xref: /titanic_50/usr/src/uts/sun4v/io/vsw.c (revision 23b5c241225a8ade2b6b9f06ebb891ee459e3b02)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/errno.h>
31 #include <sys/debug.h>
32 #include <sys/time.h>
33 #include <sys/sysmacros.h>
34 #include <sys/systm.h>
35 #include <sys/user.h>
36 #include <sys/stropts.h>
37 #include <sys/stream.h>
38 #include <sys/strlog.h>
39 #include <sys/strsubr.h>
40 #include <sys/cmn_err.h>
41 #include <sys/cpu.h>
42 #include <sys/kmem.h>
43 #include <sys/conf.h>
44 #include <sys/ddi.h>
45 #include <sys/sunddi.h>
46 #include <sys/ksynch.h>
47 #include <sys/stat.h>
48 #include <sys/kstat.h>
49 #include <sys/vtrace.h>
50 #include <sys/strsun.h>
51 #include <sys/dlpi.h>
52 #include <sys/ethernet.h>
53 #include <net/if.h>
54 #include <sys/varargs.h>
55 #include <sys/machsystm.h>
56 #include <sys/modctl.h>
57 #include <sys/modhash.h>
58 #include <sys/mac.h>
59 #include <sys/mac_ether.h>
60 #include <sys/taskq.h>
61 #include <sys/note.h>
62 #include <sys/mach_descrip.h>
63 #include <sys/mac.h>
64 #include <sys/mdeg.h>
65 #include <sys/ldc.h>
66 #include <sys/vsw_fdb.h>
67 #include <sys/vsw.h>
68 #include <sys/vio_mailbox.h>
69 #include <sys/vnet_mailbox.h>
70 #include <sys/vnet_common.h>
71 #include <sys/vio_util.h>
72 #include <sys/sdt.h>
73 
74 /*
75  * Function prototypes.
76  */
77 static	int vsw_attach(dev_info_t *, ddi_attach_cmd_t);
78 static	int vsw_detach(dev_info_t *, ddi_detach_cmd_t);
79 static	int vsw_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
80 static	void vsw_get_md_properties(vsw_t *vswp);
81 static	int vsw_get_physaddr(vsw_t *);
82 static	int vsw_setup_layer2(vsw_t *);
83 static	int vsw_setup_layer3(vsw_t *);
84 
85 /* MAC Ring table functions. */
86 static void vsw_mac_ring_tbl_init(vsw_t *vswp);
87 static void vsw_mac_ring_tbl_destroy(vsw_t *vswp);
88 static void vsw_queue_worker(vsw_mac_ring_t *rrp);
89 static void vsw_queue_stop(vsw_queue_t *vqp);
90 static vsw_queue_t *vsw_queue_create();
91 static void vsw_queue_destroy(vsw_queue_t *vqp);
92 
93 /* MAC layer routines */
94 static mac_resource_handle_t vsw_mac_ring_add_cb(void *arg,
95 		mac_resource_t *mrp);
96 static	int vsw_get_hw_maddr(vsw_t *);
97 static	int vsw_set_hw(vsw_t *, vsw_port_t *);
98 static	int vsw_set_hw_promisc(vsw_t *, vsw_port_t *);
99 static	int vsw_unset_hw(vsw_t *, vsw_port_t *);
100 static	int vsw_unset_hw_promisc(vsw_t *, vsw_port_t *);
101 static	int vsw_reconfig_hw(vsw_t *);
102 static int vsw_mac_attach(vsw_t *vswp);
103 static void vsw_mac_detach(vsw_t *vswp);
104 
105 static void vsw_rx_queue_cb(void *, mac_resource_handle_t, mblk_t *);
106 static void vsw_rx_cb(void *, mac_resource_handle_t, mblk_t *);
107 static mblk_t *vsw_tx_msg(vsw_t *, mblk_t *);
108 static int vsw_mac_register(vsw_t *);
109 static int vsw_mac_unregister(vsw_t *);
110 static int vsw_m_stat(void *, uint_t, uint64_t *);
111 static void vsw_m_stop(void *arg);
112 static int vsw_m_start(void *arg);
113 static int vsw_m_unicst(void *arg, const uint8_t *);
114 static int vsw_m_multicst(void *arg, boolean_t, const uint8_t *);
115 static int vsw_m_promisc(void *arg, boolean_t);
116 static mblk_t *vsw_m_tx(void *arg, mblk_t *);
117 
118 /* MDEG routines */
119 static	void vsw_mdeg_register(vsw_t *vswp);
120 static	void vsw_mdeg_unregister(vsw_t *vswp);
121 static	int vsw_mdeg_cb(void *cb_argp, mdeg_result_t *);
122 
123 /* Port add/deletion routines */
124 static	int vsw_port_add(vsw_t *vswp, md_t *mdp, mde_cookie_t *node);
125 static	int vsw_port_attach(vsw_t *vswp, int p_instance,
126 	uint64_t *ldcids, int nids, struct ether_addr *macaddr);
127 static	int vsw_detach_ports(vsw_t *vswp);
128 static	int vsw_port_detach(vsw_t *vswp, int p_instance);
129 static	int vsw_port_delete(vsw_port_t *port);
130 static	int vsw_ldc_attach(vsw_port_t *port, uint64_t ldc_id);
131 static	int vsw_ldc_detach(vsw_port_t *port, uint64_t ldc_id);
132 static	int vsw_init_ldcs(vsw_port_t *port);
133 static	int vsw_uninit_ldcs(vsw_port_t *port);
134 static	int vsw_ldc_init(vsw_ldc_t *ldcp);
135 static	int vsw_ldc_uninit(vsw_ldc_t *ldcp);
136 static	int vsw_drain_ldcs(vsw_port_t *port);
137 static	int vsw_drain_port_taskq(vsw_port_t *port);
138 static	void vsw_marker_task(void *);
139 static	vsw_port_t *vsw_lookup_port(vsw_t *vswp, int p_instance);
140 static	int vsw_plist_del_node(vsw_t *, vsw_port_t *port);
141 
142 /* Interrupt routines */
143 static	uint_t vsw_ldc_cb(uint64_t cb, caddr_t arg);
144 
145 /* Handshake routines */
146 static	void vsw_restart_ldc(vsw_ldc_t *);
147 static	void vsw_restart_handshake(vsw_ldc_t *);
148 static	void vsw_handle_reset(vsw_ldc_t *);
149 static	int vsw_check_flag(vsw_ldc_t *, int, uint64_t);
150 static	void vsw_next_milestone(vsw_ldc_t *);
151 static	int vsw_supported_version(vio_ver_msg_t *);
152 
153 /* Data processing routines */
154 static void vsw_process_pkt(void *);
155 static void vsw_dispatch_ctrl_task(vsw_ldc_t *, void *, vio_msg_tag_t);
156 static void vsw_process_ctrl_pkt(void *);
157 static void vsw_process_ctrl_ver_pkt(vsw_ldc_t *, void *);
158 static void vsw_process_ctrl_attr_pkt(vsw_ldc_t *, void *);
159 static void vsw_process_ctrl_mcst_pkt(vsw_ldc_t *, void *);
160 static void vsw_process_ctrl_dring_reg_pkt(vsw_ldc_t *, void *);
161 static void vsw_process_ctrl_dring_unreg_pkt(vsw_ldc_t *, void *);
162 static void vsw_process_ctrl_rdx_pkt(vsw_ldc_t *, void *);
163 static void vsw_process_data_pkt(vsw_ldc_t *, void *, vio_msg_tag_t);
164 static void vsw_process_data_dring_pkt(vsw_ldc_t *, void *);
165 static void vsw_process_data_raw_pkt(vsw_ldc_t *, void *);
166 static void vsw_process_data_ibnd_pkt(vsw_ldc_t *, void *);
167 static void vsw_process_err_pkt(vsw_ldc_t *, void *, vio_msg_tag_t);
168 
169 /* Switching/data transmit routines */
170 static	void vsw_switch_l2_frame(vsw_t *vswp, mblk_t *mp, int caller,
171 	    vsw_port_t *port, mac_resource_handle_t);
172 static	void vsw_switch_l3_frame(vsw_t *vswp, mblk_t *mp, int caller,
173 	    vsw_port_t *port, mac_resource_handle_t);
174 static	int vsw_forward_all(vsw_t *vswp, mblk_t *mp, int caller,
175 	    vsw_port_t *port);
176 static	int vsw_forward_grp(vsw_t *vswp, mblk_t *mp, int caller,
177 	    vsw_port_t *port);
178 static	int vsw_portsend(vsw_port_t *, mblk_t *);
179 static	int vsw_dringsend(vsw_ldc_t *, mblk_t *);
180 static	int vsw_descrsend(vsw_ldc_t *, mblk_t *);
181 
182 /* Packet creation routines */
183 static void vsw_send_ver(void *);
184 static void vsw_send_attr(vsw_ldc_t *);
185 static vio_dring_reg_msg_t *vsw_create_dring_info_pkt(vsw_ldc_t *);
186 static void vsw_send_dring_info(vsw_ldc_t *);
187 static void vsw_send_rdx(vsw_ldc_t *);
188 
189 static void vsw_send_msg(vsw_ldc_t *, void *, int);
190 
191 /* Forwarding database (FDB) routines */
192 static	int vsw_add_fdb(vsw_t *vswp, vsw_port_t *port);
193 static	int vsw_del_fdb(vsw_t *vswp, vsw_port_t *port);
194 static	vsw_port_t *vsw_lookup_fdb(vsw_t *vswp, struct ether_header *);
195 static	int vsw_add_rem_mcst(vnet_mcast_msg_t *, vsw_port_t *);
196 static	int vsw_add_mcst(vsw_t *, uint8_t, uint64_t, void *);
197 static	int vsw_del_mcst(vsw_t *, uint8_t, uint64_t, void *);
198 static	void vsw_del_addr(uint8_t, void *, uint64_t);
199 static	void vsw_del_mcst_port(vsw_port_t *);
200 static	void vsw_del_mcst_vsw(vsw_t *);
201 
202 /* Dring routines */
203 static dring_info_t *vsw_create_dring(vsw_ldc_t *);
204 static void vsw_create_privring(vsw_ldc_t *);
205 static int vsw_setup_ring(vsw_ldc_t *ldcp, dring_info_t *dp);
206 static int vsw_dring_find_free_desc(dring_info_t *, vsw_private_desc_t **,
207     int *);
208 static dring_info_t *vsw_ident2dring(lane_t *, uint64_t);
209 
210 static void vsw_set_lane_attr(vsw_t *, lane_t *);
211 static int vsw_check_attr(vnet_attr_msg_t *, vsw_port_t *);
212 static int vsw_dring_match(dring_info_t *dp, vio_dring_reg_msg_t *msg);
213 static int vsw_mem_cookie_match(ldc_mem_cookie_t *, ldc_mem_cookie_t *);
214 static int vsw_check_dring_info(vio_dring_reg_msg_t *);
215 
216 /* Misc support routines */
217 static	caddr_t vsw_print_ethaddr(uint8_t *addr, char *ebuf);
218 static void vsw_free_lane_resources(vsw_ldc_t *, uint64_t);
219 static int vsw_free_ring(dring_info_t *);
220 
221 
222 /* Debugging routines */
223 static void dump_flags(uint64_t);
224 static void display_state(void);
225 static void display_lane(lane_t *);
226 static void display_ring(dring_info_t *);
227 
228 int	vsw_num_handshakes = 3;		/* # of handshake attempts */
229 int	vsw_wretries = 100;		/* # of write attempts */
230 int	vsw_chain_len = 150;		/* max # of mblks in msg chain */
231 int	vsw_desc_delay = 0;		/* delay in us */
232 int	vsw_read_attempts = 5;		/* # of reads of descriptor */
233 
234 uint32_t	vsw_mblk_size = VSW_MBLK_SIZE;
235 uint32_t	vsw_num_mblks = VSW_NUM_MBLKS;
236 
237 
238 /*
239  * mode specific frame switching function
240  */
241 void		(*vsw_switch_frame)(vsw_t *, mblk_t *, int, vsw_port_t *,
242 			mac_resource_handle_t);
243 
244 static	mac_callbacks_t	vsw_m_callbacks = {
245 	0,
246 	vsw_m_stat,
247 	vsw_m_start,
248 	vsw_m_stop,
249 	vsw_m_promisc,
250 	vsw_m_multicst,
251 	vsw_m_unicst,
252 	vsw_m_tx,
253 	NULL,
254 	NULL,
255 	NULL
256 };
257 
258 static	struct	cb_ops	vsw_cb_ops = {
259 	nulldev,			/* cb_open */
260 	nulldev,			/* cb_close */
261 	nodev,				/* cb_strategy */
262 	nodev,				/* cb_print */
263 	nodev,				/* cb_dump */
264 	nodev,				/* cb_read */
265 	nodev,				/* cb_write */
266 	nodev,				/* cb_ioctl */
267 	nodev,				/* cb_devmap */
268 	nodev,				/* cb_mmap */
269 	nodev,				/* cb_segmap */
270 	nochpoll,			/* cb_chpoll */
271 	ddi_prop_op,			/* cb_prop_op */
272 	NULL,				/* cb_stream */
273 	D_MP,				/* cb_flag */
274 	CB_REV,				/* rev */
275 	nodev,				/* int (*cb_aread)() */
276 	nodev				/* int (*cb_awrite)() */
277 };
278 
279 static	struct	dev_ops	vsw_ops = {
280 	DEVO_REV,		/* devo_rev */
281 	0,			/* devo_refcnt */
282 	vsw_getinfo,		/* devo_getinfo */
283 	nulldev,		/* devo_identify */
284 	nulldev,		/* devo_probe */
285 	vsw_attach,		/* devo_attach */
286 	vsw_detach,		/* devo_detach */
287 	nodev,			/* devo_reset */
288 	&vsw_cb_ops,		/* devo_cb_ops */
289 	(struct bus_ops *)NULL,	/* devo_bus_ops */
290 	ddi_power		/* devo_power */
291 };
292 
293 extern	struct	mod_ops	mod_driverops;
294 static struct modldrv vswmodldrv = {
295 	&mod_driverops,
296 	"sun4v Virtual Switch Driver %I%",
297 	&vsw_ops,
298 };
299 
300 #define	LDC_ENTER_LOCK(ldcp)	\
301 				mutex_enter(&((ldcp)->ldc_cblock));\
302 				mutex_enter(&((ldcp)->ldc_txlock));
303 #define	LDC_EXIT_LOCK(ldcp)	\
304 				mutex_exit(&((ldcp)->ldc_txlock));\
305 				mutex_exit(&((ldcp)->ldc_cblock));
306 
307 /* Driver soft state ptr  */
308 static void	*vsw_state;
309 
310 /*
311  * Linked list of "vsw_t" structures - one per instance.
312  */
313 vsw_t		*vsw_head = NULL;
314 krwlock_t	vsw_rw;
315 
316 /*
317  * Property names
318  */
319 static char vdev_propname[] = "virtual-device";
320 static char vsw_propname[] = "virtual-network-switch";
321 static char physdev_propname[] = "vsw-phys-dev";
322 static char smode_propname[] = "vsw-switch-mode";
323 static char macaddr_propname[] = "local-mac-address";
324 static char remaddr_propname[] = "remote-mac-address";
325 static char ldcids_propname[] = "ldc-ids";
326 static char chan_propname[] = "channel-endpoint";
327 static char id_propname[] = "id";
328 static char reg_propname[] = "reg";
329 
330 /* supported versions */
331 static	ver_sup_t	vsw_versions[] = { {1, 0} };
332 
333 /*
334  * Matching criteria passed to the MDEG to register interest
335  * in changes to 'virtual-device-port' nodes identified by their
336  * 'id' property.
337  */
338 static md_prop_match_t vport_prop_match[] = {
339 	{ MDET_PROP_VAL,    "id"   },
340 	{ MDET_LIST_END,    NULL    }
341 };
342 
343 static mdeg_node_match_t vport_match = { "virtual-device-port",
344 						vport_prop_match };
345 
346 /*
347  * Specification of an MD node passed to the MDEG to filter any
348  * 'vport' nodes that do not belong to the specified node. This
349  * template is copied for each vsw instance and filled in with
350  * the appropriate 'cfg-handle' value before being passed to the MDEG.
351  */
352 static mdeg_prop_spec_t vsw_prop_template[] = {
353 	{ MDET_PROP_STR,    "name",		vsw_propname },
354 	{ MDET_PROP_VAL,    "cfg-handle",	NULL	},
355 	{ MDET_LIST_END,    NULL,		NULL	}
356 };
357 
358 #define	VSW_SET_MDEG_PROP_INST(specp, val)	(specp)[1].ps_val = (val);
359 
360 /*
361  * From /etc/system enable/disable thread per ring. This is a mode
362  * selection that is done a vsw driver attach time.
363  */
364 boolean_t vsw_multi_ring_enable = B_FALSE;
365 int vsw_mac_rx_rings = VSW_MAC_RX_RINGS;
366 
367 /*
368  * Print debug messages - set to 0x1f to enable all msgs
369  * or 0x0 to turn all off.
370  */
371 int vswdbg = 0x0;
372 
373 /*
374  * debug levels:
375  * 0x01:	Function entry/exit tracing
376  * 0x02:	Internal function messages
377  * 0x04:	Verbose internal messages
378  * 0x08:	Warning messages
379  * 0x10:	Error messages
380  */
381 
382 static void
383 vswdebug(vsw_t *vswp, const char *fmt, ...)
384 {
385 	char buf[512];
386 	va_list ap;
387 
388 	va_start(ap, fmt);
389 	(void) vsprintf(buf, fmt, ap);
390 	va_end(ap);
391 
392 	if (vswp == NULL)
393 		cmn_err(CE_CONT, "%s\n", buf);
394 	else
395 		cmn_err(CE_CONT, "vsw%d: %s\n", vswp->instance, buf);
396 }
397 
398 /*
399  * For the moment the state dump routines have their own
400  * private flag.
401  */
402 #define	DUMP_STATE	0
403 
404 #if DUMP_STATE
405 
406 #define	DUMP_TAG(tag) \
407 {			\
408 	D1(NULL, "DUMP_TAG: type 0x%llx", (tag).vio_msgtype); \
409 	D1(NULL, "DUMP_TAG: stype 0x%llx", (tag).vio_subtype);	\
410 	D1(NULL, "DUMP_TAG: senv 0x%llx", (tag).vio_subtype_env);	\
411 }
412 
413 #define	DUMP_TAG_PTR(tag) \
414 {			\
415 	D1(NULL, "DUMP_TAG: type 0x%llx", (tag)->vio_msgtype); \
416 	D1(NULL, "DUMP_TAG: stype 0x%llx", (tag)->vio_subtype);	\
417 	D1(NULL, "DUMP_TAG: senv 0x%llx", (tag)->vio_subtype_env);	\
418 }
419 
420 #define	DUMP_FLAGS(flags) dump_flags(flags);
421 #define	DISPLAY_STATE()	display_state()
422 
423 #else
424 
425 #define	DUMP_TAG(tag)
426 #define	DUMP_TAG_PTR(tag)
427 #define	DUMP_FLAGS(state)
428 #define	DISPLAY_STATE()
429 
430 #endif	/* DUMP_STATE */
431 
432 #ifdef DEBUG
433 
434 #define	D1		\
435 if (vswdbg & 0x01)	\
436 	vswdebug
437 
438 #define	D2		\
439 if (vswdbg & 0x02)	\
440 	vswdebug
441 
442 #define	D3		\
443 if (vswdbg & 0x04)	\
444 	vswdebug
445 
446 #define	DWARN		\
447 if (vswdbg & 0x08)	\
448 	vswdebug
449 
450 #define	DERR		\
451 if (vswdbg & 0x10)	\
452 	vswdebug
453 
454 #else
455 
456 #define	DERR		if (0)	vswdebug
457 #define	DWARN		if (0)	vswdebug
458 #define	D1		if (0)	vswdebug
459 #define	D2		if (0)	vswdebug
460 #define	D3		if (0)	vswdebug
461 
462 #endif	/* DEBUG */
463 
464 static struct modlinkage modlinkage = {
465 	MODREV_1,
466 	&vswmodldrv,
467 	NULL
468 };
469 
470 int
471 _init(void)
472 {
473 	int status;
474 
475 	rw_init(&vsw_rw, NULL, RW_DRIVER, NULL);
476 
477 	status = ddi_soft_state_init(&vsw_state, sizeof (vsw_t), 1);
478 	if (status != 0) {
479 		return (status);
480 	}
481 
482 	mac_init_ops(&vsw_ops, "vsw");
483 	status = mod_install(&modlinkage);
484 	if (status != 0) {
485 		ddi_soft_state_fini(&vsw_state);
486 	}
487 	return (status);
488 }
489 
490 int
491 _fini(void)
492 {
493 	int status;
494 
495 	status = mod_remove(&modlinkage);
496 	if (status != 0)
497 		return (status);
498 	mac_fini_ops(&vsw_ops);
499 	ddi_soft_state_fini(&vsw_state);
500 
501 	rw_destroy(&vsw_rw);
502 
503 	return (status);
504 }
505 
506 int
507 _info(struct modinfo *modinfop)
508 {
509 	return (mod_info(&modlinkage, modinfop));
510 }
511 
512 static int
513 vsw_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
514 {
515 	vsw_t		*vswp;
516 	int		instance, i;
517 	char		hashname[MAXNAMELEN];
518 	char		qname[TASKQ_NAMELEN];
519 	int		rv = 1;
520 	enum		{ PROG_init = 0x00,
521 				PROG_if_lock = 0x01,
522 				PROG_fdb = 0x02,
523 				PROG_mfdb = 0x04,
524 				PROG_report_dev = 0x08,
525 				PROG_plist = 0x10,
526 				PROG_taskq = 0x20}
527 			progress;
528 
529 	progress = PROG_init;
530 
531 	switch (cmd) {
532 	case DDI_ATTACH:
533 		break;
534 	case DDI_RESUME:
535 		/* nothing to do for this non-device */
536 		return (DDI_SUCCESS);
537 	case DDI_PM_RESUME:
538 	default:
539 		return (DDI_FAILURE);
540 	}
541 
542 	instance = ddi_get_instance(dip);
543 	if (ddi_soft_state_zalloc(vsw_state, instance) != DDI_SUCCESS) {
544 		DERR(NULL, "vsw%d: ddi_soft_state_zalloc failed", instance);
545 		return (DDI_FAILURE);
546 	}
547 	vswp = ddi_get_soft_state(vsw_state, instance);
548 
549 	if (vswp == NULL) {
550 		DERR(NULL, "vsw%d: ddi_get_soft_state failed", instance);
551 		goto vsw_attach_fail;
552 	}
553 
554 	vswp->dip = dip;
555 	vswp->instance = instance;
556 	ddi_set_driver_private(dip, (caddr_t)vswp);
557 
558 	rw_init(&vswp->if_lockrw, NULL, RW_DRIVER, NULL);
559 	progress |= PROG_if_lock;
560 
561 	/*
562 	 * Get the various properties such as physical device name
563 	 * (vsw-phys-dev), switch mode etc from the MD.
564 	 */
565 	vsw_get_md_properties(vswp);
566 
567 	/* setup the unicast forwarding database  */
568 	(void) snprintf(hashname, MAXNAMELEN, "vsw_unicst_table-%d",
569 							vswp->instance);
570 	D2(vswp, "creating unicast hash table (%s)...", hashname);
571 	vswp->fdb = mod_hash_create_ptrhash(hashname, VSW_NCHAINS,
572 		mod_hash_null_valdtor, sizeof (void *));
573 
574 	progress |= PROG_fdb;
575 
576 	/* setup the multicast fowarding database */
577 	(void) snprintf(hashname, MAXNAMELEN, "vsw_mcst_table-%d",
578 							vswp->instance);
579 	D2(vswp, "creating multicast hash table %s)...", hashname);
580 	rw_init(&vswp->mfdbrw, NULL, RW_DRIVER, NULL);
581 	vswp->mfdb = mod_hash_create_ptrhash(hashname, VSW_NCHAINS,
582 			mod_hash_null_valdtor, sizeof (void *));
583 
584 	progress |= PROG_mfdb;
585 
586 	/*
587 	 * create lock protecting list of multicast addresses
588 	 * which could come via m_multicst() entry point when plumbed.
589 	 */
590 	mutex_init(&vswp->mca_lock, NULL, MUTEX_DRIVER, NULL);
591 	vswp->mcap = NULL;
592 
593 	ddi_report_dev(vswp->dip);
594 
595 	progress |= PROG_report_dev;
596 
597 	WRITE_ENTER(&vsw_rw);
598 	vswp->next = vsw_head;
599 	vsw_head = vswp;
600 	RW_EXIT(&vsw_rw);
601 
602 	/* setup the port list */
603 	rw_init(&vswp->plist.lockrw, NULL, RW_DRIVER, NULL);
604 	vswp->plist.head = NULL;
605 
606 	progress |= PROG_plist;
607 
608 	/*
609 	 * Create the taskq which will process all the VIO
610 	 * control messages.
611 	 */
612 	(void) snprintf(qname, TASKQ_NAMELEN, "vsw_taskq%d", vswp->instance);
613 	if ((vswp->taskq_p = ddi_taskq_create(vswp->dip, qname, 1,
614 					TASKQ_DEFAULTPRI, 0)) == NULL) {
615 		cmn_err(CE_WARN, "Unable to create task queue");
616 		goto vsw_attach_fail;
617 	}
618 
619 	progress |= PROG_taskq;
620 
621 	/* select best switching mode */
622 	for (i = 0; i < vswp->smode_num; i++) {
623 		vswp->smode_idx = i;
624 		switch (vswp->smode[i]) {
625 		case VSW_LAYER2:
626 		case VSW_LAYER2_PROMISC:
627 			rv = vsw_setup_layer2(vswp);
628 			break;
629 
630 		case VSW_LAYER3:
631 			rv = vsw_setup_layer3(vswp);
632 			break;
633 
634 		default:
635 			DERR(vswp, "unknown switch mode");
636 			rv = 1;
637 			break;
638 		}
639 
640 		if (rv == 0)
641 			break;
642 	}
643 
644 	if (rv == 1) {
645 		cmn_err(CE_WARN, "Unable to setup switching mode");
646 		goto vsw_attach_fail;
647 	}
648 
649 	D2(vswp, "Operating in mode %d", vswp->smode[vswp->smode_idx]);
650 
651 	/*
652 	 * Register with the MAC layer as a network device so
653 	 * we can be plumbed if desired.
654 	 *
655 	 * Do this in both layer 2 and layer 3 mode.
656 	 */
657 	vswp->if_state &= ~VSW_IF_UP;
658 	if (vswp->mdprops & (VSW_MD_MACADDR | VSW_DEV_MACADDR)) {
659 		if (vsw_mac_register(vswp) != 0) {
660 			cmn_err(CE_WARN, "Unable to register as provider "
661 				" with MAC layer, continuing with attach");
662 		}
663 	}
664 
665 	/* prevent auto-detaching */
666 	if (ddi_prop_update_int(DDI_DEV_T_NONE, vswp->dip,
667 				DDI_NO_AUTODETACH, 1) != DDI_SUCCESS) {
668 		cmn_err(CE_NOTE, "Unable to set \"%s\" property for "
669 			"instance %u", DDI_NO_AUTODETACH, instance);
670 	}
671 
672 	/*
673 	 * Now we have everything setup, register for MD change
674 	 * events.
675 	 */
676 	vsw_mdeg_register(vswp);
677 
678 	return (DDI_SUCCESS);
679 
680 vsw_attach_fail:
681 	DERR(NULL, "vsw_attach: failed");
682 
683 	if (progress & PROG_taskq)
684 		ddi_taskq_destroy(vswp->taskq_p);
685 
686 	if (progress & PROG_plist)
687 		rw_destroy(&vswp->plist.lockrw);
688 
689 	if (progress & PROG_report_dev) {
690 		ddi_remove_minor_node(dip, NULL);
691 		mutex_destroy(&vswp->mca_lock);
692 	}
693 
694 	if (progress & PROG_mfdb) {
695 		mod_hash_destroy_hash(vswp->mfdb);
696 		vswp->mfdb = NULL;
697 		rw_destroy(&vswp->mfdbrw);
698 	}
699 
700 	if (progress & PROG_fdb) {
701 		mod_hash_destroy_hash(vswp->fdb);
702 		vswp->fdb = NULL;
703 	}
704 
705 	if (progress & PROG_if_lock)
706 		rw_destroy(&vswp->if_lockrw);
707 
708 	ddi_soft_state_free(vsw_state, instance);
709 	return (DDI_FAILURE);
710 }
711 
712 static int
713 vsw_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
714 {
715 	vio_mblk_pool_t		*poolp, *npoolp;
716 	vsw_t			**vswpp, *vswp;
717 	int 			instance;
718 
719 	instance = ddi_get_instance(dip);
720 	vswp = ddi_get_soft_state(vsw_state, instance);
721 
722 	if (vswp == NULL) {
723 		return (DDI_FAILURE);
724 	}
725 
726 	switch (cmd) {
727 	case DDI_DETACH:
728 		break;
729 	case DDI_SUSPEND:
730 	case DDI_PM_SUSPEND:
731 	default:
732 		return (DDI_FAILURE);
733 	}
734 
735 	D2(vswp, "detaching instance %d", instance);
736 
737 	if (vswp->mdprops & (VSW_MD_MACADDR | VSW_DEV_MACADDR)) {
738 		if (vsw_mac_unregister(vswp) != 0) {
739 			cmn_err(CE_WARN, "Unable to detach from MAC layer");
740 			return (DDI_FAILURE);
741 		}
742 		rw_destroy(&vswp->if_lockrw);
743 	}
744 
745 	vsw_mdeg_unregister(vswp);
746 
747 	/* remove mac layer callback */
748 	if ((vswp->mh != NULL) && (vswp->mrh != NULL)) {
749 		mac_rx_remove(vswp->mh, vswp->mrh);
750 		vswp->mrh = NULL;
751 	}
752 
753 	if (vsw_detach_ports(vswp) != 0) {
754 		cmn_err(CE_WARN, "Unable to detach ports");
755 		return (DDI_FAILURE);
756 	}
757 
758 	/*
759 	 * Now that the ports have been deleted, stop and close
760 	 * the physical device.
761 	 */
762 	if (vswp->mh != NULL) {
763 		if (vswp->mstarted)
764 			mac_stop(vswp->mh);
765 		if (vswp->mresources)
766 			mac_resource_set(vswp->mh, NULL, NULL);
767 		mac_close(vswp->mh);
768 
769 		vswp->mh = NULL;
770 		vswp->txinfo = NULL;
771 	}
772 
773 	/*
774 	 * Destroy any free pools that may still exist.
775 	 */
776 	poolp = vswp->rxh;
777 	while (poolp != NULL) {
778 		npoolp = vswp->rxh = poolp->nextp;
779 		if (vio_destroy_mblks(poolp) != 0) {
780 			vswp->rxh = poolp;
781 			return (DDI_FAILURE);
782 		}
783 		poolp = npoolp;
784 	}
785 
786 	/*
787 	 * Remove this instance from any entries it may be on in
788 	 * the hash table by using the list of addresses maintained
789 	 * in the vsw_t structure.
790 	 */
791 	vsw_del_mcst_vsw(vswp);
792 
793 	vswp->mcap = NULL;
794 	mutex_destroy(&vswp->mca_lock);
795 
796 	/*
797 	 * By now any pending tasks have finished and the underlying
798 	 * ldc's have been destroyed, so its safe to delete the control
799 	 * message taskq.
800 	 */
801 	if (vswp->taskq_p != NULL)
802 		ddi_taskq_destroy(vswp->taskq_p);
803 
804 	/*
805 	 * At this stage all the data pointers in the hash table
806 	 * should be NULL, as all the ports have been removed and will
807 	 * have deleted themselves from the port lists which the data
808 	 * pointers point to. Hence we can destroy the table using the
809 	 * default destructors.
810 	 */
811 	D2(vswp, "vsw_detach: destroying hash tables..");
812 	mod_hash_destroy_hash(vswp->fdb);
813 	vswp->fdb = NULL;
814 
815 	WRITE_ENTER(&vswp->mfdbrw);
816 	mod_hash_destroy_hash(vswp->mfdb);
817 	vswp->mfdb = NULL;
818 	RW_EXIT(&vswp->mfdbrw);
819 	rw_destroy(&vswp->mfdbrw);
820 
821 	ddi_remove_minor_node(dip, NULL);
822 
823 	rw_destroy(&vswp->plist.lockrw);
824 	WRITE_ENTER(&vsw_rw);
825 	for (vswpp = &vsw_head; *vswpp; vswpp = &(*vswpp)->next) {
826 		if (*vswpp == vswp) {
827 			*vswpp = vswp->next;
828 			break;
829 		}
830 	}
831 	RW_EXIT(&vsw_rw);
832 	ddi_soft_state_free(vsw_state, instance);
833 
834 	return (DDI_SUCCESS);
835 }
836 
837 static int
838 vsw_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
839 {
840 	_NOTE(ARGUNUSED(dip))
841 
842 	vsw_t	*vswp = NULL;
843 	dev_t	dev = (dev_t)arg;
844 	int	instance;
845 
846 	instance = getminor(dev);
847 
848 	switch (infocmd) {
849 	case DDI_INFO_DEVT2DEVINFO:
850 		if ((vswp = ddi_get_soft_state(vsw_state, instance)) == NULL) {
851 			*result = NULL;
852 			return (DDI_FAILURE);
853 		}
854 		*result = vswp->dip;
855 		return (DDI_SUCCESS);
856 
857 	case DDI_INFO_DEVT2INSTANCE:
858 		*result = (void *)(uintptr_t)instance;
859 		return (DDI_SUCCESS);
860 
861 	default:
862 		*result = NULL;
863 		return (DDI_FAILURE);
864 	}
865 }
866 
867 /*
868  * Get the properties from our MD node.
869  */
870 static void
871 vsw_get_md_properties(vsw_t *vswp)
872 {
873 	md_t		*mdp = NULL;
874 	int		num_nodes = 0;
875 	int		len = 0, listsz = 0;
876 	int		num_vdev = 0;
877 	int		i, idx;
878 	boolean_t	found_node = B_FALSE;
879 	char		*smode = NULL;
880 	char		*curr_mode = NULL;
881 	char		*physname = NULL;
882 	char		*node_name = NULL;
883 	char		*dev;
884 	uint64_t 	macaddr = 0;
885 	uint64_t	md_inst, obp_inst;
886 	mde_cookie_t	*listp = NULL;
887 	mde_cookie_t	rootnode;
888 
889 	D1(vswp, "%s: enter", __func__);
890 
891 	/*
892 	 * Further down we compare the obp 'reg' property to the
893 	 * 'cfg-handle' property in the vsw MD node to determine
894 	 * if the node refers to this particular instance. So if
895 	 * we can't read the obp value then there is no point
896 	 * in proceeding further.
897 	 */
898 	if (ddi_prop_exists(DDI_DEV_T_ANY, vswp->dip,
899 			DDI_PROP_DONTPASS, reg_propname) != 1) {
900 		cmn_err(CE_WARN, "Unable to read %s property "
901 			"from OBP device node", reg_propname);
902 		return;
903 	}
904 
905 	obp_inst = ddi_prop_get_int(DDI_DEV_T_ANY, vswp->dip,
906 		DDI_PROP_DONTPASS, reg_propname, 0);
907 
908 	D2(vswp, "%s: obp_inst 0x%llx", __func__, obp_inst);
909 
910 	if ((mdp = md_get_handle()) == NULL) {
911 		DERR(vswp, "%s: unable to init MD", __func__);
912 		return;
913 	}
914 
915 	if ((num_nodes = md_node_count(mdp)) <= 0) {
916 		DERR(vswp, "%s: invalid number of  nodes found %d",
917 			__func__, num_nodes);
918 		(void) md_fini_handle(mdp);
919 		return;
920 	}
921 
922 	D2(vswp, "%s: %d nodes in total in MD", __func__, num_nodes);
923 
924 	/* allocate enough space for node list */
925 	listsz = num_nodes * sizeof (mde_cookie_t);
926 	listp = kmem_zalloc(listsz, KM_SLEEP);
927 
928 	rootnode = md_root_node(mdp);
929 
930 	/* Get the list of virtual devices */
931 	num_vdev = md_scan_dag(mdp, rootnode,
932 		md_find_name(mdp, vdev_propname),
933 		md_find_name(mdp, "fwd"), listp);
934 
935 	if (num_vdev <= 0) {
936 		DERR(vswp, "%s: didn't find any virtual-device nodes in MD",
937 			__func__);
938 		goto md_prop_exit;
939 	}
940 
941 	D2(vswp, "%s: %d virtual-device nodes found", __func__, num_vdev);
942 
943 	/* Look for the virtual switch nodes in the list */
944 	for (idx = 0; idx < num_vdev; idx++) {
945 		if (md_get_prop_str(mdp, listp[idx],
946 				"name", &node_name) != 0) {
947 			DERR(vswp, "%s: unable to get node name", __func__);
948 			continue;
949 
950 		}
951 
952 		if (strcmp(node_name, vsw_propname) == 0) {
953 			/* Virtual switch node */
954 			if (md_get_prop_val(mdp, listp[idx],
955 				"cfg-handle", &md_inst) != 0) {
956 				DERR(vswp, "%s: unable to get cfg-handle from"
957 					" node %d", __func__, idx);
958 				goto md_prop_exit;
959 			} else if (md_inst == obp_inst) {
960 				D2(vswp, "%s: found matching node (%d)"
961 					" 0x%llx == 0x%llx", __func__, idx,
962 					md_inst, obp_inst);
963 				found_node = B_TRUE;
964 				break;
965 			}
966 		}
967 	}
968 
969 	if (!found_node) {
970 		DWARN(vswp, "%s: couldn't find correct vsw node", __func__);
971 		goto md_prop_exit;
972 	}
973 
974 	/*
975 	 * Now, having found the correct node, get the various properties.
976 	 */
977 
978 	if (md_get_prop_data(mdp, listp[idx], physdev_propname,
979 				(uint8_t **)(&physname), &len) != 0) {
980 		cmn_err(CE_WARN, "%s: unable to get name(s) of physical "
981 			"device(s) from MD", __func__);
982 	} else if ((strlen(physname) + 1) > LIFNAMSIZ) {
983 		cmn_err(CE_WARN, "%s is too long a device name", physname);
984 	} else {
985 		(void) strncpy(vswp->physname, physname, strlen(physname) + 1);
986 		vswp->mdprops |= VSW_MD_PHYSNAME;
987 		D2(vswp, "%s: using first device specified (%s)",
988 			__func__, vswp->physname);
989 	}
990 
991 #ifdef DEBUG
992 	/*
993 	 * As a temporary measure to aid testing we check to see if there
994 	 * is a vsw.conf file present. If there is we use the value of the
995 	 * vsw_physname property in the file as the name of the physical
996 	 * device, overriding the value from the MD.
997 	 *
998 	 * There may be multiple devices listed, but for the moment
999 	 * we just use the first one.
1000 	 */
1001 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, vswp->dip, 0,
1002 		"vsw_physname", &dev) == DDI_PROP_SUCCESS) {
1003 		if ((strlen(dev) + 1) > LIFNAMSIZ) {
1004 			cmn_err(CE_WARN, "%s is too long a device name", dev);
1005 		} else {
1006 			cmn_err(CE_NOTE, "%s: using device name (%s) from "
1007 				"config file", __func__, dev);
1008 
1009 			(void) strncpy(vswp->physname, dev, strlen(dev) + 1);
1010 			vswp->mdprops |= VSW_MD_PHYSNAME;
1011 		}
1012 
1013 		ddi_prop_free(dev);
1014 
1015 	}
1016 #endif
1017 
1018 	/* mac address for vswitch device itself */
1019 	if (md_get_prop_val(mdp, listp[idx],
1020 			macaddr_propname, &macaddr) != 0) {
1021 		cmn_err(CE_WARN, "!Unable to get MAC address from MD");
1022 
1023 		/*
1024 		 * Fallback to using the mac address of the physical
1025 		 * device.
1026 		 */
1027 		if (vsw_get_physaddr(vswp) == 0) {
1028 			cmn_err(CE_NOTE, "!Using MAC address from physical "
1029 				"device (%s)", vswp->physname);
1030 		}
1031 	} else {
1032 		READ_ENTER(&vswp->if_lockrw);
1033 		for (i = ETHERADDRL - 1; i >= 0; i--) {
1034 			vswp->if_addr.ether_addr_octet[i] = macaddr & 0xFF;
1035 			macaddr >>= 8;
1036 		}
1037 		RW_EXIT(&vswp->if_lockrw);
1038 		vswp->mdprops |= VSW_MD_MACADDR;
1039 	}
1040 
1041 	/*
1042 	 * Get the switch-mode property. The modes are listed in
1043 	 * decreasing order of preference, i.e. prefered mode is
1044 	 * first item in list.
1045 	 */
1046 	len = 0;
1047 	vswp->smode_num = 0;
1048 	if (md_get_prop_data(mdp, listp[idx], smode_propname,
1049 				(uint8_t **)(&smode), &len) != 0) {
1050 		/*
1051 		 * Unable to get switch-mode property from MD, nothing
1052 		 * more we can do.
1053 		 */
1054 		cmn_err(CE_WARN, "!unable to get switch mode property");
1055 		goto md_prop_exit;
1056 	}
1057 
1058 	curr_mode = smode;
1059 	/*
1060 	 * Modes of operation:
1061 	 * 'switched'	 - layer 2 switching, underlying HW in
1062 	 *			programmed mode.
1063 	 * 'promiscuous' - layer 2 switching, underlying HW in
1064 	 *			promiscuous mode.
1065 	 * 'routed'	 - layer 3 (i.e. IP) routing, underlying HW
1066 	 *			in non-promiscuous mode.
1067 	 */
1068 	while ((curr_mode < (smode + len)) && (vswp->smode_num < NUM_SMODES)) {
1069 		D2(vswp, "%s: curr_mode = [%s]", __func__, curr_mode);
1070 		if (strcmp(curr_mode, "switched") == 0) {
1071 			vswp->smode[vswp->smode_num++] = VSW_LAYER2;
1072 		} else if (strcmp(curr_mode, "promiscuous") == 0) {
1073 			vswp->smode[vswp->smode_num++] = VSW_LAYER2_PROMISC;
1074 		} else if (strcmp(curr_mode, "routed") == 0) {
1075 			vswp->smode[vswp->smode_num++] = VSW_LAYER3;
1076 		} else {
1077 			cmn_err(CE_WARN, "Unknown switch mode %s, setting to"
1078 				" default switched mode", curr_mode);
1079 			vswp->smode[vswp->smode_num++] = VSW_LAYER2;
1080 		}
1081 		curr_mode += strlen(curr_mode) + 1;
1082 	}
1083 
1084 	D2(vswp, "%d switching modes specified", vswp->smode_num);
1085 
1086 	if (vswp->smode_num > 0)
1087 		vswp->mdprops |= VSW_MD_SMODE;
1088 
1089 md_prop_exit:
1090 	(void) md_fini_handle(mdp);
1091 
1092 	kmem_free(listp, listsz);
1093 
1094 	D1(vswp, "%s: exit", __func__);
1095 }
1096 
1097 /*
1098  * Get the mac address of the physical device.
1099  *
1100  * Returns 0 on success, 1 on failure.
1101  */
1102 static int
1103 vsw_get_physaddr(vsw_t *vswp)
1104 {
1105 	mac_handle_t	mh;
1106 	char		drv[LIFNAMSIZ];
1107 	uint_t		ddi_instance;
1108 
1109 	D1(vswp, "%s: enter", __func__);
1110 
1111 	if (ddi_parse(vswp->physname, drv, &ddi_instance) != DDI_SUCCESS)
1112 		return (1);
1113 
1114 	if (mac_open(vswp->physname, ddi_instance, &mh) != 0) {
1115 		cmn_err(CE_WARN, "!mac_open %s failed", vswp->physname);
1116 		return (1);
1117 	}
1118 
1119 	READ_ENTER(&vswp->if_lockrw);
1120 	mac_unicst_get(mh, vswp->if_addr.ether_addr_octet);
1121 	RW_EXIT(&vswp->if_lockrw);
1122 
1123 	mac_close(mh);
1124 
1125 	vswp->mdprops |= VSW_DEV_MACADDR;
1126 
1127 	D1(vswp, "%s: exit", __func__);
1128 
1129 	return (0);
1130 }
1131 
1132 /*
1133  * Check to see if the card supports the setting of multiple unicst
1134  * addresses.
1135  *
1136  * Returns 0 if card supports the programming of multiple unicast addresses
1137  * and there are free address slots available, otherwise returns 1.
1138  */
1139 static int
1140 vsw_get_hw_maddr(vsw_t *vswp)
1141 {
1142 	D1(vswp, "%s: enter", __func__);
1143 
1144 	if (vswp->mh == NULL) {
1145 		return (1);
1146 	}
1147 
1148 	if (!mac_capab_get(vswp->mh, MAC_CAPAB_MULTIADDRESS, &vswp->maddr)) {
1149 		DWARN(vswp, "Unable to get capabilities of"
1150 			" underlying device (%s)", vswp->physname);
1151 		return (1);
1152 	}
1153 
1154 	if (vswp->maddr.maddr_naddrfree == 0) {
1155 		cmn_err(CE_WARN,
1156 			"!device %s has no free unicast address slots",
1157 			vswp->physname);
1158 		return (1);
1159 	}
1160 
1161 	D2(vswp, "%s: %d addrs : %d free", __func__,
1162 		vswp->maddr.maddr_naddr, vswp->maddr.maddr_naddrfree);
1163 
1164 	D1(vswp, "%s: exit", __func__);
1165 
1166 	return (0);
1167 }
1168 
1169 /*
1170  * Setup for layer 2 switching.
1171  *
1172  * Returns 0 on success, 1 on failure.
1173  */
1174 static int
1175 vsw_setup_layer2(vsw_t *vswp)
1176 {
1177 	D1(vswp, "%s: enter", __func__);
1178 
1179 	vsw_switch_frame = vsw_switch_l2_frame;
1180 
1181 	/*
1182 	 * Attempt to link into the MAC layer so we can get
1183 	 * and send packets out over the physical adapter.
1184 	 */
1185 	if (vswp->mdprops & VSW_MD_PHYSNAME) {
1186 		if (vsw_mac_attach(vswp) != 0) {
1187 			/*
1188 			 * Registration with the MAC layer has failed,
1189 			 * so return 1 so that can fall back to next
1190 			 * prefered switching method.
1191 			 */
1192 			cmn_err(CE_WARN, "!Unable to join as MAC layer "
1193 				"client");
1194 			return (1);
1195 		}
1196 
1197 		if (vswp->smode[vswp->smode_idx] == VSW_LAYER2) {
1198 			/*
1199 			 * Verify that underlying device can support multiple
1200 			 * unicast mac addresses, and has free capacity.
1201 			 */
1202 			if (vsw_get_hw_maddr(vswp) != 0) {
1203 				cmn_err(CE_WARN, "!unable to setup switching");
1204 				vsw_mac_detach(vswp);
1205 				return (1);
1206 			}
1207 		}
1208 
1209 	} else {
1210 		/*
1211 		 * No physical device name found in MD which is
1212 		 * required for layer 2.
1213 		 */
1214 		cmn_err(CE_WARN, "!no physical device name specified");
1215 		return (1);
1216 	}
1217 
1218 	D1(vswp, "%s: exit", __func__);
1219 
1220 	return (0);
1221 }
1222 
1223 static int
1224 vsw_setup_layer3(vsw_t *vswp)
1225 {
1226 	D1(vswp, "%s: enter", __func__);
1227 
1228 	D2(vswp, "%s: operating in layer 3 mode", __func__);
1229 	vsw_switch_frame = vsw_switch_l3_frame;
1230 
1231 	D1(vswp, "%s: exit", __func__);
1232 
1233 	return (0);
1234 }
1235 
1236 /*
1237  * Link into the MAC layer to gain access to the services provided by
1238  * the underlying physical device driver (which should also have
1239  * registered with the MAC layer).
1240  *
1241  * Only when in layer 2 mode.
1242  */
1243 static int
1244 vsw_mac_attach(vsw_t *vswp)
1245 {
1246 	char	drv[LIFNAMSIZ];
1247 	uint_t	ddi_instance;
1248 
1249 	D1(vswp, "%s: enter", __func__);
1250 
1251 	vswp->mh = NULL;
1252 	vswp->mrh = NULL;
1253 	vswp->mstarted = B_FALSE;
1254 	vswp->mresources = B_FALSE;
1255 
1256 	ASSERT(vswp->mdprops & VSW_MD_PHYSNAME);
1257 
1258 	if (ddi_parse(vswp->physname, drv, &ddi_instance) != DDI_SUCCESS) {
1259 		cmn_err(CE_WARN, "invalid device name: %s", vswp->physname);
1260 		goto mac_fail_exit;
1261 	}
1262 	if ((mac_open(vswp->physname, ddi_instance, &vswp->mh)) != 0) {
1263 		cmn_err(CE_WARN, "mac_open %s failed", vswp->physname);
1264 		goto mac_fail_exit;
1265 	}
1266 
1267 	ASSERT(vswp->mh != NULL);
1268 
1269 	D2(vswp, "vsw_mac_attach: using device %s", vswp->physname);
1270 
1271 	if (vsw_multi_ring_enable) {
1272 		vsw_mac_ring_tbl_init(vswp);
1273 
1274 		/*
1275 		 * Register our receive callback.
1276 		 */
1277 		vswp->mrh = mac_rx_add(vswp->mh,
1278 			vsw_rx_queue_cb, (void *)vswp);
1279 
1280 		/*
1281 		 * Register our mac resource callback.
1282 		 */
1283 		mac_resource_set(vswp->mh, vsw_mac_ring_add_cb, (void *)vswp);
1284 		vswp->mresources = B_TRUE;
1285 
1286 		/*
1287 		 * Get the ring resources available to us from
1288 		 * the mac below us.
1289 		 */
1290 		mac_resources(vswp->mh);
1291 	} else {
1292 		/*
1293 		 * Just register our rx callback function
1294 		 */
1295 		vswp->mrh = mac_rx_add(vswp->mh, vsw_rx_cb, (void *)vswp);
1296 	}
1297 
1298 	ASSERT(vswp->mrh != NULL);
1299 
1300 	/* Get the MAC tx fn */
1301 	vswp->txinfo = mac_tx_get(vswp->mh);
1302 
1303 	/* start the interface */
1304 	if (mac_start(vswp->mh) != 0) {
1305 		cmn_err(CE_WARN, "could not start mac interface");
1306 		goto mac_fail_exit;
1307 	}
1308 
1309 	vswp->mstarted = B_TRUE;
1310 
1311 	D1(vswp, "%s: exit", __func__);
1312 	return (0);
1313 
1314 mac_fail_exit:
1315 	vsw_mac_detach(vswp);
1316 
1317 	D1(vswp, "%s: exit", __func__);
1318 	return (1);
1319 }
1320 
1321 static void
1322 vsw_mac_detach(vsw_t *vswp)
1323 {
1324 	D1(vswp, "vsw_mac_detach: enter");
1325 
1326 	ASSERT(vswp != NULL);
1327 	ASSERT(vswp->mh != NULL);
1328 
1329 	if (vsw_multi_ring_enable) {
1330 		vsw_mac_ring_tbl_destroy(vswp);
1331 	}
1332 
1333 	if (vswp->mstarted)
1334 		mac_stop(vswp->mh);
1335 	if (vswp->mrh != NULL)
1336 		mac_rx_remove(vswp->mh, vswp->mrh);
1337 	if (vswp->mresources)
1338 		mac_resource_set(vswp->mh, NULL, NULL);
1339 	mac_close(vswp->mh);
1340 
1341 	vswp->mrh = NULL;
1342 	vswp->mh = NULL;
1343 	vswp->txinfo = NULL;
1344 	vswp->mstarted = B_FALSE;
1345 
1346 	D1(vswp, "vsw_mac_detach: exit");
1347 }
1348 
1349 /*
1350  * Depending on the mode specified, the capabilites and capacity
1351  * of the underlying device setup the physical device.
1352  *
1353  * If in layer 3 mode, then do nothing.
1354  *
1355  * If in layer 2 programmed mode attempt to program the unicast address
1356  * associated with the port into the physical device. If this is not
1357  * possible due to resource exhaustion or simply because the device does
1358  * not support multiple unicast addresses then if required fallback onto
1359  * putting the card into promisc mode.
1360  *
1361  * If in promisc mode then simply set the card into promisc mode.
1362  *
1363  * Returns 0 success, 1 on failure.
1364  */
1365 static int
1366 vsw_set_hw(vsw_t *vswp, vsw_port_t *port)
1367 {
1368 	mac_multi_addr_t	mac_addr;
1369 	void			*mah;
1370 	int			err;
1371 
1372 	D1(vswp, "%s: enter", __func__);
1373 
1374 	if (vswp->smode[vswp->smode_idx] == VSW_LAYER3)
1375 		return (0);
1376 
1377 	if (vswp->smode[vswp->smode_idx] == VSW_LAYER2_PROMISC) {
1378 		return (vsw_set_hw_promisc(vswp, port));
1379 	}
1380 
1381 	if (vswp->maddr.maddr_handle == NULL)
1382 		return (1);
1383 
1384 	mah = vswp->maddr.maddr_handle;
1385 
1386 	/*
1387 	 * Attempt to program the unicast address into the HW.
1388 	 */
1389 	mac_addr.mma_addrlen = ETHERADDRL;
1390 	ether_copy(&port->p_macaddr, &mac_addr.mma_addr);
1391 
1392 	err = vswp->maddr.maddr_add(mah, &mac_addr);
1393 	if (err != 0) {
1394 		cmn_err(CE_WARN, "!failed to program addr "
1395 			"%x:%x:%x:%x:%x:%x for port %d into device %s "
1396 			": err %d", port->p_macaddr.ether_addr_octet[0],
1397 			port->p_macaddr.ether_addr_octet[1],
1398 			port->p_macaddr.ether_addr_octet[2],
1399 			port->p_macaddr.ether_addr_octet[3],
1400 			port->p_macaddr.ether_addr_octet[4],
1401 			port->p_macaddr.ether_addr_octet[5],
1402 			port->p_instance, vswp->physname, err);
1403 
1404 		/*
1405 		 * Mark that attempt should be made to re-config sometime
1406 		 * in future if a port is deleted.
1407 		 */
1408 		vswp->recfg_reqd = B_TRUE;
1409 
1410 		/*
1411 		 * Only 1 mode specified, nothing more to do.
1412 		 */
1413 		if (vswp->smode_num == 1)
1414 			return (err);
1415 
1416 		/*
1417 		 * If promiscuous was next mode specified try to
1418 		 * set the card into that mode.
1419 		 */
1420 		if ((vswp->smode_idx <= (vswp->smode_num - 2)) &&
1421 			(vswp->smode[vswp->smode_idx + 1]
1422 					== VSW_LAYER2_PROMISC)) {
1423 			vswp->smode_idx += 1;
1424 			return (vsw_set_hw_promisc(vswp, port));
1425 		}
1426 		return (err);
1427 	}
1428 
1429 	port->addr_slot = mac_addr.mma_slot;
1430 	port->addr_set = VSW_ADDR_HW;
1431 
1432 	D2(vswp, "programmed addr %x:%x:%x:%x:%x:%x for port %d "
1433 		"into slot %d of device %s",
1434 		port->p_macaddr.ether_addr_octet[0],
1435 		port->p_macaddr.ether_addr_octet[1],
1436 		port->p_macaddr.ether_addr_octet[2],
1437 		port->p_macaddr.ether_addr_octet[3],
1438 		port->p_macaddr.ether_addr_octet[4],
1439 		port->p_macaddr.ether_addr_octet[5],
1440 		port->p_instance, port->addr_slot, vswp->physname);
1441 
1442 	D1(vswp, "%s: exit", __func__);
1443 
1444 	return (0);
1445 }
1446 
1447 /*
1448  * If in layer 3 mode do nothing.
1449  *
1450  * If in layer 2 switched mode remove the address from the physical
1451  * device.
1452  *
1453  * If in layer 2 promiscuous mode disable promisc mode.
1454  *
1455  * Returns 0 on success.
1456  */
1457 static int
1458 vsw_unset_hw(vsw_t *vswp, vsw_port_t *port)
1459 {
1460 	int		err;
1461 	void		*mah;
1462 
1463 	D1(vswp, "%s: enter", __func__);
1464 
1465 	if (vswp->smode[vswp->smode_idx] == VSW_LAYER3)
1466 		return (0);
1467 
1468 	if (port->addr_set == VSW_ADDR_PROMISC) {
1469 		return (vsw_unset_hw_promisc(vswp, port));
1470 	}
1471 
1472 	if (port->addr_set == VSW_ADDR_HW) {
1473 		if (vswp->mh == NULL)
1474 			return (1);
1475 
1476 		if (vswp->maddr.maddr_handle == NULL)
1477 			return (1);
1478 
1479 		mah = vswp->maddr.maddr_handle;
1480 
1481 		err = vswp->maddr.maddr_remove(mah, port->addr_slot);
1482 		if (err != 0) {
1483 			cmn_err(CE_WARN, "!Unable to remove addr "
1484 				"%x:%x:%x:%x:%x:%x for port %d from device %s"
1485 				" : (err %d)",
1486 				port->p_macaddr.ether_addr_octet[0],
1487 				port->p_macaddr.ether_addr_octet[1],
1488 				port->p_macaddr.ether_addr_octet[2],
1489 				port->p_macaddr.ether_addr_octet[3],
1490 				port->p_macaddr.ether_addr_octet[4],
1491 				port->p_macaddr.ether_addr_octet[5],
1492 				port->p_instance, vswp->physname, err);
1493 			return (err);
1494 		}
1495 
1496 		port->addr_set = VSW_ADDR_UNSET;
1497 
1498 		D2(vswp, "removed addr %x:%x:%x:%x:%x:%x for "
1499 			"port %d from device %s",
1500 			port->p_macaddr.ether_addr_octet[0],
1501 			port->p_macaddr.ether_addr_octet[1],
1502 			port->p_macaddr.ether_addr_octet[2],
1503 			port->p_macaddr.ether_addr_octet[3],
1504 			port->p_macaddr.ether_addr_octet[4],
1505 			port->p_macaddr.ether_addr_octet[5],
1506 			port->p_instance, vswp->physname);
1507 	}
1508 
1509 	D1(vswp, "%s: exit", __func__);
1510 	return (0);
1511 }
1512 
1513 /*
1514  * Set network card into promisc mode.
1515  *
1516  * Returns 0 on success, 1 on failure.
1517  */
1518 static int
1519 vsw_set_hw_promisc(vsw_t *vswp, vsw_port_t *port)
1520 {
1521 	D1(vswp, "%s: enter", __func__);
1522 
1523 	if (vswp->mh == NULL)
1524 		return (1);
1525 
1526 	if (vswp->promisc_cnt++ == 0) {
1527 		if (mac_promisc_set(vswp->mh, B_TRUE, MAC_DEVPROMISC) != 0) {
1528 			vswp->promisc_cnt--;
1529 			return (1);
1530 		}
1531 		cmn_err(CE_NOTE, "!switching device %s into promiscuous mode",
1532 				vswp->physname);
1533 	}
1534 	port->addr_set = VSW_ADDR_PROMISC;
1535 
1536 	D1(vswp, "%s: exit", __func__);
1537 
1538 	return (0);
1539 }
1540 
1541 /*
1542  * Turn off promiscuous mode on network card.
1543  *
1544  * Returns 0 on success, 1 on failure.
1545  */
1546 static int
1547 vsw_unset_hw_promisc(vsw_t *vswp, vsw_port_t *port)
1548 {
1549 	vsw_port_list_t 	*plist = &vswp->plist;
1550 
1551 	D1(vswp, "%s: enter", __func__);
1552 
1553 	if (vswp->mh == NULL)
1554 		return (1);
1555 
1556 	ASSERT(port->addr_set == VSW_ADDR_PROMISC);
1557 
1558 	if (--vswp->promisc_cnt == 0) {
1559 		if (mac_promisc_set(vswp->mh, B_FALSE, MAC_DEVPROMISC) != 0) {
1560 			vswp->promisc_cnt++;
1561 			return (1);
1562 		}
1563 
1564 		/*
1565 		 * We are exiting promisc mode either because we were
1566 		 * only in promisc mode because we had failed over from
1567 		 * switched mode due to HW resource issues, or the user
1568 		 * wanted the card in promisc mode for all the ports and
1569 		 * the last port is now being deleted. Tweak the message
1570 		 * accordingly.
1571 		 */
1572 		if (plist->num_ports != 0) {
1573 			cmn_err(CE_NOTE, "!switching device %s back to "
1574 				"programmed mode", vswp->physname);
1575 		} else {
1576 			cmn_err(CE_NOTE, "!switching device %s out of "
1577 				"promiscuous mode", vswp->physname);
1578 		}
1579 	}
1580 	port->addr_set = VSW_ADDR_UNSET;
1581 
1582 	D1(vswp, "%s: exit", __func__);
1583 	return (0);
1584 }
1585 
1586 /*
1587  * Determine whether or not we are operating in our prefered
1588  * mode and if not whether the physical resources now allow us
1589  * to operate in it.
1590  *
1591  * Should only be invoked after port which is being deleted has been
1592  * removed from the port list.
1593  */
1594 static int
1595 vsw_reconfig_hw(vsw_t *vswp)
1596 {
1597 	vsw_port_list_t 	*plist = &vswp->plist;
1598 	mac_multi_addr_t	mac_addr;
1599 	vsw_port_t		*tp;
1600 	void			*mah;
1601 	int			rv = 0;
1602 	int			s_idx;
1603 
1604 	D1(vswp, "%s: enter", __func__);
1605 
1606 	if (vswp->maddr.maddr_handle == NULL)
1607 		return (1);
1608 
1609 	/*
1610 	 * Check if there are now sufficient HW resources to
1611 	 * attempt a re-config.
1612 	 */
1613 	if (plist->num_ports > vswp->maddr.maddr_naddrfree)
1614 		return (1);
1615 
1616 	/*
1617 	 * If we are in layer 2 (i.e. switched) or would like to be
1618 	 * in layer 2 then check if any ports need to be programmed
1619 	 * into the HW.
1620 	 *
1621 	 * This can happen in two cases - switched was specified as
1622 	 * the prefered mode of operation but we exhausted the HW
1623 	 * resources and so failed over to the next specifed mode,
1624 	 * or switched was the only mode specified so after HW
1625 	 * resources were exhausted there was nothing more we
1626 	 * could do.
1627 	 */
1628 	if (vswp->smode_idx > 0)
1629 		s_idx = vswp->smode_idx - 1;
1630 	else
1631 		s_idx = vswp->smode_idx;
1632 
1633 	if (vswp->smode[s_idx] == VSW_LAYER2) {
1634 		mah = vswp->maddr.maddr_handle;
1635 
1636 		D2(vswp, "%s: attempting reconfig..", __func__);
1637 
1638 		/*
1639 		 * Scan the port list for any port whose address has not
1640 		 * be programmed in HW - there should be a max of one.
1641 		 */
1642 		for (tp = plist->head; tp != NULL; tp = tp->p_next) {
1643 			if (tp->addr_set != VSW_ADDR_HW) {
1644 				mac_addr.mma_addrlen = ETHERADDRL;
1645 				ether_copy(&tp->p_macaddr, &mac_addr.mma_addr);
1646 
1647 				rv = vswp->maddr.maddr_add(mah, &mac_addr);
1648 				if (rv != 0) {
1649 					DWARN(vswp, "Error setting addr in "
1650 						"HW for port %d err %d",
1651 						tp->p_instance, rv);
1652 					goto reconfig_err_exit;
1653 				}
1654 				tp->addr_slot = mac_addr.mma_slot;
1655 
1656 				D2(vswp, "re-programmed port %d "
1657 					"addr %x:%x:%x:%x:%x:%x into slot %d"
1658 					" of device %s", tp->p_instance,
1659 					tp->p_macaddr.ether_addr_octet[0],
1660 					tp->p_macaddr.ether_addr_octet[1],
1661 					tp->p_macaddr.ether_addr_octet[2],
1662 					tp->p_macaddr.ether_addr_octet[3],
1663 					tp->p_macaddr.ether_addr_octet[4],
1664 					tp->p_macaddr.ether_addr_octet[5],
1665 					tp->addr_slot, vswp->physname);
1666 
1667 				/*
1668 				 * If up to now we had to put the card into
1669 				 * promisc mode to see this address, we
1670 				 * can now safely disable promisc mode.
1671 				 */
1672 				if (tp->addr_set == VSW_ADDR_PROMISC)
1673 					(void) vsw_unset_hw_promisc(vswp, tp);
1674 
1675 				tp->addr_set = VSW_ADDR_HW;
1676 			}
1677 		}
1678 
1679 		/* no further re-config needed */
1680 		vswp->recfg_reqd = B_FALSE;
1681 
1682 		vswp->smode_idx = s_idx;
1683 
1684 		return (0);
1685 	}
1686 
1687 reconfig_err_exit:
1688 	return (rv);
1689 }
1690 
1691 static void
1692 vsw_mac_ring_tbl_entry_init(vsw_t *vswp, vsw_mac_ring_t *ringp)
1693 {
1694 	ringp->ring_state = VSW_MAC_RING_FREE;
1695 	ringp->ring_arg = NULL;
1696 	ringp->ring_blank = NULL;
1697 	ringp->ring_vqp = NULL;
1698 	ringp->ring_vswp = vswp;
1699 }
1700 
1701 static void
1702 vsw_mac_ring_tbl_init(vsw_t *vswp)
1703 {
1704 	int		i;
1705 
1706 	mutex_init(&vswp->mac_ring_lock, NULL, MUTEX_DRIVER, NULL);
1707 
1708 	vswp->mac_ring_tbl_sz = vsw_mac_rx_rings;
1709 	vswp->mac_ring_tbl  =
1710 		kmem_alloc(vsw_mac_rx_rings * sizeof (vsw_mac_ring_t),
1711 		KM_SLEEP);
1712 
1713 	for (i = 0; i < vswp->mac_ring_tbl_sz; i++)
1714 		vsw_mac_ring_tbl_entry_init(vswp, &vswp->mac_ring_tbl[i]);
1715 }
1716 
1717 static void
1718 vsw_mac_ring_tbl_destroy(vsw_t *vswp)
1719 {
1720 	int	i;
1721 
1722 	mutex_enter(&vswp->mac_ring_lock);
1723 	for (i = 0; i < vswp->mac_ring_tbl_sz; i++) {
1724 		if (vswp->mac_ring_tbl[i].ring_state != VSW_MAC_RING_FREE) {
1725 			/*
1726 			 * Destroy the queue.
1727 			 */
1728 			vsw_queue_stop(vswp->mac_ring_tbl[i].ring_vqp);
1729 			vsw_queue_destroy(vswp->mac_ring_tbl[i].ring_vqp);
1730 
1731 			/*
1732 			 * Re-initialize the structure.
1733 			 */
1734 			vsw_mac_ring_tbl_entry_init(vswp,
1735 				&vswp->mac_ring_tbl[i]);
1736 		}
1737 	}
1738 	mutex_exit(&vswp->mac_ring_lock);
1739 
1740 	mutex_destroy(&vswp->mac_ring_lock);
1741 	kmem_free(vswp->mac_ring_tbl,
1742 		vswp->mac_ring_tbl_sz * sizeof (vsw_mac_ring_t));
1743 	vswp->mac_ring_tbl_sz = 0;
1744 }
1745 
1746 /*
1747  * Handle resource add callbacks from the driver below.
1748  */
1749 static mac_resource_handle_t
1750 vsw_mac_ring_add_cb(void *arg, mac_resource_t *mrp)
1751 {
1752 	vsw_t		*vswp = (vsw_t *)arg;
1753 	mac_rx_fifo_t	*mrfp = (mac_rx_fifo_t *)mrp;
1754 	vsw_mac_ring_t	*ringp;
1755 	vsw_queue_t	*vqp;
1756 	int		i;
1757 
1758 	ASSERT(vswp != NULL);
1759 	ASSERT(mrp != NULL);
1760 	ASSERT(vswp->mac_ring_tbl != NULL);
1761 
1762 	D1(vswp, "%s: enter", __func__);
1763 
1764 	/*
1765 	 * Check to make sure we have the correct resource type.
1766 	 */
1767 	if (mrp->mr_type != MAC_RX_FIFO)
1768 		return (NULL);
1769 
1770 	/*
1771 	 * Find a open entry in the ring table.
1772 	 */
1773 	mutex_enter(&vswp->mac_ring_lock);
1774 	for (i = 0; i < vswp->mac_ring_tbl_sz; i++) {
1775 		ringp = &vswp->mac_ring_tbl[i];
1776 
1777 		/*
1778 		 * Check for an empty slot, if found, then setup queue
1779 		 * and thread.
1780 		 */
1781 		if (ringp->ring_state == VSW_MAC_RING_FREE) {
1782 			/*
1783 			 * Create the queue for this ring.
1784 			 */
1785 			vqp = vsw_queue_create();
1786 
1787 			/*
1788 			 * Initialize the ring data structure.
1789 			 */
1790 			ringp->ring_vqp = vqp;
1791 			ringp->ring_arg = mrfp->mrf_arg;
1792 			ringp->ring_blank = mrfp->mrf_blank;
1793 			ringp->ring_state = VSW_MAC_RING_INUSE;
1794 
1795 			/*
1796 			 * Create the worker thread.
1797 			 */
1798 			vqp->vq_worker = thread_create(NULL, 0,
1799 				vsw_queue_worker, ringp, 0, &p0,
1800 				TS_RUN, minclsyspri);
1801 			if (vqp->vq_worker == NULL) {
1802 				vsw_queue_destroy(vqp);
1803 				vsw_mac_ring_tbl_entry_init(vswp, ringp);
1804 				ringp = NULL;
1805 			}
1806 
1807 			mutex_exit(&vswp->mac_ring_lock);
1808 			D1(vswp, "%s: exit", __func__);
1809 			return ((mac_resource_handle_t)ringp);
1810 		}
1811 	}
1812 	mutex_exit(&vswp->mac_ring_lock);
1813 
1814 	/*
1815 	 * No slots in the ring table available.
1816 	 */
1817 	D1(vswp, "%s: exit", __func__);
1818 	return (NULL);
1819 }
1820 
1821 static void
1822 vsw_queue_stop(vsw_queue_t *vqp)
1823 {
1824 	mutex_enter(&vqp->vq_lock);
1825 
1826 	if (vqp->vq_state == VSW_QUEUE_RUNNING) {
1827 		vqp->vq_state = VSW_QUEUE_STOP;
1828 		cv_signal(&vqp->vq_cv);
1829 
1830 		while (vqp->vq_state != VSW_QUEUE_DRAINED)
1831 			cv_wait(&vqp->vq_cv, &vqp->vq_lock);
1832 	}
1833 
1834 	mutex_exit(&vqp->vq_lock);
1835 }
1836 
1837 static vsw_queue_t *
1838 vsw_queue_create()
1839 {
1840 	vsw_queue_t *vqp;
1841 
1842 	vqp = kmem_zalloc(sizeof (vsw_queue_t), KM_SLEEP);
1843 
1844 	mutex_init(&vqp->vq_lock, NULL, MUTEX_DRIVER, NULL);
1845 	cv_init(&vqp->vq_cv, NULL, CV_DRIVER, NULL);
1846 	vqp->vq_first = NULL;
1847 	vqp->vq_last = NULL;
1848 	vqp->vq_state = VSW_QUEUE_STOP;
1849 
1850 	return (vqp);
1851 }
1852 
1853 static void
1854 vsw_queue_destroy(vsw_queue_t *vqp)
1855 {
1856 	cv_destroy(&vqp->vq_cv);
1857 	mutex_destroy(&vqp->vq_lock);
1858 	kmem_free(vqp, sizeof (vsw_queue_t));
1859 }
1860 
1861 static void
1862 vsw_queue_worker(vsw_mac_ring_t *rrp)
1863 {
1864 	mblk_t		*mp;
1865 	vsw_queue_t	*vqp = rrp->ring_vqp;
1866 	vsw_t		*vswp = rrp->ring_vswp;
1867 
1868 	mutex_enter(&vqp->vq_lock);
1869 
1870 	ASSERT(vqp->vq_state == VSW_QUEUE_STOP);
1871 
1872 	/*
1873 	 * Set the state to running, since the thread is now active.
1874 	 */
1875 	vqp->vq_state = VSW_QUEUE_RUNNING;
1876 
1877 	while (vqp->vq_state == VSW_QUEUE_RUNNING) {
1878 		/*
1879 		 * Wait for work to do or the state has changed
1880 		 * to not running.
1881 		 */
1882 		while ((vqp->vq_state == VSW_QUEUE_RUNNING) &&
1883 				(vqp->vq_first == NULL)) {
1884 			cv_wait(&vqp->vq_cv, &vqp->vq_lock);
1885 		}
1886 
1887 		/*
1888 		 * Process packets that we received from the interface.
1889 		 */
1890 		if (vqp->vq_first != NULL) {
1891 			mp = vqp->vq_first;
1892 
1893 			vqp->vq_first = NULL;
1894 			vqp->vq_last = NULL;
1895 
1896 			mutex_exit(&vqp->vq_lock);
1897 
1898 			/* switch the chain of packets received */
1899 			vsw_switch_frame(vswp, mp, VSW_PHYSDEV, NULL, NULL);
1900 
1901 			mutex_enter(&vqp->vq_lock);
1902 		}
1903 	}
1904 
1905 	/*
1906 	 * We are drained and signal we are done.
1907 	 */
1908 	vqp->vq_state = VSW_QUEUE_DRAINED;
1909 	cv_signal(&vqp->vq_cv);
1910 
1911 	/*
1912 	 * Exit lock and drain the remaining packets.
1913 	 */
1914 	mutex_exit(&vqp->vq_lock);
1915 
1916 	/*
1917 	 * Exit the thread
1918 	 */
1919 	thread_exit();
1920 }
1921 
1922 /*
1923  * static void
1924  * vsw_rx_queue_cb() - Receive callback routine when
1925  *	vsw_multi_ring_enable is non-zero.  Queue the packets
1926  *	to a packet queue for a worker thread to process.
1927  */
1928 static void
1929 vsw_rx_queue_cb(void *arg, mac_resource_handle_t mrh, mblk_t *mp)
1930 {
1931 	vsw_mac_ring_t	*ringp = (vsw_mac_ring_t *)mrh;
1932 	vsw_t		*vswp = (vsw_t *)arg;
1933 	vsw_queue_t	*vqp;
1934 	mblk_t		*bp, *last;
1935 
1936 	ASSERT(mrh != NULL);
1937 	ASSERT(vswp != NULL);
1938 	ASSERT(mp != NULL);
1939 
1940 	D1(vswp, "%s: enter", __func__);
1941 
1942 	/*
1943 	 * Find the last element in the mblk chain.
1944 	 */
1945 	bp = mp;
1946 	do {
1947 		last = bp;
1948 		bp = bp->b_next;
1949 	} while (bp != NULL);
1950 
1951 	/* Get the queue for the packets */
1952 	vqp = ringp->ring_vqp;
1953 
1954 	/*
1955 	 * Grab the lock such we can queue the packets.
1956 	 */
1957 	mutex_enter(&vqp->vq_lock);
1958 
1959 	if (vqp->vq_state != VSW_QUEUE_RUNNING) {
1960 		freemsg(mp);
1961 		goto vsw_rx_queue_cb_exit;
1962 	}
1963 
1964 	/*
1965 	 * Add the mblk chain to the queue.  If there
1966 	 * is some mblks in the queue, then add the new
1967 	 * chain to the end.
1968 	 */
1969 	if (vqp->vq_first == NULL)
1970 		vqp->vq_first = mp;
1971 	else
1972 		vqp->vq_last->b_next = mp;
1973 
1974 	vqp->vq_last = last;
1975 
1976 	/*
1977 	 * Signal the worker thread that there is work to
1978 	 * do.
1979 	 */
1980 	cv_signal(&vqp->vq_cv);
1981 
1982 	/*
1983 	 * Let go of the lock and exit.
1984 	 */
1985 vsw_rx_queue_cb_exit:
1986 	mutex_exit(&vqp->vq_lock);
1987 	D1(vswp, "%s: exit", __func__);
1988 }
1989 
1990 /*
1991  * receive callback routine. Invoked by MAC layer when there
1992  * are pkts being passed up from physical device.
1993  *
1994  * PERF: It may be more efficient when the card is in promisc
1995  * mode to check the dest address of the pkts here (against
1996  * the FDB) rather than checking later. Needs to be investigated.
1997  */
1998 static void
1999 vsw_rx_cb(void *arg, mac_resource_handle_t mrh, mblk_t *mp)
2000 {
2001 	_NOTE(ARGUNUSED(mrh))
2002 
2003 	vsw_t		*vswp = (vsw_t *)arg;
2004 
2005 	ASSERT(vswp != NULL);
2006 
2007 	D1(vswp, "vsw_rx_cb: enter");
2008 
2009 	/* switch the chain of packets received */
2010 	vsw_switch_frame(vswp, mp, VSW_PHYSDEV, NULL, NULL);
2011 
2012 	D1(vswp, "vsw_rx_cb: exit");
2013 }
2014 
2015 /*
2016  * Send a message out over the physical device via the MAC layer.
2017  *
2018  * Returns any mblks that it was unable to transmit.
2019  */
2020 static mblk_t *
2021 vsw_tx_msg(vsw_t *vswp, mblk_t *mp)
2022 {
2023 	const mac_txinfo_t	*mtp;
2024 	mblk_t			*nextp;
2025 
2026 	if (vswp->mh == NULL) {
2027 		DERR(vswp, "vsw_tx_msg: dropping pkts: no tx routine avail");
2028 		return (mp);
2029 	} else {
2030 		for (;;) {
2031 			nextp = mp->b_next;
2032 			mp->b_next = NULL;
2033 
2034 			mtp = vswp->txinfo;
2035 			if ((mp = mtp->mt_fn(mtp->mt_arg, mp)) != NULL) {
2036 				mp->b_next = nextp;
2037 				break;
2038 			}
2039 
2040 			if ((mp = nextp) == NULL)
2041 				break;
2042 
2043 		}
2044 
2045 	}
2046 
2047 	return (mp);
2048 }
2049 
2050 /*
2051  * Register with the MAC layer as a network device, so we
2052  * can be plumbed if necessary.
2053  */
2054 static int
2055 vsw_mac_register(vsw_t *vswp)
2056 {
2057 	mac_register_t	*macp;
2058 	int		rv;
2059 
2060 	D1(vswp, "%s: enter", __func__);
2061 
2062 	if ((macp = mac_alloc(MAC_VERSION)) == NULL)
2063 		return (EINVAL);
2064 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
2065 	macp->m_driver = vswp;
2066 	macp->m_dip = vswp->dip;
2067 	macp->m_src_addr = (uint8_t *)&vswp->if_addr;
2068 	macp->m_callbacks = &vsw_m_callbacks;
2069 	macp->m_min_sdu = 0;
2070 	macp->m_max_sdu = ETHERMTU;
2071 	rv = mac_register(macp, &vswp->if_mh);
2072 	mac_free(macp);
2073 	if (rv == 0)
2074 		vswp->if_state |= VSW_IF_REG;
2075 
2076 	D1(vswp, "%s: exit", __func__);
2077 
2078 	return (rv);
2079 }
2080 
2081 static int
2082 vsw_mac_unregister(vsw_t *vswp)
2083 {
2084 	int		rv = 0;
2085 
2086 	D1(vswp, "%s: enter", __func__);
2087 
2088 	WRITE_ENTER(&vswp->if_lockrw);
2089 
2090 	if (vswp->if_state & VSW_IF_REG) {
2091 		rv = mac_unregister(vswp->if_mh);
2092 		if (rv != 0) {
2093 			DWARN(vswp, "%s: unable to unregister from MAC "
2094 				"framework", __func__);
2095 
2096 			RW_EXIT(&vswp->if_lockrw);
2097 			D1(vswp, "%s: fail exit", __func__);
2098 			return (rv);
2099 		}
2100 
2101 		/* mark i/f as down and unregistered */
2102 		vswp->if_state &= ~(VSW_IF_UP | VSW_IF_REG);
2103 	}
2104 	RW_EXIT(&vswp->if_lockrw);
2105 
2106 	vswp->mdprops &= ~(VSW_MD_MACADDR | VSW_DEV_MACADDR);
2107 
2108 	D1(vswp, "%s: exit", __func__);
2109 
2110 	return (rv);
2111 }
2112 
2113 static int
2114 vsw_m_stat(void *arg, uint_t stat, uint64_t *val)
2115 {
2116 	vsw_t			*vswp = (vsw_t *)arg;
2117 
2118 	D1(vswp, "%s: enter", __func__);
2119 
2120 	if (vswp->mh == NULL)
2121 		return (EINVAL);
2122 
2123 	/* return stats from underlying device */
2124 	*val = mac_stat_get(vswp->mh, stat);
2125 	return (0);
2126 }
2127 
2128 static void
2129 vsw_m_stop(void *arg)
2130 {
2131 	vsw_t		*vswp = (vsw_t *)arg;
2132 
2133 	D1(vswp, "%s: enter", __func__);
2134 
2135 	WRITE_ENTER(&vswp->if_lockrw);
2136 	vswp->if_state &= ~VSW_IF_UP;
2137 	RW_EXIT(&vswp->if_lockrw);
2138 
2139 	D1(vswp, "%s: exit (state = %d)", __func__, vswp->if_state);
2140 }
2141 
2142 static int
2143 vsw_m_start(void *arg)
2144 {
2145 	vsw_t		*vswp = (vsw_t *)arg;
2146 
2147 	D1(vswp, "%s: enter", __func__);
2148 
2149 	WRITE_ENTER(&vswp->if_lockrw);
2150 	vswp->if_state |= VSW_IF_UP;
2151 	RW_EXIT(&vswp->if_lockrw);
2152 
2153 	D1(vswp, "%s: exit (state = %d)", __func__, vswp->if_state);
2154 	return (0);
2155 }
2156 
2157 /*
2158  * Change the local interface address.
2159  */
2160 static int
2161 vsw_m_unicst(void *arg, const uint8_t *macaddr)
2162 {
2163 	vsw_t		*vswp = (vsw_t *)arg;
2164 
2165 	D1(vswp, "%s: enter", __func__);
2166 
2167 	WRITE_ENTER(&vswp->if_lockrw);
2168 	ether_copy(macaddr, &vswp->if_addr);
2169 	RW_EXIT(&vswp->if_lockrw);
2170 
2171 	D1(vswp, "%s: exit", __func__);
2172 
2173 	return (0);
2174 }
2175 
2176 static int
2177 vsw_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
2178 {
2179 	vsw_t		*vswp = (vsw_t *)arg;
2180 	mcst_addr_t	*mcst_p = NULL;
2181 	uint64_t	addr = 0x0;
2182 	int		i, ret = 0;
2183 
2184 	D1(vswp, "%s: enter", __func__);
2185 
2186 	/*
2187 	 * Convert address into form that can be used
2188 	 * as hash table key.
2189 	 */
2190 	for (i = 0; i < ETHERADDRL; i++) {
2191 		addr = (addr << 8) | mca[i];
2192 	}
2193 
2194 	D2(vswp, "%s: addr = 0x%llx", __func__, addr);
2195 
2196 	if (add) {
2197 		D2(vswp, "%s: adding multicast", __func__);
2198 		if (vsw_add_mcst(vswp, VSW_LOCALDEV, addr, NULL) == 0) {
2199 			/*
2200 			 * Update the list of multicast addresses
2201 			 * contained within the vsw_t structure to
2202 			 * include this new one.
2203 			 */
2204 			mcst_p = kmem_zalloc(sizeof (mcst_addr_t), KM_NOSLEEP);
2205 			if (mcst_p == NULL) {
2206 				DERR(vswp, "%s unable to alloc mem", __func__);
2207 				return (1);
2208 			}
2209 			mcst_p->addr = addr;
2210 
2211 			mutex_enter(&vswp->mca_lock);
2212 			mcst_p->nextp = vswp->mcap;
2213 			vswp->mcap = mcst_p;
2214 			mutex_exit(&vswp->mca_lock);
2215 
2216 			/*
2217 			 * Call into the underlying driver to program the
2218 			 * address into HW.
2219 			 */
2220 			if (vswp->mh != NULL) {
2221 				ret = mac_multicst_add(vswp->mh, mca);
2222 				if (ret != 0) {
2223 					cmn_err(CE_WARN, "!unable to add "
2224 						"multicast address");
2225 					goto vsw_remove_addr;
2226 				}
2227 			}
2228 		} else {
2229 			cmn_err(CE_WARN, "!unable to add multicast address");
2230 		}
2231 		return (ret);
2232 	}
2233 
2234 vsw_remove_addr:
2235 
2236 	D2(vswp, "%s: removing multicast", __func__);
2237 	/*
2238 	 * Remove the address from the hash table..
2239 	 */
2240 	if (vsw_del_mcst(vswp, VSW_LOCALDEV, addr, NULL) == 0) {
2241 
2242 		/*
2243 		 * ..and then from the list maintained in the
2244 		 * vsw_t structure.
2245 		 */
2246 		vsw_del_addr(VSW_LOCALDEV, vswp, addr);
2247 
2248 		if (vswp->mh != NULL)
2249 			(void) mac_multicst_remove(vswp->mh, mca);
2250 	}
2251 
2252 	D1(vswp, "%s: exit", __func__);
2253 
2254 	return (0);
2255 }
2256 
2257 static int
2258 vsw_m_promisc(void *arg, boolean_t on)
2259 {
2260 	vsw_t		*vswp = (vsw_t *)arg;
2261 
2262 	D1(vswp, "%s: enter", __func__);
2263 
2264 	WRITE_ENTER(&vswp->if_lockrw);
2265 	if (on)
2266 		vswp->if_state |= VSW_IF_PROMISC;
2267 	else
2268 		vswp->if_state &= ~VSW_IF_PROMISC;
2269 	RW_EXIT(&vswp->if_lockrw);
2270 
2271 	D1(vswp, "%s: exit", __func__);
2272 
2273 	return (0);
2274 }
2275 
2276 static mblk_t *
2277 vsw_m_tx(void *arg, mblk_t *mp)
2278 {
2279 	vsw_t		*vswp = (vsw_t *)arg;
2280 
2281 	D1(vswp, "%s: enter", __func__);
2282 
2283 	vsw_switch_frame(vswp, mp, VSW_LOCALDEV, NULL, NULL);
2284 
2285 	D1(vswp, "%s: exit", __func__);
2286 
2287 	return (NULL);
2288 }
2289 
2290 /*
2291  * Register for machine description (MD) updates.
2292  */
2293 static void
2294 vsw_mdeg_register(vsw_t *vswp)
2295 {
2296 	mdeg_prop_spec_t	*pspecp;
2297 	mdeg_node_spec_t	*inst_specp;
2298 	mdeg_handle_t		mdeg_hdl;
2299 	size_t			templatesz;
2300 	int			inst, rv;
2301 
2302 	D1(vswp, "%s: enter", __func__);
2303 
2304 	inst = ddi_prop_get_int(DDI_DEV_T_ANY, vswp->dip,
2305 		DDI_PROP_DONTPASS, reg_propname, -1);
2306 	if (inst == -1) {
2307 		DERR(vswp, "%s: unable to get %s property",
2308 						__func__, reg_propname);
2309 		return;
2310 	}
2311 
2312 	D2(vswp, "%s: instance %d registering with mdeg", __func__, inst);
2313 
2314 	/*
2315 	 * Allocate and initialize a per-instance copy
2316 	 * of the global property spec array that will
2317 	 * uniquely identify this vsw instance.
2318 	 */
2319 	templatesz = sizeof (vsw_prop_template);
2320 	pspecp = kmem_zalloc(templatesz, KM_SLEEP);
2321 
2322 	bcopy(vsw_prop_template, pspecp, templatesz);
2323 
2324 	VSW_SET_MDEG_PROP_INST(pspecp, inst);
2325 
2326 	/* initialize the complete prop spec structure */
2327 	inst_specp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
2328 	inst_specp->namep = "virtual-device";
2329 	inst_specp->specp = pspecp;
2330 
2331 	/* perform the registration */
2332 	rv = mdeg_register(inst_specp, &vport_match, vsw_mdeg_cb,
2333 	    (void *)vswp, &mdeg_hdl);
2334 
2335 	if (rv != MDEG_SUCCESS) {
2336 		DERR(vswp, "%s: mdeg_register failed (%d)\n", __func__, rv);
2337 		kmem_free(inst_specp, sizeof (mdeg_node_spec_t));
2338 		kmem_free(pspecp, templatesz);
2339 		return;
2340 	}
2341 
2342 	/* save off data that will be needed later */
2343 	vswp->inst_spec = inst_specp;
2344 	vswp->mdeg_hdl = mdeg_hdl;
2345 
2346 	D1(vswp, "%s: exit", __func__);
2347 }
2348 
2349 static void
2350 vsw_mdeg_unregister(vsw_t *vswp)
2351 {
2352 	D1(vswp, "vsw_mdeg_unregister: enter");
2353 
2354 	(void) mdeg_unregister(vswp->mdeg_hdl);
2355 
2356 	if (vswp->inst_spec->specp != NULL) {
2357 		(void) kmem_free(vswp->inst_spec->specp,
2358 			sizeof (vsw_prop_template));
2359 		vswp->inst_spec->specp = NULL;
2360 	}
2361 
2362 	if (vswp->inst_spec != NULL) {
2363 		(void) kmem_free(vswp->inst_spec,
2364 			sizeof (mdeg_node_spec_t));
2365 		vswp->inst_spec = NULL;
2366 	}
2367 
2368 	D1(vswp, "vsw_mdeg_unregister: exit");
2369 }
2370 
2371 static int
2372 vsw_mdeg_cb(void *cb_argp, mdeg_result_t *resp)
2373 {
2374 	vsw_t		*vswp;
2375 	int		idx;
2376 	md_t		*mdp;
2377 	mde_cookie_t	node;
2378 	uint64_t	inst;
2379 
2380 	if (resp == NULL)
2381 		return (MDEG_FAILURE);
2382 
2383 	vswp = (vsw_t *)cb_argp;
2384 
2385 	D1(vswp, "%s: added %d : removed %d : matched %d",
2386 		__func__, resp->added.nelem, resp->removed.nelem,
2387 		resp->match_prev.nelem);
2388 
2389 	/* process added ports */
2390 	for (idx = 0; idx < resp->added.nelem; idx++) {
2391 		mdp = resp->added.mdp;
2392 		node = resp->added.mdep[idx];
2393 
2394 		D2(vswp, "%s: adding node(%d) 0x%lx", __func__, idx, node);
2395 
2396 		if (vsw_port_add(vswp, mdp, &node) != 0) {
2397 			cmn_err(CE_WARN, "Unable to add new port (0x%lx)",
2398 					node);
2399 		}
2400 	}
2401 
2402 	/* process removed ports */
2403 	for (idx = 0; idx < resp->removed.nelem; idx++) {
2404 		mdp = resp->removed.mdp;
2405 		node = resp->removed.mdep[idx];
2406 
2407 		if (md_get_prop_val(mdp, node, id_propname, &inst)) {
2408 			DERR(vswp, "%s: prop(%s) not found port(%d)",
2409 				__func__, id_propname, idx);
2410 			continue;
2411 		}
2412 
2413 		D2(vswp, "%s: removing node(%d) 0x%lx", __func__, idx, node);
2414 
2415 		if (vsw_port_detach(vswp, inst) != 0) {
2416 			cmn_err(CE_WARN, "Unable to remove port %ld", inst);
2417 		}
2418 	}
2419 
2420 	/*
2421 	 * Currently no support for updating already active ports.
2422 	 * So, ignore the match_curr and match_priv arrays for now.
2423 	 */
2424 
2425 	D1(vswp, "%s: exit", __func__);
2426 
2427 	return (MDEG_SUCCESS);
2428 }
2429 
2430 /*
2431  * Add a new port to the system.
2432  *
2433  * Returns 0 on success, 1 on failure.
2434  */
2435 int
2436 vsw_port_add(vsw_t *vswp, md_t *mdp, mde_cookie_t *node)
2437 {
2438 	uint64_t		ldc_id;
2439 	uint8_t			*addrp;
2440 	int			i, addrsz;
2441 	int			num_nodes = 0, nchan = 0;
2442 	int			listsz = 0;
2443 	mde_cookie_t		*listp = NULL;
2444 	struct ether_addr	ea;
2445 	uint64_t		macaddr;
2446 	uint64_t		inst = 0;
2447 	vsw_port_t		*port;
2448 
2449 	if (md_get_prop_val(mdp, *node, id_propname, &inst)) {
2450 		DWARN(vswp, "%s: prop(%s) not found", __func__,
2451 			id_propname);
2452 		return (1);
2453 	}
2454 
2455 	/*
2456 	 * Find the channel endpoint node(s) (which should be under this
2457 	 * port node) which contain the channel id(s).
2458 	 */
2459 	if ((num_nodes = md_node_count(mdp)) <= 0) {
2460 		DERR(vswp, "%s: invalid number of nodes found (%d)",
2461 			__func__, num_nodes);
2462 		return (1);
2463 	}
2464 
2465 	/* allocate enough space for node list */
2466 	listsz = num_nodes * sizeof (mde_cookie_t);
2467 	listp = kmem_zalloc(listsz, KM_SLEEP);
2468 
2469 	nchan = md_scan_dag(mdp, *node,
2470 		md_find_name(mdp, chan_propname),
2471 		md_find_name(mdp, "fwd"), listp);
2472 
2473 	if (nchan <= 0) {
2474 		DWARN(vswp, "%s: no %s nodes found", __func__, chan_propname);
2475 		kmem_free(listp, listsz);
2476 		return (1);
2477 	}
2478 
2479 	D2(vswp, "%s: %d %s nodes found", __func__, nchan, chan_propname);
2480 
2481 	/* use property from first node found */
2482 	if (md_get_prop_val(mdp, listp[0], id_propname, &ldc_id)) {
2483 		DWARN(vswp, "%s: prop(%s) not found\n", __func__,
2484 			id_propname);
2485 		kmem_free(listp, listsz);
2486 		return (1);
2487 	}
2488 
2489 	/* don't need list any more */
2490 	kmem_free(listp, listsz);
2491 
2492 	D2(vswp, "%s: ldc_id 0x%llx", __func__, ldc_id);
2493 
2494 	/* read mac-address property */
2495 	if (md_get_prop_data(mdp, *node, remaddr_propname,
2496 					&addrp, &addrsz)) {
2497 		DWARN(vswp, "%s: prop(%s) not found",
2498 				__func__, remaddr_propname);
2499 		return (1);
2500 	}
2501 
2502 	if (addrsz < ETHERADDRL) {
2503 		DWARN(vswp, "%s: invalid address size", __func__);
2504 		return (1);
2505 	}
2506 
2507 	macaddr = *((uint64_t *)addrp);
2508 	D2(vswp, "%s: remote mac address 0x%llx", __func__, macaddr);
2509 
2510 	for (i = ETHERADDRL - 1; i >= 0; i--) {
2511 		ea.ether_addr_octet[i] = macaddr & 0xFF;
2512 		macaddr >>= 8;
2513 	}
2514 
2515 	if (vsw_port_attach(vswp, (int)inst, &ldc_id, 1, &ea) != 0) {
2516 		DERR(vswp, "%s: failed to attach port", __func__);
2517 		return (1);
2518 	}
2519 
2520 	port = vsw_lookup_port(vswp, (int)inst);
2521 
2522 	/* just successfuly created the port, so it should exist */
2523 	ASSERT(port != NULL);
2524 
2525 	return (0);
2526 }
2527 
2528 /*
2529  * Attach the specified port.
2530  *
2531  * Returns 0 on success, 1 on failure.
2532  */
2533 static int
2534 vsw_port_attach(vsw_t *vswp, int p_instance, uint64_t *ldcids, int nids,
2535 struct ether_addr *macaddr)
2536 {
2537 	vsw_port_list_t		*plist = &vswp->plist;
2538 	vsw_port_t		*port, **prev_port;
2539 	int			i;
2540 
2541 	D1(vswp, "%s: enter : port %d", __func__, p_instance);
2542 
2543 	/* port already exists? */
2544 	READ_ENTER(&plist->lockrw);
2545 	for (port = plist->head; port != NULL; port = port->p_next) {
2546 		if (port->p_instance == p_instance) {
2547 			DWARN(vswp, "%s: port instance %d already attached",
2548 				__func__, p_instance);
2549 			RW_EXIT(&plist->lockrw);
2550 			return (1);
2551 		}
2552 	}
2553 	RW_EXIT(&plist->lockrw);
2554 
2555 	port = kmem_zalloc(sizeof (vsw_port_t), KM_SLEEP);
2556 	port->p_vswp = vswp;
2557 	port->p_instance = p_instance;
2558 	port->p_ldclist.num_ldcs = 0;
2559 	port->p_ldclist.head = NULL;
2560 	port->addr_set = VSW_ADDR_UNSET;
2561 
2562 	rw_init(&port->p_ldclist.lockrw, NULL, RW_DRIVER, NULL);
2563 
2564 	mutex_init(&port->tx_lock, NULL, MUTEX_DRIVER, NULL);
2565 	mutex_init(&port->mca_lock, NULL, MUTEX_DRIVER, NULL);
2566 
2567 	mutex_init(&port->ref_lock, NULL, MUTEX_DRIVER, NULL);
2568 	cv_init(&port->ref_cv, NULL, CV_DRIVER, NULL);
2569 
2570 	mutex_init(&port->state_lock, NULL, MUTEX_DRIVER, NULL);
2571 	cv_init(&port->state_cv, NULL, CV_DRIVER, NULL);
2572 	port->state = VSW_PORT_INIT;
2573 
2574 	if (nids > VSW_PORT_MAX_LDCS) {
2575 		D2(vswp, "%s: using first of %d ldc ids",
2576 			__func__, nids);
2577 		nids = VSW_PORT_MAX_LDCS;
2578 	}
2579 
2580 	D2(vswp, "%s: %d nids", __func__, nids);
2581 	for (i = 0; i < nids; i++) {
2582 		D2(vswp, "%s: ldcid (%llx)", __func__, (uint64_t)ldcids[i]);
2583 		if (vsw_ldc_attach(port, (uint64_t)ldcids[i]) != 0) {
2584 			DERR(vswp, "%s: ldc_attach failed", __func__);
2585 
2586 			rw_destroy(&port->p_ldclist.lockrw);
2587 
2588 			cv_destroy(&port->ref_cv);
2589 			mutex_destroy(&port->ref_lock);
2590 
2591 			cv_destroy(&port->state_cv);
2592 			mutex_destroy(&port->state_lock);
2593 
2594 			mutex_destroy(&port->tx_lock);
2595 			mutex_destroy(&port->mca_lock);
2596 			kmem_free(port, sizeof (vsw_port_t));
2597 			return (1);
2598 		}
2599 	}
2600 
2601 	ether_copy(macaddr, &port->p_macaddr);
2602 
2603 	WRITE_ENTER(&plist->lockrw);
2604 
2605 	/* create the fdb entry for this port/mac address */
2606 	(void) vsw_add_fdb(vswp, port);
2607 
2608 	(void) vsw_set_hw(vswp, port);
2609 
2610 	/* link it into the list of ports for this vsw instance */
2611 	prev_port = (vsw_port_t **)(&plist->head);
2612 	port->p_next = *prev_port;
2613 	*prev_port = port;
2614 	plist->num_ports++;
2615 	RW_EXIT(&plist->lockrw);
2616 
2617 	/*
2618 	 * Initialise the port and any ldc's under it.
2619 	 */
2620 	(void) vsw_init_ldcs(port);
2621 
2622 	D1(vswp, "%s: exit", __func__);
2623 	return (0);
2624 }
2625 
2626 /*
2627  * Detach the specified port.
2628  *
2629  * Returns 0 on success, 1 on failure.
2630  */
2631 static int
2632 vsw_port_detach(vsw_t *vswp, int p_instance)
2633 {
2634 	vsw_port_t	*port = NULL;
2635 	vsw_port_list_t	*plist = &vswp->plist;
2636 
2637 	D1(vswp, "%s: enter: port id %d", __func__, p_instance);
2638 
2639 	WRITE_ENTER(&plist->lockrw);
2640 
2641 	if ((port = vsw_lookup_port(vswp, p_instance)) == NULL) {
2642 		RW_EXIT(&plist->lockrw);
2643 		return (1);
2644 	}
2645 
2646 	if (vsw_plist_del_node(vswp, port)) {
2647 		RW_EXIT(&plist->lockrw);
2648 		return (1);
2649 	}
2650 
2651 	/* Remove address if was programmed into HW. */
2652 	(void) vsw_unset_hw(vswp, port);
2653 
2654 	/* Remove the fdb entry for this port/mac address */
2655 	(void) vsw_del_fdb(vswp, port);
2656 
2657 	/* Remove any multicast addresses.. */
2658 	vsw_del_mcst_port(port);
2659 
2660 	/*
2661 	 * No longer need to hold writer lock on port list now
2662 	 * that we have unlinked the target port from the list.
2663 	 */
2664 	RW_EXIT(&plist->lockrw);
2665 
2666 	READ_ENTER(&plist->lockrw);
2667 
2668 	if (vswp->recfg_reqd)
2669 		(void) vsw_reconfig_hw(vswp);
2670 
2671 	RW_EXIT(&plist->lockrw);
2672 
2673 	if (vsw_port_delete(port)) {
2674 		return (1);
2675 	}
2676 
2677 	D1(vswp, "%s: exit: p_instance(%d)", __func__, p_instance);
2678 	return (0);
2679 }
2680 
2681 /*
2682  * Detach all active ports.
2683  *
2684  * Returns 0 on success, 1 on failure.
2685  */
2686 static int
2687 vsw_detach_ports(vsw_t *vswp)
2688 {
2689 	vsw_port_list_t 	*plist = &vswp->plist;
2690 	vsw_port_t		*port = NULL;
2691 
2692 	D1(vswp, "%s: enter", __func__);
2693 
2694 	WRITE_ENTER(&plist->lockrw);
2695 
2696 	while ((port = plist->head) != NULL) {
2697 		if (vsw_plist_del_node(vswp, port)) {
2698 			DERR(vswp, "%s: Error deleting port %d"
2699 				" from port list", __func__,
2700 				port->p_instance);
2701 			RW_EXIT(&plist->lockrw);
2702 			return (1);
2703 		}
2704 
2705 		/* Remove address if was programmed into HW. */
2706 		(void) vsw_unset_hw(vswp, port);
2707 
2708 		/* Remove the fdb entry for this port/mac address */
2709 		(void) vsw_del_fdb(vswp, port);
2710 
2711 		/* Remove any multicast addresses.. */
2712 		vsw_del_mcst_port(port);
2713 
2714 		/*
2715 		 * No longer need to hold the lock on the port list
2716 		 * now that we have unlinked the target port from the
2717 		 * list.
2718 		 */
2719 		RW_EXIT(&plist->lockrw);
2720 		if (vsw_port_delete(port)) {
2721 			DERR(vswp, "%s: Error deleting port %d",
2722 				__func__, port->p_instance);
2723 			return (1);
2724 		}
2725 		WRITE_ENTER(&plist->lockrw);
2726 	}
2727 	RW_EXIT(&plist->lockrw);
2728 
2729 	D1(vswp, "%s: exit", __func__);
2730 
2731 	return (0);
2732 }
2733 
2734 /*
2735  * Delete the specified port.
2736  *
2737  * Returns 0 on success, 1 on failure.
2738  */
2739 static int
2740 vsw_port_delete(vsw_port_t *port)
2741 {
2742 	vsw_ldc_list_t 		*ldcl;
2743 	vsw_t			*vswp = port->p_vswp;
2744 
2745 	D1(vswp, "%s: enter : port id %d", __func__, port->p_instance);
2746 
2747 	(void) vsw_uninit_ldcs(port);
2748 
2749 	/*
2750 	 * Wait for any pending ctrl msg tasks which reference this
2751 	 * port to finish.
2752 	 */
2753 	if (vsw_drain_port_taskq(port))
2754 		return (1);
2755 
2756 	/*
2757 	 * Wait for port reference count to hit zero.
2758 	 */
2759 	mutex_enter(&port->ref_lock);
2760 	while (port->ref_cnt != 0)
2761 		cv_wait(&port->ref_cv, &port->ref_lock);
2762 	mutex_exit(&port->ref_lock);
2763 
2764 	/*
2765 	 * Wait for any active callbacks to finish
2766 	 */
2767 	if (vsw_drain_ldcs(port))
2768 		return (1);
2769 
2770 	ldcl = &port->p_ldclist;
2771 	WRITE_ENTER(&ldcl->lockrw);
2772 	while (ldcl->num_ldcs > 0) {
2773 		if (vsw_ldc_detach(port, ldcl->head->ldc_id) != 0) {;
2774 			cmn_err(CE_WARN, "unable to detach ldc %ld",
2775 					ldcl->head->ldc_id);
2776 			RW_EXIT(&ldcl->lockrw);
2777 			return (1);
2778 		}
2779 	}
2780 	RW_EXIT(&ldcl->lockrw);
2781 
2782 	rw_destroy(&port->p_ldclist.lockrw);
2783 
2784 	mutex_destroy(&port->mca_lock);
2785 	mutex_destroy(&port->tx_lock);
2786 	cv_destroy(&port->ref_cv);
2787 	mutex_destroy(&port->ref_lock);
2788 
2789 	cv_destroy(&port->state_cv);
2790 	mutex_destroy(&port->state_lock);
2791 
2792 	kmem_free(port, sizeof (vsw_port_t));
2793 
2794 	D1(vswp, "%s: exit", __func__);
2795 
2796 	return (0);
2797 }
2798 
2799 /*
2800  * Attach a logical domain channel (ldc) under a specified port.
2801  *
2802  * Returns 0 on success, 1 on failure.
2803  */
2804 static int
2805 vsw_ldc_attach(vsw_port_t *port, uint64_t ldc_id)
2806 {
2807 	vsw_t 		*vswp = port->p_vswp;
2808 	vsw_ldc_list_t *ldcl = &port->p_ldclist;
2809 	vsw_ldc_t 	*ldcp = NULL;
2810 	ldc_attr_t 	attr;
2811 	ldc_status_t	istatus;
2812 	int 		status = DDI_FAILURE;
2813 	int		rv;
2814 	enum		{ PROG_init = 0x0, PROG_mblks = 0x1,
2815 				PROG_callback = 0x2}
2816 			progress;
2817 
2818 	progress = PROG_init;
2819 
2820 	D1(vswp, "%s: enter", __func__);
2821 
2822 	ldcp = kmem_zalloc(sizeof (vsw_ldc_t), KM_NOSLEEP);
2823 	if (ldcp == NULL) {
2824 		DERR(vswp, "%s: kmem_zalloc failed", __func__);
2825 		return (1);
2826 	}
2827 	ldcp->ldc_id = ldc_id;
2828 
2829 	/* allocate pool of receive mblks */
2830 	rv = vio_create_mblks(vsw_num_mblks, vsw_mblk_size, &(ldcp->rxh));
2831 	if (rv) {
2832 		DWARN(vswp, "%s: unable to create free mblk pool for"
2833 			" channel %ld (rv %d)", __func__, ldc_id, rv);
2834 		kmem_free(ldcp, sizeof (vsw_ldc_t));
2835 		return (1);
2836 	}
2837 
2838 	progress |= PROG_mblks;
2839 
2840 	mutex_init(&ldcp->ldc_txlock, NULL, MUTEX_DRIVER, NULL);
2841 	mutex_init(&ldcp->ldc_cblock, NULL, MUTEX_DRIVER, NULL);
2842 	mutex_init(&ldcp->drain_cv_lock, NULL, MUTEX_DRIVER, NULL);
2843 	cv_init(&ldcp->drain_cv, NULL, CV_DRIVER, NULL);
2844 
2845 	/* required for handshake with peer */
2846 	ldcp->local_session = (uint64_t)ddi_get_lbolt();
2847 	ldcp->peer_session = 0;
2848 	ldcp->session_status = 0;
2849 
2850 	mutex_init(&ldcp->hss_lock, NULL, MUTEX_DRIVER, NULL);
2851 	ldcp->hss_id = 1;	/* Initial handshake session id */
2852 
2853 	/* only set for outbound lane, inbound set by peer */
2854 	mutex_init(&ldcp->lane_in.seq_lock, NULL, MUTEX_DRIVER, NULL);
2855 	mutex_init(&ldcp->lane_out.seq_lock, NULL, MUTEX_DRIVER, NULL);
2856 	vsw_set_lane_attr(vswp, &ldcp->lane_out);
2857 
2858 	attr.devclass = LDC_DEV_NT_SVC;
2859 	attr.instance = ddi_get_instance(vswp->dip);
2860 	attr.mode = LDC_MODE_UNRELIABLE;
2861 	attr.mtu = VSW_LDC_MTU;
2862 	status = ldc_init(ldc_id, &attr, &ldcp->ldc_handle);
2863 	if (status != 0) {
2864 		DERR(vswp, "%s(%lld): ldc_init failed, rv (%d)",
2865 		    __func__, ldc_id, status);
2866 		goto ldc_attach_fail;
2867 	}
2868 
2869 	status = ldc_reg_callback(ldcp->ldc_handle, vsw_ldc_cb, (caddr_t)ldcp);
2870 	if (status != 0) {
2871 		DERR(vswp, "%s(%lld): ldc_reg_callback failed, rv (%d)",
2872 		    __func__, ldc_id, status);
2873 		(void) ldc_fini(ldcp->ldc_handle);
2874 		goto ldc_attach_fail;
2875 	}
2876 
2877 	progress |= PROG_callback;
2878 
2879 	mutex_init(&ldcp->status_lock, NULL, MUTEX_DRIVER, NULL);
2880 
2881 	if (ldc_status(ldcp->ldc_handle, &istatus) != 0) {
2882 		DERR(vswp, "%s: ldc_status failed", __func__);
2883 		mutex_destroy(&ldcp->status_lock);
2884 		goto ldc_attach_fail;
2885 	}
2886 
2887 	ldcp->ldc_status = istatus;
2888 	ldcp->ldc_port = port;
2889 	ldcp->ldc_vswp = vswp;
2890 
2891 	/* link it into the list of channels for this port */
2892 	WRITE_ENTER(&ldcl->lockrw);
2893 	ldcp->ldc_next = ldcl->head;
2894 	ldcl->head = ldcp;
2895 	ldcl->num_ldcs++;
2896 	RW_EXIT(&ldcl->lockrw);
2897 
2898 	D1(vswp, "%s: exit", __func__);
2899 	return (0);
2900 
2901 ldc_attach_fail:
2902 	mutex_destroy(&ldcp->ldc_txlock);
2903 	mutex_destroy(&ldcp->ldc_cblock);
2904 
2905 	cv_destroy(&ldcp->drain_cv);
2906 
2907 	if (progress & PROG_callback) {
2908 		(void) ldc_unreg_callback(ldcp->ldc_handle);
2909 	}
2910 
2911 	if ((progress & PROG_mblks) && (ldcp->rxh != NULL)) {
2912 		if (vio_destroy_mblks(ldcp->rxh) != 0) {
2913 			/*
2914 			 * Something odd has happened, as the destroy
2915 			 * will only fail if some mblks have been allocated
2916 			 * from the pool already (which shouldn't happen)
2917 			 * and have not been returned.
2918 			 *
2919 			 * Add the pool pointer to a list maintained in
2920 			 * the device instance. Another attempt will be made
2921 			 * to free the pool when the device itself detaches.
2922 			 */
2923 			cmn_err(CE_WARN, "Creation of ldc channel %ld failed"
2924 				" and cannot destroy associated mblk pool",
2925 				ldc_id);
2926 			ldcp->rxh->nextp =  vswp->rxh;
2927 			vswp->rxh = ldcp->rxh;
2928 		}
2929 	}
2930 	mutex_destroy(&ldcp->drain_cv_lock);
2931 	mutex_destroy(&ldcp->hss_lock);
2932 
2933 	mutex_destroy(&ldcp->lane_in.seq_lock);
2934 	mutex_destroy(&ldcp->lane_out.seq_lock);
2935 	kmem_free(ldcp, sizeof (vsw_ldc_t));
2936 
2937 	return (1);
2938 }
2939 
2940 /*
2941  * Detach a logical domain channel (ldc) belonging to a
2942  * particular port.
2943  *
2944  * Returns 0 on success, 1 on failure.
2945  */
2946 static int
2947 vsw_ldc_detach(vsw_port_t *port, uint64_t ldc_id)
2948 {
2949 	vsw_t 		*vswp = port->p_vswp;
2950 	vsw_ldc_t 	*ldcp, *prev_ldcp;
2951 	vsw_ldc_list_t	*ldcl = &port->p_ldclist;
2952 	int 		rv;
2953 
2954 	prev_ldcp = ldcl->head;
2955 	for (; (ldcp = prev_ldcp) != NULL; prev_ldcp = ldcp->ldc_next) {
2956 		if (ldcp->ldc_id == ldc_id) {
2957 			break;
2958 		}
2959 	}
2960 
2961 	/* specified ldc id not found */
2962 	if (ldcp == NULL) {
2963 		DERR(vswp, "%s: ldcp = NULL", __func__);
2964 		return (1);
2965 	}
2966 
2967 	D2(vswp, "%s: detaching channel %lld", __func__, ldcp->ldc_id);
2968 
2969 	/*
2970 	 * Before we can close the channel we must release any mapped
2971 	 * resources (e.g. drings).
2972 	 */
2973 	vsw_free_lane_resources(ldcp, INBOUND);
2974 	vsw_free_lane_resources(ldcp, OUTBOUND);
2975 
2976 	/*
2977 	 * If the close fails we are in serious trouble, as won't
2978 	 * be able to delete the parent port.
2979 	 */
2980 	if ((rv = ldc_close(ldcp->ldc_handle)) != 0) {
2981 		DERR(vswp, "%s: error %d closing channel %lld",
2982 			__func__, rv, ldcp->ldc_id);
2983 		return (1);
2984 	}
2985 
2986 	(void) ldc_fini(ldcp->ldc_handle);
2987 
2988 	ldcp->ldc_status = LDC_INIT;
2989 	ldcp->ldc_handle = NULL;
2990 	ldcp->ldc_vswp = NULL;
2991 
2992 	if (ldcp->rxh != NULL) {
2993 		if (vio_destroy_mblks(ldcp->rxh)) {
2994 			/*
2995 			 * Mostly likely some mblks are still in use and
2996 			 * have not been returned to the pool. Add the pool
2997 			 * to the list maintained in the device instance.
2998 			 * Another attempt will be made to destroy the pool
2999 			 * when the device detaches.
3000 			 */
3001 			ldcp->rxh->nextp =  vswp->rxh;
3002 			vswp->rxh = ldcp->rxh;
3003 		}
3004 	}
3005 
3006 	/* unlink it from the list */
3007 	prev_ldcp = ldcp->ldc_next;
3008 	ldcl->num_ldcs--;
3009 
3010 	mutex_destroy(&ldcp->ldc_txlock);
3011 	mutex_destroy(&ldcp->ldc_cblock);
3012 	cv_destroy(&ldcp->drain_cv);
3013 	mutex_destroy(&ldcp->drain_cv_lock);
3014 	mutex_destroy(&ldcp->hss_lock);
3015 	mutex_destroy(&ldcp->lane_in.seq_lock);
3016 	mutex_destroy(&ldcp->lane_out.seq_lock);
3017 	mutex_destroy(&ldcp->status_lock);
3018 
3019 	kmem_free(ldcp, sizeof (vsw_ldc_t));
3020 
3021 	return (0);
3022 }
3023 
3024 /*
3025  * Open and attempt to bring up the channel. Note that channel
3026  * can only be brought up if peer has also opened channel.
3027  *
3028  * Returns 0 if can open and bring up channel, otherwise
3029  * returns 1.
3030  */
3031 static int
3032 vsw_ldc_init(vsw_ldc_t *ldcp)
3033 {
3034 	vsw_t 		*vswp = ldcp->ldc_vswp;
3035 	ldc_status_t	istatus = 0;
3036 	int		rv;
3037 
3038 	D1(vswp, "%s: enter", __func__);
3039 
3040 	LDC_ENTER_LOCK(ldcp);
3041 
3042 	/* don't start at 0 in case clients don't like that */
3043 	ldcp->next_ident = 1;
3044 
3045 	rv = ldc_open(ldcp->ldc_handle);
3046 	if (rv != 0) {
3047 		DERR(vswp, "%s: ldc_open failed: id(%lld) rv(%d)",
3048 		    __func__, ldcp->ldc_id, rv);
3049 		LDC_EXIT_LOCK(ldcp);
3050 		return (1);
3051 	}
3052 
3053 	if (ldc_status(ldcp->ldc_handle, &istatus) != 0) {
3054 		DERR(vswp, "%s: unable to get status", __func__);
3055 		LDC_EXIT_LOCK(ldcp);
3056 		return (1);
3057 
3058 	} else if (istatus != LDC_OPEN && istatus != LDC_READY) {
3059 		DERR(vswp, "%s: id (%lld) status(%d) is not OPEN/READY",
3060 		    __func__, ldcp->ldc_id, istatus);
3061 		LDC_EXIT_LOCK(ldcp);
3062 		return (1);
3063 	}
3064 
3065 	mutex_enter(&ldcp->status_lock);
3066 	ldcp->ldc_status = istatus;
3067 	mutex_exit(&ldcp->status_lock);
3068 
3069 	rv = ldc_up(ldcp->ldc_handle);
3070 	if (rv != 0) {
3071 		/*
3072 		 * Not a fatal error for ldc_up() to fail, as peer
3073 		 * end point may simply not be ready yet.
3074 		 */
3075 		D2(vswp, "%s: ldc_up err id(%lld) rv(%d)", __func__,
3076 			ldcp->ldc_id, rv);
3077 		LDC_EXIT_LOCK(ldcp);
3078 		return (1);
3079 	}
3080 
3081 	/*
3082 	 * ldc_up() call is non-blocking so need to explicitly
3083 	 * check channel status to see if in fact the channel
3084 	 * is UP.
3085 	 */
3086 	mutex_enter(&ldcp->status_lock);
3087 	istatus = ldcp->ldc_status;
3088 	if (ldc_status(ldcp->ldc_handle, &ldcp->ldc_status) != 0) {
3089 		DERR(vswp, "%s: unable to get status", __func__);
3090 		mutex_exit(&ldcp->status_lock);
3091 		LDC_EXIT_LOCK(ldcp);
3092 		return (1);
3093 
3094 	}
3095 	mutex_exit(&ldcp->status_lock);
3096 	LDC_EXIT_LOCK(ldcp);
3097 
3098 	if ((istatus != LDC_UP) && (ldcp->ldc_status == LDC_UP)) {
3099 		D2(vswp, "%s: channel %ld now UP (%ld)", __func__,
3100 			ldcp->ldc_id, istatus);
3101 		vsw_restart_handshake(ldcp);
3102 	}
3103 
3104 	D1(vswp, "%s: exit", __func__);
3105 	return (0);
3106 }
3107 
3108 /* disable callbacks on the channel */
3109 static int
3110 vsw_ldc_uninit(vsw_ldc_t *ldcp)
3111 {
3112 	vsw_t	*vswp = ldcp->ldc_vswp;
3113 	int	rv;
3114 
3115 	D1(vswp, "vsw_ldc_uninit: enter: id(%lx)\n", ldcp->ldc_id);
3116 
3117 	LDC_ENTER_LOCK(ldcp);
3118 
3119 	rv = ldc_set_cb_mode(ldcp->ldc_handle, LDC_CB_DISABLE);
3120 	if (rv != 0) {
3121 		DERR(vswp, "vsw_ldc_uninit(%lld): error disabling "
3122 			"interrupts (rv = %d)\n", ldcp->ldc_id, rv);
3123 		LDC_EXIT_LOCK(ldcp);
3124 		return (1);
3125 	}
3126 
3127 	mutex_enter(&ldcp->status_lock);
3128 	ldcp->ldc_status = LDC_INIT;
3129 	mutex_exit(&ldcp->status_lock);
3130 
3131 	LDC_EXIT_LOCK(ldcp);
3132 
3133 	D1(vswp, "vsw_ldc_uninit: exit: id(%lx)", ldcp->ldc_id);
3134 
3135 	return (0);
3136 }
3137 
3138 static int
3139 vsw_init_ldcs(vsw_port_t *port)
3140 {
3141 	vsw_ldc_list_t	*ldcl = &port->p_ldclist;
3142 	vsw_ldc_t	*ldcp;
3143 
3144 	READ_ENTER(&ldcl->lockrw);
3145 	ldcp =  ldcl->head;
3146 	for (; ldcp  != NULL; ldcp = ldcp->ldc_next) {
3147 		(void) vsw_ldc_init(ldcp);
3148 	}
3149 	RW_EXIT(&ldcl->lockrw);
3150 
3151 	return (0);
3152 }
3153 
3154 static int
3155 vsw_uninit_ldcs(vsw_port_t *port)
3156 {
3157 	vsw_ldc_list_t	*ldcl = &port->p_ldclist;
3158 	vsw_ldc_t	*ldcp;
3159 
3160 	D1(NULL, "vsw_uninit_ldcs: enter\n");
3161 
3162 	READ_ENTER(&ldcl->lockrw);
3163 	ldcp =  ldcl->head;
3164 	for (; ldcp  != NULL; ldcp = ldcp->ldc_next) {
3165 		(void) vsw_ldc_uninit(ldcp);
3166 	}
3167 	RW_EXIT(&ldcl->lockrw);
3168 
3169 	D1(NULL, "vsw_uninit_ldcs: exit\n");
3170 
3171 	return (0);
3172 }
3173 
3174 /*
3175  * Wait until the callback(s) associated with the ldcs under the specified
3176  * port have completed.
3177  *
3178  * Prior to this function being invoked each channel under this port
3179  * should have been quiesced via ldc_set_cb_mode(DISABLE).
3180  *
3181  * A short explaination of what we are doing below..
3182  *
3183  * The simplest approach would be to have a reference counter in
3184  * the ldc structure which is increment/decremented by the callbacks as
3185  * they use the channel. The drain function could then simply disable any
3186  * further callbacks and do a cv_wait for the ref to hit zero. Unfortunately
3187  * there is a tiny window here - before the callback is able to get the lock
3188  * on the channel it is interrupted and this function gets to execute. It
3189  * sees that the ref count is zero and believes its free to delete the
3190  * associated data structures.
3191  *
3192  * We get around this by taking advantage of the fact that before the ldc
3193  * framework invokes a callback it sets a flag to indicate that there is a
3194  * callback active (or about to become active). If when we attempt to
3195  * unregister a callback when this active flag is set then the unregister
3196  * will fail with EWOULDBLOCK.
3197  *
3198  * If the unregister fails we do a cv_timedwait. We will either be signaled
3199  * by the callback as it is exiting (note we have to wait a short period to
3200  * allow the callback to return fully to the ldc framework and it to clear
3201  * the active flag), or by the timer expiring. In either case we again attempt
3202  * the unregister. We repeat this until we can succesfully unregister the
3203  * callback.
3204  *
3205  * The reason we use a cv_timedwait rather than a simple cv_wait is to catch
3206  * the case where the callback has finished but the ldc framework has not yet
3207  * cleared the active flag. In this case we would never get a cv_signal.
3208  */
3209 static int
3210 vsw_drain_ldcs(vsw_port_t *port)
3211 {
3212 	vsw_ldc_list_t	*ldcl = &port->p_ldclist;
3213 	vsw_ldc_t	*ldcp;
3214 	vsw_t		*vswp = port->p_vswp;
3215 
3216 	D1(vswp, "%s: enter", __func__);
3217 
3218 	READ_ENTER(&ldcl->lockrw);
3219 
3220 	ldcp = ldcl->head;
3221 
3222 	for (; ldcp  != NULL; ldcp = ldcp->ldc_next) {
3223 		/*
3224 		 * If we can unregister the channel callback then we
3225 		 * know that there is no callback either running or
3226 		 * scheduled to run for this channel so move on to next
3227 		 * channel in the list.
3228 		 */
3229 		mutex_enter(&ldcp->drain_cv_lock);
3230 
3231 		/* prompt active callbacks to quit */
3232 		ldcp->drain_state = VSW_LDC_DRAINING;
3233 
3234 		if ((ldc_unreg_callback(ldcp->ldc_handle)) == 0) {
3235 			D2(vswp, "%s: unreg callback for chan %ld", __func__,
3236 				ldcp->ldc_id);
3237 			mutex_exit(&ldcp->drain_cv_lock);
3238 			continue;
3239 		} else {
3240 			/*
3241 			 * If we end up here we know that either 1) a callback
3242 			 * is currently executing, 2) is about to start (i.e.
3243 			 * the ldc framework has set the active flag but
3244 			 * has not actually invoked the callback yet, or 3)
3245 			 * has finished and has returned to the ldc framework
3246 			 * but the ldc framework has not yet cleared the
3247 			 * active bit.
3248 			 *
3249 			 * Wait for it to finish.
3250 			 */
3251 			while (ldc_unreg_callback(ldcp->ldc_handle)
3252 								== EWOULDBLOCK)
3253 				(void) cv_timedwait(&ldcp->drain_cv,
3254 					&ldcp->drain_cv_lock, lbolt + hz);
3255 
3256 			mutex_exit(&ldcp->drain_cv_lock);
3257 			D2(vswp, "%s: unreg callback for chan %ld after "
3258 				"timeout", __func__, ldcp->ldc_id);
3259 		}
3260 	}
3261 	RW_EXIT(&ldcl->lockrw);
3262 
3263 	D1(vswp, "%s: exit", __func__);
3264 	return (0);
3265 }
3266 
3267 /*
3268  * Wait until all tasks which reference this port have completed.
3269  *
3270  * Prior to this function being invoked each channel under this port
3271  * should have been quiesced via ldc_set_cb_mode(DISABLE).
3272  */
3273 static int
3274 vsw_drain_port_taskq(vsw_port_t *port)
3275 {
3276 	vsw_t		*vswp = port->p_vswp;
3277 
3278 	D1(vswp, "%s: enter", __func__);
3279 
3280 	/*
3281 	 * Mark the port as in the process of being detached, and
3282 	 * dispatch a marker task to the queue so we know when all
3283 	 * relevant tasks have completed.
3284 	 */
3285 	mutex_enter(&port->state_lock);
3286 	port->state = VSW_PORT_DETACHING;
3287 
3288 	if ((vswp->taskq_p == NULL) ||
3289 		(ddi_taskq_dispatch(vswp->taskq_p, vsw_marker_task,
3290 			port, DDI_NOSLEEP) != DDI_SUCCESS)) {
3291 		DERR(vswp, "%s: unable to dispatch marker task",
3292 			__func__);
3293 		mutex_exit(&port->state_lock);
3294 		return (1);
3295 	}
3296 
3297 	/*
3298 	 * Wait for the marker task to finish.
3299 	 */
3300 	while (port->state != VSW_PORT_DETACHABLE)
3301 		cv_wait(&port->state_cv, &port->state_lock);
3302 
3303 	mutex_exit(&port->state_lock);
3304 
3305 	D1(vswp, "%s: exit", __func__);
3306 
3307 	return (0);
3308 }
3309 
3310 static void
3311 vsw_marker_task(void *arg)
3312 {
3313 	vsw_port_t	*port = arg;
3314 	vsw_t		*vswp = port->p_vswp;
3315 
3316 	D1(vswp, "%s: enter", __func__);
3317 
3318 	mutex_enter(&port->state_lock);
3319 
3320 	/*
3321 	 * No further tasks should be dispatched which reference
3322 	 * this port so ok to mark it as safe to detach.
3323 	 */
3324 	port->state = VSW_PORT_DETACHABLE;
3325 
3326 	cv_signal(&port->state_cv);
3327 
3328 	mutex_exit(&port->state_lock);
3329 
3330 	D1(vswp, "%s: exit", __func__);
3331 }
3332 
3333 static vsw_port_t *
3334 vsw_lookup_port(vsw_t *vswp, int p_instance)
3335 {
3336 	vsw_port_list_t *plist = &vswp->plist;
3337 	vsw_port_t	*port;
3338 
3339 	for (port = plist->head; port != NULL; port = port->p_next) {
3340 		if (port->p_instance == p_instance) {
3341 			D2(vswp, "vsw_lookup_port: found p_instance\n");
3342 			return (port);
3343 		}
3344 	}
3345 
3346 	return (NULL);
3347 }
3348 
3349 /*
3350  * Search for and remove the specified port from the port
3351  * list. Returns 0 if able to locate and remove port, otherwise
3352  * returns 1.
3353  */
3354 static int
3355 vsw_plist_del_node(vsw_t *vswp, vsw_port_t *port)
3356 {
3357 	vsw_port_list_t *plist = &vswp->plist;
3358 	vsw_port_t	*curr_p, *prev_p;
3359 
3360 	if (plist->head == NULL)
3361 		return (1);
3362 
3363 	curr_p = prev_p = plist->head;
3364 
3365 	while (curr_p != NULL) {
3366 		if (curr_p == port) {
3367 			if (prev_p == curr_p) {
3368 				plist->head = curr_p->p_next;
3369 			} else {
3370 				prev_p->p_next = curr_p->p_next;
3371 			}
3372 			plist->num_ports--;
3373 			break;
3374 		} else {
3375 			prev_p = curr_p;
3376 			curr_p = curr_p->p_next;
3377 		}
3378 	}
3379 	return (0);
3380 }
3381 
3382 /*
3383  * Interrupt handler for ldc messages.
3384  */
3385 static uint_t
3386 vsw_ldc_cb(uint64_t event, caddr_t arg)
3387 {
3388 	vsw_ldc_t	*ldcp = (vsw_ldc_t  *)arg;
3389 	vsw_t 		*vswp = ldcp->ldc_vswp;
3390 	ldc_status_t	lstatus;
3391 	int		rv;
3392 
3393 	D1(vswp, "%s: enter: ldcid (%lld)\n", __func__, ldcp->ldc_id);
3394 
3395 	mutex_enter(&ldcp->ldc_cblock);
3396 
3397 	if ((ldcp->ldc_status == LDC_INIT) || (ldcp->ldc_handle == NULL)) {
3398 		mutex_exit(&ldcp->ldc_cblock);
3399 		return (LDC_SUCCESS);
3400 	}
3401 
3402 	mutex_enter(&ldcp->status_lock);
3403 	lstatus = ldcp->ldc_status;
3404 	rv = ldc_status(ldcp->ldc_handle, &ldcp->ldc_status);
3405 	mutex_exit(&ldcp->status_lock);
3406 	if (rv != 0) {
3407 		cmn_err(CE_WARN, "Unable to read channel state");
3408 		goto vsw_cb_exit;
3409 	}
3410 
3411 	if (event & LDC_EVT_UP) {
3412 		/*
3413 		 * Channel has come up, get the state and then start
3414 		 * the handshake.
3415 		 */
3416 		D2(vswp, "%s: id(%ld) event(%llx) UP: status(%ld)",
3417 			__func__, ldcp->ldc_id, event, lstatus);
3418 		D2(vswp, "%s: UP: old status %ld : cur status %ld",
3419 			__func__, lstatus, ldcp->ldc_status);
3420 		if ((ldcp->ldc_status != lstatus) &&
3421 					(ldcp->ldc_status == LDC_UP)) {
3422 				vsw_restart_handshake(ldcp);
3423 		}
3424 
3425 		ASSERT((event & (LDC_EVT_RESET | LDC_EVT_DOWN)) == 0);
3426 	}
3427 
3428 	if (event & LDC_EVT_READ) {
3429 		/*
3430 		 * Data available for reading.
3431 		 */
3432 		D2(vswp, "%s: id(ld) event(%llx) data READ",
3433 				__func__, ldcp->ldc_id, event);
3434 
3435 		vsw_process_pkt(ldcp);
3436 
3437 		ASSERT((event & (LDC_EVT_RESET | LDC_EVT_DOWN)) == 0);
3438 
3439 		goto vsw_cb_exit;
3440 	}
3441 
3442 	if (event & (LDC_EVT_DOWN | LDC_EVT_RESET)) {
3443 		D2(vswp, "%s: id(%ld) event(%llx) DOWN/RESET",
3444 					__func__, ldcp->ldc_id, event);
3445 
3446 		/* attempt to restart the connection */
3447 		vsw_restart_ldc(ldcp);
3448 
3449 		/*
3450 		 * vsw_restart_ldc() will attempt to bring the channel
3451 		 * back up. Check here to see if that succeeded.
3452 		 */
3453 		mutex_enter(&ldcp->status_lock);
3454 		lstatus = ldcp->ldc_status;
3455 		rv = ldc_status(ldcp->ldc_handle, &ldcp->ldc_status);
3456 		mutex_exit(&ldcp->status_lock);
3457 		if (rv != 0) {
3458 			DERR(vswp, "%s: unable to read status for channel %ld",
3459 				__func__, ldcp->ldc_id);
3460 			goto vsw_cb_exit;
3461 		}
3462 
3463 		D2(vswp, "%s: id(%ld) event(%llx) DOWN/RESET event:"
3464 			" old status %ld : cur status %ld", __func__,
3465 			ldcp->ldc_id, event, lstatus, ldcp->ldc_status);
3466 
3467 		/*
3468 		 * If channel was not previously UP then (re)start the
3469 		 * handshake.
3470 		 */
3471 		if ((ldcp->ldc_status == LDC_UP) && (lstatus != LDC_UP)) {
3472 			D2(vswp, "%s: channel %ld now UP, restarting "
3473 				"handshake", __func__, ldcp->ldc_id);
3474 			vsw_restart_handshake(ldcp);
3475 		}
3476 	}
3477 
3478 	/*
3479 	 * Catch either LDC_EVT_WRITE which we don't support or any
3480 	 * unknown event.
3481 	 */
3482 	if (event & ~(LDC_EVT_UP | LDC_EVT_RESET
3483 					| LDC_EVT_DOWN | LDC_EVT_READ)) {
3484 
3485 		DERR(vswp, "%s: id(%ld) Unexpected event=(%llx) status(%ld)",
3486 			__func__, ldcp->ldc_id, event, ldcp->ldc_status);
3487 	}
3488 
3489 vsw_cb_exit:
3490 	mutex_exit(&ldcp->ldc_cblock);
3491 
3492 	/*
3493 	 * Let the drain function know we are finishing if it
3494 	 * is waiting.
3495 	 */
3496 	mutex_enter(&ldcp->drain_cv_lock);
3497 	if (ldcp->drain_state == VSW_LDC_DRAINING)
3498 		cv_signal(&ldcp->drain_cv);
3499 	mutex_exit(&ldcp->drain_cv_lock);
3500 
3501 	return (LDC_SUCCESS);
3502 }
3503 
3504 /*
3505  * Restart the connection with our peer. Free any existing
3506  * data structures and then attempt to bring channel back
3507  * up.
3508  */
3509 static void
3510 vsw_restart_ldc(vsw_ldc_t *ldcp)
3511 {
3512 	int		rv;
3513 	vsw_t		*vswp = ldcp->ldc_vswp;
3514 	vsw_port_t	*port;
3515 	vsw_ldc_list_t	*ldcl;
3516 
3517 	D1(vswp, "%s: enter", __func__);
3518 
3519 	port = ldcp->ldc_port;
3520 	ldcl = &port->p_ldclist;
3521 
3522 	READ_ENTER(&ldcl->lockrw);
3523 
3524 	D2(vswp, "%s: in 0x%llx : out 0x%llx", __func__,
3525 		ldcp->lane_in.lstate, ldcp->lane_out.lstate);
3526 
3527 	vsw_free_lane_resources(ldcp, INBOUND);
3528 	vsw_free_lane_resources(ldcp, OUTBOUND);
3529 	RW_EXIT(&ldcl->lockrw);
3530 
3531 	ldcp->lane_in.lstate = 0;
3532 	ldcp->lane_out.lstate = 0;
3533 
3534 	/*
3535 	 * Remove parent port from any multicast groups
3536 	 * it may have registered with. Client must resend
3537 	 * multicast add command after handshake completes.
3538 	 */
3539 	(void) vsw_del_fdb(vswp, port);
3540 
3541 	vsw_del_mcst_port(port);
3542 
3543 	ldcp->peer_session = 0;
3544 	ldcp->session_status = 0;
3545 	ldcp->hcnt = 0;
3546 	ldcp->hphase = VSW_MILESTONE0;
3547 
3548 	rv = ldc_up(ldcp->ldc_handle);
3549 	if (rv != 0) {
3550 		/*
3551 		 * Not a fatal error for ldc_up() to fail, as peer
3552 		 * end point may simply not be ready yet.
3553 		 */
3554 		D2(vswp, "%s: ldc_up err id(%lld) rv(%d)", __func__,
3555 			ldcp->ldc_id, rv);
3556 	}
3557 
3558 	D1(vswp, "%s: exit", __func__);
3559 }
3560 
3561 /*
3562  * (Re)start a handshake with our peer by sending them
3563  * our version info.
3564  */
3565 static void
3566 vsw_restart_handshake(vsw_ldc_t *ldcp)
3567 {
3568 	vsw_t		*vswp = ldcp->ldc_vswp;
3569 
3570 	D1(vswp, "vsw_restart_handshake: enter");
3571 
3572 	if (ldcp->hphase != VSW_MILESTONE0) {
3573 		vsw_restart_ldc(ldcp);
3574 	}
3575 
3576 	/*
3577 	 * We now increment the transaction group id. This allows
3578 	 * us to identify and disard any tasks which are still pending
3579 	 * on the taskq and refer to the handshake session we are about
3580 	 * to restart. These stale messages no longer have any real
3581 	 * meaning.
3582 	 */
3583 	mutex_enter(&ldcp->hss_lock);
3584 	ldcp->hss_id++;
3585 	mutex_exit(&ldcp->hss_lock);
3586 
3587 	if (ldcp->hcnt++ > vsw_num_handshakes) {
3588 		cmn_err(CE_WARN, "exceeded number of permitted "
3589 			"handshake attempts (%d) on channel %ld",
3590 			ldcp->hcnt, ldcp->ldc_id);
3591 		return;
3592 	}
3593 
3594 	if ((vswp->taskq_p == NULL) ||
3595 		(ddi_taskq_dispatch(vswp->taskq_p, vsw_send_ver, ldcp,
3596 			DDI_NOSLEEP) != DDI_SUCCESS)) {
3597 		cmn_err(CE_WARN, "Can't dispatch version handshake task");
3598 	}
3599 
3600 	D1(vswp, "vsw_restart_handshake: exit");
3601 }
3602 
3603 /*
3604  * Deal appropriately with a ECONNRESET event encountered in a ldc_*
3605  * call.
3606  */
3607 static void
3608 vsw_handle_reset(vsw_ldc_t *ldcp)
3609 {
3610 	vsw_t		*vswp = ldcp->ldc_vswp;
3611 	ldc_status_t	lstatus;
3612 
3613 	D1(vswp, "%s: enter", __func__);
3614 
3615 	mutex_enter(&ldcp->status_lock);
3616 	lstatus = ldcp->ldc_status;
3617 	if (ldc_status(ldcp->ldc_handle, &ldcp->ldc_status) != 0) {
3618 		DERR(vswp, "%s: unable to read status for channel %ld",
3619 			__func__, ldcp->ldc_id);
3620 		mutex_exit(&ldcp->status_lock);
3621 		return;
3622 	}
3623 	mutex_exit(&ldcp->status_lock);
3624 
3625 	/*
3626 	 * Check the channel's previous recorded state to
3627 	 * determine if this is the first ECONNRESET event
3628 	 * we've gotten for this particular channel (i.e. was
3629 	 * previously up but is no longer). If so, terminate
3630 	 * the channel.
3631 	 */
3632 	if ((ldcp->ldc_status != LDC_UP) && (lstatus == LDC_UP)) {
3633 		vsw_restart_ldc(ldcp);
3634 	}
3635 
3636 	/*
3637 	 * vsw_restart_ldc() will also attempt to bring channel
3638 	 * back up. Check here if that succeeds.
3639 	 */
3640 	mutex_enter(&ldcp->status_lock);
3641 	lstatus = ldcp->ldc_status;
3642 	if (ldc_status(ldcp->ldc_handle, &ldcp->ldc_status) != 0) {
3643 		DERR(vswp, "%s: unable to read status for channel %ld",
3644 			__func__, ldcp->ldc_id);
3645 		mutex_exit(&ldcp->status_lock);
3646 		return;
3647 	}
3648 	mutex_exit(&ldcp->status_lock);
3649 
3650 	/*
3651 	 * If channel is now up and no one else (i.e. the callback routine)
3652 	 * has dealt with it then we restart the handshake here.
3653 	 */
3654 	if ((lstatus != LDC_UP) && (ldcp->ldc_status == LDC_UP)) {
3655 		vsw_restart_handshake(ldcp);
3656 	}
3657 
3658 	D1(vswp, "%s: exit", __func__);
3659 }
3660 
3661 /*
3662  * returns 0 if legal for event signified by flag to have
3663  * occured at the time it did. Otherwise returns 1.
3664  */
3665 int
3666 vsw_check_flag(vsw_ldc_t *ldcp, int dir, uint64_t flag)
3667 {
3668 	vsw_t		*vswp = ldcp->ldc_vswp;
3669 	uint64_t	state;
3670 	uint64_t	phase;
3671 
3672 	if (dir == INBOUND)
3673 		state = ldcp->lane_in.lstate;
3674 	else
3675 		state = ldcp->lane_out.lstate;
3676 
3677 	phase = ldcp->hphase;
3678 
3679 	switch (flag) {
3680 	case VSW_VER_INFO_RECV:
3681 		if (phase > VSW_MILESTONE0) {
3682 			DERR(vswp, "vsw_check_flag (%d): VER_INFO_RECV"
3683 				" when in state %d\n", ldcp->ldc_id, phase);
3684 			vsw_restart_handshake(ldcp);
3685 			return (1);
3686 		}
3687 		break;
3688 
3689 	case VSW_VER_ACK_RECV:
3690 	case VSW_VER_NACK_RECV:
3691 		if (!(state & VSW_VER_INFO_SENT)) {
3692 			DERR(vswp, "vsw_check_flag (%d): spurious VER_ACK"
3693 				" or VER_NACK when in state %d\n",
3694 				ldcp->ldc_id, phase);
3695 			vsw_restart_handshake(ldcp);
3696 			return (1);
3697 		} else
3698 			state &= ~VSW_VER_INFO_SENT;
3699 		break;
3700 
3701 	case VSW_ATTR_INFO_RECV:
3702 		if ((phase < VSW_MILESTONE1) || (phase >= VSW_MILESTONE2)) {
3703 			DERR(vswp, "vsw_check_flag (%d): ATTR_INFO_RECV"
3704 				" when in state %d\n", ldcp->ldc_id, phase);
3705 			vsw_restart_handshake(ldcp);
3706 			return (1);
3707 		}
3708 		break;
3709 
3710 	case VSW_ATTR_ACK_RECV:
3711 	case VSW_ATTR_NACK_RECV:
3712 		if (!(state & VSW_ATTR_INFO_SENT)) {
3713 			DERR(vswp, "vsw_check_flag (%d): spurious ATTR_ACK"
3714 				" or ATTR_NACK when in state %d\n",
3715 				ldcp->ldc_id, phase);
3716 			vsw_restart_handshake(ldcp);
3717 			return (1);
3718 		} else
3719 			state &= ~VSW_ATTR_INFO_SENT;
3720 		break;
3721 
3722 	case VSW_DRING_INFO_RECV:
3723 		if (phase < VSW_MILESTONE1) {
3724 			DERR(vswp, "vsw_check_flag (%d): DRING_INFO_RECV"
3725 				" when in state %d\n", ldcp->ldc_id, phase);
3726 			vsw_restart_handshake(ldcp);
3727 			return (1);
3728 		}
3729 		break;
3730 
3731 	case VSW_DRING_ACK_RECV:
3732 	case VSW_DRING_NACK_RECV:
3733 		if (!(state & VSW_DRING_INFO_SENT)) {
3734 			DERR(vswp, "vsw_check_flag (%d): spurious DRING_ACK"
3735 				" or DRING_NACK when in state %d\n",
3736 				ldcp->ldc_id, phase);
3737 			vsw_restart_handshake(ldcp);
3738 			return (1);
3739 		} else
3740 			state &= ~VSW_DRING_INFO_SENT;
3741 		break;
3742 
3743 	case VSW_RDX_INFO_RECV:
3744 		if (phase < VSW_MILESTONE3) {
3745 			DERR(vswp, "vsw_check_flag (%d): RDX_INFO_RECV"
3746 				" when in state %d\n", ldcp->ldc_id, phase);
3747 			vsw_restart_handshake(ldcp);
3748 			return (1);
3749 		}
3750 		break;
3751 
3752 	case VSW_RDX_ACK_RECV:
3753 	case VSW_RDX_NACK_RECV:
3754 		if (!(state & VSW_RDX_INFO_SENT)) {
3755 			DERR(vswp, "vsw_check_flag (%d): spurious RDX_ACK"
3756 				" or RDX_NACK when in state %d\n",
3757 				ldcp->ldc_id, phase);
3758 			vsw_restart_handshake(ldcp);
3759 			return (1);
3760 		} else
3761 			state &= ~VSW_RDX_INFO_SENT;
3762 		break;
3763 
3764 	case VSW_MCST_INFO_RECV:
3765 		if (phase < VSW_MILESTONE3) {
3766 			DERR(vswp, "vsw_check_flag (%d): VSW_MCST_INFO_RECV"
3767 				" when in state %d\n", ldcp->ldc_id, phase);
3768 			vsw_restart_handshake(ldcp);
3769 			return (1);
3770 		}
3771 		break;
3772 
3773 	default:
3774 		DERR(vswp, "vsw_check_flag (%lld): unknown flag (%llx)",
3775 				ldcp->ldc_id, flag);
3776 		return (1);
3777 	}
3778 
3779 	if (dir == INBOUND)
3780 		ldcp->lane_in.lstate = state;
3781 	else
3782 		ldcp->lane_out.lstate = state;
3783 
3784 	D1(vswp, "vsw_check_flag (chan %lld): exit", ldcp->ldc_id);
3785 
3786 	return (0);
3787 }
3788 
3789 void
3790 vsw_next_milestone(vsw_ldc_t *ldcp)
3791 {
3792 	vsw_t		*vswp = ldcp->ldc_vswp;
3793 
3794 	D1(vswp, "%s (chan %lld): enter (phase %ld)", __func__,
3795 		ldcp->ldc_id, ldcp->hphase);
3796 
3797 	DUMP_FLAGS(ldcp->lane_in.lstate);
3798 	DUMP_FLAGS(ldcp->lane_out.lstate);
3799 
3800 	switch (ldcp->hphase) {
3801 
3802 	case VSW_MILESTONE0:
3803 		/*
3804 		 * If we haven't started to handshake with our peer,
3805 		 * start to do so now.
3806 		 */
3807 		if (ldcp->lane_out.lstate == 0) {
3808 			D2(vswp, "%s: (chan %lld) starting handshake "
3809 				"with peer", __func__, ldcp->ldc_id);
3810 			vsw_restart_handshake(ldcp);
3811 		}
3812 
3813 		/*
3814 		 * Only way to pass this milestone is to have successfully
3815 		 * negotiated version info.
3816 		 */
3817 		if ((ldcp->lane_in.lstate & VSW_VER_ACK_SENT) &&
3818 			(ldcp->lane_out.lstate & VSW_VER_ACK_RECV)) {
3819 
3820 			D2(vswp, "%s: (chan %lld) leaving milestone 0",
3821 				__func__, ldcp->ldc_id);
3822 
3823 			/*
3824 			 * Next milestone is passed when attribute
3825 			 * information has been successfully exchanged.
3826 			 */
3827 			ldcp->hphase = VSW_MILESTONE1;
3828 			vsw_send_attr(ldcp);
3829 
3830 		}
3831 		break;
3832 
3833 	case VSW_MILESTONE1:
3834 		/*
3835 		 * Only way to pass this milestone is to have successfully
3836 		 * negotiated attribute information.
3837 		 */
3838 		if (ldcp->lane_in.lstate & VSW_ATTR_ACK_SENT) {
3839 
3840 			ldcp->hphase = VSW_MILESTONE2;
3841 
3842 			/*
3843 			 * If the peer device has said it wishes to
3844 			 * use descriptor rings then we send it our ring
3845 			 * info, otherwise we just set up a private ring
3846 			 * which we use an internal buffer
3847 			 */
3848 			if (ldcp->lane_in.xfer_mode == VIO_DRING_MODE)
3849 				vsw_send_dring_info(ldcp);
3850 		}
3851 		break;
3852 
3853 
3854 	case VSW_MILESTONE2:
3855 		/*
3856 		 * If peer has indicated in its attribute message that
3857 		 * it wishes to use descriptor rings then the only way
3858 		 * to pass this milestone is for us to have received
3859 		 * valid dring info.
3860 		 *
3861 		 * If peer is not using descriptor rings then just fall
3862 		 * through.
3863 		 */
3864 		if ((ldcp->lane_in.xfer_mode == VIO_DRING_MODE) &&
3865 			(!(ldcp->lane_in.lstate & VSW_DRING_ACK_SENT)))
3866 			break;
3867 
3868 		D2(vswp, "%s: (chan %lld) leaving milestone 2",
3869 				__func__, ldcp->ldc_id);
3870 
3871 		ldcp->hphase = VSW_MILESTONE3;
3872 		vsw_send_rdx(ldcp);
3873 		break;
3874 
3875 	case VSW_MILESTONE3:
3876 		/*
3877 		 * Pass this milestone when all paramaters have been
3878 		 * successfully exchanged and RDX sent in both directions.
3879 		 *
3880 		 * Mark outbound lane as available to transmit data.
3881 		 */
3882 		if ((ldcp->lane_in.lstate & VSW_RDX_ACK_SENT) &&
3883 			(ldcp->lane_out.lstate & VSW_RDX_ACK_RECV)) {
3884 
3885 			D2(vswp, "%s: (chan %lld) leaving milestone 3",
3886 				__func__, ldcp->ldc_id);
3887 			D2(vswp, "%s: ** handshake complete (0x%llx : "
3888 				"0x%llx) **", __func__, ldcp->lane_in.lstate,
3889 				ldcp->lane_out.lstate);
3890 			ldcp->lane_out.lstate |= VSW_LANE_ACTIVE;
3891 			ldcp->hphase = VSW_MILESTONE4;
3892 			ldcp->hcnt = 0;
3893 			DISPLAY_STATE();
3894 		} else {
3895 			D2(vswp, "%s: still in milestone 3 (0x%llx :"
3896 				" 0x%llx", __func__, ldcp->lane_in.lstate,
3897 				ldcp->lane_out.lstate);
3898 		}
3899 		break;
3900 
3901 	case VSW_MILESTONE4:
3902 		D2(vswp, "%s: (chan %lld) in milestone 4", __func__,
3903 							ldcp->ldc_id);
3904 		break;
3905 
3906 	default:
3907 		DERR(vswp, "%s: (chan %lld) Unknown Phase %x", __func__,
3908 			ldcp->ldc_id, ldcp->hphase);
3909 	}
3910 
3911 	D1(vswp, "%s (chan %lld): exit (phase %ld)", __func__, ldcp->ldc_id,
3912 		ldcp->hphase);
3913 }
3914 
3915 /*
3916  * Check if major version is supported.
3917  *
3918  * Returns 0 if finds supported major number, and if necessary
3919  * adjusts the minor field.
3920  *
3921  * Returns 1 if can't match major number exactly. Sets mjor/minor
3922  * to next lowest support values, or to zero if no other values possible.
3923  */
3924 static int
3925 vsw_supported_version(vio_ver_msg_t *vp)
3926 {
3927 	int	i;
3928 
3929 	D1(NULL, "vsw_supported_version: enter");
3930 
3931 	for (i = 0; i < VSW_NUM_VER; i++) {
3932 		if (vsw_versions[i].ver_major == vp->ver_major) {
3933 			/*
3934 			 * Matching or lower major version found. Update
3935 			 * minor number if necessary.
3936 			 */
3937 			if (vp->ver_minor > vsw_versions[i].ver_minor) {
3938 				D2(NULL, "%s: adjusting minor value"
3939 					" from %d to %d", __func__,
3940 					vp->ver_minor,
3941 					vsw_versions[i].ver_minor);
3942 				vp->ver_minor = vsw_versions[i].ver_minor;
3943 			}
3944 
3945 			return (0);
3946 		}
3947 
3948 		if (vsw_versions[i].ver_major < vp->ver_major) {
3949 			if (vp->ver_minor > vsw_versions[i].ver_minor) {
3950 				D2(NULL, "%s: adjusting minor value"
3951 					" from %d to %d", __func__,
3952 					vp->ver_minor,
3953 					vsw_versions[i].ver_minor);
3954 				vp->ver_minor = vsw_versions[i].ver_minor;
3955 			}
3956 			return (1);
3957 		}
3958 	}
3959 
3960 	/* No match was possible, zero out fields */
3961 	vp->ver_major = 0;
3962 	vp->ver_minor = 0;
3963 
3964 	D1(NULL, "vsw_supported_version: exit");
3965 
3966 	return (1);
3967 }
3968 
3969 /*
3970  * Main routine for processing messages received over LDC.
3971  */
3972 static void
3973 vsw_process_pkt(void *arg)
3974 {
3975 	vsw_ldc_t	*ldcp = (vsw_ldc_t  *)arg;
3976 	vsw_t 		*vswp = ldcp->ldc_vswp;
3977 	size_t		msglen;
3978 	vio_msg_tag_t	tag;
3979 	def_msg_t	dmsg;
3980 	int 		rv = 0;
3981 
3982 
3983 	D1(vswp, "%s enter: ldcid (%lld)\n", __func__, ldcp->ldc_id);
3984 
3985 	/*
3986 	 * If channel is up read messages until channel is empty.
3987 	 */
3988 	do {
3989 		msglen = sizeof (dmsg);
3990 		rv = ldc_read(ldcp->ldc_handle, (caddr_t)&dmsg, &msglen);
3991 
3992 		if (rv != 0) {
3993 			DERR(vswp, "%s :ldc_read err id(%lld) rv(%d) "
3994 				"len(%d)\n", __func__, ldcp->ldc_id,
3995 							rv, msglen);
3996 		}
3997 
3998 		/* channel has been reset */
3999 		if (rv == ECONNRESET) {
4000 			vsw_handle_reset(ldcp);
4001 			break;
4002 		}
4003 
4004 		if (msglen == 0) {
4005 			D2(vswp, "%s: ldc_read id(%lld) NODATA", __func__,
4006 			ldcp->ldc_id);
4007 			break;
4008 		}
4009 
4010 		D2(vswp, "%s: ldc_read id(%lld): msglen(%d)", __func__,
4011 		    ldcp->ldc_id, msglen);
4012 
4013 		/*
4014 		 * Figure out what sort of packet we have gotten by
4015 		 * examining the msg tag, and then switch it appropriately.
4016 		 */
4017 		bcopy(&dmsg, &tag, sizeof (vio_msg_tag_t));
4018 
4019 		switch (tag.vio_msgtype) {
4020 		case VIO_TYPE_CTRL:
4021 			vsw_dispatch_ctrl_task(ldcp, &dmsg, tag);
4022 			break;
4023 		case VIO_TYPE_DATA:
4024 			vsw_process_data_pkt(ldcp, &dmsg, tag);
4025 			break;
4026 		case VIO_TYPE_ERR:
4027 			vsw_process_err_pkt(ldcp, &dmsg, tag);
4028 			break;
4029 		default:
4030 			DERR(vswp, "%s: Unknown tag(%lx) ", __func__,
4031 				"id(%lx)\n", tag.vio_msgtype, ldcp->ldc_id);
4032 			break;
4033 		}
4034 	} while (msglen);
4035 
4036 	D1(vswp, "%s exit: ldcid (%lld)\n", __func__, ldcp->ldc_id);
4037 }
4038 
4039 /*
4040  * Dispatch a task to process a VIO control message.
4041  */
4042 static void
4043 vsw_dispatch_ctrl_task(vsw_ldc_t *ldcp, void *cpkt, vio_msg_tag_t tag)
4044 {
4045 	vsw_ctrl_task_t		*ctaskp = NULL;
4046 	vsw_port_t		*port = ldcp->ldc_port;
4047 	vsw_t			*vswp = port->p_vswp;
4048 
4049 	D1(vswp, "%s: enter", __func__);
4050 
4051 	/*
4052 	 * We need to handle RDX ACK messages in-band as once they
4053 	 * are exchanged it is possible that we will get an
4054 	 * immediate (legitimate) data packet.
4055 	 */
4056 	if ((tag.vio_subtype_env == VIO_RDX) &&
4057 		(tag.vio_subtype == VIO_SUBTYPE_ACK)) {
4058 
4059 		if (vsw_check_flag(ldcp, OUTBOUND, VSW_RDX_ACK_RECV))
4060 			return;
4061 
4062 		ldcp->lane_out.lstate |= VSW_RDX_ACK_RECV;
4063 		D2(vswp, "%s (%ld) handling RDX_ACK in place "
4064 			"(ostate 0x%llx : hphase %d)", __func__,
4065 			ldcp->ldc_id, ldcp->lane_out.lstate, ldcp->hphase);
4066 		vsw_next_milestone(ldcp);
4067 		return;
4068 	}
4069 
4070 	ctaskp = kmem_alloc(sizeof (vsw_ctrl_task_t), KM_NOSLEEP);
4071 
4072 	if (ctaskp == NULL) {
4073 		DERR(vswp, "%s: unable to alloc space for ctrl"
4074 			" msg", __func__);
4075 		vsw_restart_handshake(ldcp);
4076 		return;
4077 	}
4078 
4079 	ctaskp->ldcp = ldcp;
4080 	bcopy((def_msg_t *)cpkt, &ctaskp->pktp, sizeof (def_msg_t));
4081 	mutex_enter(&ldcp->hss_lock);
4082 	ctaskp->hss_id = ldcp->hss_id;
4083 	mutex_exit(&ldcp->hss_lock);
4084 
4085 	/*
4086 	 * Dispatch task to processing taskq if port is not in
4087 	 * the process of being detached.
4088 	 */
4089 	mutex_enter(&port->state_lock);
4090 	if (port->state == VSW_PORT_INIT) {
4091 		if ((vswp->taskq_p == NULL) ||
4092 			(ddi_taskq_dispatch(vswp->taskq_p,
4093 			vsw_process_ctrl_pkt, ctaskp, DDI_NOSLEEP)
4094 							!= DDI_SUCCESS)) {
4095 			DERR(vswp, "%s: unable to dispatch task to taskq",
4096 				__func__);
4097 			kmem_free(ctaskp, sizeof (vsw_ctrl_task_t));
4098 			mutex_exit(&port->state_lock);
4099 			vsw_restart_handshake(ldcp);
4100 			return;
4101 		}
4102 	} else {
4103 		DWARN(vswp, "%s: port %d detaching, not dispatching "
4104 			"task", __func__, port->p_instance);
4105 	}
4106 
4107 	mutex_exit(&port->state_lock);
4108 
4109 	D2(vswp, "%s: dispatched task to taskq for chan %d", __func__,
4110 			ldcp->ldc_id);
4111 	D1(vswp, "%s: exit", __func__);
4112 }
4113 
4114 /*
4115  * Process a VIO ctrl message. Invoked from taskq.
4116  */
4117 static void
4118 vsw_process_ctrl_pkt(void *arg)
4119 {
4120 	vsw_ctrl_task_t	*ctaskp = (vsw_ctrl_task_t *)arg;
4121 	vsw_ldc_t	*ldcp = ctaskp->ldcp;
4122 	vsw_t 		*vswp = ldcp->ldc_vswp;
4123 	vio_msg_tag_t	tag;
4124 	uint16_t	env;
4125 
4126 	D1(vswp, "%s(%lld): enter", __func__, ldcp->ldc_id);
4127 
4128 	bcopy(&ctaskp->pktp, &tag, sizeof (vio_msg_tag_t));
4129 	env = tag.vio_subtype_env;
4130 
4131 	/* stale pkt check */
4132 	mutex_enter(&ldcp->hss_lock);
4133 	if (ctaskp->hss_id < ldcp->hss_id) {
4134 		DWARN(vswp, "%s: discarding stale packet belonging to"
4135 			" earlier (%ld) handshake session", __func__,
4136 			ctaskp->hss_id);
4137 		mutex_exit(&ldcp->hss_lock);
4138 		return;
4139 	}
4140 	mutex_exit(&ldcp->hss_lock);
4141 
4142 	/* session id check */
4143 	if (ldcp->session_status & VSW_PEER_SESSION) {
4144 		if (ldcp->peer_session != tag.vio_sid) {
4145 			DERR(vswp, "%s (chan %d): invalid session id (%llx)",
4146 				__func__, ldcp->ldc_id, tag.vio_sid);
4147 			kmem_free(ctaskp, sizeof (vsw_ctrl_task_t));
4148 			vsw_restart_handshake(ldcp);
4149 			return;
4150 		}
4151 	}
4152 
4153 	/*
4154 	 * Switch on vio_subtype envelope, then let lower routines
4155 	 * decide if its an INFO, ACK or NACK packet.
4156 	 */
4157 	switch (env) {
4158 	case VIO_VER_INFO:
4159 		vsw_process_ctrl_ver_pkt(ldcp, &ctaskp->pktp);
4160 		break;
4161 	case VIO_DRING_REG:
4162 		vsw_process_ctrl_dring_reg_pkt(ldcp, &ctaskp->pktp);
4163 		break;
4164 	case VIO_DRING_UNREG:
4165 		vsw_process_ctrl_dring_unreg_pkt(ldcp, &ctaskp->pktp);
4166 		break;
4167 	case VIO_ATTR_INFO:
4168 		vsw_process_ctrl_attr_pkt(ldcp, &ctaskp->pktp);
4169 		break;
4170 	case VNET_MCAST_INFO:
4171 		vsw_process_ctrl_mcst_pkt(ldcp, &ctaskp->pktp);
4172 		break;
4173 	case VIO_RDX:
4174 		vsw_process_ctrl_rdx_pkt(ldcp, &ctaskp->pktp);
4175 		break;
4176 	default:
4177 		DERR(vswp, "%s : unknown vio_subtype_env (%x)\n",
4178 							__func__, env);
4179 	}
4180 
4181 	kmem_free(ctaskp, sizeof (vsw_ctrl_task_t));
4182 	D1(vswp, "%s(%lld): exit", __func__, ldcp->ldc_id);
4183 }
4184 
4185 /*
4186  * Version negotiation. We can end up here either because our peer
4187  * has responded to a handshake message we have sent it, or our peer
4188  * has initiated a handshake with us. If its the former then can only
4189  * be ACK or NACK, if its the later can only be INFO.
4190  *
4191  * If its an ACK we move to the next stage of the handshake, namely
4192  * attribute exchange. If its a NACK we see if we can specify another
4193  * version, if we can't we stop.
4194  *
4195  * If it is an INFO we reset all params associated with communication
4196  * in that direction over this channel (remember connection is
4197  * essentially 2 independent simplex channels).
4198  */
4199 void
4200 vsw_process_ctrl_ver_pkt(vsw_ldc_t *ldcp, void *pkt)
4201 {
4202 	vio_ver_msg_t	*ver_pkt;
4203 	vsw_t 		*vswp = ldcp->ldc_vswp;
4204 
4205 	D1(vswp, "%s(%lld): enter", __func__, ldcp->ldc_id);
4206 
4207 	/*
4208 	 * We know this is a ctrl/version packet so
4209 	 * cast it into the correct structure.
4210 	 */
4211 	ver_pkt = (vio_ver_msg_t *)pkt;
4212 
4213 	switch (ver_pkt->tag.vio_subtype) {
4214 	case VIO_SUBTYPE_INFO:
4215 		D2(vswp, "vsw_process_ctrl_ver_pkt: VIO_SUBTYPE_INFO\n");
4216 
4217 		/*
4218 		 * Record the session id, which we will use from now
4219 		 * until we see another VER_INFO msg. Even then the
4220 		 * session id in most cases will be unchanged, execpt
4221 		 * if channel was reset.
4222 		 */
4223 		if ((ldcp->session_status & VSW_PEER_SESSION) &&
4224 			(ldcp->peer_session != ver_pkt->tag.vio_sid)) {
4225 			DERR(vswp, "%s: updating session id for chan %lld "
4226 				"from %llx to %llx", __func__, ldcp->ldc_id,
4227 				ldcp->peer_session, ver_pkt->tag.vio_sid);
4228 		}
4229 
4230 		ldcp->peer_session = ver_pkt->tag.vio_sid;
4231 		ldcp->session_status |= VSW_PEER_SESSION;
4232 
4233 		/* Legal message at this time ? */
4234 		if (vsw_check_flag(ldcp, INBOUND, VSW_VER_INFO_RECV))
4235 			return;
4236 
4237 		/*
4238 		 * First check the device class. Currently only expect
4239 		 * to be talking to a network device. In the future may
4240 		 * also talk to another switch.
4241 		 */
4242 		if (ver_pkt->dev_class != VDEV_NETWORK) {
4243 			DERR(vswp, "%s: illegal device class %d", __func__,
4244 				ver_pkt->dev_class);
4245 
4246 			ver_pkt->tag.vio_sid = ldcp->local_session;
4247 			ver_pkt->tag.vio_subtype = VIO_SUBTYPE_NACK;
4248 
4249 			DUMP_TAG_PTR((vio_msg_tag_t *)ver_pkt);
4250 
4251 			vsw_send_msg(ldcp, (void *)ver_pkt,
4252 					sizeof (vio_ver_msg_t));
4253 
4254 			ldcp->lane_in.lstate |= VSW_VER_NACK_SENT;
4255 			vsw_next_milestone(ldcp);
4256 			return;
4257 		} else {
4258 			ldcp->dev_class = ver_pkt->dev_class;
4259 		}
4260 
4261 		/*
4262 		 * Now check the version.
4263 		 */
4264 		if (vsw_supported_version(ver_pkt) == 0) {
4265 			/*
4266 			 * Support this major version and possibly
4267 			 * adjusted minor version.
4268 			 */
4269 
4270 			D2(vswp, "%s: accepted ver %d:%d", __func__,
4271 				ver_pkt->ver_major, ver_pkt->ver_minor);
4272 
4273 			/* Store accepted values */
4274 			ldcp->lane_in.ver_major = ver_pkt->ver_major;
4275 			ldcp->lane_in.ver_minor = ver_pkt->ver_minor;
4276 
4277 			ver_pkt->tag.vio_subtype = VIO_SUBTYPE_ACK;
4278 
4279 			ldcp->lane_in.lstate |= VSW_VER_ACK_SENT;
4280 		} else {
4281 			/*
4282 			 * NACK back with the next lower major/minor
4283 			 * pairing we support (if don't suuport any more
4284 			 * versions then they will be set to zero.
4285 			 */
4286 
4287 			D2(vswp, "%s: replying with ver %d:%d", __func__,
4288 				ver_pkt->ver_major, ver_pkt->ver_minor);
4289 
4290 			/* Store updated values */
4291 			ldcp->lane_in.ver_major = ver_pkt->ver_major;
4292 			ldcp->lane_in.ver_minor = ver_pkt->ver_minor;
4293 
4294 			ver_pkt->tag.vio_subtype = VIO_SUBTYPE_NACK;
4295 
4296 			ldcp->lane_in.lstate |= VSW_VER_NACK_SENT;
4297 		}
4298 
4299 		DUMP_TAG_PTR((vio_msg_tag_t *)ver_pkt);
4300 		ver_pkt->tag.vio_sid = ldcp->local_session;
4301 		vsw_send_msg(ldcp, (void *)ver_pkt, sizeof (vio_ver_msg_t));
4302 
4303 		vsw_next_milestone(ldcp);
4304 		break;
4305 
4306 	case VIO_SUBTYPE_ACK:
4307 		D2(vswp, "%s: VIO_SUBTYPE_ACK\n", __func__);
4308 
4309 		if (vsw_check_flag(ldcp, OUTBOUND, VSW_VER_ACK_RECV))
4310 			return;
4311 
4312 		/* Store updated values */
4313 		ldcp->lane_in.ver_major = ver_pkt->ver_major;
4314 		ldcp->lane_in.ver_minor = ver_pkt->ver_minor;
4315 
4316 
4317 		ldcp->lane_out.lstate |= VSW_VER_ACK_RECV;
4318 		vsw_next_milestone(ldcp);
4319 
4320 		break;
4321 
4322 	case VIO_SUBTYPE_NACK:
4323 		D2(vswp, "%s: VIO_SUBTYPE_NACK\n", __func__);
4324 
4325 		if (vsw_check_flag(ldcp, OUTBOUND, VSW_VER_NACK_RECV))
4326 			return;
4327 
4328 		/*
4329 		 * If our peer sent us a NACK with the ver fields set to
4330 		 * zero then there is nothing more we can do. Otherwise see
4331 		 * if we support either the version suggested, or a lesser
4332 		 * one.
4333 		 */
4334 		if ((ver_pkt->ver_major == 0) && (ver_pkt->ver_minor == 0)) {
4335 			DERR(vswp, "%s: peer unable to negotiate any "
4336 				"further.", __func__);
4337 			ldcp->lane_out.lstate |= VSW_VER_NACK_RECV;
4338 			vsw_next_milestone(ldcp);
4339 			return;
4340 		}
4341 
4342 		/*
4343 		 * Check to see if we support this major version or
4344 		 * a lower one. If we don't then maj/min will be set
4345 		 * to zero.
4346 		 */
4347 		(void) vsw_supported_version(ver_pkt);
4348 		if ((ver_pkt->ver_major == 0) && (ver_pkt->ver_minor == 0)) {
4349 			/* Nothing more we can do */
4350 			DERR(vswp, "%s: version negotiation failed.\n",
4351 								__func__);
4352 			ldcp->lane_out.lstate |= VSW_VER_NACK_RECV;
4353 			vsw_next_milestone(ldcp);
4354 		} else {
4355 			/* found a supported major version */
4356 			ldcp->lane_out.ver_major = ver_pkt->ver_major;
4357 			ldcp->lane_out.ver_minor = ver_pkt->ver_minor;
4358 
4359 			D2(vswp, "%s: resending with updated values (%x, %x)",
4360 				__func__, ver_pkt->ver_major,
4361 				ver_pkt->ver_minor);
4362 
4363 			ldcp->lane_out.lstate |= VSW_VER_INFO_SENT;
4364 			ver_pkt->tag.vio_sid = ldcp->local_session;
4365 			ver_pkt->tag.vio_subtype = VIO_SUBTYPE_INFO;
4366 
4367 			DUMP_TAG_PTR((vio_msg_tag_t *)ver_pkt);
4368 
4369 			vsw_send_msg(ldcp, (void *)ver_pkt,
4370 					sizeof (vio_ver_msg_t));
4371 
4372 			vsw_next_milestone(ldcp);
4373 
4374 		}
4375 		break;
4376 
4377 	default:
4378 		DERR(vswp, "%s: unknown vio_subtype %x\n", __func__,
4379 			ver_pkt->tag.vio_subtype);
4380 	}
4381 
4382 	D1(vswp, "%s(%lld): exit\n", __func__, ldcp->ldc_id);
4383 }
4384 
4385 /*
4386  * Process an attribute packet. We can end up here either because our peer
4387  * has ACK/NACK'ed back to an earlier ATTR msg we had sent it, or our
4388  * peer has sent us an attribute INFO message
4389  *
4390  * If its an ACK we then move to the next stage of the handshake which
4391  * is to send our descriptor ring info to our peer. If its a NACK then
4392  * there is nothing more we can (currently) do.
4393  *
4394  * If we get a valid/acceptable INFO packet (and we have already negotiated
4395  * a version) we ACK back and set channel state to ATTR_RECV, otherwise we
4396  * NACK back and reset channel state to INACTIV.
4397  *
4398  * FUTURE: in time we will probably negotiate over attributes, but for
4399  * the moment unacceptable attributes are regarded as a fatal error.
4400  *
4401  */
4402 void
4403 vsw_process_ctrl_attr_pkt(vsw_ldc_t *ldcp, void *pkt)
4404 {
4405 	vnet_attr_msg_t		*attr_pkt;
4406 	vsw_t			*vswp = ldcp->ldc_vswp;
4407 	vsw_port_t		*port = ldcp->ldc_port;
4408 	uint64_t		macaddr = 0;
4409 	int			i;
4410 
4411 	D1(vswp, "%s(%lld) enter", __func__, ldcp->ldc_id);
4412 
4413 	/*
4414 	 * We know this is a ctrl/attr packet so
4415 	 * cast it into the correct structure.
4416 	 */
4417 	attr_pkt = (vnet_attr_msg_t *)pkt;
4418 
4419 	switch (attr_pkt->tag.vio_subtype) {
4420 	case VIO_SUBTYPE_INFO:
4421 		D2(vswp, "%s: VIO_SUBTYPE_INFO", __func__);
4422 
4423 		if (vsw_check_flag(ldcp, INBOUND, VSW_ATTR_INFO_RECV))
4424 			return;
4425 
4426 		/*
4427 		 * If the attributes are unacceptable then we NACK back.
4428 		 */
4429 		if (vsw_check_attr(attr_pkt, ldcp->ldc_port)) {
4430 
4431 			DERR(vswp, "%s (chan %d): invalid attributes",
4432 				__func__, ldcp->ldc_id);
4433 
4434 			vsw_free_lane_resources(ldcp, INBOUND);
4435 
4436 			attr_pkt->tag.vio_sid = ldcp->local_session;
4437 			attr_pkt->tag.vio_subtype = VIO_SUBTYPE_NACK;
4438 
4439 			DUMP_TAG_PTR((vio_msg_tag_t *)attr_pkt);
4440 			ldcp->lane_in.lstate |= VSW_ATTR_NACK_SENT;
4441 			vsw_send_msg(ldcp, (void *)attr_pkt,
4442 					sizeof (vnet_attr_msg_t));
4443 
4444 			vsw_next_milestone(ldcp);
4445 			return;
4446 		}
4447 
4448 		/*
4449 		 * Otherwise store attributes for this lane and update
4450 		 * lane state.
4451 		 */
4452 		ldcp->lane_in.mtu = attr_pkt->mtu;
4453 		ldcp->lane_in.addr = attr_pkt->addr;
4454 		ldcp->lane_in.addr_type = attr_pkt->addr_type;
4455 		ldcp->lane_in.xfer_mode = attr_pkt->xfer_mode;
4456 		ldcp->lane_in.ack_freq = attr_pkt->ack_freq;
4457 
4458 		macaddr = ldcp->lane_in.addr;
4459 		for (i = ETHERADDRL - 1; i >= 0; i--) {
4460 			port->p_macaddr.ether_addr_octet[i] = macaddr & 0xFF;
4461 			macaddr >>= 8;
4462 		}
4463 
4464 		/* create the fdb entry for this port/mac address */
4465 		(void) vsw_add_fdb(vswp, port);
4466 
4467 		/* setup device specifc xmit routines */
4468 		mutex_enter(&port->tx_lock);
4469 		if (ldcp->lane_in.xfer_mode == VIO_DRING_MODE) {
4470 			D2(vswp, "%s: mode = VIO_DRING_MODE", __func__);
4471 			port->transmit = vsw_dringsend;
4472 		} else if (ldcp->lane_in.xfer_mode == VIO_DESC_MODE) {
4473 			D2(vswp, "%s: mode = VIO_DESC_MODE", __func__);
4474 			vsw_create_privring(ldcp);
4475 			port->transmit = vsw_descrsend;
4476 		}
4477 		mutex_exit(&port->tx_lock);
4478 
4479 		attr_pkt->tag.vio_sid = ldcp->local_session;
4480 		attr_pkt->tag.vio_subtype = VIO_SUBTYPE_ACK;
4481 
4482 		DUMP_TAG_PTR((vio_msg_tag_t *)attr_pkt);
4483 
4484 		ldcp->lane_in.lstate |= VSW_ATTR_ACK_SENT;
4485 
4486 		vsw_send_msg(ldcp, (void *)attr_pkt,
4487 					sizeof (vnet_attr_msg_t));
4488 
4489 		vsw_next_milestone(ldcp);
4490 		break;
4491 
4492 	case VIO_SUBTYPE_ACK:
4493 		D2(vswp, "%s: VIO_SUBTYPE_ACK", __func__);
4494 
4495 		if (vsw_check_flag(ldcp, OUTBOUND, VSW_ATTR_ACK_RECV))
4496 			return;
4497 
4498 		ldcp->lane_out.lstate |= VSW_ATTR_ACK_RECV;
4499 		vsw_next_milestone(ldcp);
4500 		break;
4501 
4502 	case VIO_SUBTYPE_NACK:
4503 		D2(vswp, "%s: VIO_SUBTYPE_NACK", __func__);
4504 
4505 		if (vsw_check_flag(ldcp, OUTBOUND, VSW_ATTR_NACK_RECV))
4506 			return;
4507 
4508 		ldcp->lane_out.lstate |= VSW_ATTR_NACK_RECV;
4509 		vsw_next_milestone(ldcp);
4510 		break;
4511 
4512 	default:
4513 		DERR(vswp, "%s: unknown vio_subtype %x\n", __func__,
4514 			attr_pkt->tag.vio_subtype);
4515 	}
4516 
4517 	D1(vswp, "%s(%lld) exit", __func__, ldcp->ldc_id);
4518 }
4519 
4520 /*
4521  * Process a dring info packet. We can end up here either because our peer
4522  * has ACK/NACK'ed back to an earlier DRING msg we had sent it, or our
4523  * peer has sent us a dring INFO message.
4524  *
4525  * If we get a valid/acceptable INFO packet (and we have already negotiated
4526  * a version) we ACK back and update the lane state, otherwise we NACK back.
4527  *
4528  * FUTURE: nothing to stop client from sending us info on multiple dring's
4529  * but for the moment we will just use the first one we are given.
4530  *
4531  */
4532 void
4533 vsw_process_ctrl_dring_reg_pkt(vsw_ldc_t *ldcp, void *pkt)
4534 {
4535 	vio_dring_reg_msg_t	*dring_pkt;
4536 	vsw_t			*vswp = ldcp->ldc_vswp;
4537 	ldc_mem_info_t		minfo;
4538 	dring_info_t		*dp, *dbp;
4539 	int			dring_found = 0;
4540 
4541 	/*
4542 	 * We know this is a ctrl/dring packet so
4543 	 * cast it into the correct structure.
4544 	 */
4545 	dring_pkt = (vio_dring_reg_msg_t *)pkt;
4546 
4547 	D1(vswp, "%s(%lld) enter", __func__, ldcp->ldc_id);
4548 
4549 	switch (dring_pkt->tag.vio_subtype) {
4550 	case VIO_SUBTYPE_INFO:
4551 		D2(vswp, "%s: VIO_SUBTYPE_INFO", __func__);
4552 
4553 		if (vsw_check_flag(ldcp, INBOUND, VSW_DRING_INFO_RECV))
4554 			return;
4555 
4556 		/*
4557 		 * If the dring params are unacceptable then we NACK back.
4558 		 */
4559 		if (vsw_check_dring_info(dring_pkt)) {
4560 
4561 			DERR(vswp, "%s (%lld): invalid dring info",
4562 				__func__, ldcp->ldc_id);
4563 
4564 			vsw_free_lane_resources(ldcp, INBOUND);
4565 
4566 			dring_pkt->tag.vio_sid = ldcp->local_session;
4567 			dring_pkt->tag.vio_subtype = VIO_SUBTYPE_NACK;
4568 
4569 			DUMP_TAG_PTR((vio_msg_tag_t *)dring_pkt);
4570 
4571 			ldcp->lane_in.lstate |= VSW_DRING_NACK_SENT;
4572 
4573 			vsw_send_msg(ldcp, (void *)dring_pkt,
4574 					sizeof (vio_dring_reg_msg_t));
4575 
4576 			vsw_next_milestone(ldcp);
4577 			return;
4578 		}
4579 
4580 		/*
4581 		 * Otherwise, attempt to map in the dring using the
4582 		 * cookie. If that succeeds we send back a unique dring
4583 		 * identifier that the sending side will use in future
4584 		 * to refer to this descriptor ring.
4585 		 */
4586 		dp = kmem_zalloc(sizeof (dring_info_t), KM_SLEEP);
4587 
4588 		dp->num_descriptors = dring_pkt->num_descriptors;
4589 		dp->descriptor_size = dring_pkt->descriptor_size;
4590 		dp->options = dring_pkt->options;
4591 		dp->ncookies = dring_pkt->ncookies;
4592 
4593 		/*
4594 		 * Note: should only get one cookie. Enforced in
4595 		 * the ldc layer.
4596 		 */
4597 		bcopy(&dring_pkt->cookie[0], &dp->cookie[0],
4598 			sizeof (ldc_mem_cookie_t));
4599 
4600 		D2(vswp, "%s: num_desc %ld : desc_size %ld", __func__,
4601 			dp->num_descriptors, dp->descriptor_size);
4602 		D2(vswp, "%s: options 0x%lx: ncookies %ld", __func__,
4603 			dp->options, dp->ncookies);
4604 
4605 		if ((ldc_mem_dring_map(ldcp->ldc_handle, &dp->cookie[0],
4606 			dp->ncookies, dp->num_descriptors,
4607 			dp->descriptor_size, LDC_SHADOW_MAP,
4608 			&(dp->handle))) != 0) {
4609 
4610 			DERR(vswp, "%s: dring_map failed\n", __func__);
4611 
4612 			kmem_free(dp, sizeof (dring_info_t));
4613 			vsw_free_lane_resources(ldcp, INBOUND);
4614 
4615 			dring_pkt->tag.vio_sid = ldcp->local_session;
4616 			dring_pkt->tag.vio_subtype = VIO_SUBTYPE_NACK;
4617 
4618 			DUMP_TAG_PTR((vio_msg_tag_t *)dring_pkt);
4619 
4620 			ldcp->lane_in.lstate |= VSW_DRING_NACK_SENT;
4621 			vsw_send_msg(ldcp, (void *)dring_pkt,
4622 				sizeof (vio_dring_reg_msg_t));
4623 
4624 			vsw_next_milestone(ldcp);
4625 			return;
4626 		}
4627 
4628 		if ((ldc_mem_dring_info(dp->handle, &minfo)) != 0) {
4629 
4630 			DERR(vswp, "%s: dring_addr failed\n", __func__);
4631 
4632 			kmem_free(dp, sizeof (dring_info_t));
4633 			vsw_free_lane_resources(ldcp, INBOUND);
4634 
4635 			dring_pkt->tag.vio_sid = ldcp->local_session;
4636 			dring_pkt->tag.vio_subtype = VIO_SUBTYPE_NACK;
4637 
4638 			DUMP_TAG_PTR((vio_msg_tag_t *)dring_pkt);
4639 
4640 			ldcp->lane_in.lstate |= VSW_DRING_NACK_SENT;
4641 			vsw_send_msg(ldcp, (void *)dring_pkt,
4642 				sizeof (vio_dring_reg_msg_t));
4643 
4644 			vsw_next_milestone(ldcp);
4645 			return;
4646 		} else {
4647 			/* store the address of the pub part of ring */
4648 			dp->pub_addr = minfo.vaddr;
4649 		}
4650 
4651 		/* no private section as we are importing */
4652 		dp->priv_addr = NULL;
4653 
4654 		/*
4655 		 * Using simple mono increasing int for ident at
4656 		 * the moment.
4657 		 */
4658 		dp->ident = ldcp->next_ident;
4659 		ldcp->next_ident++;
4660 
4661 		dp->end_idx = 0;
4662 		dp->next = NULL;
4663 
4664 		/*
4665 		 * Link it onto the end of the list of drings
4666 		 * for this lane.
4667 		 */
4668 		if (ldcp->lane_in.dringp == NULL) {
4669 			D2(vswp, "%s: adding first INBOUND dring", __func__);
4670 			ldcp->lane_in.dringp = dp;
4671 		} else {
4672 			dbp = ldcp->lane_in.dringp;
4673 
4674 			while (dbp->next != NULL)
4675 				dbp = dbp->next;
4676 
4677 			dbp->next = dp;
4678 		}
4679 
4680 		/* acknowledge it */
4681 		dring_pkt->tag.vio_sid = ldcp->local_session;
4682 		dring_pkt->tag.vio_subtype = VIO_SUBTYPE_ACK;
4683 		dring_pkt->dring_ident = dp->ident;
4684 
4685 		vsw_send_msg(ldcp, (void *)dring_pkt,
4686 				sizeof (vio_dring_reg_msg_t));
4687 
4688 		ldcp->lane_in.lstate |= VSW_DRING_ACK_SENT;
4689 		vsw_next_milestone(ldcp);
4690 		break;
4691 
4692 	case VIO_SUBTYPE_ACK:
4693 		D2(vswp, "%s: VIO_SUBTYPE_ACK", __func__);
4694 
4695 		if (vsw_check_flag(ldcp, OUTBOUND, VSW_DRING_ACK_RECV))
4696 			return;
4697 
4698 		/*
4699 		 * Peer is acknowledging our dring info and will have
4700 		 * sent us a dring identifier which we will use to
4701 		 * refer to this ring w.r.t. our peer.
4702 		 */
4703 		dp = ldcp->lane_out.dringp;
4704 		if (dp != NULL) {
4705 			/*
4706 			 * Find the ring this ident should be associated
4707 			 * with.
4708 			 */
4709 			if (vsw_dring_match(dp, dring_pkt)) {
4710 				dring_found = 1;
4711 
4712 			} else while (dp != NULL) {
4713 				if (vsw_dring_match(dp, dring_pkt)) {
4714 					dring_found = 1;
4715 					break;
4716 				}
4717 				dp = dp->next;
4718 			}
4719 
4720 			if (dring_found == 0) {
4721 				DERR(NULL, "%s: unrecognised ring cookie",
4722 					__func__);
4723 				vsw_restart_handshake(ldcp);
4724 				return;
4725 			}
4726 
4727 		} else {
4728 			DERR(vswp, "%s: DRING ACK received but no drings "
4729 				"allocated", __func__);
4730 			vsw_restart_handshake(ldcp);
4731 			return;
4732 		}
4733 
4734 		/* store ident */
4735 		dp->ident = dring_pkt->dring_ident;
4736 		ldcp->lane_out.lstate |= VSW_DRING_ACK_RECV;
4737 		vsw_next_milestone(ldcp);
4738 		break;
4739 
4740 	case VIO_SUBTYPE_NACK:
4741 		D2(vswp, "%s: VIO_SUBTYPE_NACK", __func__);
4742 
4743 		if (vsw_check_flag(ldcp, OUTBOUND, VSW_DRING_NACK_RECV))
4744 			return;
4745 
4746 		ldcp->lane_out.lstate |= VSW_DRING_NACK_RECV;
4747 		vsw_next_milestone(ldcp);
4748 		break;
4749 
4750 	default:
4751 		DERR(vswp, "%s: Unknown vio_subtype %x\n", __func__,
4752 			dring_pkt->tag.vio_subtype);
4753 	}
4754 
4755 	D1(vswp, "%s(%lld) exit", __func__, ldcp->ldc_id);
4756 }
4757 
4758 /*
4759  * Process a request from peer to unregister a dring.
4760  *
4761  * For the moment we just restart the handshake if our
4762  * peer endpoint attempts to unregister a dring.
4763  */
4764 void
4765 vsw_process_ctrl_dring_unreg_pkt(vsw_ldc_t *ldcp, void *pkt)
4766 {
4767 	vsw_t			*vswp = ldcp->ldc_vswp;
4768 	vio_dring_unreg_msg_t	*dring_pkt;
4769 
4770 	/*
4771 	 * We know this is a ctrl/dring packet so
4772 	 * cast it into the correct structure.
4773 	 */
4774 	dring_pkt = (vio_dring_unreg_msg_t *)pkt;
4775 
4776 	D1(vswp, "%s(%lld): enter", __func__, ldcp->ldc_id);
4777 
4778 	switch (dring_pkt->tag.vio_subtype) {
4779 	case VIO_SUBTYPE_INFO:
4780 		D2(vswp, "%s: VIO_SUBTYPE_INFO", __func__);
4781 
4782 		DWARN(vswp, "%s: restarting handshake..", __func__);
4783 		vsw_restart_handshake(ldcp);
4784 		break;
4785 
4786 	case VIO_SUBTYPE_ACK:
4787 		D2(vswp, "%s: VIO_SUBTYPE_ACK", __func__);
4788 
4789 		DWARN(vswp, "%s: restarting handshake..", __func__);
4790 		vsw_restart_handshake(ldcp);
4791 		break;
4792 
4793 	case VIO_SUBTYPE_NACK:
4794 		D2(vswp, "%s: VIO_SUBTYPE_NACK", __func__);
4795 
4796 		DWARN(vswp, "%s: restarting handshake..", __func__);
4797 		vsw_restart_handshake(ldcp);
4798 		break;
4799 
4800 	default:
4801 		DERR(vswp, "%s: Unknown vio_subtype %x\n", __func__,
4802 			dring_pkt->tag.vio_subtype);
4803 		vsw_restart_handshake(ldcp);
4804 	}
4805 
4806 	D1(vswp, "%s(%lld): exit", __func__, ldcp->ldc_id);
4807 }
4808 
4809 #define	SND_MCST_NACK(ldcp, pkt) \
4810 	pkt->tag.vio_subtype = VIO_SUBTYPE_NACK; \
4811 	pkt->tag.vio_sid = ldcp->local_session; \
4812 	vsw_send_msg(ldcp, (void *)pkt, sizeof (vnet_mcast_msg_t));
4813 
4814 /*
4815  * Process a multicast request from a vnet.
4816  *
4817  * Vnet's specify a multicast address that they are interested in. This
4818  * address is used as a key into the hash table which forms the multicast
4819  * forwarding database (mFDB).
4820  *
4821  * The table keys are the multicast addresses, while the table entries
4822  * are pointers to lists of ports which wish to receive packets for the
4823  * specified multicast address.
4824  *
4825  * When a multicast packet is being switched we use the address as a key
4826  * into the hash table, and then walk the appropriate port list forwarding
4827  * the pkt to each port in turn.
4828  *
4829  * If a vnet is no longer interested in a particular multicast grouping
4830  * we simply find the correct location in the hash table and then delete
4831  * the relevant port from the port list.
4832  *
4833  * To deal with the case whereby a port is being deleted without first
4834  * removing itself from the lists in the hash table, we maintain a list
4835  * of multicast addresses the port has registered an interest in, within
4836  * the port structure itself. We then simply walk that list of addresses
4837  * using them as keys into the hash table and remove the port from the
4838  * appropriate lists.
4839  */
4840 static void
4841 vsw_process_ctrl_mcst_pkt(vsw_ldc_t *ldcp, void *pkt)
4842 {
4843 	vnet_mcast_msg_t	*mcst_pkt;
4844 	vsw_port_t		*port = ldcp->ldc_port;
4845 	vsw_t			*vswp = ldcp->ldc_vswp;
4846 	int			i;
4847 
4848 	D1(vswp, "%s(%lld): enter", __func__, ldcp->ldc_id);
4849 
4850 	/*
4851 	 * We know this is a ctrl/mcast packet so
4852 	 * cast it into the correct structure.
4853 	 */
4854 	mcst_pkt = (vnet_mcast_msg_t *)pkt;
4855 
4856 	switch (mcst_pkt->tag.vio_subtype) {
4857 	case VIO_SUBTYPE_INFO:
4858 		D2(vswp, "%s: VIO_SUBTYPE_INFO", __func__);
4859 
4860 		/*
4861 		 * Check if in correct state to receive a multicast
4862 		 * message (i.e. handshake complete). If not reset
4863 		 * the handshake.
4864 		 */
4865 		if (vsw_check_flag(ldcp, INBOUND, VSW_MCST_INFO_RECV))
4866 			return;
4867 
4868 		/*
4869 		 * Before attempting to add or remove address check
4870 		 * that they are valid multicast addresses.
4871 		 * If not, then NACK back.
4872 		 */
4873 		for (i = 0; i < mcst_pkt->count; i++) {
4874 			if ((mcst_pkt->mca[i].ether_addr_octet[0] & 01) != 1) {
4875 				DERR(vswp, "%s: invalid multicast address",
4876 								__func__);
4877 				SND_MCST_NACK(ldcp, mcst_pkt);
4878 				return;
4879 			}
4880 		}
4881 
4882 		/*
4883 		 * Now add/remove the addresses. If this fails we
4884 		 * NACK back.
4885 		 */
4886 		if (vsw_add_rem_mcst(mcst_pkt, port) != 0) {
4887 			SND_MCST_NACK(ldcp, mcst_pkt);
4888 			return;
4889 		}
4890 
4891 		mcst_pkt->tag.vio_subtype = VIO_SUBTYPE_ACK;
4892 		mcst_pkt->tag.vio_sid = ldcp->local_session;
4893 
4894 		DUMP_TAG_PTR((vio_msg_tag_t *)mcst_pkt);
4895 
4896 		vsw_send_msg(ldcp, (void *)mcst_pkt,
4897 					sizeof (vnet_mcast_msg_t));
4898 		break;
4899 
4900 	case VIO_SUBTYPE_ACK:
4901 		DWARN(vswp, "%s: VIO_SUBTYPE_ACK", __func__);
4902 
4903 		/*
4904 		 * We shouldn't ever get a multicast ACK message as
4905 		 * at the moment we never request multicast addresses
4906 		 * to be set on some other device. This may change in
4907 		 * the future if we have cascading switches.
4908 		 */
4909 		if (vsw_check_flag(ldcp, OUTBOUND, VSW_MCST_ACK_RECV))
4910 			return;
4911 
4912 				/* Do nothing */
4913 		break;
4914 
4915 	case VIO_SUBTYPE_NACK:
4916 		DWARN(vswp, "%s: VIO_SUBTYPE_NACK", __func__);
4917 
4918 		/*
4919 		 * We shouldn't get a multicast NACK packet for the
4920 		 * same reasons as we shouldn't get a ACK packet.
4921 		 */
4922 		if (vsw_check_flag(ldcp, OUTBOUND, VSW_MCST_NACK_RECV))
4923 			return;
4924 
4925 				/* Do nothing */
4926 		break;
4927 
4928 	default:
4929 		DERR(vswp, "%s: unknown vio_subtype %x\n", __func__,
4930 			mcst_pkt->tag.vio_subtype);
4931 	}
4932 
4933 	D1(vswp, "%s(%lld): exit", __func__, ldcp->ldc_id);
4934 }
4935 
4936 static void
4937 vsw_process_ctrl_rdx_pkt(vsw_ldc_t *ldcp, void *pkt)
4938 {
4939 	vio_rdx_msg_t	*rdx_pkt;
4940 	vsw_t		*vswp = ldcp->ldc_vswp;
4941 
4942 	/*
4943 	 * We know this is a ctrl/rdx packet so
4944 	 * cast it into the correct structure.
4945 	 */
4946 	rdx_pkt = (vio_rdx_msg_t *)pkt;
4947 
4948 	D1(vswp, "%s(%lld) enter", __func__, ldcp->ldc_id);
4949 
4950 	switch (rdx_pkt->tag.vio_subtype) {
4951 	case VIO_SUBTYPE_INFO:
4952 		D2(vswp, "%s: VIO_SUBTYPE_INFO", __func__);
4953 
4954 		if (vsw_check_flag(ldcp, INBOUND, VSW_RDX_INFO_RECV))
4955 			return;
4956 
4957 		rdx_pkt->tag.vio_sid = ldcp->local_session;
4958 		rdx_pkt->tag.vio_subtype = VIO_SUBTYPE_ACK;
4959 
4960 		DUMP_TAG_PTR((vio_msg_tag_t *)rdx_pkt);
4961 
4962 		ldcp->lane_in.lstate |= VSW_RDX_ACK_SENT;
4963 
4964 		vsw_send_msg(ldcp, (void *)rdx_pkt,
4965 				sizeof (vio_rdx_msg_t));
4966 
4967 		vsw_next_milestone(ldcp);
4968 		break;
4969 
4970 	case VIO_SUBTYPE_ACK:
4971 		/*
4972 		 * Should be handled in-band by callback handler.
4973 		 */
4974 		DERR(vswp, "%s: Unexpected VIO_SUBTYPE_ACK", __func__);
4975 		vsw_restart_handshake(ldcp);
4976 		break;
4977 
4978 	case VIO_SUBTYPE_NACK:
4979 		D2(vswp, "%s: VIO_SUBTYPE_NACK", __func__);
4980 
4981 		if (vsw_check_flag(ldcp, OUTBOUND, VSW_RDX_NACK_RECV))
4982 			return;
4983 
4984 		ldcp->lane_out.lstate |= VSW_RDX_NACK_RECV;
4985 		vsw_next_milestone(ldcp);
4986 		break;
4987 
4988 	default:
4989 		DERR(vswp, "%s: Unknown vio_subtype %x\n", __func__,
4990 			rdx_pkt->tag.vio_subtype);
4991 	}
4992 
4993 	D1(vswp, "%s(%lld): exit", __func__, ldcp->ldc_id);
4994 }
4995 
4996 static void
4997 vsw_process_data_pkt(vsw_ldc_t *ldcp, void *dpkt, vio_msg_tag_t tag)
4998 {
4999 	uint16_t	env = tag.vio_subtype_env;
5000 	vsw_t		*vswp = ldcp->ldc_vswp;
5001 
5002 	D1(vswp, "%s(%lld): enter", __func__, ldcp->ldc_id);
5003 
5004 	/* session id check */
5005 	if (ldcp->session_status & VSW_PEER_SESSION) {
5006 		if (ldcp->peer_session != tag.vio_sid) {
5007 			DERR(vswp, "%s (chan %d): invalid session id (%llx)",
5008 				__func__, ldcp->ldc_id, tag.vio_sid);
5009 			vsw_restart_handshake(ldcp);
5010 			return;
5011 		}
5012 	}
5013 
5014 	/*
5015 	 * It is an error for us to be getting data packets
5016 	 * before the handshake has completed.
5017 	 */
5018 	if (ldcp->hphase != VSW_MILESTONE4) {
5019 		DERR(vswp, "%s: got data packet before handshake complete "
5020 			"hphase %d (%x: %x)", __func__, ldcp->hphase,
5021 			ldcp->lane_in.lstate, ldcp->lane_out.lstate);
5022 		DUMP_FLAGS(ldcp->lane_in.lstate);
5023 		DUMP_FLAGS(ldcp->lane_out.lstate);
5024 		vsw_restart_handshake(ldcp);
5025 		return;
5026 	}
5027 
5028 	/*
5029 	 * Switch on vio_subtype envelope, then let lower routines
5030 	 * decide if its an INFO, ACK or NACK packet.
5031 	 */
5032 	if (env == VIO_DRING_DATA) {
5033 		vsw_process_data_dring_pkt(ldcp, dpkt);
5034 	} else if (env == VIO_PKT_DATA) {
5035 		vsw_process_data_raw_pkt(ldcp, dpkt);
5036 	} else if (env == VIO_DESC_DATA) {
5037 		vsw_process_data_ibnd_pkt(ldcp, dpkt);
5038 	} else {
5039 		DERR(vswp, "%s : unknown vio_subtype_env (%x)\n",
5040 							__func__, env);
5041 	}
5042 
5043 	D1(vswp, "%s(%lld): exit", __func__, ldcp->ldc_id);
5044 }
5045 
5046 #define	SND_DRING_NACK(ldcp, pkt) \
5047 	pkt->tag.vio_subtype = VIO_SUBTYPE_NACK; \
5048 	pkt->tag.vio_sid = ldcp->local_session; \
5049 	vsw_send_msg(ldcp, (void *)pkt, sizeof (vio_dring_msg_t));
5050 
5051 static void
5052 vsw_process_data_dring_pkt(vsw_ldc_t *ldcp, void *dpkt)
5053 {
5054 	vio_dring_msg_t		*dring_pkt;
5055 	vnet_public_desc_t	*pub_addr = NULL;
5056 	vsw_private_desc_t	*priv_addr = NULL;
5057 	dring_info_t		*dp = NULL;
5058 	vsw_t			*vswp = ldcp->ldc_vswp;
5059 	mblk_t			*mp = NULL;
5060 	mblk_t			*bp = NULL;
5061 	mblk_t			*bpt = NULL;
5062 	size_t			nbytes = 0;
5063 	size_t			off = 0;
5064 	uint64_t		ncookies = 0;
5065 	uint64_t		chain = 0;
5066 	uint64_t		j, len;
5067 	uint32_t		pos, start, datalen;
5068 	uint32_t		range_start, range_end;
5069 	int32_t			end, num, cnt = 0;
5070 	int			i, rv;
5071 	boolean_t		ack_needed = B_FALSE;
5072 	boolean_t		prev_desc_ack = B_FALSE;
5073 	int			read_attempts = 0;
5074 
5075 	D1(vswp, "%s(%lld): enter", __func__, ldcp->ldc_id);
5076 
5077 	/*
5078 	 * We know this is a data/dring packet so
5079 	 * cast it into the correct structure.
5080 	 */
5081 	dring_pkt = (vio_dring_msg_t *)dpkt;
5082 
5083 	/*
5084 	 * Switch on the vio_subtype. If its INFO then we need to
5085 	 * process the data. If its an ACK we need to make sure
5086 	 * it makes sense (i.e did we send an earlier data/info),
5087 	 * and if its a NACK then we maybe attempt a retry.
5088 	 */
5089 	switch (dring_pkt->tag.vio_subtype) {
5090 	case VIO_SUBTYPE_INFO:
5091 		D2(vswp, "%s(%lld): VIO_SUBTYPE_INFO", __func__, ldcp->ldc_id);
5092 
5093 		if ((dp = vsw_ident2dring(&ldcp->lane_in,
5094 				dring_pkt->dring_ident)) == NULL) {
5095 
5096 			DERR(vswp, "%s(%lld): unable to find dring from "
5097 				"ident 0x%llx", __func__, ldcp->ldc_id,
5098 				dring_pkt->dring_ident);
5099 
5100 			SND_DRING_NACK(ldcp, dring_pkt);
5101 			return;
5102 		}
5103 
5104 		start = pos = dring_pkt->start_idx;
5105 		end = dring_pkt->end_idx;
5106 		len = dp->num_descriptors;
5107 
5108 		range_start = range_end = pos;
5109 
5110 		D2(vswp, "%s(%lld): start index %ld : end %ld\n",
5111 			__func__, ldcp->ldc_id, start, end);
5112 
5113 		if (end == -1) {
5114 			num = -1;
5115 		} else if (end >= 0) {
5116 			num = end >= pos ?
5117 				end - pos + 1: (len - pos + 1) + end;
5118 
5119 			/* basic sanity check */
5120 			if (end > len) {
5121 				DERR(vswp, "%s(%lld): endpoint %lld outside "
5122 					"ring length %lld", __func__,
5123 					ldcp->ldc_id, end, len);
5124 
5125 				SND_DRING_NACK(ldcp, dring_pkt);
5126 				return;
5127 			}
5128 		} else {
5129 			DERR(vswp, "%s(%lld): invalid endpoint %lld",
5130 				__func__, ldcp->ldc_id, end);
5131 			SND_DRING_NACK(ldcp, dring_pkt);
5132 			return;
5133 		}
5134 
5135 		while (cnt != num) {
5136 vsw_recheck_desc:
5137 			if ((rv = ldc_mem_dring_acquire(dp->handle,
5138 							pos, pos)) != 0) {
5139 				DERR(vswp, "%s(%lld): unable to acquire "
5140 					"descriptor at pos %d: err %d",
5141 					__func__, pos, ldcp->ldc_id, rv);
5142 				SND_DRING_NACK(ldcp, dring_pkt);
5143 				return;
5144 			}
5145 
5146 			pub_addr = (vnet_public_desc_t *)dp->pub_addr + pos;
5147 
5148 			/*
5149 			 * When given a bounded range of descriptors
5150 			 * to process, its an error to hit a descriptor
5151 			 * which is not ready. In the non-bounded case
5152 			 * (end_idx == -1) this simply indicates we have
5153 			 * reached the end of the current active range.
5154 			 */
5155 			if (pub_addr->hdr.dstate != VIO_DESC_READY) {
5156 				/* unbound - no error */
5157 				if (end == -1) {
5158 					if (read_attempts == vsw_read_attempts)
5159 						break;
5160 
5161 					delay(drv_usectohz(vsw_desc_delay));
5162 					read_attempts++;
5163 					goto vsw_recheck_desc;
5164 				}
5165 
5166 				/* bounded - error - so NACK back */
5167 				DERR(vswp, "%s(%lld): descriptor not READY "
5168 					"(%d)", __func__, ldcp->ldc_id,
5169 					pub_addr->hdr.dstate);
5170 				SND_DRING_NACK(ldcp, dring_pkt);
5171 				return;
5172 			}
5173 
5174 			DTRACE_PROBE1(read_attempts, int, read_attempts);
5175 
5176 			range_end = pos;
5177 
5178 			/*
5179 			 * If we ACK'd the previous descriptor then now
5180 			 * record the new range start position for later
5181 			 * ACK's.
5182 			 */
5183 			if (prev_desc_ack) {
5184 				range_start = pos;
5185 
5186 				D2(vswp, "%s(%lld): updating range start "
5187 					"to be %d", __func__, ldcp->ldc_id,
5188 					range_start);
5189 
5190 				prev_desc_ack = B_FALSE;
5191 			}
5192 
5193 			/*
5194 			 * Data is padded to align on 8 byte boundary,
5195 			 * datalen is actual data length, i.e. minus that
5196 			 * padding.
5197 			 */
5198 			datalen = pub_addr->nbytes;
5199 
5200 			/*
5201 			 * Does peer wish us to ACK when we have finished
5202 			 * with this descriptor ?
5203 			 */
5204 			if (pub_addr->hdr.ack)
5205 				ack_needed = B_TRUE;
5206 
5207 			D2(vswp, "%s(%lld): processing desc %lld at pos"
5208 				" 0x%llx : dstate 0x%lx : datalen 0x%lx",
5209 				__func__, ldcp->ldc_id, pos, pub_addr,
5210 				pub_addr->hdr.dstate, datalen);
5211 
5212 			/*
5213 			 * Mark that we are starting to process descriptor.
5214 			 */
5215 			pub_addr->hdr.dstate = VIO_DESC_ACCEPTED;
5216 
5217 			mp = vio_allocb(ldcp->rxh);
5218 			if (mp == NULL) {
5219 				/*
5220 				 * No free receive buffers available, so
5221 				 * fallback onto allocb(9F). Make sure that
5222 				 * we get a data buffer which is a multiple
5223 				 * of 8 as this is required by ldc_mem_copy.
5224 				 */
5225 				DTRACE_PROBE(allocb);
5226 				mp = allocb(datalen + VNET_IPALIGN + 8,
5227 								BPRI_MED);
5228 			}
5229 
5230 			/*
5231 			 * Ensure that we ask ldc for an aligned
5232 			 * number of bytes.
5233 			 */
5234 			nbytes = datalen + VNET_IPALIGN;
5235 			if (nbytes & 0x7) {
5236 				off = 8 - (nbytes & 0x7);
5237 				nbytes += off;
5238 			}
5239 
5240 			ncookies = pub_addr->ncookies;
5241 			rv = ldc_mem_copy(ldcp->ldc_handle,
5242 				(caddr_t)mp->b_rptr, 0, &nbytes,
5243 				pub_addr->memcookie, ncookies,
5244 				LDC_COPY_IN);
5245 
5246 			if (rv != 0) {
5247 				DERR(vswp, "%s(%d): unable to copy in "
5248 					"data from %d cookies in desc %d"
5249 					" (rv %d)", __func__, ldcp->ldc_id,
5250 					ncookies, pos, rv);
5251 				freemsg(mp);
5252 
5253 				pub_addr->hdr.dstate = VIO_DESC_DONE;
5254 				(void) ldc_mem_dring_release(dp->handle,
5255 								pos, pos);
5256 				break;
5257 			} else {
5258 				D2(vswp, "%s(%d): copied in %ld bytes"
5259 					" using %d cookies", __func__,
5260 					ldcp->ldc_id, nbytes, ncookies);
5261 			}
5262 
5263 			/* adjust the read pointer to skip over the padding */
5264 			mp->b_rptr += VNET_IPALIGN;
5265 
5266 			/* point to the actual end of data */
5267 			mp->b_wptr = mp->b_rptr + datalen;
5268 
5269 			/* build a chain of received packets */
5270 			if (bp == NULL) {
5271 				/* first pkt */
5272 				bp = mp;
5273 				bp->b_next = bp->b_prev = NULL;
5274 				bpt = bp;
5275 				chain = 1;
5276 			} else {
5277 				mp->b_next = NULL;
5278 				mp->b_prev = bpt;
5279 				bpt->b_next = mp;
5280 				bpt = mp;
5281 				chain++;
5282 			}
5283 
5284 			/* mark we are finished with this descriptor */
5285 			pub_addr->hdr.dstate = VIO_DESC_DONE;
5286 
5287 			(void) ldc_mem_dring_release(dp->handle, pos, pos);
5288 
5289 			/*
5290 			 * Send an ACK back to peer if requested.
5291 			 */
5292 			if (ack_needed) {
5293 				ack_needed = B_FALSE;
5294 
5295 				dring_pkt->start_idx = range_start;
5296 				dring_pkt->end_idx = range_end;
5297 
5298 				DERR(vswp, "%s(%lld): processed %d %d, ACK"
5299 					" requested", __func__, ldcp->ldc_id,
5300 					dring_pkt->start_idx,
5301 					dring_pkt->end_idx);
5302 
5303 				dring_pkt->dring_process_state = VIO_DP_ACTIVE;
5304 				dring_pkt->tag.vio_subtype = VIO_SUBTYPE_ACK;
5305 				dring_pkt->tag.vio_sid = ldcp->local_session;
5306 				vsw_send_msg(ldcp, (void *)dring_pkt,
5307 					sizeof (vio_dring_msg_t));
5308 
5309 				prev_desc_ack = B_TRUE;
5310 				range_start = pos;
5311 			}
5312 
5313 			/* next descriptor */
5314 			pos = (pos + 1) % len;
5315 			cnt++;
5316 
5317 			/*
5318 			 * Break out of loop here and stop processing to
5319 			 * allow some other network device (or disk) to
5320 			 * get access to the cpu.
5321 			 */
5322 			/* send the chain of packets to be switched */
5323 			if (chain > vsw_chain_len) {
5324 				D3(vswp, "%s(%lld): switching chain of %d "
5325 					"msgs", __func__, ldcp->ldc_id, chain);
5326 				vsw_switch_frame(vswp, bp, VSW_VNETPORT,
5327 							ldcp->ldc_port, NULL);
5328 				bp = NULL;
5329 				break;
5330 			}
5331 		}
5332 
5333 		/* send the chain of packets to be switched */
5334 		if (bp != NULL) {
5335 			D3(vswp, "%s(%lld): switching chain of %d msgs",
5336 					__func__, ldcp->ldc_id, chain);
5337 			vsw_switch_frame(vswp, bp, VSW_VNETPORT,
5338 							ldcp->ldc_port, NULL);
5339 		}
5340 
5341 		DTRACE_PROBE1(msg_cnt, int, cnt);
5342 
5343 		/*
5344 		 * We are now finished so ACK back with the state
5345 		 * set to STOPPING so our peer knows we are finished
5346 		 */
5347 		dring_pkt->tag.vio_subtype = VIO_SUBTYPE_ACK;
5348 		dring_pkt->tag.vio_sid = ldcp->local_session;
5349 
5350 		dring_pkt->dring_process_state = VIO_DP_STOPPED;
5351 
5352 		DTRACE_PROBE(stop_process_sent);
5353 
5354 		/*
5355 		 * We have not processed any more descriptors beyond
5356 		 * the last one we ACK'd.
5357 		 */
5358 		if (prev_desc_ack)
5359 			range_start = range_end;
5360 
5361 		dring_pkt->start_idx = range_start;
5362 		dring_pkt->end_idx = range_end;
5363 
5364 		D2(vswp, "%s(%lld) processed : %d : %d, now stopping",
5365 			__func__, ldcp->ldc_id, dring_pkt->start_idx,
5366 			dring_pkt->end_idx);
5367 
5368 		vsw_send_msg(ldcp, (void *)dring_pkt,
5369 					sizeof (vio_dring_msg_t));
5370 		break;
5371 
5372 	case VIO_SUBTYPE_ACK:
5373 		D2(vswp, "%s(%lld): VIO_SUBTYPE_ACK", __func__, ldcp->ldc_id);
5374 		/*
5375 		 * Verify that the relevant descriptors are all
5376 		 * marked as DONE
5377 		 */
5378 		if ((dp = vsw_ident2dring(&ldcp->lane_out,
5379 			dring_pkt->dring_ident)) == NULL) {
5380 			DERR(vswp, "%s: unknown ident in ACK", __func__);
5381 			return;
5382 		}
5383 
5384 		pub_addr = (vnet_public_desc_t *)dp->pub_addr;
5385 		priv_addr = (vsw_private_desc_t *)dp->priv_addr;
5386 
5387 		start = end = 0;
5388 		start = dring_pkt->start_idx;
5389 		end = dring_pkt->end_idx;
5390 		len = dp->num_descriptors;
5391 
5392 		j = num = 0;
5393 		/* calculate # descriptors taking into a/c wrap around */
5394 		num = end >= start ? end - start + 1: (len - start + 1) + end;
5395 
5396 		D2(vswp, "%s(%lld): start index %ld : end %ld : num %ld\n",
5397 			__func__, ldcp->ldc_id, start, end, num);
5398 
5399 		mutex_enter(&dp->dlock);
5400 		dp->last_ack_recv = end;
5401 		mutex_exit(&dp->dlock);
5402 
5403 		for (i = start; j < num; i = (i + 1) % len, j++) {
5404 			pub_addr = (vnet_public_desc_t *)dp->pub_addr + i;
5405 			priv_addr = (vsw_private_desc_t *)dp->priv_addr + i;
5406 
5407 			/*
5408 			 * If the last descriptor in a range has the ACK
5409 			 * bit set then we will get two messages from our
5410 			 * peer relating to it. The normal ACK msg and then
5411 			 * a subsequent STOP msg. The first message will have
5412 			 * resulted in the descriptor being reclaimed and
5413 			 * its state set to FREE so when we encounter a non
5414 			 * DONE descriptor we need to check to see if its
5415 			 * because we have just reclaimed it.
5416 			 */
5417 			mutex_enter(&priv_addr->dstate_lock);
5418 			if (pub_addr->hdr.dstate == VIO_DESC_DONE) {
5419 				/* clear all the fields */
5420 				bzero(priv_addr->datap, priv_addr->datalen);
5421 				priv_addr->datalen = 0;
5422 
5423 				pub_addr->hdr.dstate = VIO_DESC_FREE;
5424 				pub_addr->hdr.ack = 0;
5425 
5426 				priv_addr->dstate = VIO_DESC_FREE;
5427 				mutex_exit(&priv_addr->dstate_lock);
5428 
5429 				D3(vswp, "clearing descp %d : pub state "
5430 					"0x%llx : priv state 0x%llx", i,
5431 					pub_addr->hdr.dstate,
5432 					priv_addr->dstate);
5433 
5434 			} else {
5435 				mutex_exit(&priv_addr->dstate_lock);
5436 
5437 				if (dring_pkt->dring_process_state !=
5438 							VIO_DP_STOPPED) {
5439 					DERR(vswp, "%s: descriptor %lld at pos "
5440 						" 0x%llx not DONE (0x%lx)\n",
5441 						__func__, i, pub_addr,
5442 						pub_addr->hdr.dstate);
5443 					return;
5444 				}
5445 			}
5446 		}
5447 
5448 		/*
5449 		 * If our peer is stopping processing descriptors then
5450 		 * we check to make sure it has processed all the descriptors
5451 		 * we have updated. If not then we send it a new message
5452 		 * to prompt it to restart.
5453 		 */
5454 		if (dring_pkt->dring_process_state == VIO_DP_STOPPED) {
5455 			DTRACE_PROBE(stop_process_recv);
5456 			D2(vswp, "%s(%lld): got stopping msg : %d : %d",
5457 				__func__, ldcp->ldc_id, dring_pkt->start_idx,
5458 				dring_pkt->end_idx);
5459 
5460 			/*
5461 			 * Check next descriptor in public section of ring.
5462 			 * If its marked as READY then we need to prompt our
5463 			 * peer to start processing the ring again.
5464 			 */
5465 			i = (end + 1) % len;
5466 			pub_addr = (vnet_public_desc_t *)dp->pub_addr + i;
5467 			priv_addr = (vsw_private_desc_t *)dp->priv_addr + i;
5468 
5469 			/*
5470 			 * Hold the restart lock across all of this to
5471 			 * make sure that its not possible for us to
5472 			 * decide that a msg needs to be sent in the future
5473 			 * but the sending code having already checked is
5474 			 * about to exit.
5475 			 */
5476 			mutex_enter(&dp->restart_lock);
5477 			mutex_enter(&priv_addr->dstate_lock);
5478 			if (pub_addr->hdr.dstate == VIO_DESC_READY) {
5479 
5480 				mutex_exit(&priv_addr->dstate_lock);
5481 
5482 				dring_pkt->tag.vio_subtype = VIO_SUBTYPE_INFO;
5483 				dring_pkt->tag.vio_sid = ldcp->local_session;
5484 
5485 				mutex_enter(&ldcp->lane_out.seq_lock);
5486 				dring_pkt->seq_num = ldcp->lane_out.seq_num++;
5487 				mutex_exit(&ldcp->lane_out.seq_lock);
5488 
5489 				dring_pkt->start_idx = (end + 1) % len;
5490 				dring_pkt->end_idx = -1;
5491 
5492 				D2(vswp, "%s(%lld) : sending restart msg:"
5493 					" %d : %d", __func__, ldcp->ldc_id,
5494 					dring_pkt->start_idx,
5495 					dring_pkt->end_idx);
5496 
5497 				vsw_send_msg(ldcp, (void *)dring_pkt,
5498 						sizeof (vio_dring_msg_t));
5499 			} else {
5500 				mutex_exit(&priv_addr->dstate_lock);
5501 				dp->restart_reqd = B_TRUE;
5502 			}
5503 			mutex_exit(&dp->restart_lock);
5504 		}
5505 		break;
5506 
5507 	case VIO_SUBTYPE_NACK:
5508 		DWARN(vswp, "%s(%lld): VIO_SUBTYPE_NACK",
5509 						__func__, ldcp->ldc_id);
5510 		/*
5511 		 * Something is badly wrong if we are getting NACK's
5512 		 * for our data pkts. So reset the channel.
5513 		 */
5514 		vsw_restart_handshake(ldcp);
5515 
5516 		break;
5517 
5518 	default:
5519 		DERR(vswp, "%s(%lld): Unknown vio_subtype %x\n", __func__,
5520 			ldcp->ldc_id, dring_pkt->tag.vio_subtype);
5521 	}
5522 
5523 	D1(vswp, "%s(%lld) exit", __func__, ldcp->ldc_id);
5524 }
5525 
5526 /*
5527  * VIO_PKT_DATA (a.k.a raw data mode )
5528  *
5529  * Note - currently not supported. Do nothing.
5530  */
5531 static void
5532 vsw_process_data_raw_pkt(vsw_ldc_t *ldcp, void *dpkt)
5533 {
5534 	_NOTE(ARGUNUSED(dpkt))
5535 
5536 	D1(NULL, "%s (%lld): enter\n", __func__, ldcp->ldc_id);
5537 
5538 	DERR(NULL, "%s (%lld): currently  not supported",
5539 						__func__, ldcp->ldc_id);
5540 
5541 	D1(NULL, "%s (%lld): exit\n", __func__, ldcp->ldc_id);
5542 }
5543 
5544 #define	SND_IBND_DESC_NACK(ldcp, pkt) \
5545 	pkt->tag.vio_subtype = VIO_SUBTYPE_NACK; \
5546 	pkt->tag.vio_sid = ldcp->local_session; \
5547 	vsw_send_msg(ldcp, (void *)pkt, sizeof (vio_ibnd_desc_t));
5548 
5549 /*
5550  * Process an in-band descriptor message (most likely from
5551  * OBP).
5552  */
5553 static void
5554 vsw_process_data_ibnd_pkt(vsw_ldc_t *ldcp, void *pkt)
5555 {
5556 	vio_ibnd_desc_t		*ibnd_desc;
5557 	dring_info_t		*dp = NULL;
5558 	vsw_private_desc_t	*priv_addr = NULL;
5559 	vsw_t			*vswp = ldcp->ldc_vswp;
5560 	mblk_t			*mp = NULL;
5561 	size_t			nbytes = 0;
5562 	size_t			off = 0;
5563 	uint64_t		idx = 0;
5564 	uint32_t		num = 1, len, datalen = 0;
5565 	uint64_t		ncookies = 0;
5566 	int			i, rv;
5567 	int			j = 0;
5568 
5569 	D1(vswp, "%s(%lld): enter", __func__, ldcp->ldc_id);
5570 
5571 	ibnd_desc = (vio_ibnd_desc_t *)pkt;
5572 
5573 	switch (ibnd_desc->hdr.tag.vio_subtype) {
5574 	case VIO_SUBTYPE_INFO:
5575 		D1(vswp, "%s: VIO_SUBTYPE_INFO", __func__);
5576 
5577 		if (vsw_check_flag(ldcp, INBOUND, VSW_DRING_INFO_RECV))
5578 			return;
5579 
5580 		/*
5581 		 * Data is padded to align on a 8 byte boundary,
5582 		 * nbytes is actual data length, i.e. minus that
5583 		 * padding.
5584 		 */
5585 		datalen = ibnd_desc->nbytes;
5586 
5587 		D2(vswp, "%s(%lld): processing inband desc : "
5588 			": datalen 0x%lx", __func__, ldcp->ldc_id, datalen);
5589 
5590 		ncookies = ibnd_desc->ncookies;
5591 
5592 		/*
5593 		 * allocb(9F) returns an aligned data block. We
5594 		 * need to ensure that we ask ldc for an aligned
5595 		 * number of bytes also.
5596 		 */
5597 		nbytes = datalen;
5598 		if (nbytes & 0x7) {
5599 			off = 8 - (nbytes & 0x7);
5600 			nbytes += off;
5601 		}
5602 
5603 		mp = allocb(datalen, BPRI_MED);
5604 		if (mp == NULL) {
5605 			DERR(vswp, "%s(%lld): allocb failed",
5606 					__func__, ldcp->ldc_id);
5607 			return;
5608 		}
5609 
5610 		rv = ldc_mem_copy(ldcp->ldc_handle, (caddr_t)mp->b_rptr,
5611 			0, &nbytes, ibnd_desc->memcookie, (uint64_t)ncookies,
5612 			LDC_COPY_IN);
5613 
5614 		if (rv != 0) {
5615 			DERR(vswp, "%s(%d): unable to copy in data from "
5616 				"%d cookie(s)", __func__,
5617 				ldcp->ldc_id, ncookies);
5618 			freemsg(mp);
5619 			return;
5620 		} else {
5621 			D2(vswp, "%s(%d): copied in %ld bytes using %d "
5622 				"cookies", __func__, ldcp->ldc_id, nbytes,
5623 				ncookies);
5624 		}
5625 
5626 		/* point to the actual end of data */
5627 		mp->b_wptr = mp->b_rptr + datalen;
5628 
5629 		/*
5630 		 * We ACK back every in-band descriptor message we process
5631 		 */
5632 		ibnd_desc->hdr.tag.vio_subtype = VIO_SUBTYPE_ACK;
5633 		ibnd_desc->hdr.tag.vio_sid = ldcp->local_session;
5634 		vsw_send_msg(ldcp, (void *)ibnd_desc,
5635 				sizeof (vio_ibnd_desc_t));
5636 
5637 		/* send the packet to be switched */
5638 		vsw_switch_frame(vswp, mp, VSW_VNETPORT,
5639 					ldcp->ldc_port, NULL);
5640 
5641 		break;
5642 
5643 	case VIO_SUBTYPE_ACK:
5644 		D1(vswp, "%s: VIO_SUBTYPE_ACK", __func__);
5645 
5646 		/* Verify the ACK is valid */
5647 		idx = ibnd_desc->hdr.desc_handle;
5648 
5649 		if (idx >= VSW_RING_NUM_EL) {
5650 			cmn_err(CE_WARN, "%s: corrupted ACK received "
5651 				"(idx %ld)", __func__, idx);
5652 			return;
5653 		}
5654 
5655 		if ((dp = ldcp->lane_out.dringp) == NULL) {
5656 			DERR(vswp, "%s: no dring found", __func__);
5657 			return;
5658 		}
5659 
5660 		len = dp->num_descriptors;
5661 		/*
5662 		 * If the descriptor we are being ACK'ed for is not the
5663 		 * one we expected, then pkts were lost somwhere, either
5664 		 * when we tried to send a msg, or a previous ACK msg from
5665 		 * our peer. In either case we now reclaim the descriptors
5666 		 * in the range from the last ACK we received up to the
5667 		 * current ACK.
5668 		 */
5669 		if (idx != dp->last_ack_recv) {
5670 			DWARN(vswp, "%s: dropped pkts detected, (%ld, %ld)",
5671 				__func__, dp->last_ack_recv, idx);
5672 			num = idx >= dp->last_ack_recv ?
5673 				idx - dp->last_ack_recv + 1:
5674 				(len - dp->last_ack_recv + 1) + idx;
5675 		}
5676 
5677 		/*
5678 		 * When we sent the in-band message to our peer we
5679 		 * marked the copy in our private ring as READY. We now
5680 		 * check that the descriptor we are being ACK'ed for is in
5681 		 * fact READY, i.e. it is one we have shared with our peer.
5682 		 *
5683 		 * If its not we flag an error, but still reset the descr
5684 		 * back to FREE.
5685 		 */
5686 		for (i = dp->last_ack_recv; j < num; i = (i + 1) % len, j++) {
5687 			priv_addr = (vsw_private_desc_t *)dp->priv_addr + i;
5688 			mutex_enter(&priv_addr->dstate_lock);
5689 			if (priv_addr->dstate != VIO_DESC_READY) {
5690 				DERR(vswp, "%s: (%ld) desc at index %ld not "
5691 					"READY (0x%lx)", __func__,
5692 					ldcp->ldc_id, idx, priv_addr->dstate);
5693 				DERR(vswp, "%s: bound %d: ncookies %ld : "
5694 					"datalen %ld", __func__,
5695 					priv_addr->bound, priv_addr->ncookies,
5696 					priv_addr->datalen);
5697 			}
5698 			D2(vswp, "%s: (%lld) freeing descp at %lld", __func__,
5699 				ldcp->ldc_id, idx);
5700 			/* release resources associated with sent msg */
5701 			bzero(priv_addr->datap, priv_addr->datalen);
5702 			priv_addr->datalen = 0;
5703 			priv_addr->dstate = VIO_DESC_FREE;
5704 			mutex_exit(&priv_addr->dstate_lock);
5705 		}
5706 		/* update to next expected value */
5707 		dp->last_ack_recv = (idx + 1) % dp->num_descriptors;
5708 
5709 		break;
5710 
5711 	case VIO_SUBTYPE_NACK:
5712 		DERR(vswp, "%s: VIO_SUBTYPE_NACK", __func__);
5713 
5714 		/*
5715 		 * We should only get a NACK if our peer doesn't like
5716 		 * something about a message we have sent it. If this
5717 		 * happens we just release the resources associated with
5718 		 * the message. (We are relying on higher layers to decide
5719 		 * whether or not to resend.
5720 		 */
5721 
5722 		/* limit check */
5723 		idx = ibnd_desc->hdr.desc_handle;
5724 
5725 		if (idx >= VSW_RING_NUM_EL) {
5726 			DERR(vswp, "%s: corrupted NACK received (idx %lld)",
5727 				__func__, idx);
5728 			return;
5729 		}
5730 
5731 		if ((dp = ldcp->lane_out.dringp) == NULL) {
5732 			DERR(vswp, "%s: no dring found", __func__);
5733 			return;
5734 		}
5735 
5736 		priv_addr = (vsw_private_desc_t *)dp->priv_addr;
5737 
5738 		/* move to correct location in ring */
5739 		priv_addr += idx;
5740 
5741 		/* release resources associated with sent msg */
5742 		mutex_enter(&priv_addr->dstate_lock);
5743 		bzero(priv_addr->datap, priv_addr->datalen);
5744 		priv_addr->datalen = 0;
5745 		priv_addr->dstate = VIO_DESC_FREE;
5746 		mutex_exit(&priv_addr->dstate_lock);
5747 
5748 		break;
5749 
5750 	default:
5751 		DERR(vswp, "%s(%lld): Unknown vio_subtype %x\n", __func__,
5752 			ldcp->ldc_id, ibnd_desc->hdr.tag.vio_subtype);
5753 	}
5754 
5755 	D1(vswp, "%s(%lld) exit", __func__, ldcp->ldc_id);
5756 }
5757 
5758 static void
5759 vsw_process_err_pkt(vsw_ldc_t *ldcp, void *epkt, vio_msg_tag_t tag)
5760 {
5761 	_NOTE(ARGUNUSED(epkt))
5762 
5763 	vsw_t		*vswp = ldcp->ldc_vswp;
5764 	uint16_t	env = tag.vio_subtype_env;
5765 
5766 	D1(vswp, "%s (%lld): enter\n", __func__, ldcp->ldc_id);
5767 
5768 	/*
5769 	 * Error vio_subtypes have yet to be defined. So for
5770 	 * the moment we can't do anything.
5771 	 */
5772 	D2(vswp, "%s: (%x) vio_subtype env", __func__, env);
5773 
5774 	D1(vswp, "%s (%lld): exit\n", __func__, ldcp->ldc_id);
5775 }
5776 
5777 /*
5778  * Switch the given ethernet frame when operating in layer 2 mode.
5779  *
5780  * vswp: pointer to the vsw instance
5781  * mp: pointer to chain of ethernet frame(s) to be switched
5782  * caller: identifies the source of this frame as:
5783  * 		1. VSW_VNETPORT - a vsw port (connected to a vnet).
5784  *		2. VSW_PHYSDEV - the physical ethernet device
5785  *		3. VSW_LOCALDEV - vsw configured as a virtual interface
5786  * arg: argument provided by the caller.
5787  *		1. for VNETPORT - pointer to the corresponding vsw_port_t.
5788  *		2. for PHYSDEV - NULL
5789  *		3. for LOCALDEV - pointer to to this vsw_t(self)
5790  */
5791 void
5792 vsw_switch_l2_frame(vsw_t *vswp, mblk_t *mp, int caller,
5793 			vsw_port_t *arg, mac_resource_handle_t mrh)
5794 {
5795 	struct ether_header	*ehp;
5796 	vsw_port_t		*port = NULL;
5797 	mblk_t			*bp, *ret_m;
5798 	mblk_t			*nmp = NULL;
5799 	vsw_port_list_t		*plist = &vswp->plist;
5800 
5801 	D1(vswp, "%s: enter (caller %d)", __func__, caller);
5802 
5803 	/*
5804 	 * PERF: rather than breaking up the chain here, scan it
5805 	 * to find all mblks heading to same destination and then
5806 	 * pass that sub-chain to the lower transmit functions.
5807 	 */
5808 
5809 	/* process the chain of packets */
5810 	bp = mp;
5811 	while (bp) {
5812 		mp = bp;
5813 		bp = bp->b_next;
5814 		mp->b_next = mp->b_prev = NULL;
5815 		ehp = (struct ether_header *)mp->b_rptr;
5816 
5817 		D2(vswp, "%s: mblk data buffer %lld : actual data size %lld",
5818 			__func__, MBLKSIZE(mp), MBLKL(mp));
5819 
5820 		READ_ENTER(&vswp->if_lockrw);
5821 		if (ether_cmp(&ehp->ether_dhost, &vswp->if_addr) == 0) {
5822 			/*
5823 			 * If destination is VSW_LOCALDEV (vsw as an eth
5824 			 * interface) and if the device is up & running,
5825 			 * send the packet up the stack on this host.
5826 			 * If the virtual interface is down, drop the packet.
5827 			 */
5828 			if (caller != VSW_LOCALDEV) {
5829 				if (vswp->if_state & VSW_IF_UP) {
5830 					RW_EXIT(&vswp->if_lockrw);
5831 					mac_rx(vswp->if_mh, mrh, mp);
5832 				} else {
5833 					RW_EXIT(&vswp->if_lockrw);
5834 					/* Interface down, drop pkt */
5835 					freemsg(mp);
5836 				}
5837 			} else {
5838 				RW_EXIT(&vswp->if_lockrw);
5839 				freemsg(mp);
5840 			}
5841 			continue;
5842 		}
5843 		RW_EXIT(&vswp->if_lockrw);
5844 
5845 		READ_ENTER(&plist->lockrw);
5846 		port = vsw_lookup_fdb(vswp, ehp);
5847 		if (port) {
5848 			/*
5849 			 * Mark the port as in-use.
5850 			 */
5851 			mutex_enter(&port->ref_lock);
5852 			port->ref_cnt++;
5853 			mutex_exit(&port->ref_lock);
5854 			RW_EXIT(&plist->lockrw);
5855 
5856 			/*
5857 			 * If plumbed and in promisc mode then copy msg
5858 			 * and send up the stack.
5859 			 */
5860 			READ_ENTER(&vswp->if_lockrw);
5861 			if (VSW_U_P(vswp->if_state)) {
5862 				RW_EXIT(&vswp->if_lockrw);
5863 				nmp = copymsg(mp);
5864 				if (nmp)
5865 					mac_rx(vswp->if_mh, mrh, nmp);
5866 			} else {
5867 				RW_EXIT(&vswp->if_lockrw);
5868 			}
5869 
5870 			/*
5871 			 * If the destination is in FDB, the packet
5872 			 * should be forwarded to the correponding
5873 			 * vsw_port (connected to a vnet device -
5874 			 * VSW_VNETPORT)
5875 			 */
5876 			(void) vsw_portsend(port, mp);
5877 
5878 			/*
5879 			 * Decrement use count in port and check if
5880 			 * should wake delete thread.
5881 			 */
5882 			mutex_enter(&port->ref_lock);
5883 			port->ref_cnt--;
5884 			if (port->ref_cnt == 0)
5885 				cv_signal(&port->ref_cv);
5886 			mutex_exit(&port->ref_lock);
5887 		} else {
5888 			RW_EXIT(&plist->lockrw);
5889 			/*
5890 			 * Destination not in FDB.
5891 			 *
5892 			 * If the destination is broadcast or
5893 			 * multicast forward the packet to all
5894 			 * (VNETPORTs, PHYSDEV, LOCALDEV),
5895 			 * except the caller.
5896 			 */
5897 			if (IS_BROADCAST(ehp)) {
5898 				D3(vswp, "%s: BROADCAST pkt", __func__);
5899 				(void) vsw_forward_all(vswp, mp,
5900 								caller, arg);
5901 			} else if (IS_MULTICAST(ehp)) {
5902 				D3(vswp, "%s: MULTICAST pkt", __func__);
5903 				(void) vsw_forward_grp(vswp, mp,
5904 							caller, arg);
5905 			} else {
5906 				/*
5907 				 * If the destination is unicast, and came
5908 				 * from either a logical network device or
5909 				 * the switch itself when it is plumbed, then
5910 				 * send it out on the physical device and also
5911 				 * up the stack if the logical interface is
5912 				 * in promiscious mode.
5913 				 *
5914 				 * NOTE:  The assumption here is that if we
5915 				 * cannot find the destination in our fdb, its
5916 				 * a unicast address, and came from either a
5917 				 * vnet or down the stack (when plumbed) it
5918 				 * must be destinded for an ethernet device
5919 				 * outside our ldoms.
5920 				 */
5921 				if (caller == VSW_VNETPORT) {
5922 					READ_ENTER(&vswp->if_lockrw);
5923 					if (VSW_U_P(vswp->if_state)) {
5924 						RW_EXIT(&vswp->if_lockrw);
5925 						nmp = copymsg(mp);
5926 						if (nmp)
5927 							mac_rx(vswp->if_mh,
5928 								mrh, nmp);
5929 					} else {
5930 						RW_EXIT(&vswp->if_lockrw);
5931 					}
5932 					if ((ret_m = vsw_tx_msg(vswp, mp))
5933 								!= NULL) {
5934 						DERR(vswp, "%s: drop mblks to "
5935 							"phys dev", __func__);
5936 						freemsg(ret_m);
5937 					}
5938 
5939 				} else if (caller == VSW_PHYSDEV) {
5940 					/*
5941 					 * Pkt seen because card in promisc
5942 					 * mode. Send up stack if plumbed in
5943 					 * promisc mode, else drop it.
5944 					 */
5945 					READ_ENTER(&vswp->if_lockrw);
5946 					if (VSW_U_P(vswp->if_state)) {
5947 						RW_EXIT(&vswp->if_lockrw);
5948 						mac_rx(vswp->if_mh, mrh, mp);
5949 					} else {
5950 						RW_EXIT(&vswp->if_lockrw);
5951 						freemsg(mp);
5952 					}
5953 
5954 				} else if (caller == VSW_LOCALDEV) {
5955 					/*
5956 					 * Pkt came down the stack, send out
5957 					 * over physical device.
5958 					 */
5959 					if ((ret_m = vsw_tx_msg(vswp, mp))
5960 								!= NULL) {
5961 						DERR(vswp, "%s: drop mblks to "
5962 							"phys dev", __func__);
5963 						freemsg(ret_m);
5964 					}
5965 				}
5966 			}
5967 		}
5968 	}
5969 	D1(vswp, "%s: exit\n", __func__);
5970 }
5971 
5972 /*
5973  * Switch ethernet frame when in layer 3 mode (i.e. using IP
5974  * layer to do the routing).
5975  *
5976  * There is a large amount of overlap between this function and
5977  * vsw_switch_l2_frame. At some stage we need to revisit and refactor
5978  * both these functions.
5979  */
5980 void
5981 vsw_switch_l3_frame(vsw_t *vswp, mblk_t *mp, int caller,
5982 			vsw_port_t *arg, mac_resource_handle_t mrh)
5983 {
5984 	struct ether_header	*ehp;
5985 	vsw_port_t		*port = NULL;
5986 	mblk_t			*bp = NULL;
5987 	vsw_port_list_t		*plist = &vswp->plist;
5988 
5989 	D1(vswp, "%s: enter (caller %d)", __func__, caller);
5990 
5991 	/*
5992 	 * In layer 3 mode should only ever be switching packets
5993 	 * between IP layer and vnet devices. So make sure thats
5994 	 * who is invoking us.
5995 	 */
5996 	if ((caller != VSW_LOCALDEV) && (caller != VSW_VNETPORT)) {
5997 		DERR(vswp, "%s: unexpected caller (%d)", __func__, caller);
5998 		freemsgchain(mp);
5999 		return;
6000 	}
6001 
6002 	/* process the chain of packets */
6003 	bp = mp;
6004 	while (bp) {
6005 		mp = bp;
6006 		bp = bp->b_next;
6007 		mp->b_next = mp->b_prev = NULL;
6008 		ehp = (struct ether_header *)mp->b_rptr;
6009 
6010 		D2(vswp, "%s: mblk data buffer %lld : actual data size %lld",
6011 			__func__, MBLKSIZE(mp), MBLKL(mp));
6012 
6013 		READ_ENTER(&plist->lockrw);
6014 		port = vsw_lookup_fdb(vswp, ehp);
6015 		if (port) {
6016 			/*
6017 			 * Mark port as in-use.
6018 			 */
6019 			mutex_enter(&port->ref_lock);
6020 			port->ref_cnt++;
6021 			mutex_exit(&port->ref_lock);
6022 			RW_EXIT(&plist->lockrw);
6023 
6024 			D2(vswp, "%s: sending to target port", __func__);
6025 			(void) vsw_portsend(port, mp);
6026 
6027 			/*
6028 			 * Finished with port so decrement ref count and
6029 			 * check if should wake delete thread.
6030 			 */
6031 			mutex_enter(&port->ref_lock);
6032 			port->ref_cnt--;
6033 			if (port->ref_cnt == 0)
6034 				cv_signal(&port->ref_cv);
6035 			mutex_exit(&port->ref_lock);
6036 		} else {
6037 			RW_EXIT(&plist->lockrw);
6038 			/*
6039 			 * Destination not in FDB
6040 			 *
6041 			 * If the destination is broadcast or
6042 			 * multicast forward the packet to all
6043 			 * (VNETPORTs, PHYSDEV, LOCALDEV),
6044 			 * except the caller.
6045 			 */
6046 			if (IS_BROADCAST(ehp)) {
6047 				D2(vswp, "%s: BROADCAST pkt", __func__);
6048 				(void) vsw_forward_all(vswp, mp,
6049 								caller, arg);
6050 			} else if (IS_MULTICAST(ehp)) {
6051 				D2(vswp, "%s: MULTICAST pkt", __func__);
6052 				(void) vsw_forward_grp(vswp, mp,
6053 							caller, arg);
6054 			} else {
6055 				/*
6056 				 * Unicast pkt from vnet that we don't have
6057 				 * an FDB entry for, so must be destinded for
6058 				 * the outside world. Attempt to send up to the
6059 				 * IP layer to allow it to deal with it.
6060 				 */
6061 				if (caller == VSW_VNETPORT) {
6062 					READ_ENTER(&vswp->if_lockrw);
6063 					if (vswp->if_state & VSW_IF_UP) {
6064 						RW_EXIT(&vswp->if_lockrw);
6065 						D2(vswp, "%s: sending up",
6066 							__func__);
6067 						mac_rx(vswp->if_mh, mrh, mp);
6068 					} else {
6069 						RW_EXIT(&vswp->if_lockrw);
6070 						/* Interface down, drop pkt */
6071 						D2(vswp, "%s I/F down",
6072 								__func__);
6073 						freemsg(mp);
6074 					}
6075 				}
6076 			}
6077 		}
6078 	}
6079 
6080 	D1(vswp, "%s: exit", __func__);
6081 }
6082 
6083 /*
6084  * Forward the ethernet frame to all ports (VNETPORTs, PHYSDEV, LOCALDEV),
6085  * except the caller (port on which frame arrived).
6086  */
6087 static int
6088 vsw_forward_all(vsw_t *vswp, mblk_t *mp, int caller, vsw_port_t *arg)
6089 {
6090 	vsw_port_list_t	*plist = &vswp->plist;
6091 	vsw_port_t	*portp;
6092 	mblk_t		*nmp = NULL;
6093 	mblk_t		*ret_m = NULL;
6094 	int		skip_port = 0;
6095 
6096 	D1(vswp, "vsw_forward_all: enter\n");
6097 
6098 	/*
6099 	 * Broadcast message from inside ldoms so send to outside
6100 	 * world if in either of layer 2 modes.
6101 	 */
6102 	if (((vswp->smode[vswp->smode_idx] == VSW_LAYER2) ||
6103 		(vswp->smode[vswp->smode_idx] == VSW_LAYER2_PROMISC)) &&
6104 		((caller == VSW_LOCALDEV) || (caller == VSW_VNETPORT))) {
6105 
6106 		nmp = dupmsg(mp);
6107 		if (nmp) {
6108 			if ((ret_m = vsw_tx_msg(vswp, nmp)) != NULL) {
6109 				DERR(vswp, "%s: dropping pkt(s) "
6110 				"consisting of %ld bytes of data for"
6111 				" physical device", __func__, MBLKL(ret_m));
6112 			freemsg(ret_m);
6113 			}
6114 		}
6115 	}
6116 
6117 	if (caller == VSW_VNETPORT)
6118 		skip_port = 1;
6119 
6120 	/*
6121 	 * Broadcast message from other vnet (layer 2 or 3) or outside
6122 	 * world (layer 2 only), send up stack if plumbed.
6123 	 */
6124 	if ((caller == VSW_PHYSDEV) || (caller == VSW_VNETPORT)) {
6125 		READ_ENTER(&vswp->if_lockrw);
6126 		if (vswp->if_state & VSW_IF_UP) {
6127 			RW_EXIT(&vswp->if_lockrw);
6128 			nmp = copymsg(mp);
6129 			if (nmp)
6130 				mac_rx(vswp->if_mh, NULL, nmp);
6131 		} else {
6132 			RW_EXIT(&vswp->if_lockrw);
6133 		}
6134 	}
6135 
6136 	/* send it to all VNETPORTs */
6137 	READ_ENTER(&plist->lockrw);
6138 	for (portp = plist->head; portp != NULL; portp = portp->p_next) {
6139 		D2(vswp, "vsw_forward_all: port %d", portp->p_instance);
6140 		/*
6141 		 * Caution ! - don't reorder these two checks as arg
6142 		 * will be NULL if the caller is PHYSDEV. skip_port is
6143 		 * only set if caller is VNETPORT.
6144 		 */
6145 		if ((skip_port) && (portp == arg))
6146 			continue;
6147 		else {
6148 			nmp = dupmsg(mp);
6149 			if (nmp) {
6150 				(void) vsw_portsend(portp, nmp);
6151 			} else {
6152 				DERR(vswp, "vsw_forward_all: nmp NULL");
6153 			}
6154 		}
6155 	}
6156 	RW_EXIT(&plist->lockrw);
6157 
6158 	freemsg(mp);
6159 
6160 	D1(vswp, "vsw_forward_all: exit\n");
6161 	return (0);
6162 }
6163 
6164 /*
6165  * Forward pkts to any devices or interfaces which have registered
6166  * an interest in them (i.e. multicast groups).
6167  */
6168 static int
6169 vsw_forward_grp(vsw_t *vswp, mblk_t *mp, int caller, vsw_port_t *arg)
6170 {
6171 	struct ether_header	*ehp = (struct ether_header *)mp->b_rptr;
6172 	mfdb_ent_t		*entp = NULL;
6173 	mfdb_ent_t		*tpp = NULL;
6174 	vsw_port_t 		*port;
6175 	uint64_t		key = 0;
6176 	mblk_t			*nmp = NULL;
6177 	mblk_t			*ret_m = NULL;
6178 	boolean_t		check_if = B_TRUE;
6179 
6180 	/*
6181 	 * Convert address to hash table key
6182 	 */
6183 	KEY_HASH(key, ehp->ether_dhost);
6184 
6185 	D1(vswp, "%s: key 0x%llx", __func__, key);
6186 
6187 	/*
6188 	 * If pkt came from either a vnet or down the stack (if we are
6189 	 * plumbed) and we are in layer 2 mode, then we send the pkt out
6190 	 * over the physical adapter, and then check to see if any other
6191 	 * vnets are interested in it.
6192 	 */
6193 	if (((vswp->smode[vswp->smode_idx] == VSW_LAYER2) ||
6194 		(vswp->smode[vswp->smode_idx] == VSW_LAYER2_PROMISC)) &&
6195 		((caller == VSW_VNETPORT) || (caller == VSW_LOCALDEV))) {
6196 		nmp = dupmsg(mp);
6197 		if (nmp) {
6198 			if ((ret_m = vsw_tx_msg(vswp, nmp)) != NULL) {
6199 				DERR(vswp, "%s: dropping pkt(s) "
6200 					"consisting of %ld bytes of "
6201 					"data for physical device",
6202 					__func__, MBLKL(ret_m));
6203 				freemsg(ret_m);
6204 			}
6205 		}
6206 	}
6207 
6208 	READ_ENTER(&vswp->mfdbrw);
6209 	if (mod_hash_find(vswp->mfdb, (mod_hash_key_t)key,
6210 				(mod_hash_val_t *)&entp) != 0) {
6211 		D3(vswp, "%s: no table entry found for addr 0x%llx",
6212 								__func__, key);
6213 	} else {
6214 		/*
6215 		 * Send to list of devices associated with this address...
6216 		 */
6217 		for (tpp = entp; tpp != NULL; tpp = tpp->nextp) {
6218 
6219 			/* dont send to ourselves */
6220 			if ((caller == VSW_VNETPORT) &&
6221 				(tpp->d_addr == (void *)arg)) {
6222 				port = (vsw_port_t *)tpp->d_addr;
6223 				D3(vswp, "%s: not sending to ourselves"
6224 					" : port %d", __func__,
6225 					port->p_instance);
6226 				continue;
6227 
6228 			} else if ((caller == VSW_LOCALDEV) &&
6229 				(tpp->d_type == VSW_LOCALDEV)) {
6230 				D3(vswp, "%s: not sending back up stack",
6231 					__func__);
6232 				continue;
6233 			}
6234 
6235 			if (tpp->d_type == VSW_VNETPORT) {
6236 				port = (vsw_port_t *)tpp->d_addr;
6237 				D3(vswp, "%s: sending to port %ld for "
6238 					" addr 0x%llx", __func__,
6239 					port->p_instance, key);
6240 
6241 				nmp = dupmsg(mp);
6242 				if (nmp)
6243 					(void) vsw_portsend(port, nmp);
6244 			} else {
6245 				if (vswp->if_state & VSW_IF_UP) {
6246 					nmp = copymsg(mp);
6247 					if (nmp)
6248 						mac_rx(vswp->if_mh, NULL, nmp);
6249 					check_if = B_FALSE;
6250 					D3(vswp, "%s: sending up stack"
6251 						" for addr 0x%llx", __func__,
6252 						key);
6253 				}
6254 			}
6255 		}
6256 	}
6257 
6258 	RW_EXIT(&vswp->mfdbrw);
6259 
6260 	/*
6261 	 * If the pkt came from either a vnet or from physical device,
6262 	 * and if we havent already sent the pkt up the stack then we
6263 	 * check now if we can/should (i.e. the interface is plumbed
6264 	 * and in promisc mode).
6265 	 */
6266 	if ((check_if) &&
6267 		((caller == VSW_VNETPORT) || (caller == VSW_PHYSDEV))) {
6268 		READ_ENTER(&vswp->if_lockrw);
6269 		if (VSW_U_P(vswp->if_state)) {
6270 			RW_EXIT(&vswp->if_lockrw);
6271 			D3(vswp, "%s: (caller %d) finally sending up stack"
6272 				" for addr 0x%llx", __func__, caller, key);
6273 			nmp = copymsg(mp);
6274 			if (nmp)
6275 				mac_rx(vswp->if_mh, NULL, nmp);
6276 		} else {
6277 			RW_EXIT(&vswp->if_lockrw);
6278 		}
6279 	}
6280 
6281 	freemsg(mp);
6282 
6283 	D1(vswp, "%s: exit", __func__);
6284 
6285 	return (0);
6286 }
6287 
6288 /* transmit the packet over the given port */
6289 static int
6290 vsw_portsend(vsw_port_t *port, mblk_t *mp)
6291 {
6292 	vsw_ldc_list_t 	*ldcl = &port->p_ldclist;
6293 	vsw_ldc_t 	*ldcp;
6294 	int		status = 0;
6295 
6296 
6297 	READ_ENTER(&ldcl->lockrw);
6298 	/*
6299 	 * Note for now, we have a single channel.
6300 	 */
6301 	ldcp = ldcl->head;
6302 	if (ldcp == NULL) {
6303 		DERR(port->p_vswp, "vsw_portsend: no ldc: dropping packet\n");
6304 		freemsg(mp);
6305 		RW_EXIT(&ldcl->lockrw);
6306 		return (1);
6307 	}
6308 
6309 	/*
6310 	 * Send the message out using the appropriate
6311 	 * transmit function which will free mblock when it
6312 	 * is finished with it.
6313 	 */
6314 	mutex_enter(&port->tx_lock);
6315 	if (port->transmit != NULL)
6316 		status = (*port->transmit)(ldcp, mp);
6317 	else {
6318 		freemsg(mp);
6319 	}
6320 	mutex_exit(&port->tx_lock);
6321 
6322 	RW_EXIT(&ldcl->lockrw);
6323 
6324 	return (status);
6325 }
6326 
6327 /*
6328  * Send packet out via descriptor ring to a logical device.
6329  */
6330 static int
6331 vsw_dringsend(vsw_ldc_t *ldcp, mblk_t *mp)
6332 {
6333 	vio_dring_msg_t		dring_pkt;
6334 	dring_info_t		*dp = NULL;
6335 	vsw_private_desc_t	*priv_desc = NULL;
6336 	vnet_public_desc_t	*pub = NULL;
6337 	vsw_t			*vswp = ldcp->ldc_vswp;
6338 	mblk_t			*bp;
6339 	size_t			n, size;
6340 	caddr_t			bufp;
6341 	int			idx;
6342 	int			status = LDC_TX_SUCCESS;
6343 
6344 	D1(vswp, "%s(%lld): enter\n", __func__, ldcp->ldc_id);
6345 
6346 	/* TODO: make test a macro */
6347 	if ((!(ldcp->lane_out.lstate & VSW_LANE_ACTIVE)) ||
6348 		(ldcp->ldc_status != LDC_UP) || (ldcp->ldc_handle == NULL)) {
6349 		DWARN(vswp, "%s(%lld) status(%d) lstate(0x%llx), dropping "
6350 			"packet\n", __func__, ldcp->ldc_id, ldcp->ldc_status,
6351 			ldcp->lane_out.lstate);
6352 		freemsg(mp);
6353 		return (LDC_TX_FAILURE);
6354 	}
6355 
6356 	/*
6357 	 * Note - using first ring only, this may change
6358 	 * in the future.
6359 	 */
6360 	if ((dp = ldcp->lane_out.dringp) == NULL) {
6361 		DERR(vswp, "%s(%lld): no dring for outbound lane on"
6362 			" channel %d", __func__, ldcp->ldc_id, ldcp->ldc_id);
6363 		freemsg(mp);
6364 		return (LDC_TX_FAILURE);
6365 	}
6366 
6367 	size = msgsize(mp);
6368 	if (size > (size_t)ETHERMAX) {
6369 		DERR(vswp, "%s(%lld) invalid size (%ld)\n", __func__,
6370 		    ldcp->ldc_id, size);
6371 		freemsg(mp);
6372 		return (LDC_TX_FAILURE);
6373 	}
6374 
6375 	/*
6376 	 * Find a free descriptor
6377 	 *
6378 	 * Note: for the moment we are assuming that we will only
6379 	 * have one dring going from the switch to each of its
6380 	 * peers. This may change in the future.
6381 	 */
6382 	if (vsw_dring_find_free_desc(dp, &priv_desc, &idx) != 0) {
6383 		D2(vswp, "%s(%lld): no descriptor available for ring "
6384 			"at 0x%llx", __func__, ldcp->ldc_id, dp);
6385 
6386 		/* nothing more we can do */
6387 		status = LDC_TX_NORESOURCES;
6388 		goto vsw_dringsend_free_exit;
6389 	} else {
6390 		D2(vswp, "%s(%lld): free private descriptor found at pos "
6391 			"%ld addr 0x%llx\n", __func__, ldcp->ldc_id, idx,
6392 			priv_desc);
6393 	}
6394 
6395 	/* copy data into the descriptor */
6396 	bufp = priv_desc->datap;
6397 	bufp += VNET_IPALIGN;
6398 	for (bp = mp, n = 0; bp != NULL; bp = bp->b_cont) {
6399 		n = MBLKL(bp);
6400 		bcopy(bp->b_rptr, bufp, n);
6401 		bufp += n;
6402 	}
6403 
6404 	priv_desc->datalen = (size < (size_t)ETHERMIN) ? ETHERMIN : size;
6405 
6406 	pub = priv_desc->descp;
6407 	pub->nbytes = priv_desc->datalen;
6408 
6409 	mutex_enter(&priv_desc->dstate_lock);
6410 	pub->hdr.dstate = VIO_DESC_READY;
6411 	mutex_exit(&priv_desc->dstate_lock);
6412 
6413 	/*
6414 	 * Determine whether or not we need to send a message to our
6415 	 * peer prompting them to read our newly updated descriptor(s).
6416 	 */
6417 	mutex_enter(&dp->restart_lock);
6418 	if (dp->restart_reqd) {
6419 		dp->restart_reqd = B_FALSE;
6420 		mutex_exit(&dp->restart_lock);
6421 
6422 		/*
6423 		 * Send a vio_dring_msg to peer to prompt them to read
6424 		 * the updated descriptor ring.
6425 		 */
6426 		dring_pkt.tag.vio_msgtype = VIO_TYPE_DATA;
6427 		dring_pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
6428 		dring_pkt.tag.vio_subtype_env = VIO_DRING_DATA;
6429 		dring_pkt.tag.vio_sid = ldcp->local_session;
6430 
6431 		/* Note - for now using first ring */
6432 		dring_pkt.dring_ident = dp->ident;
6433 
6434 		mutex_enter(&ldcp->lane_out.seq_lock);
6435 		dring_pkt.seq_num = ldcp->lane_out.seq_num++;
6436 		mutex_exit(&ldcp->lane_out.seq_lock);
6437 
6438 		/*
6439 		 * If last_ack_recv is -1 then we know we've not
6440 		 * received any ack's yet, so this must be the first
6441 		 * msg sent, so set the start to the begining of the ring.
6442 		 */
6443 		mutex_enter(&dp->dlock);
6444 		if (dp->last_ack_recv == -1) {
6445 			dring_pkt.start_idx = 0;
6446 		} else {
6447 			dring_pkt.start_idx = (dp->last_ack_recv + 1) %
6448 						dp->num_descriptors;
6449 		}
6450 		dring_pkt.end_idx = -1;
6451 		mutex_exit(&dp->dlock);
6452 
6453 		D3(vswp, "%s(%lld): dring 0x%llx : ident 0x%llx\n", __func__,
6454 			ldcp->ldc_id, dp, dring_pkt.dring_ident);
6455 		D3(vswp, "%s(%lld): start %lld : end %lld : seq %lld\n",
6456 			__func__, ldcp->ldc_id, dring_pkt.start_idx,
6457 			dring_pkt.end_idx, dring_pkt.seq_num);
6458 
6459 		vsw_send_msg(ldcp, (void *)&dring_pkt,
6460 						sizeof (vio_dring_msg_t));
6461 	} else {
6462 		mutex_exit(&dp->restart_lock);
6463 		D2(vswp, "%s(%lld): updating descp %d", __func__,
6464 			ldcp->ldc_id, idx);
6465 	}
6466 
6467 vsw_dringsend_free_exit:
6468 
6469 	/* free the message block */
6470 	freemsg(mp);
6471 
6472 	D1(vswp, "%s(%lld): exit\n", __func__, ldcp->ldc_id);
6473 	return (status);
6474 }
6475 
6476 /*
6477  * Send an in-band descriptor message over ldc.
6478  */
6479 static int
6480 vsw_descrsend(vsw_ldc_t *ldcp, mblk_t *mp)
6481 {
6482 	vsw_t			*vswp = ldcp->ldc_vswp;
6483 	vio_ibnd_desc_t		ibnd_msg;
6484 	vsw_private_desc_t	*priv_desc = NULL;
6485 	dring_info_t		*dp = NULL;
6486 	size_t			n, size = 0;
6487 	caddr_t			bufp;
6488 	mblk_t			*bp;
6489 	int			idx, i;
6490 	int			status = LDC_TX_SUCCESS;
6491 	static int		warn_msg = 1;
6492 
6493 	D1(vswp, "%s(%lld): enter", __func__, ldcp->ldc_id);
6494 
6495 	ASSERT(mp != NULL);
6496 
6497 	if ((!(ldcp->lane_out.lstate & VSW_LANE_ACTIVE)) ||
6498 		(ldcp->ldc_status != LDC_UP) || (ldcp->ldc_handle == NULL)) {
6499 		DERR(vswp, "%s(%lld) status(%d) state (0x%llx), dropping pkt",
6500 			__func__, ldcp->ldc_id, ldcp->ldc_status,
6501 			ldcp->lane_out.lstate);
6502 		freemsg(mp);
6503 		return (LDC_TX_FAILURE);
6504 	}
6505 
6506 	/*
6507 	 * only expect single dring to exist, which we use
6508 	 * as an internal buffer, rather than a transfer channel.
6509 	 */
6510 	if ((dp = ldcp->lane_out.dringp) == NULL) {
6511 		DERR(vswp, "%s(%lld): no dring for outbound lane",
6512 			__func__, ldcp->ldc_id);
6513 		DERR(vswp, "%s(%lld) status(%d) state (0x%llx)",
6514 			__func__, ldcp->ldc_id, ldcp->ldc_status,
6515 			ldcp->lane_out.lstate);
6516 		freemsg(mp);
6517 		return (LDC_TX_FAILURE);
6518 	}
6519 
6520 	size = msgsize(mp);
6521 	if (size > (size_t)ETHERMAX) {
6522 		DERR(vswp, "%s(%lld) invalid size (%ld)\n", __func__,
6523 		    ldcp->ldc_id, size);
6524 		freemsg(mp);
6525 		return (LDC_TX_FAILURE);
6526 	}
6527 
6528 	/*
6529 	 * Find a free descriptor in our buffer ring
6530 	 */
6531 	if (vsw_dring_find_free_desc(dp, &priv_desc, &idx) != 0) {
6532 		if (warn_msg) {
6533 			DERR(vswp, "%s(%lld): no descriptor available for ring "
6534 			"at 0x%llx", __func__, ldcp->ldc_id, dp);
6535 			warn_msg = 0;
6536 		}
6537 
6538 		/* nothing more we can do */
6539 		status = LDC_TX_NORESOURCES;
6540 		goto vsw_descrsend_free_exit;
6541 	} else {
6542 		D2(vswp, "%s(%lld): free private descriptor found at pos "
6543 			"%ld addr 0x%x\n", __func__, ldcp->ldc_id, idx,
6544 			priv_desc);
6545 		warn_msg = 1;
6546 	}
6547 
6548 	/* copy data into the descriptor */
6549 	bufp = priv_desc->datap;
6550 	for (bp = mp, n = 0; bp != NULL; bp = bp->b_cont) {
6551 		n = MBLKL(bp);
6552 		bcopy(bp->b_rptr, bufp, n);
6553 		bufp += n;
6554 	}
6555 
6556 	priv_desc->datalen = (size < (size_t)ETHERMIN) ? ETHERMIN : size;
6557 
6558 	/* create and send the in-band descp msg */
6559 	ibnd_msg.hdr.tag.vio_msgtype = VIO_TYPE_DATA;
6560 	ibnd_msg.hdr.tag.vio_subtype = VIO_SUBTYPE_INFO;
6561 	ibnd_msg.hdr.tag.vio_subtype_env = VIO_DESC_DATA;
6562 	ibnd_msg.hdr.tag.vio_sid = ldcp->local_session;
6563 
6564 	mutex_enter(&ldcp->lane_out.seq_lock);
6565 	ibnd_msg.hdr.seq_num = ldcp->lane_out.seq_num++;
6566 	mutex_exit(&ldcp->lane_out.seq_lock);
6567 
6568 	/*
6569 	 * Copy the mem cookies describing the data from the
6570 	 * private region of the descriptor ring into the inband
6571 	 * descriptor.
6572 	 */
6573 	for (i = 0; i < priv_desc->ncookies; i++) {
6574 		bcopy(&priv_desc->memcookie[i], &ibnd_msg.memcookie[i],
6575 			sizeof (ldc_mem_cookie_t));
6576 	}
6577 
6578 	ibnd_msg.hdr.desc_handle = idx;
6579 	ibnd_msg.ncookies = priv_desc->ncookies;
6580 	ibnd_msg.nbytes = size;
6581 
6582 	vsw_send_msg(ldcp, (void *)&ibnd_msg, sizeof (vio_ibnd_desc_t));
6583 
6584 vsw_descrsend_free_exit:
6585 
6586 	/* free the allocated message blocks */
6587 	freemsg(mp);
6588 
6589 	D1(vswp, "%s(%lld): exit", __func__, ldcp->ldc_id);
6590 	return (status);
6591 }
6592 
6593 static void
6594 vsw_send_ver(void *arg)
6595 {
6596 	vsw_ldc_t	*ldcp = (vsw_ldc_t *)arg;
6597 	vsw_t		*vswp = ldcp->ldc_vswp;
6598 	lane_t		*lp = &ldcp->lane_out;
6599 	vio_ver_msg_t	ver_msg;
6600 
6601 	D1(vswp, "%s enter", __func__);
6602 
6603 	ver_msg.tag.vio_msgtype = VIO_TYPE_CTRL;
6604 	ver_msg.tag.vio_subtype = VIO_SUBTYPE_INFO;
6605 	ver_msg.tag.vio_subtype_env = VIO_VER_INFO;
6606 	ver_msg.tag.vio_sid = ldcp->local_session;
6607 
6608 	ver_msg.ver_major = vsw_versions[0].ver_major;
6609 	ver_msg.ver_minor = vsw_versions[0].ver_minor;
6610 	ver_msg.dev_class = VDEV_NETWORK_SWITCH;
6611 
6612 	lp->lstate |= VSW_VER_INFO_SENT;
6613 	lp->ver_major = ver_msg.ver_major;
6614 	lp->ver_minor = ver_msg.ver_minor;
6615 
6616 	DUMP_TAG(ver_msg.tag);
6617 
6618 	vsw_send_msg(ldcp, &ver_msg, sizeof (vio_ver_msg_t));
6619 
6620 	D1(vswp, "%s (%d): exit", __func__, ldcp->ldc_id);
6621 }
6622 
6623 static void
6624 vsw_send_attr(vsw_ldc_t *ldcp)
6625 {
6626 	vsw_t			*vswp = ldcp->ldc_vswp;
6627 	lane_t			*lp = &ldcp->lane_out;
6628 	vnet_attr_msg_t		attr_msg;
6629 
6630 	D1(vswp, "%s (%ld) enter", __func__, ldcp->ldc_id);
6631 
6632 	/*
6633 	 * Subtype is set to INFO by default
6634 	 */
6635 	attr_msg.tag.vio_msgtype = VIO_TYPE_CTRL;
6636 	attr_msg.tag.vio_subtype = VIO_SUBTYPE_INFO;
6637 	attr_msg.tag.vio_subtype_env = VIO_ATTR_INFO;
6638 	attr_msg.tag.vio_sid = ldcp->local_session;
6639 
6640 	/* payload copied from default settings for lane */
6641 	attr_msg.mtu = lp->mtu;
6642 	attr_msg.addr_type = lp->addr_type;
6643 	attr_msg.xfer_mode = lp->xfer_mode;
6644 	attr_msg.ack_freq = lp->xfer_mode;
6645 
6646 	READ_ENTER(&vswp->if_lockrw);
6647 	bcopy(&(vswp->if_addr), &(attr_msg.addr), ETHERADDRL);
6648 	RW_EXIT(&vswp->if_lockrw);
6649 
6650 	ldcp->lane_out.lstate |= VSW_ATTR_INFO_SENT;
6651 
6652 	DUMP_TAG(attr_msg.tag);
6653 
6654 	vsw_send_msg(ldcp, &attr_msg, sizeof (vnet_attr_msg_t));
6655 
6656 	D1(vswp, "%s (%ld) enter", __func__, ldcp->ldc_id);
6657 }
6658 
6659 /*
6660  * Create dring info msg (which also results in the creation of
6661  * a dring).
6662  */
6663 static vio_dring_reg_msg_t *
6664 vsw_create_dring_info_pkt(vsw_ldc_t *ldcp)
6665 {
6666 	vio_dring_reg_msg_t	*mp;
6667 	dring_info_t		*dp;
6668 	vsw_t			*vswp = ldcp->ldc_vswp;
6669 
6670 	D1(vswp, "vsw_create_dring_info_pkt enter\n");
6671 
6672 	/*
6673 	 * If we can't create a dring, obviously no point sending
6674 	 * a message.
6675 	 */
6676 	if ((dp = vsw_create_dring(ldcp)) == NULL)
6677 		return (NULL);
6678 
6679 	mp = kmem_zalloc(sizeof (vio_dring_reg_msg_t), KM_SLEEP);
6680 
6681 	mp->tag.vio_msgtype = VIO_TYPE_CTRL;
6682 	mp->tag.vio_subtype = VIO_SUBTYPE_INFO;
6683 	mp->tag.vio_subtype_env = VIO_DRING_REG;
6684 	mp->tag.vio_sid = ldcp->local_session;
6685 
6686 	/* payload */
6687 	mp->num_descriptors = dp->num_descriptors;
6688 	mp->descriptor_size = dp->descriptor_size;
6689 	mp->options = dp->options;
6690 	mp->ncookies = dp->ncookies;
6691 	bcopy(&dp->cookie[0], &mp->cookie[0], sizeof (ldc_mem_cookie_t));
6692 
6693 	mp->dring_ident = 0;
6694 
6695 	D1(vswp, "vsw_create_dring_info_pkt exit\n");
6696 
6697 	return (mp);
6698 }
6699 
6700 static void
6701 vsw_send_dring_info(vsw_ldc_t *ldcp)
6702 {
6703 	vio_dring_reg_msg_t	*dring_msg;
6704 	vsw_t			*vswp = ldcp->ldc_vswp;
6705 
6706 	D1(vswp, "%s: (%ld) enter", __func__, ldcp->ldc_id);
6707 
6708 	dring_msg = vsw_create_dring_info_pkt(ldcp);
6709 	if (dring_msg == NULL) {
6710 		cmn_err(CE_WARN, "vsw_send_dring_info: error creating msg");
6711 		return;
6712 	}
6713 
6714 	ldcp->lane_out.lstate |= VSW_DRING_INFO_SENT;
6715 
6716 	DUMP_TAG_PTR((vio_msg_tag_t *)dring_msg);
6717 
6718 	vsw_send_msg(ldcp, dring_msg,
6719 		sizeof (vio_dring_reg_msg_t));
6720 
6721 	kmem_free(dring_msg, sizeof (vio_dring_reg_msg_t));
6722 
6723 	D1(vswp, "%s: (%ld) exit", __func__, ldcp->ldc_id);
6724 }
6725 
6726 static void
6727 vsw_send_rdx(vsw_ldc_t *ldcp)
6728 {
6729 	vsw_t		*vswp = ldcp->ldc_vswp;
6730 	vio_rdx_msg_t	rdx_msg;
6731 
6732 	D1(vswp, "%s (%ld) enter", __func__, ldcp->ldc_id);
6733 
6734 	rdx_msg.tag.vio_msgtype = VIO_TYPE_CTRL;
6735 	rdx_msg.tag.vio_subtype = VIO_SUBTYPE_INFO;
6736 	rdx_msg.tag.vio_subtype_env = VIO_RDX;
6737 	rdx_msg.tag.vio_sid = ldcp->local_session;
6738 
6739 	ldcp->lane_out.lstate |= VSW_RDX_INFO_SENT;
6740 
6741 	DUMP_TAG(rdx_msg.tag);
6742 
6743 	vsw_send_msg(ldcp, &rdx_msg, sizeof (vio_rdx_msg_t));
6744 
6745 	D1(vswp, "%s (%ld) exit", __func__, ldcp->ldc_id);
6746 }
6747 
6748 /*
6749  * Generic routine to send message out over ldc channel.
6750  */
6751 static void
6752 vsw_send_msg(vsw_ldc_t *ldcp, void *msgp, int size)
6753 {
6754 	int		rv;
6755 	size_t		msglen = size;
6756 	vio_msg_tag_t	*tag = (vio_msg_tag_t *)msgp;
6757 	vsw_t		*vswp = ldcp->ldc_vswp;
6758 
6759 	D1(vswp, "vsw_send_msg (%lld) enter : sending %d bytes",
6760 			ldcp->ldc_id, size);
6761 
6762 	D2(vswp, "send_msg: type 0x%llx", tag->vio_msgtype);
6763 	D2(vswp, "send_msg: stype 0x%llx", tag->vio_subtype);
6764 	D2(vswp, "send_msg: senv 0x%llx", tag->vio_subtype_env);
6765 
6766 	mutex_enter(&ldcp->ldc_txlock);
6767 	do {
6768 		msglen = size;
6769 		rv = ldc_write(ldcp->ldc_handle, (caddr_t)msgp, &msglen);
6770 	} while (rv == EWOULDBLOCK && --vsw_wretries > 0);
6771 
6772 	if ((rv != 0) || (msglen != size)) {
6773 		DERR(vswp, "vsw_send_msg:ldc_write failed: chan(%lld) "
6774 			"rv(%d) size (%d) msglen(%d)\n", ldcp->ldc_id,
6775 			rv, size, msglen);
6776 	}
6777 	mutex_exit(&ldcp->ldc_txlock);
6778 
6779 	/* channel has been reset */
6780 	if (rv == ECONNRESET) {
6781 		vsw_handle_reset(ldcp);
6782 	}
6783 
6784 	D1(vswp, "vsw_send_msg (%lld) exit : sent %d bytes",
6785 			ldcp->ldc_id, msglen);
6786 }
6787 
6788 /*
6789  * Add an entry into FDB, for the given mac address and port_id.
6790  * Returns 0 on success, 1 on failure.
6791  *
6792  * Lock protecting FDB must be held by calling process.
6793  */
6794 static int
6795 vsw_add_fdb(vsw_t *vswp, vsw_port_t *port)
6796 {
6797 	uint64_t	addr = 0;
6798 
6799 	D1(vswp, "%s: enter", __func__);
6800 
6801 	KEY_HASH(addr, port->p_macaddr);
6802 
6803 	D2(vswp, "%s: key = 0x%llx", __func__, addr);
6804 
6805 	/*
6806 	 * Note: duplicate keys will be rejected by mod_hash.
6807 	 */
6808 	if (mod_hash_insert(vswp->fdb, (mod_hash_key_t)addr,
6809 				(mod_hash_val_t)port) != 0) {
6810 		DERR(vswp, "%s: unable to add entry into fdb.", __func__);
6811 		return (1);
6812 	}
6813 
6814 	D1(vswp, "%s: exit", __func__);
6815 	return (0);
6816 }
6817 
6818 /*
6819  * Remove an entry from FDB.
6820  * Returns 0 on success, 1 on failure.
6821  */
6822 static int
6823 vsw_del_fdb(vsw_t *vswp, vsw_port_t *port)
6824 {
6825 	uint64_t	addr = 0;
6826 
6827 	D1(vswp, "%s: enter", __func__);
6828 
6829 	KEY_HASH(addr, port->p_macaddr);
6830 
6831 	D2(vswp, "%s: key = 0x%llx", __func__, addr);
6832 
6833 	(void) mod_hash_destroy(vswp->fdb, (mod_hash_val_t)addr);
6834 
6835 	D1(vswp, "%s: enter", __func__);
6836 
6837 	return (0);
6838 }
6839 
6840 /*
6841  * Search fdb for a given mac address.
6842  * Returns pointer to the entry if found, else returns NULL.
6843  */
6844 static vsw_port_t *
6845 vsw_lookup_fdb(vsw_t *vswp, struct ether_header *ehp)
6846 {
6847 	uint64_t	key = 0;
6848 	vsw_port_t	*port = NULL;
6849 
6850 	D1(vswp, "%s: enter", __func__);
6851 
6852 	KEY_HASH(key, ehp->ether_dhost);
6853 
6854 	D2(vswp, "%s: key = 0x%llx", __func__, key);
6855 
6856 	if (mod_hash_find(vswp->fdb, (mod_hash_key_t)key,
6857 				(mod_hash_val_t *)&port) != 0) {
6858 		return (NULL);
6859 	}
6860 
6861 	D1(vswp, "%s: exit", __func__);
6862 
6863 	return (port);
6864 }
6865 
6866 /*
6867  * Add or remove multicast address(es).
6868  *
6869  * Returns 0 on success, 1 on failure.
6870  */
6871 static int
6872 vsw_add_rem_mcst(vnet_mcast_msg_t *mcst_pkt, vsw_port_t *port)
6873 {
6874 	mcst_addr_t		*mcst_p = NULL;
6875 	vsw_t			*vswp = port->p_vswp;
6876 	uint64_t		addr = 0x0;
6877 	int			i, ret;
6878 
6879 	D1(vswp, "%s: enter", __func__);
6880 
6881 	D2(vswp, "%s: %d addresses", __func__, mcst_pkt->count);
6882 
6883 	if (vswp->mh == NULL)
6884 		return (1);
6885 
6886 	for (i = 0; i < mcst_pkt->count; i++) {
6887 		/*
6888 		 * Convert address into form that can be used
6889 		 * as hash table key.
6890 		 */
6891 		KEY_HASH(addr, mcst_pkt->mca[i]);
6892 
6893 		/*
6894 		 * Add or delete the specified address/port combination.
6895 		 */
6896 		if (mcst_pkt->set == 0x1) {
6897 			D3(vswp, "%s: adding multicast address 0x%llx for "
6898 				"port %ld", __func__, addr, port->p_instance);
6899 			if (vsw_add_mcst(vswp, VSW_VNETPORT, addr, port) == 0) {
6900 				/*
6901 				 * Update the list of multicast
6902 				 * addresses contained within the
6903 				 * port structure to include this new
6904 				 * one.
6905 				 */
6906 				mcst_p = kmem_alloc(sizeof (mcst_addr_t),
6907 								KM_NOSLEEP);
6908 				if (mcst_p == NULL) {
6909 					DERR(vswp, "%s: unable to alloc mem",
6910 						__func__);
6911 					return (1);
6912 				}
6913 
6914 				mcst_p->nextp = NULL;
6915 				mcst_p->addr = addr;
6916 
6917 				mutex_enter(&port->mca_lock);
6918 				mcst_p->nextp = port->mcap;
6919 				port->mcap = mcst_p;
6920 				mutex_exit(&port->mca_lock);
6921 
6922 				/*
6923 				 * Program the address into HW. If the addr
6924 				 * has already been programmed then the MAC
6925 				 * just increments a ref counter (which is
6926 				 * used when the address is being deleted)
6927 				 */
6928 				ret = mac_multicst_add(vswp->mh,
6929 						(uchar_t *)&mcst_pkt->mca[i]);
6930 				if (ret) {
6931 					cmn_err(CE_WARN, "!unable to add "
6932 						"multicast address");
6933 					(void) vsw_del_mcst(vswp, VSW_VNETPORT,
6934 						addr, port);
6935 					vsw_del_addr(VSW_VNETPORT, port, addr);
6936 					return (ret);
6937 				}
6938 
6939 			} else {
6940 				DERR(vswp, "%s: error adding multicast "
6941 					"address 0x%llx for port %ld",
6942 					__func__, addr, port->p_instance);
6943 				return (1);
6944 			}
6945 		} else {
6946 			/*
6947 			 * Delete an entry from the multicast hash
6948 			 * table and update the address list
6949 			 * appropriately.
6950 			 */
6951 			if (vsw_del_mcst(vswp, VSW_VNETPORT, addr, port) == 0) {
6952 				D3(vswp, "%s: deleting multicast address "
6953 					"0x%llx for port %ld", __func__, addr,
6954 					port->p_instance);
6955 
6956 				vsw_del_addr(VSW_VNETPORT, port, addr);
6957 
6958 				/*
6959 				 * Remove the address from HW. The address
6960 				 * will actually only be removed once the ref
6961 				 * count within the MAC layer has dropped to
6962 				 * zero. I.e. we can safely call this fn even
6963 				 * if other ports are interested in this
6964 				 * address.
6965 				 */
6966 				(void) mac_multicst_remove(vswp->mh,
6967 						(uchar_t *)&mcst_pkt->mca[i]);
6968 
6969 			} else {
6970 				DERR(vswp, "%s: error deleting multicast "
6971 					"addr 0x%llx for port %ld",
6972 					__func__, addr, port->p_instance);
6973 				return (1);
6974 			}
6975 		}
6976 	}
6977 	D1(vswp, "%s: exit", __func__);
6978 	return (0);
6979 }
6980 
6981 /*
6982  * Add a new multicast entry.
6983  *
6984  * Search hash table based on address. If match found then
6985  * update associated val (which is chain of ports), otherwise
6986  * create new key/val (addr/port) pair and insert into table.
6987  */
6988 static int
6989 vsw_add_mcst(vsw_t *vswp, uint8_t devtype, uint64_t addr, void *arg)
6990 {
6991 	int		dup = 0;
6992 	int		rv = 0;
6993 	mfdb_ent_t	*ment = NULL;
6994 	mfdb_ent_t	*tmp_ent = NULL;
6995 	mfdb_ent_t	*new_ent = NULL;
6996 	void		*tgt = NULL;
6997 
6998 	if (devtype == VSW_VNETPORT) {
6999 		/*
7000 		 * Being invoked from a vnet.
7001 		 */
7002 		ASSERT(arg != NULL);
7003 		tgt = arg;
7004 		D2(NULL, "%s: port %d : address 0x%llx", __func__,
7005 			((vsw_port_t *)arg)->p_instance, addr);
7006 	} else {
7007 		/*
7008 		 * We are being invoked via the m_multicst mac entry
7009 		 * point.
7010 		 */
7011 		D2(NULL, "%s: address 0x%llx", __func__, addr);
7012 		tgt = (void *)vswp;
7013 	}
7014 
7015 	WRITE_ENTER(&vswp->mfdbrw);
7016 	if (mod_hash_find(vswp->mfdb, (mod_hash_key_t)addr,
7017 				(mod_hash_val_t *)&ment) != 0) {
7018 
7019 		/* address not currently in table */
7020 		ment = kmem_alloc(sizeof (mfdb_ent_t), KM_SLEEP);
7021 		ment->d_addr = (void *)tgt;
7022 		ment->d_type = devtype;
7023 		ment->nextp = NULL;
7024 
7025 		if (mod_hash_insert(vswp->mfdb, (mod_hash_key_t)addr,
7026 			(mod_hash_val_t)ment) != 0) {
7027 			DERR(vswp, "%s: hash table insertion failed", __func__);
7028 			kmem_free(ment, sizeof (mfdb_ent_t));
7029 			rv = 1;
7030 		} else {
7031 			D2(vswp, "%s: added initial entry for 0x%llx to "
7032 				"table", __func__, addr);
7033 		}
7034 	} else {
7035 		/*
7036 		 * Address in table. Check to see if specified port
7037 		 * is already associated with the address. If not add
7038 		 * it now.
7039 		 */
7040 		tmp_ent = ment;
7041 		while (tmp_ent != NULL) {
7042 			if (tmp_ent->d_addr == (void *)tgt) {
7043 				if (devtype == VSW_VNETPORT) {
7044 					DERR(vswp, "%s: duplicate port entry "
7045 						"found for portid %ld and key "
7046 						"0x%llx", __func__,
7047 						((vsw_port_t *)arg)->p_instance,
7048 						addr);
7049 				} else {
7050 					DERR(vswp, "%s: duplicate entry found"
7051 						"for key 0x%llx",
7052 						__func__, addr);
7053 				}
7054 				rv = 1;
7055 				dup = 1;
7056 				break;
7057 			}
7058 			tmp_ent = tmp_ent->nextp;
7059 		}
7060 
7061 		/*
7062 		 * Port not on list so add it to end now.
7063 		 */
7064 		if (0 == dup) {
7065 			D2(vswp, "%s: added entry for 0x%llx to table",
7066 				__func__, addr);
7067 			new_ent = kmem_alloc(sizeof (mfdb_ent_t), KM_SLEEP);
7068 			new_ent->d_addr = (void *)tgt;
7069 			new_ent->d_type = devtype;
7070 			new_ent->nextp = NULL;
7071 
7072 			tmp_ent = ment;
7073 			while (tmp_ent->nextp != NULL)
7074 				tmp_ent = tmp_ent->nextp;
7075 
7076 			tmp_ent->nextp = new_ent;
7077 		}
7078 	}
7079 
7080 	RW_EXIT(&vswp->mfdbrw);
7081 	return (rv);
7082 }
7083 
7084 /*
7085  * Remove a multicast entry from the hashtable.
7086  *
7087  * Search hash table based on address. If match found, scan
7088  * list of ports associated with address. If specified port
7089  * found remove it from list.
7090  */
7091 static int
7092 vsw_del_mcst(vsw_t *vswp, uint8_t devtype, uint64_t addr, void *arg)
7093 {
7094 	mfdb_ent_t	*ment = NULL;
7095 	mfdb_ent_t	*curr_p, *prev_p;
7096 	void		*tgt = NULL;
7097 
7098 	D1(vswp, "%s: enter", __func__);
7099 
7100 	if (devtype == VSW_VNETPORT) {
7101 		tgt = (vsw_port_t *)arg;
7102 		D2(vswp, "%s: removing port %d from mFDB for address"
7103 			" 0x%llx", __func__, ((vsw_port_t *)tgt)->p_instance,
7104 			addr);
7105 	} else {
7106 		D2(vswp, "%s: removing entry", __func__);
7107 		tgt = (void *)vswp;
7108 	}
7109 
7110 	WRITE_ENTER(&vswp->mfdbrw);
7111 	if (mod_hash_find(vswp->mfdb, (mod_hash_key_t)addr,
7112 				(mod_hash_val_t *)&ment) != 0) {
7113 		D2(vswp, "%s: address 0x%llx not in table", __func__, addr);
7114 		RW_EXIT(&vswp->mfdbrw);
7115 		return (1);
7116 	}
7117 
7118 	prev_p = curr_p = ment;
7119 
7120 	while (curr_p != NULL) {
7121 		if (curr_p->d_addr == (void *)tgt) {
7122 			if (devtype == VSW_VNETPORT) {
7123 				D2(vswp, "%s: port %d found", __func__,
7124 					((vsw_port_t *)tgt)->p_instance);
7125 			} else {
7126 				D2(vswp, "%s: instance found", __func__);
7127 			}
7128 
7129 			if (prev_p == curr_p) {
7130 				/*
7131 				 * head of list, if no other element is in
7132 				 * list then destroy this entry, otherwise
7133 				 * just replace it with updated value.
7134 				 */
7135 				ment = curr_p->nextp;
7136 				kmem_free(curr_p, sizeof (mfdb_ent_t));
7137 				if (ment == NULL) {
7138 					(void) mod_hash_destroy(vswp->mfdb,
7139 							(mod_hash_val_t)addr);
7140 				} else {
7141 					(void) mod_hash_replace(vswp->mfdb,
7142 							(mod_hash_key_t)addr,
7143 							(mod_hash_val_t)ment);
7144 				}
7145 			} else {
7146 				/*
7147 				 * Not head of list, no need to do
7148 				 * replacement, just adjust list pointers.
7149 				 */
7150 				prev_p->nextp = curr_p->nextp;
7151 				kmem_free(curr_p, sizeof (mfdb_ent_t));
7152 			}
7153 			break;
7154 		}
7155 
7156 		prev_p = curr_p;
7157 		curr_p = curr_p->nextp;
7158 	}
7159 
7160 	RW_EXIT(&vswp->mfdbrw);
7161 
7162 	D1(vswp, "%s: exit", __func__);
7163 
7164 	return (0);
7165 }
7166 
7167 /*
7168  * Port is being deleted, but has registered an interest in one
7169  * or more multicast groups. Using the list of addresses maintained
7170  * within the port structure find the appropriate entry in the hash
7171  * table and remove this port from the list of interested ports.
7172  */
7173 static void
7174 vsw_del_mcst_port(vsw_port_t *port)
7175 {
7176 	mcst_addr_t	*mcst_p = NULL;
7177 	vsw_t		*vswp = port->p_vswp;
7178 
7179 	D1(vswp, "%s: enter", __func__);
7180 
7181 	mutex_enter(&port->mca_lock);
7182 	while (port->mcap != NULL) {
7183 		(void) vsw_del_mcst(vswp, VSW_VNETPORT,
7184 					port->mcap->addr, port);
7185 
7186 		mcst_p = port->mcap->nextp;
7187 		kmem_free(port->mcap, sizeof (mcst_addr_t));
7188 		port->mcap = mcst_p;
7189 	}
7190 	mutex_exit(&port->mca_lock);
7191 
7192 	D1(vswp, "%s: exit", __func__);
7193 }
7194 
7195 /*
7196  * This vsw instance is detaching, but has registered an interest in one
7197  * or more multicast groups. Using the list of addresses maintained
7198  * within the vsw structure find the appropriate entry in the hash
7199  * table and remove this instance from the list of interested ports.
7200  */
7201 static void
7202 vsw_del_mcst_vsw(vsw_t *vswp)
7203 {
7204 	mcst_addr_t	*next_p = NULL;
7205 
7206 	D1(vswp, "%s: enter", __func__);
7207 
7208 	mutex_enter(&vswp->mca_lock);
7209 
7210 	while (vswp->mcap != NULL) {
7211 		DERR(vswp, "%s: deleting addr 0x%llx",
7212 			__func__, vswp->mcap->addr);
7213 		(void) vsw_del_mcst(vswp, VSW_LOCALDEV,
7214 				vswp->mcap->addr, NULL);
7215 
7216 		next_p = vswp->mcap->nextp;
7217 		kmem_free(vswp->mcap, sizeof (mcst_addr_t));
7218 		vswp->mcap = next_p;
7219 	}
7220 
7221 	vswp->mcap = NULL;
7222 	mutex_exit(&vswp->mca_lock);
7223 
7224 	D1(vswp, "%s: exit", __func__);
7225 }
7226 
7227 
7228 /*
7229  * Remove the specified address from the list of address maintained
7230  * in this port node.
7231  */
7232 static void
7233 vsw_del_addr(uint8_t devtype, void *arg, uint64_t addr)
7234 {
7235 	vsw_t		*vswp = NULL;
7236 	vsw_port_t	*port = NULL;
7237 	mcst_addr_t	*prev_p = NULL;
7238 	mcst_addr_t	*curr_p = NULL;
7239 
7240 	D1(NULL, "%s: enter : devtype %d : addr 0x%llx",
7241 		__func__, devtype, addr);
7242 
7243 	if (devtype == VSW_VNETPORT) {
7244 		port = (vsw_port_t *)arg;
7245 		mutex_enter(&port->mca_lock);
7246 		prev_p = curr_p = port->mcap;
7247 	} else {
7248 		vswp = (vsw_t *)arg;
7249 		mutex_enter(&vswp->mca_lock);
7250 		prev_p = curr_p = vswp->mcap;
7251 	}
7252 
7253 	while (curr_p != NULL) {
7254 		if (curr_p->addr == addr) {
7255 			D2(NULL, "%s: address found", __func__);
7256 			/* match found */
7257 			if (prev_p == curr_p) {
7258 				/* list head */
7259 				if (devtype == VSW_VNETPORT)
7260 					port->mcap = curr_p->nextp;
7261 				else
7262 					vswp->mcap = curr_p->nextp;
7263 			} else {
7264 				prev_p->nextp = curr_p->nextp;
7265 			}
7266 			kmem_free(curr_p, sizeof (mcst_addr_t));
7267 			break;
7268 		} else {
7269 			prev_p = curr_p;
7270 			curr_p = curr_p->nextp;
7271 		}
7272 	}
7273 
7274 	if (devtype == VSW_VNETPORT)
7275 		mutex_exit(&port->mca_lock);
7276 	else
7277 		mutex_exit(&vswp->mca_lock);
7278 
7279 	D1(NULL, "%s: exit", __func__);
7280 }
7281 
7282 /*
7283  * Creates a descriptor ring (dring) and links it into the
7284  * link of outbound drings for this channel.
7285  *
7286  * Returns NULL if creation failed.
7287  */
7288 static dring_info_t *
7289 vsw_create_dring(vsw_ldc_t *ldcp)
7290 {
7291 	vsw_private_desc_t	*priv_addr = NULL;
7292 	vsw_t			*vswp = ldcp->ldc_vswp;
7293 	ldc_mem_info_t		minfo;
7294 	dring_info_t		*dp, *tp;
7295 	int			i;
7296 
7297 	dp = (dring_info_t *)kmem_zalloc(sizeof (dring_info_t), KM_SLEEP);
7298 
7299 	mutex_init(&dp->dlock, NULL, MUTEX_DRIVER, NULL);
7300 
7301 	/* create public section of ring */
7302 	if ((ldc_mem_dring_create(VSW_RING_NUM_EL,
7303 			VSW_PUB_SIZE, &dp->handle)) != 0) {
7304 
7305 		DERR(vswp, "vsw_create_dring(%lld): ldc dring create "
7306 			"failed", ldcp->ldc_id);
7307 		goto create_fail_exit;
7308 	}
7309 
7310 	ASSERT(dp->handle != NULL);
7311 
7312 	/*
7313 	 * Get the base address of the public section of the ring.
7314 	 */
7315 	if ((ldc_mem_dring_info(dp->handle, &minfo)) != 0) {
7316 		DERR(vswp, "vsw_create_dring(%lld): dring info failed\n",
7317 			ldcp->ldc_id);
7318 		goto dring_fail_exit;
7319 	} else {
7320 		ASSERT(minfo.vaddr != 0);
7321 		dp->pub_addr = minfo.vaddr;
7322 	}
7323 
7324 	dp->num_descriptors = VSW_RING_NUM_EL;
7325 	dp->descriptor_size = VSW_PUB_SIZE;
7326 	dp->options = VIO_TX_DRING;
7327 	dp->ncookies = 1;	/* guaranteed by ldc */
7328 
7329 	/*
7330 	 * create private portion of ring
7331 	 */
7332 	dp->priv_addr = (vsw_private_desc_t *)kmem_zalloc(
7333 		(sizeof (vsw_private_desc_t) * VSW_RING_NUM_EL), KM_SLEEP);
7334 
7335 	if (vsw_setup_ring(ldcp, dp)) {
7336 		DERR(vswp, "%s: unable to setup ring", __func__);
7337 		goto dring_fail_exit;
7338 	}
7339 
7340 	/* haven't used any descriptors yet */
7341 	dp->end_idx = 0;
7342 	dp->last_ack_recv = -1;
7343 
7344 	/* bind dring to the channel */
7345 	if ((ldc_mem_dring_bind(ldcp->ldc_handle, dp->handle,
7346 		LDC_SHADOW_MAP, LDC_MEM_RW,
7347 		&dp->cookie[0], &dp->ncookies)) != 0) {
7348 		DERR(vswp, "vsw_create_dring: unable to bind to channel "
7349 			"%lld", ldcp->ldc_id);
7350 		goto dring_fail_exit;
7351 	}
7352 
7353 	mutex_init(&dp->restart_lock, NULL, MUTEX_DRIVER, NULL);
7354 	dp->restart_reqd = B_TRUE;
7355 
7356 	/*
7357 	 * Only ever create rings for outgoing lane. Link it onto
7358 	 * end of list.
7359 	 */
7360 	if (ldcp->lane_out.dringp == NULL) {
7361 		D2(vswp, "vsw_create_dring: adding first outbound ring");
7362 		ldcp->lane_out.dringp = dp;
7363 	} else {
7364 		tp = ldcp->lane_out.dringp;
7365 		while (tp->next != NULL)
7366 			tp = tp->next;
7367 
7368 		tp->next = dp;
7369 	}
7370 
7371 	return (dp);
7372 
7373 dring_fail_exit:
7374 	(void) ldc_mem_dring_destroy(dp->handle);
7375 
7376 create_fail_exit:
7377 	if (dp->priv_addr != NULL) {
7378 		priv_addr = dp->priv_addr;
7379 		for (i = 0; i < VSW_RING_NUM_EL; i++) {
7380 			if (priv_addr->memhandle != NULL)
7381 				(void) ldc_mem_free_handle(
7382 						priv_addr->memhandle);
7383 			priv_addr++;
7384 		}
7385 		kmem_free(dp->priv_addr,
7386 			(sizeof (vsw_private_desc_t) * VSW_RING_NUM_EL));
7387 	}
7388 	mutex_destroy(&dp->dlock);
7389 
7390 	kmem_free(dp, sizeof (dring_info_t));
7391 	return (NULL);
7392 }
7393 
7394 /*
7395  * Create a ring consisting of just a private portion and link
7396  * it into the list of rings for the outbound lane.
7397  *
7398  * These type of rings are used primarily for temporary data
7399  * storage (i.e. as data buffers).
7400  */
7401 void
7402 vsw_create_privring(vsw_ldc_t *ldcp)
7403 {
7404 	dring_info_t		*dp, *tp;
7405 	vsw_t			*vswp = ldcp->ldc_vswp;
7406 
7407 	D1(vswp, "%s(%lld): enter", __func__, ldcp->ldc_id);
7408 
7409 	dp = kmem_zalloc(sizeof (dring_info_t), KM_SLEEP);
7410 
7411 	mutex_init(&dp->dlock, NULL, MUTEX_DRIVER, NULL);
7412 
7413 	/* no public section */
7414 	dp->pub_addr = NULL;
7415 
7416 	dp->priv_addr = kmem_zalloc((sizeof (vsw_private_desc_t) *
7417 					VSW_RING_NUM_EL), KM_SLEEP);
7418 
7419 	dp->num_descriptors = VSW_RING_NUM_EL;
7420 
7421 	if (vsw_setup_ring(ldcp, dp)) {
7422 		DERR(vswp, "%s: setup of ring failed", __func__);
7423 		kmem_free(dp->priv_addr,
7424 			(sizeof (vsw_private_desc_t) * VSW_RING_NUM_EL));
7425 		mutex_destroy(&dp->dlock);
7426 		kmem_free(dp, sizeof (dring_info_t));
7427 		return;
7428 	}
7429 
7430 	/* haven't used any descriptors yet */
7431 	dp->end_idx = 0;
7432 
7433 	mutex_init(&dp->restart_lock, NULL, MUTEX_DRIVER, NULL);
7434 	dp->restart_reqd = B_TRUE;
7435 
7436 	/*
7437 	 * Only ever create rings for outgoing lane. Link it onto
7438 	 * end of list.
7439 	 */
7440 	if (ldcp->lane_out.dringp == NULL) {
7441 		D2(vswp, "%s: adding first outbound privring", __func__);
7442 		ldcp->lane_out.dringp = dp;
7443 	} else {
7444 		tp = ldcp->lane_out.dringp;
7445 		while (tp->next != NULL)
7446 			tp = tp->next;
7447 
7448 		tp->next = dp;
7449 	}
7450 
7451 	D1(vswp, "%s(%lld): exit", __func__, ldcp->ldc_id);
7452 }
7453 
7454 /*
7455  * Setup the descriptors in the dring. Returns 0 on success, 1 on
7456  * failure.
7457  */
7458 int
7459 vsw_setup_ring(vsw_ldc_t *ldcp, dring_info_t *dp)
7460 {
7461 	vnet_public_desc_t	*pub_addr = NULL;
7462 	vsw_private_desc_t	*priv_addr = NULL;
7463 	vsw_t			*vswp = ldcp->ldc_vswp;
7464 	uint64_t		*tmpp;
7465 	uint64_t		offset = 0;
7466 	uint32_t		ncookies = 0;
7467 	static char		*name = "vsw_setup_ring";
7468 	int			i, j, nc, rv;
7469 
7470 	priv_addr = dp->priv_addr;
7471 	pub_addr = dp->pub_addr;
7472 
7473 	/* public section may be null but private should never be */
7474 	ASSERT(priv_addr != NULL);
7475 
7476 	/*
7477 	 * Allocate the region of memory which will be used to hold
7478 	 * the data the descriptors will refer to.
7479 	 */
7480 	dp->data_sz = (VSW_RING_NUM_EL * VSW_RING_EL_DATA_SZ);
7481 	dp->data_addr = kmem_alloc(dp->data_sz, KM_SLEEP);
7482 
7483 	D2(vswp, "%s: allocated %lld bytes at 0x%llx\n", name,
7484 		dp->data_sz, dp->data_addr);
7485 
7486 	tmpp = (uint64_t *)dp->data_addr;
7487 	offset = VSW_RING_EL_DATA_SZ / sizeof (tmpp);
7488 
7489 	/*
7490 	 * Initialise some of the private and public (if they exist)
7491 	 * descriptor fields.
7492 	 */
7493 	for (i = 0; i < VSW_RING_NUM_EL; i++) {
7494 		mutex_init(&priv_addr->dstate_lock, NULL, MUTEX_DRIVER, NULL);
7495 
7496 		if ((ldc_mem_alloc_handle(ldcp->ldc_handle,
7497 			&priv_addr->memhandle)) != 0) {
7498 			DERR(vswp, "%s: alloc mem handle failed", name);
7499 			goto setup_ring_cleanup;
7500 		}
7501 
7502 		priv_addr->datap = (void *)tmpp;
7503 
7504 		rv = ldc_mem_bind_handle(priv_addr->memhandle,
7505 			(caddr_t)priv_addr->datap, VSW_RING_EL_DATA_SZ,
7506 			LDC_SHADOW_MAP, LDC_MEM_R|LDC_MEM_W,
7507 			&(priv_addr->memcookie[0]), &ncookies);
7508 		if (rv != 0) {
7509 			DERR(vswp, "%s(%lld): ldc_mem_bind_handle failed "
7510 				"(rv %d)", name, ldcp->ldc_id, rv);
7511 			goto setup_ring_cleanup;
7512 		}
7513 		priv_addr->bound = 1;
7514 
7515 		D2(vswp, "%s: %d: memcookie 0 : addr 0x%llx : size 0x%llx",
7516 			name, i, priv_addr->memcookie[0].addr,
7517 			priv_addr->memcookie[0].size);
7518 
7519 		if (ncookies >= (uint32_t)(VSW_MAX_COOKIES + 1)) {
7520 			DERR(vswp, "%s(%lld) ldc_mem_bind_handle returned "
7521 				"invalid num of cookies (%d) for size 0x%llx",
7522 				name, ldcp->ldc_id, ncookies,
7523 				VSW_RING_EL_DATA_SZ);
7524 
7525 			goto setup_ring_cleanup;
7526 		} else {
7527 			for (j = 1; j < ncookies; j++) {
7528 				rv = ldc_mem_nextcookie(priv_addr->memhandle,
7529 					&(priv_addr->memcookie[j]));
7530 				if (rv != 0) {
7531 					DERR(vswp, "%s: ldc_mem_nextcookie "
7532 						"failed rv (%d)", name, rv);
7533 					goto setup_ring_cleanup;
7534 				}
7535 				D3(vswp, "%s: memcookie %d : addr 0x%llx : "
7536 					"size 0x%llx", name, j,
7537 					priv_addr->memcookie[j].addr,
7538 					priv_addr->memcookie[j].size);
7539 			}
7540 
7541 		}
7542 		priv_addr->ncookies = ncookies;
7543 		priv_addr->dstate = VIO_DESC_FREE;
7544 
7545 		if (pub_addr != NULL) {
7546 
7547 			/* link pub and private sides */
7548 			priv_addr->descp = pub_addr;
7549 
7550 			pub_addr->ncookies = priv_addr->ncookies;
7551 
7552 			for (nc = 0; nc < pub_addr->ncookies; nc++) {
7553 				bcopy(&priv_addr->memcookie[nc],
7554 					&pub_addr->memcookie[nc],
7555 					sizeof (ldc_mem_cookie_t));
7556 			}
7557 
7558 			pub_addr->hdr.dstate = VIO_DESC_FREE;
7559 			pub_addr++;
7560 		}
7561 
7562 		/*
7563 		 * move to next element in the dring and the next
7564 		 * position in the data buffer.
7565 		 */
7566 		priv_addr++;
7567 		tmpp += offset;
7568 	}
7569 
7570 	return (0);
7571 
7572 setup_ring_cleanup:
7573 	priv_addr = dp->priv_addr;
7574 
7575 	for (j = 0; j < i; j++) {
7576 		(void) ldc_mem_unbind_handle(priv_addr->memhandle);
7577 		(void) ldc_mem_free_handle(priv_addr->memhandle);
7578 
7579 		mutex_destroy(&priv_addr->dstate_lock);
7580 
7581 		priv_addr++;
7582 	}
7583 	kmem_free(dp->data_addr, dp->data_sz);
7584 
7585 	return (1);
7586 }
7587 
7588 /*
7589  * Searches the private section of a ring for a free descriptor,
7590  * starting at the location of the last free descriptor found
7591  * previously.
7592  *
7593  * Returns 0 if free descriptor is available, and updates state
7594  * of private descriptor to VIO_DESC_READY,  otherwise returns 1.
7595  *
7596  * FUTURE: might need to return contiguous range of descriptors
7597  * as dring info msg assumes all will be contiguous.
7598  */
7599 static int
7600 vsw_dring_find_free_desc(dring_info_t *dringp,
7601 		vsw_private_desc_t **priv_p, int *idx)
7602 {
7603 	vsw_private_desc_t	*addr = NULL;
7604 	int			num = VSW_RING_NUM_EL;
7605 	int			ret = 1;
7606 
7607 	D1(NULL, "%s enter\n", __func__);
7608 
7609 	ASSERT(dringp->priv_addr != NULL);
7610 
7611 	D2(NULL, "%s: searching ring, dringp 0x%llx : start pos %lld",
7612 			__func__, dringp, dringp->end_idx);
7613 
7614 	addr = (vsw_private_desc_t *)dringp->priv_addr + dringp->end_idx;
7615 
7616 	mutex_enter(&addr->dstate_lock);
7617 	if (addr->dstate == VIO_DESC_FREE) {
7618 		addr->dstate = VIO_DESC_READY;
7619 		*priv_p = addr;
7620 		*idx = dringp->end_idx;
7621 		dringp->end_idx = (dringp->end_idx + 1) % num;
7622 		ret = 0;
7623 
7624 	}
7625 	mutex_exit(&addr->dstate_lock);
7626 
7627 	/* ring full */
7628 	if (ret == 1) {
7629 		D2(NULL, "%s: no desp free: started at %d", __func__,
7630 			dringp->end_idx);
7631 	}
7632 
7633 	D1(NULL, "%s: exit\n", __func__);
7634 
7635 	return (ret);
7636 }
7637 
7638 /*
7639  * Map from a dring identifier to the ring itself. Returns
7640  * pointer to ring or NULL if no match found.
7641  */
7642 static dring_info_t *
7643 vsw_ident2dring(lane_t *lane, uint64_t ident)
7644 {
7645 	dring_info_t	*dp = NULL;
7646 
7647 	if ((dp = lane->dringp) == NULL) {
7648 		return (NULL);
7649 	} else {
7650 		if (dp->ident == ident)
7651 			return (dp);
7652 
7653 		while (dp != NULL) {
7654 			if (dp->ident == ident)
7655 				break;
7656 			dp = dp->next;
7657 		}
7658 	}
7659 
7660 	return (dp);
7661 }
7662 
7663 /*
7664  * Set the default lane attributes. These are copied into
7665  * the attr msg we send to our peer. If they are not acceptable
7666  * then (currently) the handshake ends.
7667  */
7668 static void
7669 vsw_set_lane_attr(vsw_t *vswp, lane_t *lp)
7670 {
7671 	bzero(lp, sizeof (lane_t));
7672 
7673 	READ_ENTER(&vswp->if_lockrw);
7674 	ether_copy(&(vswp->if_addr), &(lp->addr));
7675 	RW_EXIT(&vswp->if_lockrw);
7676 
7677 	lp->mtu = VSW_MTU;
7678 	lp->addr_type = ADDR_TYPE_MAC;
7679 	lp->xfer_mode = VIO_DRING_MODE;
7680 	lp->ack_freq = 0;	/* for shared mode */
7681 
7682 	mutex_enter(&lp->seq_lock);
7683 	lp->seq_num = VNET_ISS;
7684 	mutex_exit(&lp->seq_lock);
7685 }
7686 
7687 /*
7688  * Verify that the attributes are acceptable.
7689  *
7690  * FUTURE: If some attributes are not acceptable, change them
7691  * our desired values.
7692  */
7693 static int
7694 vsw_check_attr(vnet_attr_msg_t *pkt, vsw_port_t *port)
7695 {
7696 	int	ret = 0;
7697 
7698 	D1(NULL, "vsw_check_attr enter\n");
7699 
7700 	/*
7701 	 * Note we currently only support in-band descriptors
7702 	 * and descriptor rings, not packet based transfer (VIO_PKT_MODE)
7703 	 */
7704 	if ((pkt->xfer_mode != VIO_DESC_MODE) &&
7705 			(pkt->xfer_mode != VIO_DRING_MODE)) {
7706 		D2(NULL, "vsw_check_attr: unknown mode %x\n",
7707 			pkt->xfer_mode);
7708 		ret = 1;
7709 	}
7710 
7711 	/* Only support MAC addresses at moment. */
7712 	if ((pkt->addr_type != ADDR_TYPE_MAC) || (pkt->addr == 0)) {
7713 		D2(NULL, "vsw_check_attr: invalid addr_type %x, "
7714 			"or address 0x%llx\n", pkt->addr_type,
7715 			pkt->addr);
7716 		ret = 1;
7717 	}
7718 
7719 	/*
7720 	 * MAC address supplied by device should match that stored
7721 	 * in the vsw-port OBP node. Need to decide what to do if they
7722 	 * don't match, for the moment just warn but don't fail.
7723 	 */
7724 	if (bcmp(&pkt->addr, &port->p_macaddr, ETHERADDRL) != 0) {
7725 		DERR(NULL, "vsw_check_attr: device supplied address "
7726 			"0x%llx doesn't match node address 0x%llx\n",
7727 			pkt->addr, port->p_macaddr);
7728 	}
7729 
7730 	/*
7731 	 * Ack freq only makes sense in pkt mode, in shared
7732 	 * mode the ring descriptors say whether or not to
7733 	 * send back an ACK.
7734 	 */
7735 	if ((pkt->xfer_mode == VIO_DRING_MODE) &&
7736 				(pkt->ack_freq > 0)) {
7737 		D2(NULL, "vsw_check_attr: non zero ack freq "
7738 			" in SHM mode\n");
7739 		ret = 1;
7740 	}
7741 
7742 	/*
7743 	 * Note: for the moment we only support ETHER
7744 	 * frames. This may change in the future.
7745 	 */
7746 	if ((pkt->mtu > VSW_MTU) || (pkt->mtu <= 0)) {
7747 		D2(NULL, "vsw_check_attr: invalid MTU (0x%llx)\n",
7748 			pkt->mtu);
7749 		ret = 1;
7750 	}
7751 
7752 	D1(NULL, "vsw_check_attr exit\n");
7753 
7754 	return (ret);
7755 }
7756 
7757 /*
7758  * Returns 1 if there is a problem, 0 otherwise.
7759  */
7760 static int
7761 vsw_check_dring_info(vio_dring_reg_msg_t *pkt)
7762 {
7763 	_NOTE(ARGUNUSED(pkt))
7764 
7765 	int	ret = 0;
7766 
7767 	D1(NULL, "vsw_check_dring_info enter\n");
7768 
7769 	if ((pkt->num_descriptors == 0) ||
7770 		(pkt->descriptor_size == 0) ||
7771 		(pkt->ncookies != 1)) {
7772 		DERR(NULL, "vsw_check_dring_info: invalid dring msg");
7773 		ret = 1;
7774 	}
7775 
7776 	D1(NULL, "vsw_check_dring_info exit\n");
7777 
7778 	return (ret);
7779 }
7780 
7781 /*
7782  * Returns 1 if two memory cookies match. Otherwise returns 0.
7783  */
7784 static int
7785 vsw_mem_cookie_match(ldc_mem_cookie_t *m1, ldc_mem_cookie_t *m2)
7786 {
7787 	if ((m1->addr != m2->addr) ||
7788 		(m2->size != m2->size)) {
7789 		return (0);
7790 	} else {
7791 		return (1);
7792 	}
7793 }
7794 
7795 /*
7796  * Returns 1 if ring described in reg message matches that
7797  * described by dring_info structure. Otherwise returns 0.
7798  */
7799 static int
7800 vsw_dring_match(dring_info_t *dp, vio_dring_reg_msg_t *msg)
7801 {
7802 	if ((msg->descriptor_size != dp->descriptor_size) ||
7803 		(msg->num_descriptors != dp->num_descriptors) ||
7804 		(msg->ncookies != dp->ncookies) ||
7805 		!(vsw_mem_cookie_match(&msg->cookie[0], &dp->cookie[0]))) {
7806 		return (0);
7807 	} else {
7808 		return (1);
7809 	}
7810 
7811 }
7812 
7813 static caddr_t
7814 vsw_print_ethaddr(uint8_t *a, char *ebuf)
7815 {
7816 	(void) sprintf(ebuf, "%x:%x:%x:%x:%x:%x",
7817 	    a[0], a[1], a[2], a[3], a[4], a[5]);
7818 	return (ebuf);
7819 }
7820 
7821 /*
7822  * Reset and free all the resources associated with
7823  * the channel.
7824  */
7825 static void
7826 vsw_free_lane_resources(vsw_ldc_t *ldcp, uint64_t dir)
7827 {
7828 	dring_info_t		*dp, *dpp;
7829 	lane_t			*lp = NULL;
7830 	int			rv = 0;
7831 
7832 	ASSERT(ldcp != NULL);
7833 
7834 	D1(ldcp->ldc_vswp, "%s (%lld): enter", __func__, ldcp->ldc_id);
7835 
7836 	if (dir == INBOUND) {
7837 		D2(ldcp->ldc_vswp, "%s: freeing INBOUND lane"
7838 			" of channel %lld", __func__, ldcp->ldc_id);
7839 		lp = &ldcp->lane_in;
7840 	} else {
7841 		D2(ldcp->ldc_vswp, "%s: freeing OUTBOUND lane"
7842 			" of channel %lld", __func__, ldcp->ldc_id);
7843 		lp = &ldcp->lane_out;
7844 	}
7845 
7846 	lp->lstate = VSW_LANE_INACTIV;
7847 	mutex_enter(&lp->seq_lock);
7848 	lp->seq_num = VNET_ISS;
7849 	mutex_exit(&lp->seq_lock);
7850 	if (lp->dringp) {
7851 		if (dir == INBOUND) {
7852 			dp = lp->dringp;
7853 			while (dp != NULL) {
7854 				dpp = dp->next;
7855 				if (dp->handle != NULL)
7856 					(void) ldc_mem_dring_unmap(dp->handle);
7857 				kmem_free(dp, sizeof (dring_info_t));
7858 				dp = dpp;
7859 			}
7860 		} else {
7861 			/*
7862 			 * unbind, destroy exported dring, free dring struct
7863 			 */
7864 			dp = lp->dringp;
7865 			rv = vsw_free_ring(dp);
7866 		}
7867 		if (rv == 0) {
7868 			lp->dringp = NULL;
7869 		}
7870 	}
7871 
7872 	D1(ldcp->ldc_vswp, "%s (%lld): exit", __func__, ldcp->ldc_id);
7873 }
7874 
7875 /*
7876  * Free ring and all associated resources.
7877  */
7878 static int
7879 vsw_free_ring(dring_info_t *dp)
7880 {
7881 	vsw_private_desc_t	*paddr = NULL;
7882 	dring_info_t		*dpp;
7883 	int			i, rv = 1;
7884 
7885 	while (dp != NULL) {
7886 		mutex_enter(&dp->dlock);
7887 		dpp = dp->next;
7888 		if (dp->priv_addr != NULL) {
7889 			/*
7890 			 * First unbind and free the memory handles
7891 			 * stored in each descriptor within the ring.
7892 			 */
7893 			for (i = 0; i < VSW_RING_NUM_EL; i++) {
7894 				paddr = (vsw_private_desc_t *)
7895 						dp->priv_addr + i;
7896 				if (paddr->memhandle != NULL) {
7897 					if (paddr->bound == 1) {
7898 						rv = ldc_mem_unbind_handle(
7899 							paddr->memhandle);
7900 
7901 						if (rv != 0) {
7902 							DERR(NULL, "error "
7903 							"unbinding handle for "
7904 							"ring 0x%llx at pos %d",
7905 							dp, i);
7906 							mutex_exit(&dp->dlock);
7907 							return (rv);
7908 						}
7909 						paddr->bound = 0;
7910 					}
7911 
7912 					rv = ldc_mem_free_handle(
7913 							paddr->memhandle);
7914 					if (rv != 0) {
7915 						DERR(NULL, "error freeing "
7916 							"handle for ring "
7917 							"0x%llx at pos %d",
7918 							dp, i);
7919 						mutex_exit(&dp->dlock);
7920 						return (rv);
7921 					}
7922 					paddr->memhandle = NULL;
7923 				}
7924 				mutex_destroy(&paddr->dstate_lock);
7925 			}
7926 			kmem_free(dp->priv_addr, (sizeof (vsw_private_desc_t)
7927 					* VSW_RING_NUM_EL));
7928 		}
7929 
7930 		/*
7931 		 * Now unbind and destroy the ring itself.
7932 		 */
7933 		if (dp->handle != NULL) {
7934 			(void) ldc_mem_dring_unbind(dp->handle);
7935 			(void) ldc_mem_dring_destroy(dp->handle);
7936 		}
7937 
7938 		if (dp->data_addr != NULL) {
7939 			kmem_free(dp->data_addr, dp->data_sz);
7940 		}
7941 
7942 		mutex_exit(&dp->dlock);
7943 		mutex_destroy(&dp->dlock);
7944 		mutex_destroy(&dp->restart_lock);
7945 		kmem_free(dp, sizeof (dring_info_t));
7946 
7947 		dp = dpp;
7948 	}
7949 	return (0);
7950 }
7951 
7952 /*
7953  * Debugging routines
7954  */
7955 static void
7956 display_state(void)
7957 {
7958 	vsw_t		*vswp;
7959 	vsw_port_list_t	*plist;
7960 	vsw_port_t 	*port;
7961 	vsw_ldc_list_t	*ldcl;
7962 	vsw_ldc_t 	*ldcp;
7963 
7964 	cmn_err(CE_NOTE, "***** system state *****");
7965 
7966 	for (vswp = vsw_head; vswp; vswp = vswp->next) {
7967 		plist = &vswp->plist;
7968 		READ_ENTER(&plist->lockrw);
7969 		cmn_err(CE_CONT, "vsw instance %d has %d ports attached\n",
7970 			vswp->instance, plist->num_ports);
7971 
7972 		for (port = plist->head; port != NULL; port = port->p_next) {
7973 			ldcl = &port->p_ldclist;
7974 			cmn_err(CE_CONT, "port %d : %d ldcs attached\n",
7975 				port->p_instance, ldcl->num_ldcs);
7976 			READ_ENTER(&ldcl->lockrw);
7977 			ldcp = ldcl->head;
7978 			for (; ldcp != NULL; ldcp = ldcp->ldc_next) {
7979 				cmn_err(CE_CONT, "chan %lu : dev %d : "
7980 					"status %d : phase %u\n",
7981 					ldcp->ldc_id, ldcp->dev_class,
7982 					ldcp->ldc_status, ldcp->hphase);
7983 				cmn_err(CE_CONT, "chan %lu : lsession %lu : "
7984 					"psession %lu\n",
7985 					ldcp->ldc_id,
7986 					ldcp->local_session,
7987 					ldcp->peer_session);
7988 
7989 				cmn_err(CE_CONT, "Inbound lane:\n");
7990 				display_lane(&ldcp->lane_in);
7991 				cmn_err(CE_CONT, "Outbound lane:\n");
7992 				display_lane(&ldcp->lane_out);
7993 			}
7994 			RW_EXIT(&ldcl->lockrw);
7995 		}
7996 		RW_EXIT(&plist->lockrw);
7997 	}
7998 	cmn_err(CE_NOTE, "***** system state *****");
7999 }
8000 
8001 static void
8002 display_lane(lane_t *lp)
8003 {
8004 	dring_info_t	*drp;
8005 
8006 	cmn_err(CE_CONT, "ver 0x%x:0x%x : state %lx : mtu 0x%lx\n",
8007 		lp->ver_major, lp->ver_minor, lp->lstate, lp->mtu);
8008 	cmn_err(CE_CONT, "addr_type %d : addr 0x%lx : xmode %d\n",
8009 		lp->addr_type, lp->addr, lp->xfer_mode);
8010 	cmn_err(CE_CONT, "dringp 0x%lx\n", (uint64_t)lp->dringp);
8011 
8012 	cmn_err(CE_CONT, "Dring info:\n");
8013 	for (drp = lp->dringp; drp != NULL; drp = drp->next) {
8014 		cmn_err(CE_CONT, "\tnum_desc %u : dsize %u\n",
8015 			drp->num_descriptors, drp->descriptor_size);
8016 		cmn_err(CE_CONT, "\thandle 0x%lx\n", drp->handle);
8017 		cmn_err(CE_CONT, "\tpub_addr 0x%lx : priv_addr 0x%lx\n",
8018 			(uint64_t)drp->pub_addr, (uint64_t)drp->priv_addr);
8019 		cmn_err(CE_CONT, "\tident 0x%lx : end_idx %lu\n",
8020 			drp->ident, drp->end_idx);
8021 		display_ring(drp);
8022 	}
8023 }
8024 
8025 static void
8026 display_ring(dring_info_t *dringp)
8027 {
8028 	uint64_t		i;
8029 	uint64_t		priv_count = 0;
8030 	uint64_t		pub_count = 0;
8031 	vnet_public_desc_t	*pub_addr = NULL;
8032 	vsw_private_desc_t	*priv_addr = NULL;
8033 
8034 	for (i = 0; i < VSW_RING_NUM_EL; i++) {
8035 		if (dringp->pub_addr != NULL) {
8036 			pub_addr = (vnet_public_desc_t *)dringp->pub_addr + i;
8037 
8038 			if (pub_addr->hdr.dstate == VIO_DESC_FREE)
8039 				pub_count++;
8040 		}
8041 
8042 		if (dringp->priv_addr != NULL) {
8043 			priv_addr =
8044 				(vsw_private_desc_t *)dringp->priv_addr + i;
8045 
8046 			if (priv_addr->dstate == VIO_DESC_FREE)
8047 				priv_count++;
8048 		}
8049 	}
8050 	cmn_err(CE_CONT, "\t%lu elements: %lu priv free: %lu pub free\n",
8051 			i, priv_count, pub_count);
8052 }
8053 
8054 static void
8055 dump_flags(uint64_t state)
8056 {
8057 	int	i;
8058 
8059 	typedef struct flag_name {
8060 		int	flag_val;
8061 		char	*flag_name;
8062 	} flag_name_t;
8063 
8064 	flag_name_t	flags[] = {
8065 		VSW_VER_INFO_SENT, "VSW_VER_INFO_SENT",
8066 		VSW_VER_INFO_RECV, "VSW_VER_INFO_RECV",
8067 		VSW_VER_ACK_RECV, "VSW_VER_ACK_RECV",
8068 		VSW_VER_ACK_SENT, "VSW_VER_ACK_SENT",
8069 		VSW_VER_NACK_RECV, "VSW_VER_NACK_RECV",
8070 		VSW_VER_NACK_SENT, "VSW_VER_NACK_SENT",
8071 		VSW_ATTR_INFO_SENT, "VSW_ATTR_INFO_SENT",
8072 		VSW_ATTR_INFO_RECV, "VSW_ATTR_INFO_RECV",
8073 		VSW_ATTR_ACK_SENT, "VSW_ATTR_ACK_SENT",
8074 		VSW_ATTR_ACK_RECV, "VSW_ATTR_ACK_RECV",
8075 		VSW_ATTR_NACK_SENT, "VSW_ATTR_NACK_SENT",
8076 		VSW_ATTR_NACK_RECV, "VSW_ATTR_NACK_RECV",
8077 		VSW_DRING_INFO_SENT, "VSW_DRING_INFO_SENT",
8078 		VSW_DRING_INFO_RECV, "VSW_DRING_INFO_RECV",
8079 		VSW_DRING_ACK_SENT, "VSW_DRING_ACK_SENT",
8080 		VSW_DRING_ACK_RECV, "VSW_DRING_ACK_RECV",
8081 		VSW_DRING_NACK_SENT, "VSW_DRING_NACK_SENT",
8082 		VSW_DRING_NACK_RECV, "VSW_DRING_NACK_RECV",
8083 		VSW_RDX_INFO_SENT, "VSW_RDX_INFO_SENT",
8084 		VSW_RDX_INFO_RECV, "VSW_RDX_INFO_RECV",
8085 		VSW_RDX_ACK_SENT, "VSW_RDX_ACK_SENT",
8086 		VSW_RDX_ACK_RECV, "VSW_RDX_ACK_RECV",
8087 		VSW_RDX_NACK_SENT, "VSW_RDX_NACK_SENT",
8088 		VSW_RDX_NACK_RECV, "VSW_RDX_NACK_RECV",
8089 		VSW_MCST_INFO_SENT, "VSW_MCST_INFO_SENT",
8090 		VSW_MCST_INFO_RECV, "VSW_MCST_INFO_RECV",
8091 		VSW_MCST_ACK_SENT, "VSW_MCST_ACK_SENT",
8092 		VSW_MCST_ACK_RECV, "VSW_MCST_ACK_RECV",
8093 		VSW_MCST_NACK_SENT, "VSW_MCST_NACK_SENT",
8094 		VSW_MCST_NACK_RECV, "VSW_MCST_NACK_RECV",
8095 		VSW_LANE_ACTIVE, "VSW_LANE_ACTIVE"};
8096 
8097 	DERR(NULL, "DUMP_FLAGS: %llx\n", state);
8098 	for (i = 0; i < sizeof (flags)/sizeof (flag_name_t); i++) {
8099 		if (state & flags[i].flag_val)
8100 			DERR(NULL, "DUMP_FLAGS %s", flags[i].flag_name);
8101 	}
8102 }
8103