xref: /titanic_50/usr/src/uts/sun4v/io/vds.c (revision 577f4726f2ea5aeaa2cf3dd65aca52869834b137)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Virtual disk server
31  */
32 
33 
34 #include <sys/types.h>
35 #include <sys/conf.h>
36 #include <sys/crc32.h>
37 #include <sys/ddi.h>
38 #include <sys/dkio.h>
39 #include <sys/file.h>
40 #include <sys/fs/hsfs_isospec.h>
41 #include <sys/mdeg.h>
42 #include <sys/mhd.h>
43 #include <sys/modhash.h>
44 #include <sys/note.h>
45 #include <sys/pathname.h>
46 #include <sys/sdt.h>
47 #include <sys/sunddi.h>
48 #include <sys/sunldi.h>
49 #include <sys/sysmacros.h>
50 #include <sys/vio_common.h>
51 #include <sys/vio_util.h>
52 #include <sys/vdsk_mailbox.h>
53 #include <sys/vdsk_common.h>
54 #include <sys/vtoc.h>
55 #include <sys/vfs.h>
56 #include <sys/stat.h>
57 #include <sys/scsi/impl/uscsi.h>
58 #include <sys/ontrap.h>
59 #include <vm/seg_map.h>
60 
61 #define	ONE_TERABYTE	(1ULL << 40)
62 
63 /* Virtual disk server initialization flags */
64 #define	VDS_LDI			0x01
65 #define	VDS_MDEG		0x02
66 
67 /* Virtual disk server tunable parameters */
68 #define	VDS_RETRIES		5
69 #define	VDS_LDC_DELAY		1000 /* 1 msecs */
70 #define	VDS_DEV_DELAY		10000000 /* 10 secs */
71 #define	VDS_NCHAINS		32
72 
73 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */
74 #define	VDS_NAME		"virtual-disk-server"
75 
76 #define	VD_NAME			"vd"
77 #define	VD_VOLUME_NAME		"vdisk"
78 #define	VD_ASCIILABEL		"Virtual Disk"
79 
80 #define	VD_CHANNEL_ENDPOINT	"channel-endpoint"
81 #define	VD_ID_PROP		"id"
82 #define	VD_BLOCK_DEVICE_PROP	"vds-block-device"
83 #define	VD_BLOCK_DEVICE_OPTS	"vds-block-device-opts"
84 #define	VD_REG_PROP		"reg"
85 
86 /* Virtual disk initialization flags */
87 #define	VD_DISK_READY		0x01
88 #define	VD_LOCKING		0x02
89 #define	VD_LDC			0x04
90 #define	VD_DRING		0x08
91 #define	VD_SID			0x10
92 #define	VD_SEQ_NUM		0x20
93 #define	VD_SETUP_ERROR		0x40
94 
95 /* Flags for writing to a vdisk which is a file */
96 #define	VD_FILE_WRITE_FLAGS	SM_ASYNC
97 
98 /* Number of backup labels */
99 #define	VD_FILE_NUM_BACKUP	5
100 
101 /* Timeout for SCSI I/O */
102 #define	VD_SCSI_RDWR_TIMEOUT	30	/* 30 secs */
103 
104 /* Maximum number of logical partitions */
105 #define	VD_MAXPART	(NDKMAP + 1)
106 
107 /*
108  * By Solaris convention, slice/partition 2 represents the entire disk;
109  * unfortunately, this convention does not appear to be codified.
110  */
111 #define	VD_ENTIRE_DISK_SLICE	2
112 
113 /* Logical block address for EFI */
114 #define	VD_EFI_LBA_GPT		1	/* LBA of the GPT */
115 #define	VD_EFI_LBA_GPE		2	/* LBA of the GPE */
116 
117 /* Driver types */
118 typedef enum vd_driver {
119 	VD_DRIVER_UNKNOWN = 0,	/* driver type unknown  */
120 	VD_DRIVER_DISK,		/* disk driver */
121 	VD_DRIVER_VOLUME	/* volume driver */
122 } vd_driver_t;
123 
124 #define	VD_DRIVER_NAME_LEN	64
125 
126 #define	VDS_NUM_DRIVERS	(sizeof (vds_driver_types) / sizeof (vd_driver_type_t))
127 
128 typedef struct vd_driver_type {
129 	char name[VD_DRIVER_NAME_LEN];	/* driver name */
130 	vd_driver_t type;		/* driver type (disk or volume) */
131 } vd_driver_type_t;
132 
133 /*
134  * There is no reliable way to determine if a device is representing a disk
135  * or a volume, especially with pseudo devices. So we maintain a list of well
136  * known drivers and the type of device they represent (either a disk or a
137  * volume).
138  *
139  * The list can be extended by adding a "driver-type-list" entry in vds.conf
140  * with the following syntax:
141  *
142  * 	driver-type-list="<driver>:<type>", ... ,"<driver>:<type>";
143  *
144  * Where:
145  *	<driver> is the name of a driver (limited to 64 characters)
146  *	<type> is either the string "disk" or "volume"
147  *
148  * Invalid entries in "driver-type-list" will be ignored.
149  *
150  * For example, the following line in vds.conf:
151  *
152  * 	driver-type-list="foo:disk","bar:volume";
153  *
154  * defines that "foo" is a disk driver, and driver "bar" is a volume driver.
155  *
156  * When a list is defined in vds.conf, it is checked before the built-in list
157  * (vds_driver_types[]) so that any definition from this list can be overriden
158  * using vds.conf.
159  */
160 vd_driver_type_t vds_driver_types[] = {
161 	{ "dad",	VD_DRIVER_DISK },	/* Solaris */
162 	{ "did",	VD_DRIVER_DISK },	/* Sun Cluster */
163 	{ "emcp",	VD_DRIVER_DISK },	/* EMC Powerpath */
164 	{ "lofi",	VD_DRIVER_VOLUME },	/* Solaris */
165 	{ "md",		VD_DRIVER_VOLUME },	/* Solaris - SVM */
166 	{ "sd",		VD_DRIVER_DISK },	/* Solaris */
167 	{ "ssd",	VD_DRIVER_DISK },	/* Solaris */
168 	{ "vdc",	VD_DRIVER_DISK },	/* Solaris */
169 	{ "vxdmp",	VD_DRIVER_DISK },	/* Veritas */
170 	{ "vxio",	VD_DRIVER_VOLUME },	/* Veritas - VxVM */
171 	{ "zfs",	VD_DRIVER_VOLUME }	/* Solaris */
172 };
173 
174 /* Return a cpp token as a string */
175 #define	STRINGIZE(token)	#token
176 
177 /*
178  * Print a message prefixed with the current function name to the message log
179  * (and optionally to the console for verbose boots); these macros use cpp's
180  * concatenation of string literals and C99 variable-length-argument-list
181  * macros
182  */
183 #define	PRN(...)	_PRN("?%s():  "__VA_ARGS__, "")
184 #define	_PRN(format, ...)					\
185 	cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__)
186 
187 /* Return a pointer to the "i"th vdisk dring element */
188 #define	VD_DRING_ELEM(i)	((vd_dring_entry_t *)(void *)	\
189 	    (vd->dring + (i)*vd->descriptor_size))
190 
191 /* Return the virtual disk client's type as a string (for use in messages) */
192 #define	VD_CLIENT(vd)							\
193 	(((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" :	\
194 	    (((vd)->xfer_mode == VIO_DRING_MODE_V1_0) ? "dring client" :    \
195 		(((vd)->xfer_mode == 0) ? "null client" :		\
196 		    "unsupported client")))
197 
198 /* Read disk label from a disk on file */
199 #define	VD_FILE_LABEL_READ(vd, labelp) \
200 	vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \
201 	    0, sizeof (struct dk_label))
202 
203 /* Write disk label to a disk on file */
204 #define	VD_FILE_LABEL_WRITE(vd, labelp)	\
205 	vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \
206 	    0, sizeof (struct dk_label))
207 
208 /* Message for disk access rights reset failure */
209 #define	VD_RESET_ACCESS_FAILURE_MSG \
210 	"Fail to reset disk access rights for disk %s"
211 
212 /*
213  * Specification of an MD node passed to the MDEG to filter any
214  * 'vport' nodes that do not belong to the specified node. This
215  * template is copied for each vds instance and filled in with
216  * the appropriate 'cfg-handle' value before being passed to the MDEG.
217  */
218 static mdeg_prop_spec_t	vds_prop_template[] = {
219 	{ MDET_PROP_STR,	"name",		VDS_NAME },
220 	{ MDET_PROP_VAL,	"cfg-handle",	NULL },
221 	{ MDET_LIST_END,	NULL, 		NULL }
222 };
223 
224 #define	VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val);
225 
226 /*
227  * Matching criteria passed to the MDEG to register interest
228  * in changes to 'virtual-device-port' nodes identified by their
229  * 'id' property.
230  */
231 static md_prop_match_t	vd_prop_match[] = {
232 	{ MDET_PROP_VAL,	VD_ID_PROP },
233 	{ MDET_LIST_END,	NULL }
234 };
235 
236 static mdeg_node_match_t vd_match = {"virtual-device-port",
237 				    vd_prop_match};
238 
239 /*
240  * Options for the VD_BLOCK_DEVICE_OPTS property.
241  */
242 #define	VD_OPT_RDONLY		0x1	/* read-only  */
243 #define	VD_OPT_SLICE		0x2	/* single slice */
244 #define	VD_OPT_EXCLUSIVE	0x4	/* exclusive access */
245 
246 #define	VD_OPTION_NLEN	128
247 
248 typedef struct vd_option {
249 	char vdo_name[VD_OPTION_NLEN];
250 	uint64_t vdo_value;
251 } vd_option_t;
252 
253 vd_option_t vd_bdev_options[] = {
254 	{ "ro",		VD_OPT_RDONLY },
255 	{ "slice", 	VD_OPT_SLICE },
256 	{ "excl",	VD_OPT_EXCLUSIVE }
257 };
258 
259 /* Debugging macros */
260 #ifdef DEBUG
261 
262 static int	vd_msglevel = 0;
263 
264 #define	PR0 if (vd_msglevel > 0)	PRN
265 #define	PR1 if (vd_msglevel > 1)	PRN
266 #define	PR2 if (vd_msglevel > 2)	PRN
267 
268 #define	VD_DUMP_DRING_ELEM(elem)					\
269 	PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n",		\
270 	    elem->hdr.dstate,						\
271 	    elem->payload.operation,					\
272 	    elem->payload.status,					\
273 	    elem->payload.nbytes,					\
274 	    elem->payload.addr,						\
275 	    elem->payload.ncookies);
276 
277 char *
278 vd_decode_state(int state)
279 {
280 	char *str;
281 
282 #define	CASE_STATE(_s)	case _s: str = #_s; break;
283 
284 	switch (state) {
285 	CASE_STATE(VD_STATE_INIT)
286 	CASE_STATE(VD_STATE_VER)
287 	CASE_STATE(VD_STATE_ATTR)
288 	CASE_STATE(VD_STATE_DRING)
289 	CASE_STATE(VD_STATE_RDX)
290 	CASE_STATE(VD_STATE_DATA)
291 	default: str = "unknown"; break;
292 	}
293 
294 #undef CASE_STATE
295 
296 	return (str);
297 }
298 
299 void
300 vd_decode_tag(vio_msg_t *msg)
301 {
302 	char *tstr, *sstr, *estr;
303 
304 #define	CASE_TYPE(_s)	case _s: tstr = #_s; break;
305 
306 	switch (msg->tag.vio_msgtype) {
307 	CASE_TYPE(VIO_TYPE_CTRL)
308 	CASE_TYPE(VIO_TYPE_DATA)
309 	CASE_TYPE(VIO_TYPE_ERR)
310 	default: tstr = "unknown"; break;
311 	}
312 
313 #undef CASE_TYPE
314 
315 #define	CASE_SUBTYPE(_s) case _s: sstr = #_s; break;
316 
317 	switch (msg->tag.vio_subtype) {
318 	CASE_SUBTYPE(VIO_SUBTYPE_INFO)
319 	CASE_SUBTYPE(VIO_SUBTYPE_ACK)
320 	CASE_SUBTYPE(VIO_SUBTYPE_NACK)
321 	default: sstr = "unknown"; break;
322 	}
323 
324 #undef CASE_SUBTYPE
325 
326 #define	CASE_ENV(_s)	case _s: estr = #_s; break;
327 
328 	switch (msg->tag.vio_subtype_env) {
329 	CASE_ENV(VIO_VER_INFO)
330 	CASE_ENV(VIO_ATTR_INFO)
331 	CASE_ENV(VIO_DRING_REG)
332 	CASE_ENV(VIO_DRING_UNREG)
333 	CASE_ENV(VIO_RDX)
334 	CASE_ENV(VIO_PKT_DATA)
335 	CASE_ENV(VIO_DESC_DATA)
336 	CASE_ENV(VIO_DRING_DATA)
337 	default: estr = "unknown"; break;
338 	}
339 
340 #undef CASE_ENV
341 
342 	PR1("(%x/%x/%x) message : (%s/%s/%s)",
343 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
344 	    msg->tag.vio_subtype_env, tstr, sstr, estr);
345 }
346 
347 #else	/* !DEBUG */
348 
349 #define	PR0(...)
350 #define	PR1(...)
351 #define	PR2(...)
352 
353 #define	VD_DUMP_DRING_ELEM(elem)
354 
355 #define	vd_decode_state(_s)	(NULL)
356 #define	vd_decode_tag(_s)	(NULL)
357 
358 #endif	/* DEBUG */
359 
360 
361 /*
362  * Soft state structure for a vds instance
363  */
364 typedef struct vds {
365 	uint_t		initialized;	/* driver inst initialization flags */
366 	dev_info_t	*dip;		/* driver inst devinfo pointer */
367 	ldi_ident_t	ldi_ident;	/* driver's identifier for LDI */
368 	mod_hash_t	*vd_table;	/* table of virtual disks served */
369 	mdeg_node_spec_t *ispecp;	/* mdeg node specification */
370 	mdeg_handle_t	mdeg;		/* handle for MDEG operations  */
371 	vd_driver_type_t *driver_types;	/* extra driver types (from vds.conf) */
372 	int 		num_drivers;	/* num of extra driver types */
373 } vds_t;
374 
375 /*
376  * Types of descriptor-processing tasks
377  */
378 typedef enum vd_task_type {
379 	VD_NONFINAL_RANGE_TASK,	/* task for intermediate descriptor in range */
380 	VD_FINAL_RANGE_TASK,	/* task for last in a range of descriptors */
381 } vd_task_type_t;
382 
383 /*
384  * Structure describing the task for processing a descriptor
385  */
386 typedef struct vd_task {
387 	struct vd		*vd;		/* vd instance task is for */
388 	vd_task_type_t		type;		/* type of descriptor task */
389 	int			index;		/* dring elem index for task */
390 	vio_msg_t		*msg;		/* VIO message task is for */
391 	size_t			msglen;		/* length of message content */
392 	vd_dring_payload_t	*request;	/* request task will perform */
393 	struct buf		buf;		/* buf(9s) for I/O request */
394 	ldc_mem_handle_t	mhdl;		/* task memory handle */
395 	int			status;		/* status of processing task */
396 	int	(*completef)(struct vd_task *task); /* completion func ptr */
397 } vd_task_t;
398 
399 /*
400  * Soft state structure for a virtual disk instance
401  */
402 typedef struct vd {
403 	uint_t			initialized;	/* vdisk initialization flags */
404 	uint64_t		operations;	/* bitmask of VD_OPs exported */
405 	vio_ver_t		version;	/* ver negotiated with client */
406 	vds_t			*vds;		/* server for this vdisk */
407 	ddi_taskq_t		*startq;	/* queue for I/O start tasks */
408 	ddi_taskq_t		*completionq;	/* queue for completion tasks */
409 	ldi_handle_t		ldi_handle[V_NUMPAR];	/* LDI slice handles */
410 	char			device_path[MAXPATHLEN + 1]; /* vdisk device */
411 	dev_t			dev[V_NUMPAR];	/* dev numbers for slices */
412 	int			open_flags;	/* open flags */
413 	uint_t			nslices;	/* number of slices we export */
414 	size_t			vdisk_size;	/* number of blocks in vdisk */
415 	size_t			vdisk_block_size; /* size of each vdisk block */
416 	vd_disk_type_t		vdisk_type;	/* slice or entire disk */
417 	vd_disk_label_t		vdisk_label;	/* EFI or VTOC label */
418 	vd_media_t		vdisk_media;	/* media type of backing dev. */
419 	boolean_t		is_atapi_dev;	/* Is this an IDE CD-ROM dev? */
420 	ushort_t		max_xfer_sz;	/* max xfer size in DEV_BSIZE */
421 	size_t			block_size;	/* blk size of actual device */
422 	boolean_t		volume;		/* is vDisk backed by volume */
423 	boolean_t		file;		/* is vDisk backed by a file? */
424 	boolean_t		scsi;		/* is vDisk backed by scsi? */
425 	vnode_t			*file_vnode;	/* file vnode */
426 	size_t			file_size;	/* file size */
427 	ddi_devid_t		file_devid;	/* devid for disk image */
428 	int			efi_reserved;	/* EFI reserved slice */
429 	caddr_t			flabel;		/* fake label for slice type */
430 	uint_t			flabel_size;	/* fake label size */
431 	uint_t			flabel_limit;	/* limit of the fake label */
432 	struct dk_geom		dk_geom;	/* synthetic for slice type */
433 	struct vtoc		vtoc;		/* synthetic for slice type */
434 	vd_slice_t		slices[VD_MAXPART]; /* logical partitions */
435 	boolean_t		ownership;	/* disk ownership status */
436 	ldc_status_t		ldc_state;	/* LDC connection state */
437 	ldc_handle_t		ldc_handle;	/* handle for LDC comm */
438 	size_t			max_msglen;	/* largest LDC message len */
439 	vd_state_t		state;		/* client handshake state */
440 	uint8_t			xfer_mode;	/* transfer mode with client */
441 	uint32_t		sid;		/* client's session ID */
442 	uint64_t		seq_num;	/* message sequence number */
443 	uint64_t		dring_ident;	/* identifier of dring */
444 	ldc_dring_handle_t	dring_handle;	/* handle for dring ops */
445 	uint32_t		descriptor_size;	/* num bytes in desc */
446 	uint32_t		dring_len;	/* number of dring elements */
447 	uint8_t			dring_mtype;	/* dring mem map type */
448 	caddr_t			dring;		/* address of dring */
449 	caddr_t			vio_msgp;	/* vio msg staging buffer */
450 	vd_task_t		inband_task;	/* task for inband descriptor */
451 	vd_task_t		*dring_task;	/* tasks dring elements */
452 
453 	kmutex_t		lock;		/* protects variables below */
454 	boolean_t		enabled;	/* is vdisk enabled? */
455 	boolean_t		reset_state;	/* reset connection state? */
456 	boolean_t		reset_ldc;	/* reset LDC channel? */
457 } vd_t;
458 
459 /*
460  * Macros to manipulate the fake label (flabel) for single slice disks.
461  *
462  * If we fake a VTOC label then the fake label consists of only one block
463  * containing the VTOC label (struct dk_label).
464  *
465  * If we fake an EFI label then the fake label consists of a blank block
466  * followed by a GPT (efi_gpt_t) and a GPE (efi_gpe_t).
467  *
468  */
469 #define	VD_LABEL_VTOC_SIZE					\
470 	P2ROUNDUP(sizeof (struct dk_label), DEV_BSIZE)
471 
472 #define	VD_LABEL_EFI_SIZE					\
473 	P2ROUNDUP(DEV_BSIZE + sizeof (efi_gpt_t) + 		\
474 	    sizeof (efi_gpe_t) * VD_MAXPART, DEV_BSIZE)
475 
476 #define	VD_LABEL_VTOC(vd)	\
477 		((struct dk_label *)((vd)->flabel))
478 
479 #define	VD_LABEL_EFI_GPT(vd)	\
480 		((efi_gpt_t *)((vd)->flabel + DEV_BSIZE))
481 #define	VD_LABEL_EFI_GPE(vd)	\
482 		((efi_gpe_t *)((vd)->flabel + DEV_BSIZE + sizeof (efi_gpt_t)))
483 
484 
485 typedef struct vds_operation {
486 	char	*namep;
487 	uint8_t	operation;
488 	int	(*start)(vd_task_t *task);
489 	int	(*complete)(vd_task_t *task);
490 } vds_operation_t;
491 
492 typedef struct vd_ioctl {
493 	uint8_t		operation;		/* vdisk operation */
494 	const char	*operation_name;	/* vdisk operation name */
495 	size_t		nbytes;			/* size of operation buffer */
496 	int		cmd;			/* corresponding ioctl cmd */
497 	const char	*cmd_name;		/* ioctl cmd name */
498 	void		*arg;			/* ioctl cmd argument */
499 	/* convert input vd_buf to output ioctl_arg */
500 	int		(*copyin)(void *vd_buf, size_t, void *ioctl_arg);
501 	/* convert input ioctl_arg to output vd_buf */
502 	void		(*copyout)(void *ioctl_arg, void *vd_buf);
503 	/* write is true if the operation writes any data to the backend */
504 	boolean_t	write;
505 } vd_ioctl_t;
506 
507 /* Define trivial copyin/copyout conversion function flag */
508 #define	VD_IDENTITY_IN	((int (*)(void *, size_t, void *))-1)
509 #define	VD_IDENTITY_OUT	((void (*)(void *, void *))-1)
510 
511 
512 static int	vds_ldc_retries = VDS_RETRIES;
513 static int	vds_ldc_delay = VDS_LDC_DELAY;
514 static int	vds_dev_retries = VDS_RETRIES;
515 static int	vds_dev_delay = VDS_DEV_DELAY;
516 static void	*vds_state;
517 
518 static uint_t	vd_file_write_flags = VD_FILE_WRITE_FLAGS;
519 
520 static short	vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT;
521 static int	vd_scsi_debug = USCSI_SILENT;
522 
523 /*
524  * Tunable to define the behavior of the service domain if the vdisk server
525  * fails to reset disk exclusive access when a LDC channel is reset. When a
526  * LDC channel is reset the vdisk server will try to reset disk exclusive
527  * access by releasing any SCSI-2 reservation or resetting the disk. If these
528  * actions fail then the default behavior (vd_reset_access_failure = 0) is to
529  * print a warning message. This default behavior can be changed by setting
530  * the vd_reset_access_failure variable to A_REBOOT (= 0x1) and that will
531  * cause the service domain to reboot, or A_DUMP (= 0x5) and that will cause
532  * the service domain to panic. In both cases, the reset of the service domain
533  * should trigger a reset SCSI buses and hopefully clear any SCSI-2 reservation.
534  */
535 static int 	vd_reset_access_failure = 0;
536 
537 /*
538  * Tunable for backward compatibility. When this variable is set to B_TRUE,
539  * all disk volumes (ZFS, SVM, VxvM volumes) will be exported as single
540  * slice disks whether or not they have the "slice" option set. This is
541  * to provide a simple backward compatibility mechanism when upgrading
542  * the vds driver and using a domain configuration created before the
543  * "slice" option was available.
544  */
545 static boolean_t vd_volume_force_slice = B_FALSE;
546 
547 /*
548  * The label of disk images created with some earlier versions of the virtual
549  * disk software is not entirely correct and have an incorrect v_sanity field
550  * (usually 0) instead of VTOC_SANE. This creates a compatibility problem with
551  * these images because we are now validating that the disk label (and the
552  * sanity) is correct when a disk image is opened.
553  *
554  * This tunable is set to false to not validate the sanity field and ensure
555  * compatibility. If the tunable is set to true, we will do a strict checking
556  * of the sanity but this can create compatibility problems with old disk
557  * images.
558  */
559 static boolean_t vd_file_validate_sanity = B_FALSE;
560 
561 /*
562  * Enables the use of LDC_DIRECT_MAP when mapping in imported descriptor rings.
563  */
564 static boolean_t vd_direct_mapped_drings = B_TRUE;
565 
566 /*
567  * When a backend is exported as a single-slice disk then we entirely fake
568  * its disk label. So it can be exported either with a VTOC label or with
569  * an EFI label. If vd_slice_label is set to VD_DISK_LABEL_VTOC then all
570  * single-slice disks will be exported with a VTOC label; and if it is set
571  * to VD_DISK_LABEL_EFI then all single-slice disks will be exported with
572  * an EFI label.
573  *
574  * If vd_slice_label is set to VD_DISK_LABEL_UNK and the backend is a disk
575  * or volume device then it will be exported with the same type of label as
576  * defined on the device. Otherwise if the backend is a file then it will
577  * exported with the disk label type set in the vd_file_slice_label variable.
578  *
579  * Note that if the backend size is greater than 1TB then it will always be
580  * exported with an EFI label no matter what the setting is.
581  */
582 static vd_disk_label_t vd_slice_label = VD_DISK_LABEL_UNK;
583 
584 static vd_disk_label_t vd_file_slice_label = VD_DISK_LABEL_VTOC;
585 
586 /*
587  * Tunable for backward compatibility. If this variable is set to B_TRUE then
588  * single-slice disks are exported as disks with only one slice instead of
589  * faking a complete disk partitioning.
590  */
591 static boolean_t vd_slice_single_slice = B_FALSE;
592 
593 /*
594  * Supported protocol version pairs, from highest (newest) to lowest (oldest)
595  *
596  * Each supported major version should appear only once, paired with (and only
597  * with) its highest supported minor version number (as the protocol requires
598  * supporting all lower minor version numbers as well)
599  */
600 static const vio_ver_t	vds_version[] = {{1, 1}};
601 static const size_t	vds_num_versions =
602     sizeof (vds_version)/sizeof (vds_version[0]);
603 
604 static void vd_free_dring_task(vd_t *vdp);
605 static int vd_setup_vd(vd_t *vd);
606 static int vd_setup_single_slice_disk(vd_t *vd);
607 static int vd_setup_mediainfo(vd_t *vd);
608 static boolean_t vd_enabled(vd_t *vd);
609 static ushort_t vd_lbl2cksum(struct dk_label *label);
610 static int vd_file_validate_geometry(vd_t *vd);
611 static boolean_t vd_file_is_iso_image(vd_t *vd);
612 static void vd_set_exported_operations(vd_t *vd);
613 static void vd_reset_access(vd_t *vd);
614 static int vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg);
615 static int vds_efi_alloc_and_read(vd_t *, efi_gpt_t **, efi_gpe_t **);
616 static void vds_efi_free(vd_t *, efi_gpt_t *, efi_gpe_t *);
617 static void vds_driver_types_free(vds_t *vds);
618 static void vd_vtocgeom_to_label(struct vtoc *vtoc, struct dk_geom *geom,
619     struct dk_label *label);
620 static void vd_label_to_vtocgeom(struct dk_label *label, struct vtoc *vtoc,
621     struct dk_geom *geom);
622 static boolean_t vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom);
623 static boolean_t vd_slice_vtoc_isvalid(vd_t *vd, struct vtoc *vtoc);
624 
625 extern int is_pseudo_device(dev_info_t *);
626 
627 /*
628  * Function:
629  *	vd_get_readable_size
630  *
631  * Description:
632  * 	Convert a given size in bytes to a human readable format in
633  * 	kilobytes, megabytes, gigabytes or terabytes.
634  *
635  * Parameters:
636  *	full_size	- the size to convert in bytes.
637  *	size		- the converted size.
638  *	unit		- the unit of the converted size: 'K' (kilobyte),
639  *			  'M' (Megabyte), 'G' (Gigabyte), 'T' (Terabyte).
640  *
641  * Return Code:
642  *	none
643  */
644 void
645 vd_get_readable_size(size_t full_size, size_t *size, char *unit)
646 {
647 	if (full_size < (1ULL << 20)) {
648 		*size = full_size >> 10;
649 		*unit = 'K'; /* Kilobyte */
650 	} else if (full_size < (1ULL << 30)) {
651 		*size = full_size >> 20;
652 		*unit = 'M'; /* Megabyte */
653 	} else if (full_size < (1ULL << 40)) {
654 		*size = full_size >> 30;
655 		*unit = 'G'; /* Gigabyte */
656 	} else {
657 		*size = full_size >> 40;
658 		*unit = 'T'; /* Terabyte */
659 	}
660 }
661 
662 /*
663  * Function:
664  *	vd_file_rw
665  *
666  * Description:
667  * 	Read or write to a disk on file.
668  *
669  * Parameters:
670  *	vd		- disk on which the operation is performed.
671  *	slice		- slice on which the operation is performed,
672  *			  VD_SLICE_NONE indicates that the operation
673  *			  is done using an absolute disk offset.
674  *	operation	- operation to execute: read (VD_OP_BREAD) or
675  *			  write (VD_OP_BWRITE).
676  *	data		- buffer where data are read to or written from.
677  *	blk		- starting block for the operation.
678  *	len		- number of bytes to read or write.
679  *
680  * Return Code:
681  *	n >= 0		- success, n indicates the number of bytes read
682  *			  or written.
683  *	-1		- error.
684  */
685 static ssize_t
686 vd_file_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t blk,
687     size_t len)
688 {
689 	caddr_t	maddr;
690 	size_t offset, maxlen, moffset, mlen, n;
691 	uint_t smflags;
692 	enum seg_rw srw;
693 
694 	ASSERT(vd->file);
695 	ASSERT(len > 0);
696 
697 	/*
698 	 * If a file is exported as a slice then we don't care about the vtoc.
699 	 * In that case, the vtoc is a fake mainly to make newfs happy and we
700 	 * handle any I/O as a raw disk access so that we can have access to the
701 	 * entire backend.
702 	 */
703 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE || slice == VD_SLICE_NONE) {
704 		/* raw disk access */
705 		offset = blk * DEV_BSIZE;
706 		if (offset >= vd->file_size) {
707 			/* offset past the end of the disk */
708 			PR0("offset (0x%lx) >= fsize (0x%lx)",
709 			    offset, vd->file_size);
710 			return (0);
711 		}
712 		maxlen = vd->file_size - offset;
713 	} else {
714 		ASSERT(slice >= 0 && slice < V_NUMPAR);
715 
716 		/*
717 		 * v1.0 vDisk clients depended on the server not verifying
718 		 * the label of a unformatted disk.  This "feature" is
719 		 * maintained for backward compatibility but all versions
720 		 * from v1.1 onwards must do the right thing.
721 		 */
722 		if (vd->vdisk_label == VD_DISK_LABEL_UNK &&
723 		    vio_ver_is_supported(vd->version, 1, 1)) {
724 			(void) vd_file_validate_geometry(vd);
725 			if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
726 				PR0("Unknown disk label, can't do I/O "
727 				    "from slice %d", slice);
728 				return (-1);
729 			}
730 		}
731 
732 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
733 			ASSERT(vd->vtoc.v_sectorsz == DEV_BSIZE);
734 		} else {
735 			ASSERT(vd->vdisk_label == VD_DISK_LABEL_EFI);
736 			ASSERT(vd->vdisk_block_size == DEV_BSIZE);
737 		}
738 
739 		if (blk >= vd->slices[slice].nblocks) {
740 			/* address past the end of the slice */
741 			PR0("req_addr (0x%lx) >= psize (0x%lx)",
742 			    blk, vd->slices[slice].nblocks);
743 			return (0);
744 		}
745 
746 		offset = (vd->slices[slice].start + blk) * DEV_BSIZE;
747 		maxlen = (vd->slices[slice].nblocks - blk) * DEV_BSIZE;
748 	}
749 
750 	/*
751 	 * If the requested size is greater than the size
752 	 * of the partition, truncate the read/write.
753 	 */
754 	if (len > maxlen) {
755 		PR0("I/O size truncated to %lu bytes from %lu bytes",
756 		    maxlen, len);
757 		len = maxlen;
758 	}
759 
760 	/*
761 	 * We have to ensure that we are reading/writing into the mmap
762 	 * range. If we have a partial disk image (e.g. an image of
763 	 * s0 instead s2) the system can try to access slices that
764 	 * are not included into the disk image.
765 	 */
766 	if ((offset + len) > vd->file_size) {
767 		PR0("offset + nbytes (0x%lx + 0x%lx) > "
768 		    "file_size (0x%lx)", offset, len, vd->file_size);
769 		return (-1);
770 	}
771 
772 	srw = (operation == VD_OP_BREAD)? S_READ : S_WRITE;
773 	smflags = (operation == VD_OP_BREAD)? 0 :
774 	    (SM_WRITE | vd_file_write_flags);
775 	n = len;
776 
777 	do {
778 		/*
779 		 * segmap_getmapflt() returns a MAXBSIZE chunk which is
780 		 * MAXBSIZE aligned.
781 		 */
782 		moffset = offset & MAXBOFFSET;
783 		mlen = MIN(MAXBSIZE - moffset, n);
784 		maddr = segmap_getmapflt(segkmap, vd->file_vnode, offset,
785 		    mlen, 1, srw);
786 		/*
787 		 * Fault in the pages so we can check for error and ensure
788 		 * that we can safely used the mapped address.
789 		 */
790 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
791 		    F_SOFTLOCK, srw) != 0) {
792 			(void) segmap_release(segkmap, maddr, 0);
793 			return (-1);
794 		}
795 
796 		if (operation == VD_OP_BREAD)
797 			bcopy(maddr + moffset, data, mlen);
798 		else
799 			bcopy(data, maddr + moffset, mlen);
800 
801 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
802 		    F_SOFTUNLOCK, srw) != 0) {
803 			(void) segmap_release(segkmap, maddr, 0);
804 			return (-1);
805 		}
806 		if (segmap_release(segkmap, maddr, smflags) != 0)
807 			return (-1);
808 		n -= mlen;
809 		offset += mlen;
810 		data += mlen;
811 
812 	} while (n > 0);
813 
814 	return (len);
815 }
816 
817 /*
818  * Function:
819  *	vd_build_default_label
820  *
821  * Description:
822  *	Return a default label for a given disk size. This is used when the disk
823  *	does not have a valid VTOC so that the user can get a valid default
824  *	configuration. The default label has all slice sizes set to 0 (except
825  *	slice 2 which is the entire disk) to force the user to write a valid
826  *	label onto the disk image.
827  *
828  * Parameters:
829  *	disk_size	- the disk size in bytes
830  *	label		- the returned default label.
831  *
832  * Return Code:
833  *	none.
834  */
835 static void
836 vd_build_default_label(size_t disk_size, struct dk_label *label)
837 {
838 	size_t size;
839 	char unit;
840 
841 	bzero(label, sizeof (struct dk_label));
842 
843 	/*
844 	 * We must have a resonable number of cylinders and sectors so
845 	 * that newfs can run using default values.
846 	 *
847 	 * if (disk_size < 2MB)
848 	 * 	phys_cylinders = disk_size / 100K
849 	 * else
850 	 * 	phys_cylinders = disk_size / 300K
851 	 *
852 	 * phys_cylinders = (phys_cylinders == 0) ? 1 : phys_cylinders
853 	 * alt_cylinders = (phys_cylinders > 2) ? 2 : 0;
854 	 * data_cylinders = phys_cylinders - alt_cylinders
855 	 *
856 	 * sectors = disk_size / (phys_cylinders * blk_size)
857 	 *
858 	 * The file size test is an attempt to not have too few cylinders
859 	 * for a small file, or so many on a big file that you waste space
860 	 * for backup superblocks or cylinder group structures.
861 	 */
862 	if (disk_size < (2 * 1024 * 1024))
863 		label->dkl_pcyl = disk_size / (100 * 1024);
864 	else
865 		label->dkl_pcyl = disk_size / (300 * 1024);
866 
867 	if (label->dkl_pcyl == 0)
868 		label->dkl_pcyl = 1;
869 
870 	label->dkl_acyl = 0;
871 
872 	if (label->dkl_pcyl > 2)
873 		label->dkl_acyl = 2;
874 
875 	label->dkl_nsect = disk_size / (DEV_BSIZE * label->dkl_pcyl);
876 	label->dkl_ncyl = label->dkl_pcyl - label->dkl_acyl;
877 	label->dkl_nhead = 1;
878 	label->dkl_write_reinstruct = 0;
879 	label->dkl_read_reinstruct = 0;
880 	label->dkl_rpm = 7200;
881 	label->dkl_apc = 0;
882 	label->dkl_intrlv = 0;
883 
884 	PR0("requested disk size: %ld bytes\n", disk_size);
885 	PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label->dkl_pcyl,
886 	    label->dkl_nhead, label->dkl_nsect);
887 	PR0("provided disk size: %ld bytes\n", (uint64_t)
888 	    (label->dkl_pcyl * label->dkl_nhead *
889 	    label->dkl_nsect * DEV_BSIZE));
890 
891 	vd_get_readable_size(disk_size, &size, &unit);
892 
893 	/*
894 	 * We must have a correct label name otherwise format(1m) will
895 	 * not recognized the disk as labeled.
896 	 */
897 	(void) snprintf(label->dkl_asciilabel, LEN_DKL_ASCII,
898 	    "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d",
899 	    size, unit,
900 	    label->dkl_ncyl, label->dkl_acyl, label->dkl_nhead,
901 	    label->dkl_nsect);
902 
903 	/* default VTOC */
904 	label->dkl_vtoc.v_version = V_VERSION;
905 	label->dkl_vtoc.v_nparts = V_NUMPAR;
906 	label->dkl_vtoc.v_sanity = VTOC_SANE;
907 	label->dkl_vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP;
908 	label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_cylno = 0;
909 	label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_nblk = label->dkl_ncyl *
910 	    label->dkl_nhead * label->dkl_nsect;
911 	label->dkl_magic = DKL_MAGIC;
912 	label->dkl_cksum = vd_lbl2cksum(label);
913 }
914 
915 /*
916  * Function:
917  *	vd_file_set_vtoc
918  *
919  * Description:
920  *	Set the vtoc of a disk image by writing the label and backup
921  *	labels into the disk image backend.
922  *
923  * Parameters:
924  *	vd		- disk on which the operation is performed.
925  *	label		- the data to be written.
926  *
927  * Return Code:
928  *	0		- success.
929  *	n > 0		- error, n indicates the errno code.
930  */
931 static int
932 vd_file_set_vtoc(vd_t *vd, struct dk_label *label)
933 {
934 	int blk, sec, cyl, head, cnt;
935 
936 	ASSERT(vd->file);
937 
938 	if (VD_FILE_LABEL_WRITE(vd, label) < 0) {
939 		PR0("fail to write disk label");
940 		return (EIO);
941 	}
942 
943 	/*
944 	 * Backup labels are on the last alternate cylinder's
945 	 * first five odd sectors.
946 	 */
947 	if (label->dkl_acyl == 0) {
948 		PR0("no alternate cylinder, can not store backup labels");
949 		return (0);
950 	}
951 
952 	cyl = label->dkl_ncyl  + label->dkl_acyl - 1;
953 	head = label->dkl_nhead - 1;
954 
955 	blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) +
956 	    (head * label->dkl_nsect);
957 
958 	/*
959 	 * Write the backup labels. Make sure we don't try to write past
960 	 * the last cylinder.
961 	 */
962 	sec = 1;
963 
964 	for (cnt = 0; cnt < VD_FILE_NUM_BACKUP; cnt++) {
965 
966 		if (sec >= label->dkl_nsect) {
967 			PR0("not enough sector to store all backup labels");
968 			return (0);
969 		}
970 
971 		if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)label,
972 		    blk + sec, sizeof (struct dk_label)) < 0) {
973 			PR0("error writing backup label at block %d\n",
974 			    blk + sec);
975 			return (EIO);
976 		}
977 
978 		PR1("wrote backup label at block %d\n", blk + sec);
979 
980 		sec += 2;
981 	}
982 
983 	return (0);
984 }
985 
986 /*
987  * Function:
988  *	vd_file_get_devid_block
989  *
990  * Description:
991  *	Return the block number where the device id is stored.
992  *
993  * Parameters:
994  *	vd		- disk on which the operation is performed.
995  *	blkp		- pointer to the block number
996  *
997  * Return Code:
998  *	0		- success
999  *	ENOSPC		- disk has no space to store a device id
1000  */
1001 static int
1002 vd_file_get_devid_block(vd_t *vd, size_t *blkp)
1003 {
1004 	diskaddr_t spc, head, cyl;
1005 
1006 	ASSERT(vd->file);
1007 
1008 	if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
1009 		/*
1010 		 * If no label is defined we don't know where to find
1011 		 * a device id.
1012 		 */
1013 		return (ENOSPC);
1014 	}
1015 
1016 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
1017 		/*
1018 		 * For an EFI disk, the devid is at the beginning of
1019 		 * the reserved slice
1020 		 */
1021 		if (vd->efi_reserved == -1) {
1022 			PR0("EFI disk has no reserved slice");
1023 			return (ENOSPC);
1024 		}
1025 
1026 		*blkp = vd->slices[vd->efi_reserved].start;
1027 		return (0);
1028 	}
1029 
1030 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
1031 
1032 	/* this geometry doesn't allow us to have a devid */
1033 	if (vd->dk_geom.dkg_acyl < 2) {
1034 		PR0("not enough alternate cylinder available for devid "
1035 		    "(acyl=%u)", vd->dk_geom.dkg_acyl);
1036 		return (ENOSPC);
1037 	}
1038 
1039 	/* the devid is in on the track next to the last cylinder */
1040 	cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2;
1041 	spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
1042 	head = vd->dk_geom.dkg_nhead - 1;
1043 
1044 	*blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) +
1045 	    (head * vd->dk_geom.dkg_nsect) + 1;
1046 
1047 	return (0);
1048 }
1049 
1050 /*
1051  * Return the checksum of a disk block containing an on-disk devid.
1052  */
1053 static uint_t
1054 vd_dkdevid2cksum(struct dk_devid *dkdevid)
1055 {
1056 	uint_t chksum, *ip;
1057 	int i;
1058 
1059 	chksum = 0;
1060 	ip = (uint_t *)dkdevid;
1061 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++)
1062 		chksum ^= ip[i];
1063 
1064 	return (chksum);
1065 }
1066 
1067 /*
1068  * Function:
1069  *	vd_file_read_devid
1070  *
1071  * Description:
1072  *	Read the device id stored on a disk image.
1073  *
1074  * Parameters:
1075  *	vd		- disk on which the operation is performed.
1076  *	devid		- the return address of the device ID.
1077  *
1078  * Return Code:
1079  *	0		- success
1080  *	EIO		- I/O error while trying to access the disk image
1081  *	EINVAL		- no valid device id was found
1082  *	ENOSPC		- disk has no space to store a device id
1083  */
1084 static int
1085 vd_file_read_devid(vd_t *vd, ddi_devid_t *devid)
1086 {
1087 	struct dk_devid *dkdevid;
1088 	size_t blk;
1089 	uint_t chksum;
1090 	int status, sz;
1091 
1092 	if ((status = vd_file_get_devid_block(vd, &blk)) != 0)
1093 		return (status);
1094 
1095 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
1096 
1097 	/* get the devid */
1098 	if ((vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk,
1099 	    DEV_BSIZE)) < 0) {
1100 		PR0("error reading devid block at %lu", blk);
1101 		status = EIO;
1102 		goto done;
1103 	}
1104 
1105 	/* validate the revision */
1106 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
1107 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
1108 		PR0("invalid devid found at block %lu (bad revision)", blk);
1109 		status = EINVAL;
1110 		goto done;
1111 	}
1112 
1113 	/* compute checksum */
1114 	chksum = vd_dkdevid2cksum(dkdevid);
1115 
1116 	/* compare the checksums */
1117 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
1118 		PR0("invalid devid found at block %lu (bad checksum)", blk);
1119 		status = EINVAL;
1120 		goto done;
1121 	}
1122 
1123 	/* validate the device id */
1124 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
1125 		PR0("invalid devid found at block %lu", blk);
1126 		status = EINVAL;
1127 		goto done;
1128 	}
1129 
1130 	PR1("devid read at block %lu", blk);
1131 
1132 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
1133 	*devid = kmem_alloc(sz, KM_SLEEP);
1134 	bcopy(&dkdevid->dkd_devid, *devid, sz);
1135 
1136 done:
1137 	kmem_free(dkdevid, DEV_BSIZE);
1138 	return (status);
1139 
1140 }
1141 
1142 /*
1143  * Function:
1144  *	vd_file_write_devid
1145  *
1146  * Description:
1147  *	Write a device id into disk image.
1148  *
1149  * Parameters:
1150  *	vd		- disk on which the operation is performed.
1151  *	devid		- the device ID to store.
1152  *
1153  * Return Code:
1154  *	0		- success
1155  *	EIO		- I/O error while trying to access the disk image
1156  *	ENOSPC		- disk has no space to store a device id
1157  */
1158 static int
1159 vd_file_write_devid(vd_t *vd, ddi_devid_t devid)
1160 {
1161 	struct dk_devid *dkdevid;
1162 	uint_t chksum;
1163 	size_t blk;
1164 	int status;
1165 
1166 	if (devid == NULL) {
1167 		/* nothing to write */
1168 		return (0);
1169 	}
1170 
1171 	if ((status = vd_file_get_devid_block(vd, &blk)) != 0)
1172 		return (status);
1173 
1174 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
1175 
1176 	/* set revision */
1177 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
1178 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
1179 
1180 	/* copy devid */
1181 	bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid));
1182 
1183 	/* compute checksum */
1184 	chksum = vd_dkdevid2cksum(dkdevid);
1185 
1186 	/* set checksum */
1187 	DKD_FORMCHKSUM(chksum, dkdevid);
1188 
1189 	/* store the devid */
1190 	if ((status = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
1191 	    (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) {
1192 		PR0("Error writing devid block at %lu", blk);
1193 		status = EIO;
1194 	} else {
1195 		PR1("devid written at block %lu", blk);
1196 		status = 0;
1197 	}
1198 
1199 	kmem_free(dkdevid, DEV_BSIZE);
1200 	return (status);
1201 }
1202 
1203 /*
1204  * Function:
1205  *	vd_do_scsi_rdwr
1206  *
1207  * Description:
1208  * 	Read or write to a SCSI disk using an absolute disk offset.
1209  *
1210  * Parameters:
1211  *	vd		- disk on which the operation is performed.
1212  *	operation	- operation to execute: read (VD_OP_BREAD) or
1213  *			  write (VD_OP_BWRITE).
1214  *	data		- buffer where data are read to or written from.
1215  *	blk		- starting block for the operation.
1216  *	len		- number of bytes to read or write.
1217  *
1218  * Return Code:
1219  *	0		- success
1220  *	n != 0		- error.
1221  */
1222 static int
1223 vd_do_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len)
1224 {
1225 	struct uscsi_cmd ucmd;
1226 	union scsi_cdb cdb;
1227 	int nsectors, nblk;
1228 	int max_sectors;
1229 	int status, rval;
1230 
1231 	ASSERT(!vd->file);
1232 	ASSERT(vd->vdisk_block_size > 0);
1233 
1234 	max_sectors = vd->max_xfer_sz;
1235 	nblk = (len / vd->vdisk_block_size);
1236 
1237 	if (len % vd->vdisk_block_size != 0)
1238 		return (EINVAL);
1239 
1240 	/*
1241 	 * Build and execute the uscsi ioctl.  We build a group0, group1
1242 	 * or group4 command as necessary, since some targets
1243 	 * do not support group1 commands.
1244 	 */
1245 	while (nblk) {
1246 
1247 		bzero(&ucmd, sizeof (ucmd));
1248 		bzero(&cdb, sizeof (cdb));
1249 
1250 		nsectors = (max_sectors < nblk) ? max_sectors : nblk;
1251 
1252 		/*
1253 		 * Some of the optical drives on sun4v machines are ATAPI
1254 		 * devices which use Group 1 Read/Write commands so we need
1255 		 * to explicitly check a flag which is set when a domain
1256 		 * is bound.
1257 		 */
1258 		if (blk < (2 << 20) && nsectors <= 0xff && !vd->is_atapi_dev) {
1259 			FORMG0ADDR(&cdb, blk);
1260 			FORMG0COUNT(&cdb, nsectors);
1261 			ucmd.uscsi_cdblen = CDB_GROUP0;
1262 		} else if (blk > 0xffffffff) {
1263 			FORMG4LONGADDR(&cdb, blk);
1264 			FORMG4COUNT(&cdb, nsectors);
1265 			ucmd.uscsi_cdblen = CDB_GROUP4;
1266 			cdb.scc_cmd |= SCMD_GROUP4;
1267 		} else {
1268 			FORMG1ADDR(&cdb, blk);
1269 			FORMG1COUNT(&cdb, nsectors);
1270 			ucmd.uscsi_cdblen = CDB_GROUP1;
1271 			cdb.scc_cmd |= SCMD_GROUP1;
1272 		}
1273 		ucmd.uscsi_cdb = (caddr_t)&cdb;
1274 		ucmd.uscsi_bufaddr = data;
1275 		ucmd.uscsi_buflen = nsectors * vd->block_size;
1276 		ucmd.uscsi_timeout = vd_scsi_rdwr_timeout;
1277 		/*
1278 		 * Set flags so that the command is isolated from normal
1279 		 * commands and no error message is printed.
1280 		 */
1281 		ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT;
1282 
1283 		if (operation == VD_OP_BREAD) {
1284 			cdb.scc_cmd |= SCMD_READ;
1285 			ucmd.uscsi_flags |= USCSI_READ;
1286 		} else {
1287 			cdb.scc_cmd |= SCMD_WRITE;
1288 		}
1289 
1290 		status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE],
1291 		    USCSICMD, (intptr_t)&ucmd, (vd->open_flags | FKIOCTL),
1292 		    kcred, &rval);
1293 
1294 		if (status == 0)
1295 			status = ucmd.uscsi_status;
1296 
1297 		if (status != 0)
1298 			break;
1299 
1300 		/*
1301 		 * Check if partial DMA breakup is required. If so, reduce
1302 		 * the request size by half and retry the last request.
1303 		 */
1304 		if (ucmd.uscsi_resid == ucmd.uscsi_buflen) {
1305 			max_sectors >>= 1;
1306 			if (max_sectors <= 0) {
1307 				status = EIO;
1308 				break;
1309 			}
1310 			continue;
1311 		}
1312 
1313 		if (ucmd.uscsi_resid != 0) {
1314 			status = EIO;
1315 			break;
1316 		}
1317 
1318 		blk += nsectors;
1319 		nblk -= nsectors;
1320 		data += nsectors * vd->vdisk_block_size; /* SECSIZE */
1321 	}
1322 
1323 	return (status);
1324 }
1325 
1326 /*
1327  * Function:
1328  *	vd_scsi_rdwr
1329  *
1330  * Description:
1331  * 	Wrapper function to read or write to a SCSI disk using an absolute
1332  *	disk offset. It checks the blocksize of the underlying device and,
1333  *	if necessary, adjusts the buffers accordingly before calling
1334  *	vd_do_scsi_rdwr() to do the actual read or write.
1335  *
1336  * Parameters:
1337  *	vd		- disk on which the operation is performed.
1338  *	operation	- operation to execute: read (VD_OP_BREAD) or
1339  *			  write (VD_OP_BWRITE).
1340  *	data		- buffer where data are read to or written from.
1341  *	blk		- starting block for the operation.
1342  *	len		- number of bytes to read or write.
1343  *
1344  * Return Code:
1345  *	0		- success
1346  *	n != 0		- error.
1347  */
1348 static int
1349 vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t vblk, size_t vlen)
1350 {
1351 	int	rv;
1352 
1353 	size_t	pblk;	/* physical device block number of data on device */
1354 	size_t	delta;	/* relative offset between pblk and vblk */
1355 	size_t	pnblk;	/* number of physical blocks to be read from device */
1356 	size_t	plen;	/* length of data to be read from physical device */
1357 	char	*buf;	/* buffer area to fit physical device's block size */
1358 
1359 	if (vd->block_size == 0) {
1360 		/*
1361 		 * The block size was not available during the attach,
1362 		 * try to update it now.
1363 		 */
1364 		if (vd_setup_mediainfo(vd) != 0)
1365 			return (EIO);
1366 	}
1367 
1368 	/*
1369 	 * If the vdisk block size and the block size of the underlying device
1370 	 * match we can skip straight to vd_do_scsi_rdwr(), otherwise we need
1371 	 * to create a buffer large enough to handle the device's block size
1372 	 * and adjust the block to be read from and the amount of data to
1373 	 * read to correspond with the device's block size.
1374 	 */
1375 	if (vd->vdisk_block_size == vd->block_size)
1376 		return (vd_do_scsi_rdwr(vd, operation, data, vblk, vlen));
1377 
1378 	if (vd->vdisk_block_size > vd->block_size)
1379 		return (EINVAL);
1380 
1381 	/*
1382 	 * Writing of physical block sizes larger than the virtual block size
1383 	 * is not supported. This would be added if/when support for guests
1384 	 * writing to DVDs is implemented.
1385 	 */
1386 	if (operation == VD_OP_BWRITE)
1387 		return (ENOTSUP);
1388 
1389 	/* BEGIN CSTYLED */
1390 	/*
1391 	 * Below is a diagram showing the relationship between the physical
1392 	 * and virtual blocks. If the virtual blocks marked by 'X' below are
1393 	 * requested, then the physical blocks denoted by 'Y' are read.
1394 	 *
1395 	 *           vblk
1396 	 *             |      vlen
1397 	 *             |<--------------->|
1398 	 *             v                 v
1399 	 *  --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-   virtual disk:
1400 	 *    |  |  |  |XX|XX|XX|XX|XX|XX|  |  |  |  |  |  } block size is
1401 	 *  --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-  vd->vdisk_block_size
1402 	 *          :  :                 :  :
1403 	 *         >:==:< delta          :  :
1404 	 *          :  :                 :  :
1405 	 *  --+-----+-----+-----+-----+-----+-----+-----+--   physical disk:
1406 	 *    |     |YY:YY|YYYYY|YYYYY|YY:YY|     |     |   } block size is
1407 	 *  --+-----+-----+-----+-----+-----+-----+-----+--   vd->block_size
1408 	 *          ^                       ^
1409 	 *          |<--------------------->|
1410 	 *          |         plen
1411 	 *         pblk
1412 	 */
1413 	/* END CSTYLED */
1414 	pblk = (vblk * vd->vdisk_block_size) / vd->block_size;
1415 	delta = (vblk * vd->vdisk_block_size) - (pblk * vd->block_size);
1416 	pnblk = ((delta + vlen - 1) / vd->block_size) + 1;
1417 	plen = pnblk * vd->block_size;
1418 
1419 	PR2("vblk %lx:pblk %lx: vlen %ld:plen %ld", vblk, pblk, vlen, plen);
1420 
1421 	buf = kmem_zalloc(sizeof (caddr_t) * plen, KM_SLEEP);
1422 	rv = vd_do_scsi_rdwr(vd, operation, (caddr_t)buf, pblk, plen);
1423 	bcopy(buf + delta, data, vlen);
1424 
1425 	kmem_free(buf, sizeof (caddr_t) * plen);
1426 
1427 	return (rv);
1428 }
1429 
1430 /*
1431  * Function:
1432  *	vd_slice_flabel_read
1433  *
1434  * Description:
1435  *	This function simulates a read operation from the fake label of
1436  *	a single-slice disk.
1437  *
1438  * Parameters:
1439  *	vd		- single-slice disk to read from
1440  *	data		- buffer where data should be read to
1441  *	offset		- offset in byte where the read should start
1442  *	length		- number of bytes to read
1443  *
1444  * Return Code:
1445  *	n >= 0		- success, n indicates the number of bytes read
1446  *	-1		- error
1447  */
1448 static ssize_t
1449 vd_slice_flabel_read(vd_t *vd, caddr_t data, size_t offset, size_t length)
1450 {
1451 	size_t n = 0;
1452 	uint_t limit = vd->flabel_limit * DEV_BSIZE;
1453 
1454 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1455 	ASSERT(vd->flabel != NULL);
1456 
1457 	/* if offset is past the fake label limit there's nothing to read */
1458 	if (offset >= limit)
1459 		return (0);
1460 
1461 	/* data with offset 0 to flabel_size are read from flabel */
1462 	if (offset < vd->flabel_size) {
1463 
1464 		if (offset + length <= vd->flabel_size) {
1465 			bcopy(vd->flabel + offset, data, length);
1466 			return (length);
1467 		}
1468 
1469 		n = vd->flabel_size - offset;
1470 		bcopy(vd->flabel + offset, data, n);
1471 		data += n;
1472 	}
1473 
1474 	/* data with offset from flabel_size to flabel_limit are all zeros */
1475 	if (offset + length <= limit) {
1476 		bzero(data, length - n);
1477 		return (length);
1478 	}
1479 
1480 	bzero(data, limit - offset - n);
1481 	return (limit - offset);
1482 }
1483 
1484 /*
1485  * Function:
1486  *	vd_slice_flabel_write
1487  *
1488  * Description:
1489  *	This function simulates a write operation to the fake label of
1490  *	a single-slice disk. Write operations are actually faked and return
1491  *	success although the label is never changed. This is mostly to
1492  *	simulate a successful label update.
1493  *
1494  * Parameters:
1495  *	vd		- single-slice disk to write to
1496  *	data		- buffer where data should be written from
1497  *	offset		- offset in byte where the write should start
1498  *	length		- number of bytes to written
1499  *
1500  * Return Code:
1501  *	n >= 0		- success, n indicates the number of bytes written
1502  *	-1		- error
1503  */
1504 static ssize_t
1505 vd_slice_flabel_write(vd_t *vd, caddr_t data, size_t offset, size_t length)
1506 {
1507 	uint_t limit = vd->flabel_limit * DEV_BSIZE;
1508 	struct dk_label *label;
1509 	struct dk_geom geom;
1510 	struct vtoc vtoc;
1511 
1512 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1513 	ASSERT(vd->flabel != NULL);
1514 
1515 	if (offset >= limit)
1516 		return (0);
1517 
1518 	/*
1519 	 * If this is a request to overwrite the VTOC disk label, check that
1520 	 * the new label is similar to the previous one and return that the
1521 	 * write was successful, but note that nothing is actually overwritten.
1522 	 */
1523 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
1524 	    offset == 0 && length == DEV_BSIZE) {
1525 		label = (struct dk_label *)data;
1526 
1527 		/* check that this is a valid label */
1528 		if (label->dkl_magic != DKL_MAGIC ||
1529 		    label->dkl_cksum != vd_lbl2cksum(label))
1530 			return (-1);
1531 
1532 		/* check the vtoc and geometry */
1533 		vd_label_to_vtocgeom(label, &vtoc, &geom);
1534 		if (vd_slice_geom_isvalid(vd, &geom) &&
1535 		    vd_slice_vtoc_isvalid(vd, &vtoc))
1536 			return (length);
1537 	}
1538 
1539 	/* fail any other write */
1540 	return (-1);
1541 }
1542 
1543 /*
1544  * Function:
1545  *	vd_slice_fake_rdwr
1546  *
1547  * Description:
1548  *	This function simulates a raw read or write operation to a single-slice
1549  *	disk. It only handles the faked part of the operation i.e. I/Os to
1550  *	blocks which have no mapping with the vdisk backend (I/Os to the
1551  *	beginning and to the end of the vdisk).
1552  *
1553  *	The function returns 0 is the operation	is completed and it has been
1554  *	entirely handled as a fake read or write. In that case, lengthp points
1555  *	to the number of bytes not read or written. Values returned by datap
1556  *	and blkp are undefined.
1557  *
1558  *	If the fake operation has succeeded but the read or write is not
1559  *	complete (i.e. the read/write operation extends beyond the blocks
1560  *	we fake) then the function returns EAGAIN and datap, blkp and lengthp
1561  *	pointers points to the parameters for completing the operation.
1562  *
1563  *	In case of an error, for example if the slice is empty or parameters
1564  *	are invalid, then the function returns a non-zero value different
1565  *	from EAGAIN. In that case, the returned values of datap, blkp and
1566  *	lengthp are undefined.
1567  *
1568  * Parameters:
1569  *	vd		- single-slice disk on which the operation is performed
1570  *	slice		- slice on which the operation is performed,
1571  *			  VD_SLICE_NONE indicates that the operation
1572  *			  is done using an absolute disk offset.
1573  *	operation	- operation to execute: read (VD_OP_BREAD) or
1574  *			  write (VD_OP_BWRITE).
1575  *	datap		- pointer to the buffer where data are read to
1576  *			  or written from. Return the pointer where remaining
1577  *			  data have to be read to or written from.
1578  *	blkp		- pointer to the starting block for the operation.
1579  *			  Return the starting block relative to the vdisk
1580  *			  backend for the remaining operation.
1581  *	lengthp		- pointer to the number of bytes to read or write.
1582  *			  This should be a multiple of DEV_BSIZE. Return the
1583  *			  remaining number of bytes to read or write.
1584  *
1585  * Return Code:
1586  *	0		- read/write operation is completed
1587  *	EAGAIN		- read/write operation is not completed
1588  *	other values	- error
1589  */
1590 static int
1591 vd_slice_fake_rdwr(vd_t *vd, int slice, int operation, caddr_t *datap,
1592     size_t *blkp, size_t *lengthp)
1593 {
1594 	struct dk_label *label;
1595 	caddr_t data;
1596 	size_t blk, length, csize;
1597 	size_t ablk, asize, aoff, alen;
1598 	ssize_t n;
1599 	int sec, status;
1600 
1601 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1602 	ASSERT(slice != 0);
1603 
1604 	data = *datap;
1605 	blk = *blkp;
1606 	length = *lengthp;
1607 
1608 	/*
1609 	 * If this is not a raw I/O or an I/O from a full disk slice then
1610 	 * this is an I/O to/from an empty slice.
1611 	 */
1612 	if (slice != VD_SLICE_NONE &&
1613 	    (slice != VD_ENTIRE_DISK_SLICE ||
1614 	    vd->vdisk_label != VD_DISK_LABEL_VTOC) &&
1615 	    (slice != VD_EFI_WD_SLICE ||
1616 	    vd->vdisk_label != VD_DISK_LABEL_EFI)) {
1617 		return (EIO);
1618 	}
1619 
1620 	if (length % DEV_BSIZE != 0)
1621 		return (EINVAL);
1622 
1623 	/* handle any I/O with the fake label */
1624 	if (operation == VD_OP_BWRITE)
1625 		n = vd_slice_flabel_write(vd, data, blk * DEV_BSIZE, length);
1626 	else
1627 		n = vd_slice_flabel_read(vd, data, blk * DEV_BSIZE, length);
1628 
1629 	if (n == -1)
1630 		return (EINVAL);
1631 
1632 	ASSERT(n % DEV_BSIZE == 0);
1633 
1634 	/* adjust I/O arguments */
1635 	data += n;
1636 	blk += n / DEV_BSIZE;
1637 	length -= n;
1638 
1639 	/* check if there's something else to process */
1640 	if (length == 0) {
1641 		status = 0;
1642 		goto done;
1643 	}
1644 
1645 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
1646 	    slice == VD_ENTIRE_DISK_SLICE) {
1647 		status = EAGAIN;
1648 		goto done;
1649 	}
1650 
1651 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
1652 		asize = EFI_MIN_RESV_SIZE + 33;
1653 		ablk = vd->vdisk_size - asize;
1654 	} else {
1655 		ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
1656 		ASSERT(vd->dk_geom.dkg_apc == 0);
1657 
1658 		csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
1659 		ablk = vd->dk_geom.dkg_ncyl * csize;
1660 		asize = vd->dk_geom.dkg_acyl * csize;
1661 	}
1662 
1663 	alen = length / DEV_BSIZE;
1664 	aoff = blk;
1665 
1666 	/* if we have reached the last block then the I/O is completed */
1667 	if (aoff == ablk + asize) {
1668 		status = 0;
1669 		goto done;
1670 	}
1671 
1672 	/* if we are past the last block then return an error */
1673 	if (aoff > ablk + asize)
1674 		return (EIO);
1675 
1676 	/* check if there is any I/O to end of the disk */
1677 	if (aoff + alen < ablk) {
1678 		status = EAGAIN;
1679 		goto done;
1680 	}
1681 
1682 	/* we don't allow any write to the end of the disk */
1683 	if (operation == VD_OP_BWRITE)
1684 		return (EIO);
1685 
1686 	if (aoff < ablk) {
1687 		alen -= (ablk - aoff);
1688 		aoff = ablk;
1689 	}
1690 
1691 	if (aoff + alen > ablk + asize) {
1692 		alen = ablk + asize - aoff;
1693 	}
1694 
1695 	alen *= DEV_BSIZE;
1696 
1697 	if (operation == VD_OP_BREAD) {
1698 		bzero(data + (aoff - blk) * DEV_BSIZE, alen);
1699 
1700 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
1701 			/* check if we read backup labels */
1702 			label = VD_LABEL_VTOC(vd);
1703 			ablk += (label->dkl_acyl - 1) * csize +
1704 			    (label->dkl_nhead - 1) * label->dkl_nsect;
1705 
1706 			for (sec = 1; (sec < 5 * 2 + 1); sec += 2) {
1707 
1708 				if (ablk + sec >= blk &&
1709 				    ablk + sec < blk + (length / DEV_BSIZE)) {
1710 					bcopy(label, data +
1711 					    (ablk + sec - blk) * DEV_BSIZE,
1712 					    sizeof (struct dk_label));
1713 				}
1714 			}
1715 		}
1716 	}
1717 
1718 	length -= alen;
1719 
1720 	status = (length == 0)? 0: EAGAIN;
1721 
1722 done:
1723 	ASSERT(length == 0 || blk >= vd->flabel_limit);
1724 
1725 	/*
1726 	 * Return the parameters for the remaining I/O. The starting block is
1727 	 * adjusted so that it is relative to the vdisk backend.
1728 	 */
1729 	*datap = data;
1730 	*blkp = blk - vd->flabel_limit;
1731 	*lengthp = length;
1732 
1733 	return (status);
1734 }
1735 
1736 /*
1737  * Return Values
1738  *	EINPROGRESS	- operation was successfully started
1739  *	EIO		- encountered LDC (aka. task error)
1740  *	0		- operation completed successfully
1741  *
1742  * Side Effect
1743  *     sets request->status = <disk operation status>
1744  */
1745 static int
1746 vd_start_bio(vd_task_t *task)
1747 {
1748 	int			rv, status = 0;
1749 	vd_t			*vd		= task->vd;
1750 	vd_dring_payload_t	*request	= task->request;
1751 	struct buf		*buf		= &task->buf;
1752 	uint8_t			mtype;
1753 	int 			slice;
1754 	char			*bufaddr = 0;
1755 	size_t			buflen;
1756 	size_t			offset, length, nbytes;
1757 
1758 	ASSERT(vd != NULL);
1759 	ASSERT(request != NULL);
1760 
1761 	slice = request->slice;
1762 
1763 	ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices);
1764 	ASSERT((request->operation == VD_OP_BREAD) ||
1765 	    (request->operation == VD_OP_BWRITE));
1766 
1767 	if (request->nbytes == 0) {
1768 		/* no service for trivial requests */
1769 		request->status = EINVAL;
1770 		return (0);
1771 	}
1772 
1773 	PR1("%s %lu bytes at block %lu",
1774 	    (request->operation == VD_OP_BREAD) ? "Read" : "Write",
1775 	    request->nbytes, request->addr);
1776 
1777 	/*
1778 	 * We have to check the open flags because the functions processing
1779 	 * the read/write request will not do it.
1780 	 */
1781 	if (request->operation == VD_OP_BWRITE && !(vd->open_flags & FWRITE)) {
1782 		PR0("write fails because backend is opened read-only");
1783 		request->nbytes = 0;
1784 		request->status = EROFS;
1785 		return (0);
1786 	}
1787 
1788 	mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP;
1789 
1790 	/* Map memory exported by client */
1791 	status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies,
1792 	    mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R,
1793 	    &bufaddr, NULL);
1794 	if (status != 0) {
1795 		PR0("ldc_mem_map() returned err %d ", status);
1796 		return (EIO);
1797 	}
1798 
1799 	/*
1800 	 * The buffer size has to be 8-byte aligned, so the client should have
1801 	 * sent a buffer which size is roundup to the next 8-byte aligned value.
1802 	 */
1803 	buflen = P2ROUNDUP(request->nbytes, 8);
1804 
1805 	status = ldc_mem_acquire(task->mhdl, 0, buflen);
1806 	if (status != 0) {
1807 		(void) ldc_mem_unmap(task->mhdl);
1808 		PR0("ldc_mem_acquire() returned err %d ", status);
1809 		return (EIO);
1810 	}
1811 
1812 	offset = request->addr;
1813 	nbytes = request->nbytes;
1814 	length = nbytes;
1815 
1816 	/* default number of byte returned by the I/O */
1817 	request->nbytes = 0;
1818 
1819 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
1820 
1821 		if (slice != 0) {
1822 			/* handle any fake I/O */
1823 			rv = vd_slice_fake_rdwr(vd, slice, request->operation,
1824 			    &bufaddr, &offset, &length);
1825 
1826 			/* record the number of bytes from the fake I/O */
1827 			request->nbytes = nbytes - length;
1828 
1829 			if (rv == 0) {
1830 				request->status = 0;
1831 				goto io_done;
1832 			}
1833 
1834 			if (rv != EAGAIN) {
1835 				request->nbytes = 0;
1836 				request->status = EIO;
1837 				goto io_done;
1838 			}
1839 
1840 			/*
1841 			 * If we return with EAGAIN then this means that there
1842 			 * are still data to read or write.
1843 			 */
1844 			ASSERT(length != 0);
1845 
1846 			/*
1847 			 * We need to continue the I/O from the slice backend to
1848 			 * complete the request. The variables bufaddr, offset
1849 			 * and length have been adjusted to have the right
1850 			 * information to do the remaining I/O from the backend.
1851 			 * The backend is entirely mapped to slice 0 so we just
1852 			 * have to complete the I/O from that slice.
1853 			 */
1854 			slice = 0;
1855 		}
1856 
1857 	} else if ((slice == VD_SLICE_NONE) && (!vd->file)) {
1858 
1859 		/*
1860 		 * This is not a disk image so it is a real disk. We
1861 		 * assume that the underlying device driver supports
1862 		 * USCSICMD ioctls. This is the case of all SCSI devices
1863 		 * (sd, ssd...).
1864 		 *
1865 		 * In the future if we have non-SCSI disks we would need
1866 		 * to invoke the appropriate function to do I/O using an
1867 		 * absolute disk offset (for example using DIOCTL_RWCMD
1868 		 * for IDE disks).
1869 		 */
1870 		rv = vd_scsi_rdwr(vd, request->operation, bufaddr, offset,
1871 		    length);
1872 		if (rv != 0) {
1873 			request->status = EIO;
1874 		} else {
1875 			request->nbytes = length;
1876 			request->status = 0;
1877 		}
1878 		goto io_done;
1879 	}
1880 
1881 	/* Start the block I/O */
1882 	if (vd->file) {
1883 		rv = vd_file_rw(vd, slice, request->operation, bufaddr, offset,
1884 		    length);
1885 		if (rv < 0) {
1886 			request->nbytes = 0;
1887 			request->status = EIO;
1888 		} else {
1889 			request->nbytes += rv;
1890 			request->status = 0;
1891 		}
1892 	} else {
1893 		bioinit(buf);
1894 		buf->b_flags	= B_BUSY;
1895 		buf->b_bcount	= length;
1896 		buf->b_lblkno	= offset;
1897 		buf->b_bufsize	= buflen;
1898 		buf->b_edev 	= vd->dev[slice];
1899 		buf->b_un.b_addr = bufaddr;
1900 		buf->b_flags 	|= (request->operation == VD_OP_BREAD)?
1901 		    B_READ : B_WRITE;
1902 
1903 		request->status = ldi_strategy(vd->ldi_handle[slice], buf);
1904 
1905 		/*
1906 		 * This is to indicate to the caller that the request
1907 		 * needs to be finished by vd_complete_bio() by calling
1908 		 * biowait() there and waiting for that to return before
1909 		 * triggering the notification of the vDisk client.
1910 		 *
1911 		 * This is necessary when writing to real disks as
1912 		 * otherwise calls to ldi_strategy() would be serialized
1913 		 * behind the calls to biowait() and performance would
1914 		 * suffer.
1915 		 */
1916 		if (request->status == 0)
1917 			return (EINPROGRESS);
1918 
1919 		biofini(buf);
1920 	}
1921 
1922 io_done:
1923 	/* Clean up after error or completion */
1924 	rv = ldc_mem_release(task->mhdl, 0, buflen);
1925 	if (rv) {
1926 		PR0("ldc_mem_release() returned err %d ", rv);
1927 		status = EIO;
1928 	}
1929 	rv = ldc_mem_unmap(task->mhdl);
1930 	if (rv) {
1931 		PR0("ldc_mem_unmap() returned err %d ", rv);
1932 		status = EIO;
1933 	}
1934 
1935 	return (status);
1936 }
1937 
1938 /*
1939  * This function should only be called from vd_notify to ensure that requests
1940  * are responded to in the order that they are received.
1941  */
1942 static int
1943 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen)
1944 {
1945 	int	status;
1946 	size_t	nbytes;
1947 
1948 	do {
1949 		nbytes = msglen;
1950 		status = ldc_write(ldc_handle, msg, &nbytes);
1951 		if (status != EWOULDBLOCK)
1952 			break;
1953 		drv_usecwait(vds_ldc_delay);
1954 	} while (status == EWOULDBLOCK);
1955 
1956 	if (status != 0) {
1957 		if (status != ECONNRESET)
1958 			PR0("ldc_write() returned errno %d", status);
1959 		return (status);
1960 	} else if (nbytes != msglen) {
1961 		PR0("ldc_write() performed only partial write");
1962 		return (EIO);
1963 	}
1964 
1965 	PR1("SENT %lu bytes", msglen);
1966 	return (0);
1967 }
1968 
1969 static void
1970 vd_need_reset(vd_t *vd, boolean_t reset_ldc)
1971 {
1972 	mutex_enter(&vd->lock);
1973 	vd->reset_state	= B_TRUE;
1974 	vd->reset_ldc	= reset_ldc;
1975 	mutex_exit(&vd->lock);
1976 }
1977 
1978 /*
1979  * Reset the state of the connection with a client, if needed; reset the LDC
1980  * transport as well, if needed.  This function should only be called from the
1981  * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur.
1982  */
1983 static void
1984 vd_reset_if_needed(vd_t *vd)
1985 {
1986 	int	status = 0;
1987 
1988 	mutex_enter(&vd->lock);
1989 	if (!vd->reset_state) {
1990 		ASSERT(!vd->reset_ldc);
1991 		mutex_exit(&vd->lock);
1992 		return;
1993 	}
1994 	mutex_exit(&vd->lock);
1995 
1996 	PR0("Resetting connection state with %s", VD_CLIENT(vd));
1997 
1998 	/*
1999 	 * Let any asynchronous I/O complete before possibly pulling the rug
2000 	 * out from under it; defer checking vd->reset_ldc, as one of the
2001 	 * asynchronous tasks might set it
2002 	 */
2003 	ddi_taskq_wait(vd->completionq);
2004 
2005 	if (vd->file) {
2006 		status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL);
2007 		if (status) {
2008 			PR0("VOP_FSYNC returned errno %d", status);
2009 		}
2010 	}
2011 
2012 	if ((vd->initialized & VD_DRING) &&
2013 	    ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0))
2014 		PR0("ldc_mem_dring_unmap() returned errno %d", status);
2015 
2016 	vd_free_dring_task(vd);
2017 
2018 	/* Free the staging buffer for msgs */
2019 	if (vd->vio_msgp != NULL) {
2020 		kmem_free(vd->vio_msgp, vd->max_msglen);
2021 		vd->vio_msgp = NULL;
2022 	}
2023 
2024 	/* Free the inband message buffer */
2025 	if (vd->inband_task.msg != NULL) {
2026 		kmem_free(vd->inband_task.msg, vd->max_msglen);
2027 		vd->inband_task.msg = NULL;
2028 	}
2029 
2030 	mutex_enter(&vd->lock);
2031 
2032 	if (vd->reset_ldc)
2033 		PR0("taking down LDC channel");
2034 	if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0))
2035 		PR0("ldc_down() returned errno %d", status);
2036 
2037 	/* Reset exclusive access rights */
2038 	vd_reset_access(vd);
2039 
2040 	vd->initialized	&= ~(VD_SID | VD_SEQ_NUM | VD_DRING);
2041 	vd->state	= VD_STATE_INIT;
2042 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
2043 
2044 	/* Allocate the staging buffer */
2045 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
2046 
2047 	PR0("calling ldc_up\n");
2048 	(void) ldc_up(vd->ldc_handle);
2049 
2050 	vd->reset_state	= B_FALSE;
2051 	vd->reset_ldc	= B_FALSE;
2052 
2053 	mutex_exit(&vd->lock);
2054 }
2055 
2056 static void vd_recv_msg(void *arg);
2057 
2058 static void
2059 vd_mark_in_reset(vd_t *vd)
2060 {
2061 	int status;
2062 
2063 	PR0("vd_mark_in_reset: marking vd in reset\n");
2064 
2065 	vd_need_reset(vd, B_FALSE);
2066 	status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP);
2067 	if (status == DDI_FAILURE) {
2068 		PR0("cannot schedule task to recv msg\n");
2069 		vd_need_reset(vd, B_TRUE);
2070 		return;
2071 	}
2072 }
2073 
2074 static int
2075 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes)
2076 {
2077 	boolean_t		accepted;
2078 	int			status;
2079 	on_trap_data_t		otd;
2080 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
2081 
2082 	if (vd->reset_state)
2083 		return (0);
2084 
2085 	/* Acquire the element */
2086 	if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype,
2087 	    vd->dring_handle, idx, idx)) != 0) {
2088 		if (status == ECONNRESET) {
2089 			vd_mark_in_reset(vd);
2090 			return (0);
2091 		} else {
2092 			return (status);
2093 		}
2094 	}
2095 
2096 	/* Set the element's status and mark it done */
2097 	accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED);
2098 	if (accepted) {
2099 		elem->payload.nbytes	= elem_nbytes;
2100 		elem->payload.status	= elem_status;
2101 		elem->hdr.dstate	= VIO_DESC_DONE;
2102 	} else {
2103 		/* Perhaps client timed out waiting for I/O... */
2104 		PR0("element %u no longer \"accepted\"", idx);
2105 		VD_DUMP_DRING_ELEM(elem);
2106 	}
2107 	/* Release the element */
2108 	if ((status = VIO_DRING_RELEASE(vd->dring_mtype,
2109 	    vd->dring_handle, idx, idx)) != 0) {
2110 		if (status == ECONNRESET) {
2111 			vd_mark_in_reset(vd);
2112 			return (0);
2113 		} else {
2114 			PR0("VIO_DRING_RELEASE() returned errno %d",
2115 			    status);
2116 			return (status);
2117 		}
2118 	}
2119 
2120 	return (accepted ? 0 : EINVAL);
2121 }
2122 
2123 /*
2124  * Return Values
2125  *	0	- operation completed successfully
2126  *	EIO	- encountered LDC / task error
2127  *
2128  * Side Effect
2129  *	sets request->status = <disk operation status>
2130  */
2131 static int
2132 vd_complete_bio(vd_task_t *task)
2133 {
2134 	int			status		= 0;
2135 	int			rv		= 0;
2136 	vd_t			*vd		= task->vd;
2137 	vd_dring_payload_t	*request	= task->request;
2138 	struct buf		*buf		= &task->buf;
2139 
2140 
2141 	ASSERT(vd != NULL);
2142 	ASSERT(request != NULL);
2143 	ASSERT(task->msg != NULL);
2144 	ASSERT(task->msglen >= sizeof (*task->msg));
2145 	ASSERT(!vd->file);
2146 	ASSERT(request->slice != VD_SLICE_NONE || (!vd_slice_single_slice &&
2147 	    vd->vdisk_type == VD_DISK_TYPE_SLICE));
2148 
2149 	/* Wait for the I/O to complete [ call to ldi_strategy(9f) ] */
2150 	request->status = biowait(buf);
2151 
2152 	/* Update the number of bytes read/written */
2153 	request->nbytes += buf->b_bcount - buf->b_resid;
2154 
2155 	/* Release the buffer */
2156 	if (!vd->reset_state)
2157 		status = ldc_mem_release(task->mhdl, 0, buf->b_bufsize);
2158 	if (status) {
2159 		PR0("ldc_mem_release() returned errno %d copying to "
2160 		    "client", status);
2161 		if (status == ECONNRESET) {
2162 			vd_mark_in_reset(vd);
2163 		}
2164 		rv = EIO;
2165 	}
2166 
2167 	/* Unmap the memory, even if in reset */
2168 	status = ldc_mem_unmap(task->mhdl);
2169 	if (status) {
2170 		PR0("ldc_mem_unmap() returned errno %d copying to client",
2171 		    status);
2172 		if (status == ECONNRESET) {
2173 			vd_mark_in_reset(vd);
2174 		}
2175 		rv = EIO;
2176 	}
2177 
2178 	biofini(buf);
2179 
2180 	return (rv);
2181 }
2182 
2183 /*
2184  * Description:
2185  *	This function is called by the two functions called by a taskq
2186  *	[ vd_complete_notify() and vd_serial_notify()) ] to send the
2187  *	message to the client.
2188  *
2189  * Parameters:
2190  *	arg 	- opaque pointer to structure containing task to be completed
2191  *
2192  * Return Values
2193  *	None
2194  */
2195 static void
2196 vd_notify(vd_task_t *task)
2197 {
2198 	int	status;
2199 
2200 	ASSERT(task != NULL);
2201 	ASSERT(task->vd != NULL);
2202 
2203 	if (task->vd->reset_state)
2204 		return;
2205 
2206 	/*
2207 	 * Send the "ack" or "nack" back to the client; if sending the message
2208 	 * via LDC fails, arrange to reset both the connection state and LDC
2209 	 * itself
2210 	 */
2211 	PR2("Sending %s",
2212 	    (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
2213 
2214 	status = send_msg(task->vd->ldc_handle, task->msg, task->msglen);
2215 	switch (status) {
2216 	case 0:
2217 		break;
2218 	case ECONNRESET:
2219 		vd_mark_in_reset(task->vd);
2220 		break;
2221 	default:
2222 		PR0("initiating full reset");
2223 		vd_need_reset(task->vd, B_TRUE);
2224 		break;
2225 	}
2226 
2227 	DTRACE_PROBE1(task__end, vd_task_t *, task);
2228 }
2229 
2230 /*
2231  * Description:
2232  *	Mark the Dring entry as Done and (if necessary) send an ACK/NACK to
2233  *	the vDisk client
2234  *
2235  * Parameters:
2236  *	task 		- structure containing the request sent from client
2237  *
2238  * Return Values
2239  *	None
2240  */
2241 static void
2242 vd_complete_notify(vd_task_t *task)
2243 {
2244 	int			status		= 0;
2245 	vd_t			*vd		= task->vd;
2246 	vd_dring_payload_t	*request	= task->request;
2247 
2248 	/* Update the dring element for a dring client */
2249 	if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
2250 		status = vd_mark_elem_done(vd, task->index,
2251 		    request->status, request->nbytes);
2252 		if (status == ECONNRESET)
2253 			vd_mark_in_reset(vd);
2254 		else if (status == EACCES)
2255 			vd_need_reset(vd, B_TRUE);
2256 	}
2257 
2258 	/*
2259 	 * If a transport error occurred while marking the element done or
2260 	 * previously while executing the task, arrange to "nack" the message
2261 	 * when the final task in the descriptor element range completes
2262 	 */
2263 	if ((status != 0) || (task->status != 0))
2264 		task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
2265 
2266 	/*
2267 	 * Only the final task for a range of elements will respond to and
2268 	 * free the message
2269 	 */
2270 	if (task->type == VD_NONFINAL_RANGE_TASK) {
2271 		return;
2272 	}
2273 
2274 	vd_notify(task);
2275 }
2276 
2277 /*
2278  * Description:
2279  *	This is the basic completion function called to handle inband data
2280  *	requests and handshake messages. All it needs to do is trigger a
2281  *	message to the client that the request is completed.
2282  *
2283  * Parameters:
2284  *	arg 	- opaque pointer to structure containing task to be completed
2285  *
2286  * Return Values
2287  *	None
2288  */
2289 static void
2290 vd_serial_notify(void *arg)
2291 {
2292 	vd_task_t		*task = (vd_task_t *)arg;
2293 
2294 	ASSERT(task != NULL);
2295 	vd_notify(task);
2296 }
2297 
2298 /* ARGSUSED */
2299 static int
2300 vd_geom2dk_geom(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2301 {
2302 	VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg);
2303 	return (0);
2304 }
2305 
2306 /* ARGSUSED */
2307 static int
2308 vd_vtoc2vtoc(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2309 {
2310 	VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct vtoc *)ioctl_arg);
2311 	return (0);
2312 }
2313 
2314 static void
2315 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf)
2316 {
2317 	DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf);
2318 }
2319 
2320 static void
2321 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf)
2322 {
2323 	VTOC2VD_VTOC((struct vtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf);
2324 }
2325 
2326 static int
2327 vd_get_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2328 {
2329 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2330 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2331 	size_t data_len;
2332 
2333 	data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
2334 	if (vd_efi->length > data_len)
2335 		return (EINVAL);
2336 
2337 	dk_efi->dki_lba = vd_efi->lba;
2338 	dk_efi->dki_length = vd_efi->length;
2339 	dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP);
2340 	return (0);
2341 }
2342 
2343 static void
2344 vd_get_efi_out(void *ioctl_arg, void *vd_buf)
2345 {
2346 	int len;
2347 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2348 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2349 
2350 	len = vd_efi->length;
2351 	DK_EFI2VD_EFI(dk_efi, vd_efi);
2352 	kmem_free(dk_efi->dki_data, len);
2353 }
2354 
2355 static int
2356 vd_set_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2357 {
2358 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2359 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2360 	size_t data_len;
2361 
2362 	data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
2363 	if (vd_efi->length > data_len)
2364 		return (EINVAL);
2365 
2366 	dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP);
2367 	VD_EFI2DK_EFI(vd_efi, dk_efi);
2368 	return (0);
2369 }
2370 
2371 static void
2372 vd_set_efi_out(void *ioctl_arg, void *vd_buf)
2373 {
2374 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2375 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2376 
2377 	kmem_free(dk_efi->dki_data, vd_efi->length);
2378 }
2379 
2380 static int
2381 vd_scsicmd_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2382 {
2383 	size_t vd_scsi_len;
2384 	vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
2385 	struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
2386 
2387 	/* check buffer size */
2388 	vd_scsi_len = VD_SCSI_SIZE;
2389 	vd_scsi_len += P2ROUNDUP(vd_scsi->cdb_len, sizeof (uint64_t));
2390 	vd_scsi_len += P2ROUNDUP(vd_scsi->sense_len, sizeof (uint64_t));
2391 	vd_scsi_len += P2ROUNDUP(vd_scsi->datain_len, sizeof (uint64_t));
2392 	vd_scsi_len += P2ROUNDUP(vd_scsi->dataout_len, sizeof (uint64_t));
2393 
2394 	ASSERT(vd_scsi_len % sizeof (uint64_t) == 0);
2395 
2396 	if (vd_buf_len < vd_scsi_len)
2397 		return (EINVAL);
2398 
2399 	/* set flags */
2400 	uscsi->uscsi_flags = vd_scsi_debug;
2401 
2402 	if (vd_scsi->options & VD_SCSI_OPT_NORETRY) {
2403 		uscsi->uscsi_flags |= USCSI_ISOLATE;
2404 		uscsi->uscsi_flags |= USCSI_DIAGNOSE;
2405 	}
2406 
2407 	/* task attribute */
2408 	switch (vd_scsi->task_attribute) {
2409 	case VD_SCSI_TASK_ACA:
2410 		uscsi->uscsi_flags |= USCSI_HEAD;
2411 		break;
2412 	case VD_SCSI_TASK_HQUEUE:
2413 		uscsi->uscsi_flags |= USCSI_HTAG;
2414 		break;
2415 	case VD_SCSI_TASK_ORDERED:
2416 		uscsi->uscsi_flags |= USCSI_OTAG;
2417 		break;
2418 	default:
2419 		uscsi->uscsi_flags |= USCSI_NOTAG;
2420 		break;
2421 	}
2422 
2423 	/* timeout */
2424 	uscsi->uscsi_timeout = vd_scsi->timeout;
2425 
2426 	/* cdb data */
2427 	uscsi->uscsi_cdb = (caddr_t)VD_SCSI_DATA_CDB(vd_scsi);
2428 	uscsi->uscsi_cdblen = vd_scsi->cdb_len;
2429 
2430 	/* sense buffer */
2431 	if (vd_scsi->sense_len != 0) {
2432 		uscsi->uscsi_flags |= USCSI_RQENABLE;
2433 		uscsi->uscsi_rqbuf = (caddr_t)VD_SCSI_DATA_SENSE(vd_scsi);
2434 		uscsi->uscsi_rqlen = vd_scsi->sense_len;
2435 	}
2436 
2437 	if (vd_scsi->datain_len != 0 && vd_scsi->dataout_len != 0) {
2438 		/* uscsi does not support read/write request */
2439 		return (EINVAL);
2440 	}
2441 
2442 	/* request data-in */
2443 	if (vd_scsi->datain_len != 0) {
2444 		uscsi->uscsi_flags |= USCSI_READ;
2445 		uscsi->uscsi_buflen = vd_scsi->datain_len;
2446 		uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_IN(vd_scsi);
2447 	}
2448 
2449 	/* request data-out */
2450 	if (vd_scsi->dataout_len != 0) {
2451 		uscsi->uscsi_buflen = vd_scsi->dataout_len;
2452 		uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_OUT(vd_scsi);
2453 	}
2454 
2455 	return (0);
2456 }
2457 
2458 static void
2459 vd_scsicmd_out(void *ioctl_arg, void *vd_buf)
2460 {
2461 	vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
2462 	struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
2463 
2464 	/* output fields */
2465 	vd_scsi->cmd_status = uscsi->uscsi_status;
2466 
2467 	/* sense data */
2468 	if ((uscsi->uscsi_flags & USCSI_RQENABLE) &&
2469 	    (uscsi->uscsi_status == STATUS_CHECK ||
2470 	    uscsi->uscsi_status == STATUS_TERMINATED)) {
2471 		vd_scsi->sense_status = uscsi->uscsi_rqstatus;
2472 		if (uscsi->uscsi_rqstatus == STATUS_GOOD)
2473 			vd_scsi->sense_len -= uscsi->uscsi_rqresid;
2474 		else
2475 			vd_scsi->sense_len = 0;
2476 	} else {
2477 		vd_scsi->sense_len = 0;
2478 	}
2479 
2480 	if (uscsi->uscsi_status != STATUS_GOOD) {
2481 		vd_scsi->dataout_len = 0;
2482 		vd_scsi->datain_len = 0;
2483 		return;
2484 	}
2485 
2486 	if (uscsi->uscsi_flags & USCSI_READ) {
2487 		/* request data (read) */
2488 		vd_scsi->datain_len -= uscsi->uscsi_resid;
2489 		vd_scsi->dataout_len = 0;
2490 	} else {
2491 		/* request data (write) */
2492 		vd_scsi->datain_len = 0;
2493 		vd_scsi->dataout_len -= uscsi->uscsi_resid;
2494 	}
2495 }
2496 
2497 static ushort_t
2498 vd_lbl2cksum(struct dk_label *label)
2499 {
2500 	int	count;
2501 	ushort_t sum, *sp;
2502 
2503 	count =	(sizeof (struct dk_label)) / (sizeof (short)) - 1;
2504 	sp = (ushort_t *)label;
2505 	sum = 0;
2506 	while (count--) {
2507 		sum ^= *sp++;
2508 	}
2509 
2510 	return (sum);
2511 }
2512 
2513 /*
2514  * Copy information from a vtoc and dk_geom structures to a dk_label structure.
2515  */
2516 static void
2517 vd_vtocgeom_to_label(struct vtoc *vtoc, struct dk_geom *geom,
2518     struct dk_label *label)
2519 {
2520 	int i;
2521 
2522 	ASSERT(vtoc->v_nparts == V_NUMPAR);
2523 	ASSERT(vtoc->v_sanity == VTOC_SANE);
2524 
2525 	bzero(label, sizeof (struct dk_label));
2526 
2527 	label->dkl_ncyl = geom->dkg_ncyl;
2528 	label->dkl_acyl = geom->dkg_acyl;
2529 	label->dkl_pcyl = geom->dkg_pcyl;
2530 	label->dkl_nhead = geom->dkg_nhead;
2531 	label->dkl_nsect = geom->dkg_nsect;
2532 	label->dkl_intrlv = geom->dkg_intrlv;
2533 	label->dkl_apc = geom->dkg_apc;
2534 	label->dkl_rpm = geom->dkg_rpm;
2535 	label->dkl_write_reinstruct = geom->dkg_write_reinstruct;
2536 	label->dkl_read_reinstruct = geom->dkg_read_reinstruct;
2537 
2538 	label->dkl_vtoc.v_nparts = V_NUMPAR;
2539 	label->dkl_vtoc.v_sanity = VTOC_SANE;
2540 	label->dkl_vtoc.v_version = vtoc->v_version;
2541 	for (i = 0; i < V_NUMPAR; i++) {
2542 		label->dkl_vtoc.v_timestamp[i] = vtoc->timestamp[i];
2543 		label->dkl_vtoc.v_part[i].p_tag = vtoc->v_part[i].p_tag;
2544 		label->dkl_vtoc.v_part[i].p_flag = vtoc->v_part[i].p_flag;
2545 		label->dkl_map[i].dkl_cylno = vtoc->v_part[i].p_start /
2546 		    (label->dkl_nhead * label->dkl_nsect);
2547 		label->dkl_map[i].dkl_nblk = vtoc->v_part[i].p_size;
2548 	}
2549 
2550 	/*
2551 	 * The bootinfo array can not be copied with bcopy() because
2552 	 * elements are of type long in vtoc (so 64-bit) and of type
2553 	 * int in dk_vtoc (so 32-bit).
2554 	 */
2555 	label->dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0];
2556 	label->dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1];
2557 	label->dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2];
2558 	bcopy(vtoc->v_asciilabel, label->dkl_asciilabel, LEN_DKL_ASCII);
2559 	bcopy(vtoc->v_volume, label->dkl_vtoc.v_volume, LEN_DKL_VVOL);
2560 
2561 	/* re-compute checksum */
2562 	label->dkl_magic = DKL_MAGIC;
2563 	label->dkl_cksum = vd_lbl2cksum(label);
2564 }
2565 
2566 /*
2567  * Copy information from a dk_label structure to a vtoc and dk_geom structures.
2568  */
2569 static void
2570 vd_label_to_vtocgeom(struct dk_label *label, struct vtoc *vtoc,
2571     struct dk_geom *geom)
2572 {
2573 	int i;
2574 
2575 	bzero(vtoc, sizeof (struct vtoc));
2576 	bzero(geom, sizeof (struct dk_geom));
2577 
2578 	geom->dkg_ncyl = label->dkl_ncyl;
2579 	geom->dkg_acyl = label->dkl_acyl;
2580 	geom->dkg_nhead = label->dkl_nhead;
2581 	geom->dkg_nsect = label->dkl_nsect;
2582 	geom->dkg_intrlv = label->dkl_intrlv;
2583 	geom->dkg_apc = label->dkl_apc;
2584 	geom->dkg_rpm = label->dkl_rpm;
2585 	geom->dkg_pcyl = label->dkl_pcyl;
2586 	geom->dkg_write_reinstruct = label->dkl_write_reinstruct;
2587 	geom->dkg_read_reinstruct = label->dkl_read_reinstruct;
2588 
2589 	vtoc->v_sanity = label->dkl_vtoc.v_sanity;
2590 	vtoc->v_version = label->dkl_vtoc.v_version;
2591 	vtoc->v_sectorsz = DEV_BSIZE;
2592 	vtoc->v_nparts = label->dkl_vtoc.v_nparts;
2593 
2594 	for (i = 0; i < vtoc->v_nparts; i++) {
2595 		vtoc->v_part[i].p_tag = label->dkl_vtoc.v_part[i].p_tag;
2596 		vtoc->v_part[i].p_flag = label->dkl_vtoc.v_part[i].p_flag;
2597 		vtoc->v_part[i].p_start = label->dkl_map[i].dkl_cylno *
2598 		    (label->dkl_nhead * label->dkl_nsect);
2599 		vtoc->v_part[i].p_size = label->dkl_map[i].dkl_nblk;
2600 		vtoc->timestamp[i] = label->dkl_vtoc.v_timestamp[i];
2601 	}
2602 
2603 	/*
2604 	 * The bootinfo array can not be copied with bcopy() because
2605 	 * elements are of type long in vtoc (so 64-bit) and of type
2606 	 * int in dk_vtoc (so 32-bit).
2607 	 */
2608 	vtoc->v_bootinfo[0] = label->dkl_vtoc.v_bootinfo[0];
2609 	vtoc->v_bootinfo[1] = label->dkl_vtoc.v_bootinfo[1];
2610 	vtoc->v_bootinfo[2] = label->dkl_vtoc.v_bootinfo[2];
2611 	bcopy(label->dkl_asciilabel, vtoc->v_asciilabel, LEN_DKL_ASCII);
2612 	bcopy(label->dkl_vtoc.v_volume, vtoc->v_volume, LEN_DKL_VVOL);
2613 }
2614 
2615 /*
2616  * Check if a geometry is valid for a single-slice disk. A geometry is
2617  * considered valid if the main attributes of the geometry match with the
2618  * attributes of the fake geometry we have created.
2619  */
2620 static boolean_t
2621 vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom)
2622 {
2623 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2624 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
2625 
2626 	if (geom->dkg_ncyl != vd->dk_geom.dkg_ncyl ||
2627 	    geom->dkg_acyl != vd->dk_geom.dkg_acyl ||
2628 	    geom->dkg_nsect != vd->dk_geom.dkg_nsect ||
2629 	    geom->dkg_pcyl != vd->dk_geom.dkg_pcyl)
2630 		return (B_FALSE);
2631 
2632 	return (B_TRUE);
2633 }
2634 
2635 /*
2636  * Check if a vtoc is valid for a single-slice disk. A vtoc is considered
2637  * valid if the main attributes of the vtoc match with the attributes of the
2638  * fake vtoc we have created.
2639  */
2640 static boolean_t
2641 vd_slice_vtoc_isvalid(vd_t *vd, struct vtoc *vtoc)
2642 {
2643 	size_t csize;
2644 	int i;
2645 
2646 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2647 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
2648 
2649 	if (vtoc->v_sanity != vd->vtoc.v_sanity ||
2650 	    vtoc->v_version != vd->vtoc.v_version ||
2651 	    vtoc->v_nparts != vd->vtoc.v_nparts ||
2652 	    strcmp(vtoc->v_volume, vd->vtoc.v_volume) != 0 ||
2653 	    strcmp(vtoc->v_asciilabel, vd->vtoc.v_asciilabel) != 0)
2654 		return (B_FALSE);
2655 
2656 	/* slice 2 should be unchanged */
2657 	if (vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_start !=
2658 	    vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start ||
2659 	    vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size !=
2660 	    vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size)
2661 		return (B_FALSE);
2662 
2663 	/*
2664 	 * Slice 0 should be mostly unchanged and cover most of the disk.
2665 	 * However we allow some flexibility wrt to the start and the size
2666 	 * of this slice mainly because we can't exactly know how it will
2667 	 * be defined by the OS installer.
2668 	 *
2669 	 * We allow slice 0 to be defined as starting on any of the first
2670 	 * 4 cylinders.
2671 	 */
2672 	csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
2673 
2674 	if (vtoc->v_part[0].p_start > 4 * csize ||
2675 	    vtoc->v_part[0].p_size > vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size)
2676 			return (B_FALSE);
2677 
2678 	if (vd->vtoc.v_part[0].p_size >= 4 * csize &&
2679 	    vtoc->v_part[0].p_size < vd->vtoc.v_part[0].p_size - 4 *csize)
2680 			return (B_FALSE);
2681 
2682 	/* any other slice should have a size of 0 */
2683 	for (i = 1; i < vtoc->v_nparts; i++) {
2684 		if (i != VD_ENTIRE_DISK_SLICE &&
2685 		    vtoc->v_part[i].p_size != 0)
2686 			return (B_FALSE);
2687 	}
2688 
2689 	return (B_TRUE);
2690 }
2691 
2692 /*
2693  * Handle ioctls to a disk slice.
2694  *
2695  * Return Values
2696  *	0	- Indicates that there are no errors in disk operations
2697  *	ENOTSUP	- Unknown disk label type or unsupported DKIO ioctl
2698  *	EINVAL	- Not enough room to copy the EFI label
2699  *
2700  */
2701 static int
2702 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
2703 {
2704 	dk_efi_t *dk_ioc;
2705 	struct vtoc *vtoc;
2706 	struct dk_geom *geom;
2707 	size_t len, lba;
2708 	int rval;
2709 
2710 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2711 
2712 	if (cmd == DKIOCFLUSHWRITECACHE) {
2713 		if (vd->file) {
2714 			return (VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL));
2715 		} else {
2716 			return (ldi_ioctl(vd->ldi_handle[0], cmd,
2717 			    (intptr_t)ioctl_arg, vd->open_flags | FKIOCTL,
2718 			    kcred, &rval));
2719 		}
2720 	}
2721 
2722 	switch (vd->vdisk_label) {
2723 
2724 	/* ioctls for a single slice disk with a VTOC label */
2725 	case VD_DISK_LABEL_VTOC:
2726 
2727 		switch (cmd) {
2728 
2729 		case DKIOCGGEOM:
2730 			ASSERT(ioctl_arg != NULL);
2731 			bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom));
2732 			return (0);
2733 
2734 		case DKIOCGVTOC:
2735 			ASSERT(ioctl_arg != NULL);
2736 			bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc));
2737 			return (0);
2738 
2739 		case DKIOCSGEOM:
2740 			ASSERT(ioctl_arg != NULL);
2741 			if (vd_slice_single_slice)
2742 				return (ENOTSUP);
2743 
2744 			/* fake success only if new geometry is valid */
2745 			geom = (struct dk_geom *)ioctl_arg;
2746 			if (!vd_slice_geom_isvalid(vd, geom))
2747 				return (EINVAL);
2748 
2749 			return (0);
2750 
2751 		case DKIOCSVTOC:
2752 			ASSERT(ioctl_arg != NULL);
2753 			if (vd_slice_single_slice)
2754 				return (ENOTSUP);
2755 
2756 			/* fake sucess only if the new vtoc is valid */
2757 			vtoc = (struct vtoc *)ioctl_arg;
2758 			if (!vd_slice_vtoc_isvalid(vd, vtoc))
2759 				return (EINVAL);
2760 
2761 			return (0);
2762 
2763 		default:
2764 			return (ENOTSUP);
2765 		}
2766 
2767 	/* ioctls for a single slice disk with an EFI label */
2768 	case VD_DISK_LABEL_EFI:
2769 
2770 		if (cmd != DKIOCGETEFI && cmd != DKIOCSETEFI)
2771 			return (ENOTSUP);
2772 
2773 		ASSERT(ioctl_arg != NULL);
2774 		dk_ioc = (dk_efi_t *)ioctl_arg;
2775 
2776 		len = dk_ioc->dki_length;
2777 		lba = dk_ioc->dki_lba;
2778 
2779 		if ((lba != VD_EFI_LBA_GPT && lba != VD_EFI_LBA_GPE) ||
2780 		    (lba == VD_EFI_LBA_GPT && len < sizeof (efi_gpt_t)) ||
2781 		    (lba == VD_EFI_LBA_GPE && len < sizeof (efi_gpe_t)))
2782 			return (EINVAL);
2783 
2784 		switch (cmd) {
2785 		case DKIOCGETEFI:
2786 			len = vd_slice_flabel_read(vd,
2787 			    (caddr_t)dk_ioc->dki_data, lba * DEV_BSIZE, len);
2788 
2789 			ASSERT(len > 0);
2790 
2791 			return (0);
2792 
2793 		case DKIOCSETEFI:
2794 			if (vd_slice_single_slice)
2795 				return (ENOTSUP);
2796 
2797 			/* we currently don't support writing EFI */
2798 			return (EIO);
2799 		}
2800 
2801 	default:
2802 		/* Unknown disk label type */
2803 		return (ENOTSUP);
2804 	}
2805 }
2806 
2807 static int
2808 vds_efi_alloc_and_read(vd_t *vd, efi_gpt_t **gpt, efi_gpe_t **gpe)
2809 {
2810 	vd_efi_dev_t edev;
2811 	int status;
2812 
2813 	VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
2814 
2815 	status = vd_efi_alloc_and_read(&edev, gpt, gpe);
2816 
2817 	return (status);
2818 }
2819 
2820 static void
2821 vds_efi_free(vd_t *vd, efi_gpt_t *gpt, efi_gpe_t *gpe)
2822 {
2823 	vd_efi_dev_t edev;
2824 
2825 	VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
2826 
2827 	vd_efi_free(&edev, gpt, gpe);
2828 }
2829 
2830 static int
2831 vd_file_validate_efi(vd_t *vd)
2832 {
2833 	efi_gpt_t *gpt;
2834 	efi_gpe_t *gpe;
2835 	int i, nparts, status;
2836 	struct uuid efi_reserved = EFI_RESERVED;
2837 
2838 	if ((status = vds_efi_alloc_and_read(vd, &gpt, &gpe)) != 0)
2839 		return (status);
2840 
2841 	bzero(&vd->vtoc, sizeof (struct vtoc));
2842 	bzero(&vd->dk_geom, sizeof (struct dk_geom));
2843 	bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
2844 
2845 	vd->efi_reserved = -1;
2846 
2847 	nparts = gpt->efi_gpt_NumberOfPartitionEntries;
2848 
2849 	for (i = 0; i < nparts && i < VD_MAXPART; i++) {
2850 
2851 		if (gpe[i].efi_gpe_StartingLBA == 0 ||
2852 		    gpe[i].efi_gpe_EndingLBA == 0) {
2853 			continue;
2854 		}
2855 
2856 		vd->slices[i].start = gpe[i].efi_gpe_StartingLBA;
2857 		vd->slices[i].nblocks = gpe[i].efi_gpe_EndingLBA -
2858 		    gpe[i].efi_gpe_StartingLBA + 1;
2859 
2860 		if (bcmp(&gpe[i].efi_gpe_PartitionTypeGUID, &efi_reserved,
2861 		    sizeof (struct uuid)) == 0)
2862 			vd->efi_reserved = i;
2863 
2864 	}
2865 
2866 	ASSERT(vd->vdisk_size != 0);
2867 	vd->slices[VD_EFI_WD_SLICE].start = 0;
2868 	vd->slices[VD_EFI_WD_SLICE].nblocks = vd->vdisk_size;
2869 
2870 	vds_efi_free(vd, gpt, gpe);
2871 
2872 	return (status);
2873 }
2874 
2875 /*
2876  * Function:
2877  *	vd_file_validate_geometry
2878  *
2879  * Description:
2880  *	Read the label and validate the geometry of a disk image. The driver
2881  *	label, vtoc and geometry information are updated according to the
2882  *	label read from the disk image.
2883  *
2884  *	If no valid label is found, the label is set to unknown and the
2885  *	function returns EINVAL, but a default vtoc and geometry are provided
2886  *	to the driver. If an EFI label is found, ENOTSUP is returned.
2887  *
2888  * Parameters:
2889  *	vd	- disk on which the operation is performed.
2890  *
2891  * Return Code:
2892  *	0	- success.
2893  *	EIO	- error reading the label from the disk image.
2894  *	EINVAL	- unknown disk label.
2895  *	ENOTSUP	- geometry not applicable (EFI label).
2896  */
2897 static int
2898 vd_file_validate_geometry(vd_t *vd)
2899 {
2900 	struct dk_label label;
2901 	struct dk_geom *geom = &vd->dk_geom;
2902 	struct vtoc *vtoc = &vd->vtoc;
2903 	int i;
2904 	int status = 0;
2905 
2906 	ASSERT(vd->file);
2907 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
2908 
2909 	if (VD_FILE_LABEL_READ(vd, &label) < 0)
2910 		return (EIO);
2911 
2912 	if (label.dkl_magic != DKL_MAGIC ||
2913 	    label.dkl_cksum != vd_lbl2cksum(&label) ||
2914 	    (vd_file_validate_sanity && label.dkl_vtoc.v_sanity != VTOC_SANE) ||
2915 	    label.dkl_vtoc.v_nparts != V_NUMPAR) {
2916 
2917 		if (vd_file_validate_efi(vd) == 0) {
2918 			vd->vdisk_label = VD_DISK_LABEL_EFI;
2919 			return (ENOTSUP);
2920 		}
2921 
2922 		vd->vdisk_label = VD_DISK_LABEL_UNK;
2923 		vd_build_default_label(vd->file_size, &label);
2924 		status = EINVAL;
2925 	} else {
2926 		vd->vdisk_label = VD_DISK_LABEL_VTOC;
2927 	}
2928 
2929 	/* Update the driver geometry and vtoc */
2930 	vd_label_to_vtocgeom(&label, vtoc, geom);
2931 
2932 	/* Update logical partitions */
2933 	bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
2934 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
2935 		for (i = 0; i < vtoc->v_nparts; i++) {
2936 			vd->slices[i].start = vtoc->v_part[i].p_start;
2937 			vd->slices[i].nblocks = vtoc->v_part[i].p_size;
2938 		}
2939 	}
2940 
2941 	return (status);
2942 }
2943 
2944 /*
2945  * Handle ioctls to a disk image (file-based).
2946  *
2947  * Return Values
2948  *	0	- Indicates that there are no errors
2949  *	!= 0	- Disk operation returned an error
2950  */
2951 static int
2952 vd_do_file_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
2953 {
2954 	struct dk_label label;
2955 	struct dk_geom *geom;
2956 	struct vtoc *vtoc;
2957 	dk_efi_t *efi;
2958 	int rc;
2959 
2960 	ASSERT(vd->file);
2961 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
2962 
2963 	switch (cmd) {
2964 
2965 	case DKIOCGGEOM:
2966 		ASSERT(ioctl_arg != NULL);
2967 		geom = (struct dk_geom *)ioctl_arg;
2968 
2969 		rc = vd_file_validate_geometry(vd);
2970 		if (rc != 0 && rc != EINVAL)
2971 			return (rc);
2972 		bcopy(&vd->dk_geom, geom, sizeof (struct dk_geom));
2973 		return (0);
2974 
2975 	case DKIOCGVTOC:
2976 		ASSERT(ioctl_arg != NULL);
2977 		vtoc = (struct vtoc *)ioctl_arg;
2978 
2979 		rc = vd_file_validate_geometry(vd);
2980 		if (rc != 0 && rc != EINVAL)
2981 			return (rc);
2982 		bcopy(&vd->vtoc, vtoc, sizeof (struct vtoc));
2983 		return (0);
2984 
2985 	case DKIOCSGEOM:
2986 		ASSERT(ioctl_arg != NULL);
2987 		geom = (struct dk_geom *)ioctl_arg;
2988 
2989 		if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0)
2990 			return (EINVAL);
2991 
2992 		/*
2993 		 * The current device geometry is not updated, just the driver
2994 		 * "notion" of it. The device geometry will be effectively
2995 		 * updated when a label is written to the device during a next
2996 		 * DKIOCSVTOC.
2997 		 */
2998 		bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom));
2999 		return (0);
3000 
3001 	case DKIOCSVTOC:
3002 		ASSERT(ioctl_arg != NULL);
3003 		ASSERT(vd->dk_geom.dkg_nhead != 0 &&
3004 		    vd->dk_geom.dkg_nsect != 0);
3005 		vtoc = (struct vtoc *)ioctl_arg;
3006 
3007 		if (vtoc->v_sanity != VTOC_SANE ||
3008 		    vtoc->v_sectorsz != DEV_BSIZE ||
3009 		    vtoc->v_nparts != V_NUMPAR)
3010 			return (EINVAL);
3011 
3012 		vd_vtocgeom_to_label(vtoc, &vd->dk_geom, &label);
3013 
3014 		/* write label to the disk image */
3015 		if ((rc = vd_file_set_vtoc(vd, &label)) != 0)
3016 			return (rc);
3017 
3018 		break;
3019 
3020 	case DKIOCFLUSHWRITECACHE:
3021 		return (VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL));
3022 
3023 	case DKIOCGETEFI:
3024 		ASSERT(ioctl_arg != NULL);
3025 		efi = (dk_efi_t *)ioctl_arg;
3026 
3027 		if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD,
3028 		    (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
3029 			return (EIO);
3030 
3031 		return (0);
3032 
3033 	case DKIOCSETEFI:
3034 		ASSERT(ioctl_arg != NULL);
3035 		efi = (dk_efi_t *)ioctl_arg;
3036 
3037 		if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
3038 		    (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
3039 			return (EIO);
3040 
3041 		break;
3042 
3043 
3044 	default:
3045 		return (ENOTSUP);
3046 	}
3047 
3048 	ASSERT(cmd == DKIOCSVTOC || cmd == DKIOCSETEFI);
3049 
3050 	/* label has changed, revalidate the geometry */
3051 	(void) vd_file_validate_geometry(vd);
3052 
3053 	/*
3054 	 * The disk geometry may have changed, so we need to write
3055 	 * the devid (if there is one) so that it is stored at the
3056 	 * right location.
3057 	 */
3058 	if (vd_file_write_devid(vd, vd->file_devid) != 0) {
3059 		PR0("Fail to write devid");
3060 	}
3061 
3062 	return (0);
3063 }
3064 
3065 static int
3066 vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg)
3067 {
3068 	int rval = 0, status;
3069 
3070 	/*
3071 	 * Call the appropriate function to execute the ioctl depending
3072 	 * on the type of vdisk.
3073 	 */
3074 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
3075 
3076 		/* slice, file or volume exported as a single slice disk */
3077 		status = vd_do_slice_ioctl(vd, cmd, arg);
3078 
3079 	} else if (vd->file) {
3080 
3081 		/* file or volume exported as a full disk */
3082 		status = vd_do_file_ioctl(vd, cmd, arg);
3083 
3084 	} else {
3085 
3086 		/* disk device exported as a full disk */
3087 		status = ldi_ioctl(vd->ldi_handle[0], cmd, (intptr_t)arg,
3088 		    vd->open_flags | FKIOCTL, kcred, &rval);
3089 	}
3090 
3091 #ifdef DEBUG
3092 	if (rval != 0) {
3093 		PR0("ioctl %x set rval = %d, which is not being returned"
3094 		    " to caller", cmd, rval);
3095 	}
3096 #endif /* DEBUG */
3097 
3098 	return (status);
3099 }
3100 
3101 /*
3102  * Description:
3103  *	This is the function that processes the ioctl requests (farming it
3104  *	out to functions that handle slices, files or whole disks)
3105  *
3106  * Return Values
3107  *     0		- ioctl operation completed successfully
3108  *     != 0		- The LDC error value encountered
3109  *			  (propagated back up the call stack as a task error)
3110  *
3111  * Side Effect
3112  *     sets request->status to the return value of the ioctl function.
3113  */
3114 static int
3115 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl)
3116 {
3117 	int	status = 0;
3118 	size_t	nbytes = request->nbytes;	/* modifiable copy */
3119 
3120 
3121 	ASSERT(request->slice < vd->nslices);
3122 	PR0("Performing %s", ioctl->operation_name);
3123 
3124 	/* Get data from client and convert, if necessary */
3125 	if (ioctl->copyin != NULL)  {
3126 		ASSERT(nbytes != 0 && buf != NULL);
3127 		PR1("Getting \"arg\" data from client");
3128 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
3129 		    request->cookie, request->ncookies,
3130 		    LDC_COPY_IN)) != 0) {
3131 			PR0("ldc_mem_copy() returned errno %d "
3132 			    "copying from client", status);
3133 			return (status);
3134 		}
3135 
3136 		/* Convert client's data, if necessary */
3137 		if (ioctl->copyin == VD_IDENTITY_IN) {
3138 			/* use client buffer */
3139 			ioctl->arg = buf;
3140 		} else {
3141 			/* convert client vdisk operation data to ioctl data */
3142 			status = (ioctl->copyin)(buf, nbytes,
3143 			    (void *)ioctl->arg);
3144 			if (status != 0) {
3145 				request->status = status;
3146 				return (0);
3147 			}
3148 		}
3149 	}
3150 
3151 	if (ioctl->operation == VD_OP_SCSICMD) {
3152 		struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl->arg;
3153 
3154 		/* check write permission */
3155 		if (!(vd->open_flags & FWRITE) &&
3156 		    !(uscsi->uscsi_flags & USCSI_READ)) {
3157 			PR0("uscsi fails because backend is opened read-only");
3158 			request->status = EROFS;
3159 			return (0);
3160 		}
3161 	}
3162 
3163 	/*
3164 	 * Send the ioctl to the disk backend.
3165 	 */
3166 	request->status = vd_backend_ioctl(vd, ioctl->cmd, ioctl->arg);
3167 
3168 	if (request->status != 0) {
3169 		PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status);
3170 		if (ioctl->operation == VD_OP_SCSICMD &&
3171 		    ((struct uscsi_cmd *)ioctl->arg)->uscsi_status != 0)
3172 			/*
3173 			 * USCSICMD has reported an error and the uscsi_status
3174 			 * field is not zero. This means that the SCSI command
3175 			 * has completed but it has an error. So we should
3176 			 * mark the VD operation has succesfully completed
3177 			 * and clients can check the SCSI status field for
3178 			 * SCSI errors.
3179 			 */
3180 			request->status = 0;
3181 		else
3182 			return (0);
3183 	}
3184 
3185 	/* Convert data and send to client, if necessary */
3186 	if (ioctl->copyout != NULL)  {
3187 		ASSERT(nbytes != 0 && buf != NULL);
3188 		PR1("Sending \"arg\" data to client");
3189 
3190 		/* Convert ioctl data to vdisk operation data, if necessary */
3191 		if (ioctl->copyout != VD_IDENTITY_OUT)
3192 			(ioctl->copyout)((void *)ioctl->arg, buf);
3193 
3194 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
3195 		    request->cookie, request->ncookies,
3196 		    LDC_COPY_OUT)) != 0) {
3197 			PR0("ldc_mem_copy() returned errno %d "
3198 			    "copying to client", status);
3199 			return (status);
3200 		}
3201 	}
3202 
3203 	return (status);
3204 }
3205 
3206 #define	RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t))
3207 
3208 /*
3209  * Description:
3210  *	This generic function is called by the task queue to complete
3211  *	the processing of the tasks. The specific completion function
3212  *	is passed in as a field in the task pointer.
3213  *
3214  * Parameters:
3215  *	arg 	- opaque pointer to structure containing task to be completed
3216  *
3217  * Return Values
3218  *	None
3219  */
3220 static void
3221 vd_complete(void *arg)
3222 {
3223 	vd_task_t	*task = (vd_task_t *)arg;
3224 
3225 	ASSERT(task != NULL);
3226 	ASSERT(task->status == EINPROGRESS);
3227 	ASSERT(task->completef != NULL);
3228 
3229 	task->status = task->completef(task);
3230 	if (task->status)
3231 		PR0("%s: Error %d completing task", __func__, task->status);
3232 
3233 	/* Now notify the vDisk client */
3234 	vd_complete_notify(task);
3235 }
3236 
3237 static int
3238 vd_ioctl(vd_task_t *task)
3239 {
3240 	int			i, status;
3241 	void			*buf = NULL;
3242 	struct dk_geom		dk_geom = {0};
3243 	struct vtoc		vtoc = {0};
3244 	struct dk_efi		dk_efi = {0};
3245 	struct uscsi_cmd	uscsi = {0};
3246 	vd_t			*vd		= task->vd;
3247 	vd_dring_payload_t	*request	= task->request;
3248 	vd_ioctl_t		ioctl[] = {
3249 		/* Command (no-copy) operations */
3250 		{VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0,
3251 		    DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE),
3252 		    NULL, NULL, NULL, B_TRUE},
3253 
3254 		/* "Get" (copy-out) operations */
3255 		{VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int),
3256 		    DKIOCGETWCE, STRINGIZE(DKIOCGETWCE),
3257 		    NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_FALSE},
3258 		{VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM),
3259 		    RNDSIZE(vd_geom_t),
3260 		    DKIOCGGEOM, STRINGIZE(DKIOCGGEOM),
3261 		    &dk_geom, NULL, dk_geom2vd_geom, B_FALSE},
3262 		{VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t),
3263 		    DKIOCGVTOC, STRINGIZE(DKIOCGVTOC),
3264 		    &vtoc, NULL, vtoc2vd_vtoc, B_FALSE},
3265 		{VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t),
3266 		    DKIOCGETEFI, STRINGIZE(DKIOCGETEFI),
3267 		    &dk_efi, vd_get_efi_in, vd_get_efi_out, B_FALSE},
3268 
3269 		/* "Set" (copy-in) operations */
3270 		{VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int),
3271 		    DKIOCSETWCE, STRINGIZE(DKIOCSETWCE),
3272 		    NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_TRUE},
3273 		{VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM),
3274 		    RNDSIZE(vd_geom_t),
3275 		    DKIOCSGEOM, STRINGIZE(DKIOCSGEOM),
3276 		    &dk_geom, vd_geom2dk_geom, NULL, B_TRUE},
3277 		{VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t),
3278 		    DKIOCSVTOC, STRINGIZE(DKIOCSVTOC),
3279 		    &vtoc, vd_vtoc2vtoc, NULL, B_TRUE},
3280 		{VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t),
3281 		    DKIOCSETEFI, STRINGIZE(DKIOCSETEFI),
3282 		    &dk_efi, vd_set_efi_in, vd_set_efi_out, B_TRUE},
3283 
3284 		{VD_OP_SCSICMD, STRINGIZE(VD_OP_SCSICMD), RNDSIZE(vd_scsi_t),
3285 		    USCSICMD, STRINGIZE(USCSICMD),
3286 		    &uscsi, vd_scsicmd_in, vd_scsicmd_out, B_FALSE},
3287 	};
3288 	size_t		nioctls = (sizeof (ioctl))/(sizeof (ioctl[0]));
3289 
3290 
3291 	ASSERT(vd != NULL);
3292 	ASSERT(request != NULL);
3293 	ASSERT(request->slice < vd->nslices);
3294 
3295 	/*
3296 	 * Determine ioctl corresponding to caller's "operation" and
3297 	 * validate caller's "nbytes"
3298 	 */
3299 	for (i = 0; i < nioctls; i++) {
3300 		if (request->operation == ioctl[i].operation) {
3301 			/* LDC memory operations require 8-byte multiples */
3302 			ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0);
3303 
3304 			if (request->operation == VD_OP_GET_EFI ||
3305 			    request->operation == VD_OP_SET_EFI ||
3306 			    request->operation == VD_OP_SCSICMD) {
3307 				if (request->nbytes >= ioctl[i].nbytes)
3308 					break;
3309 				PR0("%s:  Expected at least nbytes = %lu, "
3310 				    "got %lu", ioctl[i].operation_name,
3311 				    ioctl[i].nbytes, request->nbytes);
3312 				return (EINVAL);
3313 			}
3314 
3315 			if (request->nbytes != ioctl[i].nbytes) {
3316 				PR0("%s:  Expected nbytes = %lu, got %lu",
3317 				    ioctl[i].operation_name, ioctl[i].nbytes,
3318 				    request->nbytes);
3319 				return (EINVAL);
3320 			}
3321 
3322 			break;
3323 		}
3324 	}
3325 	ASSERT(i < nioctls);	/* because "operation" already validated */
3326 
3327 	if (!(vd->open_flags & FWRITE) && ioctl[i].write) {
3328 		PR0("%s fails because backend is opened read-only",
3329 		    ioctl[i].operation_name);
3330 		request->status = EROFS;
3331 		return (0);
3332 	}
3333 
3334 	if (request->nbytes)
3335 		buf = kmem_zalloc(request->nbytes, KM_SLEEP);
3336 	status = vd_do_ioctl(vd, request, buf, &ioctl[i]);
3337 	if (request->nbytes)
3338 		kmem_free(buf, request->nbytes);
3339 
3340 	return (status);
3341 }
3342 
3343 static int
3344 vd_get_devid(vd_task_t *task)
3345 {
3346 	vd_t *vd = task->vd;
3347 	vd_dring_payload_t *request = task->request;
3348 	vd_devid_t *vd_devid;
3349 	impl_devid_t *devid;
3350 	int status, bufid_len, devid_len, len, sz;
3351 	int bufbytes;
3352 
3353 	PR1("Get Device ID, nbytes=%ld", request->nbytes);
3354 
3355 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
3356 		/*
3357 		 * We don't support devid for single-slice disks because we
3358 		 * have no space to store a fabricated devid and for physical
3359 		 * disk slices, we can't use the devid of the disk otherwise
3360 		 * exporting multiple slices from the same disk will produce
3361 		 * the same devids.
3362 		 */
3363 		PR2("No Device ID for slices");
3364 		request->status = ENOTSUP;
3365 		return (0);
3366 	}
3367 
3368 	if (vd->file) {
3369 		if (vd->file_devid == NULL) {
3370 			PR2("No Device ID");
3371 			request->status = ENOENT;
3372 			return (0);
3373 		} else {
3374 			sz = ddi_devid_sizeof(vd->file_devid);
3375 			devid = kmem_alloc(sz, KM_SLEEP);
3376 			bcopy(vd->file_devid, devid, sz);
3377 		}
3378 	} else {
3379 		if (ddi_lyr_get_devid(vd->dev[request->slice],
3380 		    (ddi_devid_t *)&devid) != DDI_SUCCESS) {
3381 			PR2("No Device ID");
3382 			request->status = ENOENT;
3383 			return (0);
3384 		}
3385 	}
3386 
3387 	bufid_len = request->nbytes - sizeof (vd_devid_t) + 1;
3388 	devid_len = DEVID_GETLEN(devid);
3389 
3390 	/*
3391 	 * Save the buffer size here for use in deallocation.
3392 	 * The actual number of bytes copied is returned in
3393 	 * the 'nbytes' field of the request structure.
3394 	 */
3395 	bufbytes = request->nbytes;
3396 
3397 	vd_devid = kmem_zalloc(bufbytes, KM_SLEEP);
3398 	vd_devid->length = devid_len;
3399 	vd_devid->type = DEVID_GETTYPE(devid);
3400 
3401 	len = (devid_len > bufid_len)? bufid_len : devid_len;
3402 
3403 	bcopy(devid->did_id, vd_devid->id, len);
3404 
3405 	request->status = 0;
3406 
3407 	/* LDC memory operations require 8-byte multiples */
3408 	ASSERT(request->nbytes % sizeof (uint64_t) == 0);
3409 
3410 	if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0,
3411 	    &request->nbytes, request->cookie, request->ncookies,
3412 	    LDC_COPY_OUT)) != 0) {
3413 		PR0("ldc_mem_copy() returned errno %d copying to client",
3414 		    status);
3415 	}
3416 	PR1("post mem_copy: nbytes=%ld", request->nbytes);
3417 
3418 	kmem_free(vd_devid, bufbytes);
3419 	ddi_devid_free((ddi_devid_t)devid);
3420 
3421 	return (status);
3422 }
3423 
3424 static int
3425 vd_scsi_reset(vd_t *vd)
3426 {
3427 	int rval, status;
3428 	struct uscsi_cmd uscsi = { 0 };
3429 
3430 	uscsi.uscsi_flags = vd_scsi_debug | USCSI_RESET;
3431 	uscsi.uscsi_timeout = vd_scsi_rdwr_timeout;
3432 
3433 	status = ldi_ioctl(vd->ldi_handle[0], USCSICMD, (intptr_t)&uscsi,
3434 	    (vd->open_flags | FKIOCTL), kcred, &rval);
3435 
3436 	return (status);
3437 }
3438 
3439 static int
3440 vd_reset(vd_task_t *task)
3441 {
3442 	vd_t *vd = task->vd;
3443 	vd_dring_payload_t *request = task->request;
3444 
3445 	ASSERT(request->operation == VD_OP_RESET);
3446 	ASSERT(vd->scsi);
3447 
3448 	PR0("Performing VD_OP_RESET");
3449 
3450 	if (request->nbytes != 0) {
3451 		PR0("VD_OP_RESET:  Expected nbytes = 0, got %lu",
3452 		    request->nbytes);
3453 		return (EINVAL);
3454 	}
3455 
3456 	request->status = vd_scsi_reset(vd);
3457 
3458 	return (0);
3459 }
3460 
3461 static int
3462 vd_get_capacity(vd_task_t *task)
3463 {
3464 	int rv;
3465 	size_t nbytes;
3466 	vd_t *vd = task->vd;
3467 	vd_dring_payload_t *request = task->request;
3468 	vd_capacity_t vd_cap = { 0 };
3469 
3470 	ASSERT(request->operation == VD_OP_GET_CAPACITY);
3471 	ASSERT(vd->scsi);
3472 
3473 	PR0("Performing VD_OP_GET_CAPACITY");
3474 
3475 	nbytes = request->nbytes;
3476 
3477 	if (nbytes != RNDSIZE(vd_capacity_t)) {
3478 		PR0("VD_OP_GET_CAPACITY:  Expected nbytes = %lu, got %lu",
3479 		    RNDSIZE(vd_capacity_t), nbytes);
3480 		return (EINVAL);
3481 	}
3482 
3483 	if (vd->vdisk_size == VD_SIZE_UNKNOWN) {
3484 		if (vd_setup_mediainfo(vd) != 0)
3485 			ASSERT(vd->vdisk_size == VD_SIZE_UNKNOWN);
3486 	}
3487 
3488 	ASSERT(vd->vdisk_size != 0);
3489 
3490 	request->status = 0;
3491 
3492 	vd_cap.vdisk_block_size = vd->vdisk_block_size;
3493 	vd_cap.vdisk_size = vd->vdisk_size;
3494 
3495 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&vd_cap, 0, &nbytes,
3496 	    request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
3497 		PR0("ldc_mem_copy() returned errno %d copying to client", rv);
3498 		return (rv);
3499 	}
3500 
3501 	return (0);
3502 }
3503 
3504 static int
3505 vd_get_access(vd_task_t *task)
3506 {
3507 	uint64_t access;
3508 	int rv, rval = 0;
3509 	size_t nbytes;
3510 	vd_t *vd = task->vd;
3511 	vd_dring_payload_t *request = task->request;
3512 
3513 	ASSERT(request->operation == VD_OP_GET_ACCESS);
3514 	ASSERT(vd->scsi);
3515 
3516 	PR0("Performing VD_OP_GET_ACCESS");
3517 
3518 	nbytes = request->nbytes;
3519 
3520 	if (nbytes != sizeof (uint64_t)) {
3521 		PR0("VD_OP_GET_ACCESS:  Expected nbytes = %lu, got %lu",
3522 		    sizeof (uint64_t), nbytes);
3523 		return (EINVAL);
3524 	}
3525 
3526 	request->status = ldi_ioctl(vd->ldi_handle[request->slice], MHIOCSTATUS,
3527 	    NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3528 
3529 	if (request->status != 0)
3530 		return (0);
3531 
3532 	access = (rval == 0)? VD_ACCESS_ALLOWED : VD_ACCESS_DENIED;
3533 
3534 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&access, 0, &nbytes,
3535 	    request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
3536 		PR0("ldc_mem_copy() returned errno %d copying to client", rv);
3537 		return (rv);
3538 	}
3539 
3540 	return (0);
3541 }
3542 
3543 static int
3544 vd_set_access(vd_task_t *task)
3545 {
3546 	uint64_t flags;
3547 	int rv, rval;
3548 	size_t nbytes;
3549 	vd_t *vd = task->vd;
3550 	vd_dring_payload_t *request = task->request;
3551 
3552 	ASSERT(request->operation == VD_OP_SET_ACCESS);
3553 	ASSERT(vd->scsi);
3554 
3555 	nbytes = request->nbytes;
3556 
3557 	if (nbytes != sizeof (uint64_t)) {
3558 		PR0("VD_OP_SET_ACCESS:  Expected nbytes = %lu, got %lu",
3559 		    sizeof (uint64_t), nbytes);
3560 		return (EINVAL);
3561 	}
3562 
3563 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&flags, 0, &nbytes,
3564 	    request->cookie, request->ncookies, LDC_COPY_IN)) != 0) {
3565 		PR0("ldc_mem_copy() returned errno %d copying from client", rv);
3566 		return (rv);
3567 	}
3568 
3569 	if (flags == VD_ACCESS_SET_CLEAR) {
3570 		PR0("Performing VD_OP_SET_ACCESS (CLEAR)");
3571 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3572 		    MHIOCRELEASE, NULL, (vd->open_flags | FKIOCTL), kcred,
3573 		    &rval);
3574 		if (request->status == 0)
3575 			vd->ownership = B_FALSE;
3576 		return (0);
3577 	}
3578 
3579 	/*
3580 	 * As per the VIO spec, the PREEMPT and PRESERVE flags are only valid
3581 	 * when the EXCLUSIVE flag is set.
3582 	 */
3583 	if (!(flags & VD_ACCESS_SET_EXCLUSIVE)) {
3584 		PR0("Invalid VD_OP_SET_ACCESS flags: 0x%lx", flags);
3585 		request->status = EINVAL;
3586 		return (0);
3587 	}
3588 
3589 	switch (flags & (VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE)) {
3590 
3591 	case VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE:
3592 		/*
3593 		 * Flags EXCLUSIVE and PREEMPT and PRESERVE. We have to
3594 		 * acquire exclusive access rights, preserve them and we
3595 		 * can use preemption. So we can use the MHIOCTKNOWN ioctl.
3596 		 */
3597 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT|PRESERVE)");
3598 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3599 		    MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3600 		break;
3601 
3602 	case VD_ACCESS_SET_PRESERVE:
3603 		/*
3604 		 * Flags EXCLUSIVE and PRESERVE. We have to acquire exclusive
3605 		 * access rights and preserve them, but not preempt any other
3606 		 * host. So we need to use the MHIOCTKOWN ioctl to enable the
3607 		 * "preserve" feature but we can not called it directly
3608 		 * because it uses preemption. So before that, we use the
3609 		 * MHIOCQRESERVE ioctl to ensure we can get exclusive rights
3610 		 * without preempting anyone.
3611 		 */
3612 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PRESERVE)");
3613 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3614 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3615 		    &rval);
3616 		if (request->status != 0)
3617 			break;
3618 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3619 		    MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3620 		break;
3621 
3622 	case VD_ACCESS_SET_PREEMPT:
3623 		/*
3624 		 * Flags EXCLUSIVE and PREEMPT. We have to acquire exclusive
3625 		 * access rights and we can use preemption. So we try to do
3626 		 * a SCSI reservation, if it fails we reset the disk to clear
3627 		 * any reservation and we try to reserve again.
3628 		 */
3629 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT)");
3630 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3631 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3632 		    &rval);
3633 		if (request->status == 0)
3634 			break;
3635 
3636 		/* reset the disk */
3637 		(void) vd_scsi_reset(vd);
3638 
3639 		/* try again even if the reset has failed */
3640 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3641 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3642 		    &rval);
3643 		break;
3644 
3645 	case 0:
3646 		/* Flag EXCLUSIVE only. Just issue a SCSI reservation */
3647 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE)");
3648 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3649 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3650 		    &rval);
3651 		break;
3652 	}
3653 
3654 	if (request->status == 0)
3655 		vd->ownership = B_TRUE;
3656 	else
3657 		PR0("VD_OP_SET_ACCESS: error %d", request->status);
3658 
3659 	return (0);
3660 }
3661 
3662 static void
3663 vd_reset_access(vd_t *vd)
3664 {
3665 	int status, rval;
3666 
3667 	if (vd->file || !vd->ownership)
3668 		return;
3669 
3670 	PR0("Releasing disk ownership");
3671 	status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
3672 	    (vd->open_flags | FKIOCTL), kcred, &rval);
3673 
3674 	/*
3675 	 * An EACCES failure means that there is a reservation conflict,
3676 	 * so we are not the owner of the disk anymore.
3677 	 */
3678 	if (status == 0 || status == EACCES) {
3679 		vd->ownership = B_FALSE;
3680 		return;
3681 	}
3682 
3683 	PR0("Fail to release ownership, error %d", status);
3684 
3685 	/*
3686 	 * We have failed to release the ownership, try to reset the disk
3687 	 * to release reservations.
3688 	 */
3689 	PR0("Resetting disk");
3690 	status = vd_scsi_reset(vd);
3691 
3692 	if (status != 0)
3693 		PR0("Fail to reset disk, error %d", status);
3694 
3695 	/* whatever the result of the reset is, we try the release again */
3696 	status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
3697 	    (vd->open_flags | FKIOCTL), kcred, &rval);
3698 
3699 	if (status == 0 || status == EACCES) {
3700 		vd->ownership = B_FALSE;
3701 		return;
3702 	}
3703 
3704 	PR0("Fail to release ownership, error %d", status);
3705 
3706 	/*
3707 	 * At this point we have done our best to try to reset the
3708 	 * access rights to the disk and we don't know if we still
3709 	 * own a reservation and if any mechanism to preserve the
3710 	 * ownership is still in place. The ultimate solution would
3711 	 * be to reset the system but this is usually not what we
3712 	 * want to happen.
3713 	 */
3714 
3715 	if (vd_reset_access_failure == A_REBOOT) {
3716 		cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG
3717 		    ", rebooting the system", vd->device_path);
3718 		(void) uadmin(A_SHUTDOWN, AD_BOOT, NULL);
3719 	} else if (vd_reset_access_failure == A_DUMP) {
3720 		panic(VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
3721 	}
3722 
3723 	cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
3724 }
3725 
3726 /*
3727  * Define the supported operations once the functions for performing them have
3728  * been defined
3729  */
3730 static const vds_operation_t	vds_operation[] = {
3731 #define	X(_s)	#_s, _s
3732 	{X(VD_OP_BREAD),	vd_start_bio,	vd_complete_bio},
3733 	{X(VD_OP_BWRITE),	vd_start_bio,	vd_complete_bio},
3734 	{X(VD_OP_FLUSH),	vd_ioctl,	NULL},
3735 	{X(VD_OP_GET_WCE),	vd_ioctl,	NULL},
3736 	{X(VD_OP_SET_WCE),	vd_ioctl,	NULL},
3737 	{X(VD_OP_GET_VTOC),	vd_ioctl,	NULL},
3738 	{X(VD_OP_SET_VTOC),	vd_ioctl,	NULL},
3739 	{X(VD_OP_GET_DISKGEOM),	vd_ioctl,	NULL},
3740 	{X(VD_OP_SET_DISKGEOM),	vd_ioctl,	NULL},
3741 	{X(VD_OP_GET_EFI),	vd_ioctl,	NULL},
3742 	{X(VD_OP_SET_EFI),	vd_ioctl,	NULL},
3743 	{X(VD_OP_GET_DEVID),	vd_get_devid,	NULL},
3744 	{X(VD_OP_SCSICMD),	vd_ioctl,	NULL},
3745 	{X(VD_OP_RESET),	vd_reset,	NULL},
3746 	{X(VD_OP_GET_CAPACITY),	vd_get_capacity, NULL},
3747 	{X(VD_OP_SET_ACCESS),	vd_set_access,	NULL},
3748 	{X(VD_OP_GET_ACCESS),	vd_get_access,	NULL},
3749 #undef	X
3750 };
3751 
3752 static const size_t	vds_noperations =
3753 	(sizeof (vds_operation))/(sizeof (vds_operation[0]));
3754 
3755 /*
3756  * Process a task specifying a client I/O request
3757  *
3758  * Parameters:
3759  *	task 		- structure containing the request sent from client
3760  *
3761  * Return Value
3762  *	0	- success
3763  *	ENOTSUP	- Unknown/Unsupported VD_OP_XXX operation
3764  *	EINVAL	- Invalid disk slice
3765  *	!= 0	- some other non-zero return value from start function
3766  */
3767 static int
3768 vd_do_process_task(vd_task_t *task)
3769 {
3770 	int			i;
3771 	vd_t			*vd		= task->vd;
3772 	vd_dring_payload_t	*request	= task->request;
3773 
3774 	ASSERT(vd != NULL);
3775 	ASSERT(request != NULL);
3776 
3777 	/* Find the requested operation */
3778 	for (i = 0; i < vds_noperations; i++) {
3779 		if (request->operation == vds_operation[i].operation) {
3780 			/* all operations should have a start func */
3781 			ASSERT(vds_operation[i].start != NULL);
3782 
3783 			task->completef = vds_operation[i].complete;
3784 			break;
3785 		}
3786 	}
3787 
3788 	/*
3789 	 * We need to check that the requested operation is permitted
3790 	 * for the particular client that sent it or that the loop above
3791 	 * did not complete without finding the operation type (indicating
3792 	 * that the requested operation is unknown/unimplemented)
3793 	 */
3794 	if ((VD_OP_SUPPORTED(vd->operations, request->operation) == B_FALSE) ||
3795 	    (i == vds_noperations)) {
3796 		PR0("Unsupported operation %u", request->operation);
3797 		request->status = ENOTSUP;
3798 		return (0);
3799 	}
3800 
3801 	/* Range-check slice */
3802 	if (request->slice >= vd->nslices &&
3803 	    ((vd->vdisk_type != VD_DISK_TYPE_DISK && vd_slice_single_slice) ||
3804 	    request->slice != VD_SLICE_NONE)) {
3805 		PR0("Invalid \"slice\" %u (max %u) for virtual disk",
3806 		    request->slice, (vd->nslices - 1));
3807 		request->status = EINVAL;
3808 		return (0);
3809 	}
3810 
3811 	/*
3812 	 * Call the function pointer that starts the operation.
3813 	 */
3814 	return (vds_operation[i].start(task));
3815 }
3816 
3817 /*
3818  * Description:
3819  *	This function is called by both the in-band and descriptor ring
3820  *	message processing functions paths to actually execute the task
3821  *	requested by the vDisk client. It in turn calls its worker
3822  *	function, vd_do_process_task(), to carry our the request.
3823  *
3824  *	Any transport errors (e.g. LDC errors, vDisk protocol errors) are
3825  *	saved in the 'status' field of the task and are propagated back
3826  *	up the call stack to trigger a NACK
3827  *
3828  *	Any request errors (e.g. ENOTTY from an ioctl) are saved in
3829  *	the 'status' field of the request and result in an ACK being sent
3830  *	by the completion handler.
3831  *
3832  * Parameters:
3833  *	task 		- structure containing the request sent from client
3834  *
3835  * Return Value
3836  *	0		- successful synchronous request.
3837  *	!= 0		- transport error (e.g. LDC errors, vDisk protocol)
3838  *	EINPROGRESS	- task will be finished in a completion handler
3839  */
3840 static int
3841 vd_process_task(vd_task_t *task)
3842 {
3843 	vd_t	*vd = task->vd;
3844 	int	status;
3845 
3846 	DTRACE_PROBE1(task__start, vd_task_t *, task);
3847 
3848 	task->status =  vd_do_process_task(task);
3849 
3850 	/*
3851 	 * If the task processing function returned EINPROGRESS indicating
3852 	 * that the task needs completing then schedule a taskq entry to
3853 	 * finish it now.
3854 	 *
3855 	 * Otherwise the task processing function returned either zero
3856 	 * indicating that the task was finished in the start function (and we
3857 	 * don't need to wait in a completion function) or the start function
3858 	 * returned an error - in both cases all that needs to happen is the
3859 	 * notification to the vDisk client higher up the call stack.
3860 	 * If the task was using a Descriptor Ring, we need to mark it as done
3861 	 * at this stage.
3862 	 */
3863 	if (task->status == EINPROGRESS) {
3864 		/* Queue a task to complete the operation */
3865 		(void) ddi_taskq_dispatch(vd->completionq, vd_complete,
3866 		    task, DDI_SLEEP);
3867 
3868 	} else if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
3869 		/* Update the dring element if it's a dring client */
3870 		status = vd_mark_elem_done(vd, task->index,
3871 		    task->request->status, task->request->nbytes);
3872 		if (status == ECONNRESET)
3873 			vd_mark_in_reset(vd);
3874 		else if (status == EACCES)
3875 			vd_need_reset(vd, B_TRUE);
3876 	}
3877 
3878 	return (task->status);
3879 }
3880 
3881 /*
3882  * Return true if the "type", "subtype", and "env" fields of the "tag" first
3883  * argument match the corresponding remaining arguments; otherwise, return false
3884  */
3885 boolean_t
3886 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env)
3887 {
3888 	return ((tag->vio_msgtype == type) &&
3889 	    (tag->vio_subtype == subtype) &&
3890 	    (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE;
3891 }
3892 
3893 /*
3894  * Check whether the major/minor version specified in "ver_msg" is supported
3895  * by this server.
3896  */
3897 static boolean_t
3898 vds_supported_version(vio_ver_msg_t *ver_msg)
3899 {
3900 	for (int i = 0; i < vds_num_versions; i++) {
3901 		ASSERT(vds_version[i].major > 0);
3902 		ASSERT((i == 0) ||
3903 		    (vds_version[i].major < vds_version[i-1].major));
3904 
3905 		/*
3906 		 * If the major versions match, adjust the minor version, if
3907 		 * necessary, down to the highest value supported by this
3908 		 * server and return true so this message will get "ack"ed;
3909 		 * the client should also support all minor versions lower
3910 		 * than the value it sent
3911 		 */
3912 		if (ver_msg->ver_major == vds_version[i].major) {
3913 			if (ver_msg->ver_minor > vds_version[i].minor) {
3914 				PR0("Adjusting minor version from %u to %u",
3915 				    ver_msg->ver_minor, vds_version[i].minor);
3916 				ver_msg->ver_minor = vds_version[i].minor;
3917 			}
3918 			return (B_TRUE);
3919 		}
3920 
3921 		/*
3922 		 * If the message contains a higher major version number, set
3923 		 * the message's major/minor versions to the current values
3924 		 * and return false, so this message will get "nack"ed with
3925 		 * these values, and the client will potentially try again
3926 		 * with the same or a lower version
3927 		 */
3928 		if (ver_msg->ver_major > vds_version[i].major) {
3929 			ver_msg->ver_major = vds_version[i].major;
3930 			ver_msg->ver_minor = vds_version[i].minor;
3931 			return (B_FALSE);
3932 		}
3933 
3934 		/*
3935 		 * Otherwise, the message's major version is less than the
3936 		 * current major version, so continue the loop to the next
3937 		 * (lower) supported version
3938 		 */
3939 	}
3940 
3941 	/*
3942 	 * No common version was found; "ground" the version pair in the
3943 	 * message to terminate negotiation
3944 	 */
3945 	ver_msg->ver_major = 0;
3946 	ver_msg->ver_minor = 0;
3947 	return (B_FALSE);
3948 }
3949 
3950 /*
3951  * Process a version message from a client.  vds expects to receive version
3952  * messages from clients seeking service, but never issues version messages
3953  * itself; therefore, vds can ACK or NACK client version messages, but does
3954  * not expect to receive version-message ACKs or NACKs (and will treat such
3955  * messages as invalid).
3956  */
3957 static int
3958 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3959 {
3960 	vio_ver_msg_t	*ver_msg = (vio_ver_msg_t *)msg;
3961 
3962 
3963 	ASSERT(msglen >= sizeof (msg->tag));
3964 
3965 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
3966 	    VIO_VER_INFO)) {
3967 		return (ENOMSG);	/* not a version message */
3968 	}
3969 
3970 	if (msglen != sizeof (*ver_msg)) {
3971 		PR0("Expected %lu-byte version message; "
3972 		    "received %lu bytes", sizeof (*ver_msg), msglen);
3973 		return (EBADMSG);
3974 	}
3975 
3976 	if (ver_msg->dev_class != VDEV_DISK) {
3977 		PR0("Expected device class %u (disk); received %u",
3978 		    VDEV_DISK, ver_msg->dev_class);
3979 		return (EBADMSG);
3980 	}
3981 
3982 	/*
3983 	 * We're talking to the expected kind of client; set our device class
3984 	 * for "ack/nack" back to the client
3985 	 */
3986 	ver_msg->dev_class = VDEV_DISK_SERVER;
3987 
3988 	/*
3989 	 * Check whether the (valid) version message specifies a version
3990 	 * supported by this server.  If the version is not supported, return
3991 	 * EBADMSG so the message will get "nack"ed; vds_supported_version()
3992 	 * will have updated the message with a supported version for the
3993 	 * client to consider
3994 	 */
3995 	if (!vds_supported_version(ver_msg))
3996 		return (EBADMSG);
3997 
3998 
3999 	/*
4000 	 * A version has been agreed upon; use the client's SID for
4001 	 * communication on this channel now
4002 	 */
4003 	ASSERT(!(vd->initialized & VD_SID));
4004 	vd->sid = ver_msg->tag.vio_sid;
4005 	vd->initialized |= VD_SID;
4006 
4007 	/*
4008 	 * Store the negotiated major and minor version values in the "vd" data
4009 	 * structure so that we can check if certain operations are supported
4010 	 * by the client.
4011 	 */
4012 	vd->version.major = ver_msg->ver_major;
4013 	vd->version.minor = ver_msg->ver_minor;
4014 
4015 	PR0("Using major version %u, minor version %u",
4016 	    ver_msg->ver_major, ver_msg->ver_minor);
4017 	return (0);
4018 }
4019 
4020 static void
4021 vd_set_exported_operations(vd_t *vd)
4022 {
4023 	vd->operations = 0;	/* clear field */
4024 
4025 	/*
4026 	 * We need to check from the highest version supported to the
4027 	 * lowest because versions with a higher minor number implicitly
4028 	 * support versions with a lower minor number.
4029 	 */
4030 	if (vio_ver_is_supported(vd->version, 1, 1)) {
4031 		ASSERT(vd->open_flags & FREAD);
4032 		vd->operations |= VD_OP_MASK_READ;
4033 
4034 		if (vd->open_flags & FWRITE)
4035 			vd->operations |= VD_OP_MASK_WRITE;
4036 
4037 		if (vd->scsi)
4038 			vd->operations |= VD_OP_MASK_SCSI;
4039 
4040 		if (vd->file && vd_file_is_iso_image(vd)) {
4041 			/*
4042 			 * can't write to ISO images, make sure that write
4043 			 * support is not set in case administrator did not
4044 			 * use "options=ro" when doing an ldm add-vdsdev
4045 			 */
4046 			vd->operations &= ~VD_OP_MASK_WRITE;
4047 		}
4048 	} else if (vio_ver_is_supported(vd->version, 1, 0)) {
4049 		vd->operations = VD_OP_MASK_READ | VD_OP_MASK_WRITE;
4050 	}
4051 
4052 	/* we should have already agreed on a version */
4053 	ASSERT(vd->operations != 0);
4054 }
4055 
4056 static int
4057 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4058 {
4059 	vd_attr_msg_t	*attr_msg = (vd_attr_msg_t *)msg;
4060 	int		status, retry = 0;
4061 
4062 
4063 	ASSERT(msglen >= sizeof (msg->tag));
4064 
4065 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4066 	    VIO_ATTR_INFO)) {
4067 		PR0("Message is not an attribute message");
4068 		return (ENOMSG);
4069 	}
4070 
4071 	if (msglen != sizeof (*attr_msg)) {
4072 		PR0("Expected %lu-byte attribute message; "
4073 		    "received %lu bytes", sizeof (*attr_msg), msglen);
4074 		return (EBADMSG);
4075 	}
4076 
4077 	if (attr_msg->max_xfer_sz == 0) {
4078 		PR0("Received maximum transfer size of 0 from client");
4079 		return (EBADMSG);
4080 	}
4081 
4082 	if ((attr_msg->xfer_mode != VIO_DESC_MODE) &&
4083 	    (attr_msg->xfer_mode != VIO_DRING_MODE_V1_0)) {
4084 		PR0("Client requested unsupported transfer mode");
4085 		return (EBADMSG);
4086 	}
4087 
4088 	/*
4089 	 * check if the underlying disk is ready, if not try accessing
4090 	 * the device again. Open the vdisk device and extract info
4091 	 * about it, as this is needed to respond to the attr info msg
4092 	 */
4093 	if ((vd->initialized & VD_DISK_READY) == 0) {
4094 		PR0("Retry setting up disk (%s)", vd->device_path);
4095 		do {
4096 			status = vd_setup_vd(vd);
4097 			if (status != EAGAIN || ++retry > vds_dev_retries)
4098 				break;
4099 
4100 			/* incremental delay */
4101 			delay(drv_usectohz(vds_dev_delay));
4102 
4103 			/* if vdisk is no longer enabled - return error */
4104 			if (!vd_enabled(vd))
4105 				return (ENXIO);
4106 
4107 		} while (status == EAGAIN);
4108 
4109 		if (status)
4110 			return (ENXIO);
4111 
4112 		vd->initialized |= VD_DISK_READY;
4113 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
4114 		PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u",
4115 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
4116 		    (vd->volume ? "yes" : "no"),
4117 		    (vd->file ? "yes" : "no"),
4118 		    vd->nslices);
4119 	}
4120 
4121 	/* Success:  valid message and transfer mode */
4122 	vd->xfer_mode = attr_msg->xfer_mode;
4123 
4124 	if (vd->xfer_mode == VIO_DESC_MODE) {
4125 
4126 		/*
4127 		 * The vd_dring_inband_msg_t contains one cookie; need room
4128 		 * for up to n-1 more cookies, where "n" is the number of full
4129 		 * pages plus possibly one partial page required to cover
4130 		 * "max_xfer_sz".  Add room for one more cookie if
4131 		 * "max_xfer_sz" isn't an integral multiple of the page size.
4132 		 * Must first get the maximum transfer size in bytes.
4133 		 */
4134 		size_t	max_xfer_bytes = attr_msg->vdisk_block_size ?
4135 		    attr_msg->vdisk_block_size*attr_msg->max_xfer_sz :
4136 		    attr_msg->max_xfer_sz;
4137 		size_t	max_inband_msglen =
4138 		    sizeof (vd_dring_inband_msg_t) +
4139 		    ((max_xfer_bytes/PAGESIZE +
4140 		    ((max_xfer_bytes % PAGESIZE) ? 1 : 0))*
4141 		    (sizeof (ldc_mem_cookie_t)));
4142 
4143 		/*
4144 		 * Set the maximum expected message length to
4145 		 * accommodate in-band-descriptor messages with all
4146 		 * their cookies
4147 		 */
4148 		vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen);
4149 
4150 		/*
4151 		 * Initialize the data structure for processing in-band I/O
4152 		 * request descriptors
4153 		 */
4154 		vd->inband_task.vd	= vd;
4155 		vd->inband_task.msg	= kmem_alloc(vd->max_msglen, KM_SLEEP);
4156 		vd->inband_task.index	= 0;
4157 		vd->inband_task.type	= VD_FINAL_RANGE_TASK;	/* range == 1 */
4158 	}
4159 
4160 	/* Return the device's block size and max transfer size to the client */
4161 	attr_msg->vdisk_block_size	= vd->vdisk_block_size;
4162 	attr_msg->max_xfer_sz		= vd->max_xfer_sz;
4163 
4164 	attr_msg->vdisk_size = vd->vdisk_size;
4165 	attr_msg->vdisk_type = (vd_slice_single_slice)? vd->vdisk_type :
4166 	    VD_DISK_TYPE_DISK;
4167 	attr_msg->vdisk_media = vd->vdisk_media;
4168 
4169 	/* Discover and save the list of supported VD_OP_XXX operations */
4170 	vd_set_exported_operations(vd);
4171 	attr_msg->operations = vd->operations;
4172 
4173 	PR0("%s", VD_CLIENT(vd));
4174 
4175 	ASSERT(vd->dring_task == NULL);
4176 
4177 	return (0);
4178 }
4179 
4180 static int
4181 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4182 {
4183 	int			status;
4184 	size_t			expected;
4185 	ldc_mem_info_t		dring_minfo;
4186 	uint8_t			mtype;
4187 	vio_dring_reg_msg_t	*reg_msg = (vio_dring_reg_msg_t *)msg;
4188 
4189 
4190 	ASSERT(msglen >= sizeof (msg->tag));
4191 
4192 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4193 	    VIO_DRING_REG)) {
4194 		PR0("Message is not a register-dring message");
4195 		return (ENOMSG);
4196 	}
4197 
4198 	if (msglen < sizeof (*reg_msg)) {
4199 		PR0("Expected at least %lu-byte register-dring message; "
4200 		    "received %lu bytes", sizeof (*reg_msg), msglen);
4201 		return (EBADMSG);
4202 	}
4203 
4204 	expected = sizeof (*reg_msg) +
4205 	    (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0]));
4206 	if (msglen != expected) {
4207 		PR0("Expected %lu-byte register-dring message; "
4208 		    "received %lu bytes", expected, msglen);
4209 		return (EBADMSG);
4210 	}
4211 
4212 	if (vd->initialized & VD_DRING) {
4213 		PR0("A dring was previously registered; only support one");
4214 		return (EBADMSG);
4215 	}
4216 
4217 	if (reg_msg->num_descriptors > INT32_MAX) {
4218 		PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)",
4219 		    reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX));
4220 		return (EBADMSG);
4221 	}
4222 
4223 	if (reg_msg->ncookies != 1) {
4224 		/*
4225 		 * In addition to fixing the assertion in the success case
4226 		 * below, supporting drings which require more than one
4227 		 * "cookie" requires increasing the value of vd->max_msglen
4228 		 * somewhere in the code path prior to receiving the message
4229 		 * which results in calling this function.  Note that without
4230 		 * making this change, the larger message size required to
4231 		 * accommodate multiple cookies cannot be successfully
4232 		 * received, so this function will not even get called.
4233 		 * Gracefully accommodating more dring cookies might
4234 		 * reasonably demand exchanging an additional attribute or
4235 		 * making a minor protocol adjustment
4236 		 */
4237 		PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies);
4238 		return (EBADMSG);
4239 	}
4240 
4241 	if (vd_direct_mapped_drings)
4242 		mtype = LDC_DIRECT_MAP;
4243 	else
4244 		mtype = LDC_SHADOW_MAP;
4245 
4246 	status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie,
4247 	    reg_msg->ncookies, reg_msg->num_descriptors,
4248 	    reg_msg->descriptor_size, mtype, &vd->dring_handle);
4249 	if (status != 0) {
4250 		PR0("ldc_mem_dring_map() returned errno %d", status);
4251 		return (status);
4252 	}
4253 
4254 	/*
4255 	 * To remove the need for this assertion, must call
4256 	 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a
4257 	 * successful call to ldc_mem_dring_map()
4258 	 */
4259 	ASSERT(reg_msg->ncookies == 1);
4260 
4261 	if ((status =
4262 	    ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) {
4263 		PR0("ldc_mem_dring_info() returned errno %d", status);
4264 		if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)
4265 			PR0("ldc_mem_dring_unmap() returned errno %d", status);
4266 		return (status);
4267 	}
4268 
4269 	if (dring_minfo.vaddr == NULL) {
4270 		PR0("Descriptor ring virtual address is NULL");
4271 		return (ENXIO);
4272 	}
4273 
4274 
4275 	/* Initialize for valid message and mapped dring */
4276 	PR1("descriptor size = %u, dring length = %u",
4277 	    vd->descriptor_size, vd->dring_len);
4278 	vd->initialized |= VD_DRING;
4279 	vd->dring_ident = 1;	/* "There Can Be Only One" */
4280 	vd->dring = dring_minfo.vaddr;
4281 	vd->descriptor_size = reg_msg->descriptor_size;
4282 	vd->dring_len = reg_msg->num_descriptors;
4283 	vd->dring_mtype = dring_minfo.mtype;
4284 	reg_msg->dring_ident = vd->dring_ident;
4285 
4286 	/*
4287 	 * Allocate and initialize a "shadow" array of data structures for
4288 	 * tasks to process I/O requests in dring elements
4289 	 */
4290 	vd->dring_task =
4291 	    kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP);
4292 	for (int i = 0; i < vd->dring_len; i++) {
4293 		vd->dring_task[i].vd		= vd;
4294 		vd->dring_task[i].index		= i;
4295 		vd->dring_task[i].request	= &VD_DRING_ELEM(i)->payload;
4296 
4297 		status = ldc_mem_alloc_handle(vd->ldc_handle,
4298 		    &(vd->dring_task[i].mhdl));
4299 		if (status) {
4300 			PR0("ldc_mem_alloc_handle() returned err %d ", status);
4301 			return (ENXIO);
4302 		}
4303 
4304 		vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
4305 	}
4306 
4307 	return (0);
4308 }
4309 
4310 static int
4311 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4312 {
4313 	vio_dring_unreg_msg_t	*unreg_msg = (vio_dring_unreg_msg_t *)msg;
4314 
4315 
4316 	ASSERT(msglen >= sizeof (msg->tag));
4317 
4318 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4319 	    VIO_DRING_UNREG)) {
4320 		PR0("Message is not an unregister-dring message");
4321 		return (ENOMSG);
4322 	}
4323 
4324 	if (msglen != sizeof (*unreg_msg)) {
4325 		PR0("Expected %lu-byte unregister-dring message; "
4326 		    "received %lu bytes", sizeof (*unreg_msg), msglen);
4327 		return (EBADMSG);
4328 	}
4329 
4330 	if (unreg_msg->dring_ident != vd->dring_ident) {
4331 		PR0("Expected dring ident %lu; received %lu",
4332 		    vd->dring_ident, unreg_msg->dring_ident);
4333 		return (EBADMSG);
4334 	}
4335 
4336 	return (0);
4337 }
4338 
4339 static int
4340 process_rdx_msg(vio_msg_t *msg, size_t msglen)
4341 {
4342 	ASSERT(msglen >= sizeof (msg->tag));
4343 
4344 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) {
4345 		PR0("Message is not an RDX message");
4346 		return (ENOMSG);
4347 	}
4348 
4349 	if (msglen != sizeof (vio_rdx_msg_t)) {
4350 		PR0("Expected %lu-byte RDX message; received %lu bytes",
4351 		    sizeof (vio_rdx_msg_t), msglen);
4352 		return (EBADMSG);
4353 	}
4354 
4355 	PR0("Valid RDX message");
4356 	return (0);
4357 }
4358 
4359 static int
4360 vd_check_seq_num(vd_t *vd, uint64_t seq_num)
4361 {
4362 	if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) {
4363 		PR0("Received seq_num %lu; expected %lu",
4364 		    seq_num, (vd->seq_num + 1));
4365 		PR0("initiating soft reset");
4366 		vd_need_reset(vd, B_FALSE);
4367 		return (1);
4368 	}
4369 
4370 	vd->seq_num = seq_num;
4371 	vd->initialized |= VD_SEQ_NUM;	/* superfluous after first time... */
4372 	return (0);
4373 }
4374 
4375 /*
4376  * Return the expected size of an inband-descriptor message with all the
4377  * cookies it claims to include
4378  */
4379 static size_t
4380 expected_inband_size(vd_dring_inband_msg_t *msg)
4381 {
4382 	return ((sizeof (*msg)) +
4383 	    (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0])));
4384 }
4385 
4386 /*
4387  * Process an in-band descriptor message:  used with clients like OBP, with
4388  * which vds exchanges descriptors within VIO message payloads, rather than
4389  * operating on them within a descriptor ring
4390  */
4391 static int
4392 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4393 {
4394 	size_t			expected;
4395 	vd_dring_inband_msg_t	*desc_msg = (vd_dring_inband_msg_t *)msg;
4396 
4397 
4398 	ASSERT(msglen >= sizeof (msg->tag));
4399 
4400 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
4401 	    VIO_DESC_DATA)) {
4402 		PR1("Message is not an in-band-descriptor message");
4403 		return (ENOMSG);
4404 	}
4405 
4406 	if (msglen < sizeof (*desc_msg)) {
4407 		PR0("Expected at least %lu-byte descriptor message; "
4408 		    "received %lu bytes", sizeof (*desc_msg), msglen);
4409 		return (EBADMSG);
4410 	}
4411 
4412 	if (msglen != (expected = expected_inband_size(desc_msg))) {
4413 		PR0("Expected %lu-byte descriptor message; "
4414 		    "received %lu bytes", expected, msglen);
4415 		return (EBADMSG);
4416 	}
4417 
4418 	if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0)
4419 		return (EBADMSG);
4420 
4421 	/*
4422 	 * Valid message:  Set up the in-band descriptor task and process the
4423 	 * request.  Arrange to acknowledge the client's message, unless an
4424 	 * error processing the descriptor task results in setting
4425 	 * VIO_SUBTYPE_NACK
4426 	 */
4427 	PR1("Valid in-band-descriptor message");
4428 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4429 
4430 	ASSERT(vd->inband_task.msg != NULL);
4431 
4432 	bcopy(msg, vd->inband_task.msg, msglen);
4433 	vd->inband_task.msglen	= msglen;
4434 
4435 	/*
4436 	 * The task request is now the payload of the message
4437 	 * that was just copied into the body of the task.
4438 	 */
4439 	desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg;
4440 	vd->inband_task.request	= &desc_msg->payload;
4441 
4442 	return (vd_process_task(&vd->inband_task));
4443 }
4444 
4445 static int
4446 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx,
4447     vio_msg_t *msg, size_t msglen)
4448 {
4449 	int			status;
4450 	boolean_t		ready;
4451 	on_trap_data_t		otd;
4452 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
4453 
4454 	/* Accept the updated dring element */
4455 	if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype,
4456 	    vd->dring_handle, idx, idx)) != 0) {
4457 		return (status);
4458 	}
4459 	ready = (elem->hdr.dstate == VIO_DESC_READY);
4460 	if (ready) {
4461 		elem->hdr.dstate = VIO_DESC_ACCEPTED;
4462 	} else {
4463 		PR0("descriptor %u not ready", idx);
4464 		VD_DUMP_DRING_ELEM(elem);
4465 	}
4466 	if ((status = VIO_DRING_RELEASE(vd->dring_mtype,
4467 	    vd->dring_handle, idx, idx)) != 0) {
4468 		PR0("VIO_DRING_RELEASE() returned errno %d", status);
4469 		return (status);
4470 	}
4471 	if (!ready)
4472 		return (EBUSY);
4473 
4474 
4475 	/* Initialize a task and process the accepted element */
4476 	PR1("Processing dring element %u", idx);
4477 	vd->dring_task[idx].type	= type;
4478 
4479 	/* duplicate msg buf for cookies etc. */
4480 	bcopy(msg, vd->dring_task[idx].msg, msglen);
4481 
4482 	vd->dring_task[idx].msglen	= msglen;
4483 	return (vd_process_task(&vd->dring_task[idx]));
4484 }
4485 
4486 static int
4487 vd_process_element_range(vd_t *vd, int start, int end,
4488     vio_msg_t *msg, size_t msglen)
4489 {
4490 	int		i, n, nelem, status = 0;
4491 	boolean_t	inprogress = B_FALSE;
4492 	vd_task_type_t	type;
4493 
4494 
4495 	ASSERT(start >= 0);
4496 	ASSERT(end >= 0);
4497 
4498 	/*
4499 	 * Arrange to acknowledge the client's message, unless an error
4500 	 * processing one of the dring elements results in setting
4501 	 * VIO_SUBTYPE_NACK
4502 	 */
4503 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4504 
4505 	/*
4506 	 * Process the dring elements in the range
4507 	 */
4508 	nelem = ((end < start) ? end + vd->dring_len : end) - start + 1;
4509 	for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) {
4510 		((vio_dring_msg_t *)msg)->end_idx = i;
4511 		type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK;
4512 		status = vd_process_element(vd, type, i, msg, msglen);
4513 		if (status == EINPROGRESS)
4514 			inprogress = B_TRUE;
4515 		else if (status != 0)
4516 			break;
4517 	}
4518 
4519 	/*
4520 	 * If some, but not all, operations of a multi-element range are in
4521 	 * progress, wait for other operations to complete before returning
4522 	 * (which will result in "ack" or "nack" of the message).  Note that
4523 	 * all outstanding operations will need to complete, not just the ones
4524 	 * corresponding to the current range of dring elements; howevever, as
4525 	 * this situation is an error case, performance is less critical.
4526 	 */
4527 	if ((nelem > 1) && (status != EINPROGRESS) && inprogress)
4528 		ddi_taskq_wait(vd->completionq);
4529 
4530 	return (status);
4531 }
4532 
4533 static int
4534 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4535 {
4536 	vio_dring_msg_t	*dring_msg = (vio_dring_msg_t *)msg;
4537 
4538 
4539 	ASSERT(msglen >= sizeof (msg->tag));
4540 
4541 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
4542 	    VIO_DRING_DATA)) {
4543 		PR1("Message is not a dring-data message");
4544 		return (ENOMSG);
4545 	}
4546 
4547 	if (msglen != sizeof (*dring_msg)) {
4548 		PR0("Expected %lu-byte dring message; received %lu bytes",
4549 		    sizeof (*dring_msg), msglen);
4550 		return (EBADMSG);
4551 	}
4552 
4553 	if (vd_check_seq_num(vd, dring_msg->seq_num) != 0)
4554 		return (EBADMSG);
4555 
4556 	if (dring_msg->dring_ident != vd->dring_ident) {
4557 		PR0("Expected dring ident %lu; received ident %lu",
4558 		    vd->dring_ident, dring_msg->dring_ident);
4559 		return (EBADMSG);
4560 	}
4561 
4562 	if (dring_msg->start_idx >= vd->dring_len) {
4563 		PR0("\"start_idx\" = %u; must be less than %u",
4564 		    dring_msg->start_idx, vd->dring_len);
4565 		return (EBADMSG);
4566 	}
4567 
4568 	if ((dring_msg->end_idx < 0) ||
4569 	    (dring_msg->end_idx >= vd->dring_len)) {
4570 		PR0("\"end_idx\" = %u; must be >= 0 and less than %u",
4571 		    dring_msg->end_idx, vd->dring_len);
4572 		return (EBADMSG);
4573 	}
4574 
4575 	/* Valid message; process range of updated dring elements */
4576 	PR1("Processing descriptor range, start = %u, end = %u",
4577 	    dring_msg->start_idx, dring_msg->end_idx);
4578 	return (vd_process_element_range(vd, dring_msg->start_idx,
4579 	    dring_msg->end_idx, msg, msglen));
4580 }
4581 
4582 static int
4583 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes)
4584 {
4585 	int	retry, status;
4586 	size_t	size = *nbytes;
4587 
4588 
4589 	for (retry = 0, status = ETIMEDOUT;
4590 	    retry < vds_ldc_retries && status == ETIMEDOUT;
4591 	    retry++) {
4592 		PR1("ldc_read() attempt %d", (retry + 1));
4593 		*nbytes = size;
4594 		status = ldc_read(ldc_handle, msg, nbytes);
4595 	}
4596 
4597 	if (status) {
4598 		PR0("ldc_read() returned errno %d", status);
4599 		if (status != ECONNRESET)
4600 			return (ENOMSG);
4601 		return (status);
4602 	} else if (*nbytes == 0) {
4603 		PR1("ldc_read() returned 0 and no message read");
4604 		return (ENOMSG);
4605 	}
4606 
4607 	PR1("RCVD %lu-byte message", *nbytes);
4608 	return (0);
4609 }
4610 
4611 static int
4612 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4613 {
4614 	int		status;
4615 
4616 
4617 	PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype,
4618 	    msg->tag.vio_subtype, msg->tag.vio_subtype_env);
4619 #ifdef	DEBUG
4620 	vd_decode_tag(msg);
4621 #endif
4622 
4623 	/*
4624 	 * Validate session ID up front, since it applies to all messages
4625 	 * once set
4626 	 */
4627 	if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) {
4628 		PR0("Expected SID %u, received %u", vd->sid,
4629 		    msg->tag.vio_sid);
4630 		return (EBADMSG);
4631 	}
4632 
4633 	PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state));
4634 
4635 	/*
4636 	 * Process the received message based on connection state
4637 	 */
4638 	switch (vd->state) {
4639 	case VD_STATE_INIT:	/* expect version message */
4640 		if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0)
4641 			return (status);
4642 
4643 		/* Version negotiated, move to that state */
4644 		vd->state = VD_STATE_VER;
4645 		return (0);
4646 
4647 	case VD_STATE_VER:	/* expect attribute message */
4648 		if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0)
4649 			return (status);
4650 
4651 		/* Attributes exchanged, move to that state */
4652 		vd->state = VD_STATE_ATTR;
4653 		return (0);
4654 
4655 	case VD_STATE_ATTR:
4656 		switch (vd->xfer_mode) {
4657 		case VIO_DESC_MODE:	/* expect RDX message */
4658 			if ((status = process_rdx_msg(msg, msglen)) != 0)
4659 				return (status);
4660 
4661 			/* Ready to receive in-band descriptors */
4662 			vd->state = VD_STATE_DATA;
4663 			return (0);
4664 
4665 		case VIO_DRING_MODE_V1_0:  /* expect register-dring message */
4666 			if ((status =
4667 			    vd_process_dring_reg_msg(vd, msg, msglen)) != 0)
4668 				return (status);
4669 
4670 			/* One dring negotiated, move to that state */
4671 			vd->state = VD_STATE_DRING;
4672 			return (0);
4673 
4674 		default:
4675 			ASSERT("Unsupported transfer mode");
4676 			PR0("Unsupported transfer mode");
4677 			return (ENOTSUP);
4678 		}
4679 
4680 	case VD_STATE_DRING:	/* expect RDX, register-dring, or unreg-dring */
4681 		if ((status = process_rdx_msg(msg, msglen)) == 0) {
4682 			/* Ready to receive data */
4683 			vd->state = VD_STATE_DATA;
4684 			return (0);
4685 		} else if (status != ENOMSG) {
4686 			return (status);
4687 		}
4688 
4689 
4690 		/*
4691 		 * If another register-dring message is received, stay in
4692 		 * dring state in case the client sends RDX; although the
4693 		 * protocol allows multiple drings, this server does not
4694 		 * support using more than one
4695 		 */
4696 		if ((status =
4697 		    vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG)
4698 			return (status);
4699 
4700 		/*
4701 		 * Acknowledge an unregister-dring message, but reset the
4702 		 * connection anyway:  Although the protocol allows
4703 		 * unregistering drings, this server cannot serve a vdisk
4704 		 * without its only dring
4705 		 */
4706 		status = vd_process_dring_unreg_msg(vd, msg, msglen);
4707 		return ((status == 0) ? ENOTSUP : status);
4708 
4709 	case VD_STATE_DATA:
4710 		switch (vd->xfer_mode) {
4711 		case VIO_DESC_MODE:	/* expect in-band-descriptor message */
4712 			return (vd_process_desc_msg(vd, msg, msglen));
4713 
4714 		case VIO_DRING_MODE_V1_0: /* expect dring-data or unreg-dring */
4715 			/*
4716 			 * Typically expect dring-data messages, so handle
4717 			 * them first
4718 			 */
4719 			if ((status = vd_process_dring_msg(vd, msg,
4720 			    msglen)) != ENOMSG)
4721 				return (status);
4722 
4723 			/*
4724 			 * Acknowledge an unregister-dring message, but reset
4725 			 * the connection anyway:  Although the protocol
4726 			 * allows unregistering drings, this server cannot
4727 			 * serve a vdisk without its only dring
4728 			 */
4729 			status = vd_process_dring_unreg_msg(vd, msg, msglen);
4730 			return ((status == 0) ? ENOTSUP : status);
4731 
4732 		default:
4733 			ASSERT("Unsupported transfer mode");
4734 			PR0("Unsupported transfer mode");
4735 			return (ENOTSUP);
4736 		}
4737 
4738 	default:
4739 		ASSERT("Invalid client connection state");
4740 		PR0("Invalid client connection state");
4741 		return (ENOTSUP);
4742 	}
4743 }
4744 
4745 static int
4746 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4747 {
4748 	int		status;
4749 	boolean_t	reset_ldc = B_FALSE;
4750 	vd_task_t	task;
4751 
4752 	/*
4753 	 * Check that the message is at least big enough for a "tag", so that
4754 	 * message processing can proceed based on tag-specified message type
4755 	 */
4756 	if (msglen < sizeof (vio_msg_tag_t)) {
4757 		PR0("Received short (%lu-byte) message", msglen);
4758 		/* Can't "nack" short message, so drop the big hammer */
4759 		PR0("initiating full reset");
4760 		vd_need_reset(vd, B_TRUE);
4761 		return (EBADMSG);
4762 	}
4763 
4764 	/*
4765 	 * Process the message
4766 	 */
4767 	switch (status = vd_do_process_msg(vd, msg, msglen)) {
4768 	case 0:
4769 		/* "ack" valid, successfully-processed messages */
4770 		msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4771 		break;
4772 
4773 	case EINPROGRESS:
4774 		/* The completion handler will "ack" or "nack" the message */
4775 		return (EINPROGRESS);
4776 	case ENOMSG:
4777 		PR0("Received unexpected message");
4778 		_NOTE(FALLTHROUGH);
4779 	case EBADMSG:
4780 	case ENOTSUP:
4781 		/* "transport" error will cause NACK of invalid messages */
4782 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
4783 		break;
4784 
4785 	default:
4786 		/* "transport" error will cause NACK of invalid messages */
4787 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
4788 		/* An LDC error probably occurred, so try resetting it */
4789 		reset_ldc = B_TRUE;
4790 		break;
4791 	}
4792 
4793 	PR1("\tResulting in state %d (%s)", vd->state,
4794 	    vd_decode_state(vd->state));
4795 
4796 	/* populate the task so we can dispatch it on the taskq */
4797 	task.vd = vd;
4798 	task.msg = msg;
4799 	task.msglen = msglen;
4800 
4801 	/*
4802 	 * Queue a task to send the notification that the operation completed.
4803 	 * We need to ensure that requests are responded to in the correct
4804 	 * order and since the taskq is processed serially this ordering
4805 	 * is maintained.
4806 	 */
4807 	(void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify,
4808 	    &task, DDI_SLEEP);
4809 
4810 	/*
4811 	 * To ensure handshake negotiations do not happen out of order, such
4812 	 * requests that come through this path should not be done in parallel
4813 	 * so we need to wait here until the response is sent to the client.
4814 	 */
4815 	ddi_taskq_wait(vd->completionq);
4816 
4817 	/* Arrange to reset the connection for nack'ed or failed messages */
4818 	if ((status != 0) || reset_ldc) {
4819 		PR0("initiating %s reset",
4820 		    (reset_ldc) ? "full" : "soft");
4821 		vd_need_reset(vd, reset_ldc);
4822 	}
4823 
4824 	return (status);
4825 }
4826 
4827 static boolean_t
4828 vd_enabled(vd_t *vd)
4829 {
4830 	boolean_t	enabled;
4831 
4832 	mutex_enter(&vd->lock);
4833 	enabled = vd->enabled;
4834 	mutex_exit(&vd->lock);
4835 	return (enabled);
4836 }
4837 
4838 static void
4839 vd_recv_msg(void *arg)
4840 {
4841 	vd_t	*vd = (vd_t *)arg;
4842 	int	rv = 0, status = 0;
4843 
4844 	ASSERT(vd != NULL);
4845 
4846 	PR2("New task to receive incoming message(s)");
4847 
4848 
4849 	while (vd_enabled(vd) && status == 0) {
4850 		size_t		msglen, msgsize;
4851 		ldc_status_t	lstatus;
4852 
4853 		/*
4854 		 * Receive and process a message
4855 		 */
4856 		vd_reset_if_needed(vd);	/* can change vd->max_msglen */
4857 
4858 		/*
4859 		 * check if channel is UP - else break out of loop
4860 		 */
4861 		status = ldc_status(vd->ldc_handle, &lstatus);
4862 		if (lstatus != LDC_UP) {
4863 			PR0("channel not up (status=%d), exiting recv loop\n",
4864 			    lstatus);
4865 			break;
4866 		}
4867 
4868 		ASSERT(vd->max_msglen != 0);
4869 
4870 		msgsize = vd->max_msglen; /* stable copy for alloc/free */
4871 		msglen	= msgsize;	  /* actual len after recv_msg() */
4872 
4873 		status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen);
4874 		switch (status) {
4875 		case 0:
4876 			rv = vd_process_msg(vd, (vio_msg_t *)vd->vio_msgp,
4877 			    msglen);
4878 			/* check if max_msglen changed */
4879 			if (msgsize != vd->max_msglen) {
4880 				PR0("max_msglen changed 0x%lx to 0x%lx bytes\n",
4881 				    msgsize, vd->max_msglen);
4882 				kmem_free(vd->vio_msgp, msgsize);
4883 				vd->vio_msgp =
4884 				    kmem_alloc(vd->max_msglen, KM_SLEEP);
4885 			}
4886 			if (rv == EINPROGRESS)
4887 				continue;
4888 			break;
4889 
4890 		case ENOMSG:
4891 			break;
4892 
4893 		case ECONNRESET:
4894 			PR0("initiating soft reset (ECONNRESET)\n");
4895 			vd_need_reset(vd, B_FALSE);
4896 			status = 0;
4897 			break;
4898 
4899 		default:
4900 			/* Probably an LDC failure; arrange to reset it */
4901 			PR0("initiating full reset (status=0x%x)", status);
4902 			vd_need_reset(vd, B_TRUE);
4903 			break;
4904 		}
4905 	}
4906 
4907 	PR2("Task finished");
4908 }
4909 
4910 static uint_t
4911 vd_handle_ldc_events(uint64_t event, caddr_t arg)
4912 {
4913 	vd_t	*vd = (vd_t *)(void *)arg;
4914 	int	status;
4915 
4916 	ASSERT(vd != NULL);
4917 
4918 	if (!vd_enabled(vd))
4919 		return (LDC_SUCCESS);
4920 
4921 	if (event & LDC_EVT_DOWN) {
4922 		PR0("LDC_EVT_DOWN: LDC channel went down");
4923 
4924 		vd_need_reset(vd, B_TRUE);
4925 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
4926 		    DDI_SLEEP);
4927 		if (status == DDI_FAILURE) {
4928 			PR0("cannot schedule task to recv msg\n");
4929 			vd_need_reset(vd, B_TRUE);
4930 		}
4931 	}
4932 
4933 	if (event & LDC_EVT_RESET) {
4934 		PR0("LDC_EVT_RESET: LDC channel was reset");
4935 
4936 		if (vd->state != VD_STATE_INIT) {
4937 			PR0("scheduling full reset");
4938 			vd_need_reset(vd, B_FALSE);
4939 			status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
4940 			    vd, DDI_SLEEP);
4941 			if (status == DDI_FAILURE) {
4942 				PR0("cannot schedule task to recv msg\n");
4943 				vd_need_reset(vd, B_TRUE);
4944 			}
4945 
4946 		} else {
4947 			PR0("channel already reset, ignoring...\n");
4948 			PR0("doing ldc up...\n");
4949 			(void) ldc_up(vd->ldc_handle);
4950 		}
4951 
4952 		return (LDC_SUCCESS);
4953 	}
4954 
4955 	if (event & LDC_EVT_UP) {
4956 		PR0("EVT_UP: LDC is up\nResetting client connection state");
4957 		PR0("initiating soft reset");
4958 		vd_need_reset(vd, B_FALSE);
4959 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
4960 		    vd, DDI_SLEEP);
4961 		if (status == DDI_FAILURE) {
4962 			PR0("cannot schedule task to recv msg\n");
4963 			vd_need_reset(vd, B_TRUE);
4964 			return (LDC_SUCCESS);
4965 		}
4966 	}
4967 
4968 	if (event & LDC_EVT_READ) {
4969 		int	status;
4970 
4971 		PR1("New data available");
4972 		/* Queue a task to receive the new data */
4973 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
4974 		    DDI_SLEEP);
4975 
4976 		if (status == DDI_FAILURE) {
4977 			PR0("cannot schedule task to recv msg\n");
4978 			vd_need_reset(vd, B_TRUE);
4979 		}
4980 	}
4981 
4982 	return (LDC_SUCCESS);
4983 }
4984 
4985 static uint_t
4986 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
4987 {
4988 	_NOTE(ARGUNUSED(key, val))
4989 	(*((uint_t *)arg))++;
4990 	return (MH_WALK_TERMINATE);
4991 }
4992 
4993 
4994 static int
4995 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
4996 {
4997 	uint_t	vd_present = 0;
4998 	minor_t	instance;
4999 	vds_t	*vds;
5000 
5001 
5002 	switch (cmd) {
5003 	case DDI_DETACH:
5004 		/* the real work happens below */
5005 		break;
5006 	case DDI_SUSPEND:
5007 		PR0("No action required for DDI_SUSPEND");
5008 		return (DDI_SUCCESS);
5009 	default:
5010 		PR0("Unrecognized \"cmd\"");
5011 		return (DDI_FAILURE);
5012 	}
5013 
5014 	ASSERT(cmd == DDI_DETACH);
5015 	instance = ddi_get_instance(dip);
5016 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
5017 		PR0("Could not get state for instance %u", instance);
5018 		ddi_soft_state_free(vds_state, instance);
5019 		return (DDI_FAILURE);
5020 	}
5021 
5022 	/* Do no detach when serving any vdisks */
5023 	mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present);
5024 	if (vd_present) {
5025 		PR0("Not detaching because serving vdisks");
5026 		return (DDI_FAILURE);
5027 	}
5028 
5029 	PR0("Detaching");
5030 	if (vds->initialized & VDS_MDEG) {
5031 		(void) mdeg_unregister(vds->mdeg);
5032 		kmem_free(vds->ispecp->specp, sizeof (vds_prop_template));
5033 		kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t));
5034 		vds->ispecp = NULL;
5035 		vds->mdeg = NULL;
5036 	}
5037 
5038 	vds_driver_types_free(vds);
5039 
5040 	if (vds->initialized & VDS_LDI)
5041 		(void) ldi_ident_release(vds->ldi_ident);
5042 	mod_hash_destroy_hash(vds->vd_table);
5043 	ddi_soft_state_free(vds_state, instance);
5044 	return (DDI_SUCCESS);
5045 }
5046 
5047 /*
5048  * Description:
5049  *	This function checks to see if the file being used as a
5050  *	virtual disk is an ISO image. An ISO image is a special
5051  *	case which can be booted/installed from like a CD/DVD
5052  *
5053  * Parameters:
5054  *	vd		- disk on which the operation is performed.
5055  *
5056  * Return Code:
5057  *	B_TRUE		- The file is an ISO 9660 compliant image
5058  *	B_FALSE		- just a regular disk image file
5059  */
5060 static boolean_t
5061 vd_file_is_iso_image(vd_t *vd)
5062 {
5063 	char	iso_buf[ISO_SECTOR_SIZE];
5064 	int	i, rv;
5065 	uint_t	sec;
5066 
5067 	ASSERT(vd->file);
5068 
5069 	/*
5070 	 * If we have already discovered and saved this info we can
5071 	 * short-circuit the check and avoid reading the file.
5072 	 */
5073 	if (vd->vdisk_media == VD_MEDIA_DVD || vd->vdisk_media == VD_MEDIA_CD)
5074 		return (B_TRUE);
5075 
5076 	/*
5077 	 * We wish to read the sector that should contain the 2nd ISO volume
5078 	 * descriptor. The second field in this descriptor is called the
5079 	 * Standard Identifier and is set to CD001 for a CD-ROM compliant
5080 	 * to the ISO 9660 standard.
5081 	 */
5082 	sec = (ISO_VOLDESC_SEC * ISO_SECTOR_SIZE) / vd->vdisk_block_size;
5083 	rv = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)iso_buf,
5084 	    sec, ISO_SECTOR_SIZE);
5085 
5086 	if (rv < 0)
5087 		return (B_FALSE);
5088 
5089 	for (i = 0; i < ISO_ID_STRLEN; i++) {
5090 		if (ISO_STD_ID(iso_buf)[i] != ISO_ID_STRING[i])
5091 			return (B_FALSE);
5092 	}
5093 
5094 	return (B_TRUE);
5095 }
5096 
5097 /*
5098  * Description:
5099  *	This function checks to see if the virtual device is an ATAPI
5100  *	device. ATAPI devices use Group 1 Read/Write commands, so
5101  *	any USCSI calls vds makes need to take this into account.
5102  *
5103  * Parameters:
5104  *	vd		- disk on which the operation is performed.
5105  *
5106  * Return Code:
5107  *	B_TRUE		- The virtual disk is backed by an ATAPI device
5108  *	B_FALSE		- not an ATAPI device (presumably SCSI)
5109  */
5110 static boolean_t
5111 vd_is_atapi_device(vd_t *vd)
5112 {
5113 	boolean_t	is_atapi = B_FALSE;
5114 	char		*variantp;
5115 	int		rv;
5116 
5117 	ASSERT(vd->ldi_handle[0] != NULL);
5118 	ASSERT(!vd->file);
5119 
5120 	rv = ldi_prop_lookup_string(vd->ldi_handle[0],
5121 	    (LDI_DEV_T_ANY | DDI_PROP_DONTPASS), "variant", &variantp);
5122 	if (rv == DDI_PROP_SUCCESS) {
5123 		PR0("'variant' property exists for %s", vd->device_path);
5124 		if (strcmp(variantp, "atapi") == 0)
5125 			is_atapi = B_TRUE;
5126 		ddi_prop_free(variantp);
5127 	}
5128 
5129 	rv = ldi_prop_exists(vd->ldi_handle[0], LDI_DEV_T_ANY, "atapi");
5130 	if (rv) {
5131 		PR0("'atapi' property exists for %s", vd->device_path);
5132 		is_atapi = B_TRUE;
5133 	}
5134 
5135 	return (is_atapi);
5136 }
5137 
5138 static int
5139 vd_setup_mediainfo(vd_t *vd)
5140 {
5141 	int status, rval;
5142 	struct dk_minfo	dk_minfo;
5143 
5144 	ASSERT(vd->ldi_handle[0] != NULL);
5145 	ASSERT(vd->vdisk_block_size != 0);
5146 
5147 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO,
5148 	    (intptr_t)&dk_minfo, (vd->open_flags | FKIOCTL),
5149 	    kcred, &rval)) != 0)
5150 		return (status);
5151 
5152 	ASSERT(dk_minfo.dki_lbsize % vd->vdisk_block_size == 0);
5153 
5154 	vd->block_size = dk_minfo.dki_lbsize;
5155 	vd->vdisk_size = (dk_minfo.dki_capacity * dk_minfo.dki_lbsize) /
5156 	    vd->vdisk_block_size;
5157 	vd->vdisk_media = DK_MEDIATYPE2VD_MEDIATYPE(dk_minfo.dki_media_type);
5158 	return (0);
5159 }
5160 
5161 static int
5162 vd_setup_full_disk(vd_t *vd)
5163 {
5164 	int		status;
5165 	major_t		major = getmajor(vd->dev[0]);
5166 	minor_t		minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE;
5167 
5168 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
5169 
5170 	vd->vdisk_block_size = DEV_BSIZE;
5171 
5172 	/*
5173 	 * At this point, vdisk_size is set to the size of partition 2 but
5174 	 * this does not represent the size of the disk because partition 2
5175 	 * may not cover the entire disk and its size does not include reserved
5176 	 * blocks. So we call vd_get_mediainfo to udpate this information and
5177 	 * set the block size and the media type of the disk.
5178 	 */
5179 	status = vd_setup_mediainfo(vd);
5180 
5181 	if (status != 0) {
5182 		if (!vd->scsi) {
5183 			/* unexpected failure */
5184 			PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d",
5185 			    status);
5186 			return (status);
5187 		}
5188 
5189 		/*
5190 		 * The function can fail for SCSI disks which are present but
5191 		 * reserved by another system. In that case, we don't know the
5192 		 * size of the disk and the block size.
5193 		 */
5194 		vd->vdisk_size = VD_SIZE_UNKNOWN;
5195 		vd->block_size = 0;
5196 		vd->vdisk_media = VD_MEDIA_FIXED;
5197 	}
5198 
5199 	/* Move dev number and LDI handle to entire-disk-slice array elements */
5200 	vd->dev[VD_ENTIRE_DISK_SLICE]		= vd->dev[0];
5201 	vd->dev[0]				= 0;
5202 	vd->ldi_handle[VD_ENTIRE_DISK_SLICE]	= vd->ldi_handle[0];
5203 	vd->ldi_handle[0]			= NULL;
5204 
5205 	/* Initialize device numbers for remaining slices and open them */
5206 	for (int slice = 0; slice < vd->nslices; slice++) {
5207 		/*
5208 		 * Skip the entire-disk slice, as it's already open and its
5209 		 * device known
5210 		 */
5211 		if (slice == VD_ENTIRE_DISK_SLICE)
5212 			continue;
5213 		ASSERT(vd->dev[slice] == 0);
5214 		ASSERT(vd->ldi_handle[slice] == NULL);
5215 
5216 		/*
5217 		 * Construct the device number for the current slice
5218 		 */
5219 		vd->dev[slice] = makedevice(major, (minor + slice));
5220 
5221 		/*
5222 		 * Open all slices of the disk to serve them to the client.
5223 		 * Slices are opened exclusively to prevent other threads or
5224 		 * processes in the service domain from performing I/O to
5225 		 * slices being accessed by a client.  Failure to open a slice
5226 		 * results in vds not serving this disk, as the client could
5227 		 * attempt (and should be able) to access any slice immediately.
5228 		 * Any slices successfully opened before a failure will get
5229 		 * closed by vds_destroy_vd() as a result of the error returned
5230 		 * by this function.
5231 		 *
5232 		 * We need to do the open with FNDELAY so that opening an empty
5233 		 * slice does not fail.
5234 		 */
5235 		PR0("Opening device major %u, minor %u = slice %u",
5236 		    major, minor, slice);
5237 
5238 		/*
5239 		 * Try to open the device. This can fail for example if we are
5240 		 * opening an empty slice. So in case of a failure, we try the
5241 		 * open again but this time with the FNDELAY flag.
5242 		 */
5243 		status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
5244 		    vd->open_flags, kcred, &vd->ldi_handle[slice],
5245 		    vd->vds->ldi_ident);
5246 
5247 		if (status != 0) {
5248 			status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
5249 			    vd->open_flags | FNDELAY, kcred,
5250 			    &vd->ldi_handle[slice], vd->vds->ldi_ident);
5251 		}
5252 
5253 		if (status != 0) {
5254 			PRN("ldi_open_by_dev() returned errno %d "
5255 			    "for slice %u", status, slice);
5256 			/* vds_destroy_vd() will close any open slices */
5257 			vd->ldi_handle[slice] = NULL;
5258 			return (status);
5259 		}
5260 	}
5261 
5262 	return (0);
5263 }
5264 
5265 /*
5266  * When a slice or a volume is exported as a single-slice disk, we want
5267  * the disk backend (i.e. the slice or volume) to be entirely mapped as
5268  * a slice without the addition of any metadata.
5269  *
5270  * So when exporting the disk as a VTOC disk, we fake a disk with the following
5271  * layout:
5272  *                flabel +--- flabel_limit
5273  *                 <->   V
5274  *                 0 1   C                          D  E
5275  *                 +-+---+--------------------------+--+
5276  *  virtual disk:  |L|XXX|           slice 0        |AA|
5277  *                 +-+---+--------------------------+--+
5278  *                  ^    :                          :
5279  *                  |    :                          :
5280  *      VTOC LABEL--+    :                          :
5281  *                       +--------------------------+
5282  *  disk backend:        |     slice/volume/file    |
5283  *                       +--------------------------+
5284  *                       0                          N
5285  *
5286  * N is the number of blocks in the slice/volume/file.
5287  *
5288  * We simulate a disk with N+M blocks, where M is the number of blocks
5289  * simluated at the beginning and at the end of the disk (blocks 0-C
5290  * and D-E).
5291  *
5292  * The first blocks (0 to C-1) are emulated and can not be changed. Blocks C
5293  * to D defines slice 0 and are mapped to the backend. Finally we emulate 2
5294  * alternate cylinders at the end of the disk (blocks D-E). In summary we have:
5295  *
5296  * - block 0 (L) returns a fake VTOC label
5297  * - blocks 1 to C-1 (X) are unused and return 0
5298  * - blocks C to D-1 are mapped to the exported slice or volume
5299  * - blocks D and E (A) are blocks defining alternate cylinders (2 cylinders)
5300  *
5301  * Note: because we define a fake disk geometry, it is possible that the length
5302  * of the backend is not a multiple of the size of cylinder, in that case the
5303  * very end of the backend will not map to any block of the virtual disk.
5304  */
5305 static int
5306 vd_setup_partition_vtoc(vd_t *vd)
5307 {
5308 	char *device_path = vd->device_path;
5309 	char unit;
5310 	size_t size, csize;
5311 
5312 	/* Initialize dk_geom structure for single-slice device */
5313 	if (vd->dk_geom.dkg_nsect == 0) {
5314 		PRN("%s geometry claims 0 sectors per track", device_path);
5315 		return (EIO);
5316 	}
5317 	if (vd->dk_geom.dkg_nhead == 0) {
5318 		PRN("%s geometry claims 0 heads", device_path);
5319 		return (EIO);
5320 	}
5321 
5322 	/* size of a cylinder in block */
5323 	csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
5324 
5325 	/*
5326 	 * Add extra cylinders: we emulate the first cylinder (which contains
5327 	 * the disk label).
5328 	 */
5329 	vd->dk_geom.dkg_ncyl = vd->vdisk_size / csize + 1;
5330 
5331 	/* we emulate 2 alternate cylinders */
5332 	vd->dk_geom.dkg_acyl = 2;
5333 	vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl;
5334 
5335 
5336 	/* Initialize vtoc structure for single-slice device */
5337 	bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part));
5338 	vd->vtoc.v_part[0].p_tag = V_UNASSIGNED;
5339 	vd->vtoc.v_part[0].p_flag = 0;
5340 	/*
5341 	 * Partition 0 starts on cylinder 1 and its size has to be
5342 	 * a multiple of a number of cylinder.
5343 	 */
5344 	vd->vtoc.v_part[0].p_start = csize; /* start on cylinder 1 */
5345 	vd->vtoc.v_part[0].p_size = (vd->vdisk_size / csize) * csize;
5346 
5347 	if (vd_slice_single_slice) {
5348 		vd->vtoc.v_nparts = 1;
5349 		bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel,
5350 		    MIN(sizeof (VD_ASCIILABEL),
5351 		    sizeof (vd->vtoc.v_asciilabel)));
5352 		bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume,
5353 		    MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume)));
5354 	} else {
5355 		/* adjust the number of slices */
5356 		vd->nslices = V_NUMPAR;
5357 		vd->vtoc.v_nparts = V_NUMPAR;
5358 
5359 		/* define slice 2 representing the entire disk */
5360 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP;
5361 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_flag = 0;
5362 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start = 0;
5363 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size =
5364 		    vd->dk_geom.dkg_ncyl * csize;
5365 
5366 		vd_get_readable_size(vd->vdisk_size * vd->vdisk_block_size,
5367 		    &size, &unit);
5368 
5369 		/*
5370 		 * Set some attributes of the geometry to what format(1m) uses
5371 		 * so that writing a default label using format(1m) does not
5372 		 * produce any error.
5373 		 */
5374 		vd->dk_geom.dkg_bcyl = 0;
5375 		vd->dk_geom.dkg_intrlv = 1;
5376 		vd->dk_geom.dkg_write_reinstruct = 0;
5377 		vd->dk_geom.dkg_read_reinstruct = 0;
5378 
5379 		/*
5380 		 * We must have a correct label name otherwise format(1m) will
5381 		 * not recognized the disk as labeled.
5382 		 */
5383 		(void) snprintf(vd->vtoc.v_asciilabel, LEN_DKL_ASCII,
5384 		    "SUN-DiskSlice-%ld%cB cyl %d alt %d hd %d sec %d",
5385 		    size, unit,
5386 		    vd->dk_geom.dkg_ncyl, vd->dk_geom.dkg_acyl,
5387 		    vd->dk_geom.dkg_nhead, vd->dk_geom.dkg_nsect);
5388 		bzero(vd->vtoc.v_volume, sizeof (vd->vtoc.v_volume));
5389 
5390 		/* create a fake label from the vtoc and geometry */
5391 		vd->flabel_limit = csize;
5392 		vd->flabel_size = VD_LABEL_VTOC_SIZE;
5393 		vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP);
5394 		vd_vtocgeom_to_label(&vd->vtoc, &vd->dk_geom,
5395 		    VD_LABEL_VTOC(vd));
5396 	}
5397 
5398 	/* adjust the vdisk_size, we emulate 3 cylinders */
5399 	vd->vdisk_size += csize * 3;
5400 
5401 	return (0);
5402 }
5403 
5404 /*
5405  * When a slice, volume or file is exported as a single-slice disk, we want
5406  * the disk backend (i.e. the slice, volume or file) to be entirely mapped
5407  * as a slice without the addition of any metadata.
5408  *
5409  * So when exporting the disk as an EFI disk, we fake a disk with the following
5410  * layout:
5411  *
5412  *                  flabel        +--- flabel_limit
5413  *                 <------>       v
5414  *                 0 1 2  L      34                        34+N      P
5415  *                 +-+-+--+-------+--------------------------+-------+
5416  *  virtual disk:  |X|T|EE|XXXXXXX|           slice 0        |RRRRRRR|
5417  *                 +-+-+--+-------+--------------------------+-------+
5418  *                    ^ ^         :                          :
5419  *                    | |         :                          :
5420  *                GPT-+ +-GPE     :                          :
5421  *                                +--------------------------+
5422  *  disk backend:                 |     slice/volume/file    |
5423  *                                +--------------------------+
5424  *                                0                          N
5425  *
5426  * N is the number of blocks in the slice/volume/file.
5427  *
5428  * We simulate a disk with N+M blocks, where M is the number of blocks
5429  * simluated at the beginning and at the end of the disk (blocks 0-34
5430  * and 34+N-P).
5431  *
5432  * The first 34 blocks (0 to 33) are emulated and can not be changed. Blocks 34
5433  * to 34+N defines slice 0 and are mapped to the exported backend, and we
5434  * emulate some blocks at the end of the disk (blocks 34+N to P) as a the EFI
5435  * reserved partition.
5436  *
5437  * - block 0 (X) is unused and return 0
5438  * - block 1 (T) returns a fake EFI GPT (via DKIOCGETEFI)
5439  * - blocks 2 to L-1 (E) defines a fake EFI GPE (via DKIOCGETEFI)
5440  * - blocks L to 33 (X) are unused and return 0
5441  * - blocks 34 to 34+N are mapped to the exported slice, volume or file
5442  * - blocks 34+N+1 to P define a fake reserved partition and backup label, it
5443  *   returns 0
5444  *
5445  * Note: if the backend size is not a multiple of the vdisk block size
5446  * (DEV_BSIZE = 512 byte) then the very end of the backend will not map to
5447  * any block of the virtual disk.
5448  */
5449 static int
5450 vd_setup_partition_efi(vd_t *vd)
5451 {
5452 	efi_gpt_t *gpt;
5453 	efi_gpe_t *gpe;
5454 	struct uuid uuid = EFI_USR;
5455 	struct uuid efi_reserved = EFI_RESERVED;
5456 	uint32_t crc;
5457 	uint64_t s0_start, s0_end;
5458 
5459 	vd->flabel_limit = 34;
5460 	vd->flabel_size = VD_LABEL_EFI_SIZE;
5461 	vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP);
5462 	gpt = VD_LABEL_EFI_GPT(vd);
5463 	gpe = VD_LABEL_EFI_GPE(vd);
5464 
5465 	/* adjust the vdisk_size, we emulate the first 34 blocks */
5466 	vd->vdisk_size += 34;
5467 	s0_start = 34;
5468 	s0_end = vd->vdisk_size - 1;
5469 
5470 	gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
5471 	gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
5472 	gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t));
5473 	gpt->efi_gpt_FirstUsableLBA = LE_64(34ULL);
5474 	gpt->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
5475 	gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t));
5476 
5477 	UUID_LE_CONVERT(gpe[0].efi_gpe_PartitionTypeGUID, uuid);
5478 	gpe[0].efi_gpe_StartingLBA = LE_64(s0_start);
5479 	gpe[0].efi_gpe_EndingLBA = LE_64(s0_end);
5480 
5481 	if (vd_slice_single_slice) {
5482 		gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1);
5483 	} else {
5484 		/* adjust the number of slices */
5485 		gpt->efi_gpt_NumberOfPartitionEntries = LE_32(VD_MAXPART);
5486 		vd->nslices = V_NUMPAR;
5487 
5488 		/* define a fake reserved partition */
5489 		UUID_LE_CONVERT(gpe[VD_MAXPART - 1].efi_gpe_PartitionTypeGUID,
5490 		    efi_reserved);
5491 		gpe[VD_MAXPART - 1].efi_gpe_StartingLBA =
5492 		    LE_64(s0_end + 1);
5493 		gpe[VD_MAXPART - 1].efi_gpe_EndingLBA =
5494 		    LE_64(s0_end + EFI_MIN_RESV_SIZE);
5495 
5496 		/* adjust the vdisk_size to include the reserved slice */
5497 		vd->vdisk_size += EFI_MIN_RESV_SIZE;
5498 	}
5499 
5500 	gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1);
5501 
5502 	/* adjust the vdisk size for the backup GPT and GPE */
5503 	vd->vdisk_size += 33;
5504 
5505 	CRC32(crc, gpe, sizeof (efi_gpe_t) * VD_MAXPART, -1U, crc32_table);
5506 	gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
5507 
5508 	CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table);
5509 	gpt->efi_gpt_HeaderCRC32 = LE_32(~crc);
5510 
5511 	return (0);
5512 }
5513 
5514 /*
5515  * Setup for a virtual disk whose backend is a file (exported as a single slice
5516  * or as a full disk) or a volume device (for example a ZFS, SVM or VxVM volume)
5517  * exported as a full disk. In these cases, the backend is accessed using the
5518  * vnode interface.
5519  */
5520 static int
5521 vd_setup_backend_vnode(vd_t *vd)
5522 {
5523 	int 		rval, status;
5524 	vattr_t		vattr;
5525 	dev_t		dev;
5526 	char		*file_path = vd->device_path;
5527 	char		dev_path[MAXPATHLEN + 1];
5528 	ldi_handle_t	lhandle;
5529 	struct dk_cinfo	dk_cinfo;
5530 	struct dk_label label;
5531 
5532 	if ((status = vn_open(file_path, UIO_SYSSPACE, vd->open_flags | FOFFMAX,
5533 	    0, &vd->file_vnode, 0, 0)) != 0) {
5534 		PRN("vn_open(%s) = errno %d", file_path, status);
5535 		return (status);
5536 	}
5537 
5538 	/*
5539 	 * We set vd->file now so that vds_destroy_vd will take care of
5540 	 * closing the file and releasing the vnode in case of an error.
5541 	 */
5542 	vd->file = B_TRUE;
5543 
5544 	vattr.va_mask = AT_SIZE;
5545 	if ((status = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL))
5546 	    != 0) {
5547 		PRN("VOP_GETATTR(%s) = errno %d", file_path, status);
5548 		return (EIO);
5549 	}
5550 
5551 	vd->file_size = vattr.va_size;
5552 	/* size should be at least sizeof(dk_label) */
5553 	if (vd->file_size < sizeof (struct dk_label)) {
5554 		PRN("Size of file has to be at least %ld bytes",
5555 		    sizeof (struct dk_label));
5556 		return (EIO);
5557 	}
5558 
5559 	if (vd->file_vnode->v_flag & VNOMAP) {
5560 		PRN("File %s cannot be mapped", file_path);
5561 		return (EIO);
5562 	}
5563 
5564 	/* sector size = block size = DEV_BSIZE */
5565 	vd->block_size = DEV_BSIZE;
5566 	vd->vdisk_block_size = DEV_BSIZE;
5567 	vd->vdisk_size = vd->file_size / DEV_BSIZE;
5568 	vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */
5569 
5570 	/*
5571 	 * Get max_xfer_sz from the device where the file is or from the device
5572 	 * itself if we have a volume device.
5573 	 */
5574 	dev_path[0] = '\0';
5575 
5576 	if (vd->volume) {
5577 		status = ldi_open_by_name(file_path, FREAD, kcred, &lhandle,
5578 		    vd->vds->ldi_ident);
5579 	} else {
5580 		dev = vd->file_vnode->v_vfsp->vfs_dev;
5581 		if (ddi_dev_pathname(dev, S_IFBLK, dev_path) == DDI_SUCCESS) {
5582 			PR0("underlying device = %s\n", dev_path);
5583 		}
5584 
5585 		status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD, kcred, &lhandle,
5586 		    vd->vds->ldi_ident);
5587 	}
5588 
5589 	if (status != 0) {
5590 		PR0("ldi_open() returned errno %d for device %s",
5591 		    status, (dev_path[0] == '\0')? file_path : dev_path);
5592 	} else {
5593 		if ((status = ldi_ioctl(lhandle, DKIOCINFO,
5594 		    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
5595 		    &rval)) != 0) {
5596 			PR0("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
5597 			    status, dev_path);
5598 		} else {
5599 			/*
5600 			 * Store the device's max transfer size for
5601 			 * return to the client
5602 			 */
5603 			vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
5604 		}
5605 
5606 		PR0("close the device %s", dev_path);
5607 		(void) ldi_close(lhandle, FREAD, kcred);
5608 	}
5609 
5610 	PR0("using file %s, dev %s, max_xfer = %u blks",
5611 	    file_path, dev_path, vd->max_xfer_sz);
5612 
5613 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
5614 		ASSERT(!vd->volume);
5615 		vd->vdisk_media = VD_MEDIA_FIXED;
5616 		vd->vdisk_label = (vd_slice_label == VD_DISK_LABEL_UNK)?
5617 		    vd_file_slice_label : vd_slice_label;
5618 		if (vd->vdisk_label == VD_DISK_LABEL_EFI ||
5619 		    vd->file_size >= ONE_TERABYTE) {
5620 			status = vd_setup_partition_efi(vd);
5621 		} else {
5622 			/*
5623 			 * We build a default label to get a geometry for
5624 			 * the vdisk. Then the partition setup function will
5625 			 * adjust the vtoc so that it defines a single-slice
5626 			 * disk.
5627 			 */
5628 			vd_build_default_label(vd->file_size, &label);
5629 			vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom);
5630 			status = vd_setup_partition_vtoc(vd);
5631 		}
5632 		return (status);
5633 	}
5634 
5635 	/*
5636 	 * Find and validate the geometry of a disk image.
5637 	 */
5638 	status = vd_file_validate_geometry(vd);
5639 	if (status != 0 && status != EINVAL && status != ENOTSUP) {
5640 		PRN("Failed to read label from %s", file_path);
5641 		return (EIO);
5642 	}
5643 
5644 	if (vd_file_is_iso_image(vd)) {
5645 		/*
5646 		 * Indicate whether to call this a CD or DVD from the size
5647 		 * of the ISO image (images for both drive types are stored
5648 		 * in the ISO-9600 format). CDs can store up to just under 1Gb
5649 		 */
5650 		if ((vd->vdisk_size * vd->vdisk_block_size) >
5651 		    (1024 * 1024 * 1024))
5652 			vd->vdisk_media = VD_MEDIA_DVD;
5653 		else
5654 			vd->vdisk_media = VD_MEDIA_CD;
5655 	} else {
5656 		vd->vdisk_media = VD_MEDIA_FIXED;
5657 	}
5658 
5659 	/* Setup devid for the disk image */
5660 
5661 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
5662 
5663 		status = vd_file_read_devid(vd, &vd->file_devid);
5664 
5665 		if (status == 0) {
5666 			/* a valid devid was found */
5667 			return (0);
5668 		}
5669 
5670 		if (status != EINVAL) {
5671 			/*
5672 			 * There was an error while trying to read the devid.
5673 			 * So this disk image may have a devid but we are
5674 			 * unable to read it.
5675 			 */
5676 			PR0("can not read devid for %s", file_path);
5677 			vd->file_devid = NULL;
5678 			return (0);
5679 		}
5680 	}
5681 
5682 	/*
5683 	 * No valid device id was found so we create one. Note that a failure
5684 	 * to create a device id is not fatal and does not prevent the disk
5685 	 * image from being attached.
5686 	 */
5687 	PR1("creating devid for %s", file_path);
5688 
5689 	if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0,
5690 	    &vd->file_devid) != DDI_SUCCESS) {
5691 		PR0("fail to create devid for %s", file_path);
5692 		vd->file_devid = NULL;
5693 		return (0);
5694 	}
5695 
5696 	/*
5697 	 * Write devid to the disk image. The devid is stored into the disk
5698 	 * image if we have a valid label; otherwise the devid will be stored
5699 	 * when the user writes a valid label.
5700 	 */
5701 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
5702 		if (vd_file_write_devid(vd, vd->file_devid) != 0) {
5703 			PR0("fail to write devid for %s", file_path);
5704 			ddi_devid_free(vd->file_devid);
5705 			vd->file_devid = NULL;
5706 		}
5707 	}
5708 
5709 	return (0);
5710 }
5711 
5712 
5713 /*
5714  * Description:
5715  *	Open a device using its device path (supplied by ldm(1m))
5716  *
5717  * Parameters:
5718  *	vd 	- pointer to structure containing the vDisk info
5719  *	flags	- open flags
5720  *
5721  * Return Value
5722  *	0	- success
5723  *	!= 0	- some other non-zero return value from ldi(9F) functions
5724  */
5725 static int
5726 vd_open_using_ldi_by_name(vd_t *vd, int flags)
5727 {
5728 	int		status;
5729 	char		*device_path = vd->device_path;
5730 
5731 	/* Attempt to open device */
5732 	status = ldi_open_by_name(device_path, flags, kcred,
5733 	    &vd->ldi_handle[0], vd->vds->ldi_ident);
5734 
5735 	/*
5736 	 * The open can fail for example if we are opening an empty slice.
5737 	 * In case of a failure, we try the open again but this time with
5738 	 * the FNDELAY flag.
5739 	 */
5740 	if (status != 0)
5741 		status = ldi_open_by_name(device_path, flags | FNDELAY,
5742 		    kcred, &vd->ldi_handle[0], vd->vds->ldi_ident);
5743 
5744 	if (status != 0) {
5745 		PR0("ldi_open_by_name(%s) = errno %d", device_path, status);
5746 		vd->ldi_handle[0] = NULL;
5747 		return (status);
5748 	}
5749 
5750 	return (0);
5751 }
5752 
5753 /*
5754  * Setup for a virtual disk which backend is a device (a physical disk,
5755  * slice or volume device) that is directly exported either as a full disk
5756  * for a physical disk or as a slice for a volume device or a disk slice.
5757  * In these cases, the backend is accessed using the LDI interface.
5758  */
5759 static int
5760 vd_setup_backend_ldi(vd_t *vd)
5761 {
5762 	int		rval, status;
5763 	struct dk_cinfo	dk_cinfo;
5764 	char		*device_path = vd->device_path;
5765 
5766 	/* device has been opened by vd_identify_dev() */
5767 	ASSERT(vd->ldi_handle[0] != NULL);
5768 	ASSERT(vd->dev[0] != NULL);
5769 
5770 	vd->file = B_FALSE;
5771 
5772 	/* Verify backing device supports dk_cinfo */
5773 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
5774 	    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
5775 	    &rval)) != 0) {
5776 		PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
5777 		    status, device_path);
5778 		return (status);
5779 	}
5780 	if (dk_cinfo.dki_partition >= V_NUMPAR) {
5781 		PRN("slice %u >= maximum slice %u for %s",
5782 		    dk_cinfo.dki_partition, V_NUMPAR, device_path);
5783 		return (EIO);
5784 	}
5785 
5786 	/*
5787 	 * The device has been opened read-only by vd_identify_dev(), re-open
5788 	 * it read-write if the write flag is set and we don't have an optical
5789 	 * device such as a CD-ROM, which, for now, we do not permit writes to
5790 	 * and thus should not export write operations to the client.
5791 	 *
5792 	 * Future: if/when we implement support for guest domains writing to
5793 	 * optical devices we will need to do further checking of the media type
5794 	 * to distinguish between read-only and writable discs.
5795 	 */
5796 	if (dk_cinfo.dki_ctype == DKC_CDROM) {
5797 
5798 		vd->open_flags &= ~FWRITE;
5799 
5800 	} else if (vd->open_flags & FWRITE) {
5801 
5802 		(void) ldi_close(vd->ldi_handle[0], vd->open_flags & ~FWRITE,
5803 		    kcred);
5804 		status = vd_open_using_ldi_by_name(vd, vd->open_flags);
5805 		if (status != 0) {
5806 			PR0("Failed to open (%s) = errno %d",
5807 			    device_path, status);
5808 			return (status);
5809 		}
5810 	}
5811 
5812 	/* Store the device's max transfer size for return to the client */
5813 	vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
5814 
5815 	/*
5816 	 * We need to work out if it's an ATAPI (IDE CD-ROM) or SCSI device so
5817 	 * that we can use the correct CDB group when sending USCSI commands.
5818 	 */
5819 	vd->is_atapi_dev = vd_is_atapi_device(vd);
5820 
5821 	/*
5822 	 * Export a full disk.
5823 	 *
5824 	 * When we use the LDI interface, we export a device as a full disk
5825 	 * if we have an entire disk slice (slice 2) and if this slice is
5826 	 * exported as a full disk and not as a single slice disk.
5827 	 * Similarly, we want to use LDI if we are accessing a CD or DVD
5828 	 * device (even if it isn't s2)
5829 	 *
5830 	 * Note that volume devices are exported as full disks using the vnode
5831 	 * interface, not the LDI interface.
5832 	 */
5833 	if ((dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE &&
5834 	    vd->vdisk_type == VD_DISK_TYPE_DISK) ||
5835 	    dk_cinfo.dki_ctype == DKC_CDROM) {
5836 		ASSERT(!vd->volume);
5837 		if (dk_cinfo.dki_ctype == DKC_SCSI_CCS)
5838 			vd->scsi = B_TRUE;
5839 		return (vd_setup_full_disk(vd));
5840 	}
5841 
5842 	/*
5843 	 * Export a single slice disk.
5844 	 *
5845 	 * The exported device can be either a volume device or a disk slice. If
5846 	 * it is a disk slice different from slice 2 then it is always exported
5847 	 * as a single slice disk even if the "slice" option is not specified.
5848 	 * If it is disk slice 2 or a volume device then it is exported as a
5849 	 * single slice disk only if the "slice" option is specified.
5850 	 */
5851 	return (vd_setup_single_slice_disk(vd));
5852 }
5853 
5854 static int
5855 vd_setup_single_slice_disk(vd_t *vd)
5856 {
5857 	int status, rval;
5858 	struct dk_label label;
5859 	char *device_path = vd->device_path;
5860 
5861 	/* Get size of backing device */
5862 	if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) {
5863 		PRN("ldi_get_size() failed for %s", device_path);
5864 		return (EIO);
5865 	}
5866 	vd->vdisk_size = lbtodb(vd->vdisk_size);	/* convert to blocks */
5867 	vd->block_size = DEV_BSIZE;
5868 	vd->vdisk_block_size = DEV_BSIZE;
5869 	vd->vdisk_media = VD_MEDIA_FIXED;
5870 
5871 	if (vd->volume) {
5872 		ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
5873 	}
5874 
5875 	/*
5876 	 * We export the slice as a single slice disk even if the "slice"
5877 	 * option was not specified.
5878 	 */
5879 	vd->vdisk_type  = VD_DISK_TYPE_SLICE;
5880 	vd->nslices	= 1;
5881 
5882 	/*
5883 	 * When exporting a slice or a device as a single slice disk, we don't
5884 	 * care about any partitioning exposed by the backend. The goal is just
5885 	 * to export the backend as a flat storage. We provide a fake partition
5886 	 * table (either a VTOC or EFI), which presents only one slice, to
5887 	 * accommodate tools expecting a disk label. The selection of the label
5888 	 * type (VTOC or EFI) depends on the value of the vd_slice_label
5889 	 * variable.
5890 	 */
5891 	if (vd_slice_label == VD_DISK_LABEL_EFI ||
5892 	    vd->vdisk_size >= ONE_TERABYTE / DEV_BSIZE) {
5893 		vd->vdisk_label = VD_DISK_LABEL_EFI;
5894 	} else {
5895 		status = ldi_ioctl(vd->ldi_handle[0], DKIOCGVTOC,
5896 		    (intptr_t)&vd->vtoc, (vd->open_flags | FKIOCTL),
5897 		    kcred, &rval);
5898 
5899 		if (status == 0) {
5900 			status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM,
5901 			    (intptr_t)&vd->dk_geom, (vd->open_flags | FKIOCTL),
5902 			    kcred, &rval);
5903 
5904 			if (status != 0) {
5905 				PRN("ldi_ioctl(DKIOCGEOM) returned errno %d "
5906 				    "for %s", status, device_path);
5907 				return (status);
5908 			}
5909 			vd->vdisk_label = VD_DISK_LABEL_VTOC;
5910 
5911 		} else if (vd_slice_label == VD_DISK_LABEL_VTOC) {
5912 
5913 			vd->vdisk_label = VD_DISK_LABEL_VTOC;
5914 			vd_build_default_label(vd->vdisk_size * DEV_BSIZE,
5915 			    &label);
5916 			vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom);
5917 
5918 		} else {
5919 			vd->vdisk_label = VD_DISK_LABEL_EFI;
5920 		}
5921 	}
5922 
5923 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
5924 		/* export with a fake VTOC label */
5925 		status = vd_setup_partition_vtoc(vd);
5926 
5927 	} else {
5928 		/* export with a fake EFI label */
5929 		status = vd_setup_partition_efi(vd);
5930 	}
5931 
5932 	return (status);
5933 }
5934 
5935 /*
5936  * Description:
5937  *	Open a device using its device path and identify if this is
5938  *	a disk device or a volume device.
5939  *
5940  * Parameters:
5941  *	vd 	- pointer to structure containing the vDisk info
5942  *	dtype	- return the driver type of the device
5943  *
5944  * Return Value
5945  *	0	- success
5946  *	!= 0	- some other non-zero return value from ldi(9F) functions
5947  */
5948 static int
5949 vd_identify_dev(vd_t *vd, int *dtype)
5950 {
5951 	int status, i;
5952 	char *device_path = vd->device_path;
5953 	char *drv_name;
5954 	int drv_type;
5955 	vds_t *vds = vd->vds;
5956 
5957 	status = vd_open_using_ldi_by_name(vd, vd->open_flags & ~FWRITE);
5958 	if (status != 0) {
5959 		PR0("Failed to open (%s) = errno %d", device_path, status);
5960 		return (status);
5961 	}
5962 
5963 	/* Get device number of backing device */
5964 	if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) {
5965 		PRN("ldi_get_dev() returned errno %d for %s",
5966 		    status, device_path);
5967 		return (status);
5968 	}
5969 
5970 	/*
5971 	 * We start by looking if the driver is in the list from vds.conf
5972 	 * so that we can override the built-in list using vds.conf.
5973 	 */
5974 	drv_name = ddi_major_to_name(getmajor(vd->dev[0]));
5975 	drv_type = VD_DRIVER_UNKNOWN;
5976 
5977 	/* check vds.conf list */
5978 	for (i = 0; i < vds->num_drivers; i++) {
5979 		if (vds->driver_types[i].type == VD_DRIVER_UNKNOWN) {
5980 			/* ignore invalid entries */
5981 			continue;
5982 		}
5983 		if (strcmp(drv_name, vds->driver_types[i].name) == 0) {
5984 			drv_type = vds->driver_types[i].type;
5985 			goto done;
5986 		}
5987 	}
5988 
5989 	/* check built-in list */
5990 	for (i = 0; i < VDS_NUM_DRIVERS; i++) {
5991 		if (strcmp(drv_name, vds_driver_types[i].name) == 0) {
5992 			drv_type = vds_driver_types[i].type;
5993 			goto done;
5994 		}
5995 	}
5996 
5997 done:
5998 	PR0("driver %s identified as %s", drv_name,
5999 	    (drv_type == VD_DRIVER_DISK)? "DISK" :
6000 	    (drv_type == VD_DRIVER_VOLUME)? "VOLUME" : "UNKNOWN");
6001 
6002 	*dtype = drv_type;
6003 
6004 	return (0);
6005 }
6006 
6007 static int
6008 vd_setup_vd(vd_t *vd)
6009 {
6010 	int		status, drv_type, pseudo;
6011 	dev_info_t	*dip;
6012 	vnode_t 	*vnp;
6013 	char		*path = vd->device_path;
6014 
6015 	/* make sure the vdisk backend is valid */
6016 	if ((status = lookupname(path, UIO_SYSSPACE,
6017 	    FOLLOW, NULLVPP, &vnp)) != 0) {
6018 		PR0("Cannot lookup %s errno %d", path, status);
6019 		goto done;
6020 	}
6021 
6022 	switch (vnp->v_type) {
6023 	case VREG:
6024 		/*
6025 		 * Backend is a file so it is exported as a full disk or as a
6026 		 * single slice disk using the vnode interface.
6027 		 */
6028 		VN_RELE(vnp);
6029 		vd->volume = B_FALSE;
6030 		status = vd_setup_backend_vnode(vd);
6031 		break;
6032 
6033 	case VBLK:
6034 	case VCHR:
6035 		/*
6036 		 * Backend is a device. The way it is exported depends on the
6037 		 * type of the device.
6038 		 *
6039 		 * - A volume device is exported as a full disk using the vnode
6040 		 *   interface or as a single slice disk using the LDI
6041 		 *   interface.
6042 		 *
6043 		 * - A disk (represented by the slice 2 of that disk) is
6044 		 *   exported as a full disk using the LDI interface.
6045 		 *
6046 		 * - A disk slice (different from slice 2) is always exported
6047 		 *   as a single slice disk using the LDI interface.
6048 		 *
6049 		 * - The slice 2 of a disk is exported as a single slice disk
6050 		 *   if the "slice" option is specified, otherwise the entire
6051 		 *   disk will be exported. In any case, the LDI interface is
6052 		 *   used.
6053 		 */
6054 
6055 		/* check if this is a pseudo device */
6056 		if ((dip = ddi_hold_devi_by_instance(getmajor(vnp->v_rdev),
6057 		    dev_to_instance(vnp->v_rdev), 0))  == NULL) {
6058 			PRN("%s is no longer accessible", path);
6059 			VN_RELE(vnp);
6060 			status = EIO;
6061 			break;
6062 		}
6063 		pseudo = is_pseudo_device(dip);
6064 		ddi_release_devi(dip);
6065 		VN_RELE(vnp);
6066 
6067 		if (vd_identify_dev(vd, &drv_type) != 0) {
6068 			PRN("%s identification failed", path);
6069 			status = EIO;
6070 			break;
6071 		}
6072 
6073 		/*
6074 		 * If the driver hasn't been identified then we consider that
6075 		 * pseudo devices are volumes and other devices are disks.
6076 		 */
6077 		if (drv_type == VD_DRIVER_VOLUME ||
6078 		    (drv_type == VD_DRIVER_UNKNOWN && pseudo)) {
6079 			vd->volume = B_TRUE;
6080 		} else {
6081 			status = vd_setup_backend_ldi(vd);
6082 			break;
6083 		}
6084 
6085 		/*
6086 		 * If this is a volume device then its usage depends if the
6087 		 * "slice" option is set or not. If the "slice" option is set
6088 		 * then the volume device will be exported as a single slice,
6089 		 * otherwise it will be exported as a full disk.
6090 		 *
6091 		 * For backward compatibility, if vd_volume_force_slice is set
6092 		 * then we always export volume devices as slices.
6093 		 */
6094 		if (vd_volume_force_slice) {
6095 			vd->vdisk_type = VD_DISK_TYPE_SLICE;
6096 			vd->nslices = 1;
6097 		}
6098 
6099 		if (vd->vdisk_type == VD_DISK_TYPE_DISK) {
6100 			/* close device opened during identification */
6101 			(void) ldi_close(vd->ldi_handle[0],
6102 			    vd->open_flags & ~FWRITE, kcred);
6103 			vd->ldi_handle[0] = NULL;
6104 			vd->dev[0] = 0;
6105 			status = vd_setup_backend_vnode(vd);
6106 		} else {
6107 			status = vd_setup_backend_ldi(vd);
6108 		}
6109 		break;
6110 
6111 	default:
6112 		PRN("Unsupported vdisk backend %s", path);
6113 		VN_RELE(vnp);
6114 		status = EBADF;
6115 	}
6116 
6117 done:
6118 	if (status != 0) {
6119 		/*
6120 		 * If the error is retryable print an error message only
6121 		 * during the first try.
6122 		 */
6123 		if (status == ENXIO || status == ENODEV ||
6124 		    status == ENOENT || status == EROFS) {
6125 			if (!(vd->initialized & VD_SETUP_ERROR)) {
6126 				PRN("%s is currently inaccessible (error %d)",
6127 				    path, status);
6128 			}
6129 			status = EAGAIN;
6130 		} else {
6131 			PRN("%s can not be exported as a virtual disk "
6132 			    "(error %d)", path, status);
6133 		}
6134 		vd->initialized |= VD_SETUP_ERROR;
6135 
6136 	} else if (vd->initialized & VD_SETUP_ERROR) {
6137 		/* print a message only if we previously had an error */
6138 		PRN("%s is now online", path);
6139 		vd->initialized &= ~VD_SETUP_ERROR;
6140 	}
6141 
6142 	return (status);
6143 }
6144 
6145 static int
6146 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
6147     uint64_t ldc_id, vd_t **vdp)
6148 {
6149 	char			tq_name[TASKQ_NAMELEN];
6150 	int			status;
6151 	ddi_iblock_cookie_t	iblock = NULL;
6152 	ldc_attr_t		ldc_attr;
6153 	vd_t			*vd;
6154 
6155 
6156 	ASSERT(vds != NULL);
6157 	ASSERT(device_path != NULL);
6158 	ASSERT(vdp != NULL);
6159 	PR0("Adding vdisk for %s", device_path);
6160 
6161 	if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) {
6162 		PRN("No memory for virtual disk");
6163 		return (EAGAIN);
6164 	}
6165 	*vdp = vd;	/* assign here so vds_destroy_vd() can cleanup later */
6166 	vd->vds = vds;
6167 	(void) strncpy(vd->device_path, device_path, MAXPATHLEN);
6168 
6169 	/* Setup open flags */
6170 	vd->open_flags = FREAD;
6171 
6172 	if (!(options & VD_OPT_RDONLY))
6173 		vd->open_flags |= FWRITE;
6174 
6175 	if (options & VD_OPT_EXCLUSIVE)
6176 		vd->open_flags |= FEXCL;
6177 
6178 	/* Setup disk type */
6179 	if (options & VD_OPT_SLICE) {
6180 		vd->vdisk_type = VD_DISK_TYPE_SLICE;
6181 		vd->nslices = 1;
6182 	} else {
6183 		vd->vdisk_type = VD_DISK_TYPE_DISK;
6184 		vd->nslices = V_NUMPAR;
6185 	}
6186 
6187 	/* default disk label */
6188 	vd->vdisk_label = VD_DISK_LABEL_UNK;
6189 
6190 	/* Open vdisk and initialize parameters */
6191 	if ((status = vd_setup_vd(vd)) == 0) {
6192 		vd->initialized |= VD_DISK_READY;
6193 
6194 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
6195 		PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u",
6196 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
6197 		    (vd->volume ? "yes" : "no"), (vd->file ? "yes" : "no"),
6198 		    vd->nslices);
6199 	} else {
6200 		if (status != EAGAIN)
6201 			return (status);
6202 	}
6203 
6204 	/* Initialize locking */
6205 	if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED,
6206 	    &iblock) != DDI_SUCCESS) {
6207 		PRN("Could not get iblock cookie.");
6208 		return (EIO);
6209 	}
6210 
6211 	mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock);
6212 	vd->initialized |= VD_LOCKING;
6213 
6214 
6215 	/* Create start and completion task queues for the vdisk */
6216 	(void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id);
6217 	PR1("tq_name = %s", tq_name);
6218 	if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1,
6219 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
6220 		PRN("Could not create task queue");
6221 		return (EIO);
6222 	}
6223 	(void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id);
6224 	PR1("tq_name = %s", tq_name);
6225 	if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1,
6226 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
6227 		PRN("Could not create task queue");
6228 		return (EIO);
6229 	}
6230 
6231 	/* Allocate the staging buffer */
6232 	vd->max_msglen = sizeof (vio_msg_t);	/* baseline vio message size */
6233 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
6234 
6235 	vd->enabled = 1;	/* before callback can dispatch to startq */
6236 
6237 
6238 	/* Bring up LDC */
6239 	ldc_attr.devclass	= LDC_DEV_BLK_SVC;
6240 	ldc_attr.instance	= ddi_get_instance(vds->dip);
6241 	ldc_attr.mode		= LDC_MODE_UNRELIABLE;
6242 	ldc_attr.mtu		= VD_LDC_MTU;
6243 	if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) {
6244 		PRN("Could not initialize LDC channel %lx, "
6245 		    "init failed with error %d", ldc_id, status);
6246 		return (status);
6247 	}
6248 	vd->initialized |= VD_LDC;
6249 
6250 	if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events,
6251 	    (caddr_t)vd)) != 0) {
6252 		PRN("Could not initialize LDC channel %lu,"
6253 		    "reg_callback failed with error %d", ldc_id, status);
6254 		return (status);
6255 	}
6256 
6257 	if ((status = ldc_open(vd->ldc_handle)) != 0) {
6258 		PRN("Could not initialize LDC channel %lu,"
6259 		    "open failed with error %d", ldc_id, status);
6260 		return (status);
6261 	}
6262 
6263 	if ((status = ldc_up(vd->ldc_handle)) != 0) {
6264 		PR0("ldc_up() returned errno %d", status);
6265 	}
6266 
6267 	/* Allocate the inband task memory handle */
6268 	status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl));
6269 	if (status) {
6270 		PRN("Could not initialize LDC channel %lu,"
6271 		    "alloc_handle failed with error %d", ldc_id, status);
6272 		return (ENXIO);
6273 	}
6274 
6275 	/* Add the successfully-initialized vdisk to the server's table */
6276 	if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) {
6277 		PRN("Error adding vdisk ID %lu to table", id);
6278 		return (EIO);
6279 	}
6280 
6281 	/* store initial state */
6282 	vd->state = VD_STATE_INIT;
6283 
6284 	return (0);
6285 }
6286 
6287 static void
6288 vd_free_dring_task(vd_t *vdp)
6289 {
6290 	if (vdp->dring_task != NULL) {
6291 		ASSERT(vdp->dring_len != 0);
6292 		/* Free all dring_task memory handles */
6293 		for (int i = 0; i < vdp->dring_len; i++) {
6294 			(void) ldc_mem_free_handle(vdp->dring_task[i].mhdl);
6295 			kmem_free(vdp->dring_task[i].msg, vdp->max_msglen);
6296 			vdp->dring_task[i].msg = NULL;
6297 		}
6298 		kmem_free(vdp->dring_task,
6299 		    (sizeof (*vdp->dring_task)) * vdp->dring_len);
6300 		vdp->dring_task = NULL;
6301 	}
6302 }
6303 
6304 /*
6305  * Destroy the state associated with a virtual disk
6306  */
6307 static void
6308 vds_destroy_vd(void *arg)
6309 {
6310 	vd_t	*vd = (vd_t *)arg;
6311 	int	retry = 0, rv;
6312 
6313 	if (vd == NULL)
6314 		return;
6315 
6316 	PR0("Destroying vdisk state");
6317 
6318 	/* Disable queuing requests for the vdisk */
6319 	if (vd->initialized & VD_LOCKING) {
6320 		mutex_enter(&vd->lock);
6321 		vd->enabled = 0;
6322 		mutex_exit(&vd->lock);
6323 	}
6324 
6325 	/* Drain and destroy start queue (*before* destroying completionq) */
6326 	if (vd->startq != NULL)
6327 		ddi_taskq_destroy(vd->startq);	/* waits for queued tasks */
6328 
6329 	/* Drain and destroy completion queue (*before* shutting down LDC) */
6330 	if (vd->completionq != NULL)
6331 		ddi_taskq_destroy(vd->completionq);	/* waits for tasks */
6332 
6333 	vd_free_dring_task(vd);
6334 
6335 	/* Free the inband task memory handle */
6336 	(void) ldc_mem_free_handle(vd->inband_task.mhdl);
6337 
6338 	/* Shut down LDC */
6339 	if (vd->initialized & VD_LDC) {
6340 		/* unmap the dring */
6341 		if (vd->initialized & VD_DRING)
6342 			(void) ldc_mem_dring_unmap(vd->dring_handle);
6343 
6344 		/* close LDC channel - retry on EAGAIN */
6345 		while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) {
6346 			if (++retry > vds_ldc_retries) {
6347 				PR0("Timed out closing channel");
6348 				break;
6349 			}
6350 			drv_usecwait(vds_ldc_delay);
6351 		}
6352 		if (rv == 0) {
6353 			(void) ldc_unreg_callback(vd->ldc_handle);
6354 			(void) ldc_fini(vd->ldc_handle);
6355 		} else {
6356 			/*
6357 			 * Closing the LDC channel has failed. Ideally we should
6358 			 * fail here but there is no Zeus level infrastructure
6359 			 * to handle this. The MD has already been changed and
6360 			 * we have to do the close. So we try to do as much
6361 			 * clean up as we can.
6362 			 */
6363 			(void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE);
6364 			while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN)
6365 				drv_usecwait(vds_ldc_delay);
6366 		}
6367 	}
6368 
6369 	/* Free the staging buffer for msgs */
6370 	if (vd->vio_msgp != NULL) {
6371 		kmem_free(vd->vio_msgp, vd->max_msglen);
6372 		vd->vio_msgp = NULL;
6373 	}
6374 
6375 	/* Free the inband message buffer */
6376 	if (vd->inband_task.msg != NULL) {
6377 		kmem_free(vd->inband_task.msg, vd->max_msglen);
6378 		vd->inband_task.msg = NULL;
6379 	}
6380 
6381 	if (vd->file) {
6382 		/* Close file */
6383 		(void) VOP_CLOSE(vd->file_vnode, vd->open_flags, 1,
6384 		    0, kcred, NULL);
6385 		VN_RELE(vd->file_vnode);
6386 		if (vd->file_devid != NULL)
6387 			ddi_devid_free(vd->file_devid);
6388 	} else {
6389 		/* Close any open backing-device slices */
6390 		for (uint_t slice = 0; slice < V_NUMPAR; slice++) {
6391 			if (vd->ldi_handle[slice] != NULL) {
6392 				PR0("Closing slice %u", slice);
6393 				(void) ldi_close(vd->ldi_handle[slice],
6394 				    vd->open_flags, kcred);
6395 			}
6396 		}
6397 	}
6398 
6399 	/* Free any fake label */
6400 	if (vd->flabel) {
6401 		kmem_free(vd->flabel, vd->flabel_size);
6402 		vd->flabel = NULL;
6403 		vd->flabel_size = 0;
6404 	}
6405 
6406 	/* Free lock */
6407 	if (vd->initialized & VD_LOCKING)
6408 		mutex_destroy(&vd->lock);
6409 
6410 	/* Finally, free the vdisk structure itself */
6411 	kmem_free(vd, sizeof (*vd));
6412 }
6413 
6414 static int
6415 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
6416     uint64_t ldc_id)
6417 {
6418 	int	status;
6419 	vd_t	*vd = NULL;
6420 
6421 
6422 	if ((status = vds_do_init_vd(vds, id, device_path, options,
6423 	    ldc_id, &vd)) != 0)
6424 		vds_destroy_vd(vd);
6425 
6426 	return (status);
6427 }
6428 
6429 static int
6430 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel,
6431     uint64_t *ldc_id)
6432 {
6433 	int	num_channels;
6434 
6435 
6436 	/* Look for channel endpoint child(ren) of the vdisk MD node */
6437 	if ((num_channels = md_scan_dag(md, vd_node,
6438 	    md_find_name(md, VD_CHANNEL_ENDPOINT),
6439 	    md_find_name(md, "fwd"), channel)) <= 0) {
6440 		PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT);
6441 		return (-1);
6442 	}
6443 
6444 	/* Get the "id" value for the first channel endpoint node */
6445 	if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) {
6446 		PRN("No \"%s\" property found for \"%s\" of vdisk",
6447 		    VD_ID_PROP, VD_CHANNEL_ENDPOINT);
6448 		return (-1);
6449 	}
6450 
6451 	if (num_channels > 1) {
6452 		PRN("Using ID of first of multiple channels for this vdisk");
6453 	}
6454 
6455 	return (0);
6456 }
6457 
6458 static int
6459 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id)
6460 {
6461 	int		num_nodes, status;
6462 	size_t		size;
6463 	mde_cookie_t	*channel;
6464 
6465 
6466 	if ((num_nodes = md_node_count(md)) <= 0) {
6467 		PRN("Invalid node count in Machine Description subtree");
6468 		return (-1);
6469 	}
6470 	size = num_nodes*(sizeof (*channel));
6471 	channel = kmem_zalloc(size, KM_SLEEP);
6472 	status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id);
6473 	kmem_free(channel, size);
6474 
6475 	return (status);
6476 }
6477 
6478 /*
6479  * Function:
6480  *	vds_get_options
6481  *
6482  * Description:
6483  * 	Parse the options of a vds node. Options are defined as an array
6484  *	of strings in the vds-block-device-opts property of the vds node
6485  *	in the machine description. Options are returned as a bitmask. The
6486  *	mapping between the bitmask options and the options strings from the
6487  *	machine description is defined in the vd_bdev_options[] array.
6488  *
6489  *	The vds-block-device-opts property is optional. If a vds has no such
6490  *	property then no option is defined.
6491  *
6492  * Parameters:
6493  *	md		- machine description.
6494  *	vd_node		- vds node in the machine description for which
6495  *			  options have to be parsed.
6496  *	options		- the returned options.
6497  *
6498  * Return Code:
6499  *	none.
6500  */
6501 static void
6502 vds_get_options(md_t *md, mde_cookie_t vd_node, uint64_t *options)
6503 {
6504 	char	*optstr, *opt;
6505 	int	len, n, i;
6506 
6507 	*options = 0;
6508 
6509 	if (md_get_prop_data(md, vd_node, VD_BLOCK_DEVICE_OPTS,
6510 	    (uint8_t **)&optstr, &len) != 0) {
6511 		PR0("No options found");
6512 		return;
6513 	}
6514 
6515 	/* parse options */
6516 	opt = optstr;
6517 	n = sizeof (vd_bdev_options) / sizeof (vd_option_t);
6518 
6519 	while (opt < optstr + len) {
6520 		for (i = 0; i < n; i++) {
6521 			if (strncmp(vd_bdev_options[i].vdo_name,
6522 			    opt, VD_OPTION_NLEN) == 0) {
6523 				*options |= vd_bdev_options[i].vdo_value;
6524 				break;
6525 			}
6526 		}
6527 
6528 		if (i < n) {
6529 			PR0("option: %s", opt);
6530 		} else {
6531 			PRN("option %s is unknown or unsupported", opt);
6532 		}
6533 
6534 		opt += strlen(opt) + 1;
6535 	}
6536 }
6537 
6538 static void
6539 vds_driver_types_free(vds_t *vds)
6540 {
6541 	if (vds->driver_types != NULL) {
6542 		kmem_free(vds->driver_types, sizeof (vd_driver_type_t) *
6543 		    vds->num_drivers);
6544 		vds->driver_types = NULL;
6545 		vds->num_drivers = 0;
6546 	}
6547 }
6548 
6549 /*
6550  * Update the driver type list with information from vds.conf.
6551  */
6552 static void
6553 vds_driver_types_update(vds_t *vds)
6554 {
6555 	char **list, *s;
6556 	uint_t i, num, count = 0, len;
6557 
6558 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, vds->dip,
6559 	    DDI_PROP_DONTPASS, "driver-type-list", &list, &num) !=
6560 	    DDI_PROP_SUCCESS)
6561 		return;
6562 
6563 	/*
6564 	 * We create a driver_types list with as many as entries as there
6565 	 * is in the driver-type-list from vds.conf. However only valid
6566 	 * entries will be populated (i.e. entries from driver-type-list
6567 	 * with a valid syntax). Invalid entries will be left blank so
6568 	 * they will have no driver name and the driver type will be
6569 	 * VD_DRIVER_UNKNOWN (= 0).
6570 	 */
6571 	vds->num_drivers = num;
6572 	vds->driver_types = kmem_zalloc(sizeof (vd_driver_type_t) * num,
6573 	    KM_SLEEP);
6574 
6575 	for (i = 0; i < num; i++) {
6576 
6577 		s = strchr(list[i], ':');
6578 
6579 		if (s == NULL) {
6580 			PRN("vds.conf: driver-type-list, entry %d (%s): "
6581 			    "a colon is expected in the entry",
6582 			    i, list[i]);
6583 			continue;
6584 		}
6585 
6586 		len = (uintptr_t)s - (uintptr_t)list[i];
6587 
6588 		if (len == 0) {
6589 			PRN("vds.conf: driver-type-list, entry %d (%s): "
6590 			    "the driver name is empty",
6591 			    i, list[i]);
6592 			continue;
6593 		}
6594 
6595 		if (len >= VD_DRIVER_NAME_LEN) {
6596 			PRN("vds.conf: driver-type-list, entry %d (%s): "
6597 			    "the driver name is too long",
6598 			    i, list[i]);
6599 			continue;
6600 		}
6601 
6602 		if (strcmp(s + 1, "disk") == 0) {
6603 
6604 			vds->driver_types[i].type = VD_DRIVER_DISK;
6605 
6606 		} else if (strcmp(s + 1, "volume") == 0) {
6607 
6608 			vds->driver_types[i].type = VD_DRIVER_VOLUME;
6609 
6610 		} else {
6611 			PRN("vds.conf: driver-type-list, entry %d (%s): "
6612 			    "the driver type is invalid",
6613 			    i, list[i]);
6614 			continue;
6615 		}
6616 
6617 		(void) strncpy(vds->driver_types[i].name, list[i], len);
6618 
6619 		PR0("driver-type-list, entry %d (%s) added",
6620 		    i, list[i]);
6621 
6622 		count++;
6623 	}
6624 
6625 	ddi_prop_free(list);
6626 
6627 	if (count == 0) {
6628 		/* nothing was added, clean up */
6629 		vds_driver_types_free(vds);
6630 	}
6631 }
6632 
6633 static void
6634 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
6635 {
6636 	char		*device_path = NULL;
6637 	uint64_t	id = 0, ldc_id = 0, options = 0;
6638 
6639 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
6640 		PRN("Error getting vdisk \"%s\"", VD_ID_PROP);
6641 		return;
6642 	}
6643 	PR0("Adding vdisk ID %lu", id);
6644 	if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP,
6645 	    &device_path) != 0) {
6646 		PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
6647 		return;
6648 	}
6649 
6650 	vds_get_options(md, vd_node, &options);
6651 
6652 	if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) {
6653 		PRN("Error getting LDC ID for vdisk %lu", id);
6654 		return;
6655 	}
6656 
6657 	if (vds_init_vd(vds, id, device_path, options, ldc_id) != 0) {
6658 		PRN("Failed to add vdisk ID %lu", id);
6659 		if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
6660 			PRN("No vDisk entry found for vdisk ID %lu", id);
6661 		return;
6662 	}
6663 }
6664 
6665 static void
6666 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
6667 {
6668 	uint64_t	id = 0;
6669 
6670 
6671 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
6672 		PRN("Unable to get \"%s\" property from vdisk's MD node",
6673 		    VD_ID_PROP);
6674 		return;
6675 	}
6676 	PR0("Removing vdisk ID %lu", id);
6677 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
6678 		PRN("No vdisk entry found for vdisk ID %lu", id);
6679 }
6680 
6681 static void
6682 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node,
6683     md_t *curr_md, mde_cookie_t curr_vd_node)
6684 {
6685 	char		*curr_dev, *prev_dev;
6686 	uint64_t	curr_id = 0, curr_ldc_id = 0, curr_options = 0;
6687 	uint64_t	prev_id = 0, prev_ldc_id = 0, prev_options = 0;
6688 	size_t		len;
6689 
6690 
6691 	/* Validate that vdisk ID has not changed */
6692 	if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) {
6693 		PRN("Error getting previous vdisk \"%s\" property",
6694 		    VD_ID_PROP);
6695 		return;
6696 	}
6697 	if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) {
6698 		PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP);
6699 		return;
6700 	}
6701 	if (curr_id != prev_id) {
6702 		PRN("Not changing vdisk:  ID changed from %lu to %lu",
6703 		    prev_id, curr_id);
6704 		return;
6705 	}
6706 
6707 	/* Validate that LDC ID has not changed */
6708 	if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) {
6709 		PRN("Error getting LDC ID for vdisk %lu", prev_id);
6710 		return;
6711 	}
6712 
6713 	if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) {
6714 		PRN("Error getting LDC ID for vdisk %lu", curr_id);
6715 		return;
6716 	}
6717 	if (curr_ldc_id != prev_ldc_id) {
6718 		_NOTE(NOTREACHED);	/* lint is confused */
6719 		PRN("Not changing vdisk:  "
6720 		    "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id);
6721 		return;
6722 	}
6723 
6724 	/* Determine whether device path has changed */
6725 	if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP,
6726 	    &prev_dev) != 0) {
6727 		PRN("Error getting previous vdisk \"%s\"",
6728 		    VD_BLOCK_DEVICE_PROP);
6729 		return;
6730 	}
6731 	if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP,
6732 	    &curr_dev) != 0) {
6733 		PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
6734 		return;
6735 	}
6736 	if (((len = strlen(curr_dev)) == strlen(prev_dev)) &&
6737 	    (strncmp(curr_dev, prev_dev, len) == 0))
6738 		return;	/* no relevant (supported) change */
6739 
6740 	/* Validate that options have not changed */
6741 	vds_get_options(prev_md, prev_vd_node, &prev_options);
6742 	vds_get_options(curr_md, curr_vd_node, &curr_options);
6743 	if (prev_options != curr_options) {
6744 		PRN("Not changing vdisk:  options changed from %lx to %lx",
6745 		    prev_options, curr_options);
6746 		return;
6747 	}
6748 
6749 	PR0("Changing vdisk ID %lu", prev_id);
6750 
6751 	/* Remove old state, which will close vdisk and reset */
6752 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0)
6753 		PRN("No entry found for vdisk ID %lu", prev_id);
6754 
6755 	/* Re-initialize vdisk with new state */
6756 	if (vds_init_vd(vds, curr_id, curr_dev, curr_options,
6757 	    curr_ldc_id) != 0) {
6758 		PRN("Failed to change vdisk ID %lu", curr_id);
6759 		return;
6760 	}
6761 }
6762 
6763 static int
6764 vds_process_md(void *arg, mdeg_result_t *md)
6765 {
6766 	int	i;
6767 	vds_t	*vds = arg;
6768 
6769 
6770 	if (md == NULL)
6771 		return (MDEG_FAILURE);
6772 	ASSERT(vds != NULL);
6773 
6774 	for (i = 0; i < md->removed.nelem; i++)
6775 		vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]);
6776 	for (i = 0; i < md->match_curr.nelem; i++)
6777 		vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i],
6778 		    md->match_curr.mdp, md->match_curr.mdep[i]);
6779 	for (i = 0; i < md->added.nelem; i++)
6780 		vds_add_vd(vds, md->added.mdp, md->added.mdep[i]);
6781 
6782 	return (MDEG_SUCCESS);
6783 }
6784 
6785 
6786 static int
6787 vds_do_attach(dev_info_t *dip)
6788 {
6789 	int			status, sz;
6790 	int			cfg_handle;
6791 	minor_t			instance = ddi_get_instance(dip);
6792 	vds_t			*vds;
6793 	mdeg_prop_spec_t	*pspecp;
6794 	mdeg_node_spec_t	*ispecp;
6795 
6796 	/*
6797 	 * The "cfg-handle" property of a vds node in an MD contains the MD's
6798 	 * notion of "instance", or unique identifier, for that node; OBP
6799 	 * stores the value of the "cfg-handle" MD property as the value of
6800 	 * the "reg" property on the node in the device tree it builds from
6801 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
6802 	 * "reg" property value to uniquely identify this device instance when
6803 	 * registering with the MD event-generation framework.  If the "reg"
6804 	 * property cannot be found, the device tree state is presumably so
6805 	 * broken that there is no point in continuing.
6806 	 */
6807 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
6808 	    VD_REG_PROP)) {
6809 		PRN("vds \"%s\" property does not exist", VD_REG_PROP);
6810 		return (DDI_FAILURE);
6811 	}
6812 
6813 	/* Get the MD instance for later MDEG registration */
6814 	cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
6815 	    VD_REG_PROP, -1);
6816 
6817 	if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) {
6818 		PRN("Could not allocate state for instance %u", instance);
6819 		return (DDI_FAILURE);
6820 	}
6821 
6822 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
6823 		PRN("Could not get state for instance %u", instance);
6824 		ddi_soft_state_free(vds_state, instance);
6825 		return (DDI_FAILURE);
6826 	}
6827 
6828 	vds->dip	= dip;
6829 	vds->vd_table	= mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS,
6830 	    vds_destroy_vd, sizeof (void *));
6831 
6832 	ASSERT(vds->vd_table != NULL);
6833 
6834 	if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) {
6835 		PRN("ldi_ident_from_dip() returned errno %d", status);
6836 		return (DDI_FAILURE);
6837 	}
6838 	vds->initialized |= VDS_LDI;
6839 
6840 	/* Register for MD updates */
6841 	sz = sizeof (vds_prop_template);
6842 	pspecp = kmem_alloc(sz, KM_SLEEP);
6843 	bcopy(vds_prop_template, pspecp, sz);
6844 
6845 	VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle);
6846 
6847 	/* initialize the complete prop spec structure */
6848 	ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
6849 	ispecp->namep = "virtual-device";
6850 	ispecp->specp = pspecp;
6851 
6852 	if (mdeg_register(ispecp, &vd_match, vds_process_md, vds,
6853 	    &vds->mdeg) != MDEG_SUCCESS) {
6854 		PRN("Unable to register for MD updates");
6855 		kmem_free(ispecp, sizeof (mdeg_node_spec_t));
6856 		kmem_free(pspecp, sz);
6857 		return (DDI_FAILURE);
6858 	}
6859 
6860 	vds->ispecp = ispecp;
6861 	vds->initialized |= VDS_MDEG;
6862 
6863 	/* Prevent auto-detaching so driver is available whenever MD changes */
6864 	if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) !=
6865 	    DDI_PROP_SUCCESS) {
6866 		PRN("failed to set \"%s\" property for instance %u",
6867 		    DDI_NO_AUTODETACH, instance);
6868 	}
6869 
6870 	/* read any user defined driver types from conf file and update list */
6871 	vds_driver_types_update(vds);
6872 
6873 	ddi_report_dev(dip);
6874 	return (DDI_SUCCESS);
6875 }
6876 
6877 static int
6878 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
6879 {
6880 	int	status;
6881 
6882 	switch (cmd) {
6883 	case DDI_ATTACH:
6884 		PR0("Attaching");
6885 		if ((status = vds_do_attach(dip)) != DDI_SUCCESS)
6886 			(void) vds_detach(dip, DDI_DETACH);
6887 		return (status);
6888 	case DDI_RESUME:
6889 		PR0("No action required for DDI_RESUME");
6890 		return (DDI_SUCCESS);
6891 	default:
6892 		return (DDI_FAILURE);
6893 	}
6894 }
6895 
6896 static struct dev_ops vds_ops = {
6897 	DEVO_REV,	/* devo_rev */
6898 	0,		/* devo_refcnt */
6899 	ddi_no_info,	/* devo_getinfo */
6900 	nulldev,	/* devo_identify */
6901 	nulldev,	/* devo_probe */
6902 	vds_attach,	/* devo_attach */
6903 	vds_detach,	/* devo_detach */
6904 	nodev,		/* devo_reset */
6905 	NULL,		/* devo_cb_ops */
6906 	NULL,		/* devo_bus_ops */
6907 	nulldev		/* devo_power */
6908 };
6909 
6910 static struct modldrv modldrv = {
6911 	&mod_driverops,
6912 	"virtual disk server",
6913 	&vds_ops,
6914 };
6915 
6916 static struct modlinkage modlinkage = {
6917 	MODREV_1,
6918 	&modldrv,
6919 	NULL
6920 };
6921 
6922 
6923 int
6924 _init(void)
6925 {
6926 	int		status;
6927 
6928 	if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0)
6929 		return (status);
6930 
6931 	if ((status = mod_install(&modlinkage)) != 0) {
6932 		ddi_soft_state_fini(&vds_state);
6933 		return (status);
6934 	}
6935 
6936 	return (0);
6937 }
6938 
6939 int
6940 _info(struct modinfo *modinfop)
6941 {
6942 	return (mod_info(&modlinkage, modinfop));
6943 }
6944 
6945 int
6946 _fini(void)
6947 {
6948 	int	status;
6949 
6950 	if ((status = mod_remove(&modlinkage)) != 0)
6951 		return (status);
6952 	ddi_soft_state_fini(&vds_state);
6953 	return (0);
6954 }
6955