xref: /titanic_50/usr/src/uts/sun4v/io/vds.c (revision b3baaabf8aa0df586f2fbe047c13633d089d9d8e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Virtual disk server
31  */
32 
33 
34 #include <sys/types.h>
35 #include <sys/conf.h>
36 #include <sys/crc32.h>
37 #include <sys/ddi.h>
38 #include <sys/dkio.h>
39 #include <sys/file.h>
40 #include <sys/mdeg.h>
41 #include <sys/modhash.h>
42 #include <sys/note.h>
43 #include <sys/pathname.h>
44 #include <sys/sunddi.h>
45 #include <sys/sunldi.h>
46 #include <sys/sysmacros.h>
47 #include <sys/vio_common.h>
48 #include <sys/vdsk_mailbox.h>
49 #include <sys/vdsk_common.h>
50 #include <sys/vtoc.h>
51 
52 
53 /* Virtual disk server initialization flags */
54 #define	VDS_LDI			0x01
55 #define	VDS_MDEG		0x02
56 
57 /* Virtual disk server tunable parameters */
58 #define	VDS_LDC_RETRIES		3
59 #define	VDS_LDC_DELAY		1000 /* usec */
60 #define	VDS_NCHAINS		32
61 
62 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */
63 #define	VDS_NAME		"virtual-disk-server"
64 
65 #define	VD_NAME			"vd"
66 #define	VD_VOLUME_NAME		"vdisk"
67 #define	VD_ASCIILABEL		"Virtual Disk"
68 
69 #define	VD_CHANNEL_ENDPOINT	"channel-endpoint"
70 #define	VD_ID_PROP		"id"
71 #define	VD_BLOCK_DEVICE_PROP	"vds-block-device"
72 
73 /* Virtual disk initialization flags */
74 #define	VD_LOCKING		0x01
75 #define	VD_LDC			0x02
76 #define	VD_DRING		0x04
77 #define	VD_SID			0x08
78 #define	VD_SEQ_NUM		0x10
79 
80 /* Flags for opening/closing backing devices via LDI */
81 #define	VD_OPEN_FLAGS		(FEXCL | FREAD | FWRITE)
82 
83 /*
84  * By Solaris convention, slice/partition 2 represents the entire disk;
85  * unfortunately, this convention does not appear to be codified.
86  */
87 #define	VD_ENTIRE_DISK_SLICE	2
88 
89 /* Return a cpp token as a string */
90 #define	STRINGIZE(token)	#token
91 
92 /*
93  * Print a message prefixed with the current function name to the message log
94  * (and optionally to the console for verbose boots); these macros use cpp's
95  * concatenation of string literals and C99 variable-length-argument-list
96  * macros
97  */
98 #define	PRN(...)	_PRN("?%s():  "__VA_ARGS__, "")
99 #define	_PRN(format, ...)					\
100 	cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__)
101 
102 /* Return a pointer to the "i"th vdisk dring element */
103 #define	VD_DRING_ELEM(i)	((vd_dring_entry_t *)(void *)	\
104 	    (vd->dring + (i)*vd->descriptor_size))
105 
106 /* Return the virtual disk client's type as a string (for use in messages) */
107 #define	VD_CLIENT(vd)							\
108 	(((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" :	\
109 	    (((vd)->xfer_mode == VIO_DRING_MODE) ? "dring client" :	\
110 		(((vd)->xfer_mode == 0) ? "null client" :		\
111 		    "unsupported client")))
112 
113 /* Debugging macros */
114 #ifdef DEBUG
115 
116 static int	vd_msglevel = 0;
117 
118 
119 #define	PR0 if (vd_msglevel > 0)	PRN
120 #define	PR1 if (vd_msglevel > 1)	PRN
121 #define	PR2 if (vd_msglevel > 2)	PRN
122 
123 #define	VD_DUMP_DRING_ELEM(elem)					\
124 	PRN("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n",		\
125 	    elem->hdr.dstate,						\
126 	    elem->payload.operation,					\
127 	    elem->payload.status,					\
128 	    elem->payload.nbytes,					\
129 	    elem->payload.addr,						\
130 	    elem->payload.ncookies);
131 
132 char *
133 vd_decode_state(int state)
134 {
135 	char *str;
136 
137 #define	CASE_STATE(_s)	case _s: str = #_s; break;
138 
139 	switch (state) {
140 	CASE_STATE(VD_STATE_INIT)
141 	CASE_STATE(VD_STATE_VER)
142 	CASE_STATE(VD_STATE_ATTR)
143 	CASE_STATE(VD_STATE_DRING)
144 	CASE_STATE(VD_STATE_RDX)
145 	CASE_STATE(VD_STATE_DATA)
146 	default: str = "unknown"; break;
147 	}
148 
149 #undef CASE_STATE
150 
151 	return (str);
152 }
153 
154 void
155 vd_decode_tag(vio_msg_t *msg)
156 {
157 	char *tstr, *sstr, *estr;
158 
159 #define	CASE_TYPE(_s)	case _s: tstr = #_s; break;
160 
161 	switch (msg->tag.vio_msgtype) {
162 	CASE_TYPE(VIO_TYPE_CTRL)
163 	CASE_TYPE(VIO_TYPE_DATA)
164 	CASE_TYPE(VIO_TYPE_ERR)
165 	default: tstr = "unknown"; break;
166 	}
167 
168 #undef CASE_TYPE
169 
170 #define	CASE_SUBTYPE(_s) case _s: sstr = #_s; break;
171 
172 	switch (msg->tag.vio_subtype) {
173 	CASE_SUBTYPE(VIO_SUBTYPE_INFO)
174 	CASE_SUBTYPE(VIO_SUBTYPE_ACK)
175 	CASE_SUBTYPE(VIO_SUBTYPE_NACK)
176 	default: sstr = "unknown"; break;
177 	}
178 
179 #undef CASE_SUBTYPE
180 
181 #define	CASE_ENV(_s)	case _s: estr = #_s; break;
182 
183 	switch (msg->tag.vio_subtype_env) {
184 	CASE_ENV(VIO_VER_INFO)
185 	CASE_ENV(VIO_ATTR_INFO)
186 	CASE_ENV(VIO_DRING_REG)
187 	CASE_ENV(VIO_DRING_UNREG)
188 	CASE_ENV(VIO_RDX)
189 	CASE_ENV(VIO_PKT_DATA)
190 	CASE_ENV(VIO_DESC_DATA)
191 	CASE_ENV(VIO_DRING_DATA)
192 	default: estr = "unknown"; break;
193 	}
194 
195 #undef CASE_ENV
196 
197 	PR1("(%x/%x/%x) message : (%s/%s/%s)",
198 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
199 	    msg->tag.vio_subtype_env, tstr, sstr, estr);
200 }
201 
202 #else	/* !DEBUG */
203 
204 #define	PR0(...)
205 #define	PR1(...)
206 #define	PR2(...)
207 
208 #define	VD_DUMP_DRING_ELEM(elem)
209 
210 #define	vd_decode_state(_s)	(NULL)
211 #define	vd_decode_tag(_s)	(NULL)
212 
213 #endif	/* DEBUG */
214 
215 
216 /*
217  * Soft state structure for a vds instance
218  */
219 typedef struct vds {
220 	uint_t		initialized;	/* driver inst initialization flags */
221 	dev_info_t	*dip;		/* driver inst devinfo pointer */
222 	ldi_ident_t	ldi_ident;	/* driver's identifier for LDI */
223 	mod_hash_t	*vd_table;	/* table of virtual disks served */
224 	mdeg_handle_t	mdeg;		/* handle for MDEG operations  */
225 } vds_t;
226 
227 /*
228  * Types of descriptor-processing tasks
229  */
230 typedef enum vd_task_type {
231 	VD_NONFINAL_RANGE_TASK,	/* task for intermediate descriptor in range */
232 	VD_FINAL_RANGE_TASK,	/* task for last in a range of descriptors */
233 } vd_task_type_t;
234 
235 /*
236  * Structure describing the task for processing a descriptor
237  */
238 typedef struct vd_task {
239 	struct vd		*vd;		/* vd instance task is for */
240 	vd_task_type_t		type;		/* type of descriptor task */
241 	int			index;		/* dring elem index for task */
242 	vio_msg_t		*msg;		/* VIO message task is for */
243 	size_t			msglen;		/* length of message content */
244 	vd_dring_payload_t	*request;	/* request task will perform */
245 	struct buf		buf;		/* buf(9s) for I/O request */
246 	ldc_mem_handle_t	mhdl;		/* task memory handle */
247 } vd_task_t;
248 
249 /*
250  * Soft state structure for a virtual disk instance
251  */
252 typedef struct vd {
253 	uint_t			initialized;	/* vdisk initialization flags */
254 	vds_t			*vds;		/* server for this vdisk */
255 	ddi_taskq_t		*startq;	/* queue for I/O start tasks */
256 	ddi_taskq_t		*completionq;	/* queue for completion tasks */
257 	ldi_handle_t		ldi_handle[V_NUMPAR];	/* LDI slice handles */
258 	dev_t			dev[V_NUMPAR];	/* dev numbers for slices */
259 	uint_t			nslices;	/* number of slices */
260 	size_t			vdisk_size;	/* number of blocks in vdisk */
261 	vd_disk_type_t		vdisk_type;	/* slice or entire disk */
262 	vd_disk_label_t		vdisk_label;	/* EFI or VTOC label */
263 	ushort_t		max_xfer_sz;	/* max xfer size in DEV_BSIZE */
264 	boolean_t		pseudo;		/* underlying pseudo dev */
265 	struct dk_efi		dk_efi;		/* synthetic for slice type */
266 	struct dk_geom		dk_geom;	/* synthetic for slice type */
267 	struct vtoc		vtoc;		/* synthetic for slice type */
268 	ldc_status_t		ldc_state;	/* LDC connection state */
269 	ldc_handle_t		ldc_handle;	/* handle for LDC comm */
270 	size_t			max_msglen;	/* largest LDC message len */
271 	vd_state_t		state;		/* client handshake state */
272 	uint8_t			xfer_mode;	/* transfer mode with client */
273 	uint32_t		sid;		/* client's session ID */
274 	uint64_t		seq_num;	/* message sequence number */
275 	uint64_t		dring_ident;	/* identifier of dring */
276 	ldc_dring_handle_t	dring_handle;	/* handle for dring ops */
277 	uint32_t		descriptor_size;	/* num bytes in desc */
278 	uint32_t		dring_len;	/* number of dring elements */
279 	caddr_t			dring;		/* address of dring */
280 	caddr_t			vio_msgp;	/* vio msg staging buffer */
281 	vd_task_t		inband_task;	/* task for inband descriptor */
282 	vd_task_t		*dring_task;	/* tasks dring elements */
283 
284 	kmutex_t		lock;		/* protects variables below */
285 	boolean_t		enabled;	/* is vdisk enabled? */
286 	boolean_t		reset_state;	/* reset connection state? */
287 	boolean_t		reset_ldc;	/* reset LDC channel? */
288 } vd_t;
289 
290 typedef struct vds_operation {
291 	char	*namep;
292 	uint8_t	operation;
293 	int	(*start)(vd_task_t *task);
294 	void	(*complete)(void *arg);
295 } vds_operation_t;
296 
297 typedef struct vd_ioctl {
298 	uint8_t		operation;		/* vdisk operation */
299 	const char	*operation_name;	/* vdisk operation name */
300 	size_t		nbytes;			/* size of operation buffer */
301 	int		cmd;			/* corresponding ioctl cmd */
302 	const char	*cmd_name;		/* ioctl cmd name */
303 	void		*arg;			/* ioctl cmd argument */
304 	/* convert input vd_buf to output ioctl_arg */
305 	void		(*copyin)(void *vd_buf, void *ioctl_arg);
306 	/* convert input ioctl_arg to output vd_buf */
307 	void		(*copyout)(void *ioctl_arg, void *vd_buf);
308 } vd_ioctl_t;
309 
310 /* Define trivial copyin/copyout conversion function flag */
311 #define	VD_IDENTITY	((void (*)(void *, void *))-1)
312 
313 
314 static int	vds_ldc_retries = VDS_LDC_RETRIES;
315 static int	vds_ldc_delay = VDS_LDC_DELAY;
316 static void	*vds_state;
317 static uint64_t	vds_operations;	/* see vds_operation[] definition below */
318 
319 static int	vd_open_flags = VD_OPEN_FLAGS;
320 
321 /*
322  * Supported protocol version pairs, from highest (newest) to lowest (oldest)
323  *
324  * Each supported major version should appear only once, paired with (and only
325  * with) its highest supported minor version number (as the protocol requires
326  * supporting all lower minor version numbers as well)
327  */
328 static const vio_ver_t	vds_version[] = {{1, 0}};
329 static const size_t	vds_num_versions =
330     sizeof (vds_version)/sizeof (vds_version[0]);
331 
332 static void vd_free_dring_task(vd_t *vdp);
333 
334 static int
335 vd_start_bio(vd_task_t *task)
336 {
337 	int			rv, status = 0;
338 	vd_t			*vd		= task->vd;
339 	vd_dring_payload_t	*request	= task->request;
340 	struct buf		*buf		= &task->buf;
341 	uint8_t			mtype;
342 
343 
344 	ASSERT(vd != NULL);
345 	ASSERT(request != NULL);
346 	ASSERT(request->slice < vd->nslices);
347 	ASSERT((request->operation == VD_OP_BREAD) ||
348 	    (request->operation == VD_OP_BWRITE));
349 
350 	if (request->nbytes == 0)
351 		return (EINVAL);	/* no service for trivial requests */
352 
353 	PR1("%s %lu bytes at block %lu",
354 	    (request->operation == VD_OP_BREAD) ? "Read" : "Write",
355 	    request->nbytes, request->addr);
356 
357 	bioinit(buf);
358 	buf->b_flags		= B_BUSY;
359 	buf->b_bcount		= request->nbytes;
360 	buf->b_lblkno		= request->addr;
361 	buf->b_edev		= vd->dev[request->slice];
362 
363 	mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP;
364 
365 	/* Map memory exported by client */
366 	status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies,
367 	    mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R,
368 	    &(buf->b_un.b_addr), NULL);
369 	if (status != 0) {
370 		PR0("ldc_mem_map() returned err %d ", status);
371 		biofini(buf);
372 		return (status);
373 	}
374 
375 	status = ldc_mem_acquire(task->mhdl, 0, buf->b_bcount);
376 	if (status != 0) {
377 		(void) ldc_mem_unmap(task->mhdl);
378 		PR0("ldc_mem_acquire() returned err %d ", status);
379 		biofini(buf);
380 		return (status);
381 	}
382 
383 	buf->b_flags |= (request->operation == VD_OP_BREAD) ? B_READ : B_WRITE;
384 
385 	/* Start the block I/O */
386 	if ((status = ldi_strategy(vd->ldi_handle[request->slice], buf)) == 0)
387 		return (EINPROGRESS);	/* will complete on completionq */
388 
389 	/* Clean up after error */
390 	rv = ldc_mem_release(task->mhdl, 0, buf->b_bcount);
391 	if (rv) {
392 		PR0("ldc_mem_release() returned err %d ", rv);
393 	}
394 	rv = ldc_mem_unmap(task->mhdl);
395 	if (rv) {
396 		PR0("ldc_mem_unmap() returned err %d ", status);
397 	}
398 
399 	biofini(buf);
400 	return (status);
401 }
402 
403 static int
404 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen)
405 {
406 	int	status;
407 	size_t	nbytes;
408 
409 	do {
410 		nbytes = msglen;
411 		status = ldc_write(ldc_handle, msg, &nbytes);
412 		if (status != EWOULDBLOCK)
413 			break;
414 		drv_usecwait(vds_ldc_delay);
415 	} while (status == EWOULDBLOCK);
416 
417 	if (status != 0) {
418 		if (status != ECONNRESET)
419 			PR0("ldc_write() returned errno %d", status);
420 		return (status);
421 	} else if (nbytes != msglen) {
422 		PR0("ldc_write() performed only partial write");
423 		return (EIO);
424 	}
425 
426 	PR1("SENT %lu bytes", msglen);
427 	return (0);
428 }
429 
430 static void
431 vd_need_reset(vd_t *vd, boolean_t reset_ldc)
432 {
433 	mutex_enter(&vd->lock);
434 	vd->reset_state	= B_TRUE;
435 	vd->reset_ldc	= reset_ldc;
436 	mutex_exit(&vd->lock);
437 }
438 
439 /*
440  * Reset the state of the connection with a client, if needed; reset the LDC
441  * transport as well, if needed.  This function should only be called from the
442  * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur.
443  */
444 static void
445 vd_reset_if_needed(vd_t *vd)
446 {
447 	int	status = 0;
448 
449 	mutex_enter(&vd->lock);
450 	if (!vd->reset_state) {
451 		ASSERT(!vd->reset_ldc);
452 		mutex_exit(&vd->lock);
453 		return;
454 	}
455 	mutex_exit(&vd->lock);
456 
457 	PR0("Resetting connection state with %s", VD_CLIENT(vd));
458 
459 	/*
460 	 * Let any asynchronous I/O complete before possibly pulling the rug
461 	 * out from under it; defer checking vd->reset_ldc, as one of the
462 	 * asynchronous tasks might set it
463 	 */
464 	ddi_taskq_wait(vd->completionq);
465 
466 	if ((vd->initialized & VD_DRING) &&
467 	    ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0))
468 		PR0("ldc_mem_dring_unmap() returned errno %d", status);
469 
470 	vd_free_dring_task(vd);
471 
472 	/* Free the staging buffer for msgs */
473 	if (vd->vio_msgp != NULL) {
474 		kmem_free(vd->vio_msgp, vd->max_msglen);
475 		vd->vio_msgp = NULL;
476 	}
477 
478 	/* Free the inband message buffer */
479 	if (vd->inband_task.msg != NULL) {
480 		kmem_free(vd->inband_task.msg, vd->max_msglen);
481 		vd->inband_task.msg = NULL;
482 	}
483 
484 	mutex_enter(&vd->lock);
485 
486 	if (vd->reset_ldc)
487 		PR0("taking down LDC channel");
488 	if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0))
489 		PR0("ldc_down() returned errno %d", status);
490 
491 	vd->initialized	&= ~(VD_SID | VD_SEQ_NUM | VD_DRING);
492 	vd->state	= VD_STATE_INIT;
493 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
494 
495 	/* Allocate the staging buffer */
496 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
497 
498 	PR0("calling ldc_up\n");
499 	(void) ldc_up(vd->ldc_handle);
500 
501 	vd->reset_state	= B_FALSE;
502 	vd->reset_ldc	= B_FALSE;
503 
504 	mutex_exit(&vd->lock);
505 }
506 
507 static void vd_recv_msg(void *arg);
508 
509 static void
510 vd_mark_in_reset(vd_t *vd)
511 {
512 	int status;
513 
514 	PR0("vd_mark_in_reset: marking vd in reset\n");
515 
516 	vd_need_reset(vd, B_FALSE);
517 	status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP);
518 	if (status == DDI_FAILURE) {
519 		PR0("cannot schedule task to recv msg\n");
520 		vd_need_reset(vd, B_TRUE);
521 		return;
522 	}
523 }
524 
525 static int
526 vd_mark_elem_done(vd_t *vd, int idx, int elem_status)
527 {
528 	boolean_t		accepted;
529 	int			status;
530 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
531 
532 	if (vd->reset_state)
533 		return (0);
534 
535 	/* Acquire the element */
536 	if (!vd->reset_state &&
537 	    (status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
538 		if (status == ECONNRESET) {
539 			vd_mark_in_reset(vd);
540 			return (0);
541 		} else {
542 			PR0("ldc_mem_dring_acquire() returned errno %d",
543 			    status);
544 			return (status);
545 		}
546 	}
547 
548 	/* Set the element's status and mark it done */
549 	accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED);
550 	if (accepted) {
551 		elem->payload.status	= elem_status;
552 		elem->hdr.dstate	= VIO_DESC_DONE;
553 	} else {
554 		/* Perhaps client timed out waiting for I/O... */
555 		PR0("element %u no longer \"accepted\"", idx);
556 		VD_DUMP_DRING_ELEM(elem);
557 	}
558 	/* Release the element */
559 	if (!vd->reset_state &&
560 	    (status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
561 		if (status == ECONNRESET) {
562 			vd_mark_in_reset(vd);
563 			return (0);
564 		} else {
565 			PR0("ldc_mem_dring_release() returned errno %d",
566 			    status);
567 			return (status);
568 		}
569 	}
570 
571 	return (accepted ? 0 : EINVAL);
572 }
573 
574 static void
575 vd_complete_bio(void *arg)
576 {
577 	int			status		= 0;
578 	vd_task_t		*task		= (vd_task_t *)arg;
579 	vd_t			*vd		= task->vd;
580 	vd_dring_payload_t	*request	= task->request;
581 	struct buf		*buf		= &task->buf;
582 
583 
584 	ASSERT(vd != NULL);
585 	ASSERT(request != NULL);
586 	ASSERT(task->msg != NULL);
587 	ASSERT(task->msglen >= sizeof (*task->msg));
588 
589 	/* Wait for the I/O to complete */
590 	request->status = biowait(buf);
591 
592 	/* Release the buffer */
593 	if (!vd->reset_state)
594 		status = ldc_mem_release(task->mhdl, 0, buf->b_bcount);
595 	if (status) {
596 		PR0("ldc_mem_release() returned errno %d copying to "
597 		    "client", status);
598 		if (status == ECONNRESET) {
599 			vd_mark_in_reset(vd);
600 		}
601 	}
602 
603 	/* Unmap the memory, even if in reset */
604 	status = ldc_mem_unmap(task->mhdl);
605 	if (status) {
606 		PR0("ldc_mem_unmap() returned errno %d copying to client",
607 		    status);
608 		if (status == ECONNRESET) {
609 			vd_mark_in_reset(vd);
610 		}
611 	}
612 
613 	biofini(buf);
614 
615 	/* Update the dring element for a dring client */
616 	if (!vd->reset_state && (status == 0) &&
617 	    (vd->xfer_mode == VIO_DRING_MODE)) {
618 		status = vd_mark_elem_done(vd, task->index, request->status);
619 		if (status == ECONNRESET)
620 			vd_mark_in_reset(vd);
621 	}
622 
623 	/*
624 	 * If a transport error occurred, arrange to "nack" the message when
625 	 * the final task in the descriptor element range completes
626 	 */
627 	if (status != 0)
628 		task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
629 
630 	/*
631 	 * Only the final task for a range of elements will respond to and
632 	 * free the message
633 	 */
634 	if (task->type == VD_NONFINAL_RANGE_TASK) {
635 		return;
636 	}
637 
638 	/*
639 	 * Send the "ack" or "nack" back to the client; if sending the message
640 	 * via LDC fails, arrange to reset both the connection state and LDC
641 	 * itself
642 	 */
643 	PR1("Sending %s",
644 	    (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
645 	if (!vd->reset_state) {
646 		status = send_msg(vd->ldc_handle, task->msg, task->msglen);
647 		switch (status) {
648 		case 0:
649 			break;
650 		case ECONNRESET:
651 			vd_mark_in_reset(vd);
652 			break;
653 		default:
654 			PR0("initiating full reset");
655 			vd_need_reset(vd, B_TRUE);
656 			break;
657 		}
658 	}
659 }
660 
661 static void
662 vd_geom2dk_geom(void *vd_buf, void *ioctl_arg)
663 {
664 	VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg);
665 }
666 
667 static void
668 vd_vtoc2vtoc(void *vd_buf, void *ioctl_arg)
669 {
670 	VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct vtoc *)ioctl_arg);
671 }
672 
673 static void
674 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf)
675 {
676 	DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf);
677 }
678 
679 static void
680 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf)
681 {
682 	VTOC2VD_VTOC((struct vtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf);
683 }
684 
685 static void
686 vd_get_efi_in(void *vd_buf, void *ioctl_arg)
687 {
688 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
689 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
690 
691 	dk_efi->dki_lba = vd_efi->lba;
692 	dk_efi->dki_length = vd_efi->length;
693 	dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP);
694 }
695 
696 static void
697 vd_get_efi_out(void *ioctl_arg, void *vd_buf)
698 {
699 	int len;
700 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
701 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
702 
703 	len = vd_efi->length;
704 	DK_EFI2VD_EFI(dk_efi, vd_efi);
705 	kmem_free(dk_efi->dki_data, len);
706 }
707 
708 static void
709 vd_set_efi_in(void *vd_buf, void *ioctl_arg)
710 {
711 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
712 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
713 
714 	dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP);
715 	VD_EFI2DK_EFI(vd_efi, dk_efi);
716 }
717 
718 static void
719 vd_set_efi_out(void *ioctl_arg, void *vd_buf)
720 {
721 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
722 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
723 
724 	kmem_free(dk_efi->dki_data, vd_efi->length);
725 }
726 
727 static int
728 vd_read_vtoc(ldi_handle_t handle, struct vtoc *vtoc, vd_disk_label_t *label)
729 {
730 	int status, rval;
731 	struct dk_gpt *efi;
732 	size_t efi_len;
733 
734 	*label = VD_DISK_LABEL_UNK;
735 
736 	status = ldi_ioctl(handle, DKIOCGVTOC, (intptr_t)vtoc,
737 	    (vd_open_flags | FKIOCTL), kcred, &rval);
738 
739 	if (status == 0) {
740 		*label = VD_DISK_LABEL_VTOC;
741 		return (0);
742 	} else if (status != ENOTSUP) {
743 		PR0("ldi_ioctl(DKIOCGVTOC) returned error %d", status);
744 		return (status);
745 	}
746 
747 	status = vds_efi_alloc_and_read(handle, &efi, &efi_len);
748 
749 	if (status) {
750 		PR0("vds_efi_alloc_and_read returned error %d", status);
751 		return (status);
752 	}
753 
754 	*label = VD_DISK_LABEL_EFI;
755 	vd_efi_to_vtoc(efi, vtoc);
756 	vd_efi_free(efi, efi_len);
757 
758 	return (0);
759 }
760 
761 static int
762 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
763 {
764 	dk_efi_t *dk_ioc;
765 
766 	switch (vd->vdisk_label) {
767 
768 	case VD_DISK_LABEL_VTOC:
769 
770 		switch (cmd) {
771 		case DKIOCGGEOM:
772 			ASSERT(ioctl_arg != NULL);
773 			bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom));
774 			return (0);
775 		case DKIOCGVTOC:
776 			ASSERT(ioctl_arg != NULL);
777 			bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc));
778 			return (0);
779 		default:
780 			return (ENOTSUP);
781 		}
782 
783 	case VD_DISK_LABEL_EFI:
784 
785 		switch (cmd) {
786 		case DKIOCGETEFI:
787 			ASSERT(ioctl_arg != NULL);
788 			dk_ioc = (dk_efi_t *)ioctl_arg;
789 			if (dk_ioc->dki_length < vd->dk_efi.dki_length)
790 				return (EINVAL);
791 			bcopy(vd->dk_efi.dki_data, dk_ioc->dki_data,
792 			    vd->dk_efi.dki_length);
793 			return (0);
794 		default:
795 			return (ENOTSUP);
796 		}
797 
798 	default:
799 		return (ENOTSUP);
800 	}
801 }
802 
803 static int
804 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl)
805 {
806 	int	rval = 0, status;
807 	size_t	nbytes = request->nbytes;	/* modifiable copy */
808 
809 
810 	ASSERT(request->slice < vd->nslices);
811 	PR0("Performing %s", ioctl->operation_name);
812 
813 	/* Get data from client and convert, if necessary */
814 	if (ioctl->copyin != NULL)  {
815 		ASSERT(nbytes != 0 && buf != NULL);
816 		PR1("Getting \"arg\" data from client");
817 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
818 			    request->cookie, request->ncookies,
819 			    LDC_COPY_IN)) != 0) {
820 			PR0("ldc_mem_copy() returned errno %d "
821 			    "copying from client", status);
822 			return (status);
823 		}
824 
825 		/* Convert client's data, if necessary */
826 		if (ioctl->copyin == VD_IDENTITY)	/* use client buffer */
827 			ioctl->arg = buf;
828 		else	/* convert client vdisk operation data to ioctl data */
829 			(ioctl->copyin)(buf, (void *)ioctl->arg);
830 	}
831 
832 	/*
833 	 * Handle single-slice block devices internally; otherwise, have the
834 	 * real driver perform the ioctl()
835 	 */
836 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE && !vd->pseudo) {
837 		if ((status = vd_do_slice_ioctl(vd, ioctl->cmd,
838 			    (void *)ioctl->arg)) != 0)
839 			return (status);
840 	} else if ((status = ldi_ioctl(vd->ldi_handle[request->slice],
841 		    ioctl->cmd, (intptr_t)ioctl->arg, (vd_open_flags | FKIOCTL),
842 		    kcred, &rval)) != 0) {
843 		PR0("ldi_ioctl(%s) = errno %d", ioctl->cmd_name, status);
844 		return (status);
845 	}
846 #ifdef DEBUG
847 	if (rval != 0) {
848 		PR0("%s set rval = %d, which is not being returned to client",
849 		    ioctl->cmd_name, rval);
850 	}
851 #endif /* DEBUG */
852 
853 	/* Convert data and send to client, if necessary */
854 	if (ioctl->copyout != NULL)  {
855 		ASSERT(nbytes != 0 && buf != NULL);
856 		PR1("Sending \"arg\" data to client");
857 
858 		/* Convert ioctl data to vdisk operation data, if necessary */
859 		if (ioctl->copyout != VD_IDENTITY)
860 			(ioctl->copyout)((void *)ioctl->arg, buf);
861 
862 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
863 			    request->cookie, request->ncookies,
864 			    LDC_COPY_OUT)) != 0) {
865 			PR0("ldc_mem_copy() returned errno %d "
866 			    "copying to client", status);
867 			return (status);
868 		}
869 	}
870 
871 	return (status);
872 }
873 
874 /*
875  * Open any slices which have become non-empty as a result of performing a
876  * set-VTOC operation for the client.
877  *
878  * When serving a full disk, vds attempts to exclusively open all of the
879  * disk's slices to prevent another thread or process in the service domain
880  * from "stealing" a slice or from performing I/O to a slice while a vds
881  * client is accessing it.  Unfortunately, underlying drivers, such as sd(7d)
882  * and cmdk(7d), return an error when attempting to open the device file for a
883  * slice which is currently empty according to the VTOC.  This driver behavior
884  * means that vds must skip opening empty slices when initializing a vdisk for
885  * full-disk service and try to open slices that become non-empty (via a
886  * set-VTOC operation) during use of the full disk in order to begin serving
887  * such slices to the client.  This approach has an inherent (and therefore
888  * unavoidable) race condition; it also means that failure to open a
889  * newly-non-empty slice has different semantics than failure to open an
890  * initially-non-empty slice:  Due to driver bahavior, opening a
891  * newly-non-empty slice is a necessary side effect of vds performing a
892  * (successful) set-VTOC operation for a client on an in-service (and in-use)
893  * disk in order to begin serving the slice; failure of this side-effect
894  * operation does not mean that the client's set-VTOC operation failed or that
895  * operations on other slices must fail.  Therefore, this function prints an
896  * error message on failure to open a slice, but does not return an error to
897  * its caller--unlike failure to open a slice initially, which results in an
898  * error that prevents serving the vdisk (and thereby requires an
899  * administrator to resolve the problem).  Note that, apart from another
900  * thread or process opening a new slice during the race-condition window,
901  * failure to open a slice in this function will likely indicate an underlying
902  * drive problem, which will also likely become evident in errors returned by
903  * operations on other slices, and which will require administrative
904  * intervention and possibly servicing the drive.
905  */
906 static void
907 vd_open_new_slices(vd_t *vd)
908 {
909 	int		status;
910 	struct vtoc	vtoc;
911 
912 	/* Get the (new) partitions for updated slice sizes */
913 	if ((status = vd_read_vtoc(vd->ldi_handle[0], &vtoc,
914 	    &vd->vdisk_label)) != 0) {
915 		PR0("vd_read_vtoc returned error %d", status);
916 		return;
917 	}
918 
919 	/* Open any newly-non-empty slices */
920 	for (int slice = 0; slice < vd->nslices; slice++) {
921 		/* Skip zero-length slices */
922 		if (vtoc.v_part[slice].p_size == 0) {
923 			if (vd->ldi_handle[slice] != NULL)
924 				PR0("Open slice %u now has zero length", slice);
925 			continue;
926 		}
927 
928 		/* Skip already-open slices */
929 		if (vd->ldi_handle[slice] != NULL)
930 			continue;
931 
932 		PR0("Opening newly-non-empty slice %u", slice);
933 		if ((status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
934 			    vd_open_flags, kcred, &vd->ldi_handle[slice],
935 			    vd->vds->ldi_ident)) != 0) {
936 			PR0("ldi_open_by_dev() returned errno %d "
937 			    "for slice %u", status, slice);
938 		}
939 	}
940 }
941 
942 #define	RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t))
943 static int
944 vd_ioctl(vd_task_t *task)
945 {
946 	int			i, status;
947 	void			*buf = NULL;
948 	struct dk_geom		dk_geom = {0};
949 	struct vtoc		vtoc = {0};
950 	struct dk_efi		dk_efi = {0};
951 	vd_t			*vd		= task->vd;
952 	vd_dring_payload_t	*request	= task->request;
953 	vd_ioctl_t		ioctl[] = {
954 		/* Command (no-copy) operations */
955 		{VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0,
956 		    DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE),
957 		    NULL, NULL, NULL},
958 
959 		/* "Get" (copy-out) operations */
960 		{VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int),
961 		    DKIOCGETWCE, STRINGIZE(DKIOCGETWCE),
962 		    NULL, VD_IDENTITY, VD_IDENTITY},
963 		{VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM),
964 		    RNDSIZE(vd_geom_t),
965 		    DKIOCGGEOM, STRINGIZE(DKIOCGGEOM),
966 		    &dk_geom, NULL, dk_geom2vd_geom},
967 		{VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t),
968 		    DKIOCGVTOC, STRINGIZE(DKIOCGVTOC),
969 		    &vtoc, NULL, vtoc2vd_vtoc},
970 		{VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t),
971 		    DKIOCGETEFI, STRINGIZE(DKIOCGETEFI),
972 		    &dk_efi, vd_get_efi_in, vd_get_efi_out},
973 
974 		/* "Set" (copy-in) operations */
975 		{VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int),
976 		    DKIOCSETWCE, STRINGIZE(DKIOCSETWCE),
977 		    NULL, VD_IDENTITY, VD_IDENTITY},
978 		{VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM),
979 		    RNDSIZE(vd_geom_t),
980 		    DKIOCSGEOM, STRINGIZE(DKIOCSGEOM),
981 		    &dk_geom, vd_geom2dk_geom, NULL},
982 		{VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t),
983 		    DKIOCSVTOC, STRINGIZE(DKIOCSVTOC),
984 		    &vtoc, vd_vtoc2vtoc, NULL},
985 		{VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t),
986 		    DKIOCSETEFI, STRINGIZE(DKIOCSETEFI),
987 		    &dk_efi, vd_set_efi_in, vd_set_efi_out},
988 	};
989 	size_t		nioctls = (sizeof (ioctl))/(sizeof (ioctl[0]));
990 
991 
992 	ASSERT(vd != NULL);
993 	ASSERT(request != NULL);
994 	ASSERT(request->slice < vd->nslices);
995 
996 	/*
997 	 * Determine ioctl corresponding to caller's "operation" and
998 	 * validate caller's "nbytes"
999 	 */
1000 	for (i = 0; i < nioctls; i++) {
1001 		if (request->operation == ioctl[i].operation) {
1002 			/* LDC memory operations require 8-byte multiples */
1003 			ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0);
1004 
1005 			if (request->operation == VD_OP_GET_EFI ||
1006 			    request->operation == VD_OP_SET_EFI) {
1007 				if (request->nbytes >= ioctl[i].nbytes)
1008 					break;
1009 				PR0("%s:  Expected at least nbytes = %lu, "
1010 				    "got %lu", ioctl[i].operation_name,
1011 				    ioctl[i].nbytes, request->nbytes);
1012 				return (EINVAL);
1013 			}
1014 
1015 			if (request->nbytes != ioctl[i].nbytes) {
1016 				PR0("%s:  Expected nbytes = %lu, got %lu",
1017 				    ioctl[i].operation_name, ioctl[i].nbytes,
1018 				    request->nbytes);
1019 				return (EINVAL);
1020 			}
1021 
1022 			break;
1023 		}
1024 	}
1025 	ASSERT(i < nioctls);	/* because "operation" already validated */
1026 
1027 	if (request->nbytes)
1028 		buf = kmem_zalloc(request->nbytes, KM_SLEEP);
1029 	status = vd_do_ioctl(vd, request, buf, &ioctl[i]);
1030 	if (request->nbytes)
1031 		kmem_free(buf, request->nbytes);
1032 	if (vd->vdisk_type == VD_DISK_TYPE_DISK &&
1033 	    (request->operation == VD_OP_SET_VTOC ||
1034 	    request->operation == VD_OP_SET_EFI))
1035 		vd_open_new_slices(vd);
1036 	PR0("Returning %d", status);
1037 	return (status);
1038 }
1039 
1040 static int
1041 vd_get_devid(vd_task_t *task)
1042 {
1043 	vd_t *vd = task->vd;
1044 	vd_dring_payload_t *request = task->request;
1045 	vd_devid_t *vd_devid;
1046 	impl_devid_t *devid;
1047 	int status, bufid_len, devid_len, len;
1048 	int bufbytes;
1049 
1050 	PR1("Get Device ID, nbytes=%ld", request->nbytes);
1051 
1052 	if (ddi_lyr_get_devid(vd->dev[request->slice],
1053 	    (ddi_devid_t *)&devid) != DDI_SUCCESS) {
1054 		/* the most common failure is that no devid is available */
1055 		PR2("No Device ID");
1056 		return (ENOENT);
1057 	}
1058 
1059 	bufid_len = request->nbytes - sizeof (vd_devid_t) + 1;
1060 	devid_len = DEVID_GETLEN(devid);
1061 
1062 	/*
1063 	 * Save the buffer size here for use in deallocation.
1064 	 * The actual number of bytes copied is returned in
1065 	 * the 'nbytes' field of the request structure.
1066 	 */
1067 	bufbytes = request->nbytes;
1068 
1069 	vd_devid = kmem_zalloc(bufbytes, KM_SLEEP);
1070 	vd_devid->length = devid_len;
1071 	vd_devid->type = DEVID_GETTYPE(devid);
1072 
1073 	len = (devid_len > bufid_len)? bufid_len : devid_len;
1074 
1075 	bcopy(devid->did_id, vd_devid->id, len);
1076 
1077 	/* LDC memory operations require 8-byte multiples */
1078 	ASSERT(request->nbytes % sizeof (uint64_t) == 0);
1079 
1080 	if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0,
1081 	    &request->nbytes, request->cookie, request->ncookies,
1082 	    LDC_COPY_OUT)) != 0) {
1083 		PR0("ldc_mem_copy() returned errno %d copying to client",
1084 		    status);
1085 	}
1086 	PR1("post mem_copy: nbytes=%ld", request->nbytes);
1087 
1088 	kmem_free(vd_devid, bufbytes);
1089 	ddi_devid_free((ddi_devid_t)devid);
1090 
1091 	return (status);
1092 }
1093 
1094 /*
1095  * Define the supported operations once the functions for performing them have
1096  * been defined
1097  */
1098 static const vds_operation_t	vds_operation[] = {
1099 #define	X(_s)	#_s, _s
1100 	{X(VD_OP_BREAD),	vd_start_bio,	vd_complete_bio},
1101 	{X(VD_OP_BWRITE),	vd_start_bio,	vd_complete_bio},
1102 	{X(VD_OP_FLUSH),	vd_ioctl,	NULL},
1103 	{X(VD_OP_GET_WCE),	vd_ioctl,	NULL},
1104 	{X(VD_OP_SET_WCE),	vd_ioctl,	NULL},
1105 	{X(VD_OP_GET_VTOC),	vd_ioctl,	NULL},
1106 	{X(VD_OP_SET_VTOC),	vd_ioctl,	NULL},
1107 	{X(VD_OP_GET_DISKGEOM),	vd_ioctl,	NULL},
1108 	{X(VD_OP_SET_DISKGEOM),	vd_ioctl,	NULL},
1109 	{X(VD_OP_GET_EFI),	vd_ioctl,	NULL},
1110 	{X(VD_OP_SET_EFI),	vd_ioctl,	NULL},
1111 	{X(VD_OP_GET_DEVID),	vd_get_devid,	NULL},
1112 #undef	X
1113 };
1114 
1115 static const size_t	vds_noperations =
1116 	(sizeof (vds_operation))/(sizeof (vds_operation[0]));
1117 
1118 /*
1119  * Process a task specifying a client I/O request
1120  */
1121 static int
1122 vd_process_task(vd_task_t *task)
1123 {
1124 	int			i, status;
1125 	vd_t			*vd		= task->vd;
1126 	vd_dring_payload_t	*request	= task->request;
1127 
1128 
1129 	ASSERT(vd != NULL);
1130 	ASSERT(request != NULL);
1131 
1132 	/* Find the requested operation */
1133 	for (i = 0; i < vds_noperations; i++)
1134 		if (request->operation == vds_operation[i].operation)
1135 			break;
1136 	if (i == vds_noperations) {
1137 		PR0("Unsupported operation %u", request->operation);
1138 		return (ENOTSUP);
1139 	}
1140 
1141 	/* Handle client using absolute disk offsets */
1142 	if ((vd->vdisk_type == VD_DISK_TYPE_DISK) &&
1143 	    (request->slice == UINT8_MAX))
1144 		request->slice = VD_ENTIRE_DISK_SLICE;
1145 
1146 	/* Range-check slice */
1147 	if (request->slice >= vd->nslices) {
1148 		PR0("Invalid \"slice\" %u (max %u) for virtual disk",
1149 		    request->slice, (vd->nslices - 1));
1150 		return (EINVAL);
1151 	}
1152 
1153 	PR1("operation : %s", vds_operation[i].namep);
1154 
1155 	/* Start the operation */
1156 	if ((status = vds_operation[i].start(task)) != EINPROGRESS) {
1157 		PR0("operation : %s returned status %d",
1158 			vds_operation[i].namep, status);
1159 		request->status = status;	/* op succeeded or failed */
1160 		return (0);			/* but request completed */
1161 	}
1162 
1163 	ASSERT(vds_operation[i].complete != NULL);	/* debug case */
1164 	if (vds_operation[i].complete == NULL) {	/* non-debug case */
1165 		PR0("Unexpected return of EINPROGRESS "
1166 		    "with no I/O completion handler");
1167 		request->status = EIO;	/* operation failed */
1168 		return (0);		/* but request completed */
1169 	}
1170 
1171 	PR1("operation : kick off taskq entry for %s", vds_operation[i].namep);
1172 
1173 	/* Queue a task to complete the operation */
1174 	status = ddi_taskq_dispatch(vd->completionq, vds_operation[i].complete,
1175 	    task, DDI_SLEEP);
1176 	/* ddi_taskq_dispatch(9f) guarantees success with DDI_SLEEP */
1177 	ASSERT(status == DDI_SUCCESS);
1178 
1179 	PR1("Operation in progress");
1180 	return (EINPROGRESS);	/* completion handler will finish request */
1181 }
1182 
1183 /*
1184  * Return true if the "type", "subtype", and "env" fields of the "tag" first
1185  * argument match the corresponding remaining arguments; otherwise, return false
1186  */
1187 boolean_t
1188 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env)
1189 {
1190 	return ((tag->vio_msgtype == type) &&
1191 		(tag->vio_subtype == subtype) &&
1192 		(tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE;
1193 }
1194 
1195 /*
1196  * Check whether the major/minor version specified in "ver_msg" is supported
1197  * by this server.
1198  */
1199 static boolean_t
1200 vds_supported_version(vio_ver_msg_t *ver_msg)
1201 {
1202 	for (int i = 0; i < vds_num_versions; i++) {
1203 		ASSERT(vds_version[i].major > 0);
1204 		ASSERT((i == 0) ||
1205 		    (vds_version[i].major < vds_version[i-1].major));
1206 
1207 		/*
1208 		 * If the major versions match, adjust the minor version, if
1209 		 * necessary, down to the highest value supported by this
1210 		 * server and return true so this message will get "ack"ed;
1211 		 * the client should also support all minor versions lower
1212 		 * than the value it sent
1213 		 */
1214 		if (ver_msg->ver_major == vds_version[i].major) {
1215 			if (ver_msg->ver_minor > vds_version[i].minor) {
1216 				PR0("Adjusting minor version from %u to %u",
1217 				    ver_msg->ver_minor, vds_version[i].minor);
1218 				ver_msg->ver_minor = vds_version[i].minor;
1219 			}
1220 			return (B_TRUE);
1221 		}
1222 
1223 		/*
1224 		 * If the message contains a higher major version number, set
1225 		 * the message's major/minor versions to the current values
1226 		 * and return false, so this message will get "nack"ed with
1227 		 * these values, and the client will potentially try again
1228 		 * with the same or a lower version
1229 		 */
1230 		if (ver_msg->ver_major > vds_version[i].major) {
1231 			ver_msg->ver_major = vds_version[i].major;
1232 			ver_msg->ver_minor = vds_version[i].minor;
1233 			return (B_FALSE);
1234 		}
1235 
1236 		/*
1237 		 * Otherwise, the message's major version is less than the
1238 		 * current major version, so continue the loop to the next
1239 		 * (lower) supported version
1240 		 */
1241 	}
1242 
1243 	/*
1244 	 * No common version was found; "ground" the version pair in the
1245 	 * message to terminate negotiation
1246 	 */
1247 	ver_msg->ver_major = 0;
1248 	ver_msg->ver_minor = 0;
1249 	return (B_FALSE);
1250 }
1251 
1252 /*
1253  * Process a version message from a client.  vds expects to receive version
1254  * messages from clients seeking service, but never issues version messages
1255  * itself; therefore, vds can ACK or NACK client version messages, but does
1256  * not expect to receive version-message ACKs or NACKs (and will treat such
1257  * messages as invalid).
1258  */
1259 static int
1260 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1261 {
1262 	vio_ver_msg_t	*ver_msg = (vio_ver_msg_t *)msg;
1263 
1264 
1265 	ASSERT(msglen >= sizeof (msg->tag));
1266 
1267 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
1268 		VIO_VER_INFO)) {
1269 		return (ENOMSG);	/* not a version message */
1270 	}
1271 
1272 	if (msglen != sizeof (*ver_msg)) {
1273 		PR0("Expected %lu-byte version message; "
1274 		    "received %lu bytes", sizeof (*ver_msg), msglen);
1275 		return (EBADMSG);
1276 	}
1277 
1278 	if (ver_msg->dev_class != VDEV_DISK) {
1279 		PR0("Expected device class %u (disk); received %u",
1280 		    VDEV_DISK, ver_msg->dev_class);
1281 		return (EBADMSG);
1282 	}
1283 
1284 	/*
1285 	 * We're talking to the expected kind of client; set our device class
1286 	 * for "ack/nack" back to the client
1287 	 */
1288 	ver_msg->dev_class = VDEV_DISK_SERVER;
1289 
1290 	/*
1291 	 * Check whether the (valid) version message specifies a version
1292 	 * supported by this server.  If the version is not supported, return
1293 	 * EBADMSG so the message will get "nack"ed; vds_supported_version()
1294 	 * will have updated the message with a supported version for the
1295 	 * client to consider
1296 	 */
1297 	if (!vds_supported_version(ver_msg))
1298 		return (EBADMSG);
1299 
1300 
1301 	/*
1302 	 * A version has been agreed upon; use the client's SID for
1303 	 * communication on this channel now
1304 	 */
1305 	ASSERT(!(vd->initialized & VD_SID));
1306 	vd->sid = ver_msg->tag.vio_sid;
1307 	vd->initialized |= VD_SID;
1308 
1309 	/*
1310 	 * When multiple versions are supported, this function should store
1311 	 * the negotiated major and minor version values in the "vd" data
1312 	 * structure to govern further communication; in particular, note that
1313 	 * the client might have specified a lower minor version for the
1314 	 * agreed major version than specifed in the vds_version[] array.  The
1315 	 * following assertions should help remind future maintainers to make
1316 	 * the appropriate changes to support multiple versions.
1317 	 */
1318 	ASSERT(vds_num_versions == 1);
1319 	ASSERT(ver_msg->ver_major == vds_version[0].major);
1320 	ASSERT(ver_msg->ver_minor == vds_version[0].minor);
1321 
1322 	PR0("Using major version %u, minor version %u",
1323 	    ver_msg->ver_major, ver_msg->ver_minor);
1324 	return (0);
1325 }
1326 
1327 static int
1328 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1329 {
1330 	vd_attr_msg_t	*attr_msg = (vd_attr_msg_t *)msg;
1331 
1332 
1333 	ASSERT(msglen >= sizeof (msg->tag));
1334 
1335 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
1336 		VIO_ATTR_INFO)) {
1337 		PR0("Message is not an attribute message");
1338 		return (ENOMSG);
1339 	}
1340 
1341 	if (msglen != sizeof (*attr_msg)) {
1342 		PR0("Expected %lu-byte attribute message; "
1343 		    "received %lu bytes", sizeof (*attr_msg), msglen);
1344 		return (EBADMSG);
1345 	}
1346 
1347 	if (attr_msg->max_xfer_sz == 0) {
1348 		PR0("Received maximum transfer size of 0 from client");
1349 		return (EBADMSG);
1350 	}
1351 
1352 	if ((attr_msg->xfer_mode != VIO_DESC_MODE) &&
1353 	    (attr_msg->xfer_mode != VIO_DRING_MODE)) {
1354 		PR0("Client requested unsupported transfer mode");
1355 		return (EBADMSG);
1356 	}
1357 
1358 	/* Success:  valid message and transfer mode */
1359 	vd->xfer_mode = attr_msg->xfer_mode;
1360 
1361 	if (vd->xfer_mode == VIO_DESC_MODE) {
1362 
1363 		/*
1364 		 * The vd_dring_inband_msg_t contains one cookie; need room
1365 		 * for up to n-1 more cookies, where "n" is the number of full
1366 		 * pages plus possibly one partial page required to cover
1367 		 * "max_xfer_sz".  Add room for one more cookie if
1368 		 * "max_xfer_sz" isn't an integral multiple of the page size.
1369 		 * Must first get the maximum transfer size in bytes.
1370 		 */
1371 		size_t	max_xfer_bytes = attr_msg->vdisk_block_size ?
1372 		    attr_msg->vdisk_block_size*attr_msg->max_xfer_sz :
1373 		    attr_msg->max_xfer_sz;
1374 		size_t	max_inband_msglen =
1375 		    sizeof (vd_dring_inband_msg_t) +
1376 		    ((max_xfer_bytes/PAGESIZE +
1377 			((max_xfer_bytes % PAGESIZE) ? 1 : 0))*
1378 			(sizeof (ldc_mem_cookie_t)));
1379 
1380 		/*
1381 		 * Set the maximum expected message length to
1382 		 * accommodate in-band-descriptor messages with all
1383 		 * their cookies
1384 		 */
1385 		vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen);
1386 
1387 		/*
1388 		 * Initialize the data structure for processing in-band I/O
1389 		 * request descriptors
1390 		 */
1391 		vd->inband_task.vd	= vd;
1392 		vd->inband_task.msg	= kmem_alloc(vd->max_msglen, KM_SLEEP);
1393 		vd->inband_task.index	= 0;
1394 		vd->inband_task.type	= VD_FINAL_RANGE_TASK;	/* range == 1 */
1395 	}
1396 
1397 	/* Return the device's block size and max transfer size to the client */
1398 	attr_msg->vdisk_block_size	= DEV_BSIZE;
1399 	attr_msg->max_xfer_sz		= vd->max_xfer_sz;
1400 
1401 	attr_msg->vdisk_size = vd->vdisk_size;
1402 	attr_msg->vdisk_type = vd->vdisk_type;
1403 	attr_msg->operations = vds_operations;
1404 	PR0("%s", VD_CLIENT(vd));
1405 
1406 	ASSERT(vd->dring_task == NULL);
1407 
1408 	return (0);
1409 }
1410 
1411 static int
1412 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1413 {
1414 	int			status;
1415 	size_t			expected;
1416 	ldc_mem_info_t		dring_minfo;
1417 	vio_dring_reg_msg_t	*reg_msg = (vio_dring_reg_msg_t *)msg;
1418 
1419 
1420 	ASSERT(msglen >= sizeof (msg->tag));
1421 
1422 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
1423 		VIO_DRING_REG)) {
1424 		PR0("Message is not a register-dring message");
1425 		return (ENOMSG);
1426 	}
1427 
1428 	if (msglen < sizeof (*reg_msg)) {
1429 		PR0("Expected at least %lu-byte register-dring message; "
1430 		    "received %lu bytes", sizeof (*reg_msg), msglen);
1431 		return (EBADMSG);
1432 	}
1433 
1434 	expected = sizeof (*reg_msg) +
1435 	    (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0]));
1436 	if (msglen != expected) {
1437 		PR0("Expected %lu-byte register-dring message; "
1438 		    "received %lu bytes", expected, msglen);
1439 		return (EBADMSG);
1440 	}
1441 
1442 	if (vd->initialized & VD_DRING) {
1443 		PR0("A dring was previously registered; only support one");
1444 		return (EBADMSG);
1445 	}
1446 
1447 	if (reg_msg->num_descriptors > INT32_MAX) {
1448 		PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)",
1449 		    reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX));
1450 		return (EBADMSG);
1451 	}
1452 
1453 	if (reg_msg->ncookies != 1) {
1454 		/*
1455 		 * In addition to fixing the assertion in the success case
1456 		 * below, supporting drings which require more than one
1457 		 * "cookie" requires increasing the value of vd->max_msglen
1458 		 * somewhere in the code path prior to receiving the message
1459 		 * which results in calling this function.  Note that without
1460 		 * making this change, the larger message size required to
1461 		 * accommodate multiple cookies cannot be successfully
1462 		 * received, so this function will not even get called.
1463 		 * Gracefully accommodating more dring cookies might
1464 		 * reasonably demand exchanging an additional attribute or
1465 		 * making a minor protocol adjustment
1466 		 */
1467 		PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies);
1468 		return (EBADMSG);
1469 	}
1470 
1471 	status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie,
1472 	    reg_msg->ncookies, reg_msg->num_descriptors,
1473 	    reg_msg->descriptor_size, LDC_DIRECT_MAP, &vd->dring_handle);
1474 	if (status != 0) {
1475 		PR0("ldc_mem_dring_map() returned errno %d", status);
1476 		return (status);
1477 	}
1478 
1479 	/*
1480 	 * To remove the need for this assertion, must call
1481 	 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a
1482 	 * successful call to ldc_mem_dring_map()
1483 	 */
1484 	ASSERT(reg_msg->ncookies == 1);
1485 
1486 	if ((status =
1487 		ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) {
1488 		PR0("ldc_mem_dring_info() returned errno %d", status);
1489 		if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)
1490 			PR0("ldc_mem_dring_unmap() returned errno %d", status);
1491 		return (status);
1492 	}
1493 
1494 	if (dring_minfo.vaddr == NULL) {
1495 		PR0("Descriptor ring virtual address is NULL");
1496 		return (ENXIO);
1497 	}
1498 
1499 
1500 	/* Initialize for valid message and mapped dring */
1501 	PR1("descriptor size = %u, dring length = %u",
1502 	    vd->descriptor_size, vd->dring_len);
1503 	vd->initialized |= VD_DRING;
1504 	vd->dring_ident = 1;	/* "There Can Be Only One" */
1505 	vd->dring = dring_minfo.vaddr;
1506 	vd->descriptor_size = reg_msg->descriptor_size;
1507 	vd->dring_len = reg_msg->num_descriptors;
1508 	reg_msg->dring_ident = vd->dring_ident;
1509 
1510 	/*
1511 	 * Allocate and initialize a "shadow" array of data structures for
1512 	 * tasks to process I/O requests in dring elements
1513 	 */
1514 	vd->dring_task =
1515 	    kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP);
1516 	for (int i = 0; i < vd->dring_len; i++) {
1517 		vd->dring_task[i].vd		= vd;
1518 		vd->dring_task[i].index		= i;
1519 		vd->dring_task[i].request	= &VD_DRING_ELEM(i)->payload;
1520 
1521 		status = ldc_mem_alloc_handle(vd->ldc_handle,
1522 		    &(vd->dring_task[i].mhdl));
1523 		if (status) {
1524 			PR0("ldc_mem_alloc_handle() returned err %d ", status);
1525 			return (ENXIO);
1526 		}
1527 
1528 		vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
1529 	}
1530 
1531 	return (0);
1532 }
1533 
1534 static int
1535 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1536 {
1537 	vio_dring_unreg_msg_t	*unreg_msg = (vio_dring_unreg_msg_t *)msg;
1538 
1539 
1540 	ASSERT(msglen >= sizeof (msg->tag));
1541 
1542 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
1543 		VIO_DRING_UNREG)) {
1544 		PR0("Message is not an unregister-dring message");
1545 		return (ENOMSG);
1546 	}
1547 
1548 	if (msglen != sizeof (*unreg_msg)) {
1549 		PR0("Expected %lu-byte unregister-dring message; "
1550 		    "received %lu bytes", sizeof (*unreg_msg), msglen);
1551 		return (EBADMSG);
1552 	}
1553 
1554 	if (unreg_msg->dring_ident != vd->dring_ident) {
1555 		PR0("Expected dring ident %lu; received %lu",
1556 		    vd->dring_ident, unreg_msg->dring_ident);
1557 		return (EBADMSG);
1558 	}
1559 
1560 	return (0);
1561 }
1562 
1563 static int
1564 process_rdx_msg(vio_msg_t *msg, size_t msglen)
1565 {
1566 	ASSERT(msglen >= sizeof (msg->tag));
1567 
1568 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) {
1569 		PR0("Message is not an RDX message");
1570 		return (ENOMSG);
1571 	}
1572 
1573 	if (msglen != sizeof (vio_rdx_msg_t)) {
1574 		PR0("Expected %lu-byte RDX message; received %lu bytes",
1575 		    sizeof (vio_rdx_msg_t), msglen);
1576 		return (EBADMSG);
1577 	}
1578 
1579 	PR0("Valid RDX message");
1580 	return (0);
1581 }
1582 
1583 static int
1584 vd_check_seq_num(vd_t *vd, uint64_t seq_num)
1585 {
1586 	if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) {
1587 		PR0("Received seq_num %lu; expected %lu",
1588 		    seq_num, (vd->seq_num + 1));
1589 		PR0("initiating soft reset");
1590 		vd_need_reset(vd, B_FALSE);
1591 		return (1);
1592 	}
1593 
1594 	vd->seq_num = seq_num;
1595 	vd->initialized |= VD_SEQ_NUM;	/* superfluous after first time... */
1596 	return (0);
1597 }
1598 
1599 /*
1600  * Return the expected size of an inband-descriptor message with all the
1601  * cookies it claims to include
1602  */
1603 static size_t
1604 expected_inband_size(vd_dring_inband_msg_t *msg)
1605 {
1606 	return ((sizeof (*msg)) +
1607 	    (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0])));
1608 }
1609 
1610 /*
1611  * Process an in-band descriptor message:  used with clients like OBP, with
1612  * which vds exchanges descriptors within VIO message payloads, rather than
1613  * operating on them within a descriptor ring
1614  */
1615 static int
1616 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1617 {
1618 	size_t			expected;
1619 	vd_dring_inband_msg_t	*desc_msg = (vd_dring_inband_msg_t *)msg;
1620 
1621 
1622 	ASSERT(msglen >= sizeof (msg->tag));
1623 
1624 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
1625 		VIO_DESC_DATA)) {
1626 		PR1("Message is not an in-band-descriptor message");
1627 		return (ENOMSG);
1628 	}
1629 
1630 	if (msglen < sizeof (*desc_msg)) {
1631 		PR0("Expected at least %lu-byte descriptor message; "
1632 		    "received %lu bytes", sizeof (*desc_msg), msglen);
1633 		return (EBADMSG);
1634 	}
1635 
1636 	if (msglen != (expected = expected_inband_size(desc_msg))) {
1637 		PR0("Expected %lu-byte descriptor message; "
1638 		    "received %lu bytes", expected, msglen);
1639 		return (EBADMSG);
1640 	}
1641 
1642 	if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0)
1643 		return (EBADMSG);
1644 
1645 	/*
1646 	 * Valid message:  Set up the in-band descriptor task and process the
1647 	 * request.  Arrange to acknowledge the client's message, unless an
1648 	 * error processing the descriptor task results in setting
1649 	 * VIO_SUBTYPE_NACK
1650 	 */
1651 	PR1("Valid in-band-descriptor message");
1652 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
1653 
1654 	ASSERT(vd->inband_task.msg != NULL);
1655 
1656 	bcopy(msg, vd->inband_task.msg, msglen);
1657 	vd->inband_task.msglen	= msglen;
1658 
1659 	/*
1660 	 * The task request is now the payload of the message
1661 	 * that was just copied into the body of the task.
1662 	 */
1663 	desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg;
1664 	vd->inband_task.request	= &desc_msg->payload;
1665 
1666 	return (vd_process_task(&vd->inband_task));
1667 }
1668 
1669 static int
1670 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx,
1671     vio_msg_t *msg, size_t msglen)
1672 {
1673 	int			status;
1674 	boolean_t		ready;
1675 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
1676 
1677 
1678 	/* Accept the updated dring element */
1679 	if ((status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
1680 		PR0("ldc_mem_dring_acquire() returned errno %d", status);
1681 		return (status);
1682 	}
1683 	ready = (elem->hdr.dstate == VIO_DESC_READY);
1684 	if (ready) {
1685 		elem->hdr.dstate = VIO_DESC_ACCEPTED;
1686 	} else {
1687 		PR0("descriptor %u not ready", idx);
1688 		VD_DUMP_DRING_ELEM(elem);
1689 	}
1690 	if ((status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
1691 		PR0("ldc_mem_dring_release() returned errno %d", status);
1692 		return (status);
1693 	}
1694 	if (!ready)
1695 		return (EBUSY);
1696 
1697 
1698 	/* Initialize a task and process the accepted element */
1699 	PR1("Processing dring element %u", idx);
1700 	vd->dring_task[idx].type	= type;
1701 
1702 	/* duplicate msg buf for cookies etc. */
1703 	bcopy(msg, vd->dring_task[idx].msg, msglen);
1704 
1705 	vd->dring_task[idx].msglen	= msglen;
1706 	if ((status = vd_process_task(&vd->dring_task[idx])) != EINPROGRESS)
1707 		status = vd_mark_elem_done(vd, idx, elem->payload.status);
1708 
1709 	return (status);
1710 }
1711 
1712 static int
1713 vd_process_element_range(vd_t *vd, int start, int end,
1714     vio_msg_t *msg, size_t msglen)
1715 {
1716 	int		i, n, nelem, status = 0;
1717 	boolean_t	inprogress = B_FALSE;
1718 	vd_task_type_t	type;
1719 
1720 
1721 	ASSERT(start >= 0);
1722 	ASSERT(end >= 0);
1723 
1724 	/*
1725 	 * Arrange to acknowledge the client's message, unless an error
1726 	 * processing one of the dring elements results in setting
1727 	 * VIO_SUBTYPE_NACK
1728 	 */
1729 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
1730 
1731 	/*
1732 	 * Process the dring elements in the range
1733 	 */
1734 	nelem = ((end < start) ? end + vd->dring_len : end) - start + 1;
1735 	for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) {
1736 		((vio_dring_msg_t *)msg)->end_idx = i;
1737 		type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK;
1738 		status = vd_process_element(vd, type, i, msg, msglen);
1739 		if (status == EINPROGRESS)
1740 			inprogress = B_TRUE;
1741 		else if (status != 0)
1742 			break;
1743 	}
1744 
1745 	/*
1746 	 * If some, but not all, operations of a multi-element range are in
1747 	 * progress, wait for other operations to complete before returning
1748 	 * (which will result in "ack" or "nack" of the message).  Note that
1749 	 * all outstanding operations will need to complete, not just the ones
1750 	 * corresponding to the current range of dring elements; howevever, as
1751 	 * this situation is an error case, performance is less critical.
1752 	 */
1753 	if ((nelem > 1) && (status != EINPROGRESS) && inprogress)
1754 		ddi_taskq_wait(vd->completionq);
1755 
1756 	return (status);
1757 }
1758 
1759 static int
1760 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1761 {
1762 	vio_dring_msg_t	*dring_msg = (vio_dring_msg_t *)msg;
1763 
1764 
1765 	ASSERT(msglen >= sizeof (msg->tag));
1766 
1767 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
1768 		VIO_DRING_DATA)) {
1769 		PR1("Message is not a dring-data message");
1770 		return (ENOMSG);
1771 	}
1772 
1773 	if (msglen != sizeof (*dring_msg)) {
1774 		PR0("Expected %lu-byte dring message; received %lu bytes",
1775 		    sizeof (*dring_msg), msglen);
1776 		return (EBADMSG);
1777 	}
1778 
1779 	if (vd_check_seq_num(vd, dring_msg->seq_num) != 0)
1780 		return (EBADMSG);
1781 
1782 	if (dring_msg->dring_ident != vd->dring_ident) {
1783 		PR0("Expected dring ident %lu; received ident %lu",
1784 		    vd->dring_ident, dring_msg->dring_ident);
1785 		return (EBADMSG);
1786 	}
1787 
1788 	if (dring_msg->start_idx >= vd->dring_len) {
1789 		PR0("\"start_idx\" = %u; must be less than %u",
1790 		    dring_msg->start_idx, vd->dring_len);
1791 		return (EBADMSG);
1792 	}
1793 
1794 	if ((dring_msg->end_idx < 0) ||
1795 	    (dring_msg->end_idx >= vd->dring_len)) {
1796 		PR0("\"end_idx\" = %u; must be >= 0 and less than %u",
1797 		    dring_msg->end_idx, vd->dring_len);
1798 		return (EBADMSG);
1799 	}
1800 
1801 	/* Valid message; process range of updated dring elements */
1802 	PR1("Processing descriptor range, start = %u, end = %u",
1803 	    dring_msg->start_idx, dring_msg->end_idx);
1804 	return (vd_process_element_range(vd, dring_msg->start_idx,
1805 		dring_msg->end_idx, msg, msglen));
1806 }
1807 
1808 static int
1809 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes)
1810 {
1811 	int	retry, status;
1812 	size_t	size = *nbytes;
1813 
1814 
1815 	for (retry = 0, status = ETIMEDOUT;
1816 	    retry < vds_ldc_retries && status == ETIMEDOUT;
1817 	    retry++) {
1818 		PR1("ldc_read() attempt %d", (retry + 1));
1819 		*nbytes = size;
1820 		status = ldc_read(ldc_handle, msg, nbytes);
1821 	}
1822 
1823 	if (status) {
1824 		PR0("ldc_read() returned errno %d", status);
1825 		if (status != ECONNRESET)
1826 			return (ENOMSG);
1827 		return (status);
1828 	} else if (*nbytes == 0) {
1829 		PR1("ldc_read() returned 0 and no message read");
1830 		return (ENOMSG);
1831 	}
1832 
1833 	PR1("RCVD %lu-byte message", *nbytes);
1834 	return (0);
1835 }
1836 
1837 static int
1838 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1839 {
1840 	int		status;
1841 
1842 
1843 	PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype,
1844 	    msg->tag.vio_subtype, msg->tag.vio_subtype_env);
1845 #ifdef	DEBUG
1846 	vd_decode_tag(msg);
1847 #endif
1848 
1849 	/*
1850 	 * Validate session ID up front, since it applies to all messages
1851 	 * once set
1852 	 */
1853 	if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) {
1854 		PR0("Expected SID %u, received %u", vd->sid,
1855 		    msg->tag.vio_sid);
1856 		return (EBADMSG);
1857 	}
1858 
1859 	PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state));
1860 
1861 	/*
1862 	 * Process the received message based on connection state
1863 	 */
1864 	switch (vd->state) {
1865 	case VD_STATE_INIT:	/* expect version message */
1866 		if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0)
1867 			return (status);
1868 
1869 		/* Version negotiated, move to that state */
1870 		vd->state = VD_STATE_VER;
1871 		return (0);
1872 
1873 	case VD_STATE_VER:	/* expect attribute message */
1874 		if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0)
1875 			return (status);
1876 
1877 		/* Attributes exchanged, move to that state */
1878 		vd->state = VD_STATE_ATTR;
1879 		return (0);
1880 
1881 	case VD_STATE_ATTR:
1882 		switch (vd->xfer_mode) {
1883 		case VIO_DESC_MODE:	/* expect RDX message */
1884 			if ((status = process_rdx_msg(msg, msglen)) != 0)
1885 				return (status);
1886 
1887 			/* Ready to receive in-band descriptors */
1888 			vd->state = VD_STATE_DATA;
1889 			return (0);
1890 
1891 		case VIO_DRING_MODE:	/* expect register-dring message */
1892 			if ((status =
1893 				vd_process_dring_reg_msg(vd, msg, msglen)) != 0)
1894 				return (status);
1895 
1896 			/* One dring negotiated, move to that state */
1897 			vd->state = VD_STATE_DRING;
1898 			return (0);
1899 
1900 		default:
1901 			ASSERT("Unsupported transfer mode");
1902 			PR0("Unsupported transfer mode");
1903 			return (ENOTSUP);
1904 		}
1905 
1906 	case VD_STATE_DRING:	/* expect RDX, register-dring, or unreg-dring */
1907 		if ((status = process_rdx_msg(msg, msglen)) == 0) {
1908 			/* Ready to receive data */
1909 			vd->state = VD_STATE_DATA;
1910 			return (0);
1911 		} else if (status != ENOMSG) {
1912 			return (status);
1913 		}
1914 
1915 
1916 		/*
1917 		 * If another register-dring message is received, stay in
1918 		 * dring state in case the client sends RDX; although the
1919 		 * protocol allows multiple drings, this server does not
1920 		 * support using more than one
1921 		 */
1922 		if ((status =
1923 			vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG)
1924 			return (status);
1925 
1926 		/*
1927 		 * Acknowledge an unregister-dring message, but reset the
1928 		 * connection anyway:  Although the protocol allows
1929 		 * unregistering drings, this server cannot serve a vdisk
1930 		 * without its only dring
1931 		 */
1932 		status = vd_process_dring_unreg_msg(vd, msg, msglen);
1933 		return ((status == 0) ? ENOTSUP : status);
1934 
1935 	case VD_STATE_DATA:
1936 		switch (vd->xfer_mode) {
1937 		case VIO_DESC_MODE:	/* expect in-band-descriptor message */
1938 			return (vd_process_desc_msg(vd, msg, msglen));
1939 
1940 		case VIO_DRING_MODE:	/* expect dring-data or unreg-dring */
1941 			/*
1942 			 * Typically expect dring-data messages, so handle
1943 			 * them first
1944 			 */
1945 			if ((status = vd_process_dring_msg(vd, msg,
1946 				    msglen)) != ENOMSG)
1947 				return (status);
1948 
1949 			/*
1950 			 * Acknowledge an unregister-dring message, but reset
1951 			 * the connection anyway:  Although the protocol
1952 			 * allows unregistering drings, this server cannot
1953 			 * serve a vdisk without its only dring
1954 			 */
1955 			status = vd_process_dring_unreg_msg(vd, msg, msglen);
1956 			return ((status == 0) ? ENOTSUP : status);
1957 
1958 		default:
1959 			ASSERT("Unsupported transfer mode");
1960 			PR0("Unsupported transfer mode");
1961 			return (ENOTSUP);
1962 		}
1963 
1964 	default:
1965 		ASSERT("Invalid client connection state");
1966 		PR0("Invalid client connection state");
1967 		return (ENOTSUP);
1968 	}
1969 }
1970 
1971 static int
1972 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1973 {
1974 	int		status;
1975 	boolean_t	reset_ldc = B_FALSE;
1976 
1977 
1978 	/*
1979 	 * Check that the message is at least big enough for a "tag", so that
1980 	 * message processing can proceed based on tag-specified message type
1981 	 */
1982 	if (msglen < sizeof (vio_msg_tag_t)) {
1983 		PR0("Received short (%lu-byte) message", msglen);
1984 		/* Can't "nack" short message, so drop the big hammer */
1985 		PR0("initiating full reset");
1986 		vd_need_reset(vd, B_TRUE);
1987 		return (EBADMSG);
1988 	}
1989 
1990 	/*
1991 	 * Process the message
1992 	 */
1993 	switch (status = vd_do_process_msg(vd, msg, msglen)) {
1994 	case 0:
1995 		/* "ack" valid, successfully-processed messages */
1996 		msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
1997 		break;
1998 
1999 	case EINPROGRESS:
2000 		/* The completion handler will "ack" or "nack" the message */
2001 		return (EINPROGRESS);
2002 	case ENOMSG:
2003 		PR0("Received unexpected message");
2004 		_NOTE(FALLTHROUGH);
2005 	case EBADMSG:
2006 	case ENOTSUP:
2007 		/* "nack" invalid messages */
2008 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
2009 		break;
2010 
2011 	default:
2012 		/* "nack" failed messages */
2013 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
2014 		/* An LDC error probably occurred, so try resetting it */
2015 		reset_ldc = B_TRUE;
2016 		break;
2017 	}
2018 
2019 	PR1("\tResulting in state %d (%s)", vd->state,
2020 		vd_decode_state(vd->state));
2021 
2022 	/* Send the "ack" or "nack" to the client */
2023 	PR1("Sending %s",
2024 	    (msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
2025 	if (send_msg(vd->ldc_handle, msg, msglen) != 0)
2026 		reset_ldc = B_TRUE;
2027 
2028 	/* Arrange to reset the connection for nack'ed or failed messages */
2029 	if ((status != 0) || reset_ldc) {
2030 		PR0("initiating %s reset",
2031 		    (reset_ldc) ? "full" : "soft");
2032 		vd_need_reset(vd, reset_ldc);
2033 	}
2034 
2035 	return (status);
2036 }
2037 
2038 static boolean_t
2039 vd_enabled(vd_t *vd)
2040 {
2041 	boolean_t	enabled;
2042 
2043 
2044 	mutex_enter(&vd->lock);
2045 	enabled = vd->enabled;
2046 	mutex_exit(&vd->lock);
2047 	return (enabled);
2048 }
2049 
2050 static void
2051 vd_recv_msg(void *arg)
2052 {
2053 	vd_t	*vd = (vd_t *)arg;
2054 	int	rv = 0, status = 0;
2055 
2056 	ASSERT(vd != NULL);
2057 
2058 	PR2("New task to receive incoming message(s)");
2059 
2060 
2061 	while (vd_enabled(vd) && status == 0) {
2062 		size_t		msglen, msgsize;
2063 		ldc_status_t	lstatus;
2064 
2065 		/*
2066 		 * Receive and process a message
2067 		 */
2068 		vd_reset_if_needed(vd);	/* can change vd->max_msglen */
2069 
2070 		/*
2071 		 * check if channel is UP - else break out of loop
2072 		 */
2073 		status = ldc_status(vd->ldc_handle, &lstatus);
2074 		if (lstatus != LDC_UP) {
2075 			PR0("channel not up (status=%d), exiting recv loop\n",
2076 			    lstatus);
2077 			break;
2078 		}
2079 
2080 		ASSERT(vd->max_msglen != 0);
2081 
2082 		msgsize = vd->max_msglen; /* stable copy for alloc/free */
2083 		msglen	= msgsize;	  /* actual len after recv_msg() */
2084 
2085 		status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen);
2086 		switch (status) {
2087 		case 0:
2088 			rv = vd_process_msg(vd, (vio_msg_t *)vd->vio_msgp,
2089 				msglen);
2090 			/* check if max_msglen changed */
2091 			if (msgsize != vd->max_msglen) {
2092 				PR0("max_msglen changed 0x%lx to 0x%lx bytes\n",
2093 				    msgsize, vd->max_msglen);
2094 				kmem_free(vd->vio_msgp, msgsize);
2095 				vd->vio_msgp =
2096 					kmem_alloc(vd->max_msglen, KM_SLEEP);
2097 			}
2098 			if (rv == EINPROGRESS)
2099 				continue;
2100 			break;
2101 
2102 		case ENOMSG:
2103 			break;
2104 
2105 		case ECONNRESET:
2106 			PR0("initiating soft reset (ECONNRESET)\n");
2107 			vd_need_reset(vd, B_FALSE);
2108 			status = 0;
2109 			break;
2110 
2111 		default:
2112 			/* Probably an LDC failure; arrange to reset it */
2113 			PR0("initiating full reset (status=0x%x)", status);
2114 			vd_need_reset(vd, B_TRUE);
2115 			break;
2116 		}
2117 	}
2118 
2119 	PR2("Task finished");
2120 }
2121 
2122 static uint_t
2123 vd_handle_ldc_events(uint64_t event, caddr_t arg)
2124 {
2125 	vd_t	*vd = (vd_t *)(void *)arg;
2126 	int	status;
2127 
2128 
2129 	ASSERT(vd != NULL);
2130 
2131 	if (!vd_enabled(vd))
2132 		return (LDC_SUCCESS);
2133 
2134 	if (event & LDC_EVT_DOWN) {
2135 		PRN("LDC_EVT_DOWN: LDC channel went down");
2136 
2137 		vd_need_reset(vd, B_TRUE);
2138 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
2139 		    DDI_SLEEP);
2140 		if (status == DDI_FAILURE) {
2141 			PR0("cannot schedule task to recv msg\n");
2142 			vd_need_reset(vd, B_TRUE);
2143 		}
2144 	}
2145 
2146 	if (event & LDC_EVT_RESET) {
2147 		PR0("LDC_EVT_RESET: LDC channel was reset");
2148 
2149 		if (vd->state != VD_STATE_INIT) {
2150 			PR0("scheduling full reset");
2151 			vd_need_reset(vd, B_FALSE);
2152 			status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
2153 			    vd, DDI_SLEEP);
2154 			if (status == DDI_FAILURE) {
2155 				PR0("cannot schedule task to recv msg\n");
2156 				vd_need_reset(vd, B_TRUE);
2157 			}
2158 
2159 		} else {
2160 			PR0("channel already reset, ignoring...\n");
2161 			PR0("doing ldc up...\n");
2162 			(void) ldc_up(vd->ldc_handle);
2163 		}
2164 
2165 		return (LDC_SUCCESS);
2166 	}
2167 
2168 	if (event & LDC_EVT_UP) {
2169 		PR0("EVT_UP: LDC is up\nResetting client connection state");
2170 		PR0("initiating soft reset");
2171 		vd_need_reset(vd, B_FALSE);
2172 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
2173 		    vd, DDI_SLEEP);
2174 		if (status == DDI_FAILURE) {
2175 			PR0("cannot schedule task to recv msg\n");
2176 			vd_need_reset(vd, B_TRUE);
2177 			return (LDC_SUCCESS);
2178 		}
2179 	}
2180 
2181 	if (event & LDC_EVT_READ) {
2182 		int	status;
2183 
2184 		PR1("New data available");
2185 		/* Queue a task to receive the new data */
2186 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
2187 		    DDI_SLEEP);
2188 
2189 		if (status == DDI_FAILURE) {
2190 			PR0("cannot schedule task to recv msg\n");
2191 			vd_need_reset(vd, B_TRUE);
2192 		}
2193 	}
2194 
2195 	return (LDC_SUCCESS);
2196 }
2197 
2198 static uint_t
2199 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2200 {
2201 	_NOTE(ARGUNUSED(key, val))
2202 	(*((uint_t *)arg))++;
2203 	return (MH_WALK_TERMINATE);
2204 }
2205 
2206 
2207 static int
2208 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2209 {
2210 	uint_t	vd_present = 0;
2211 	minor_t	instance;
2212 	vds_t	*vds;
2213 
2214 
2215 	switch (cmd) {
2216 	case DDI_DETACH:
2217 		/* the real work happens below */
2218 		break;
2219 	case DDI_SUSPEND:
2220 		PR0("No action required for DDI_SUSPEND");
2221 		return (DDI_SUCCESS);
2222 	default:
2223 		PR0("Unrecognized \"cmd\"");
2224 		return (DDI_FAILURE);
2225 	}
2226 
2227 	ASSERT(cmd == DDI_DETACH);
2228 	instance = ddi_get_instance(dip);
2229 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
2230 		PR0("Could not get state for instance %u", instance);
2231 		ddi_soft_state_free(vds_state, instance);
2232 		return (DDI_FAILURE);
2233 	}
2234 
2235 	/* Do no detach when serving any vdisks */
2236 	mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present);
2237 	if (vd_present) {
2238 		PR0("Not detaching because serving vdisks");
2239 		return (DDI_FAILURE);
2240 	}
2241 
2242 	PR0("Detaching");
2243 	if (vds->initialized & VDS_MDEG)
2244 		(void) mdeg_unregister(vds->mdeg);
2245 	if (vds->initialized & VDS_LDI)
2246 		(void) ldi_ident_release(vds->ldi_ident);
2247 	mod_hash_destroy_hash(vds->vd_table);
2248 	ddi_soft_state_free(vds_state, instance);
2249 	return (DDI_SUCCESS);
2250 }
2251 
2252 static boolean_t
2253 is_pseudo_device(dev_info_t *dip)
2254 {
2255 	dev_info_t	*parent, *root = ddi_root_node();
2256 
2257 
2258 	for (parent = ddi_get_parent(dip); (parent != NULL) && (parent != root);
2259 	    parent = ddi_get_parent(parent)) {
2260 		if (strcmp(ddi_get_name(parent), DEVI_PSEUDO_NEXNAME) == 0)
2261 			return (B_TRUE);
2262 	}
2263 
2264 	return (B_FALSE);
2265 }
2266 
2267 static int
2268 vd_setup_full_disk(vd_t *vd)
2269 {
2270 	int		rval, status;
2271 	major_t		major = getmajor(vd->dev[0]);
2272 	minor_t		minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE;
2273 	struct dk_minfo	dk_minfo;
2274 
2275 	/*
2276 	 * At this point, vdisk_size is set to the size of partition 2 but
2277 	 * this does not represent the size of the disk because partition 2
2278 	 * may not cover the entire disk and its size does not include reserved
2279 	 * blocks. So we update vdisk_size to be the size of the entire disk.
2280 	 */
2281 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO,
2282 	    (intptr_t)&dk_minfo, (vd_open_flags | FKIOCTL),
2283 	    kcred, &rval)) != 0) {
2284 		PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d",
2285 		    status);
2286 		return (status);
2287 	}
2288 	vd->vdisk_size = dk_minfo.dki_capacity;
2289 
2290 	/* Set full-disk parameters */
2291 	vd->vdisk_type	= VD_DISK_TYPE_DISK;
2292 	vd->nslices	= (sizeof (vd->dev))/(sizeof (vd->dev[0]));
2293 
2294 	/* Move dev number and LDI handle to entire-disk-slice array elements */
2295 	vd->dev[VD_ENTIRE_DISK_SLICE]		= vd->dev[0];
2296 	vd->dev[0]				= 0;
2297 	vd->ldi_handle[VD_ENTIRE_DISK_SLICE]	= vd->ldi_handle[0];
2298 	vd->ldi_handle[0]			= NULL;
2299 
2300 	/* Initialize device numbers for remaining slices and open them */
2301 	for (int slice = 0; slice < vd->nslices; slice++) {
2302 		/*
2303 		 * Skip the entire-disk slice, as it's already open and its
2304 		 * device known
2305 		 */
2306 		if (slice == VD_ENTIRE_DISK_SLICE)
2307 			continue;
2308 		ASSERT(vd->dev[slice] == 0);
2309 		ASSERT(vd->ldi_handle[slice] == NULL);
2310 
2311 		/*
2312 		 * Construct the device number for the current slice
2313 		 */
2314 		vd->dev[slice] = makedevice(major, (minor + slice));
2315 
2316 		/*
2317 		 * At least some underlying drivers refuse to open
2318 		 * devices for (currently) zero-length slices, so skip
2319 		 * them for now
2320 		 */
2321 		if (vd->vtoc.v_part[slice].p_size == 0) {
2322 			PR0("Skipping zero-length slice %u", slice);
2323 			continue;
2324 		}
2325 
2326 		/*
2327 		 * Open all non-empty slices of the disk to serve them to the
2328 		 * client.  Slices are opened exclusively to prevent other
2329 		 * threads or processes in the service domain from performing
2330 		 * I/O to slices being accessed by a client.  Failure to open
2331 		 * a slice results in vds not serving this disk, as the client
2332 		 * could attempt (and should be able) to access any non-empty
2333 		 * slice immediately.  Any slices successfully opened before a
2334 		 * failure will get closed by vds_destroy_vd() as a result of
2335 		 * the error returned by this function.
2336 		 */
2337 		PR0("Opening device major %u, minor %u = slice %u",
2338 		    major, minor, slice);
2339 		if ((status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
2340 			    vd_open_flags, kcred, &vd->ldi_handle[slice],
2341 			    vd->vds->ldi_ident)) != 0) {
2342 			PRN("ldi_open_by_dev() returned errno %d "
2343 			    "for slice %u", status, slice);
2344 			/* vds_destroy_vd() will close any open slices */
2345 			return (status);
2346 		}
2347 	}
2348 
2349 	return (0);
2350 }
2351 
2352 static int
2353 vd_setup_partition_efi(vd_t *vd)
2354 {
2355 	efi_gpt_t *gpt;
2356 	efi_gpe_t *gpe;
2357 	struct uuid uuid = EFI_RESERVED;
2358 	uint32_t crc;
2359 	int length;
2360 
2361 	length = sizeof (efi_gpt_t) + sizeof (efi_gpe_t);
2362 
2363 	gpt = kmem_zalloc(length, KM_SLEEP);
2364 	gpe = (efi_gpe_t *)(gpt + 1);
2365 
2366 	gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
2367 	gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
2368 	gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t));
2369 	gpt->efi_gpt_FirstUsableLBA = LE_64(0ULL);
2370 	gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1);
2371 	gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1);
2372 	gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t));
2373 
2374 	UUID_LE_CONVERT(gpe->efi_gpe_PartitionTypeGUID, uuid);
2375 	gpe->efi_gpe_StartingLBA = gpt->efi_gpt_FirstUsableLBA;
2376 	gpe->efi_gpe_EndingLBA = gpt->efi_gpt_LastUsableLBA;
2377 
2378 	CRC32(crc, gpe, sizeof (efi_gpe_t), -1U, crc32_table);
2379 	gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
2380 
2381 	CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table);
2382 	gpt->efi_gpt_HeaderCRC32 = LE_32(~crc);
2383 
2384 	vd->dk_efi.dki_lba = 0;
2385 	vd->dk_efi.dki_length = length;
2386 	vd->dk_efi.dki_data = gpt;
2387 
2388 	return (0);
2389 }
2390 
2391 static int
2392 vd_setup_vd(char *device_path, vd_t *vd)
2393 {
2394 	int		rval, status;
2395 	dev_info_t	*dip;
2396 	struct dk_cinfo	dk_cinfo;
2397 
2398 	/*
2399 	 * We need to open with FNDELAY so that opening an empty partition
2400 	 * does not fail.
2401 	 */
2402 	if ((status = ldi_open_by_name(device_path, vd_open_flags | FNDELAY,
2403 	    kcred, &vd->ldi_handle[0], vd->vds->ldi_ident)) != 0) {
2404 		PRN("ldi_open_by_name(%s) = errno %d", device_path, status);
2405 		return (status);
2406 	}
2407 
2408 	/*
2409 	 * nslices must be updated now so that vds_destroy_vd() will close
2410 	 * the slice we have just opened in case of an error.
2411 	 */
2412 	vd->nslices = 1;
2413 
2414 	/* Get device number and size of backing device */
2415 	if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) {
2416 		PRN("ldi_get_dev() returned errno %d for %s",
2417 		    status, device_path);
2418 		return (status);
2419 	}
2420 	if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) {
2421 		PRN("ldi_get_size() failed for %s", device_path);
2422 		return (EIO);
2423 	}
2424 	vd->vdisk_size = lbtodb(vd->vdisk_size);	/* convert to blocks */
2425 
2426 	/* Verify backing device supports dk_cinfo, dk_geom, and vtoc */
2427 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
2428 		    (intptr_t)&dk_cinfo, (vd_open_flags | FKIOCTL), kcred,
2429 		    &rval)) != 0) {
2430 		PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
2431 		    status, device_path);
2432 		return (status);
2433 	}
2434 	if (dk_cinfo.dki_partition >= V_NUMPAR) {
2435 		PRN("slice %u >= maximum slice %u for %s",
2436 		    dk_cinfo.dki_partition, V_NUMPAR, device_path);
2437 		return (EIO);
2438 	}
2439 
2440 	status = vd_read_vtoc(vd->ldi_handle[0], &vd->vtoc, &vd->vdisk_label);
2441 
2442 	if (status != 0) {
2443 		PRN("vd_read_vtoc returned errno %d for %s",
2444 		    status, device_path);
2445 		return (status);
2446 	}
2447 
2448 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
2449 	    (status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM,
2450 	    (intptr_t)&vd->dk_geom, (vd_open_flags | FKIOCTL),
2451 	    kcred, &rval)) != 0) {
2452 		    PRN("ldi_ioctl(DKIOCGEOM) returned errno %d for %s",
2453 			status, device_path);
2454 		    return (status);
2455 	}
2456 
2457 	/* Store the device's max transfer size for return to the client */
2458 	vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
2459 
2460 
2461 	/* Determine if backing device is a pseudo device */
2462 	if ((dip = ddi_hold_devi_by_instance(getmajor(vd->dev[0]),
2463 		    dev_to_instance(vd->dev[0]), 0))  == NULL) {
2464 		PRN("%s is no longer accessible", device_path);
2465 		return (EIO);
2466 	}
2467 	vd->pseudo = is_pseudo_device(dip);
2468 	ddi_release_devi(dip);
2469 	if (vd->pseudo) {
2470 		vd->vdisk_type	= VD_DISK_TYPE_SLICE;
2471 		vd->nslices	= 1;
2472 		return (0);	/* ...and we're done */
2473 	}
2474 
2475 
2476 	/* If slice is entire-disk slice, initialize for full disk */
2477 	if (dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE)
2478 		return (vd_setup_full_disk(vd));
2479 
2480 
2481 	/* Otherwise, we have a non-entire slice of a device */
2482 	vd->vdisk_type	= VD_DISK_TYPE_SLICE;
2483 	vd->nslices	= 1;
2484 
2485 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
2486 		status = vd_setup_partition_efi(vd);
2487 		return (status);
2488 	}
2489 
2490 	/* Initialize dk_geom structure for single-slice device */
2491 	if (vd->dk_geom.dkg_nsect == 0) {
2492 		PR0("%s geometry claims 0 sectors per track", device_path);
2493 		return (EIO);
2494 	}
2495 	if (vd->dk_geom.dkg_nhead == 0) {
2496 		PR0("%s geometry claims 0 heads", device_path);
2497 		return (EIO);
2498 	}
2499 	vd->dk_geom.dkg_ncyl =
2500 	    vd->vdisk_size/vd->dk_geom.dkg_nsect/vd->dk_geom.dkg_nhead;
2501 	vd->dk_geom.dkg_acyl = 0;
2502 	vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl;
2503 
2504 
2505 	/* Initialize vtoc structure for single-slice device */
2506 	bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume,
2507 	    MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume)));
2508 	bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part));
2509 	vd->vtoc.v_nparts = 1;
2510 	vd->vtoc.v_part[0].p_tag = V_UNASSIGNED;
2511 	vd->vtoc.v_part[0].p_flag = 0;
2512 	vd->vtoc.v_part[0].p_start = 0;
2513 	vd->vtoc.v_part[0].p_size = vd->vdisk_size;
2514 	bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel,
2515 	    MIN(sizeof (VD_ASCIILABEL), sizeof (vd->vtoc.v_asciilabel)));
2516 
2517 
2518 	return (0);
2519 }
2520 
2521 static int
2522 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t ldc_id,
2523     vd_t **vdp)
2524 {
2525 	char			tq_name[TASKQ_NAMELEN];
2526 	int			status;
2527 	ddi_iblock_cookie_t	iblock = NULL;
2528 	ldc_attr_t		ldc_attr;
2529 	vd_t			*vd;
2530 
2531 
2532 	ASSERT(vds != NULL);
2533 	ASSERT(device_path != NULL);
2534 	ASSERT(vdp != NULL);
2535 	PR0("Adding vdisk for %s", device_path);
2536 
2537 	if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) {
2538 		PRN("No memory for virtual disk");
2539 		return (EAGAIN);
2540 	}
2541 	*vdp = vd;	/* assign here so vds_destroy_vd() can cleanup later */
2542 	vd->vds = vds;
2543 
2544 
2545 	/* Open vdisk and initialize parameters */
2546 	if ((status = vd_setup_vd(device_path, vd)) != 0)
2547 		return (status);
2548 	ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
2549 	PR0("vdisk_type = %s, pseudo = %s, nslices = %u",
2550 	    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
2551 	    (vd->pseudo ? "yes" : "no"), vd->nslices);
2552 
2553 
2554 	/* Initialize locking */
2555 	if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED,
2556 		&iblock) != DDI_SUCCESS) {
2557 		PRN("Could not get iblock cookie.");
2558 		return (EIO);
2559 	}
2560 
2561 	mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock);
2562 	vd->initialized |= VD_LOCKING;
2563 
2564 
2565 	/* Create start and completion task queues for the vdisk */
2566 	(void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id);
2567 	PR1("tq_name = %s", tq_name);
2568 	if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1,
2569 		    TASKQ_DEFAULTPRI, 0)) == NULL) {
2570 		PRN("Could not create task queue");
2571 		return (EIO);
2572 	}
2573 	(void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id);
2574 	PR1("tq_name = %s", tq_name);
2575 	if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1,
2576 		    TASKQ_DEFAULTPRI, 0)) == NULL) {
2577 		PRN("Could not create task queue");
2578 		return (EIO);
2579 	}
2580 	vd->enabled = 1;	/* before callback can dispatch to startq */
2581 
2582 
2583 	/* Bring up LDC */
2584 	ldc_attr.devclass	= LDC_DEV_BLK_SVC;
2585 	ldc_attr.instance	= ddi_get_instance(vds->dip);
2586 	ldc_attr.mode		= LDC_MODE_UNRELIABLE;
2587 	ldc_attr.mtu		= VD_LDC_MTU;
2588 	if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) {
2589 		PR0("ldc_init(%lu) = errno %d", ldc_id, status);
2590 		return (status);
2591 	}
2592 	vd->initialized |= VD_LDC;
2593 
2594 	if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events,
2595 		(caddr_t)vd)) != 0) {
2596 		PR0("ldc_reg_callback() returned errno %d", status);
2597 		return (status);
2598 	}
2599 
2600 	if ((status = ldc_open(vd->ldc_handle)) != 0) {
2601 		PR0("ldc_open() returned errno %d", status);
2602 		return (status);
2603 	}
2604 
2605 	if ((status = ldc_up(vd->ldc_handle)) != 0) {
2606 		PRN("ldc_up() returned errno %d", status);
2607 	}
2608 
2609 	/* Allocate the inband task memory handle */
2610 	status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl));
2611 	if (status) {
2612 		PRN("ldc_mem_alloc_handle() returned err %d ", status);
2613 		return (ENXIO);
2614 	}
2615 
2616 	/* Add the successfully-initialized vdisk to the server's table */
2617 	if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) {
2618 		PRN("Error adding vdisk ID %lu to table", id);
2619 		return (EIO);
2620 	}
2621 
2622 	/* Allocate the staging buffer */
2623 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
2624 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
2625 
2626 	/* store initial state */
2627 	vd->state = VD_STATE_INIT;
2628 
2629 	return (0);
2630 }
2631 
2632 static void
2633 vd_free_dring_task(vd_t *vdp)
2634 {
2635 	if (vdp->dring_task != NULL) {
2636 		ASSERT(vdp->dring_len != 0);
2637 		/* Free all dring_task memory handles */
2638 		for (int i = 0; i < vdp->dring_len; i++) {
2639 			(void) ldc_mem_free_handle(vdp->dring_task[i].mhdl);
2640 			kmem_free(vdp->dring_task[i].msg, vdp->max_msglen);
2641 			vdp->dring_task[i].msg = NULL;
2642 		}
2643 		kmem_free(vdp->dring_task,
2644 		    (sizeof (*vdp->dring_task)) * vdp->dring_len);
2645 		vdp->dring_task = NULL;
2646 	}
2647 }
2648 
2649 /*
2650  * Destroy the state associated with a virtual disk
2651  */
2652 static void
2653 vds_destroy_vd(void *arg)
2654 {
2655 	vd_t	*vd = (vd_t *)arg;
2656 
2657 
2658 	if (vd == NULL)
2659 		return;
2660 
2661 	PR0("Destroying vdisk state");
2662 
2663 	if (vd->dk_efi.dki_data != NULL)
2664 		kmem_free(vd->dk_efi.dki_data, vd->dk_efi.dki_length);
2665 
2666 	/* Disable queuing requests for the vdisk */
2667 	if (vd->initialized & VD_LOCKING) {
2668 		mutex_enter(&vd->lock);
2669 		vd->enabled = 0;
2670 		mutex_exit(&vd->lock);
2671 	}
2672 
2673 	/* Drain and destroy start queue (*before* destroying completionq) */
2674 	if (vd->startq != NULL)
2675 		ddi_taskq_destroy(vd->startq);	/* waits for queued tasks */
2676 
2677 	/* Drain and destroy completion queue (*before* shutting down LDC) */
2678 	if (vd->completionq != NULL)
2679 		ddi_taskq_destroy(vd->completionq);	/* waits for tasks */
2680 
2681 	vd_free_dring_task(vd);
2682 
2683 	/* Free the staging buffer for msgs */
2684 	if (vd->vio_msgp != NULL) {
2685 		kmem_free(vd->vio_msgp, vd->max_msglen);
2686 		vd->vio_msgp = NULL;
2687 	}
2688 
2689 	/* Free the inband message buffer */
2690 	if (vd->inband_task.msg != NULL) {
2691 		kmem_free(vd->inband_task.msg, vd->max_msglen);
2692 		vd->inband_task.msg = NULL;
2693 	}
2694 
2695 	/* Free the inband task memory handle */
2696 	(void) ldc_mem_free_handle(vd->inband_task.mhdl);
2697 
2698 	/* Shut down LDC */
2699 	if (vd->initialized & VD_LDC) {
2700 		if (vd->initialized & VD_DRING)
2701 			(void) ldc_mem_dring_unmap(vd->dring_handle);
2702 		(void) ldc_unreg_callback(vd->ldc_handle);
2703 		(void) ldc_close(vd->ldc_handle);
2704 		(void) ldc_fini(vd->ldc_handle);
2705 	}
2706 
2707 	/* Close any open backing-device slices */
2708 	for (uint_t slice = 0; slice < vd->nslices; slice++) {
2709 		if (vd->ldi_handle[slice] != NULL) {
2710 			PR0("Closing slice %u", slice);
2711 			(void) ldi_close(vd->ldi_handle[slice],
2712 			    vd_open_flags | FNDELAY, kcred);
2713 		}
2714 	}
2715 
2716 	/* Free lock */
2717 	if (vd->initialized & VD_LOCKING)
2718 		mutex_destroy(&vd->lock);
2719 
2720 	/* Finally, free the vdisk structure itself */
2721 	kmem_free(vd, sizeof (*vd));
2722 }
2723 
2724 static int
2725 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t ldc_id)
2726 {
2727 	int	status;
2728 	vd_t	*vd = NULL;
2729 
2730 
2731 	if ((status = vds_do_init_vd(vds, id, device_path, ldc_id, &vd)) != 0)
2732 		vds_destroy_vd(vd);
2733 
2734 	return (status);
2735 }
2736 
2737 static int
2738 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel,
2739     uint64_t *ldc_id)
2740 {
2741 	int	num_channels;
2742 
2743 
2744 	/* Look for channel endpoint child(ren) of the vdisk MD node */
2745 	if ((num_channels = md_scan_dag(md, vd_node,
2746 		    md_find_name(md, VD_CHANNEL_ENDPOINT),
2747 		    md_find_name(md, "fwd"), channel)) <= 0) {
2748 		PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT);
2749 		return (-1);
2750 	}
2751 
2752 	/* Get the "id" value for the first channel endpoint node */
2753 	if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) {
2754 		PRN("No \"%s\" property found for \"%s\" of vdisk",
2755 		    VD_ID_PROP, VD_CHANNEL_ENDPOINT);
2756 		return (-1);
2757 	}
2758 
2759 	if (num_channels > 1) {
2760 		PRN("Using ID of first of multiple channels for this vdisk");
2761 	}
2762 
2763 	return (0);
2764 }
2765 
2766 static int
2767 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id)
2768 {
2769 	int		num_nodes, status;
2770 	size_t		size;
2771 	mde_cookie_t	*channel;
2772 
2773 
2774 	if ((num_nodes = md_node_count(md)) <= 0) {
2775 		PRN("Invalid node count in Machine Description subtree");
2776 		return (-1);
2777 	}
2778 	size = num_nodes*(sizeof (*channel));
2779 	channel = kmem_zalloc(size, KM_SLEEP);
2780 	status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id);
2781 	kmem_free(channel, size);
2782 
2783 	return (status);
2784 }
2785 
2786 static void
2787 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
2788 {
2789 	char		*device_path = NULL;
2790 	uint64_t	id = 0, ldc_id = 0;
2791 
2792 
2793 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
2794 		PRN("Error getting vdisk \"%s\"", VD_ID_PROP);
2795 		return;
2796 	}
2797 	PR0("Adding vdisk ID %lu", id);
2798 	if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP,
2799 		&device_path) != 0) {
2800 		PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
2801 		return;
2802 	}
2803 
2804 	if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) {
2805 		PRN("Error getting LDC ID for vdisk %lu", id);
2806 		return;
2807 	}
2808 
2809 	if (vds_init_vd(vds, id, device_path, ldc_id) != 0) {
2810 		PRN("Failed to add vdisk ID %lu", id);
2811 		return;
2812 	}
2813 }
2814 
2815 static void
2816 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
2817 {
2818 	uint64_t	id = 0;
2819 
2820 
2821 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
2822 		PRN("Unable to get \"%s\" property from vdisk's MD node",
2823 		    VD_ID_PROP);
2824 		return;
2825 	}
2826 	PR0("Removing vdisk ID %lu", id);
2827 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
2828 		PRN("No vdisk entry found for vdisk ID %lu", id);
2829 }
2830 
2831 static void
2832 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node,
2833     md_t *curr_md, mde_cookie_t curr_vd_node)
2834 {
2835 	char		*curr_dev, *prev_dev;
2836 	uint64_t	curr_id = 0, curr_ldc_id = 0;
2837 	uint64_t	prev_id = 0, prev_ldc_id = 0;
2838 	size_t		len;
2839 
2840 
2841 	/* Validate that vdisk ID has not changed */
2842 	if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) {
2843 		PRN("Error getting previous vdisk \"%s\" property",
2844 		    VD_ID_PROP);
2845 		return;
2846 	}
2847 	if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) {
2848 		PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP);
2849 		return;
2850 	}
2851 	if (curr_id != prev_id) {
2852 		PRN("Not changing vdisk:  ID changed from %lu to %lu",
2853 		    prev_id, curr_id);
2854 		return;
2855 	}
2856 
2857 	/* Validate that LDC ID has not changed */
2858 	if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) {
2859 		PRN("Error getting LDC ID for vdisk %lu", prev_id);
2860 		return;
2861 	}
2862 
2863 	if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) {
2864 		PRN("Error getting LDC ID for vdisk %lu", curr_id);
2865 		return;
2866 	}
2867 	if (curr_ldc_id != prev_ldc_id) {
2868 		_NOTE(NOTREACHED);	/* lint is confused */
2869 		PRN("Not changing vdisk:  "
2870 		    "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id);
2871 		return;
2872 	}
2873 
2874 	/* Determine whether device path has changed */
2875 	if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP,
2876 		&prev_dev) != 0) {
2877 		PRN("Error getting previous vdisk \"%s\"",
2878 		    VD_BLOCK_DEVICE_PROP);
2879 		return;
2880 	}
2881 	if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP,
2882 		&curr_dev) != 0) {
2883 		PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
2884 		return;
2885 	}
2886 	if (((len = strlen(curr_dev)) == strlen(prev_dev)) &&
2887 	    (strncmp(curr_dev, prev_dev, len) == 0))
2888 		return;	/* no relevant (supported) change */
2889 
2890 	PR0("Changing vdisk ID %lu", prev_id);
2891 
2892 	/* Remove old state, which will close vdisk and reset */
2893 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0)
2894 		PRN("No entry found for vdisk ID %lu", prev_id);
2895 
2896 	/* Re-initialize vdisk with new state */
2897 	if (vds_init_vd(vds, curr_id, curr_dev, curr_ldc_id) != 0) {
2898 		PRN("Failed to change vdisk ID %lu", curr_id);
2899 		return;
2900 	}
2901 }
2902 
2903 static int
2904 vds_process_md(void *arg, mdeg_result_t *md)
2905 {
2906 	int	i;
2907 	vds_t	*vds = arg;
2908 
2909 
2910 	if (md == NULL)
2911 		return (MDEG_FAILURE);
2912 	ASSERT(vds != NULL);
2913 
2914 	for (i = 0; i < md->removed.nelem; i++)
2915 		vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]);
2916 	for (i = 0; i < md->match_curr.nelem; i++)
2917 		vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i],
2918 		    md->match_curr.mdp, md->match_curr.mdep[i]);
2919 	for (i = 0; i < md->added.nelem; i++)
2920 		vds_add_vd(vds, md->added.mdp, md->added.mdep[i]);
2921 
2922 	return (MDEG_SUCCESS);
2923 }
2924 
2925 static int
2926 vds_do_attach(dev_info_t *dip)
2927 {
2928 	static char	reg_prop[] = "reg";	/* devinfo ID prop */
2929 
2930 	/* MDEG specification for a (particular) vds node */
2931 	static mdeg_prop_spec_t	vds_prop_spec[] = {
2932 		{MDET_PROP_STR, "name", {VDS_NAME}},
2933 		{MDET_PROP_VAL, "cfg-handle", {0}},
2934 		{MDET_LIST_END, NULL, {0}}};
2935 	static mdeg_node_spec_t	vds_spec = {"virtual-device", vds_prop_spec};
2936 
2937 	/* MDEG specification for matching a vd node */
2938 	static md_prop_match_t	vd_prop_spec[] = {
2939 		{MDET_PROP_VAL, VD_ID_PROP},
2940 		{MDET_LIST_END, NULL}};
2941 	static mdeg_node_match_t vd_spec = {"virtual-device-port",
2942 					    vd_prop_spec};
2943 
2944 	int			status;
2945 	uint64_t		cfg_handle;
2946 	minor_t			instance = ddi_get_instance(dip);
2947 	vds_t			*vds;
2948 
2949 
2950 	/*
2951 	 * The "cfg-handle" property of a vds node in an MD contains the MD's
2952 	 * notion of "instance", or unique identifier, for that node; OBP
2953 	 * stores the value of the "cfg-handle" MD property as the value of
2954 	 * the "reg" property on the node in the device tree it builds from
2955 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
2956 	 * "reg" property value to uniquely identify this device instance when
2957 	 * registering with the MD event-generation framework.  If the "reg"
2958 	 * property cannot be found, the device tree state is presumably so
2959 	 * broken that there is no point in continuing.
2960 	 */
2961 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, reg_prop)) {
2962 		PRN("vds \"%s\" property does not exist", reg_prop);
2963 		return (DDI_FAILURE);
2964 	}
2965 
2966 	/* Get the MD instance for later MDEG registration */
2967 	cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2968 	    reg_prop, -1);
2969 
2970 	if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) {
2971 		PRN("Could not allocate state for instance %u", instance);
2972 		return (DDI_FAILURE);
2973 	}
2974 
2975 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
2976 		PRN("Could not get state for instance %u", instance);
2977 		ddi_soft_state_free(vds_state, instance);
2978 		return (DDI_FAILURE);
2979 	}
2980 
2981 
2982 	vds->dip	= dip;
2983 	vds->vd_table	= mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS,
2984 							vds_destroy_vd,
2985 							sizeof (void *));
2986 	ASSERT(vds->vd_table != NULL);
2987 
2988 	if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) {
2989 		PRN("ldi_ident_from_dip() returned errno %d", status);
2990 		return (DDI_FAILURE);
2991 	}
2992 	vds->initialized |= VDS_LDI;
2993 
2994 	/* Register for MD updates */
2995 	vds_prop_spec[1].ps_val = cfg_handle;
2996 	if (mdeg_register(&vds_spec, &vd_spec, vds_process_md, vds,
2997 		&vds->mdeg) != MDEG_SUCCESS) {
2998 		PRN("Unable to register for MD updates");
2999 		return (DDI_FAILURE);
3000 	}
3001 	vds->initialized |= VDS_MDEG;
3002 
3003 	/* Prevent auto-detaching so driver is available whenever MD changes */
3004 	if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) !=
3005 	    DDI_PROP_SUCCESS) {
3006 		PRN("failed to set \"%s\" property for instance %u",
3007 		    DDI_NO_AUTODETACH, instance);
3008 	}
3009 
3010 	ddi_report_dev(dip);
3011 	return (DDI_SUCCESS);
3012 }
3013 
3014 static int
3015 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3016 {
3017 	int	status;
3018 
3019 	switch (cmd) {
3020 	case DDI_ATTACH:
3021 		PR0("Attaching");
3022 		if ((status = vds_do_attach(dip)) != DDI_SUCCESS)
3023 			(void) vds_detach(dip, DDI_DETACH);
3024 		return (status);
3025 	case DDI_RESUME:
3026 		PR0("No action required for DDI_RESUME");
3027 		return (DDI_SUCCESS);
3028 	default:
3029 		return (DDI_FAILURE);
3030 	}
3031 }
3032 
3033 static struct dev_ops vds_ops = {
3034 	DEVO_REV,	/* devo_rev */
3035 	0,		/* devo_refcnt */
3036 	ddi_no_info,	/* devo_getinfo */
3037 	nulldev,	/* devo_identify */
3038 	nulldev,	/* devo_probe */
3039 	vds_attach,	/* devo_attach */
3040 	vds_detach,	/* devo_detach */
3041 	nodev,		/* devo_reset */
3042 	NULL,		/* devo_cb_ops */
3043 	NULL,		/* devo_bus_ops */
3044 	nulldev		/* devo_power */
3045 };
3046 
3047 static struct modldrv modldrv = {
3048 	&mod_driverops,
3049 	"virtual disk server v%I%",
3050 	&vds_ops,
3051 };
3052 
3053 static struct modlinkage modlinkage = {
3054 	MODREV_1,
3055 	&modldrv,
3056 	NULL
3057 };
3058 
3059 
3060 int
3061 _init(void)
3062 {
3063 	int		i, status;
3064 
3065 
3066 	if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0)
3067 		return (status);
3068 	if ((status = mod_install(&modlinkage)) != 0) {
3069 		ddi_soft_state_fini(&vds_state);
3070 		return (status);
3071 	}
3072 
3073 	/* Fill in the bit-mask of server-supported operations */
3074 	for (i = 0; i < vds_noperations; i++)
3075 		vds_operations |= 1 << (vds_operation[i].operation - 1);
3076 
3077 	return (0);
3078 }
3079 
3080 int
3081 _info(struct modinfo *modinfop)
3082 {
3083 	return (mod_info(&modlinkage, modinfop));
3084 }
3085 
3086 int
3087 _fini(void)
3088 {
3089 	int	status;
3090 
3091 
3092 	if ((status = mod_remove(&modlinkage)) != 0)
3093 		return (status);
3094 	ddi_soft_state_fini(&vds_state);
3095 	return (0);
3096 }
3097