* Not required on sun4v architecture. */ 1065 } 1066 1067 /*ARGSUSED*/ 1068 int 1069 kdi_get_stick(uint64_t *stickp) 1070 { 1071 return (-1); 1072 } 1073 1074 void 1075 cpu_kdi_init(kdi_t *kdi) 1076 { 1077 kdi->kdi_flush_caches = kdi_flush_caches; 1078 kdi->mkdi_cpu_init = kdi_cpu_init; 1079 kdi->mkdi_cpu_ready_iter = kdi_cpu_ready_iter; 1080 kdi->mkdi_xc_one = kdi_xc_one; 1081 kdi->mkdi_tickwait = kdi_tickwait; 1082 kdi->mkdi_get_stick = kdi_get_stick; 1083 } 1084 1085 uint64_t soft_state_message_ra[SOLARIS_SOFT_STATE_MSG_CNT]; 1086 static uint64_t soft_state_saved_state = (uint64_t)-1; 1087 static int soft_state_initialized = 0; 1088 static uint64_t soft_state_sup_minor; /* Supported minor number */ 1089 static hsvc_info_t soft_state_hsvc = { 1090 HSVC_REV_1, NULL, HSVC_GROUP_SOFT_STATE, 1, 0, NULL }; 1091 1092 1093 static void 1094 sun4v_system_claim(void) 1095 { 1096 watchdog_suspend(); 1097 /* 1098 * For "mdb -K", set soft state to debugging 1099 */ 1100 if (soft_state_saved_state == -1) { 1101 mach_get_soft_state(&soft_state_saved_state, 1102 &SOLARIS_SOFT_STATE_SAVED_MSG); 1103 } 1104 /* 1105 * check again as the read above may or may not have worked and if 1106 * it didn't then soft state will still be -1 1107 */ 1108 if (soft_state_saved_state != -1) { 1109 mach_set_soft_state(SIS_TRANSITION, 1110 &SOLARIS_SOFT_STATE_DEBUG_MSG); 1111 } 1112 } 1113 1114 static void 1115 sun4v_system_release(void) 1116 { 1117 watchdog_resume(); 1118 /* 1119 * For "mdb -K", set soft_state state back to original state on exit 1120 */ 1121 if (soft_state_saved_state != -1) { 1122 mach_set_soft_state(soft_state_saved_state, 1123 &SOLARIS_SOFT_STATE_SAVED_MSG); 1124 soft_state_saved_state = -1; 1125 } 1126 } 1127 1128 void 1129 plat_kdi_init(kdi_t *kdi) 1130 { 1131 kdi->pkdi_system_claim = sun4v_system_claim; 1132 kdi->pkdi_system_release = sun4v_system_release; 1133 } 1134 1135 /* 1136 * Routine to return memory information associated 1137 * with a physical address and syndrome. 1138 */ 1139 /* ARGSUSED */ 1140 int 1141 cpu_get_mem_info(uint64_t synd, uint64_t afar, 1142 uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep, 1143 int *segsp, int *banksp, int *mcidp) 1144 { 1145 return (ENOTSUP); 1146 } 1147 1148 /* 1149 * This routine returns the size of the kernel's FRU name buffer. 1150 */ 1151 size_t 1152 cpu_get_name_bufsize() 1153 { 1154 return (UNUM_NAMLEN); 1155 } 1156 1157 /* 1158 * This routine is a more generic interface to cpu_get_mem_unum(), 1159 * that may be used by other modules (e.g. mm). 1160 */ 1161 /* ARGSUSED */ 1162 int 1163 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar, 1164 char *buf, int buflen, int *lenp) 1165 { 1166 return (ENOTSUP); 1167 } 1168 1169 /* ARGSUSED */ 1170 int 1171 cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp) 1172 { 1173 return (ENOTSUP); 1174 } 1175 1176 /* ARGSUSED */ 1177 int 1178 cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp) 1179 { 1180 return (ENOTSUP); 1181 } 1182 1183 /* 1184 * xt_sync - wait for previous x-traps to finish 1185 */ 1186 void 1187 xt_sync(cpuset_t cpuset) 1188 { 1189 union { 1190 uint8_t volatile byte[NCPU]; 1191 uint64_t volatile xword[NCPU / 8]; 1192 } cpu_sync; 1193 uint64_t starttick, endtick, tick, lasttick, traptrace_id; 1194 uint_t largestid, smallestid; 1195 int i, j; 1196 1197 kpreempt_disable(); 1198 CPUSET_DEL(cpuset, CPU->cpu_id); 1199 CPUSET_AND(cpuset, cpu_ready_set); 1200 1201 CPUSET_BOUNDS(cpuset, smallestid, largestid); 1202 if (smallestid == CPUSET_NOTINSET) 1203 goto out; 1204 1205 /* 1206 * Sun4v uses a queue for receiving mondos. Successful 1207 * transmission of a mondo only indicates that the mondo 1208 * has been written into the queue. 1209 * 1210 * We use an array of bytes to let each cpu to signal back 1211 * to the cross trap sender that the cross trap has been 1212 * executed. Set the byte to 1 before sending the cross trap 1213 * and wait until other cpus reset it to 0. 1214 */ 1215 bzero((void *)&cpu_sync, NCPU); 1216 cpu_sync.byte[smallestid] = 1; 1217 if (largestid != smallestid) { 1218 for (i = (smallestid + 1); i <= (largestid - 1); i++) 1219 if (CPU_IN_SET(cpuset, i)) 1220 cpu_sync.byte[i] = 1; 1221 cpu_sync.byte[largestid] = 1; 1222 } 1223 1224 /* 1225 * To help debug xt_sync panic, each mondo is uniquely identified 1226 * by passing the tick value, traptrace_id as the second mondo 1227 * argument to xt_some which is logged in CPU's mondo queue, 1228 * traptrace buffer and the panic message. 1229 */ 1230 traptrace_id = gettick(); 1231 xt_some(cpuset, (xcfunc_t *)xt_sync_tl1, 1232 (uint64_t)cpu_sync.byte, traptrace_id); 1233 1234 starttick = lasttick = gettick(); 1235 endtick = starttick + xc_tick_limit; 1236 1237 for (i = (smallestid / 8); i <= (largestid / 8); i++) { 1238 while (cpu_sync.xword[i] != 0) { 1239 tick = gettick(); 1240 /* 1241 * If there is a big jump between the current tick 1242 * count and lasttick, we have probably hit a break 1243 * point. Adjust endtick accordingly to avoid panic. 1244 */ 1245 if (tick > (lasttick + xc_tick_jump_limit)) { 1246 endtick += (tick - lasttick); 1247 } 1248 lasttick = tick; 1249 if (tick > endtick) { 1250 if (panic_quiesce) 1251 goto out; 1252 cmn_err(CE_CONT, "Cross trap sync timeout: " 1253 "at cpu_sync.xword[%d]: 0x%lx " 1254 "cpu_sync.byte: 0x%lx " 1255 "starttick: 0x%lx endtick: 0x%lx " 1256 "traptrace_id = 0x%lx\n", 1257 i, cpu_sync.xword[i], 1258 (uint64_t)cpu_sync.byte, 1259 starttick, endtick, traptrace_id); 1260 cmn_err(CE_CONT, "CPUIDs:"); 1261 for (j = (i * 8); j <= largestid; j++) { 1262 if (cpu_sync.byte[j] != 0) 1263 cmn_err(CE_CONT, " 0x%x", j); 1264 } 1265 cmn_err(CE_PANIC, "xt_sync: timeout"); 1266 } 1267 } 1268 } 1269 1270 out: 1271 kpreempt_enable(); 1272 } 1273 1274 /* 1275 * Recalculate the values of the cross-call timeout variables based 1276 * on the value of the 'inter-cpu-latency' property of the platform node. 1277 * The property sets the number of nanosec to wait for a cross-call 1278 * to be acknowledged. Other timeout variables are derived from it. 1279 * 1280 * N.B. This implementation is aware of the internals of xc_init() 1281 * and updates many of the same variables. 1282 */ 1283 void 1284 recalc_xc_timeouts(void) 1285 { 1286 typedef union { 1287 uint64_t whole; 1288 struct { 1289 uint_t high; 1290 uint_t low; 1291 } half; 1292 } u_number; 1293 1294 /* See x_call.c for descriptions of these extern variables. */ 1295 extern uint64_t xc_tick_limit_scale; 1296 extern uint64_t xc_mondo_time_limit; 1297 extern uint64_t xc_func_time_limit; 1298 extern uint64_t xc_scale; 1299 extern uint64_t xc_mondo_multiplier; 1300 extern uint_t nsec_shift; 1301 1302 /* Temp versions of the target variables */ 1303 uint64_t tick_limit; 1304 uint64_t tick_jump_limit; 1305 uint64_t mondo_time_limit; 1306 uint64_t func_time_limit; 1307 uint64_t scale; 1308 1309 uint64_t latency; /* nanoseconds */ 1310 uint64_t maxfreq; 1311 uint64_t tick_limit_save = xc_tick_limit; 1312 uint_t tick_scale; 1313 uint64_t top; 1314 uint64_t bottom; 1315 u_number tk; 1316 1317 md_t *mdp; 1318 int nrnode; 1319 mde_cookie_t *platlist; 1320 1321 /* 1322 * Look up the 'inter-cpu-latency' (optional) property in the 1323 * platform node of the MD. The units are nanoseconds. 1324 */ 1325 if ((mdp = md_get_handle()) == NULL) { 1326 cmn_err(CE_WARN, "recalc_xc_timeouts: " 1327 "Unable to initialize machine description"); 1328 return; 1329 } 1330 1331 nrnode = md_alloc_scan_dag(mdp, 1332 md_root_node(mdp), "platform", "fwd", &platlist); 1333 1334 ASSERT(nrnode == 1); 1335 if (nrnode < 1) { 1336 cmn_err(CE_WARN, "recalc_xc_timeouts: platform node missing"); 1337 goto done; 1338 } 1339 1340 if (md_get_prop_val(mdp, platlist[0], 1341 "inter-cpu-latency", &latency) == -1) 1342 goto done; 1343 1344 /* 1345 * clock.h defines an assembly-language macro 1346 * (NATIVE_TIME_TO_NSEC_SCALE) to convert from %stick 1347 * units to nanoseconds. Since the inter-cpu-latency 1348 * units are nanoseconds and the xc_* variables require 1349 * %stick units, we need the inverse of that function. 1350 * The trick is to perform the calculation without 1351 * floating point, but also without integer truncation 1352 * or overflow. To understand the calculation below, 1353 * please read the discussion of the macro in clock.h. 1354 * Since this new code will be invoked infrequently, 1355 * we can afford to implement it in C. 1356 * 1357 * tick_scale is the reciprocal of nsec_scale which is 1358 * calculated at startup in setcpudelay(). The calc 1359 * of tick_limit parallels that of NATIVE_TIME_TO_NSEC_SCALE 1360 * except we use tick_scale instead of nsec_scale and 1361 * C instead of assembler. 1362 */ 1363 tick_scale = (uint_t)(((u_longlong_t)sys_tick_freq 1364 << (32 - nsec_shift)) / NANOSEC); 1365 1366 tk.whole = latency; 1367 top = ((uint64_t)tk.half.high << 4) * tick_scale; 1368 bottom = (((uint64_t)tk.half.low << 4) * (uint64_t)tick_scale) >> 32; 1369 tick_limit = top + bottom; 1370 1371 1372 /* 1373 * xc_init() calculated 'maxfreq' by looking at all the cpus, 1374 * and used it to derive some of the timeout variables that we 1375 * recalculate below. We can back into the original value by 1376 * using the inverse of one of those calculations. 1377 */ 1378 maxfreq = xc_mondo_time_limit / xc_scale; 1379 1380 /* 1381 * Don't allow the new timeout (xc_tick_limit) to fall below 1382 * the system tick frequency (stick). Allowing the timeout 1383 * to be set more tightly than this empirically determined 1384 * value may cause panics. 1385 */ 1386 tick_limit = tick_limit < sys_tick_freq ? sys_tick_freq : tick_limit; 1387 1388 tick_jump_limit = tick_limit / 32; 1389 tick_limit *= xc_tick_limit_scale; 1390 1391 /* 1392 * Recalculate xc_scale since it is used in a callback function 1393 * (xc_func_timeout_adj) to adjust two of the timeouts dynamically. 1394 * Make the change in xc_scale proportional to the change in 1395 * xc_tick_limit. 1396 */ 1397 scale = (xc_scale * tick_limit + sys_tick_freq / 2) / tick_limit_save; 1398 if (scale == 0) 1399 scale = 1; 1400 1401 mondo_time_limit = maxfreq * scale; 1402 func_time_limit = mondo_time_limit * xc_mondo_multiplier; 1403 1404 /* 1405 * Don't modify the timeouts if nothing has changed. Else, 1406 * stuff the variables with the freshly calculated (temp) 1407 * variables. This minimizes the window where the set of 1408 * values could be inconsistent. 1409 */ 1410 if (tick_limit != xc_tick_limit) { 1411 xc_tick_limit = tick_limit; 1412 xc_tick_jump_limit = tick_jump_limit; 1413 xc_scale = scale; 1414 xc_mondo_time_limit = mondo_time_limit; 1415 xc_func_time_limit = func_time_limit; 1416 /* 1417 * Force the new values to be used for future cross 1418 * calls. This is necessary only when we increase 1419 * the timeouts. 1420 */ 1421 if (tick_limit > tick_limit_save) { 1422 cpuset_t cpuset = cpu_ready_set; 1423 1424 xt_sync(cpuset); 1425 } 1426 } 1427 1428 done: 1429 if (nrnode > 0) 1430 md_free_scan_dag(mdp, &platlist); 1431 (void) md_fini_handle(mdp); 1432 } 1433 1434 void 1435 mach_soft_state_init(void) 1436 { 1437 int i; 1438 uint64_t ra; 1439 1440 /* 1441 * Try to register soft_state api. If it fails, soft_state api has not 1442 * been implemented in the firmware, so do not bother to setup 1443 * soft_state in the kernel. 1444 */ 1445 if ((i = hsvc_register(&soft_state_hsvc, &soft_state_sup_minor)) != 0) { 1446 return; 1447 } 1448 for (i = 0; i < SOLARIS_SOFT_STATE_MSG_CNT; i++) { 1449 ASSERT(strlen((const char *)(void *) 1450 soft_state_message_strings + i) < SSM_SIZE); 1451 if ((ra = va_to_pa( 1452 (void *)(soft_state_message_strings + i))) == -1ll) { 1453 return; 1454 } 1455 soft_state_message_ra[i] = ra; 1456 } 1457 /* 1458 * Tell OBP that we are supporting Guest State 1459 */ 1460 prom_sun4v_soft_state_supported(); 1461 soft_state_initialized = 1; 1462 } 1463 1464 void 1465 mach_set_soft_state(uint64_t state, uint64_t *string_ra) 1466 { 1467 uint64_t rc; 1468 1469 if (soft_state_initialized && *string_ra) { 1470 rc = hv_soft_state_set(state, *string_ra); 1471 if (rc != H_EOK) { 1472 cmn_err(CE_WARN, 1473 "hv_soft_state_set returned %ld\n", rc); 1474 } 1475 } 1476 } 1477 1478 void 1479 mach_get_soft_state(uint64_t *state, uint64_t *string_ra) 1480 { 1481 uint64_t rc; 1482 1483 if (soft_state_initialized && *string_ra) { 1484 rc = hv_soft_state_get(*string_ra, state); 1485 if (rc != H_EOK) { 1486 cmn_err(CE_WARN, 1487 "hv_soft_state_get returned %ld\n", rc); 1488 *state = -1; 1489 } 1490 } 1491 } 1492