1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Virtual disk server 31 */ 32 33 34 #include <sys/types.h> 35 #include <sys/conf.h> 36 #include <sys/crc32.h> 37 #include <sys/ddi.h> 38 #include <sys/dkio.h> 39 #include <sys/file.h> 40 #include <sys/fs/hsfs_isospec.h> 41 #include <sys/mdeg.h> 42 #include <sys/mhd.h> 43 #include <sys/modhash.h> 44 #include <sys/note.h> 45 #include <sys/pathname.h> 46 #include <sys/sdt.h> 47 #include <sys/sunddi.h> 48 #include <sys/sunldi.h> 49 #include <sys/sysmacros.h> 50 #include <sys/vio_common.h> 51 #include <sys/vio_util.h> 52 #include <sys/vdsk_mailbox.h> 53 #include <sys/vdsk_common.h> 54 #include <sys/vtoc.h> 55 #include <sys/vfs.h> 56 #include <sys/stat.h> 57 #include <sys/scsi/impl/uscsi.h> 58 #include <sys/ontrap.h> 59 #include <vm/seg_map.h> 60 61 #define ONE_TERABYTE (1ULL << 40) 62 63 /* Virtual disk server initialization flags */ 64 #define VDS_LDI 0x01 65 #define VDS_MDEG 0x02 66 67 /* Virtual disk server tunable parameters */ 68 #define VDS_RETRIES 5 69 #define VDS_LDC_DELAY 1000 /* 1 msecs */ 70 #define VDS_DEV_DELAY 10000000 /* 10 secs */ 71 #define VDS_NCHAINS 32 72 73 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */ 74 #define VDS_NAME "virtual-disk-server" 75 76 #define VD_NAME "vd" 77 #define VD_VOLUME_NAME "vdisk" 78 #define VD_ASCIILABEL "Virtual Disk" 79 80 #define VD_CHANNEL_ENDPOINT "channel-endpoint" 81 #define VD_ID_PROP "id" 82 #define VD_BLOCK_DEVICE_PROP "vds-block-device" 83 #define VD_BLOCK_DEVICE_OPTS "vds-block-device-opts" 84 #define VD_REG_PROP "reg" 85 86 /* Virtual disk initialization flags */ 87 #define VD_DISK_READY 0x01 88 #define VD_LOCKING 0x02 89 #define VD_LDC 0x04 90 #define VD_DRING 0x08 91 #define VD_SID 0x10 92 #define VD_SEQ_NUM 0x20 93 #define VD_SETUP_ERROR 0x40 94 95 /* Flags for writing to a vdisk which is a file */ 96 #define VD_FILE_WRITE_FLAGS SM_ASYNC 97 98 /* Number of backup labels */ 99 #define VD_FILE_NUM_BACKUP 5 100 101 /* Timeout for SCSI I/O */ 102 #define VD_SCSI_RDWR_TIMEOUT 30 /* 30 secs */ 103 104 /* Maximum number of logical partitions */ 105 #define VD_MAXPART (NDKMAP + 1) 106 107 /* 108 * By Solaris convention, slice/partition 2 represents the entire disk; 109 * unfortunately, this convention does not appear to be codified. 110 */ 111 #define VD_ENTIRE_DISK_SLICE 2 112 113 /* Logical block address for EFI */ 114 #define VD_EFI_LBA_GPT 1 /* LBA of the GPT */ 115 #define VD_EFI_LBA_GPE 2 /* LBA of the GPE */ 116 117 /* Driver types */ 118 typedef enum vd_driver { 119 VD_DRIVER_UNKNOWN = 0, /* driver type unknown */ 120 VD_DRIVER_DISK, /* disk driver */ 121 VD_DRIVER_VOLUME /* volume driver */ 122 } vd_driver_t; 123 124 #define VD_DRIVER_NAME_LEN 64 125 126 #define VDS_NUM_DRIVERS (sizeof (vds_driver_types) / sizeof (vd_driver_type_t)) 127 128 typedef struct vd_driver_type { 129 char name[VD_DRIVER_NAME_LEN]; /* driver name */ 130 vd_driver_t type; /* driver type (disk or volume) */ 131 } vd_driver_type_t; 132 133 /* 134 * There is no reliable way to determine if a device is representing a disk 135 * or a volume, especially with pseudo devices. So we maintain a list of well 136 * known drivers and the type of device they represent (either a disk or a 137 * volume). 138 * 139 * The list can be extended by adding a "driver-type-list" entry in vds.conf 140 * with the following syntax: 141 * 142 * driver-type-list="<driver>:<type>", ... ,"<driver>:<type>"; 143 * 144 * Where: 145 * <driver> is the name of a driver (limited to 64 characters) 146 * <type> is either the string "disk" or "volume" 147 * 148 * Invalid entries in "driver-type-list" will be ignored. 149 * 150 * For example, the following line in vds.conf: 151 * 152 * driver-type-list="foo:disk","bar:volume"; 153 * 154 * defines that "foo" is a disk driver, and driver "bar" is a volume driver. 155 * 156 * When a list is defined in vds.conf, it is checked before the built-in list 157 * (vds_driver_types[]) so that any definition from this list can be overriden 158 * using vds.conf. 159 */ 160 vd_driver_type_t vds_driver_types[] = { 161 { "dad", VD_DRIVER_DISK }, /* Solaris */ 162 { "did", VD_DRIVER_DISK }, /* Sun Cluster */ 163 { "emcp", VD_DRIVER_DISK }, /* EMC Powerpath */ 164 { "lofi", VD_DRIVER_VOLUME }, /* Solaris */ 165 { "md", VD_DRIVER_VOLUME }, /* Solaris - SVM */ 166 { "sd", VD_DRIVER_DISK }, /* Solaris */ 167 { "ssd", VD_DRIVER_DISK }, /* Solaris */ 168 { "vdc", VD_DRIVER_DISK }, /* Solaris */ 169 { "vxdmp", VD_DRIVER_DISK }, /* Veritas */ 170 { "vxio", VD_DRIVER_VOLUME }, /* Veritas - VxVM */ 171 { "zfs", VD_DRIVER_VOLUME } /* Solaris */ 172 }; 173 174 /* Return a cpp token as a string */ 175 #define STRINGIZE(token) #token 176 177 /* 178 * Print a message prefixed with the current function name to the message log 179 * (and optionally to the console for verbose boots); these macros use cpp's 180 * concatenation of string literals and C99 variable-length-argument-list 181 * macros 182 */ 183 #define PRN(...) _PRN("?%s(): "__VA_ARGS__, "") 184 #define _PRN(format, ...) \ 185 cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__) 186 187 /* Return a pointer to the "i"th vdisk dring element */ 188 #define VD_DRING_ELEM(i) ((vd_dring_entry_t *)(void *) \ 189 (vd->dring + (i)*vd->descriptor_size)) 190 191 /* Return the virtual disk client's type as a string (for use in messages) */ 192 #define VD_CLIENT(vd) \ 193 (((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" : \ 194 (((vd)->xfer_mode == VIO_DRING_MODE_V1_0) ? "dring client" : \ 195 (((vd)->xfer_mode == 0) ? "null client" : \ 196 "unsupported client"))) 197 198 /* Read disk label from a disk on file */ 199 #define VD_FILE_LABEL_READ(vd, labelp) \ 200 vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \ 201 0, sizeof (struct dk_label)) 202 203 /* Write disk label to a disk on file */ 204 #define VD_FILE_LABEL_WRITE(vd, labelp) \ 205 vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \ 206 0, sizeof (struct dk_label)) 207 208 /* Message for disk access rights reset failure */ 209 #define VD_RESET_ACCESS_FAILURE_MSG \ 210 "Fail to reset disk access rights for disk %s" 211 212 /* 213 * Specification of an MD node passed to the MDEG to filter any 214 * 'vport' nodes that do not belong to the specified node. This 215 * template is copied for each vds instance and filled in with 216 * the appropriate 'cfg-handle' value before being passed to the MDEG. 217 */ 218 static mdeg_prop_spec_t vds_prop_template[] = { 219 { MDET_PROP_STR, "name", VDS_NAME }, 220 { MDET_PROP_VAL, "cfg-handle", NULL }, 221 { MDET_LIST_END, NULL, NULL } 222 }; 223 224 #define VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val); 225 226 /* 227 * Matching criteria passed to the MDEG to register interest 228 * in changes to 'virtual-device-port' nodes identified by their 229 * 'id' property. 230 */ 231 static md_prop_match_t vd_prop_match[] = { 232 { MDET_PROP_VAL, VD_ID_PROP }, 233 { MDET_LIST_END, NULL } 234 }; 235 236 static mdeg_node_match_t vd_match = {"virtual-device-port", 237 vd_prop_match}; 238 239 /* 240 * Options for the VD_BLOCK_DEVICE_OPTS property. 241 */ 242 #define VD_OPT_RDONLY 0x1 /* read-only */ 243 #define VD_OPT_SLICE 0x2 /* single slice */ 244 #define VD_OPT_EXCLUSIVE 0x4 /* exclusive access */ 245 246 #define VD_OPTION_NLEN 128 247 248 typedef struct vd_option { 249 char vdo_name[VD_OPTION_NLEN]; 250 uint64_t vdo_value; 251 } vd_option_t; 252 253 vd_option_t vd_bdev_options[] = { 254 { "ro", VD_OPT_RDONLY }, 255 { "slice", VD_OPT_SLICE }, 256 { "excl", VD_OPT_EXCLUSIVE } 257 }; 258 259 /* Debugging macros */ 260 #ifdef DEBUG 261 262 static int vd_msglevel = 0; 263 264 #define PR0 if (vd_msglevel > 0) PRN 265 #define PR1 if (vd_msglevel > 1) PRN 266 #define PR2 if (vd_msglevel > 2) PRN 267 268 #define VD_DUMP_DRING_ELEM(elem) \ 269 PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n", \ 270 elem->hdr.dstate, \ 271 elem->payload.operation, \ 272 elem->payload.status, \ 273 elem->payload.nbytes, \ 274 elem->payload.addr, \ 275 elem->payload.ncookies); 276 277 char * 278 vd_decode_state(int state) 279 { 280 char *str; 281 282 #define CASE_STATE(_s) case _s: str = #_s; break; 283 284 switch (state) { 285 CASE_STATE(VD_STATE_INIT) 286 CASE_STATE(VD_STATE_VER) 287 CASE_STATE(VD_STATE_ATTR) 288 CASE_STATE(VD_STATE_DRING) 289 CASE_STATE(VD_STATE_RDX) 290 CASE_STATE(VD_STATE_DATA) 291 default: str = "unknown"; break; 292 } 293 294 #undef CASE_STATE 295 296 return (str); 297 } 298 299 void 300 vd_decode_tag(vio_msg_t *msg) 301 { 302 char *tstr, *sstr, *estr; 303 304 #define CASE_TYPE(_s) case _s: tstr = #_s; break; 305 306 switch (msg->tag.vio_msgtype) { 307 CASE_TYPE(VIO_TYPE_CTRL) 308 CASE_TYPE(VIO_TYPE_DATA) 309 CASE_TYPE(VIO_TYPE_ERR) 310 default: tstr = "unknown"; break; 311 } 312 313 #undef CASE_TYPE 314 315 #define CASE_SUBTYPE(_s) case _s: sstr = #_s; break; 316 317 switch (msg->tag.vio_subtype) { 318 CASE_SUBTYPE(VIO_SUBTYPE_INFO) 319 CASE_SUBTYPE(VIO_SUBTYPE_ACK) 320 CASE_SUBTYPE(VIO_SUBTYPE_NACK) 321 default: sstr = "unknown"; break; 322 } 323 324 #undef CASE_SUBTYPE 325 326 #define CASE_ENV(_s) case _s: estr = #_s; break; 327 328 switch (msg->tag.vio_subtype_env) { 329 CASE_ENV(VIO_VER_INFO) 330 CASE_ENV(VIO_ATTR_INFO) 331 CASE_ENV(VIO_DRING_REG) 332 CASE_ENV(VIO_DRING_UNREG) 333 CASE_ENV(VIO_RDX) 334 CASE_ENV(VIO_PKT_DATA) 335 CASE_ENV(VIO_DESC_DATA) 336 CASE_ENV(VIO_DRING_DATA) 337 default: estr = "unknown"; break; 338 } 339 340 #undef CASE_ENV 341 342 PR1("(%x/%x/%x) message : (%s/%s/%s)", 343 msg->tag.vio_msgtype, msg->tag.vio_subtype, 344 msg->tag.vio_subtype_env, tstr, sstr, estr); 345 } 346 347 #else /* !DEBUG */ 348 349 #define PR0(...) 350 #define PR1(...) 351 #define PR2(...) 352 353 #define VD_DUMP_DRING_ELEM(elem) 354 355 #define vd_decode_state(_s) (NULL) 356 #define vd_decode_tag(_s) (NULL) 357 358 #endif /* DEBUG */ 359 360 361 /* 362 * Soft state structure for a vds instance 363 */ 364 typedef struct vds { 365 uint_t initialized; /* driver inst initialization flags */ 366 dev_info_t *dip; /* driver inst devinfo pointer */ 367 ldi_ident_t ldi_ident; /* driver's identifier for LDI */ 368 mod_hash_t *vd_table; /* table of virtual disks served */ 369 mdeg_node_spec_t *ispecp; /* mdeg node specification */ 370 mdeg_handle_t mdeg; /* handle for MDEG operations */ 371 vd_driver_type_t *driver_types; /* extra driver types (from vds.conf) */ 372 int num_drivers; /* num of extra driver types */ 373 } vds_t; 374 375 /* 376 * Types of descriptor-processing tasks 377 */ 378 typedef enum vd_task_type { 379 VD_NONFINAL_RANGE_TASK, /* task for intermediate descriptor in range */ 380 VD_FINAL_RANGE_TASK, /* task for last in a range of descriptors */ 381 } vd_task_type_t; 382 383 /* 384 * Structure describing the task for processing a descriptor 385 */ 386 typedef struct vd_task { 387 struct vd *vd; /* vd instance task is for */ 388 vd_task_type_t type; /* type of descriptor task */ 389 int index; /* dring elem index for task */ 390 vio_msg_t *msg; /* VIO message task is for */ 391 size_t msglen; /* length of message content */ 392 vd_dring_payload_t *request; /* request task will perform */ 393 struct buf buf; /* buf(9s) for I/O request */ 394 ldc_mem_handle_t mhdl; /* task memory handle */ 395 int status; /* status of processing task */ 396 int (*completef)(struct vd_task *task); /* completion func ptr */ 397 } vd_task_t; 398 399 /* 400 * Soft state structure for a virtual disk instance 401 */ 402 typedef struct vd { 403 uint_t initialized; /* vdisk initialization flags */ 404 uint64_t operations; /* bitmask of VD_OPs exported */ 405 vio_ver_t version; /* ver negotiated with client */ 406 vds_t *vds; /* server for this vdisk */ 407 ddi_taskq_t *startq; /* queue for I/O start tasks */ 408 ddi_taskq_t *completionq; /* queue for completion tasks */ 409 ldi_handle_t ldi_handle[V_NUMPAR]; /* LDI slice handles */ 410 char device_path[MAXPATHLEN + 1]; /* vdisk device */ 411 dev_t dev[V_NUMPAR]; /* dev numbers for slices */ 412 int open_flags; /* open flags */ 413 uint_t nslices; /* number of slices we export */ 414 size_t vdisk_size; /* number of blocks in vdisk */ 415 size_t vdisk_block_size; /* size of each vdisk block */ 416 vd_disk_type_t vdisk_type; /* slice or entire disk */ 417 vd_disk_label_t vdisk_label; /* EFI or VTOC label */ 418 vd_media_t vdisk_media; /* media type of backing dev. */ 419 boolean_t is_atapi_dev; /* Is this an IDE CD-ROM dev? */ 420 ushort_t max_xfer_sz; /* max xfer size in DEV_BSIZE */ 421 size_t block_size; /* blk size of actual device */ 422 boolean_t volume; /* is vDisk backed by volume */ 423 boolean_t file; /* is vDisk backed by a file? */ 424 boolean_t scsi; /* is vDisk backed by scsi? */ 425 vnode_t *file_vnode; /* file vnode */ 426 size_t file_size; /* file size */ 427 ddi_devid_t file_devid; /* devid for disk image */ 428 int efi_reserved; /* EFI reserved slice */ 429 caddr_t flabel; /* fake label for slice type */ 430 uint_t flabel_size; /* fake label size */ 431 uint_t flabel_limit; /* limit of the fake label */ 432 struct dk_geom dk_geom; /* synthetic for slice type */ 433 struct vtoc vtoc; /* synthetic for slice type */ 434 vd_slice_t slices[VD_MAXPART]; /* logical partitions */ 435 boolean_t ownership; /* disk ownership status */ 436 ldc_status_t ldc_state; /* LDC connection state */ 437 ldc_handle_t ldc_handle; /* handle for LDC comm */ 438 size_t max_msglen; /* largest LDC message len */ 439 vd_state_t state; /* client handshake state */ 440 uint8_t xfer_mode; /* transfer mode with client */ 441 uint32_t sid; /* client's session ID */ 442 uint64_t seq_num; /* message sequence number */ 443 uint64_t dring_ident; /* identifier of dring */ 444 ldc_dring_handle_t dring_handle; /* handle for dring ops */ 445 uint32_t descriptor_size; /* num bytes in desc */ 446 uint32_t dring_len; /* number of dring elements */ 447 uint8_t dring_mtype; /* dring mem map type */ 448 caddr_t dring; /* address of dring */ 449 caddr_t vio_msgp; /* vio msg staging buffer */ 450 vd_task_t inband_task; /* task for inband descriptor */ 451 vd_task_t *dring_task; /* tasks dring elements */ 452 453 kmutex_t lock; /* protects variables below */ 454 boolean_t enabled; /* is vdisk enabled? */ 455 boolean_t reset_state; /* reset connection state? */ 456 boolean_t reset_ldc; /* reset LDC channel? */ 457 } vd_t; 458 459 /* 460 * Macros to manipulate the fake label (flabel) for single slice disks. 461 * 462 * If we fake a VTOC label then the fake label consists of only one block 463 * containing the VTOC label (struct dk_label). 464 * 465 * If we fake an EFI label then the fake label consists of a blank block 466 * followed by a GPT (efi_gpt_t) and a GPE (efi_gpe_t). 467 * 468 */ 469 #define VD_LABEL_VTOC_SIZE \ 470 P2ROUNDUP(sizeof (struct dk_label), DEV_BSIZE) 471 472 #define VD_LABEL_EFI_SIZE \ 473 P2ROUNDUP(DEV_BSIZE + sizeof (efi_gpt_t) + \ 474 sizeof (efi_gpe_t) * VD_MAXPART, DEV_BSIZE) 475 476 #define VD_LABEL_VTOC(vd) \ 477 ((struct dk_label *)((vd)->flabel)) 478 479 #define VD_LABEL_EFI_GPT(vd) \ 480 ((efi_gpt_t *)((vd)->flabel + DEV_BSIZE)) 481 #define VD_LABEL_EFI_GPE(vd) \ 482 ((efi_gpe_t *)((vd)->flabel + DEV_BSIZE + sizeof (efi_gpt_t))) 483 484 485 typedef struct vds_operation { 486 char *namep; 487 uint8_t operation; 488 int (*start)(vd_task_t *task); 489 int (*complete)(vd_task_t *task); 490 } vds_operation_t; 491 492 typedef struct vd_ioctl { 493 uint8_t operation; /* vdisk operation */ 494 const char *operation_name; /* vdisk operation name */ 495 size_t nbytes; /* size of operation buffer */ 496 int cmd; /* corresponding ioctl cmd */ 497 const char *cmd_name; /* ioctl cmd name */ 498 void *arg; /* ioctl cmd argument */ 499 /* convert input vd_buf to output ioctl_arg */ 500 int (*copyin)(void *vd_buf, size_t, void *ioctl_arg); 501 /* convert input ioctl_arg to output vd_buf */ 502 void (*copyout)(void *ioctl_arg, void *vd_buf); 503 /* write is true if the operation writes any data to the backend */ 504 boolean_t write; 505 } vd_ioctl_t; 506 507 /* Define trivial copyin/copyout conversion function flag */ 508 #define VD_IDENTITY_IN ((int (*)(void *, size_t, void *))-1) 509 #define VD_IDENTITY_OUT ((void (*)(void *, void *))-1) 510 511 512 static int vds_ldc_retries = VDS_RETRIES; 513 static int vds_ldc_delay = VDS_LDC_DELAY; 514 static int vds_dev_retries = VDS_RETRIES; 515 static int vds_dev_delay = VDS_DEV_DELAY; 516 static void *vds_state; 517 518 static uint_t vd_file_write_flags = VD_FILE_WRITE_FLAGS; 519 520 static short vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT; 521 static int vd_scsi_debug = USCSI_SILENT; 522 523 /* 524 * Tunable to define the behavior of the service domain if the vdisk server 525 * fails to reset disk exclusive access when a LDC channel is reset. When a 526 * LDC channel is reset the vdisk server will try to reset disk exclusive 527 * access by releasing any SCSI-2 reservation or resetting the disk. If these 528 * actions fail then the default behavior (vd_reset_access_failure = 0) is to 529 * print a warning message. This default behavior can be changed by setting 530 * the vd_reset_access_failure variable to A_REBOOT (= 0x1) and that will 531 * cause the service domain to reboot, or A_DUMP (= 0x5) and that will cause 532 * the service domain to panic. In both cases, the reset of the service domain 533 * should trigger a reset SCSI buses and hopefully clear any SCSI-2 reservation. 534 */ 535 static int vd_reset_access_failure = 0; 536 537 /* 538 * Tunable for backward compatibility. When this variable is set to B_TRUE, 539 * all disk volumes (ZFS, SVM, VxvM volumes) will be exported as single 540 * slice disks whether or not they have the "slice" option set. This is 541 * to provide a simple backward compatibility mechanism when upgrading 542 * the vds driver and using a domain configuration created before the 543 * "slice" option was available. 544 */ 545 static boolean_t vd_volume_force_slice = B_FALSE; 546 547 /* 548 * The label of disk images created with some earlier versions of the virtual 549 * disk software is not entirely correct and have an incorrect v_sanity field 550 * (usually 0) instead of VTOC_SANE. This creates a compatibility problem with 551 * these images because we are now validating that the disk label (and the 552 * sanity) is correct when a disk image is opened. 553 * 554 * This tunable is set to false to not validate the sanity field and ensure 555 * compatibility. If the tunable is set to true, we will do a strict checking 556 * of the sanity but this can create compatibility problems with old disk 557 * images. 558 */ 559 static boolean_t vd_file_validate_sanity = B_FALSE; 560 561 /* 562 * Enables the use of LDC_DIRECT_MAP when mapping in imported descriptor rings. 563 */ 564 static boolean_t vd_direct_mapped_drings = B_TRUE; 565 566 /* 567 * When a backend is exported as a single-slice disk then we entirely fake 568 * its disk label. So it can be exported either with a VTOC label or with 569 * an EFI label. If vd_slice_label is set to VD_DISK_LABEL_VTOC then all 570 * single-slice disks will be exported with a VTOC label; and if it is set 571 * to VD_DISK_LABEL_EFI then all single-slice disks will be exported with 572 * an EFI label. 573 * 574 * If vd_slice_label is set to VD_DISK_LABEL_UNK and the backend is a disk 575 * or volume device then it will be exported with the same type of label as 576 * defined on the device. Otherwise if the backend is a file then it will 577 * exported with the disk label type set in the vd_file_slice_label variable. 578 * 579 * Note that if the backend size is greater than 1TB then it will always be 580 * exported with an EFI label no matter what the setting is. 581 */ 582 static vd_disk_label_t vd_slice_label = VD_DISK_LABEL_UNK; 583 584 static vd_disk_label_t vd_file_slice_label = VD_DISK_LABEL_VTOC; 585 586 /* 587 * Tunable for backward compatibility. If this variable is set to B_TRUE then 588 * single-slice disks are exported as disks with only one slice instead of 589 * faking a complete disk partitioning. 590 */ 591 static boolean_t vd_slice_single_slice = B_FALSE; 592 593 /* 594 * Supported protocol version pairs, from highest (newest) to lowest (oldest) 595 * 596 * Each supported major version should appear only once, paired with (and only 597 * with) its highest supported minor version number (as the protocol requires 598 * supporting all lower minor version numbers as well) 599 */ 600 static const vio_ver_t vds_version[] = {{1, 1}}; 601 static const size_t vds_num_versions = 602 sizeof (vds_version)/sizeof (vds_version[0]); 603 604 static void vd_free_dring_task(vd_t *vdp); 605 static int vd_setup_vd(vd_t *vd); 606 static int vd_setup_single_slice_disk(vd_t *vd); 607 static int vd_setup_mediainfo(vd_t *vd); 608 static boolean_t vd_enabled(vd_t *vd); 609 static ushort_t vd_lbl2cksum(struct dk_label *label); 610 static int vd_file_validate_geometry(vd_t *vd); 611 static boolean_t vd_file_is_iso_image(vd_t *vd); 612 static void vd_set_exported_operations(vd_t *vd); 613 static void vd_reset_access(vd_t *vd); 614 static int vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg); 615 static int vds_efi_alloc_and_read(vd_t *, efi_gpt_t **, efi_gpe_t **); 616 static void vds_efi_free(vd_t *, efi_gpt_t *, efi_gpe_t *); 617 static void vds_driver_types_free(vds_t *vds); 618 static void vd_vtocgeom_to_label(struct vtoc *vtoc, struct dk_geom *geom, 619 struct dk_label *label); 620 static void vd_label_to_vtocgeom(struct dk_label *label, struct vtoc *vtoc, 621 struct dk_geom *geom); 622 static boolean_t vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom); 623 static boolean_t vd_slice_vtoc_isvalid(vd_t *vd, struct vtoc *vtoc); 624 625 extern int is_pseudo_device(dev_info_t *); 626 627 /* 628 * Function: 629 * vd_get_readable_size 630 * 631 * Description: 632 * Convert a given size in bytes to a human readable format in 633 * kilobytes, megabytes, gigabytes or terabytes. 634 * 635 * Parameters: 636 * full_size - the size to convert in bytes. 637 * size - the converted size. 638 * unit - the unit of the converted size: 'K' (kilobyte), 639 * 'M' (Megabyte), 'G' (Gigabyte), 'T' (Terabyte). 640 * 641 * Return Code: 642 * none 643 */ 644 void 645 vd_get_readable_size(size_t full_size, size_t *size, char *unit) 646 { 647 if (full_size < (1ULL << 20)) { 648 *size = full_size >> 10; 649 *unit = 'K'; /* Kilobyte */ 650 } else if (full_size < (1ULL << 30)) { 651 *size = full_size >> 20; 652 *unit = 'M'; /* Megabyte */ 653 } else if (full_size < (1ULL << 40)) { 654 *size = full_size >> 30; 655 *unit = 'G'; /* Gigabyte */ 656 } else { 657 *size = full_size >> 40; 658 *unit = 'T'; /* Terabyte */ 659 } 660 } 661 662 /* 663 * Function: 664 * vd_file_rw 665 * 666 * Description: 667 * Read or write to a disk on file. 668 * 669 * Parameters: 670 * vd - disk on which the operation is performed. 671 * slice - slice on which the operation is performed, 672 * VD_SLICE_NONE indicates that the operation 673 * is done using an absolute disk offset. 674 * operation - operation to execute: read (VD_OP_BREAD) or 675 * write (VD_OP_BWRITE). 676 * data - buffer where data are read to or written from. 677 * blk - starting block for the operation. 678 * len - number of bytes to read or write. 679 * 680 * Return Code: 681 * n >= 0 - success, n indicates the number of bytes read 682 * or written. 683 * -1 - error. 684 */ 685 static ssize_t 686 vd_file_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t blk, 687 size_t len) 688 { 689 caddr_t maddr; 690 size_t offset, maxlen, moffset, mlen, n; 691 uint_t smflags; 692 enum seg_rw srw; 693 694 ASSERT(vd->file); 695 ASSERT(len > 0); 696 697 /* 698 * If a file is exported as a slice then we don't care about the vtoc. 699 * In that case, the vtoc is a fake mainly to make newfs happy and we 700 * handle any I/O as a raw disk access so that we can have access to the 701 * entire backend. 702 */ 703 if (vd->vdisk_type == VD_DISK_TYPE_SLICE || slice == VD_SLICE_NONE) { 704 /* raw disk access */ 705 offset = blk * DEV_BSIZE; 706 if (offset >= vd->file_size) { 707 /* offset past the end of the disk */ 708 PR0("offset (0x%lx) >= fsize (0x%lx)", 709 offset, vd->file_size); 710 return (0); 711 } 712 maxlen = vd->file_size - offset; 713 } else { 714 ASSERT(slice >= 0 && slice < V_NUMPAR); 715 716 /* 717 * v1.0 vDisk clients depended on the server not verifying 718 * the label of a unformatted disk. This "feature" is 719 * maintained for backward compatibility but all versions 720 * from v1.1 onwards must do the right thing. 721 */ 722 if (vd->vdisk_label == VD_DISK_LABEL_UNK && 723 vio_ver_is_supported(vd->version, 1, 1)) { 724 (void) vd_file_validate_geometry(vd); 725 if (vd->vdisk_label == VD_DISK_LABEL_UNK) { 726 PR0("Unknown disk label, can't do I/O " 727 "from slice %d", slice); 728 return (-1); 729 } 730 } 731 732 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) { 733 ASSERT(vd->vtoc.v_sectorsz == DEV_BSIZE); 734 } else { 735 ASSERT(vd->vdisk_label == VD_DISK_LABEL_EFI); 736 ASSERT(vd->vdisk_block_size == DEV_BSIZE); 737 } 738 739 if (blk >= vd->slices[slice].nblocks) { 740 /* address past the end of the slice */ 741 PR0("req_addr (0x%lx) >= psize (0x%lx)", 742 blk, vd->slices[slice].nblocks); 743 return (0); 744 } 745 746 offset = (vd->slices[slice].start + blk) * DEV_BSIZE; 747 maxlen = (vd->slices[slice].nblocks - blk) * DEV_BSIZE; 748 } 749 750 /* 751 * If the requested size is greater than the size 752 * of the partition, truncate the read/write. 753 */ 754 if (len > maxlen) { 755 PR0("I/O size truncated to %lu bytes from %lu bytes", 756 maxlen, len); 757 len = maxlen; 758 } 759 760 /* 761 * We have to ensure that we are reading/writing into the mmap 762 * range. If we have a partial disk image (e.g. an image of 763 * s0 instead s2) the system can try to access slices that 764 * are not included into the disk image. 765 */ 766 if ((offset + len) > vd->file_size) { 767 PR0("offset + nbytes (0x%lx + 0x%lx) > " 768 "file_size (0x%lx)", offset, len, vd->file_size); 769 return (-1); 770 } 771 772 srw = (operation == VD_OP_BREAD)? S_READ : S_WRITE; 773 smflags = (operation == VD_OP_BREAD)? 0 : 774 (SM_WRITE | vd_file_write_flags); 775 n = len; 776 777 do { 778 /* 779 * segmap_getmapflt() returns a MAXBSIZE chunk which is 780 * MAXBSIZE aligned. 781 */ 782 moffset = offset & MAXBOFFSET; 783 mlen = MIN(MAXBSIZE - moffset, n); 784 maddr = segmap_getmapflt(segkmap, vd->file_vnode, offset, 785 mlen, 1, srw); 786 /* 787 * Fault in the pages so we can check for error and ensure 788 * that we can safely used the mapped address. 789 */ 790 if (segmap_fault(kas.a_hat, segkmap, maddr, mlen, 791 F_SOFTLOCK, srw) != 0) { 792 (void) segmap_release(segkmap, maddr, 0); 793 return (-1); 794 } 795 796 if (operation == VD_OP_BREAD) 797 bcopy(maddr + moffset, data, mlen); 798 else 799 bcopy(data, maddr + moffset, mlen); 800 801 if (segmap_fault(kas.a_hat, segkmap, maddr, mlen, 802 F_SOFTUNLOCK, srw) != 0) { 803 (void) segmap_release(segkmap, maddr, 0); 804 return (-1); 805 } 806 if (segmap_release(segkmap, maddr, smflags) != 0) 807 return (-1); 808 n -= mlen; 809 offset += mlen; 810 data += mlen; 811 812 } while (n > 0); 813 814 return (len); 815 } 816 817 /* 818 * Function: 819 * vd_build_default_label 820 * 821 * Description: 822 * Return a default label for a given disk size. This is used when the disk 823 * does not have a valid VTOC so that the user can get a valid default 824 * configuration. The default label has all slice sizes set to 0 (except 825 * slice 2 which is the entire disk) to force the user to write a valid 826 * label onto the disk image. 827 * 828 * Parameters: 829 * disk_size - the disk size in bytes 830 * label - the returned default label. 831 * 832 * Return Code: 833 * none. 834 */ 835 static void 836 vd_build_default_label(size_t disk_size, struct dk_label *label) 837 { 838 size_t size; 839 char unit; 840 841 bzero(label, sizeof (struct dk_label)); 842 843 /* 844 * We must have a resonable number of cylinders and sectors so 845 * that newfs can run using default values. 846 * 847 * if (disk_size < 2MB) 848 * phys_cylinders = disk_size / 100K 849 * else if (disk_size >= 18.75GB) 850 * phys_cylinders = 65535 (maximum number of cylinders) 851 * else 852 * phys_cylinders = disk_size / 300K 853 * 854 * phys_cylinders = (phys_cylinders == 0) ? 1 : phys_cylinders 855 * alt_cylinders = (phys_cylinders > 2) ? 2 : 0; 856 * data_cylinders = phys_cylinders - alt_cylinders 857 * 858 * sectors = disk_size / (phys_cylinders * blk_size) 859 * 860 * The disk size test is an attempt to not have too few cylinders 861 * for a small disk image, or so many on a big disk image that you 862 * waste space for backup superblocks or cylinder group structures. 863 */ 864 if (disk_size < (2 * 1024 * 1024)) 865 label->dkl_pcyl = disk_size / (100 * 1024); 866 else if (disk_size >= (UINT16_MAX * 300 * 1024ULL)) 867 label->dkl_pcyl = UINT16_MAX; 868 else 869 label->dkl_pcyl = disk_size / (300 * 1024); 870 871 if (label->dkl_pcyl == 0) 872 label->dkl_pcyl = 1; 873 874 label->dkl_acyl = 0; 875 876 if (label->dkl_pcyl > 2) 877 label->dkl_acyl = 2; 878 879 label->dkl_nsect = disk_size / (DEV_BSIZE * label->dkl_pcyl); 880 label->dkl_ncyl = label->dkl_pcyl - label->dkl_acyl; 881 label->dkl_nhead = 1; 882 label->dkl_write_reinstruct = 0; 883 label->dkl_read_reinstruct = 0; 884 label->dkl_rpm = 7200; 885 label->dkl_apc = 0; 886 label->dkl_intrlv = 0; 887 888 PR0("requested disk size: %ld bytes\n", disk_size); 889 PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label->dkl_pcyl, 890 label->dkl_nhead, label->dkl_nsect); 891 PR0("provided disk size: %ld bytes\n", (uint64_t) 892 (label->dkl_pcyl * label->dkl_nhead * 893 label->dkl_nsect * DEV_BSIZE)); 894 895 vd_get_readable_size(disk_size, &size, &unit); 896 897 /* 898 * We must have a correct label name otherwise format(1m) will 899 * not recognized the disk as labeled. 900 */ 901 (void) snprintf(label->dkl_asciilabel, LEN_DKL_ASCII, 902 "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d", 903 size, unit, 904 label->dkl_ncyl, label->dkl_acyl, label->dkl_nhead, 905 label->dkl_nsect); 906 907 /* default VTOC */ 908 label->dkl_vtoc.v_version = V_VERSION; 909 label->dkl_vtoc.v_nparts = V_NUMPAR; 910 label->dkl_vtoc.v_sanity = VTOC_SANE; 911 label->dkl_vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP; 912 label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_cylno = 0; 913 label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_nblk = label->dkl_ncyl * 914 label->dkl_nhead * label->dkl_nsect; 915 label->dkl_magic = DKL_MAGIC; 916 label->dkl_cksum = vd_lbl2cksum(label); 917 } 918 919 /* 920 * Function: 921 * vd_file_set_vtoc 922 * 923 * Description: 924 * Set the vtoc of a disk image by writing the label and backup 925 * labels into the disk image backend. 926 * 927 * Parameters: 928 * vd - disk on which the operation is performed. 929 * label - the data to be written. 930 * 931 * Return Code: 932 * 0 - success. 933 * n > 0 - error, n indicates the errno code. 934 */ 935 static int 936 vd_file_set_vtoc(vd_t *vd, struct dk_label *label) 937 { 938 int blk, sec, cyl, head, cnt; 939 940 ASSERT(vd->file); 941 942 if (VD_FILE_LABEL_WRITE(vd, label) < 0) { 943 PR0("fail to write disk label"); 944 return (EIO); 945 } 946 947 /* 948 * Backup labels are on the last alternate cylinder's 949 * first five odd sectors. 950 */ 951 if (label->dkl_acyl == 0) { 952 PR0("no alternate cylinder, can not store backup labels"); 953 return (0); 954 } 955 956 cyl = label->dkl_ncyl + label->dkl_acyl - 1; 957 head = label->dkl_nhead - 1; 958 959 blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) + 960 (head * label->dkl_nsect); 961 962 /* 963 * Write the backup labels. Make sure we don't try to write past 964 * the last cylinder. 965 */ 966 sec = 1; 967 968 for (cnt = 0; cnt < VD_FILE_NUM_BACKUP; cnt++) { 969 970 if (sec >= label->dkl_nsect) { 971 PR0("not enough sector to store all backup labels"); 972 return (0); 973 } 974 975 if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)label, 976 blk + sec, sizeof (struct dk_label)) < 0) { 977 PR0("error writing backup label at block %d\n", 978 blk + sec); 979 return (EIO); 980 } 981 982 PR1("wrote backup label at block %d\n", blk + sec); 983 984 sec += 2; 985 } 986 987 return (0); 988 } 989 990 /* 991 * Function: 992 * vd_file_get_devid_block 993 * 994 * Description: 995 * Return the block number where the device id is stored. 996 * 997 * Parameters: 998 * vd - disk on which the operation is performed. 999 * blkp - pointer to the block number 1000 * 1001 * Return Code: 1002 * 0 - success 1003 * ENOSPC - disk has no space to store a device id 1004 */ 1005 static int 1006 vd_file_get_devid_block(vd_t *vd, size_t *blkp) 1007 { 1008 diskaddr_t spc, head, cyl; 1009 1010 ASSERT(vd->file); 1011 1012 if (vd->vdisk_label == VD_DISK_LABEL_UNK) { 1013 /* 1014 * If no label is defined we don't know where to find 1015 * a device id. 1016 */ 1017 return (ENOSPC); 1018 } 1019 1020 if (vd->vdisk_label == VD_DISK_LABEL_EFI) { 1021 /* 1022 * For an EFI disk, the devid is at the beginning of 1023 * the reserved slice 1024 */ 1025 if (vd->efi_reserved == -1) { 1026 PR0("EFI disk has no reserved slice"); 1027 return (ENOSPC); 1028 } 1029 1030 *blkp = vd->slices[vd->efi_reserved].start; 1031 return (0); 1032 } 1033 1034 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 1035 1036 /* this geometry doesn't allow us to have a devid */ 1037 if (vd->dk_geom.dkg_acyl < 2) { 1038 PR0("not enough alternate cylinder available for devid " 1039 "(acyl=%u)", vd->dk_geom.dkg_acyl); 1040 return (ENOSPC); 1041 } 1042 1043 /* the devid is in on the track next to the last cylinder */ 1044 cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2; 1045 spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 1046 head = vd->dk_geom.dkg_nhead - 1; 1047 1048 *blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) + 1049 (head * vd->dk_geom.dkg_nsect) + 1; 1050 1051 return (0); 1052 } 1053 1054 /* 1055 * Return the checksum of a disk block containing an on-disk devid. 1056 */ 1057 static uint_t 1058 vd_dkdevid2cksum(struct dk_devid *dkdevid) 1059 { 1060 uint_t chksum, *ip; 1061 int i; 1062 1063 chksum = 0; 1064 ip = (uint_t *)dkdevid; 1065 for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++) 1066 chksum ^= ip[i]; 1067 1068 return (chksum); 1069 } 1070 1071 /* 1072 * Function: 1073 * vd_file_read_devid 1074 * 1075 * Description: 1076 * Read the device id stored on a disk image. 1077 * 1078 * Parameters: 1079 * vd - disk on which the operation is performed. 1080 * devid - the return address of the device ID. 1081 * 1082 * Return Code: 1083 * 0 - success 1084 * EIO - I/O error while trying to access the disk image 1085 * EINVAL - no valid device id was found 1086 * ENOSPC - disk has no space to store a device id 1087 */ 1088 static int 1089 vd_file_read_devid(vd_t *vd, ddi_devid_t *devid) 1090 { 1091 struct dk_devid *dkdevid; 1092 size_t blk; 1093 uint_t chksum; 1094 int status, sz; 1095 1096 if ((status = vd_file_get_devid_block(vd, &blk)) != 0) 1097 return (status); 1098 1099 dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP); 1100 1101 /* get the devid */ 1102 if ((vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk, 1103 DEV_BSIZE)) < 0) { 1104 PR0("error reading devid block at %lu", blk); 1105 status = EIO; 1106 goto done; 1107 } 1108 1109 /* validate the revision */ 1110 if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) || 1111 (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) { 1112 PR0("invalid devid found at block %lu (bad revision)", blk); 1113 status = EINVAL; 1114 goto done; 1115 } 1116 1117 /* compute checksum */ 1118 chksum = vd_dkdevid2cksum(dkdevid); 1119 1120 /* compare the checksums */ 1121 if (DKD_GETCHKSUM(dkdevid) != chksum) { 1122 PR0("invalid devid found at block %lu (bad checksum)", blk); 1123 status = EINVAL; 1124 goto done; 1125 } 1126 1127 /* validate the device id */ 1128 if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) { 1129 PR0("invalid devid found at block %lu", blk); 1130 status = EINVAL; 1131 goto done; 1132 } 1133 1134 PR1("devid read at block %lu", blk); 1135 1136 sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid); 1137 *devid = kmem_alloc(sz, KM_SLEEP); 1138 bcopy(&dkdevid->dkd_devid, *devid, sz); 1139 1140 done: 1141 kmem_free(dkdevid, DEV_BSIZE); 1142 return (status); 1143 1144 } 1145 1146 /* 1147 * Function: 1148 * vd_file_write_devid 1149 * 1150 * Description: 1151 * Write a device id into disk image. 1152 * 1153 * Parameters: 1154 * vd - disk on which the operation is performed. 1155 * devid - the device ID to store. 1156 * 1157 * Return Code: 1158 * 0 - success 1159 * EIO - I/O error while trying to access the disk image 1160 * ENOSPC - disk has no space to store a device id 1161 */ 1162 static int 1163 vd_file_write_devid(vd_t *vd, ddi_devid_t devid) 1164 { 1165 struct dk_devid *dkdevid; 1166 uint_t chksum; 1167 size_t blk; 1168 int status; 1169 1170 if (devid == NULL) { 1171 /* nothing to write */ 1172 return (0); 1173 } 1174 1175 if ((status = vd_file_get_devid_block(vd, &blk)) != 0) 1176 return (status); 1177 1178 dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP); 1179 1180 /* set revision */ 1181 dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB; 1182 dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB; 1183 1184 /* copy devid */ 1185 bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid)); 1186 1187 /* compute checksum */ 1188 chksum = vd_dkdevid2cksum(dkdevid); 1189 1190 /* set checksum */ 1191 DKD_FORMCHKSUM(chksum, dkdevid); 1192 1193 /* store the devid */ 1194 if ((status = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, 1195 (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) { 1196 PR0("Error writing devid block at %lu", blk); 1197 status = EIO; 1198 } else { 1199 PR1("devid written at block %lu", blk); 1200 status = 0; 1201 } 1202 1203 kmem_free(dkdevid, DEV_BSIZE); 1204 return (status); 1205 } 1206 1207 /* 1208 * Function: 1209 * vd_do_scsi_rdwr 1210 * 1211 * Description: 1212 * Read or write to a SCSI disk using an absolute disk offset. 1213 * 1214 * Parameters: 1215 * vd - disk on which the operation is performed. 1216 * operation - operation to execute: read (VD_OP_BREAD) or 1217 * write (VD_OP_BWRITE). 1218 * data - buffer where data are read to or written from. 1219 * blk - starting block for the operation. 1220 * len - number of bytes to read or write. 1221 * 1222 * Return Code: 1223 * 0 - success 1224 * n != 0 - error. 1225 */ 1226 static int 1227 vd_do_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len) 1228 { 1229 struct uscsi_cmd ucmd; 1230 union scsi_cdb cdb; 1231 int nsectors, nblk; 1232 int max_sectors; 1233 int status, rval; 1234 1235 ASSERT(!vd->file); 1236 ASSERT(vd->vdisk_block_size > 0); 1237 1238 max_sectors = vd->max_xfer_sz; 1239 nblk = (len / vd->vdisk_block_size); 1240 1241 if (len % vd->vdisk_block_size != 0) 1242 return (EINVAL); 1243 1244 /* 1245 * Build and execute the uscsi ioctl. We build a group0, group1 1246 * or group4 command as necessary, since some targets 1247 * do not support group1 commands. 1248 */ 1249 while (nblk) { 1250 1251 bzero(&ucmd, sizeof (ucmd)); 1252 bzero(&cdb, sizeof (cdb)); 1253 1254 nsectors = (max_sectors < nblk) ? max_sectors : nblk; 1255 1256 /* 1257 * Some of the optical drives on sun4v machines are ATAPI 1258 * devices which use Group 1 Read/Write commands so we need 1259 * to explicitly check a flag which is set when a domain 1260 * is bound. 1261 */ 1262 if (blk < (2 << 20) && nsectors <= 0xff && !vd->is_atapi_dev) { 1263 FORMG0ADDR(&cdb, blk); 1264 FORMG0COUNT(&cdb, nsectors); 1265 ucmd.uscsi_cdblen = CDB_GROUP0; 1266 } else if (blk > 0xffffffff) { 1267 FORMG4LONGADDR(&cdb, blk); 1268 FORMG4COUNT(&cdb, nsectors); 1269 ucmd.uscsi_cdblen = CDB_GROUP4; 1270 cdb.scc_cmd |= SCMD_GROUP4; 1271 } else { 1272 FORMG1ADDR(&cdb, blk); 1273 FORMG1COUNT(&cdb, nsectors); 1274 ucmd.uscsi_cdblen = CDB_GROUP1; 1275 cdb.scc_cmd |= SCMD_GROUP1; 1276 } 1277 ucmd.uscsi_cdb = (caddr_t)&cdb; 1278 ucmd.uscsi_bufaddr = data; 1279 ucmd.uscsi_buflen = nsectors * vd->block_size; 1280 ucmd.uscsi_timeout = vd_scsi_rdwr_timeout; 1281 /* 1282 * Set flags so that the command is isolated from normal 1283 * commands and no error message is printed. 1284 */ 1285 ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT; 1286 1287 if (operation == VD_OP_BREAD) { 1288 cdb.scc_cmd |= SCMD_READ; 1289 ucmd.uscsi_flags |= USCSI_READ; 1290 } else { 1291 cdb.scc_cmd |= SCMD_WRITE; 1292 } 1293 1294 status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE], 1295 USCSICMD, (intptr_t)&ucmd, (vd->open_flags | FKIOCTL), 1296 kcred, &rval); 1297 1298 if (status == 0) 1299 status = ucmd.uscsi_status; 1300 1301 if (status != 0) 1302 break; 1303 1304 /* 1305 * Check if partial DMA breakup is required. If so, reduce 1306 * the request size by half and retry the last request. 1307 */ 1308 if (ucmd.uscsi_resid == ucmd.uscsi_buflen) { 1309 max_sectors >>= 1; 1310 if (max_sectors <= 0) { 1311 status = EIO; 1312 break; 1313 } 1314 continue; 1315 } 1316 1317 if (ucmd.uscsi_resid != 0) { 1318 status = EIO; 1319 break; 1320 } 1321 1322 blk += nsectors; 1323 nblk -= nsectors; 1324 data += nsectors * vd->vdisk_block_size; /* SECSIZE */ 1325 } 1326 1327 return (status); 1328 } 1329 1330 /* 1331 * Function: 1332 * vd_scsi_rdwr 1333 * 1334 * Description: 1335 * Wrapper function to read or write to a SCSI disk using an absolute 1336 * disk offset. It checks the blocksize of the underlying device and, 1337 * if necessary, adjusts the buffers accordingly before calling 1338 * vd_do_scsi_rdwr() to do the actual read or write. 1339 * 1340 * Parameters: 1341 * vd - disk on which the operation is performed. 1342 * operation - operation to execute: read (VD_OP_BREAD) or 1343 * write (VD_OP_BWRITE). 1344 * data - buffer where data are read to or written from. 1345 * blk - starting block for the operation. 1346 * len - number of bytes to read or write. 1347 * 1348 * Return Code: 1349 * 0 - success 1350 * n != 0 - error. 1351 */ 1352 static int 1353 vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t vblk, size_t vlen) 1354 { 1355 int rv; 1356 1357 size_t pblk; /* physical device block number of data on device */ 1358 size_t delta; /* relative offset between pblk and vblk */ 1359 size_t pnblk; /* number of physical blocks to be read from device */ 1360 size_t plen; /* length of data to be read from physical device */ 1361 char *buf; /* buffer area to fit physical device's block size */ 1362 1363 if (vd->block_size == 0) { 1364 /* 1365 * The block size was not available during the attach, 1366 * try to update it now. 1367 */ 1368 if (vd_setup_mediainfo(vd) != 0) 1369 return (EIO); 1370 } 1371 1372 /* 1373 * If the vdisk block size and the block size of the underlying device 1374 * match we can skip straight to vd_do_scsi_rdwr(), otherwise we need 1375 * to create a buffer large enough to handle the device's block size 1376 * and adjust the block to be read from and the amount of data to 1377 * read to correspond with the device's block size. 1378 */ 1379 if (vd->vdisk_block_size == vd->block_size) 1380 return (vd_do_scsi_rdwr(vd, operation, data, vblk, vlen)); 1381 1382 if (vd->vdisk_block_size > vd->block_size) 1383 return (EINVAL); 1384 1385 /* 1386 * Writing of physical block sizes larger than the virtual block size 1387 * is not supported. This would be added if/when support for guests 1388 * writing to DVDs is implemented. 1389 */ 1390 if (operation == VD_OP_BWRITE) 1391 return (ENOTSUP); 1392 1393 /* BEGIN CSTYLED */ 1394 /* 1395 * Below is a diagram showing the relationship between the physical 1396 * and virtual blocks. If the virtual blocks marked by 'X' below are 1397 * requested, then the physical blocks denoted by 'Y' are read. 1398 * 1399 * vblk 1400 * | vlen 1401 * |<--------------->| 1402 * v v 1403 * --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+- virtual disk: 1404 * | | | |XX|XX|XX|XX|XX|XX| | | | | | } block size is 1405 * --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+- vd->vdisk_block_size 1406 * : : : : 1407 * >:==:< delta : : 1408 * : : : : 1409 * --+-----+-----+-----+-----+-----+-----+-----+-- physical disk: 1410 * | |YY:YY|YYYYY|YYYYY|YY:YY| | | } block size is 1411 * --+-----+-----+-----+-----+-----+-----+-----+-- vd->block_size 1412 * ^ ^ 1413 * |<--------------------->| 1414 * | plen 1415 * pblk 1416 */ 1417 /* END CSTYLED */ 1418 pblk = (vblk * vd->vdisk_block_size) / vd->block_size; 1419 delta = (vblk * vd->vdisk_block_size) - (pblk * vd->block_size); 1420 pnblk = ((delta + vlen - 1) / vd->block_size) + 1; 1421 plen = pnblk * vd->block_size; 1422 1423 PR2("vblk %lx:pblk %lx: vlen %ld:plen %ld", vblk, pblk, vlen, plen); 1424 1425 buf = kmem_zalloc(sizeof (caddr_t) * plen, KM_SLEEP); 1426 rv = vd_do_scsi_rdwr(vd, operation, (caddr_t)buf, pblk, plen); 1427 bcopy(buf + delta, data, vlen); 1428 1429 kmem_free(buf, sizeof (caddr_t) * plen); 1430 1431 return (rv); 1432 } 1433 1434 /* 1435 * Function: 1436 * vd_slice_flabel_read 1437 * 1438 * Description: 1439 * This function simulates a read operation from the fake label of 1440 * a single-slice disk. 1441 * 1442 * Parameters: 1443 * vd - single-slice disk to read from 1444 * data - buffer where data should be read to 1445 * offset - offset in byte where the read should start 1446 * length - number of bytes to read 1447 * 1448 * Return Code: 1449 * n >= 0 - success, n indicates the number of bytes read 1450 * -1 - error 1451 */ 1452 static ssize_t 1453 vd_slice_flabel_read(vd_t *vd, caddr_t data, size_t offset, size_t length) 1454 { 1455 size_t n = 0; 1456 uint_t limit = vd->flabel_limit * DEV_BSIZE; 1457 1458 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 1459 ASSERT(vd->flabel != NULL); 1460 1461 /* if offset is past the fake label limit there's nothing to read */ 1462 if (offset >= limit) 1463 return (0); 1464 1465 /* data with offset 0 to flabel_size are read from flabel */ 1466 if (offset < vd->flabel_size) { 1467 1468 if (offset + length <= vd->flabel_size) { 1469 bcopy(vd->flabel + offset, data, length); 1470 return (length); 1471 } 1472 1473 n = vd->flabel_size - offset; 1474 bcopy(vd->flabel + offset, data, n); 1475 data += n; 1476 } 1477 1478 /* data with offset from flabel_size to flabel_limit are all zeros */ 1479 if (offset + length <= limit) { 1480 bzero(data, length - n); 1481 return (length); 1482 } 1483 1484 bzero(data, limit - offset - n); 1485 return (limit - offset); 1486 } 1487 1488 /* 1489 * Function: 1490 * vd_slice_flabel_write 1491 * 1492 * Description: 1493 * This function simulates a write operation to the fake label of 1494 * a single-slice disk. Write operations are actually faked and return 1495 * success although the label is never changed. This is mostly to 1496 * simulate a successful label update. 1497 * 1498 * Parameters: 1499 * vd - single-slice disk to write to 1500 * data - buffer where data should be written from 1501 * offset - offset in byte where the write should start 1502 * length - number of bytes to written 1503 * 1504 * Return Code: 1505 * n >= 0 - success, n indicates the number of bytes written 1506 * -1 - error 1507 */ 1508 static ssize_t 1509 vd_slice_flabel_write(vd_t *vd, caddr_t data, size_t offset, size_t length) 1510 { 1511 uint_t limit = vd->flabel_limit * DEV_BSIZE; 1512 struct dk_label *label; 1513 struct dk_geom geom; 1514 struct vtoc vtoc; 1515 1516 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 1517 ASSERT(vd->flabel != NULL); 1518 1519 if (offset >= limit) 1520 return (0); 1521 1522 /* 1523 * If this is a request to overwrite the VTOC disk label, check that 1524 * the new label is similar to the previous one and return that the 1525 * write was successful, but note that nothing is actually overwritten. 1526 */ 1527 if (vd->vdisk_label == VD_DISK_LABEL_VTOC && 1528 offset == 0 && length == DEV_BSIZE) { 1529 label = (struct dk_label *)data; 1530 1531 /* check that this is a valid label */ 1532 if (label->dkl_magic != DKL_MAGIC || 1533 label->dkl_cksum != vd_lbl2cksum(label)) 1534 return (-1); 1535 1536 /* check the vtoc and geometry */ 1537 vd_label_to_vtocgeom(label, &vtoc, &geom); 1538 if (vd_slice_geom_isvalid(vd, &geom) && 1539 vd_slice_vtoc_isvalid(vd, &vtoc)) 1540 return (length); 1541 } 1542 1543 /* fail any other write */ 1544 return (-1); 1545 } 1546 1547 /* 1548 * Function: 1549 * vd_slice_fake_rdwr 1550 * 1551 * Description: 1552 * This function simulates a raw read or write operation to a single-slice 1553 * disk. It only handles the faked part of the operation i.e. I/Os to 1554 * blocks which have no mapping with the vdisk backend (I/Os to the 1555 * beginning and to the end of the vdisk). 1556 * 1557 * The function returns 0 is the operation is completed and it has been 1558 * entirely handled as a fake read or write. In that case, lengthp points 1559 * to the number of bytes not read or written. Values returned by datap 1560 * and blkp are undefined. 1561 * 1562 * If the fake operation has succeeded but the read or write is not 1563 * complete (i.e. the read/write operation extends beyond the blocks 1564 * we fake) then the function returns EAGAIN and datap, blkp and lengthp 1565 * pointers points to the parameters for completing the operation. 1566 * 1567 * In case of an error, for example if the slice is empty or parameters 1568 * are invalid, then the function returns a non-zero value different 1569 * from EAGAIN. In that case, the returned values of datap, blkp and 1570 * lengthp are undefined. 1571 * 1572 * Parameters: 1573 * vd - single-slice disk on which the operation is performed 1574 * slice - slice on which the operation is performed, 1575 * VD_SLICE_NONE indicates that the operation 1576 * is done using an absolute disk offset. 1577 * operation - operation to execute: read (VD_OP_BREAD) or 1578 * write (VD_OP_BWRITE). 1579 * datap - pointer to the buffer where data are read to 1580 * or written from. Return the pointer where remaining 1581 * data have to be read to or written from. 1582 * blkp - pointer to the starting block for the operation. 1583 * Return the starting block relative to the vdisk 1584 * backend for the remaining operation. 1585 * lengthp - pointer to the number of bytes to read or write. 1586 * This should be a multiple of DEV_BSIZE. Return the 1587 * remaining number of bytes to read or write. 1588 * 1589 * Return Code: 1590 * 0 - read/write operation is completed 1591 * EAGAIN - read/write operation is not completed 1592 * other values - error 1593 */ 1594 static int 1595 vd_slice_fake_rdwr(vd_t *vd, int slice, int operation, caddr_t *datap, 1596 size_t *blkp, size_t *lengthp) 1597 { 1598 struct dk_label *label; 1599 caddr_t data; 1600 size_t blk, length, csize; 1601 size_t ablk, asize, aoff, alen; 1602 ssize_t n; 1603 int sec, status; 1604 1605 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 1606 ASSERT(slice != 0); 1607 1608 data = *datap; 1609 blk = *blkp; 1610 length = *lengthp; 1611 1612 /* 1613 * If this is not a raw I/O or an I/O from a full disk slice then 1614 * this is an I/O to/from an empty slice. 1615 */ 1616 if (slice != VD_SLICE_NONE && 1617 (slice != VD_ENTIRE_DISK_SLICE || 1618 vd->vdisk_label != VD_DISK_LABEL_VTOC) && 1619 (slice != VD_EFI_WD_SLICE || 1620 vd->vdisk_label != VD_DISK_LABEL_EFI)) { 1621 return (EIO); 1622 } 1623 1624 if (length % DEV_BSIZE != 0) 1625 return (EINVAL); 1626 1627 /* handle any I/O with the fake label */ 1628 if (operation == VD_OP_BWRITE) 1629 n = vd_slice_flabel_write(vd, data, blk * DEV_BSIZE, length); 1630 else 1631 n = vd_slice_flabel_read(vd, data, blk * DEV_BSIZE, length); 1632 1633 if (n == -1) 1634 return (EINVAL); 1635 1636 ASSERT(n % DEV_BSIZE == 0); 1637 1638 /* adjust I/O arguments */ 1639 data += n; 1640 blk += n / DEV_BSIZE; 1641 length -= n; 1642 1643 /* check if there's something else to process */ 1644 if (length == 0) { 1645 status = 0; 1646 goto done; 1647 } 1648 1649 if (vd->vdisk_label == VD_DISK_LABEL_VTOC && 1650 slice == VD_ENTIRE_DISK_SLICE) { 1651 status = EAGAIN; 1652 goto done; 1653 } 1654 1655 if (vd->vdisk_label == VD_DISK_LABEL_EFI) { 1656 asize = EFI_MIN_RESV_SIZE + 33; 1657 ablk = vd->vdisk_size - asize; 1658 } else { 1659 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 1660 ASSERT(vd->dk_geom.dkg_apc == 0); 1661 1662 csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 1663 ablk = vd->dk_geom.dkg_ncyl * csize; 1664 asize = vd->dk_geom.dkg_acyl * csize; 1665 } 1666 1667 alen = length / DEV_BSIZE; 1668 aoff = blk; 1669 1670 /* if we have reached the last block then the I/O is completed */ 1671 if (aoff == ablk + asize) { 1672 status = 0; 1673 goto done; 1674 } 1675 1676 /* if we are past the last block then return an error */ 1677 if (aoff > ablk + asize) 1678 return (EIO); 1679 1680 /* check if there is any I/O to end of the disk */ 1681 if (aoff + alen < ablk) { 1682 status = EAGAIN; 1683 goto done; 1684 } 1685 1686 /* we don't allow any write to the end of the disk */ 1687 if (operation == VD_OP_BWRITE) 1688 return (EIO); 1689 1690 if (aoff < ablk) { 1691 alen -= (ablk - aoff); 1692 aoff = ablk; 1693 } 1694 1695 if (aoff + alen > ablk + asize) { 1696 alen = ablk + asize - aoff; 1697 } 1698 1699 alen *= DEV_BSIZE; 1700 1701 if (operation == VD_OP_BREAD) { 1702 bzero(data + (aoff - blk) * DEV_BSIZE, alen); 1703 1704 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) { 1705 /* check if we read backup labels */ 1706 label = VD_LABEL_VTOC(vd); 1707 ablk += (label->dkl_acyl - 1) * csize + 1708 (label->dkl_nhead - 1) * label->dkl_nsect; 1709 1710 for (sec = 1; (sec < 5 * 2 + 1); sec += 2) { 1711 1712 if (ablk + sec >= blk && 1713 ablk + sec < blk + (length / DEV_BSIZE)) { 1714 bcopy(label, data + 1715 (ablk + sec - blk) * DEV_BSIZE, 1716 sizeof (struct dk_label)); 1717 } 1718 } 1719 } 1720 } 1721 1722 length -= alen; 1723 1724 status = (length == 0)? 0: EAGAIN; 1725 1726 done: 1727 ASSERT(length == 0 || blk >= vd->flabel_limit); 1728 1729 /* 1730 * Return the parameters for the remaining I/O. The starting block is 1731 * adjusted so that it is relative to the vdisk backend. 1732 */ 1733 *datap = data; 1734 *blkp = blk - vd->flabel_limit; 1735 *lengthp = length; 1736 1737 return (status); 1738 } 1739 1740 /* 1741 * Return Values 1742 * EINPROGRESS - operation was successfully started 1743 * EIO - encountered LDC (aka. task error) 1744 * 0 - operation completed successfully 1745 * 1746 * Side Effect 1747 * sets request->status = <disk operation status> 1748 */ 1749 static int 1750 vd_start_bio(vd_task_t *task) 1751 { 1752 int rv, status = 0; 1753 vd_t *vd = task->vd; 1754 vd_dring_payload_t *request = task->request; 1755 struct buf *buf = &task->buf; 1756 uint8_t mtype; 1757 int slice; 1758 char *bufaddr = 0; 1759 size_t buflen; 1760 size_t offset, length, nbytes; 1761 1762 ASSERT(vd != NULL); 1763 ASSERT(request != NULL); 1764 1765 slice = request->slice; 1766 1767 ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices); 1768 ASSERT((request->operation == VD_OP_BREAD) || 1769 (request->operation == VD_OP_BWRITE)); 1770 1771 if (request->nbytes == 0) { 1772 /* no service for trivial requests */ 1773 request->status = EINVAL; 1774 return (0); 1775 } 1776 1777 PR1("%s %lu bytes at block %lu", 1778 (request->operation == VD_OP_BREAD) ? "Read" : "Write", 1779 request->nbytes, request->addr); 1780 1781 /* 1782 * We have to check the open flags because the functions processing 1783 * the read/write request will not do it. 1784 */ 1785 if (request->operation == VD_OP_BWRITE && !(vd->open_flags & FWRITE)) { 1786 PR0("write fails because backend is opened read-only"); 1787 request->nbytes = 0; 1788 request->status = EROFS; 1789 return (0); 1790 } 1791 1792 mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP; 1793 1794 /* Map memory exported by client */ 1795 status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies, 1796 mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R, 1797 &bufaddr, NULL); 1798 if (status != 0) { 1799 PR0("ldc_mem_map() returned err %d ", status); 1800 return (EIO); 1801 } 1802 1803 /* 1804 * The buffer size has to be 8-byte aligned, so the client should have 1805 * sent a buffer which size is roundup to the next 8-byte aligned value. 1806 */ 1807 buflen = P2ROUNDUP(request->nbytes, 8); 1808 1809 status = ldc_mem_acquire(task->mhdl, 0, buflen); 1810 if (status != 0) { 1811 (void) ldc_mem_unmap(task->mhdl); 1812 PR0("ldc_mem_acquire() returned err %d ", status); 1813 return (EIO); 1814 } 1815 1816 offset = request->addr; 1817 nbytes = request->nbytes; 1818 length = nbytes; 1819 1820 /* default number of byte returned by the I/O */ 1821 request->nbytes = 0; 1822 1823 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 1824 1825 if (slice != 0) { 1826 /* handle any fake I/O */ 1827 rv = vd_slice_fake_rdwr(vd, slice, request->operation, 1828 &bufaddr, &offset, &length); 1829 1830 /* record the number of bytes from the fake I/O */ 1831 request->nbytes = nbytes - length; 1832 1833 if (rv == 0) { 1834 request->status = 0; 1835 goto io_done; 1836 } 1837 1838 if (rv != EAGAIN) { 1839 request->nbytes = 0; 1840 request->status = EIO; 1841 goto io_done; 1842 } 1843 1844 /* 1845 * If we return with EAGAIN then this means that there 1846 * are still data to read or write. 1847 */ 1848 ASSERT(length != 0); 1849 1850 /* 1851 * We need to continue the I/O from the slice backend to 1852 * complete the request. The variables bufaddr, offset 1853 * and length have been adjusted to have the right 1854 * information to do the remaining I/O from the backend. 1855 * The backend is entirely mapped to slice 0 so we just 1856 * have to complete the I/O from that slice. 1857 */ 1858 slice = 0; 1859 } 1860 1861 } else if ((slice == VD_SLICE_NONE) && (!vd->file)) { 1862 1863 /* 1864 * This is not a disk image so it is a real disk. We 1865 * assume that the underlying device driver supports 1866 * USCSICMD ioctls. This is the case of all SCSI devices 1867 * (sd, ssd...). 1868 * 1869 * In the future if we have non-SCSI disks we would need 1870 * to invoke the appropriate function to do I/O using an 1871 * absolute disk offset (for example using DIOCTL_RWCMD 1872 * for IDE disks). 1873 */ 1874 rv = vd_scsi_rdwr(vd, request->operation, bufaddr, offset, 1875 length); 1876 if (rv != 0) { 1877 request->status = EIO; 1878 } else { 1879 request->nbytes = length; 1880 request->status = 0; 1881 } 1882 goto io_done; 1883 } 1884 1885 /* Start the block I/O */ 1886 if (vd->file) { 1887 rv = vd_file_rw(vd, slice, request->operation, bufaddr, offset, 1888 length); 1889 if (rv < 0) { 1890 request->nbytes = 0; 1891 request->status = EIO; 1892 } else { 1893 request->nbytes += rv; 1894 request->status = 0; 1895 } 1896 } else { 1897 bioinit(buf); 1898 buf->b_flags = B_BUSY; 1899 buf->b_bcount = length; 1900 buf->b_lblkno = offset; 1901 buf->b_bufsize = buflen; 1902 buf->b_edev = vd->dev[slice]; 1903 buf->b_un.b_addr = bufaddr; 1904 buf->b_flags |= (request->operation == VD_OP_BREAD)? 1905 B_READ : B_WRITE; 1906 1907 request->status = ldi_strategy(vd->ldi_handle[slice], buf); 1908 1909 /* 1910 * This is to indicate to the caller that the request 1911 * needs to be finished by vd_complete_bio() by calling 1912 * biowait() there and waiting for that to return before 1913 * triggering the notification of the vDisk client. 1914 * 1915 * This is necessary when writing to real disks as 1916 * otherwise calls to ldi_strategy() would be serialized 1917 * behind the calls to biowait() and performance would 1918 * suffer. 1919 */ 1920 if (request->status == 0) 1921 return (EINPROGRESS); 1922 1923 biofini(buf); 1924 } 1925 1926 io_done: 1927 /* Clean up after error or completion */ 1928 rv = ldc_mem_release(task->mhdl, 0, buflen); 1929 if (rv) { 1930 PR0("ldc_mem_release() returned err %d ", rv); 1931 status = EIO; 1932 } 1933 rv = ldc_mem_unmap(task->mhdl); 1934 if (rv) { 1935 PR0("ldc_mem_unmap() returned err %d ", rv); 1936 status = EIO; 1937 } 1938 1939 return (status); 1940 } 1941 1942 /* 1943 * This function should only be called from vd_notify to ensure that requests 1944 * are responded to in the order that they are received. 1945 */ 1946 static int 1947 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen) 1948 { 1949 int status; 1950 size_t nbytes; 1951 1952 do { 1953 nbytes = msglen; 1954 status = ldc_write(ldc_handle, msg, &nbytes); 1955 if (status != EWOULDBLOCK) 1956 break; 1957 drv_usecwait(vds_ldc_delay); 1958 } while (status == EWOULDBLOCK); 1959 1960 if (status != 0) { 1961 if (status != ECONNRESET) 1962 PR0("ldc_write() returned errno %d", status); 1963 return (status); 1964 } else if (nbytes != msglen) { 1965 PR0("ldc_write() performed only partial write"); 1966 return (EIO); 1967 } 1968 1969 PR1("SENT %lu bytes", msglen); 1970 return (0); 1971 } 1972 1973 static void 1974 vd_need_reset(vd_t *vd, boolean_t reset_ldc) 1975 { 1976 mutex_enter(&vd->lock); 1977 vd->reset_state = B_TRUE; 1978 vd->reset_ldc = reset_ldc; 1979 mutex_exit(&vd->lock); 1980 } 1981 1982 /* 1983 * Reset the state of the connection with a client, if needed; reset the LDC 1984 * transport as well, if needed. This function should only be called from the 1985 * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur. 1986 */ 1987 static void 1988 vd_reset_if_needed(vd_t *vd) 1989 { 1990 int status = 0; 1991 1992 mutex_enter(&vd->lock); 1993 if (!vd->reset_state) { 1994 ASSERT(!vd->reset_ldc); 1995 mutex_exit(&vd->lock); 1996 return; 1997 } 1998 mutex_exit(&vd->lock); 1999 2000 PR0("Resetting connection state with %s", VD_CLIENT(vd)); 2001 2002 /* 2003 * Let any asynchronous I/O complete before possibly pulling the rug 2004 * out from under it; defer checking vd->reset_ldc, as one of the 2005 * asynchronous tasks might set it 2006 */ 2007 ddi_taskq_wait(vd->completionq); 2008 2009 if (vd->file) { 2010 status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL); 2011 if (status) { 2012 PR0("VOP_FSYNC returned errno %d", status); 2013 } 2014 } 2015 2016 if ((vd->initialized & VD_DRING) && 2017 ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)) 2018 PR0("ldc_mem_dring_unmap() returned errno %d", status); 2019 2020 vd_free_dring_task(vd); 2021 2022 /* Free the staging buffer for msgs */ 2023 if (vd->vio_msgp != NULL) { 2024 kmem_free(vd->vio_msgp, vd->max_msglen); 2025 vd->vio_msgp = NULL; 2026 } 2027 2028 /* Free the inband message buffer */ 2029 if (vd->inband_task.msg != NULL) { 2030 kmem_free(vd->inband_task.msg, vd->max_msglen); 2031 vd->inband_task.msg = NULL; 2032 } 2033 2034 mutex_enter(&vd->lock); 2035 2036 if (vd->reset_ldc) 2037 PR0("taking down LDC channel"); 2038 if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0)) 2039 PR0("ldc_down() returned errno %d", status); 2040 2041 /* Reset exclusive access rights */ 2042 vd_reset_access(vd); 2043 2044 vd->initialized &= ~(VD_SID | VD_SEQ_NUM | VD_DRING); 2045 vd->state = VD_STATE_INIT; 2046 vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */ 2047 2048 /* Allocate the staging buffer */ 2049 vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP); 2050 2051 PR0("calling ldc_up\n"); 2052 (void) ldc_up(vd->ldc_handle); 2053 2054 vd->reset_state = B_FALSE; 2055 vd->reset_ldc = B_FALSE; 2056 2057 mutex_exit(&vd->lock); 2058 } 2059 2060 static void vd_recv_msg(void *arg); 2061 2062 static void 2063 vd_mark_in_reset(vd_t *vd) 2064 { 2065 int status; 2066 2067 PR0("vd_mark_in_reset: marking vd in reset\n"); 2068 2069 vd_need_reset(vd, B_FALSE); 2070 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP); 2071 if (status == DDI_FAILURE) { 2072 PR0("cannot schedule task to recv msg\n"); 2073 vd_need_reset(vd, B_TRUE); 2074 return; 2075 } 2076 } 2077 2078 static int 2079 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes) 2080 { 2081 boolean_t accepted; 2082 int status; 2083 on_trap_data_t otd; 2084 vd_dring_entry_t *elem = VD_DRING_ELEM(idx); 2085 2086 if (vd->reset_state) 2087 return (0); 2088 2089 /* Acquire the element */ 2090 if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype, 2091 vd->dring_handle, idx, idx)) != 0) { 2092 if (status == ECONNRESET) { 2093 vd_mark_in_reset(vd); 2094 return (0); 2095 } else { 2096 return (status); 2097 } 2098 } 2099 2100 /* Set the element's status and mark it done */ 2101 accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED); 2102 if (accepted) { 2103 elem->payload.nbytes = elem_nbytes; 2104 elem->payload.status = elem_status; 2105 elem->hdr.dstate = VIO_DESC_DONE; 2106 } else { 2107 /* Perhaps client timed out waiting for I/O... */ 2108 PR0("element %u no longer \"accepted\"", idx); 2109 VD_DUMP_DRING_ELEM(elem); 2110 } 2111 /* Release the element */ 2112 if ((status = VIO_DRING_RELEASE(vd->dring_mtype, 2113 vd->dring_handle, idx, idx)) != 0) { 2114 if (status == ECONNRESET) { 2115 vd_mark_in_reset(vd); 2116 return (0); 2117 } else { 2118 PR0("VIO_DRING_RELEASE() returned errno %d", 2119 status); 2120 return (status); 2121 } 2122 } 2123 2124 return (accepted ? 0 : EINVAL); 2125 } 2126 2127 /* 2128 * Return Values 2129 * 0 - operation completed successfully 2130 * EIO - encountered LDC / task error 2131 * 2132 * Side Effect 2133 * sets request->status = <disk operation status> 2134 */ 2135 static int 2136 vd_complete_bio(vd_task_t *task) 2137 { 2138 int status = 0; 2139 int rv = 0; 2140 vd_t *vd = task->vd; 2141 vd_dring_payload_t *request = task->request; 2142 struct buf *buf = &task->buf; 2143 2144 2145 ASSERT(vd != NULL); 2146 ASSERT(request != NULL); 2147 ASSERT(task->msg != NULL); 2148 ASSERT(task->msglen >= sizeof (*task->msg)); 2149 ASSERT(!vd->file); 2150 ASSERT(request->slice != VD_SLICE_NONE || (!vd_slice_single_slice && 2151 vd->vdisk_type == VD_DISK_TYPE_SLICE)); 2152 2153 /* Wait for the I/O to complete [ call to ldi_strategy(9f) ] */ 2154 request->status = biowait(buf); 2155 2156 /* Update the number of bytes read/written */ 2157 request->nbytes += buf->b_bcount - buf->b_resid; 2158 2159 /* Release the buffer */ 2160 if (!vd->reset_state) 2161 status = ldc_mem_release(task->mhdl, 0, buf->b_bufsize); 2162 if (status) { 2163 PR0("ldc_mem_release() returned errno %d copying to " 2164 "client", status); 2165 if (status == ECONNRESET) { 2166 vd_mark_in_reset(vd); 2167 } 2168 rv = EIO; 2169 } 2170 2171 /* Unmap the memory, even if in reset */ 2172 status = ldc_mem_unmap(task->mhdl); 2173 if (status) { 2174 PR0("ldc_mem_unmap() returned errno %d copying to client", 2175 status); 2176 if (status == ECONNRESET) { 2177 vd_mark_in_reset(vd); 2178 } 2179 rv = EIO; 2180 } 2181 2182 biofini(buf); 2183 2184 return (rv); 2185 } 2186 2187 /* 2188 * Description: 2189 * This function is called by the two functions called by a taskq 2190 * [ vd_complete_notify() and vd_serial_notify()) ] to send the 2191 * message to the client. 2192 * 2193 * Parameters: 2194 * arg - opaque pointer to structure containing task to be completed 2195 * 2196 * Return Values 2197 * None 2198 */ 2199 static void 2200 vd_notify(vd_task_t *task) 2201 { 2202 int status; 2203 2204 ASSERT(task != NULL); 2205 ASSERT(task->vd != NULL); 2206 2207 /* 2208 * Send the "ack" or "nack" back to the client; if sending the message 2209 * via LDC fails, arrange to reset both the connection state and LDC 2210 * itself 2211 */ 2212 PR2("Sending %s", 2213 (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK"); 2214 2215 status = send_msg(task->vd->ldc_handle, task->msg, task->msglen); 2216 switch (status) { 2217 case 0: 2218 break; 2219 case ECONNRESET: 2220 vd_mark_in_reset(task->vd); 2221 break; 2222 default: 2223 PR0("initiating full reset"); 2224 vd_need_reset(task->vd, B_TRUE); 2225 break; 2226 } 2227 2228 DTRACE_PROBE1(task__end, vd_task_t *, task); 2229 } 2230 2231 /* 2232 * Description: 2233 * Mark the Dring entry as Done and (if necessary) send an ACK/NACK to 2234 * the vDisk client 2235 * 2236 * Parameters: 2237 * task - structure containing the request sent from client 2238 * 2239 * Return Values 2240 * None 2241 */ 2242 static void 2243 vd_complete_notify(vd_task_t *task) 2244 { 2245 int status = 0; 2246 vd_t *vd = task->vd; 2247 vd_dring_payload_t *request = task->request; 2248 2249 /* Update the dring element for a dring client */ 2250 if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) { 2251 status = vd_mark_elem_done(vd, task->index, 2252 request->status, request->nbytes); 2253 if (status == ECONNRESET) 2254 vd_mark_in_reset(vd); 2255 else if (status == EACCES) 2256 vd_need_reset(vd, B_TRUE); 2257 } 2258 2259 /* 2260 * If a transport error occurred while marking the element done or 2261 * previously while executing the task, arrange to "nack" the message 2262 * when the final task in the descriptor element range completes 2263 */ 2264 if ((status != 0) || (task->status != 0)) 2265 task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 2266 2267 /* 2268 * Only the final task for a range of elements will respond to and 2269 * free the message 2270 */ 2271 if (task->type == VD_NONFINAL_RANGE_TASK) { 2272 return; 2273 } 2274 2275 /* 2276 * We should only send an ACK/NACK here if we are not currently in 2277 * reset as, depending on how we reset, the dring may have been 2278 * blown away and we don't want to ACK/NACK a message that isn't 2279 * there. 2280 */ 2281 if (!vd->reset_state) 2282 vd_notify(task); 2283 } 2284 2285 /* 2286 * Description: 2287 * This is the basic completion function called to handle inband data 2288 * requests and handshake messages. All it needs to do is trigger a 2289 * message to the client that the request is completed. 2290 * 2291 * Parameters: 2292 * arg - opaque pointer to structure containing task to be completed 2293 * 2294 * Return Values 2295 * None 2296 */ 2297 static void 2298 vd_serial_notify(void *arg) 2299 { 2300 vd_task_t *task = (vd_task_t *)arg; 2301 2302 ASSERT(task != NULL); 2303 vd_notify(task); 2304 } 2305 2306 /* ARGSUSED */ 2307 static int 2308 vd_geom2dk_geom(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2309 { 2310 VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg); 2311 return (0); 2312 } 2313 2314 /* ARGSUSED */ 2315 static int 2316 vd_vtoc2vtoc(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2317 { 2318 VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct vtoc *)ioctl_arg); 2319 return (0); 2320 } 2321 2322 static void 2323 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf) 2324 { 2325 DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf); 2326 } 2327 2328 static void 2329 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf) 2330 { 2331 VTOC2VD_VTOC((struct vtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf); 2332 } 2333 2334 static int 2335 vd_get_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2336 { 2337 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 2338 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 2339 size_t data_len; 2340 2341 data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t)); 2342 if (vd_efi->length > data_len) 2343 return (EINVAL); 2344 2345 dk_efi->dki_lba = vd_efi->lba; 2346 dk_efi->dki_length = vd_efi->length; 2347 dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP); 2348 return (0); 2349 } 2350 2351 static void 2352 vd_get_efi_out(void *ioctl_arg, void *vd_buf) 2353 { 2354 int len; 2355 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 2356 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 2357 2358 len = vd_efi->length; 2359 DK_EFI2VD_EFI(dk_efi, vd_efi); 2360 kmem_free(dk_efi->dki_data, len); 2361 } 2362 2363 static int 2364 vd_set_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2365 { 2366 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 2367 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 2368 size_t data_len; 2369 2370 data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t)); 2371 if (vd_efi->length > data_len) 2372 return (EINVAL); 2373 2374 dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP); 2375 VD_EFI2DK_EFI(vd_efi, dk_efi); 2376 return (0); 2377 } 2378 2379 static void 2380 vd_set_efi_out(void *ioctl_arg, void *vd_buf) 2381 { 2382 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 2383 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 2384 2385 kmem_free(dk_efi->dki_data, vd_efi->length); 2386 } 2387 2388 static int 2389 vd_scsicmd_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2390 { 2391 size_t vd_scsi_len; 2392 vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf; 2393 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg; 2394 2395 /* check buffer size */ 2396 vd_scsi_len = VD_SCSI_SIZE; 2397 vd_scsi_len += P2ROUNDUP(vd_scsi->cdb_len, sizeof (uint64_t)); 2398 vd_scsi_len += P2ROUNDUP(vd_scsi->sense_len, sizeof (uint64_t)); 2399 vd_scsi_len += P2ROUNDUP(vd_scsi->datain_len, sizeof (uint64_t)); 2400 vd_scsi_len += P2ROUNDUP(vd_scsi->dataout_len, sizeof (uint64_t)); 2401 2402 ASSERT(vd_scsi_len % sizeof (uint64_t) == 0); 2403 2404 if (vd_buf_len < vd_scsi_len) 2405 return (EINVAL); 2406 2407 /* set flags */ 2408 uscsi->uscsi_flags = vd_scsi_debug; 2409 2410 if (vd_scsi->options & VD_SCSI_OPT_NORETRY) { 2411 uscsi->uscsi_flags |= USCSI_ISOLATE; 2412 uscsi->uscsi_flags |= USCSI_DIAGNOSE; 2413 } 2414 2415 /* task attribute */ 2416 switch (vd_scsi->task_attribute) { 2417 case VD_SCSI_TASK_ACA: 2418 uscsi->uscsi_flags |= USCSI_HEAD; 2419 break; 2420 case VD_SCSI_TASK_HQUEUE: 2421 uscsi->uscsi_flags |= USCSI_HTAG; 2422 break; 2423 case VD_SCSI_TASK_ORDERED: 2424 uscsi->uscsi_flags |= USCSI_OTAG; 2425 break; 2426 default: 2427 uscsi->uscsi_flags |= USCSI_NOTAG; 2428 break; 2429 } 2430 2431 /* timeout */ 2432 uscsi->uscsi_timeout = vd_scsi->timeout; 2433 2434 /* cdb data */ 2435 uscsi->uscsi_cdb = (caddr_t)VD_SCSI_DATA_CDB(vd_scsi); 2436 uscsi->uscsi_cdblen = vd_scsi->cdb_len; 2437 2438 /* sense buffer */ 2439 if (vd_scsi->sense_len != 0) { 2440 uscsi->uscsi_flags |= USCSI_RQENABLE; 2441 uscsi->uscsi_rqbuf = (caddr_t)VD_SCSI_DATA_SENSE(vd_scsi); 2442 uscsi->uscsi_rqlen = vd_scsi->sense_len; 2443 } 2444 2445 if (vd_scsi->datain_len != 0 && vd_scsi->dataout_len != 0) { 2446 /* uscsi does not support read/write request */ 2447 return (EINVAL); 2448 } 2449 2450 /* request data-in */ 2451 if (vd_scsi->datain_len != 0) { 2452 uscsi->uscsi_flags |= USCSI_READ; 2453 uscsi->uscsi_buflen = vd_scsi->datain_len; 2454 uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_IN(vd_scsi); 2455 } 2456 2457 /* request data-out */ 2458 if (vd_scsi->dataout_len != 0) { 2459 uscsi->uscsi_buflen = vd_scsi->dataout_len; 2460 uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_OUT(vd_scsi); 2461 } 2462 2463 return (0); 2464 } 2465 2466 static void 2467 vd_scsicmd_out(void *ioctl_arg, void *vd_buf) 2468 { 2469 vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf; 2470 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg; 2471 2472 /* output fields */ 2473 vd_scsi->cmd_status = uscsi->uscsi_status; 2474 2475 /* sense data */ 2476 if ((uscsi->uscsi_flags & USCSI_RQENABLE) && 2477 (uscsi->uscsi_status == STATUS_CHECK || 2478 uscsi->uscsi_status == STATUS_TERMINATED)) { 2479 vd_scsi->sense_status = uscsi->uscsi_rqstatus; 2480 if (uscsi->uscsi_rqstatus == STATUS_GOOD) 2481 vd_scsi->sense_len -= uscsi->uscsi_rqresid; 2482 else 2483 vd_scsi->sense_len = 0; 2484 } else { 2485 vd_scsi->sense_len = 0; 2486 } 2487 2488 if (uscsi->uscsi_status != STATUS_GOOD) { 2489 vd_scsi->dataout_len = 0; 2490 vd_scsi->datain_len = 0; 2491 return; 2492 } 2493 2494 if (uscsi->uscsi_flags & USCSI_READ) { 2495 /* request data (read) */ 2496 vd_scsi->datain_len -= uscsi->uscsi_resid; 2497 vd_scsi->dataout_len = 0; 2498 } else { 2499 /* request data (write) */ 2500 vd_scsi->datain_len = 0; 2501 vd_scsi->dataout_len -= uscsi->uscsi_resid; 2502 } 2503 } 2504 2505 static ushort_t 2506 vd_lbl2cksum(struct dk_label *label) 2507 { 2508 int count; 2509 ushort_t sum, *sp; 2510 2511 count = (sizeof (struct dk_label)) / (sizeof (short)) - 1; 2512 sp = (ushort_t *)label; 2513 sum = 0; 2514 while (count--) { 2515 sum ^= *sp++; 2516 } 2517 2518 return (sum); 2519 } 2520 2521 /* 2522 * Copy information from a vtoc and dk_geom structures to a dk_label structure. 2523 */ 2524 static void 2525 vd_vtocgeom_to_label(struct vtoc *vtoc, struct dk_geom *geom, 2526 struct dk_label *label) 2527 { 2528 int i; 2529 2530 ASSERT(vtoc->v_nparts == V_NUMPAR); 2531 ASSERT(vtoc->v_sanity == VTOC_SANE); 2532 2533 bzero(label, sizeof (struct dk_label)); 2534 2535 label->dkl_ncyl = geom->dkg_ncyl; 2536 label->dkl_acyl = geom->dkg_acyl; 2537 label->dkl_pcyl = geom->dkg_pcyl; 2538 label->dkl_nhead = geom->dkg_nhead; 2539 label->dkl_nsect = geom->dkg_nsect; 2540 label->dkl_intrlv = geom->dkg_intrlv; 2541 label->dkl_apc = geom->dkg_apc; 2542 label->dkl_rpm = geom->dkg_rpm; 2543 label->dkl_write_reinstruct = geom->dkg_write_reinstruct; 2544 label->dkl_read_reinstruct = geom->dkg_read_reinstruct; 2545 2546 label->dkl_vtoc.v_nparts = V_NUMPAR; 2547 label->dkl_vtoc.v_sanity = VTOC_SANE; 2548 label->dkl_vtoc.v_version = vtoc->v_version; 2549 for (i = 0; i < V_NUMPAR; i++) { 2550 label->dkl_vtoc.v_timestamp[i] = vtoc->timestamp[i]; 2551 label->dkl_vtoc.v_part[i].p_tag = vtoc->v_part[i].p_tag; 2552 label->dkl_vtoc.v_part[i].p_flag = vtoc->v_part[i].p_flag; 2553 label->dkl_map[i].dkl_cylno = vtoc->v_part[i].p_start / 2554 (label->dkl_nhead * label->dkl_nsect); 2555 label->dkl_map[i].dkl_nblk = vtoc->v_part[i].p_size; 2556 } 2557 2558 /* 2559 * The bootinfo array can not be copied with bcopy() because 2560 * elements are of type long in vtoc (so 64-bit) and of type 2561 * int in dk_vtoc (so 32-bit). 2562 */ 2563 label->dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0]; 2564 label->dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1]; 2565 label->dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2]; 2566 bcopy(vtoc->v_asciilabel, label->dkl_asciilabel, LEN_DKL_ASCII); 2567 bcopy(vtoc->v_volume, label->dkl_vtoc.v_volume, LEN_DKL_VVOL); 2568 2569 /* re-compute checksum */ 2570 label->dkl_magic = DKL_MAGIC; 2571 label->dkl_cksum = vd_lbl2cksum(label); 2572 } 2573 2574 /* 2575 * Copy information from a dk_label structure to a vtoc and dk_geom structures. 2576 */ 2577 static void 2578 vd_label_to_vtocgeom(struct dk_label *label, struct vtoc *vtoc, 2579 struct dk_geom *geom) 2580 { 2581 int i; 2582 2583 bzero(vtoc, sizeof (struct vtoc)); 2584 bzero(geom, sizeof (struct dk_geom)); 2585 2586 geom->dkg_ncyl = label->dkl_ncyl; 2587 geom->dkg_acyl = label->dkl_acyl; 2588 geom->dkg_nhead = label->dkl_nhead; 2589 geom->dkg_nsect = label->dkl_nsect; 2590 geom->dkg_intrlv = label->dkl_intrlv; 2591 geom->dkg_apc = label->dkl_apc; 2592 geom->dkg_rpm = label->dkl_rpm; 2593 geom->dkg_pcyl = label->dkl_pcyl; 2594 geom->dkg_write_reinstruct = label->dkl_write_reinstruct; 2595 geom->dkg_read_reinstruct = label->dkl_read_reinstruct; 2596 2597 vtoc->v_sanity = label->dkl_vtoc.v_sanity; 2598 vtoc->v_version = label->dkl_vtoc.v_version; 2599 vtoc->v_sectorsz = DEV_BSIZE; 2600 vtoc->v_nparts = label->dkl_vtoc.v_nparts; 2601 2602 for (i = 0; i < vtoc->v_nparts; i++) { 2603 vtoc->v_part[i].p_tag = label->dkl_vtoc.v_part[i].p_tag; 2604 vtoc->v_part[i].p_flag = label->dkl_vtoc.v_part[i].p_flag; 2605 vtoc->v_part[i].p_start = label->dkl_map[i].dkl_cylno * 2606 (label->dkl_nhead * label->dkl_nsect); 2607 vtoc->v_part[i].p_size = label->dkl_map[i].dkl_nblk; 2608 vtoc->timestamp[i] = label->dkl_vtoc.v_timestamp[i]; 2609 } 2610 2611 /* 2612 * The bootinfo array can not be copied with bcopy() because 2613 * elements are of type long in vtoc (so 64-bit) and of type 2614 * int in dk_vtoc (so 32-bit). 2615 */ 2616 vtoc->v_bootinfo[0] = label->dkl_vtoc.v_bootinfo[0]; 2617 vtoc->v_bootinfo[1] = label->dkl_vtoc.v_bootinfo[1]; 2618 vtoc->v_bootinfo[2] = label->dkl_vtoc.v_bootinfo[2]; 2619 bcopy(label->dkl_asciilabel, vtoc->v_asciilabel, LEN_DKL_ASCII); 2620 bcopy(label->dkl_vtoc.v_volume, vtoc->v_volume, LEN_DKL_VVOL); 2621 } 2622 2623 /* 2624 * Check if a geometry is valid for a single-slice disk. A geometry is 2625 * considered valid if the main attributes of the geometry match with the 2626 * attributes of the fake geometry we have created. 2627 */ 2628 static boolean_t 2629 vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom) 2630 { 2631 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 2632 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 2633 2634 if (geom->dkg_ncyl != vd->dk_geom.dkg_ncyl || 2635 geom->dkg_acyl != vd->dk_geom.dkg_acyl || 2636 geom->dkg_nsect != vd->dk_geom.dkg_nsect || 2637 geom->dkg_pcyl != vd->dk_geom.dkg_pcyl) 2638 return (B_FALSE); 2639 2640 return (B_TRUE); 2641 } 2642 2643 /* 2644 * Check if a vtoc is valid for a single-slice disk. A vtoc is considered 2645 * valid if the main attributes of the vtoc match with the attributes of the 2646 * fake vtoc we have created. 2647 */ 2648 static boolean_t 2649 vd_slice_vtoc_isvalid(vd_t *vd, struct vtoc *vtoc) 2650 { 2651 size_t csize; 2652 int i; 2653 2654 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 2655 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 2656 2657 if (vtoc->v_sanity != vd->vtoc.v_sanity || 2658 vtoc->v_version != vd->vtoc.v_version || 2659 vtoc->v_nparts != vd->vtoc.v_nparts || 2660 strcmp(vtoc->v_volume, vd->vtoc.v_volume) != 0 || 2661 strcmp(vtoc->v_asciilabel, vd->vtoc.v_asciilabel) != 0) 2662 return (B_FALSE); 2663 2664 /* slice 2 should be unchanged */ 2665 if (vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_start != 2666 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start || 2667 vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size != 2668 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size) 2669 return (B_FALSE); 2670 2671 /* 2672 * Slice 0 should be mostly unchanged and cover most of the disk. 2673 * However we allow some flexibility wrt to the start and the size 2674 * of this slice mainly because we can't exactly know how it will 2675 * be defined by the OS installer. 2676 * 2677 * We allow slice 0 to be defined as starting on any of the first 2678 * 4 cylinders. 2679 */ 2680 csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 2681 2682 if (vtoc->v_part[0].p_start > 4 * csize || 2683 vtoc->v_part[0].p_size > vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size) 2684 return (B_FALSE); 2685 2686 if (vd->vtoc.v_part[0].p_size >= 4 * csize && 2687 vtoc->v_part[0].p_size < vd->vtoc.v_part[0].p_size - 4 *csize) 2688 return (B_FALSE); 2689 2690 /* any other slice should have a size of 0 */ 2691 for (i = 1; i < vtoc->v_nparts; i++) { 2692 if (i != VD_ENTIRE_DISK_SLICE && 2693 vtoc->v_part[i].p_size != 0) 2694 return (B_FALSE); 2695 } 2696 2697 return (B_TRUE); 2698 } 2699 2700 /* 2701 * Handle ioctls to a disk slice. 2702 * 2703 * Return Values 2704 * 0 - Indicates that there are no errors in disk operations 2705 * ENOTSUP - Unknown disk label type or unsupported DKIO ioctl 2706 * EINVAL - Not enough room to copy the EFI label 2707 * 2708 */ 2709 static int 2710 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg) 2711 { 2712 dk_efi_t *dk_ioc; 2713 struct vtoc *vtoc; 2714 struct dk_geom *geom; 2715 size_t len, lba; 2716 int rval; 2717 2718 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 2719 2720 if (cmd == DKIOCFLUSHWRITECACHE) { 2721 if (vd->file) { 2722 return (VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL)); 2723 } else { 2724 return (ldi_ioctl(vd->ldi_handle[0], cmd, 2725 (intptr_t)ioctl_arg, vd->open_flags | FKIOCTL, 2726 kcred, &rval)); 2727 } 2728 } 2729 2730 switch (vd->vdisk_label) { 2731 2732 /* ioctls for a single slice disk with a VTOC label */ 2733 case VD_DISK_LABEL_VTOC: 2734 2735 switch (cmd) { 2736 2737 case DKIOCGGEOM: 2738 ASSERT(ioctl_arg != NULL); 2739 bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom)); 2740 return (0); 2741 2742 case DKIOCGVTOC: 2743 ASSERT(ioctl_arg != NULL); 2744 bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc)); 2745 return (0); 2746 2747 case DKIOCSGEOM: 2748 ASSERT(ioctl_arg != NULL); 2749 if (vd_slice_single_slice) 2750 return (ENOTSUP); 2751 2752 /* fake success only if new geometry is valid */ 2753 geom = (struct dk_geom *)ioctl_arg; 2754 if (!vd_slice_geom_isvalid(vd, geom)) 2755 return (EINVAL); 2756 2757 return (0); 2758 2759 case DKIOCSVTOC: 2760 ASSERT(ioctl_arg != NULL); 2761 if (vd_slice_single_slice) 2762 return (ENOTSUP); 2763 2764 /* fake sucess only if the new vtoc is valid */ 2765 vtoc = (struct vtoc *)ioctl_arg; 2766 if (!vd_slice_vtoc_isvalid(vd, vtoc)) 2767 return (EINVAL); 2768 2769 return (0); 2770 2771 default: 2772 return (ENOTSUP); 2773 } 2774 2775 /* ioctls for a single slice disk with an EFI label */ 2776 case VD_DISK_LABEL_EFI: 2777 2778 if (cmd != DKIOCGETEFI && cmd != DKIOCSETEFI) 2779 return (ENOTSUP); 2780 2781 ASSERT(ioctl_arg != NULL); 2782 dk_ioc = (dk_efi_t *)ioctl_arg; 2783 2784 len = dk_ioc->dki_length; 2785 lba = dk_ioc->dki_lba; 2786 2787 if ((lba != VD_EFI_LBA_GPT && lba != VD_EFI_LBA_GPE) || 2788 (lba == VD_EFI_LBA_GPT && len < sizeof (efi_gpt_t)) || 2789 (lba == VD_EFI_LBA_GPE && len < sizeof (efi_gpe_t))) 2790 return (EINVAL); 2791 2792 switch (cmd) { 2793 case DKIOCGETEFI: 2794 len = vd_slice_flabel_read(vd, 2795 (caddr_t)dk_ioc->dki_data, lba * DEV_BSIZE, len); 2796 2797 ASSERT(len > 0); 2798 2799 return (0); 2800 2801 case DKIOCSETEFI: 2802 if (vd_slice_single_slice) 2803 return (ENOTSUP); 2804 2805 /* we currently don't support writing EFI */ 2806 return (EIO); 2807 } 2808 2809 default: 2810 /* Unknown disk label type */ 2811 return (ENOTSUP); 2812 } 2813 } 2814 2815 static int 2816 vds_efi_alloc_and_read(vd_t *vd, efi_gpt_t **gpt, efi_gpe_t **gpe) 2817 { 2818 vd_efi_dev_t edev; 2819 int status; 2820 2821 VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl); 2822 2823 status = vd_efi_alloc_and_read(&edev, gpt, gpe); 2824 2825 return (status); 2826 } 2827 2828 static void 2829 vds_efi_free(vd_t *vd, efi_gpt_t *gpt, efi_gpe_t *gpe) 2830 { 2831 vd_efi_dev_t edev; 2832 2833 VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl); 2834 2835 vd_efi_free(&edev, gpt, gpe); 2836 } 2837 2838 static int 2839 vd_file_validate_efi(vd_t *vd) 2840 { 2841 efi_gpt_t *gpt; 2842 efi_gpe_t *gpe; 2843 int i, nparts, status; 2844 struct uuid efi_reserved = EFI_RESERVED; 2845 2846 if ((status = vds_efi_alloc_and_read(vd, &gpt, &gpe)) != 0) 2847 return (status); 2848 2849 bzero(&vd->vtoc, sizeof (struct vtoc)); 2850 bzero(&vd->dk_geom, sizeof (struct dk_geom)); 2851 bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART); 2852 2853 vd->efi_reserved = -1; 2854 2855 nparts = gpt->efi_gpt_NumberOfPartitionEntries; 2856 2857 for (i = 0; i < nparts && i < VD_MAXPART; i++) { 2858 2859 if (gpe[i].efi_gpe_StartingLBA == 0 || 2860 gpe[i].efi_gpe_EndingLBA == 0) { 2861 continue; 2862 } 2863 2864 vd->slices[i].start = gpe[i].efi_gpe_StartingLBA; 2865 vd->slices[i].nblocks = gpe[i].efi_gpe_EndingLBA - 2866 gpe[i].efi_gpe_StartingLBA + 1; 2867 2868 if (bcmp(&gpe[i].efi_gpe_PartitionTypeGUID, &efi_reserved, 2869 sizeof (struct uuid)) == 0) 2870 vd->efi_reserved = i; 2871 2872 } 2873 2874 ASSERT(vd->vdisk_size != 0); 2875 vd->slices[VD_EFI_WD_SLICE].start = 0; 2876 vd->slices[VD_EFI_WD_SLICE].nblocks = vd->vdisk_size; 2877 2878 vds_efi_free(vd, gpt, gpe); 2879 2880 return (status); 2881 } 2882 2883 /* 2884 * Function: 2885 * vd_file_validate_geometry 2886 * 2887 * Description: 2888 * Read the label and validate the geometry of a disk image. The driver 2889 * label, vtoc and geometry information are updated according to the 2890 * label read from the disk image. 2891 * 2892 * If no valid label is found, the label is set to unknown and the 2893 * function returns EINVAL, but a default vtoc and geometry are provided 2894 * to the driver. If an EFI label is found, ENOTSUP is returned. 2895 * 2896 * Parameters: 2897 * vd - disk on which the operation is performed. 2898 * 2899 * Return Code: 2900 * 0 - success. 2901 * EIO - error reading the label from the disk image. 2902 * EINVAL - unknown disk label. 2903 * ENOTSUP - geometry not applicable (EFI label). 2904 */ 2905 static int 2906 vd_file_validate_geometry(vd_t *vd) 2907 { 2908 struct dk_label label; 2909 struct dk_geom *geom = &vd->dk_geom; 2910 struct vtoc *vtoc = &vd->vtoc; 2911 int i; 2912 int status = 0; 2913 2914 ASSERT(vd->file); 2915 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK); 2916 2917 if (VD_FILE_LABEL_READ(vd, &label) < 0) 2918 return (EIO); 2919 2920 if (label.dkl_magic != DKL_MAGIC || 2921 label.dkl_cksum != vd_lbl2cksum(&label) || 2922 (vd_file_validate_sanity && label.dkl_vtoc.v_sanity != VTOC_SANE) || 2923 label.dkl_vtoc.v_nparts != V_NUMPAR) { 2924 2925 if (vd_file_validate_efi(vd) == 0) { 2926 vd->vdisk_label = VD_DISK_LABEL_EFI; 2927 return (ENOTSUP); 2928 } 2929 2930 vd->vdisk_label = VD_DISK_LABEL_UNK; 2931 vd_build_default_label(vd->file_size, &label); 2932 status = EINVAL; 2933 } else { 2934 vd->vdisk_label = VD_DISK_LABEL_VTOC; 2935 } 2936 2937 /* Update the driver geometry and vtoc */ 2938 vd_label_to_vtocgeom(&label, vtoc, geom); 2939 2940 /* Update logical partitions */ 2941 bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART); 2942 if (vd->vdisk_label != VD_DISK_LABEL_UNK) { 2943 for (i = 0; i < vtoc->v_nparts; i++) { 2944 vd->slices[i].start = vtoc->v_part[i].p_start; 2945 vd->slices[i].nblocks = vtoc->v_part[i].p_size; 2946 } 2947 } 2948 2949 return (status); 2950 } 2951 2952 /* 2953 * Handle ioctls to a disk image (file-based). 2954 * 2955 * Return Values 2956 * 0 - Indicates that there are no errors 2957 * != 0 - Disk operation returned an error 2958 */ 2959 static int 2960 vd_do_file_ioctl(vd_t *vd, int cmd, void *ioctl_arg) 2961 { 2962 struct dk_label label; 2963 struct dk_geom *geom; 2964 struct vtoc *vtoc; 2965 dk_efi_t *efi; 2966 int rc; 2967 2968 ASSERT(vd->file); 2969 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK); 2970 2971 switch (cmd) { 2972 2973 case DKIOCGGEOM: 2974 ASSERT(ioctl_arg != NULL); 2975 geom = (struct dk_geom *)ioctl_arg; 2976 2977 rc = vd_file_validate_geometry(vd); 2978 if (rc != 0 && rc != EINVAL) 2979 return (rc); 2980 bcopy(&vd->dk_geom, geom, sizeof (struct dk_geom)); 2981 return (0); 2982 2983 case DKIOCGVTOC: 2984 ASSERT(ioctl_arg != NULL); 2985 vtoc = (struct vtoc *)ioctl_arg; 2986 2987 rc = vd_file_validate_geometry(vd); 2988 if (rc != 0 && rc != EINVAL) 2989 return (rc); 2990 bcopy(&vd->vtoc, vtoc, sizeof (struct vtoc)); 2991 return (0); 2992 2993 case DKIOCSGEOM: 2994 ASSERT(ioctl_arg != NULL); 2995 geom = (struct dk_geom *)ioctl_arg; 2996 2997 if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0) 2998 return (EINVAL); 2999 3000 /* 3001 * The current device geometry is not updated, just the driver 3002 * "notion" of it. The device geometry will be effectively 3003 * updated when a label is written to the device during a next 3004 * DKIOCSVTOC. 3005 */ 3006 bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom)); 3007 return (0); 3008 3009 case DKIOCSVTOC: 3010 ASSERT(ioctl_arg != NULL); 3011 ASSERT(vd->dk_geom.dkg_nhead != 0 && 3012 vd->dk_geom.dkg_nsect != 0); 3013 vtoc = (struct vtoc *)ioctl_arg; 3014 3015 if (vtoc->v_sanity != VTOC_SANE || 3016 vtoc->v_sectorsz != DEV_BSIZE || 3017 vtoc->v_nparts != V_NUMPAR) 3018 return (EINVAL); 3019 3020 vd_vtocgeom_to_label(vtoc, &vd->dk_geom, &label); 3021 3022 /* write label to the disk image */ 3023 if ((rc = vd_file_set_vtoc(vd, &label)) != 0) 3024 return (rc); 3025 3026 break; 3027 3028 case DKIOCFLUSHWRITECACHE: 3029 return (VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL)); 3030 3031 case DKIOCGETEFI: 3032 ASSERT(ioctl_arg != NULL); 3033 efi = (dk_efi_t *)ioctl_arg; 3034 3035 if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, 3036 (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0) 3037 return (EIO); 3038 3039 return (0); 3040 3041 case DKIOCSETEFI: 3042 ASSERT(ioctl_arg != NULL); 3043 efi = (dk_efi_t *)ioctl_arg; 3044 3045 if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, 3046 (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0) 3047 return (EIO); 3048 3049 break; 3050 3051 3052 default: 3053 return (ENOTSUP); 3054 } 3055 3056 ASSERT(cmd == DKIOCSVTOC || cmd == DKIOCSETEFI); 3057 3058 /* label has changed, revalidate the geometry */ 3059 (void) vd_file_validate_geometry(vd); 3060 3061 /* 3062 * The disk geometry may have changed, so we need to write 3063 * the devid (if there is one) so that it is stored at the 3064 * right location. 3065 */ 3066 if (vd_file_write_devid(vd, vd->file_devid) != 0) { 3067 PR0("Fail to write devid"); 3068 } 3069 3070 return (0); 3071 } 3072 3073 static int 3074 vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg) 3075 { 3076 int rval = 0, status; 3077 3078 /* 3079 * Call the appropriate function to execute the ioctl depending 3080 * on the type of vdisk. 3081 */ 3082 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 3083 3084 /* slice, file or volume exported as a single slice disk */ 3085 status = vd_do_slice_ioctl(vd, cmd, arg); 3086 3087 } else if (vd->file) { 3088 3089 /* file or volume exported as a full disk */ 3090 status = vd_do_file_ioctl(vd, cmd, arg); 3091 3092 } else { 3093 3094 /* disk device exported as a full disk */ 3095 status = ldi_ioctl(vd->ldi_handle[0], cmd, (intptr_t)arg, 3096 vd->open_flags | FKIOCTL, kcred, &rval); 3097 } 3098 3099 #ifdef DEBUG 3100 if (rval != 0) { 3101 PR0("ioctl %x set rval = %d, which is not being returned" 3102 " to caller", cmd, rval); 3103 } 3104 #endif /* DEBUG */ 3105 3106 return (status); 3107 } 3108 3109 /* 3110 * Description: 3111 * This is the function that processes the ioctl requests (farming it 3112 * out to functions that handle slices, files or whole disks) 3113 * 3114 * Return Values 3115 * 0 - ioctl operation completed successfully 3116 * != 0 - The LDC error value encountered 3117 * (propagated back up the call stack as a task error) 3118 * 3119 * Side Effect 3120 * sets request->status to the return value of the ioctl function. 3121 */ 3122 static int 3123 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl) 3124 { 3125 int status = 0; 3126 size_t nbytes = request->nbytes; /* modifiable copy */ 3127 3128 3129 ASSERT(request->slice < vd->nslices); 3130 PR0("Performing %s", ioctl->operation_name); 3131 3132 /* Get data from client and convert, if necessary */ 3133 if (ioctl->copyin != NULL) { 3134 ASSERT(nbytes != 0 && buf != NULL); 3135 PR1("Getting \"arg\" data from client"); 3136 if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes, 3137 request->cookie, request->ncookies, 3138 LDC_COPY_IN)) != 0) { 3139 PR0("ldc_mem_copy() returned errno %d " 3140 "copying from client", status); 3141 return (status); 3142 } 3143 3144 /* Convert client's data, if necessary */ 3145 if (ioctl->copyin == VD_IDENTITY_IN) { 3146 /* use client buffer */ 3147 ioctl->arg = buf; 3148 } else { 3149 /* convert client vdisk operation data to ioctl data */ 3150 status = (ioctl->copyin)(buf, nbytes, 3151 (void *)ioctl->arg); 3152 if (status != 0) { 3153 request->status = status; 3154 return (0); 3155 } 3156 } 3157 } 3158 3159 if (ioctl->operation == VD_OP_SCSICMD) { 3160 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl->arg; 3161 3162 /* check write permission */ 3163 if (!(vd->open_flags & FWRITE) && 3164 !(uscsi->uscsi_flags & USCSI_READ)) { 3165 PR0("uscsi fails because backend is opened read-only"); 3166 request->status = EROFS; 3167 return (0); 3168 } 3169 } 3170 3171 /* 3172 * Send the ioctl to the disk backend. 3173 */ 3174 request->status = vd_backend_ioctl(vd, ioctl->cmd, ioctl->arg); 3175 3176 if (request->status != 0) { 3177 PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status); 3178 if (ioctl->operation == VD_OP_SCSICMD && 3179 ((struct uscsi_cmd *)ioctl->arg)->uscsi_status != 0) 3180 /* 3181 * USCSICMD has reported an error and the uscsi_status 3182 * field is not zero. This means that the SCSI command 3183 * has completed but it has an error. So we should 3184 * mark the VD operation has succesfully completed 3185 * and clients can check the SCSI status field for 3186 * SCSI errors. 3187 */ 3188 request->status = 0; 3189 else 3190 return (0); 3191 } 3192 3193 /* Convert data and send to client, if necessary */ 3194 if (ioctl->copyout != NULL) { 3195 ASSERT(nbytes != 0 && buf != NULL); 3196 PR1("Sending \"arg\" data to client"); 3197 3198 /* Convert ioctl data to vdisk operation data, if necessary */ 3199 if (ioctl->copyout != VD_IDENTITY_OUT) 3200 (ioctl->copyout)((void *)ioctl->arg, buf); 3201 3202 if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes, 3203 request->cookie, request->ncookies, 3204 LDC_COPY_OUT)) != 0) { 3205 PR0("ldc_mem_copy() returned errno %d " 3206 "copying to client", status); 3207 return (status); 3208 } 3209 } 3210 3211 return (status); 3212 } 3213 3214 #define RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t)) 3215 3216 /* 3217 * Description: 3218 * This generic function is called by the task queue to complete 3219 * the processing of the tasks. The specific completion function 3220 * is passed in as a field in the task pointer. 3221 * 3222 * Parameters: 3223 * arg - opaque pointer to structure containing task to be completed 3224 * 3225 * Return Values 3226 * None 3227 */ 3228 static void 3229 vd_complete(void *arg) 3230 { 3231 vd_task_t *task = (vd_task_t *)arg; 3232 3233 ASSERT(task != NULL); 3234 ASSERT(task->status == EINPROGRESS); 3235 ASSERT(task->completef != NULL); 3236 3237 task->status = task->completef(task); 3238 if (task->status) 3239 PR0("%s: Error %d completing task", __func__, task->status); 3240 3241 /* Now notify the vDisk client */ 3242 vd_complete_notify(task); 3243 } 3244 3245 static int 3246 vd_ioctl(vd_task_t *task) 3247 { 3248 int i, status; 3249 void *buf = NULL; 3250 struct dk_geom dk_geom = {0}; 3251 struct vtoc vtoc = {0}; 3252 struct dk_efi dk_efi = {0}; 3253 struct uscsi_cmd uscsi = {0}; 3254 vd_t *vd = task->vd; 3255 vd_dring_payload_t *request = task->request; 3256 vd_ioctl_t ioctl[] = { 3257 /* Command (no-copy) operations */ 3258 {VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0, 3259 DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE), 3260 NULL, NULL, NULL, B_TRUE}, 3261 3262 /* "Get" (copy-out) operations */ 3263 {VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int), 3264 DKIOCGETWCE, STRINGIZE(DKIOCGETWCE), 3265 NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_FALSE}, 3266 {VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM), 3267 RNDSIZE(vd_geom_t), 3268 DKIOCGGEOM, STRINGIZE(DKIOCGGEOM), 3269 &dk_geom, NULL, dk_geom2vd_geom, B_FALSE}, 3270 {VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t), 3271 DKIOCGVTOC, STRINGIZE(DKIOCGVTOC), 3272 &vtoc, NULL, vtoc2vd_vtoc, B_FALSE}, 3273 {VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t), 3274 DKIOCGETEFI, STRINGIZE(DKIOCGETEFI), 3275 &dk_efi, vd_get_efi_in, vd_get_efi_out, B_FALSE}, 3276 3277 /* "Set" (copy-in) operations */ 3278 {VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int), 3279 DKIOCSETWCE, STRINGIZE(DKIOCSETWCE), 3280 NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_TRUE}, 3281 {VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM), 3282 RNDSIZE(vd_geom_t), 3283 DKIOCSGEOM, STRINGIZE(DKIOCSGEOM), 3284 &dk_geom, vd_geom2dk_geom, NULL, B_TRUE}, 3285 {VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t), 3286 DKIOCSVTOC, STRINGIZE(DKIOCSVTOC), 3287 &vtoc, vd_vtoc2vtoc, NULL, B_TRUE}, 3288 {VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t), 3289 DKIOCSETEFI, STRINGIZE(DKIOCSETEFI), 3290 &dk_efi, vd_set_efi_in, vd_set_efi_out, B_TRUE}, 3291 3292 {VD_OP_SCSICMD, STRINGIZE(VD_OP_SCSICMD), RNDSIZE(vd_scsi_t), 3293 USCSICMD, STRINGIZE(USCSICMD), 3294 &uscsi, vd_scsicmd_in, vd_scsicmd_out, B_FALSE}, 3295 }; 3296 size_t nioctls = (sizeof (ioctl))/(sizeof (ioctl[0])); 3297 3298 3299 ASSERT(vd != NULL); 3300 ASSERT(request != NULL); 3301 ASSERT(request->slice < vd->nslices); 3302 3303 /* 3304 * Determine ioctl corresponding to caller's "operation" and 3305 * validate caller's "nbytes" 3306 */ 3307 for (i = 0; i < nioctls; i++) { 3308 if (request->operation == ioctl[i].operation) { 3309 /* LDC memory operations require 8-byte multiples */ 3310 ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0); 3311 3312 if (request->operation == VD_OP_GET_EFI || 3313 request->operation == VD_OP_SET_EFI || 3314 request->operation == VD_OP_SCSICMD) { 3315 if (request->nbytes >= ioctl[i].nbytes) 3316 break; 3317 PR0("%s: Expected at least nbytes = %lu, " 3318 "got %lu", ioctl[i].operation_name, 3319 ioctl[i].nbytes, request->nbytes); 3320 return (EINVAL); 3321 } 3322 3323 if (request->nbytes != ioctl[i].nbytes) { 3324 PR0("%s: Expected nbytes = %lu, got %lu", 3325 ioctl[i].operation_name, ioctl[i].nbytes, 3326 request->nbytes); 3327 return (EINVAL); 3328 } 3329 3330 break; 3331 } 3332 } 3333 ASSERT(i < nioctls); /* because "operation" already validated */ 3334 3335 if (!(vd->open_flags & FWRITE) && ioctl[i].write) { 3336 PR0("%s fails because backend is opened read-only", 3337 ioctl[i].operation_name); 3338 request->status = EROFS; 3339 return (0); 3340 } 3341 3342 if (request->nbytes) 3343 buf = kmem_zalloc(request->nbytes, KM_SLEEP); 3344 status = vd_do_ioctl(vd, request, buf, &ioctl[i]); 3345 if (request->nbytes) 3346 kmem_free(buf, request->nbytes); 3347 3348 return (status); 3349 } 3350 3351 static int 3352 vd_get_devid(vd_task_t *task) 3353 { 3354 vd_t *vd = task->vd; 3355 vd_dring_payload_t *request = task->request; 3356 vd_devid_t *vd_devid; 3357 impl_devid_t *devid; 3358 int status, bufid_len, devid_len, len, sz; 3359 int bufbytes; 3360 3361 PR1("Get Device ID, nbytes=%ld", request->nbytes); 3362 3363 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 3364 /* 3365 * We don't support devid for single-slice disks because we 3366 * have no space to store a fabricated devid and for physical 3367 * disk slices, we can't use the devid of the disk otherwise 3368 * exporting multiple slices from the same disk will produce 3369 * the same devids. 3370 */ 3371 PR2("No Device ID for slices"); 3372 request->status = ENOTSUP; 3373 return (0); 3374 } 3375 3376 if (vd->file) { 3377 if (vd->file_devid == NULL) { 3378 PR2("No Device ID"); 3379 request->status = ENOENT; 3380 return (0); 3381 } else { 3382 sz = ddi_devid_sizeof(vd->file_devid); 3383 devid = kmem_alloc(sz, KM_SLEEP); 3384 bcopy(vd->file_devid, devid, sz); 3385 } 3386 } else { 3387 if (ddi_lyr_get_devid(vd->dev[request->slice], 3388 (ddi_devid_t *)&devid) != DDI_SUCCESS) { 3389 PR2("No Device ID"); 3390 request->status = ENOENT; 3391 return (0); 3392 } 3393 } 3394 3395 bufid_len = request->nbytes - sizeof (vd_devid_t) + 1; 3396 devid_len = DEVID_GETLEN(devid); 3397 3398 /* 3399 * Save the buffer size here for use in deallocation. 3400 * The actual number of bytes copied is returned in 3401 * the 'nbytes' field of the request structure. 3402 */ 3403 bufbytes = request->nbytes; 3404 3405 vd_devid = kmem_zalloc(bufbytes, KM_SLEEP); 3406 vd_devid->length = devid_len; 3407 vd_devid->type = DEVID_GETTYPE(devid); 3408 3409 len = (devid_len > bufid_len)? bufid_len : devid_len; 3410 3411 bcopy(devid->did_id, vd_devid->id, len); 3412 3413 request->status = 0; 3414 3415 /* LDC memory operations require 8-byte multiples */ 3416 ASSERT(request->nbytes % sizeof (uint64_t) == 0); 3417 3418 if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0, 3419 &request->nbytes, request->cookie, request->ncookies, 3420 LDC_COPY_OUT)) != 0) { 3421 PR0("ldc_mem_copy() returned errno %d copying to client", 3422 status); 3423 } 3424 PR1("post mem_copy: nbytes=%ld", request->nbytes); 3425 3426 kmem_free(vd_devid, bufbytes); 3427 ddi_devid_free((ddi_devid_t)devid); 3428 3429 return (status); 3430 } 3431 3432 static int 3433 vd_scsi_reset(vd_t *vd) 3434 { 3435 int rval, status; 3436 struct uscsi_cmd uscsi = { 0 }; 3437 3438 uscsi.uscsi_flags = vd_scsi_debug | USCSI_RESET; 3439 uscsi.uscsi_timeout = vd_scsi_rdwr_timeout; 3440 3441 status = ldi_ioctl(vd->ldi_handle[0], USCSICMD, (intptr_t)&uscsi, 3442 (vd->open_flags | FKIOCTL), kcred, &rval); 3443 3444 return (status); 3445 } 3446 3447 static int 3448 vd_reset(vd_task_t *task) 3449 { 3450 vd_t *vd = task->vd; 3451 vd_dring_payload_t *request = task->request; 3452 3453 ASSERT(request->operation == VD_OP_RESET); 3454 ASSERT(vd->scsi); 3455 3456 PR0("Performing VD_OP_RESET"); 3457 3458 if (request->nbytes != 0) { 3459 PR0("VD_OP_RESET: Expected nbytes = 0, got %lu", 3460 request->nbytes); 3461 return (EINVAL); 3462 } 3463 3464 request->status = vd_scsi_reset(vd); 3465 3466 return (0); 3467 } 3468 3469 static int 3470 vd_get_capacity(vd_task_t *task) 3471 { 3472 int rv; 3473 size_t nbytes; 3474 vd_t *vd = task->vd; 3475 vd_dring_payload_t *request = task->request; 3476 vd_capacity_t vd_cap = { 0 }; 3477 3478 ASSERT(request->operation == VD_OP_GET_CAPACITY); 3479 ASSERT(vd->scsi); 3480 3481 PR0("Performing VD_OP_GET_CAPACITY"); 3482 3483 nbytes = request->nbytes; 3484 3485 if (nbytes != RNDSIZE(vd_capacity_t)) { 3486 PR0("VD_OP_GET_CAPACITY: Expected nbytes = %lu, got %lu", 3487 RNDSIZE(vd_capacity_t), nbytes); 3488 return (EINVAL); 3489 } 3490 3491 if (vd->vdisk_size == VD_SIZE_UNKNOWN) { 3492 if (vd_setup_mediainfo(vd) != 0) 3493 ASSERT(vd->vdisk_size == VD_SIZE_UNKNOWN); 3494 } 3495 3496 ASSERT(vd->vdisk_size != 0); 3497 3498 request->status = 0; 3499 3500 vd_cap.vdisk_block_size = vd->vdisk_block_size; 3501 vd_cap.vdisk_size = vd->vdisk_size; 3502 3503 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&vd_cap, 0, &nbytes, 3504 request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) { 3505 PR0("ldc_mem_copy() returned errno %d copying to client", rv); 3506 return (rv); 3507 } 3508 3509 return (0); 3510 } 3511 3512 static int 3513 vd_get_access(vd_task_t *task) 3514 { 3515 uint64_t access; 3516 int rv, rval = 0; 3517 size_t nbytes; 3518 vd_t *vd = task->vd; 3519 vd_dring_payload_t *request = task->request; 3520 3521 ASSERT(request->operation == VD_OP_GET_ACCESS); 3522 ASSERT(vd->scsi); 3523 3524 PR0("Performing VD_OP_GET_ACCESS"); 3525 3526 nbytes = request->nbytes; 3527 3528 if (nbytes != sizeof (uint64_t)) { 3529 PR0("VD_OP_GET_ACCESS: Expected nbytes = %lu, got %lu", 3530 sizeof (uint64_t), nbytes); 3531 return (EINVAL); 3532 } 3533 3534 request->status = ldi_ioctl(vd->ldi_handle[request->slice], MHIOCSTATUS, 3535 NULL, (vd->open_flags | FKIOCTL), kcred, &rval); 3536 3537 if (request->status != 0) 3538 return (0); 3539 3540 access = (rval == 0)? VD_ACCESS_ALLOWED : VD_ACCESS_DENIED; 3541 3542 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&access, 0, &nbytes, 3543 request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) { 3544 PR0("ldc_mem_copy() returned errno %d copying to client", rv); 3545 return (rv); 3546 } 3547 3548 return (0); 3549 } 3550 3551 static int 3552 vd_set_access(vd_task_t *task) 3553 { 3554 uint64_t flags; 3555 int rv, rval; 3556 size_t nbytes; 3557 vd_t *vd = task->vd; 3558 vd_dring_payload_t *request = task->request; 3559 3560 ASSERT(request->operation == VD_OP_SET_ACCESS); 3561 ASSERT(vd->scsi); 3562 3563 nbytes = request->nbytes; 3564 3565 if (nbytes != sizeof (uint64_t)) { 3566 PR0("VD_OP_SET_ACCESS: Expected nbytes = %lu, got %lu", 3567 sizeof (uint64_t), nbytes); 3568 return (EINVAL); 3569 } 3570 3571 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&flags, 0, &nbytes, 3572 request->cookie, request->ncookies, LDC_COPY_IN)) != 0) { 3573 PR0("ldc_mem_copy() returned errno %d copying from client", rv); 3574 return (rv); 3575 } 3576 3577 if (flags == VD_ACCESS_SET_CLEAR) { 3578 PR0("Performing VD_OP_SET_ACCESS (CLEAR)"); 3579 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3580 MHIOCRELEASE, NULL, (vd->open_flags | FKIOCTL), kcred, 3581 &rval); 3582 if (request->status == 0) 3583 vd->ownership = B_FALSE; 3584 return (0); 3585 } 3586 3587 /* 3588 * As per the VIO spec, the PREEMPT and PRESERVE flags are only valid 3589 * when the EXCLUSIVE flag is set. 3590 */ 3591 if (!(flags & VD_ACCESS_SET_EXCLUSIVE)) { 3592 PR0("Invalid VD_OP_SET_ACCESS flags: 0x%lx", flags); 3593 request->status = EINVAL; 3594 return (0); 3595 } 3596 3597 switch (flags & (VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE)) { 3598 3599 case VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE: 3600 /* 3601 * Flags EXCLUSIVE and PREEMPT and PRESERVE. We have to 3602 * acquire exclusive access rights, preserve them and we 3603 * can use preemption. So we can use the MHIOCTKNOWN ioctl. 3604 */ 3605 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT|PRESERVE)"); 3606 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3607 MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval); 3608 break; 3609 3610 case VD_ACCESS_SET_PRESERVE: 3611 /* 3612 * Flags EXCLUSIVE and PRESERVE. We have to acquire exclusive 3613 * access rights and preserve them, but not preempt any other 3614 * host. So we need to use the MHIOCTKOWN ioctl to enable the 3615 * "preserve" feature but we can not called it directly 3616 * because it uses preemption. So before that, we use the 3617 * MHIOCQRESERVE ioctl to ensure we can get exclusive rights 3618 * without preempting anyone. 3619 */ 3620 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PRESERVE)"); 3621 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3622 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3623 &rval); 3624 if (request->status != 0) 3625 break; 3626 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3627 MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval); 3628 break; 3629 3630 case VD_ACCESS_SET_PREEMPT: 3631 /* 3632 * Flags EXCLUSIVE and PREEMPT. We have to acquire exclusive 3633 * access rights and we can use preemption. So we try to do 3634 * a SCSI reservation, if it fails we reset the disk to clear 3635 * any reservation and we try to reserve again. 3636 */ 3637 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT)"); 3638 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3639 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3640 &rval); 3641 if (request->status == 0) 3642 break; 3643 3644 /* reset the disk */ 3645 (void) vd_scsi_reset(vd); 3646 3647 /* try again even if the reset has failed */ 3648 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3649 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3650 &rval); 3651 break; 3652 3653 case 0: 3654 /* Flag EXCLUSIVE only. Just issue a SCSI reservation */ 3655 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE)"); 3656 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3657 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3658 &rval); 3659 break; 3660 } 3661 3662 if (request->status == 0) 3663 vd->ownership = B_TRUE; 3664 else 3665 PR0("VD_OP_SET_ACCESS: error %d", request->status); 3666 3667 return (0); 3668 } 3669 3670 static void 3671 vd_reset_access(vd_t *vd) 3672 { 3673 int status, rval; 3674 3675 if (vd->file || !vd->ownership) 3676 return; 3677 3678 PR0("Releasing disk ownership"); 3679 status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL, 3680 (vd->open_flags | FKIOCTL), kcred, &rval); 3681 3682 /* 3683 * An EACCES failure means that there is a reservation conflict, 3684 * so we are not the owner of the disk anymore. 3685 */ 3686 if (status == 0 || status == EACCES) { 3687 vd->ownership = B_FALSE; 3688 return; 3689 } 3690 3691 PR0("Fail to release ownership, error %d", status); 3692 3693 /* 3694 * We have failed to release the ownership, try to reset the disk 3695 * to release reservations. 3696 */ 3697 PR0("Resetting disk"); 3698 status = vd_scsi_reset(vd); 3699 3700 if (status != 0) 3701 PR0("Fail to reset disk, error %d", status); 3702 3703 /* whatever the result of the reset is, we try the release again */ 3704 status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL, 3705 (vd->open_flags | FKIOCTL), kcred, &rval); 3706 3707 if (status == 0 || status == EACCES) { 3708 vd->ownership = B_FALSE; 3709 return; 3710 } 3711 3712 PR0("Fail to release ownership, error %d", status); 3713 3714 /* 3715 * At this point we have done our best to try to reset the 3716 * access rights to the disk and we don't know if we still 3717 * own a reservation and if any mechanism to preserve the 3718 * ownership is still in place. The ultimate solution would 3719 * be to reset the system but this is usually not what we 3720 * want to happen. 3721 */ 3722 3723 if (vd_reset_access_failure == A_REBOOT) { 3724 cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG 3725 ", rebooting the system", vd->device_path); 3726 (void) uadmin(A_SHUTDOWN, AD_BOOT, NULL); 3727 } else if (vd_reset_access_failure == A_DUMP) { 3728 panic(VD_RESET_ACCESS_FAILURE_MSG, vd->device_path); 3729 } 3730 3731 cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG, vd->device_path); 3732 } 3733 3734 /* 3735 * Define the supported operations once the functions for performing them have 3736 * been defined 3737 */ 3738 static const vds_operation_t vds_operation[] = { 3739 #define X(_s) #_s, _s 3740 {X(VD_OP_BREAD), vd_start_bio, vd_complete_bio}, 3741 {X(VD_OP_BWRITE), vd_start_bio, vd_complete_bio}, 3742 {X(VD_OP_FLUSH), vd_ioctl, NULL}, 3743 {X(VD_OP_GET_WCE), vd_ioctl, NULL}, 3744 {X(VD_OP_SET_WCE), vd_ioctl, NULL}, 3745 {X(VD_OP_GET_VTOC), vd_ioctl, NULL}, 3746 {X(VD_OP_SET_VTOC), vd_ioctl, NULL}, 3747 {X(VD_OP_GET_DISKGEOM), vd_ioctl, NULL}, 3748 {X(VD_OP_SET_DISKGEOM), vd_ioctl, NULL}, 3749 {X(VD_OP_GET_EFI), vd_ioctl, NULL}, 3750 {X(VD_OP_SET_EFI), vd_ioctl, NULL}, 3751 {X(VD_OP_GET_DEVID), vd_get_devid, NULL}, 3752 {X(VD_OP_SCSICMD), vd_ioctl, NULL}, 3753 {X(VD_OP_RESET), vd_reset, NULL}, 3754 {X(VD_OP_GET_CAPACITY), vd_get_capacity, NULL}, 3755 {X(VD_OP_SET_ACCESS), vd_set_access, NULL}, 3756 {X(VD_OP_GET_ACCESS), vd_get_access, NULL}, 3757 #undef X 3758 }; 3759 3760 static const size_t vds_noperations = 3761 (sizeof (vds_operation))/(sizeof (vds_operation[0])); 3762 3763 /* 3764 * Process a task specifying a client I/O request 3765 * 3766 * Parameters: 3767 * task - structure containing the request sent from client 3768 * 3769 * Return Value 3770 * 0 - success 3771 * ENOTSUP - Unknown/Unsupported VD_OP_XXX operation 3772 * EINVAL - Invalid disk slice 3773 * != 0 - some other non-zero return value from start function 3774 */ 3775 static int 3776 vd_do_process_task(vd_task_t *task) 3777 { 3778 int i; 3779 vd_t *vd = task->vd; 3780 vd_dring_payload_t *request = task->request; 3781 3782 ASSERT(vd != NULL); 3783 ASSERT(request != NULL); 3784 3785 /* Find the requested operation */ 3786 for (i = 0; i < vds_noperations; i++) { 3787 if (request->operation == vds_operation[i].operation) { 3788 /* all operations should have a start func */ 3789 ASSERT(vds_operation[i].start != NULL); 3790 3791 task->completef = vds_operation[i].complete; 3792 break; 3793 } 3794 } 3795 3796 /* 3797 * We need to check that the requested operation is permitted 3798 * for the particular client that sent it or that the loop above 3799 * did not complete without finding the operation type (indicating 3800 * that the requested operation is unknown/unimplemented) 3801 */ 3802 if ((VD_OP_SUPPORTED(vd->operations, request->operation) == B_FALSE) || 3803 (i == vds_noperations)) { 3804 PR0("Unsupported operation %u", request->operation); 3805 request->status = ENOTSUP; 3806 return (0); 3807 } 3808 3809 /* Range-check slice */ 3810 if (request->slice >= vd->nslices && 3811 ((vd->vdisk_type != VD_DISK_TYPE_DISK && vd_slice_single_slice) || 3812 request->slice != VD_SLICE_NONE)) { 3813 PR0("Invalid \"slice\" %u (max %u) for virtual disk", 3814 request->slice, (vd->nslices - 1)); 3815 request->status = EINVAL; 3816 return (0); 3817 } 3818 3819 /* 3820 * Call the function pointer that starts the operation. 3821 */ 3822 return (vds_operation[i].start(task)); 3823 } 3824 3825 /* 3826 * Description: 3827 * This function is called by both the in-band and descriptor ring 3828 * message processing functions paths to actually execute the task 3829 * requested by the vDisk client. It in turn calls its worker 3830 * function, vd_do_process_task(), to carry our the request. 3831 * 3832 * Any transport errors (e.g. LDC errors, vDisk protocol errors) are 3833 * saved in the 'status' field of the task and are propagated back 3834 * up the call stack to trigger a NACK 3835 * 3836 * Any request errors (e.g. ENOTTY from an ioctl) are saved in 3837 * the 'status' field of the request and result in an ACK being sent 3838 * by the completion handler. 3839 * 3840 * Parameters: 3841 * task - structure containing the request sent from client 3842 * 3843 * Return Value 3844 * 0 - successful synchronous request. 3845 * != 0 - transport error (e.g. LDC errors, vDisk protocol) 3846 * EINPROGRESS - task will be finished in a completion handler 3847 */ 3848 static int 3849 vd_process_task(vd_task_t *task) 3850 { 3851 vd_t *vd = task->vd; 3852 int status; 3853 3854 DTRACE_PROBE1(task__start, vd_task_t *, task); 3855 3856 task->status = vd_do_process_task(task); 3857 3858 /* 3859 * If the task processing function returned EINPROGRESS indicating 3860 * that the task needs completing then schedule a taskq entry to 3861 * finish it now. 3862 * 3863 * Otherwise the task processing function returned either zero 3864 * indicating that the task was finished in the start function (and we 3865 * don't need to wait in a completion function) or the start function 3866 * returned an error - in both cases all that needs to happen is the 3867 * notification to the vDisk client higher up the call stack. 3868 * If the task was using a Descriptor Ring, we need to mark it as done 3869 * at this stage. 3870 */ 3871 if (task->status == EINPROGRESS) { 3872 /* Queue a task to complete the operation */ 3873 (void) ddi_taskq_dispatch(vd->completionq, vd_complete, 3874 task, DDI_SLEEP); 3875 3876 } else if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) { 3877 /* Update the dring element if it's a dring client */ 3878 status = vd_mark_elem_done(vd, task->index, 3879 task->request->status, task->request->nbytes); 3880 if (status == ECONNRESET) 3881 vd_mark_in_reset(vd); 3882 else if (status == EACCES) 3883 vd_need_reset(vd, B_TRUE); 3884 } 3885 3886 return (task->status); 3887 } 3888 3889 /* 3890 * Return true if the "type", "subtype", and "env" fields of the "tag" first 3891 * argument match the corresponding remaining arguments; otherwise, return false 3892 */ 3893 boolean_t 3894 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env) 3895 { 3896 return ((tag->vio_msgtype == type) && 3897 (tag->vio_subtype == subtype) && 3898 (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE; 3899 } 3900 3901 /* 3902 * Check whether the major/minor version specified in "ver_msg" is supported 3903 * by this server. 3904 */ 3905 static boolean_t 3906 vds_supported_version(vio_ver_msg_t *ver_msg) 3907 { 3908 for (int i = 0; i < vds_num_versions; i++) { 3909 ASSERT(vds_version[i].major > 0); 3910 ASSERT((i == 0) || 3911 (vds_version[i].major < vds_version[i-1].major)); 3912 3913 /* 3914 * If the major versions match, adjust the minor version, if 3915 * necessary, down to the highest value supported by this 3916 * server and return true so this message will get "ack"ed; 3917 * the client should also support all minor versions lower 3918 * than the value it sent 3919 */ 3920 if (ver_msg->ver_major == vds_version[i].major) { 3921 if (ver_msg->ver_minor > vds_version[i].minor) { 3922 PR0("Adjusting minor version from %u to %u", 3923 ver_msg->ver_minor, vds_version[i].minor); 3924 ver_msg->ver_minor = vds_version[i].minor; 3925 } 3926 return (B_TRUE); 3927 } 3928 3929 /* 3930 * If the message contains a higher major version number, set 3931 * the message's major/minor versions to the current values 3932 * and return false, so this message will get "nack"ed with 3933 * these values, and the client will potentially try again 3934 * with the same or a lower version 3935 */ 3936 if (ver_msg->ver_major > vds_version[i].major) { 3937 ver_msg->ver_major = vds_version[i].major; 3938 ver_msg->ver_minor = vds_version[i].minor; 3939 return (B_FALSE); 3940 } 3941 3942 /* 3943 * Otherwise, the message's major version is less than the 3944 * current major version, so continue the loop to the next 3945 * (lower) supported version 3946 */ 3947 } 3948 3949 /* 3950 * No common version was found; "ground" the version pair in the 3951 * message to terminate negotiation 3952 */ 3953 ver_msg->ver_major = 0; 3954 ver_msg->ver_minor = 0; 3955 return (B_FALSE); 3956 } 3957 3958 /* 3959 * Process a version message from a client. vds expects to receive version 3960 * messages from clients seeking service, but never issues version messages 3961 * itself; therefore, vds can ACK or NACK client version messages, but does 3962 * not expect to receive version-message ACKs or NACKs (and will treat such 3963 * messages as invalid). 3964 */ 3965 static int 3966 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 3967 { 3968 vio_ver_msg_t *ver_msg = (vio_ver_msg_t *)msg; 3969 3970 3971 ASSERT(msglen >= sizeof (msg->tag)); 3972 3973 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 3974 VIO_VER_INFO)) { 3975 return (ENOMSG); /* not a version message */ 3976 } 3977 3978 if (msglen != sizeof (*ver_msg)) { 3979 PR0("Expected %lu-byte version message; " 3980 "received %lu bytes", sizeof (*ver_msg), msglen); 3981 return (EBADMSG); 3982 } 3983 3984 if (ver_msg->dev_class != VDEV_DISK) { 3985 PR0("Expected device class %u (disk); received %u", 3986 VDEV_DISK, ver_msg->dev_class); 3987 return (EBADMSG); 3988 } 3989 3990 /* 3991 * We're talking to the expected kind of client; set our device class 3992 * for "ack/nack" back to the client 3993 */ 3994 ver_msg->dev_class = VDEV_DISK_SERVER; 3995 3996 /* 3997 * Check whether the (valid) version message specifies a version 3998 * supported by this server. If the version is not supported, return 3999 * EBADMSG so the message will get "nack"ed; vds_supported_version() 4000 * will have updated the message with a supported version for the 4001 * client to consider 4002 */ 4003 if (!vds_supported_version(ver_msg)) 4004 return (EBADMSG); 4005 4006 4007 /* 4008 * A version has been agreed upon; use the client's SID for 4009 * communication on this channel now 4010 */ 4011 ASSERT(!(vd->initialized & VD_SID)); 4012 vd->sid = ver_msg->tag.vio_sid; 4013 vd->initialized |= VD_SID; 4014 4015 /* 4016 * Store the negotiated major and minor version values in the "vd" data 4017 * structure so that we can check if certain operations are supported 4018 * by the client. 4019 */ 4020 vd->version.major = ver_msg->ver_major; 4021 vd->version.minor = ver_msg->ver_minor; 4022 4023 PR0("Using major version %u, minor version %u", 4024 ver_msg->ver_major, ver_msg->ver_minor); 4025 return (0); 4026 } 4027 4028 static void 4029 vd_set_exported_operations(vd_t *vd) 4030 { 4031 vd->operations = 0; /* clear field */ 4032 4033 /* 4034 * We need to check from the highest version supported to the 4035 * lowest because versions with a higher minor number implicitly 4036 * support versions with a lower minor number. 4037 */ 4038 if (vio_ver_is_supported(vd->version, 1, 1)) { 4039 ASSERT(vd->open_flags & FREAD); 4040 vd->operations |= VD_OP_MASK_READ; 4041 4042 if (vd->open_flags & FWRITE) 4043 vd->operations |= VD_OP_MASK_WRITE; 4044 4045 if (vd->scsi) 4046 vd->operations |= VD_OP_MASK_SCSI; 4047 4048 if (vd->file && vd_file_is_iso_image(vd)) { 4049 /* 4050 * can't write to ISO images, make sure that write 4051 * support is not set in case administrator did not 4052 * use "options=ro" when doing an ldm add-vdsdev 4053 */ 4054 vd->operations &= ~VD_OP_MASK_WRITE; 4055 } 4056 } else if (vio_ver_is_supported(vd->version, 1, 0)) { 4057 vd->operations = VD_OP_MASK_READ | VD_OP_MASK_WRITE; 4058 } 4059 4060 /* we should have already agreed on a version */ 4061 ASSERT(vd->operations != 0); 4062 } 4063 4064 static int 4065 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4066 { 4067 vd_attr_msg_t *attr_msg = (vd_attr_msg_t *)msg; 4068 int status, retry = 0; 4069 4070 4071 ASSERT(msglen >= sizeof (msg->tag)); 4072 4073 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 4074 VIO_ATTR_INFO)) { 4075 PR0("Message is not an attribute message"); 4076 return (ENOMSG); 4077 } 4078 4079 if (msglen != sizeof (*attr_msg)) { 4080 PR0("Expected %lu-byte attribute message; " 4081 "received %lu bytes", sizeof (*attr_msg), msglen); 4082 return (EBADMSG); 4083 } 4084 4085 if (attr_msg->max_xfer_sz == 0) { 4086 PR0("Received maximum transfer size of 0 from client"); 4087 return (EBADMSG); 4088 } 4089 4090 if ((attr_msg->xfer_mode != VIO_DESC_MODE) && 4091 (attr_msg->xfer_mode != VIO_DRING_MODE_V1_0)) { 4092 PR0("Client requested unsupported transfer mode"); 4093 return (EBADMSG); 4094 } 4095 4096 /* 4097 * check if the underlying disk is ready, if not try accessing 4098 * the device again. Open the vdisk device and extract info 4099 * about it, as this is needed to respond to the attr info msg 4100 */ 4101 if ((vd->initialized & VD_DISK_READY) == 0) { 4102 PR0("Retry setting up disk (%s)", vd->device_path); 4103 do { 4104 status = vd_setup_vd(vd); 4105 if (status != EAGAIN || ++retry > vds_dev_retries) 4106 break; 4107 4108 /* incremental delay */ 4109 delay(drv_usectohz(vds_dev_delay)); 4110 4111 /* if vdisk is no longer enabled - return error */ 4112 if (!vd_enabled(vd)) 4113 return (ENXIO); 4114 4115 } while (status == EAGAIN); 4116 4117 if (status) 4118 return (ENXIO); 4119 4120 vd->initialized |= VD_DISK_READY; 4121 ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR); 4122 PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u", 4123 ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"), 4124 (vd->volume ? "yes" : "no"), 4125 (vd->file ? "yes" : "no"), 4126 vd->nslices); 4127 } 4128 4129 /* Success: valid message and transfer mode */ 4130 vd->xfer_mode = attr_msg->xfer_mode; 4131 4132 if (vd->xfer_mode == VIO_DESC_MODE) { 4133 4134 /* 4135 * The vd_dring_inband_msg_t contains one cookie; need room 4136 * for up to n-1 more cookies, where "n" is the number of full 4137 * pages plus possibly one partial page required to cover 4138 * "max_xfer_sz". Add room for one more cookie if 4139 * "max_xfer_sz" isn't an integral multiple of the page size. 4140 * Must first get the maximum transfer size in bytes. 4141 */ 4142 size_t max_xfer_bytes = attr_msg->vdisk_block_size ? 4143 attr_msg->vdisk_block_size*attr_msg->max_xfer_sz : 4144 attr_msg->max_xfer_sz; 4145 size_t max_inband_msglen = 4146 sizeof (vd_dring_inband_msg_t) + 4147 ((max_xfer_bytes/PAGESIZE + 4148 ((max_xfer_bytes % PAGESIZE) ? 1 : 0))* 4149 (sizeof (ldc_mem_cookie_t))); 4150 4151 /* 4152 * Set the maximum expected message length to 4153 * accommodate in-band-descriptor messages with all 4154 * their cookies 4155 */ 4156 vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen); 4157 4158 /* 4159 * Initialize the data structure for processing in-band I/O 4160 * request descriptors 4161 */ 4162 vd->inband_task.vd = vd; 4163 vd->inband_task.msg = kmem_alloc(vd->max_msglen, KM_SLEEP); 4164 vd->inband_task.index = 0; 4165 vd->inband_task.type = VD_FINAL_RANGE_TASK; /* range == 1 */ 4166 } 4167 4168 /* Return the device's block size and max transfer size to the client */ 4169 attr_msg->vdisk_block_size = vd->vdisk_block_size; 4170 attr_msg->max_xfer_sz = vd->max_xfer_sz; 4171 4172 attr_msg->vdisk_size = vd->vdisk_size; 4173 attr_msg->vdisk_type = (vd_slice_single_slice)? vd->vdisk_type : 4174 VD_DISK_TYPE_DISK; 4175 attr_msg->vdisk_media = vd->vdisk_media; 4176 4177 /* Discover and save the list of supported VD_OP_XXX operations */ 4178 vd_set_exported_operations(vd); 4179 attr_msg->operations = vd->operations; 4180 4181 PR0("%s", VD_CLIENT(vd)); 4182 4183 ASSERT(vd->dring_task == NULL); 4184 4185 return (0); 4186 } 4187 4188 static int 4189 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4190 { 4191 int status; 4192 size_t expected; 4193 ldc_mem_info_t dring_minfo; 4194 uint8_t mtype; 4195 vio_dring_reg_msg_t *reg_msg = (vio_dring_reg_msg_t *)msg; 4196 4197 4198 ASSERT(msglen >= sizeof (msg->tag)); 4199 4200 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 4201 VIO_DRING_REG)) { 4202 PR0("Message is not a register-dring message"); 4203 return (ENOMSG); 4204 } 4205 4206 if (msglen < sizeof (*reg_msg)) { 4207 PR0("Expected at least %lu-byte register-dring message; " 4208 "received %lu bytes", sizeof (*reg_msg), msglen); 4209 return (EBADMSG); 4210 } 4211 4212 expected = sizeof (*reg_msg) + 4213 (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0])); 4214 if (msglen != expected) { 4215 PR0("Expected %lu-byte register-dring message; " 4216 "received %lu bytes", expected, msglen); 4217 return (EBADMSG); 4218 } 4219 4220 if (vd->initialized & VD_DRING) { 4221 PR0("A dring was previously registered; only support one"); 4222 return (EBADMSG); 4223 } 4224 4225 if (reg_msg->num_descriptors > INT32_MAX) { 4226 PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)", 4227 reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX)); 4228 return (EBADMSG); 4229 } 4230 4231 if (reg_msg->ncookies != 1) { 4232 /* 4233 * In addition to fixing the assertion in the success case 4234 * below, supporting drings which require more than one 4235 * "cookie" requires increasing the value of vd->max_msglen 4236 * somewhere in the code path prior to receiving the message 4237 * which results in calling this function. Note that without 4238 * making this change, the larger message size required to 4239 * accommodate multiple cookies cannot be successfully 4240 * received, so this function will not even get called. 4241 * Gracefully accommodating more dring cookies might 4242 * reasonably demand exchanging an additional attribute or 4243 * making a minor protocol adjustment 4244 */ 4245 PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies); 4246 return (EBADMSG); 4247 } 4248 4249 if (vd_direct_mapped_drings) 4250 mtype = LDC_DIRECT_MAP; 4251 else 4252 mtype = LDC_SHADOW_MAP; 4253 4254 status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie, 4255 reg_msg->ncookies, reg_msg->num_descriptors, 4256 reg_msg->descriptor_size, mtype, &vd->dring_handle); 4257 if (status != 0) { 4258 PR0("ldc_mem_dring_map() returned errno %d", status); 4259 return (status); 4260 } 4261 4262 /* 4263 * To remove the need for this assertion, must call 4264 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a 4265 * successful call to ldc_mem_dring_map() 4266 */ 4267 ASSERT(reg_msg->ncookies == 1); 4268 4269 if ((status = 4270 ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) { 4271 PR0("ldc_mem_dring_info() returned errno %d", status); 4272 if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0) 4273 PR0("ldc_mem_dring_unmap() returned errno %d", status); 4274 return (status); 4275 } 4276 4277 if (dring_minfo.vaddr == NULL) { 4278 PR0("Descriptor ring virtual address is NULL"); 4279 return (ENXIO); 4280 } 4281 4282 4283 /* Initialize for valid message and mapped dring */ 4284 PR1("descriptor size = %u, dring length = %u", 4285 vd->descriptor_size, vd->dring_len); 4286 vd->initialized |= VD_DRING; 4287 vd->dring_ident = 1; /* "There Can Be Only One" */ 4288 vd->dring = dring_minfo.vaddr; 4289 vd->descriptor_size = reg_msg->descriptor_size; 4290 vd->dring_len = reg_msg->num_descriptors; 4291 vd->dring_mtype = dring_minfo.mtype; 4292 reg_msg->dring_ident = vd->dring_ident; 4293 4294 /* 4295 * Allocate and initialize a "shadow" array of data structures for 4296 * tasks to process I/O requests in dring elements 4297 */ 4298 vd->dring_task = 4299 kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP); 4300 for (int i = 0; i < vd->dring_len; i++) { 4301 vd->dring_task[i].vd = vd; 4302 vd->dring_task[i].index = i; 4303 vd->dring_task[i].request = &VD_DRING_ELEM(i)->payload; 4304 4305 status = ldc_mem_alloc_handle(vd->ldc_handle, 4306 &(vd->dring_task[i].mhdl)); 4307 if (status) { 4308 PR0("ldc_mem_alloc_handle() returned err %d ", status); 4309 return (ENXIO); 4310 } 4311 4312 vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP); 4313 } 4314 4315 return (0); 4316 } 4317 4318 static int 4319 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4320 { 4321 vio_dring_unreg_msg_t *unreg_msg = (vio_dring_unreg_msg_t *)msg; 4322 4323 4324 ASSERT(msglen >= sizeof (msg->tag)); 4325 4326 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 4327 VIO_DRING_UNREG)) { 4328 PR0("Message is not an unregister-dring message"); 4329 return (ENOMSG); 4330 } 4331 4332 if (msglen != sizeof (*unreg_msg)) { 4333 PR0("Expected %lu-byte unregister-dring message; " 4334 "received %lu bytes", sizeof (*unreg_msg), msglen); 4335 return (EBADMSG); 4336 } 4337 4338 if (unreg_msg->dring_ident != vd->dring_ident) { 4339 PR0("Expected dring ident %lu; received %lu", 4340 vd->dring_ident, unreg_msg->dring_ident); 4341 return (EBADMSG); 4342 } 4343 4344 return (0); 4345 } 4346 4347 static int 4348 process_rdx_msg(vio_msg_t *msg, size_t msglen) 4349 { 4350 ASSERT(msglen >= sizeof (msg->tag)); 4351 4352 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) { 4353 PR0("Message is not an RDX message"); 4354 return (ENOMSG); 4355 } 4356 4357 if (msglen != sizeof (vio_rdx_msg_t)) { 4358 PR0("Expected %lu-byte RDX message; received %lu bytes", 4359 sizeof (vio_rdx_msg_t), msglen); 4360 return (EBADMSG); 4361 } 4362 4363 PR0("Valid RDX message"); 4364 return (0); 4365 } 4366 4367 static int 4368 vd_check_seq_num(vd_t *vd, uint64_t seq_num) 4369 { 4370 if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) { 4371 PR0("Received seq_num %lu; expected %lu", 4372 seq_num, (vd->seq_num + 1)); 4373 PR0("initiating soft reset"); 4374 vd_need_reset(vd, B_FALSE); 4375 return (1); 4376 } 4377 4378 vd->seq_num = seq_num; 4379 vd->initialized |= VD_SEQ_NUM; /* superfluous after first time... */ 4380 return (0); 4381 } 4382 4383 /* 4384 * Return the expected size of an inband-descriptor message with all the 4385 * cookies it claims to include 4386 */ 4387 static size_t 4388 expected_inband_size(vd_dring_inband_msg_t *msg) 4389 { 4390 return ((sizeof (*msg)) + 4391 (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0]))); 4392 } 4393 4394 /* 4395 * Process an in-band descriptor message: used with clients like OBP, with 4396 * which vds exchanges descriptors within VIO message payloads, rather than 4397 * operating on them within a descriptor ring 4398 */ 4399 static int 4400 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4401 { 4402 size_t expected; 4403 vd_dring_inband_msg_t *desc_msg = (vd_dring_inband_msg_t *)msg; 4404 4405 4406 ASSERT(msglen >= sizeof (msg->tag)); 4407 4408 if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO, 4409 VIO_DESC_DATA)) { 4410 PR1("Message is not an in-band-descriptor message"); 4411 return (ENOMSG); 4412 } 4413 4414 if (msglen < sizeof (*desc_msg)) { 4415 PR0("Expected at least %lu-byte descriptor message; " 4416 "received %lu bytes", sizeof (*desc_msg), msglen); 4417 return (EBADMSG); 4418 } 4419 4420 if (msglen != (expected = expected_inband_size(desc_msg))) { 4421 PR0("Expected %lu-byte descriptor message; " 4422 "received %lu bytes", expected, msglen); 4423 return (EBADMSG); 4424 } 4425 4426 if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0) 4427 return (EBADMSG); 4428 4429 /* 4430 * Valid message: Set up the in-band descriptor task and process the 4431 * request. Arrange to acknowledge the client's message, unless an 4432 * error processing the descriptor task results in setting 4433 * VIO_SUBTYPE_NACK 4434 */ 4435 PR1("Valid in-band-descriptor message"); 4436 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 4437 4438 ASSERT(vd->inband_task.msg != NULL); 4439 4440 bcopy(msg, vd->inband_task.msg, msglen); 4441 vd->inband_task.msglen = msglen; 4442 4443 /* 4444 * The task request is now the payload of the message 4445 * that was just copied into the body of the task. 4446 */ 4447 desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg; 4448 vd->inband_task.request = &desc_msg->payload; 4449 4450 return (vd_process_task(&vd->inband_task)); 4451 } 4452 4453 static int 4454 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx, 4455 vio_msg_t *msg, size_t msglen) 4456 { 4457 int status; 4458 boolean_t ready; 4459 on_trap_data_t otd; 4460 vd_dring_entry_t *elem = VD_DRING_ELEM(idx); 4461 4462 /* Accept the updated dring element */ 4463 if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype, 4464 vd->dring_handle, idx, idx)) != 0) { 4465 return (status); 4466 } 4467 ready = (elem->hdr.dstate == VIO_DESC_READY); 4468 if (ready) { 4469 elem->hdr.dstate = VIO_DESC_ACCEPTED; 4470 } else { 4471 PR0("descriptor %u not ready", idx); 4472 VD_DUMP_DRING_ELEM(elem); 4473 } 4474 if ((status = VIO_DRING_RELEASE(vd->dring_mtype, 4475 vd->dring_handle, idx, idx)) != 0) { 4476 PR0("VIO_DRING_RELEASE() returned errno %d", status); 4477 return (status); 4478 } 4479 if (!ready) 4480 return (EBUSY); 4481 4482 4483 /* Initialize a task and process the accepted element */ 4484 PR1("Processing dring element %u", idx); 4485 vd->dring_task[idx].type = type; 4486 4487 /* duplicate msg buf for cookies etc. */ 4488 bcopy(msg, vd->dring_task[idx].msg, msglen); 4489 4490 vd->dring_task[idx].msglen = msglen; 4491 return (vd_process_task(&vd->dring_task[idx])); 4492 } 4493 4494 static int 4495 vd_process_element_range(vd_t *vd, int start, int end, 4496 vio_msg_t *msg, size_t msglen) 4497 { 4498 int i, n, nelem, status = 0; 4499 boolean_t inprogress = B_FALSE; 4500 vd_task_type_t type; 4501 4502 4503 ASSERT(start >= 0); 4504 ASSERT(end >= 0); 4505 4506 /* 4507 * Arrange to acknowledge the client's message, unless an error 4508 * processing one of the dring elements results in setting 4509 * VIO_SUBTYPE_NACK 4510 */ 4511 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 4512 4513 /* 4514 * Process the dring elements in the range 4515 */ 4516 nelem = ((end < start) ? end + vd->dring_len : end) - start + 1; 4517 for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) { 4518 ((vio_dring_msg_t *)msg)->end_idx = i; 4519 type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK; 4520 status = vd_process_element(vd, type, i, msg, msglen); 4521 if (status == EINPROGRESS) 4522 inprogress = B_TRUE; 4523 else if (status != 0) 4524 break; 4525 } 4526 4527 /* 4528 * If some, but not all, operations of a multi-element range are in 4529 * progress, wait for other operations to complete before returning 4530 * (which will result in "ack" or "nack" of the message). Note that 4531 * all outstanding operations will need to complete, not just the ones 4532 * corresponding to the current range of dring elements; howevever, as 4533 * this situation is an error case, performance is less critical. 4534 */ 4535 if ((nelem > 1) && (status != EINPROGRESS) && inprogress) 4536 ddi_taskq_wait(vd->completionq); 4537 4538 return (status); 4539 } 4540 4541 static int 4542 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4543 { 4544 vio_dring_msg_t *dring_msg = (vio_dring_msg_t *)msg; 4545 4546 4547 ASSERT(msglen >= sizeof (msg->tag)); 4548 4549 if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO, 4550 VIO_DRING_DATA)) { 4551 PR1("Message is not a dring-data message"); 4552 return (ENOMSG); 4553 } 4554 4555 if (msglen != sizeof (*dring_msg)) { 4556 PR0("Expected %lu-byte dring message; received %lu bytes", 4557 sizeof (*dring_msg), msglen); 4558 return (EBADMSG); 4559 } 4560 4561 if (vd_check_seq_num(vd, dring_msg->seq_num) != 0) 4562 return (EBADMSG); 4563 4564 if (dring_msg->dring_ident != vd->dring_ident) { 4565 PR0("Expected dring ident %lu; received ident %lu", 4566 vd->dring_ident, dring_msg->dring_ident); 4567 return (EBADMSG); 4568 } 4569 4570 if (dring_msg->start_idx >= vd->dring_len) { 4571 PR0("\"start_idx\" = %u; must be less than %u", 4572 dring_msg->start_idx, vd->dring_len); 4573 return (EBADMSG); 4574 } 4575 4576 if ((dring_msg->end_idx < 0) || 4577 (dring_msg->end_idx >= vd->dring_len)) { 4578 PR0("\"end_idx\" = %u; must be >= 0 and less than %u", 4579 dring_msg->end_idx, vd->dring_len); 4580 return (EBADMSG); 4581 } 4582 4583 /* Valid message; process range of updated dring elements */ 4584 PR1("Processing descriptor range, start = %u, end = %u", 4585 dring_msg->start_idx, dring_msg->end_idx); 4586 return (vd_process_element_range(vd, dring_msg->start_idx, 4587 dring_msg->end_idx, msg, msglen)); 4588 } 4589 4590 static int 4591 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes) 4592 { 4593 int retry, status; 4594 size_t size = *nbytes; 4595 4596 4597 for (retry = 0, status = ETIMEDOUT; 4598 retry < vds_ldc_retries && status == ETIMEDOUT; 4599 retry++) { 4600 PR1("ldc_read() attempt %d", (retry + 1)); 4601 *nbytes = size; 4602 status = ldc_read(ldc_handle, msg, nbytes); 4603 } 4604 4605 if (status) { 4606 PR0("ldc_read() returned errno %d", status); 4607 if (status != ECONNRESET) 4608 return (ENOMSG); 4609 return (status); 4610 } else if (*nbytes == 0) { 4611 PR1("ldc_read() returned 0 and no message read"); 4612 return (ENOMSG); 4613 } 4614 4615 PR1("RCVD %lu-byte message", *nbytes); 4616 return (0); 4617 } 4618 4619 static int 4620 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4621 { 4622 int status; 4623 4624 4625 PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype, 4626 msg->tag.vio_subtype, msg->tag.vio_subtype_env); 4627 #ifdef DEBUG 4628 vd_decode_tag(msg); 4629 #endif 4630 4631 /* 4632 * Validate session ID up front, since it applies to all messages 4633 * once set 4634 */ 4635 if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) { 4636 PR0("Expected SID %u, received %u", vd->sid, 4637 msg->tag.vio_sid); 4638 return (EBADMSG); 4639 } 4640 4641 PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state)); 4642 4643 /* 4644 * Process the received message based on connection state 4645 */ 4646 switch (vd->state) { 4647 case VD_STATE_INIT: /* expect version message */ 4648 if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0) 4649 return (status); 4650 4651 /* Version negotiated, move to that state */ 4652 vd->state = VD_STATE_VER; 4653 return (0); 4654 4655 case VD_STATE_VER: /* expect attribute message */ 4656 if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0) 4657 return (status); 4658 4659 /* Attributes exchanged, move to that state */ 4660 vd->state = VD_STATE_ATTR; 4661 return (0); 4662 4663 case VD_STATE_ATTR: 4664 switch (vd->xfer_mode) { 4665 case VIO_DESC_MODE: /* expect RDX message */ 4666 if ((status = process_rdx_msg(msg, msglen)) != 0) 4667 return (status); 4668 4669 /* Ready to receive in-band descriptors */ 4670 vd->state = VD_STATE_DATA; 4671 return (0); 4672 4673 case VIO_DRING_MODE_V1_0: /* expect register-dring message */ 4674 if ((status = 4675 vd_process_dring_reg_msg(vd, msg, msglen)) != 0) 4676 return (status); 4677 4678 /* One dring negotiated, move to that state */ 4679 vd->state = VD_STATE_DRING; 4680 return (0); 4681 4682 default: 4683 ASSERT("Unsupported transfer mode"); 4684 PR0("Unsupported transfer mode"); 4685 return (ENOTSUP); 4686 } 4687 4688 case VD_STATE_DRING: /* expect RDX, register-dring, or unreg-dring */ 4689 if ((status = process_rdx_msg(msg, msglen)) == 0) { 4690 /* Ready to receive data */ 4691 vd->state = VD_STATE_DATA; 4692 return (0); 4693 } else if (status != ENOMSG) { 4694 return (status); 4695 } 4696 4697 4698 /* 4699 * If another register-dring message is received, stay in 4700 * dring state in case the client sends RDX; although the 4701 * protocol allows multiple drings, this server does not 4702 * support using more than one 4703 */ 4704 if ((status = 4705 vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG) 4706 return (status); 4707 4708 /* 4709 * Acknowledge an unregister-dring message, but reset the 4710 * connection anyway: Although the protocol allows 4711 * unregistering drings, this server cannot serve a vdisk 4712 * without its only dring 4713 */ 4714 status = vd_process_dring_unreg_msg(vd, msg, msglen); 4715 return ((status == 0) ? ENOTSUP : status); 4716 4717 case VD_STATE_DATA: 4718 switch (vd->xfer_mode) { 4719 case VIO_DESC_MODE: /* expect in-band-descriptor message */ 4720 return (vd_process_desc_msg(vd, msg, msglen)); 4721 4722 case VIO_DRING_MODE_V1_0: /* expect dring-data or unreg-dring */ 4723 /* 4724 * Typically expect dring-data messages, so handle 4725 * them first 4726 */ 4727 if ((status = vd_process_dring_msg(vd, msg, 4728 msglen)) != ENOMSG) 4729 return (status); 4730 4731 /* 4732 * Acknowledge an unregister-dring message, but reset 4733 * the connection anyway: Although the protocol 4734 * allows unregistering drings, this server cannot 4735 * serve a vdisk without its only dring 4736 */ 4737 status = vd_process_dring_unreg_msg(vd, msg, msglen); 4738 return ((status == 0) ? ENOTSUP : status); 4739 4740 default: 4741 ASSERT("Unsupported transfer mode"); 4742 PR0("Unsupported transfer mode"); 4743 return (ENOTSUP); 4744 } 4745 4746 default: 4747 ASSERT("Invalid client connection state"); 4748 PR0("Invalid client connection state"); 4749 return (ENOTSUP); 4750 } 4751 } 4752 4753 static int 4754 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4755 { 4756 int status; 4757 boolean_t reset_ldc = B_FALSE; 4758 vd_task_t task; 4759 4760 /* 4761 * Check that the message is at least big enough for a "tag", so that 4762 * message processing can proceed based on tag-specified message type 4763 */ 4764 if (msglen < sizeof (vio_msg_tag_t)) { 4765 PR0("Received short (%lu-byte) message", msglen); 4766 /* Can't "nack" short message, so drop the big hammer */ 4767 PR0("initiating full reset"); 4768 vd_need_reset(vd, B_TRUE); 4769 return (EBADMSG); 4770 } 4771 4772 /* 4773 * Process the message 4774 */ 4775 switch (status = vd_do_process_msg(vd, msg, msglen)) { 4776 case 0: 4777 /* "ack" valid, successfully-processed messages */ 4778 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 4779 break; 4780 4781 case EINPROGRESS: 4782 /* The completion handler will "ack" or "nack" the message */ 4783 return (EINPROGRESS); 4784 case ENOMSG: 4785 PR0("Received unexpected message"); 4786 _NOTE(FALLTHROUGH); 4787 case EBADMSG: 4788 case ENOTSUP: 4789 /* "transport" error will cause NACK of invalid messages */ 4790 msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 4791 break; 4792 4793 default: 4794 /* "transport" error will cause NACK of invalid messages */ 4795 msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 4796 /* An LDC error probably occurred, so try resetting it */ 4797 reset_ldc = B_TRUE; 4798 break; 4799 } 4800 4801 PR1("\tResulting in state %d (%s)", vd->state, 4802 vd_decode_state(vd->state)); 4803 4804 /* populate the task so we can dispatch it on the taskq */ 4805 task.vd = vd; 4806 task.msg = msg; 4807 task.msglen = msglen; 4808 4809 /* 4810 * Queue a task to send the notification that the operation completed. 4811 * We need to ensure that requests are responded to in the correct 4812 * order and since the taskq is processed serially this ordering 4813 * is maintained. 4814 */ 4815 (void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify, 4816 &task, DDI_SLEEP); 4817 4818 /* 4819 * To ensure handshake negotiations do not happen out of order, such 4820 * requests that come through this path should not be done in parallel 4821 * so we need to wait here until the response is sent to the client. 4822 */ 4823 ddi_taskq_wait(vd->completionq); 4824 4825 /* Arrange to reset the connection for nack'ed or failed messages */ 4826 if ((status != 0) || reset_ldc) { 4827 PR0("initiating %s reset", 4828 (reset_ldc) ? "full" : "soft"); 4829 vd_need_reset(vd, reset_ldc); 4830 } 4831 4832 return (status); 4833 } 4834 4835 static boolean_t 4836 vd_enabled(vd_t *vd) 4837 { 4838 boolean_t enabled; 4839 4840 mutex_enter(&vd->lock); 4841 enabled = vd->enabled; 4842 mutex_exit(&vd->lock); 4843 return (enabled); 4844 } 4845 4846 static void 4847 vd_recv_msg(void *arg) 4848 { 4849 vd_t *vd = (vd_t *)arg; 4850 int rv = 0, status = 0; 4851 4852 ASSERT(vd != NULL); 4853 4854 PR2("New task to receive incoming message(s)"); 4855 4856 4857 while (vd_enabled(vd) && status == 0) { 4858 size_t msglen, msgsize; 4859 ldc_status_t lstatus; 4860 4861 /* 4862 * Receive and process a message 4863 */ 4864 vd_reset_if_needed(vd); /* can change vd->max_msglen */ 4865 4866 /* 4867 * check if channel is UP - else break out of loop 4868 */ 4869 status = ldc_status(vd->ldc_handle, &lstatus); 4870 if (lstatus != LDC_UP) { 4871 PR0("channel not up (status=%d), exiting recv loop\n", 4872 lstatus); 4873 break; 4874 } 4875 4876 ASSERT(vd->max_msglen != 0); 4877 4878 msgsize = vd->max_msglen; /* stable copy for alloc/free */ 4879 msglen = msgsize; /* actual len after recv_msg() */ 4880 4881 status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen); 4882 switch (status) { 4883 case 0: 4884 rv = vd_process_msg(vd, (vio_msg_t *)vd->vio_msgp, 4885 msglen); 4886 /* check if max_msglen changed */ 4887 if (msgsize != vd->max_msglen) { 4888 PR0("max_msglen changed 0x%lx to 0x%lx bytes\n", 4889 msgsize, vd->max_msglen); 4890 kmem_free(vd->vio_msgp, msgsize); 4891 vd->vio_msgp = 4892 kmem_alloc(vd->max_msglen, KM_SLEEP); 4893 } 4894 if (rv == EINPROGRESS) 4895 continue; 4896 break; 4897 4898 case ENOMSG: 4899 break; 4900 4901 case ECONNRESET: 4902 PR0("initiating soft reset (ECONNRESET)\n"); 4903 vd_need_reset(vd, B_FALSE); 4904 status = 0; 4905 break; 4906 4907 default: 4908 /* Probably an LDC failure; arrange to reset it */ 4909 PR0("initiating full reset (status=0x%x)", status); 4910 vd_need_reset(vd, B_TRUE); 4911 break; 4912 } 4913 } 4914 4915 PR2("Task finished"); 4916 } 4917 4918 static uint_t 4919 vd_handle_ldc_events(uint64_t event, caddr_t arg) 4920 { 4921 vd_t *vd = (vd_t *)(void *)arg; 4922 int status; 4923 4924 ASSERT(vd != NULL); 4925 4926 if (!vd_enabled(vd)) 4927 return (LDC_SUCCESS); 4928 4929 if (event & LDC_EVT_DOWN) { 4930 PR0("LDC_EVT_DOWN: LDC channel went down"); 4931 4932 vd_need_reset(vd, B_TRUE); 4933 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, 4934 DDI_SLEEP); 4935 if (status == DDI_FAILURE) { 4936 PR0("cannot schedule task to recv msg\n"); 4937 vd_need_reset(vd, B_TRUE); 4938 } 4939 } 4940 4941 if (event & LDC_EVT_RESET) { 4942 PR0("LDC_EVT_RESET: LDC channel was reset"); 4943 4944 if (vd->state != VD_STATE_INIT) { 4945 PR0("scheduling full reset"); 4946 vd_need_reset(vd, B_FALSE); 4947 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, 4948 vd, DDI_SLEEP); 4949 if (status == DDI_FAILURE) { 4950 PR0("cannot schedule task to recv msg\n"); 4951 vd_need_reset(vd, B_TRUE); 4952 } 4953 4954 } else { 4955 PR0("channel already reset, ignoring...\n"); 4956 PR0("doing ldc up...\n"); 4957 (void) ldc_up(vd->ldc_handle); 4958 } 4959 4960 return (LDC_SUCCESS); 4961 } 4962 4963 if (event & LDC_EVT_UP) { 4964 PR0("EVT_UP: LDC is up\nResetting client connection state"); 4965 PR0("initiating soft reset"); 4966 vd_need_reset(vd, B_FALSE); 4967 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, 4968 vd, DDI_SLEEP); 4969 if (status == DDI_FAILURE) { 4970 PR0("cannot schedule task to recv msg\n"); 4971 vd_need_reset(vd, B_TRUE); 4972 return (LDC_SUCCESS); 4973 } 4974 } 4975 4976 if (event & LDC_EVT_READ) { 4977 int status; 4978 4979 PR1("New data available"); 4980 /* Queue a task to receive the new data */ 4981 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, 4982 DDI_SLEEP); 4983 4984 if (status == DDI_FAILURE) { 4985 PR0("cannot schedule task to recv msg\n"); 4986 vd_need_reset(vd, B_TRUE); 4987 } 4988 } 4989 4990 return (LDC_SUCCESS); 4991 } 4992 4993 static uint_t 4994 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 4995 { 4996 _NOTE(ARGUNUSED(key, val)) 4997 (*((uint_t *)arg))++; 4998 return (MH_WALK_TERMINATE); 4999 } 5000 5001 5002 static int 5003 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 5004 { 5005 uint_t vd_present = 0; 5006 minor_t instance; 5007 vds_t *vds; 5008 5009 5010 switch (cmd) { 5011 case DDI_DETACH: 5012 /* the real work happens below */ 5013 break; 5014 case DDI_SUSPEND: 5015 PR0("No action required for DDI_SUSPEND"); 5016 return (DDI_SUCCESS); 5017 default: 5018 PR0("Unrecognized \"cmd\""); 5019 return (DDI_FAILURE); 5020 } 5021 5022 ASSERT(cmd == DDI_DETACH); 5023 instance = ddi_get_instance(dip); 5024 if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) { 5025 PR0("Could not get state for instance %u", instance); 5026 ddi_soft_state_free(vds_state, instance); 5027 return (DDI_FAILURE); 5028 } 5029 5030 /* Do no detach when serving any vdisks */ 5031 mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present); 5032 if (vd_present) { 5033 PR0("Not detaching because serving vdisks"); 5034 return (DDI_FAILURE); 5035 } 5036 5037 PR0("Detaching"); 5038 if (vds->initialized & VDS_MDEG) { 5039 (void) mdeg_unregister(vds->mdeg); 5040 kmem_free(vds->ispecp->specp, sizeof (vds_prop_template)); 5041 kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t)); 5042 vds->ispecp = NULL; 5043 vds->mdeg = NULL; 5044 } 5045 5046 vds_driver_types_free(vds); 5047 5048 if (vds->initialized & VDS_LDI) 5049 (void) ldi_ident_release(vds->ldi_ident); 5050 mod_hash_destroy_hash(vds->vd_table); 5051 ddi_soft_state_free(vds_state, instance); 5052 return (DDI_SUCCESS); 5053 } 5054 5055 /* 5056 * Description: 5057 * This function checks to see if the file being used as a 5058 * virtual disk is an ISO image. An ISO image is a special 5059 * case which can be booted/installed from like a CD/DVD 5060 * 5061 * Parameters: 5062 * vd - disk on which the operation is performed. 5063 * 5064 * Return Code: 5065 * B_TRUE - The file is an ISO 9660 compliant image 5066 * B_FALSE - just a regular disk image file 5067 */ 5068 static boolean_t 5069 vd_file_is_iso_image(vd_t *vd) 5070 { 5071 char iso_buf[ISO_SECTOR_SIZE]; 5072 int i, rv; 5073 uint_t sec; 5074 5075 ASSERT(vd->file); 5076 5077 /* 5078 * If we have already discovered and saved this info we can 5079 * short-circuit the check and avoid reading the file. 5080 */ 5081 if (vd->vdisk_media == VD_MEDIA_DVD || vd->vdisk_media == VD_MEDIA_CD) 5082 return (B_TRUE); 5083 5084 /* 5085 * We wish to read the sector that should contain the 2nd ISO volume 5086 * descriptor. The second field in this descriptor is called the 5087 * Standard Identifier and is set to CD001 for a CD-ROM compliant 5088 * to the ISO 9660 standard. 5089 */ 5090 sec = (ISO_VOLDESC_SEC * ISO_SECTOR_SIZE) / vd->vdisk_block_size; 5091 rv = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)iso_buf, 5092 sec, ISO_SECTOR_SIZE); 5093 5094 if (rv < 0) 5095 return (B_FALSE); 5096 5097 for (i = 0; i < ISO_ID_STRLEN; i++) { 5098 if (ISO_STD_ID(iso_buf)[i] != ISO_ID_STRING[i]) 5099 return (B_FALSE); 5100 } 5101 5102 return (B_TRUE); 5103 } 5104 5105 /* 5106 * Description: 5107 * This function checks to see if the virtual device is an ATAPI 5108 * device. ATAPI devices use Group 1 Read/Write commands, so 5109 * any USCSI calls vds makes need to take this into account. 5110 * 5111 * Parameters: 5112 * vd - disk on which the operation is performed. 5113 * 5114 * Return Code: 5115 * B_TRUE - The virtual disk is backed by an ATAPI device 5116 * B_FALSE - not an ATAPI device (presumably SCSI) 5117 */ 5118 static boolean_t 5119 vd_is_atapi_device(vd_t *vd) 5120 { 5121 boolean_t is_atapi = B_FALSE; 5122 char *variantp; 5123 int rv; 5124 5125 ASSERT(vd->ldi_handle[0] != NULL); 5126 ASSERT(!vd->file); 5127 5128 rv = ldi_prop_lookup_string(vd->ldi_handle[0], 5129 (LDI_DEV_T_ANY | DDI_PROP_DONTPASS), "variant", &variantp); 5130 if (rv == DDI_PROP_SUCCESS) { 5131 PR0("'variant' property exists for %s", vd->device_path); 5132 if (strcmp(variantp, "atapi") == 0) 5133 is_atapi = B_TRUE; 5134 ddi_prop_free(variantp); 5135 } 5136 5137 rv = ldi_prop_exists(vd->ldi_handle[0], LDI_DEV_T_ANY, "atapi"); 5138 if (rv) { 5139 PR0("'atapi' property exists for %s", vd->device_path); 5140 is_atapi = B_TRUE; 5141 } 5142 5143 return (is_atapi); 5144 } 5145 5146 static int 5147 vd_setup_mediainfo(vd_t *vd) 5148 { 5149 int status, rval; 5150 struct dk_minfo dk_minfo; 5151 5152 ASSERT(vd->ldi_handle[0] != NULL); 5153 ASSERT(vd->vdisk_block_size != 0); 5154 5155 if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO, 5156 (intptr_t)&dk_minfo, (vd->open_flags | FKIOCTL), 5157 kcred, &rval)) != 0) 5158 return (status); 5159 5160 ASSERT(dk_minfo.dki_lbsize % vd->vdisk_block_size == 0); 5161 5162 vd->block_size = dk_minfo.dki_lbsize; 5163 vd->vdisk_size = (dk_minfo.dki_capacity * dk_minfo.dki_lbsize) / 5164 vd->vdisk_block_size; 5165 vd->vdisk_media = DK_MEDIATYPE2VD_MEDIATYPE(dk_minfo.dki_media_type); 5166 return (0); 5167 } 5168 5169 static int 5170 vd_setup_full_disk(vd_t *vd) 5171 { 5172 int status; 5173 major_t major = getmajor(vd->dev[0]); 5174 minor_t minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE; 5175 5176 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK); 5177 5178 vd->vdisk_block_size = DEV_BSIZE; 5179 5180 /* 5181 * At this point, vdisk_size is set to the size of partition 2 but 5182 * this does not represent the size of the disk because partition 2 5183 * may not cover the entire disk and its size does not include reserved 5184 * blocks. So we call vd_get_mediainfo to udpate this information and 5185 * set the block size and the media type of the disk. 5186 */ 5187 status = vd_setup_mediainfo(vd); 5188 5189 if (status != 0) { 5190 if (!vd->scsi) { 5191 /* unexpected failure */ 5192 PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d", 5193 status); 5194 return (status); 5195 } 5196 5197 /* 5198 * The function can fail for SCSI disks which are present but 5199 * reserved by another system. In that case, we don't know the 5200 * size of the disk and the block size. 5201 */ 5202 vd->vdisk_size = VD_SIZE_UNKNOWN; 5203 vd->block_size = 0; 5204 vd->vdisk_media = VD_MEDIA_FIXED; 5205 } 5206 5207 /* Move dev number and LDI handle to entire-disk-slice array elements */ 5208 vd->dev[VD_ENTIRE_DISK_SLICE] = vd->dev[0]; 5209 vd->dev[0] = 0; 5210 vd->ldi_handle[VD_ENTIRE_DISK_SLICE] = vd->ldi_handle[0]; 5211 vd->ldi_handle[0] = NULL; 5212 5213 /* Initialize device numbers for remaining slices and open them */ 5214 for (int slice = 0; slice < vd->nslices; slice++) { 5215 /* 5216 * Skip the entire-disk slice, as it's already open and its 5217 * device known 5218 */ 5219 if (slice == VD_ENTIRE_DISK_SLICE) 5220 continue; 5221 ASSERT(vd->dev[slice] == 0); 5222 ASSERT(vd->ldi_handle[slice] == NULL); 5223 5224 /* 5225 * Construct the device number for the current slice 5226 */ 5227 vd->dev[slice] = makedevice(major, (minor + slice)); 5228 5229 /* 5230 * Open all slices of the disk to serve them to the client. 5231 * Slices are opened exclusively to prevent other threads or 5232 * processes in the service domain from performing I/O to 5233 * slices being accessed by a client. Failure to open a slice 5234 * results in vds not serving this disk, as the client could 5235 * attempt (and should be able) to access any slice immediately. 5236 * Any slices successfully opened before a failure will get 5237 * closed by vds_destroy_vd() as a result of the error returned 5238 * by this function. 5239 * 5240 * We need to do the open with FNDELAY so that opening an empty 5241 * slice does not fail. 5242 */ 5243 PR0("Opening device major %u, minor %u = slice %u", 5244 major, minor, slice); 5245 5246 /* 5247 * Try to open the device. This can fail for example if we are 5248 * opening an empty slice. So in case of a failure, we try the 5249 * open again but this time with the FNDELAY flag. 5250 */ 5251 status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK, 5252 vd->open_flags, kcred, &vd->ldi_handle[slice], 5253 vd->vds->ldi_ident); 5254 5255 if (status != 0) { 5256 status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK, 5257 vd->open_flags | FNDELAY, kcred, 5258 &vd->ldi_handle[slice], vd->vds->ldi_ident); 5259 } 5260 5261 if (status != 0) { 5262 PRN("ldi_open_by_dev() returned errno %d " 5263 "for slice %u", status, slice); 5264 /* vds_destroy_vd() will close any open slices */ 5265 vd->ldi_handle[slice] = NULL; 5266 return (status); 5267 } 5268 } 5269 5270 return (0); 5271 } 5272 5273 /* 5274 * When a slice or a volume is exported as a single-slice disk, we want 5275 * the disk backend (i.e. the slice or volume) to be entirely mapped as 5276 * a slice without the addition of any metadata. 5277 * 5278 * So when exporting the disk as a VTOC disk, we fake a disk with the following 5279 * layout: 5280 * flabel +--- flabel_limit 5281 * <-> V 5282 * 0 1 C D E 5283 * +-+---+--------------------------+--+ 5284 * virtual disk: |L|XXX| slice 0 |AA| 5285 * +-+---+--------------------------+--+ 5286 * ^ : : 5287 * | : : 5288 * VTOC LABEL--+ : : 5289 * +--------------------------+ 5290 * disk backend: | slice/volume/file | 5291 * +--------------------------+ 5292 * 0 N 5293 * 5294 * N is the number of blocks in the slice/volume/file. 5295 * 5296 * We simulate a disk with N+M blocks, where M is the number of blocks 5297 * simluated at the beginning and at the end of the disk (blocks 0-C 5298 * and D-E). 5299 * 5300 * The first blocks (0 to C-1) are emulated and can not be changed. Blocks C 5301 * to D defines slice 0 and are mapped to the backend. Finally we emulate 2 5302 * alternate cylinders at the end of the disk (blocks D-E). In summary we have: 5303 * 5304 * - block 0 (L) returns a fake VTOC label 5305 * - blocks 1 to C-1 (X) are unused and return 0 5306 * - blocks C to D-1 are mapped to the exported slice or volume 5307 * - blocks D and E (A) are blocks defining alternate cylinders (2 cylinders) 5308 * 5309 * Note: because we define a fake disk geometry, it is possible that the length 5310 * of the backend is not a multiple of the size of cylinder, in that case the 5311 * very end of the backend will not map to any block of the virtual disk. 5312 */ 5313 static int 5314 vd_setup_partition_vtoc(vd_t *vd) 5315 { 5316 char *device_path = vd->device_path; 5317 char unit; 5318 size_t size, csize; 5319 5320 /* Initialize dk_geom structure for single-slice device */ 5321 if (vd->dk_geom.dkg_nsect == 0) { 5322 PRN("%s geometry claims 0 sectors per track", device_path); 5323 return (EIO); 5324 } 5325 if (vd->dk_geom.dkg_nhead == 0) { 5326 PRN("%s geometry claims 0 heads", device_path); 5327 return (EIO); 5328 } 5329 5330 /* size of a cylinder in block */ 5331 csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 5332 5333 /* 5334 * Add extra cylinders: we emulate the first cylinder (which contains 5335 * the disk label). 5336 */ 5337 vd->dk_geom.dkg_ncyl = vd->vdisk_size / csize + 1; 5338 5339 /* we emulate 2 alternate cylinders */ 5340 vd->dk_geom.dkg_acyl = 2; 5341 vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl; 5342 5343 5344 /* Initialize vtoc structure for single-slice device */ 5345 bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part)); 5346 vd->vtoc.v_part[0].p_tag = V_UNASSIGNED; 5347 vd->vtoc.v_part[0].p_flag = 0; 5348 /* 5349 * Partition 0 starts on cylinder 1 and its size has to be 5350 * a multiple of a number of cylinder. 5351 */ 5352 vd->vtoc.v_part[0].p_start = csize; /* start on cylinder 1 */ 5353 vd->vtoc.v_part[0].p_size = (vd->vdisk_size / csize) * csize; 5354 5355 if (vd_slice_single_slice) { 5356 vd->vtoc.v_nparts = 1; 5357 bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel, 5358 MIN(sizeof (VD_ASCIILABEL), 5359 sizeof (vd->vtoc.v_asciilabel))); 5360 bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume, 5361 MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume))); 5362 } else { 5363 /* adjust the number of slices */ 5364 vd->nslices = V_NUMPAR; 5365 vd->vtoc.v_nparts = V_NUMPAR; 5366 5367 /* define slice 2 representing the entire disk */ 5368 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP; 5369 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_flag = 0; 5370 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start = 0; 5371 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size = 5372 vd->dk_geom.dkg_ncyl * csize; 5373 5374 vd_get_readable_size(vd->vdisk_size * vd->vdisk_block_size, 5375 &size, &unit); 5376 5377 /* 5378 * Set some attributes of the geometry to what format(1m) uses 5379 * so that writing a default label using format(1m) does not 5380 * produce any error. 5381 */ 5382 vd->dk_geom.dkg_bcyl = 0; 5383 vd->dk_geom.dkg_intrlv = 1; 5384 vd->dk_geom.dkg_write_reinstruct = 0; 5385 vd->dk_geom.dkg_read_reinstruct = 0; 5386 5387 /* 5388 * We must have a correct label name otherwise format(1m) will 5389 * not recognized the disk as labeled. 5390 */ 5391 (void) snprintf(vd->vtoc.v_asciilabel, LEN_DKL_ASCII, 5392 "SUN-DiskSlice-%ld%cB cyl %d alt %d hd %d sec %d", 5393 size, unit, 5394 vd->dk_geom.dkg_ncyl, vd->dk_geom.dkg_acyl, 5395 vd->dk_geom.dkg_nhead, vd->dk_geom.dkg_nsect); 5396 bzero(vd->vtoc.v_volume, sizeof (vd->vtoc.v_volume)); 5397 5398 /* create a fake label from the vtoc and geometry */ 5399 vd->flabel_limit = csize; 5400 vd->flabel_size = VD_LABEL_VTOC_SIZE; 5401 vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP); 5402 vd_vtocgeom_to_label(&vd->vtoc, &vd->dk_geom, 5403 VD_LABEL_VTOC(vd)); 5404 } 5405 5406 /* adjust the vdisk_size, we emulate 3 cylinders */ 5407 vd->vdisk_size += csize * 3; 5408 5409 return (0); 5410 } 5411 5412 /* 5413 * When a slice, volume or file is exported as a single-slice disk, we want 5414 * the disk backend (i.e. the slice, volume or file) to be entirely mapped 5415 * as a slice without the addition of any metadata. 5416 * 5417 * So when exporting the disk as an EFI disk, we fake a disk with the following 5418 * layout: 5419 * 5420 * flabel +--- flabel_limit 5421 * <------> v 5422 * 0 1 2 L 34 34+N P 5423 * +-+-+--+-------+--------------------------+-------+ 5424 * virtual disk: |X|T|EE|XXXXXXX| slice 0 |RRRRRRR| 5425 * +-+-+--+-------+--------------------------+-------+ 5426 * ^ ^ : : 5427 * | | : : 5428 * GPT-+ +-GPE : : 5429 * +--------------------------+ 5430 * disk backend: | slice/volume/file | 5431 * +--------------------------+ 5432 * 0 N 5433 * 5434 * N is the number of blocks in the slice/volume/file. 5435 * 5436 * We simulate a disk with N+M blocks, where M is the number of blocks 5437 * simluated at the beginning and at the end of the disk (blocks 0-34 5438 * and 34+N-P). 5439 * 5440 * The first 34 blocks (0 to 33) are emulated and can not be changed. Blocks 34 5441 * to 34+N defines slice 0 and are mapped to the exported backend, and we 5442 * emulate some blocks at the end of the disk (blocks 34+N to P) as a the EFI 5443 * reserved partition. 5444 * 5445 * - block 0 (X) is unused and return 0 5446 * - block 1 (T) returns a fake EFI GPT (via DKIOCGETEFI) 5447 * - blocks 2 to L-1 (E) defines a fake EFI GPE (via DKIOCGETEFI) 5448 * - blocks L to 33 (X) are unused and return 0 5449 * - blocks 34 to 34+N are mapped to the exported slice, volume or file 5450 * - blocks 34+N+1 to P define a fake reserved partition and backup label, it 5451 * returns 0 5452 * 5453 * Note: if the backend size is not a multiple of the vdisk block size 5454 * (DEV_BSIZE = 512 byte) then the very end of the backend will not map to 5455 * any block of the virtual disk. 5456 */ 5457 static int 5458 vd_setup_partition_efi(vd_t *vd) 5459 { 5460 efi_gpt_t *gpt; 5461 efi_gpe_t *gpe; 5462 struct uuid uuid = EFI_USR; 5463 struct uuid efi_reserved = EFI_RESERVED; 5464 uint32_t crc; 5465 uint64_t s0_start, s0_end; 5466 5467 vd->flabel_limit = 34; 5468 vd->flabel_size = VD_LABEL_EFI_SIZE; 5469 vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP); 5470 gpt = VD_LABEL_EFI_GPT(vd); 5471 gpe = VD_LABEL_EFI_GPE(vd); 5472 5473 /* adjust the vdisk_size, we emulate the first 34 blocks */ 5474 vd->vdisk_size += 34; 5475 s0_start = 34; 5476 s0_end = vd->vdisk_size - 1; 5477 5478 gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE); 5479 gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT); 5480 gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t)); 5481 gpt->efi_gpt_FirstUsableLBA = LE_64(34ULL); 5482 gpt->efi_gpt_PartitionEntryLBA = LE_64(2ULL); 5483 gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t)); 5484 5485 UUID_LE_CONVERT(gpe[0].efi_gpe_PartitionTypeGUID, uuid); 5486 gpe[0].efi_gpe_StartingLBA = LE_64(s0_start); 5487 gpe[0].efi_gpe_EndingLBA = LE_64(s0_end); 5488 5489 if (vd_slice_single_slice) { 5490 gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1); 5491 } else { 5492 /* adjust the number of slices */ 5493 gpt->efi_gpt_NumberOfPartitionEntries = LE_32(VD_MAXPART); 5494 vd->nslices = V_NUMPAR; 5495 5496 /* define a fake reserved partition */ 5497 UUID_LE_CONVERT(gpe[VD_MAXPART - 1].efi_gpe_PartitionTypeGUID, 5498 efi_reserved); 5499 gpe[VD_MAXPART - 1].efi_gpe_StartingLBA = 5500 LE_64(s0_end + 1); 5501 gpe[VD_MAXPART - 1].efi_gpe_EndingLBA = 5502 LE_64(s0_end + EFI_MIN_RESV_SIZE); 5503 5504 /* adjust the vdisk_size to include the reserved slice */ 5505 vd->vdisk_size += EFI_MIN_RESV_SIZE; 5506 } 5507 5508 gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1); 5509 5510 /* adjust the vdisk size for the backup GPT and GPE */ 5511 vd->vdisk_size += 33; 5512 5513 CRC32(crc, gpe, sizeof (efi_gpe_t) * VD_MAXPART, -1U, crc32_table); 5514 gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc); 5515 5516 CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table); 5517 gpt->efi_gpt_HeaderCRC32 = LE_32(~crc); 5518 5519 return (0); 5520 } 5521 5522 /* 5523 * Setup for a virtual disk whose backend is a file (exported as a single slice 5524 * or as a full disk) or a volume device (for example a ZFS, SVM or VxVM volume) 5525 * exported as a full disk. In these cases, the backend is accessed using the 5526 * vnode interface. 5527 */ 5528 static int 5529 vd_setup_backend_vnode(vd_t *vd) 5530 { 5531 int rval, status; 5532 vattr_t vattr; 5533 dev_t dev; 5534 char *file_path = vd->device_path; 5535 ldi_handle_t lhandle; 5536 struct dk_cinfo dk_cinfo; 5537 struct dk_label label; 5538 5539 if ((status = vn_open(file_path, UIO_SYSSPACE, vd->open_flags | FOFFMAX, 5540 0, &vd->file_vnode, 0, 0)) != 0) { 5541 PRN("vn_open(%s) = errno %d", file_path, status); 5542 return (status); 5543 } 5544 5545 /* 5546 * We set vd->file now so that vds_destroy_vd will take care of 5547 * closing the file and releasing the vnode in case of an error. 5548 */ 5549 vd->file = B_TRUE; 5550 5551 vattr.va_mask = AT_SIZE; 5552 if ((status = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL)) 5553 != 0) { 5554 PRN("VOP_GETATTR(%s) = errno %d", file_path, status); 5555 return (EIO); 5556 } 5557 5558 vd->file_size = vattr.va_size; 5559 /* size should be at least sizeof(dk_label) */ 5560 if (vd->file_size < sizeof (struct dk_label)) { 5561 PRN("Size of file has to be at least %ld bytes", 5562 sizeof (struct dk_label)); 5563 return (EIO); 5564 } 5565 5566 if (vd->file_vnode->v_flag & VNOMAP) { 5567 PRN("File %s cannot be mapped", file_path); 5568 return (EIO); 5569 } 5570 5571 /* sector size = block size = DEV_BSIZE */ 5572 vd->block_size = DEV_BSIZE; 5573 vd->vdisk_block_size = DEV_BSIZE; 5574 vd->vdisk_size = vd->file_size / DEV_BSIZE; 5575 vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */ 5576 5577 /* 5578 * Get max_xfer_sz from the device where the file is or from the device 5579 * itself if we have a volume device. 5580 */ 5581 if (vd->volume) { 5582 status = ldi_open_by_name(file_path, FREAD, kcred, &lhandle, 5583 vd->vds->ldi_ident); 5584 } else { 5585 dev = vd->file_vnode->v_vfsp->vfs_dev; 5586 PR0("underlying device of %s = (%d, %d)\n", file_path, 5587 getmajor(dev), getminor(dev)); 5588 5589 status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD, kcred, &lhandle, 5590 vd->vds->ldi_ident); 5591 } 5592 5593 if (status != 0) { 5594 PR0("ldi_open() returned errno %d for underlying device", 5595 status); 5596 } else { 5597 if ((status = ldi_ioctl(lhandle, DKIOCINFO, 5598 (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred, 5599 &rval)) != 0) { 5600 PR0("ldi_ioctl(DKIOCINFO) returned errno %d for " 5601 "underlying device", status); 5602 } else { 5603 /* 5604 * Store the device's max transfer size for 5605 * return to the client 5606 */ 5607 vd->max_xfer_sz = dk_cinfo.dki_maxtransfer; 5608 } 5609 5610 PR0("close the underlying device"); 5611 (void) ldi_close(lhandle, FREAD, kcred); 5612 } 5613 5614 if (vd->volume) { 5615 PR0("using volume %s, max_xfer = %u blks", file_path, 5616 vd->max_xfer_sz); 5617 } else { 5618 PR0("using file %s on device (%d, %d), max_xfer = %u blks", 5619 file_path, getmajor(dev), getminor(dev), vd->max_xfer_sz); 5620 } 5621 5622 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 5623 ASSERT(!vd->volume); 5624 vd->vdisk_media = VD_MEDIA_FIXED; 5625 vd->vdisk_label = (vd_slice_label == VD_DISK_LABEL_UNK)? 5626 vd_file_slice_label : vd_slice_label; 5627 if (vd->vdisk_label == VD_DISK_LABEL_EFI || 5628 vd->file_size >= ONE_TERABYTE) { 5629 status = vd_setup_partition_efi(vd); 5630 } else { 5631 /* 5632 * We build a default label to get a geometry for 5633 * the vdisk. Then the partition setup function will 5634 * adjust the vtoc so that it defines a single-slice 5635 * disk. 5636 */ 5637 vd_build_default_label(vd->file_size, &label); 5638 vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom); 5639 status = vd_setup_partition_vtoc(vd); 5640 } 5641 return (status); 5642 } 5643 5644 /* 5645 * Find and validate the geometry of a disk image. 5646 */ 5647 status = vd_file_validate_geometry(vd); 5648 if (status != 0 && status != EINVAL && status != ENOTSUP) { 5649 PRN("Failed to read label from %s", file_path); 5650 return (EIO); 5651 } 5652 5653 if (vd_file_is_iso_image(vd)) { 5654 /* 5655 * Indicate whether to call this a CD or DVD from the size 5656 * of the ISO image (images for both drive types are stored 5657 * in the ISO-9600 format). CDs can store up to just under 1Gb 5658 */ 5659 if ((vd->vdisk_size * vd->vdisk_block_size) > 5660 (1024 * 1024 * 1024)) 5661 vd->vdisk_media = VD_MEDIA_DVD; 5662 else 5663 vd->vdisk_media = VD_MEDIA_CD; 5664 } else { 5665 vd->vdisk_media = VD_MEDIA_FIXED; 5666 } 5667 5668 /* Setup devid for the disk image */ 5669 5670 if (vd->vdisk_label != VD_DISK_LABEL_UNK) { 5671 5672 status = vd_file_read_devid(vd, &vd->file_devid); 5673 5674 if (status == 0) { 5675 /* a valid devid was found */ 5676 return (0); 5677 } 5678 5679 if (status != EINVAL) { 5680 /* 5681 * There was an error while trying to read the devid. 5682 * So this disk image may have a devid but we are 5683 * unable to read it. 5684 */ 5685 PR0("can not read devid for %s", file_path); 5686 vd->file_devid = NULL; 5687 return (0); 5688 } 5689 } 5690 5691 /* 5692 * No valid device id was found so we create one. Note that a failure 5693 * to create a device id is not fatal and does not prevent the disk 5694 * image from being attached. 5695 */ 5696 PR1("creating devid for %s", file_path); 5697 5698 if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0, 5699 &vd->file_devid) != DDI_SUCCESS) { 5700 PR0("fail to create devid for %s", file_path); 5701 vd->file_devid = NULL; 5702 return (0); 5703 } 5704 5705 /* 5706 * Write devid to the disk image. The devid is stored into the disk 5707 * image if we have a valid label; otherwise the devid will be stored 5708 * when the user writes a valid label. 5709 */ 5710 if (vd->vdisk_label != VD_DISK_LABEL_UNK) { 5711 if (vd_file_write_devid(vd, vd->file_devid) != 0) { 5712 PR0("fail to write devid for %s", file_path); 5713 ddi_devid_free(vd->file_devid); 5714 vd->file_devid = NULL; 5715 } 5716 } 5717 5718 return (0); 5719 } 5720 5721 5722 /* 5723 * Description: 5724 * Open a device using its device path (supplied by ldm(1m)) 5725 * 5726 * Parameters: 5727 * vd - pointer to structure containing the vDisk info 5728 * flags - open flags 5729 * 5730 * Return Value 5731 * 0 - success 5732 * != 0 - some other non-zero return value from ldi(9F) functions 5733 */ 5734 static int 5735 vd_open_using_ldi_by_name(vd_t *vd, int flags) 5736 { 5737 int status; 5738 char *device_path = vd->device_path; 5739 5740 /* Attempt to open device */ 5741 status = ldi_open_by_name(device_path, flags, kcred, 5742 &vd->ldi_handle[0], vd->vds->ldi_ident); 5743 5744 /* 5745 * The open can fail for example if we are opening an empty slice. 5746 * In case of a failure, we try the open again but this time with 5747 * the FNDELAY flag. 5748 */ 5749 if (status != 0) 5750 status = ldi_open_by_name(device_path, flags | FNDELAY, 5751 kcred, &vd->ldi_handle[0], vd->vds->ldi_ident); 5752 5753 if (status != 0) { 5754 PR0("ldi_open_by_name(%s) = errno %d", device_path, status); 5755 vd->ldi_handle[0] = NULL; 5756 return (status); 5757 } 5758 5759 return (0); 5760 } 5761 5762 /* 5763 * Setup for a virtual disk which backend is a device (a physical disk, 5764 * slice or volume device) that is directly exported either as a full disk 5765 * for a physical disk or as a slice for a volume device or a disk slice. 5766 * In these cases, the backend is accessed using the LDI interface. 5767 */ 5768 static int 5769 vd_setup_backend_ldi(vd_t *vd) 5770 { 5771 int rval, status; 5772 struct dk_cinfo dk_cinfo; 5773 char *device_path = vd->device_path; 5774 5775 /* device has been opened by vd_identify_dev() */ 5776 ASSERT(vd->ldi_handle[0] != NULL); 5777 ASSERT(vd->dev[0] != NULL); 5778 5779 vd->file = B_FALSE; 5780 5781 /* Verify backing device supports dk_cinfo */ 5782 if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO, 5783 (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred, 5784 &rval)) != 0) { 5785 PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s", 5786 status, device_path); 5787 return (status); 5788 } 5789 if (dk_cinfo.dki_partition >= V_NUMPAR) { 5790 PRN("slice %u >= maximum slice %u for %s", 5791 dk_cinfo.dki_partition, V_NUMPAR, device_path); 5792 return (EIO); 5793 } 5794 5795 /* 5796 * The device has been opened read-only by vd_identify_dev(), re-open 5797 * it read-write if the write flag is set and we don't have an optical 5798 * device such as a CD-ROM, which, for now, we do not permit writes to 5799 * and thus should not export write operations to the client. 5800 * 5801 * Future: if/when we implement support for guest domains writing to 5802 * optical devices we will need to do further checking of the media type 5803 * to distinguish between read-only and writable discs. 5804 */ 5805 if (dk_cinfo.dki_ctype == DKC_CDROM) { 5806 5807 vd->open_flags &= ~FWRITE; 5808 5809 } else if (vd->open_flags & FWRITE) { 5810 5811 (void) ldi_close(vd->ldi_handle[0], vd->open_flags & ~FWRITE, 5812 kcred); 5813 status = vd_open_using_ldi_by_name(vd, vd->open_flags); 5814 if (status != 0) { 5815 PR0("Failed to open (%s) = errno %d", 5816 device_path, status); 5817 return (status); 5818 } 5819 } 5820 5821 /* Store the device's max transfer size for return to the client */ 5822 vd->max_xfer_sz = dk_cinfo.dki_maxtransfer; 5823 5824 /* 5825 * We need to work out if it's an ATAPI (IDE CD-ROM) or SCSI device so 5826 * that we can use the correct CDB group when sending USCSI commands. 5827 */ 5828 vd->is_atapi_dev = vd_is_atapi_device(vd); 5829 5830 /* 5831 * Export a full disk. 5832 * 5833 * When we use the LDI interface, we export a device as a full disk 5834 * if we have an entire disk slice (slice 2) and if this slice is 5835 * exported as a full disk and not as a single slice disk. 5836 * Similarly, we want to use LDI if we are accessing a CD or DVD 5837 * device (even if it isn't s2) 5838 * 5839 * Note that volume devices are exported as full disks using the vnode 5840 * interface, not the LDI interface. 5841 */ 5842 if ((dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE && 5843 vd->vdisk_type == VD_DISK_TYPE_DISK) || 5844 dk_cinfo.dki_ctype == DKC_CDROM) { 5845 ASSERT(!vd->volume); 5846 if (dk_cinfo.dki_ctype == DKC_SCSI_CCS) 5847 vd->scsi = B_TRUE; 5848 return (vd_setup_full_disk(vd)); 5849 } 5850 5851 /* 5852 * Export a single slice disk. 5853 * 5854 * The exported device can be either a volume device or a disk slice. If 5855 * it is a disk slice different from slice 2 then it is always exported 5856 * as a single slice disk even if the "slice" option is not specified. 5857 * If it is disk slice 2 or a volume device then it is exported as a 5858 * single slice disk only if the "slice" option is specified. 5859 */ 5860 return (vd_setup_single_slice_disk(vd)); 5861 } 5862 5863 static int 5864 vd_setup_single_slice_disk(vd_t *vd) 5865 { 5866 int status, rval; 5867 struct dk_label label; 5868 char *device_path = vd->device_path; 5869 5870 /* Get size of backing device */ 5871 if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) { 5872 PRN("ldi_get_size() failed for %s", device_path); 5873 return (EIO); 5874 } 5875 vd->vdisk_size = lbtodb(vd->vdisk_size); /* convert to blocks */ 5876 vd->block_size = DEV_BSIZE; 5877 vd->vdisk_block_size = DEV_BSIZE; 5878 vd->vdisk_media = VD_MEDIA_FIXED; 5879 5880 if (vd->volume) { 5881 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 5882 } 5883 5884 /* 5885 * We export the slice as a single slice disk even if the "slice" 5886 * option was not specified. 5887 */ 5888 vd->vdisk_type = VD_DISK_TYPE_SLICE; 5889 vd->nslices = 1; 5890 5891 /* 5892 * When exporting a slice or a device as a single slice disk, we don't 5893 * care about any partitioning exposed by the backend. The goal is just 5894 * to export the backend as a flat storage. We provide a fake partition 5895 * table (either a VTOC or EFI), which presents only one slice, to 5896 * accommodate tools expecting a disk label. The selection of the label 5897 * type (VTOC or EFI) depends on the value of the vd_slice_label 5898 * variable. 5899 */ 5900 if (vd_slice_label == VD_DISK_LABEL_EFI || 5901 vd->vdisk_size >= ONE_TERABYTE / DEV_BSIZE) { 5902 vd->vdisk_label = VD_DISK_LABEL_EFI; 5903 } else { 5904 status = ldi_ioctl(vd->ldi_handle[0], DKIOCGVTOC, 5905 (intptr_t)&vd->vtoc, (vd->open_flags | FKIOCTL), 5906 kcred, &rval); 5907 5908 if (status == 0) { 5909 status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM, 5910 (intptr_t)&vd->dk_geom, (vd->open_flags | FKIOCTL), 5911 kcred, &rval); 5912 5913 if (status != 0) { 5914 PRN("ldi_ioctl(DKIOCGEOM) returned errno %d " 5915 "for %s", status, device_path); 5916 return (status); 5917 } 5918 vd->vdisk_label = VD_DISK_LABEL_VTOC; 5919 5920 } else if (vd_slice_label == VD_DISK_LABEL_VTOC) { 5921 5922 vd->vdisk_label = VD_DISK_LABEL_VTOC; 5923 vd_build_default_label(vd->vdisk_size * DEV_BSIZE, 5924 &label); 5925 vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom); 5926 5927 } else { 5928 vd->vdisk_label = VD_DISK_LABEL_EFI; 5929 } 5930 } 5931 5932 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) { 5933 /* export with a fake VTOC label */ 5934 status = vd_setup_partition_vtoc(vd); 5935 5936 } else { 5937 /* export with a fake EFI label */ 5938 status = vd_setup_partition_efi(vd); 5939 } 5940 5941 return (status); 5942 } 5943 5944 /* 5945 * Description: 5946 * Open a device using its device path and identify if this is 5947 * a disk device or a volume device. 5948 * 5949 * Parameters: 5950 * vd - pointer to structure containing the vDisk info 5951 * dtype - return the driver type of the device 5952 * 5953 * Return Value 5954 * 0 - success 5955 * != 0 - some other non-zero return value from ldi(9F) functions 5956 */ 5957 static int 5958 vd_identify_dev(vd_t *vd, int *dtype) 5959 { 5960 int status, i; 5961 char *device_path = vd->device_path; 5962 char *drv_name; 5963 int drv_type; 5964 vds_t *vds = vd->vds; 5965 5966 status = vd_open_using_ldi_by_name(vd, vd->open_flags & ~FWRITE); 5967 if (status != 0) { 5968 PR0("Failed to open (%s) = errno %d", device_path, status); 5969 return (status); 5970 } 5971 5972 /* Get device number of backing device */ 5973 if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) { 5974 PRN("ldi_get_dev() returned errno %d for %s", 5975 status, device_path); 5976 return (status); 5977 } 5978 5979 /* 5980 * We start by looking if the driver is in the list from vds.conf 5981 * so that we can override the built-in list using vds.conf. 5982 */ 5983 drv_name = ddi_major_to_name(getmajor(vd->dev[0])); 5984 drv_type = VD_DRIVER_UNKNOWN; 5985 5986 /* check vds.conf list */ 5987 for (i = 0; i < vds->num_drivers; i++) { 5988 if (vds->driver_types[i].type == VD_DRIVER_UNKNOWN) { 5989 /* ignore invalid entries */ 5990 continue; 5991 } 5992 if (strcmp(drv_name, vds->driver_types[i].name) == 0) { 5993 drv_type = vds->driver_types[i].type; 5994 goto done; 5995 } 5996 } 5997 5998 /* check built-in list */ 5999 for (i = 0; i < VDS_NUM_DRIVERS; i++) { 6000 if (strcmp(drv_name, vds_driver_types[i].name) == 0) { 6001 drv_type = vds_driver_types[i].type; 6002 goto done; 6003 } 6004 } 6005 6006 done: 6007 PR0("driver %s identified as %s", drv_name, 6008 (drv_type == VD_DRIVER_DISK)? "DISK" : 6009 (drv_type == VD_DRIVER_VOLUME)? "VOLUME" : "UNKNOWN"); 6010 6011 *dtype = drv_type; 6012 6013 return (0); 6014 } 6015 6016 static int 6017 vd_setup_vd(vd_t *vd) 6018 { 6019 int status, drv_type, pseudo; 6020 dev_info_t *dip; 6021 vnode_t *vnp; 6022 char *path = vd->device_path; 6023 6024 /* make sure the vdisk backend is valid */ 6025 if ((status = lookupname(path, UIO_SYSSPACE, 6026 FOLLOW, NULLVPP, &vnp)) != 0) { 6027 PR0("Cannot lookup %s errno %d", path, status); 6028 goto done; 6029 } 6030 6031 switch (vnp->v_type) { 6032 case VREG: 6033 /* 6034 * Backend is a file so it is exported as a full disk or as a 6035 * single slice disk using the vnode interface. 6036 */ 6037 VN_RELE(vnp); 6038 vd->volume = B_FALSE; 6039 status = vd_setup_backend_vnode(vd); 6040 break; 6041 6042 case VBLK: 6043 case VCHR: 6044 /* 6045 * Backend is a device. The way it is exported depends on the 6046 * type of the device. 6047 * 6048 * - A volume device is exported as a full disk using the vnode 6049 * interface or as a single slice disk using the LDI 6050 * interface. 6051 * 6052 * - A disk (represented by the slice 2 of that disk) is 6053 * exported as a full disk using the LDI interface. 6054 * 6055 * - A disk slice (different from slice 2) is always exported 6056 * as a single slice disk using the LDI interface. 6057 * 6058 * - The slice 2 of a disk is exported as a single slice disk 6059 * if the "slice" option is specified, otherwise the entire 6060 * disk will be exported. In any case, the LDI interface is 6061 * used. 6062 */ 6063 6064 /* check if this is a pseudo device */ 6065 if ((dip = ddi_hold_devi_by_instance(getmajor(vnp->v_rdev), 6066 dev_to_instance(vnp->v_rdev), 0)) == NULL) { 6067 PRN("%s is no longer accessible", path); 6068 VN_RELE(vnp); 6069 status = EIO; 6070 break; 6071 } 6072 pseudo = is_pseudo_device(dip); 6073 ddi_release_devi(dip); 6074 VN_RELE(vnp); 6075 6076 if (vd_identify_dev(vd, &drv_type) != 0) { 6077 PRN("%s identification failed", path); 6078 status = EIO; 6079 break; 6080 } 6081 6082 /* 6083 * If the driver hasn't been identified then we consider that 6084 * pseudo devices are volumes and other devices are disks. 6085 */ 6086 if (drv_type == VD_DRIVER_VOLUME || 6087 (drv_type == VD_DRIVER_UNKNOWN && pseudo)) { 6088 vd->volume = B_TRUE; 6089 } else { 6090 status = vd_setup_backend_ldi(vd); 6091 break; 6092 } 6093 6094 /* 6095 * If this is a volume device then its usage depends if the 6096 * "slice" option is set or not. If the "slice" option is set 6097 * then the volume device will be exported as a single slice, 6098 * otherwise it will be exported as a full disk. 6099 * 6100 * For backward compatibility, if vd_volume_force_slice is set 6101 * then we always export volume devices as slices. 6102 */ 6103 if (vd_volume_force_slice) { 6104 vd->vdisk_type = VD_DISK_TYPE_SLICE; 6105 vd->nslices = 1; 6106 } 6107 6108 if (vd->vdisk_type == VD_DISK_TYPE_DISK) { 6109 /* close device opened during identification */ 6110 (void) ldi_close(vd->ldi_handle[0], 6111 vd->open_flags & ~FWRITE, kcred); 6112 vd->ldi_handle[0] = NULL; 6113 vd->dev[0] = 0; 6114 status = vd_setup_backend_vnode(vd); 6115 } else { 6116 status = vd_setup_backend_ldi(vd); 6117 } 6118 break; 6119 6120 default: 6121 PRN("Unsupported vdisk backend %s", path); 6122 VN_RELE(vnp); 6123 status = EBADF; 6124 } 6125 6126 done: 6127 if (status != 0) { 6128 /* 6129 * If the error is retryable print an error message only 6130 * during the first try. 6131 */ 6132 if (status == ENXIO || status == ENODEV || 6133 status == ENOENT || status == EROFS) { 6134 if (!(vd->initialized & VD_SETUP_ERROR)) { 6135 PRN("%s is currently inaccessible (error %d)", 6136 path, status); 6137 } 6138 status = EAGAIN; 6139 } else { 6140 PRN("%s can not be exported as a virtual disk " 6141 "(error %d)", path, status); 6142 } 6143 vd->initialized |= VD_SETUP_ERROR; 6144 6145 } else if (vd->initialized & VD_SETUP_ERROR) { 6146 /* print a message only if we previously had an error */ 6147 PRN("%s is now online", path); 6148 vd->initialized &= ~VD_SETUP_ERROR; 6149 } 6150 6151 return (status); 6152 } 6153 6154 static int 6155 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options, 6156 uint64_t ldc_id, vd_t **vdp) 6157 { 6158 char tq_name[TASKQ_NAMELEN]; 6159 int status; 6160 ddi_iblock_cookie_t iblock = NULL; 6161 ldc_attr_t ldc_attr; 6162 vd_t *vd; 6163 6164 6165 ASSERT(vds != NULL); 6166 ASSERT(device_path != NULL); 6167 ASSERT(vdp != NULL); 6168 PR0("Adding vdisk for %s", device_path); 6169 6170 if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) { 6171 PRN("No memory for virtual disk"); 6172 return (EAGAIN); 6173 } 6174 *vdp = vd; /* assign here so vds_destroy_vd() can cleanup later */ 6175 vd->vds = vds; 6176 (void) strncpy(vd->device_path, device_path, MAXPATHLEN); 6177 6178 /* Setup open flags */ 6179 vd->open_flags = FREAD; 6180 6181 if (!(options & VD_OPT_RDONLY)) 6182 vd->open_flags |= FWRITE; 6183 6184 if (options & VD_OPT_EXCLUSIVE) 6185 vd->open_flags |= FEXCL; 6186 6187 /* Setup disk type */ 6188 if (options & VD_OPT_SLICE) { 6189 vd->vdisk_type = VD_DISK_TYPE_SLICE; 6190 vd->nslices = 1; 6191 } else { 6192 vd->vdisk_type = VD_DISK_TYPE_DISK; 6193 vd->nslices = V_NUMPAR; 6194 } 6195 6196 /* default disk label */ 6197 vd->vdisk_label = VD_DISK_LABEL_UNK; 6198 6199 /* Open vdisk and initialize parameters */ 6200 if ((status = vd_setup_vd(vd)) == 0) { 6201 vd->initialized |= VD_DISK_READY; 6202 6203 ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR); 6204 PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u", 6205 ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"), 6206 (vd->volume ? "yes" : "no"), (vd->file ? "yes" : "no"), 6207 vd->nslices); 6208 } else { 6209 if (status != EAGAIN) 6210 return (status); 6211 } 6212 6213 /* Initialize locking */ 6214 if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED, 6215 &iblock) != DDI_SUCCESS) { 6216 PRN("Could not get iblock cookie."); 6217 return (EIO); 6218 } 6219 6220 mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock); 6221 vd->initialized |= VD_LOCKING; 6222 6223 6224 /* Create start and completion task queues for the vdisk */ 6225 (void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id); 6226 PR1("tq_name = %s", tq_name); 6227 if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1, 6228 TASKQ_DEFAULTPRI, 0)) == NULL) { 6229 PRN("Could not create task queue"); 6230 return (EIO); 6231 } 6232 (void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id); 6233 PR1("tq_name = %s", tq_name); 6234 if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1, 6235 TASKQ_DEFAULTPRI, 0)) == NULL) { 6236 PRN("Could not create task queue"); 6237 return (EIO); 6238 } 6239 6240 /* Allocate the staging buffer */ 6241 vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */ 6242 vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP); 6243 6244 vd->enabled = 1; /* before callback can dispatch to startq */ 6245 6246 6247 /* Bring up LDC */ 6248 ldc_attr.devclass = LDC_DEV_BLK_SVC; 6249 ldc_attr.instance = ddi_get_instance(vds->dip); 6250 ldc_attr.mode = LDC_MODE_UNRELIABLE; 6251 ldc_attr.mtu = VD_LDC_MTU; 6252 if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) { 6253 PRN("Could not initialize LDC channel %lx, " 6254 "init failed with error %d", ldc_id, status); 6255 return (status); 6256 } 6257 vd->initialized |= VD_LDC; 6258 6259 if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events, 6260 (caddr_t)vd)) != 0) { 6261 PRN("Could not initialize LDC channel %lu," 6262 "reg_callback failed with error %d", ldc_id, status); 6263 return (status); 6264 } 6265 6266 if ((status = ldc_open(vd->ldc_handle)) != 0) { 6267 PRN("Could not initialize LDC channel %lu," 6268 "open failed with error %d", ldc_id, status); 6269 return (status); 6270 } 6271 6272 if ((status = ldc_up(vd->ldc_handle)) != 0) { 6273 PR0("ldc_up() returned errno %d", status); 6274 } 6275 6276 /* Allocate the inband task memory handle */ 6277 status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl)); 6278 if (status) { 6279 PRN("Could not initialize LDC channel %lu," 6280 "alloc_handle failed with error %d", ldc_id, status); 6281 return (ENXIO); 6282 } 6283 6284 /* Add the successfully-initialized vdisk to the server's table */ 6285 if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) { 6286 PRN("Error adding vdisk ID %lu to table", id); 6287 return (EIO); 6288 } 6289 6290 /* store initial state */ 6291 vd->state = VD_STATE_INIT; 6292 6293 return (0); 6294 } 6295 6296 static void 6297 vd_free_dring_task(vd_t *vdp) 6298 { 6299 if (vdp->dring_task != NULL) { 6300 ASSERT(vdp->dring_len != 0); 6301 /* Free all dring_task memory handles */ 6302 for (int i = 0; i < vdp->dring_len; i++) { 6303 (void) ldc_mem_free_handle(vdp->dring_task[i].mhdl); 6304 kmem_free(vdp->dring_task[i].msg, vdp->max_msglen); 6305 vdp->dring_task[i].msg = NULL; 6306 } 6307 kmem_free(vdp->dring_task, 6308 (sizeof (*vdp->dring_task)) * vdp->dring_len); 6309 vdp->dring_task = NULL; 6310 } 6311 } 6312 6313 /* 6314 * Destroy the state associated with a virtual disk 6315 */ 6316 static void 6317 vds_destroy_vd(void *arg) 6318 { 6319 vd_t *vd = (vd_t *)arg; 6320 int retry = 0, rv; 6321 6322 if (vd == NULL) 6323 return; 6324 6325 PR0("Destroying vdisk state"); 6326 6327 /* Disable queuing requests for the vdisk */ 6328 if (vd->initialized & VD_LOCKING) { 6329 mutex_enter(&vd->lock); 6330 vd->enabled = 0; 6331 mutex_exit(&vd->lock); 6332 } 6333 6334 /* Drain and destroy start queue (*before* destroying completionq) */ 6335 if (vd->startq != NULL) 6336 ddi_taskq_destroy(vd->startq); /* waits for queued tasks */ 6337 6338 /* Drain and destroy completion queue (*before* shutting down LDC) */ 6339 if (vd->completionq != NULL) 6340 ddi_taskq_destroy(vd->completionq); /* waits for tasks */ 6341 6342 vd_free_dring_task(vd); 6343 6344 /* Free the inband task memory handle */ 6345 (void) ldc_mem_free_handle(vd->inband_task.mhdl); 6346 6347 /* Shut down LDC */ 6348 if (vd->initialized & VD_LDC) { 6349 /* unmap the dring */ 6350 if (vd->initialized & VD_DRING) 6351 (void) ldc_mem_dring_unmap(vd->dring_handle); 6352 6353 /* close LDC channel - retry on EAGAIN */ 6354 while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) { 6355 if (++retry > vds_ldc_retries) { 6356 PR0("Timed out closing channel"); 6357 break; 6358 } 6359 drv_usecwait(vds_ldc_delay); 6360 } 6361 if (rv == 0) { 6362 (void) ldc_unreg_callback(vd->ldc_handle); 6363 (void) ldc_fini(vd->ldc_handle); 6364 } else { 6365 /* 6366 * Closing the LDC channel has failed. Ideally we should 6367 * fail here but there is no Zeus level infrastructure 6368 * to handle this. The MD has already been changed and 6369 * we have to do the close. So we try to do as much 6370 * clean up as we can. 6371 */ 6372 (void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE); 6373 while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN) 6374 drv_usecwait(vds_ldc_delay); 6375 } 6376 } 6377 6378 /* Free the staging buffer for msgs */ 6379 if (vd->vio_msgp != NULL) { 6380 kmem_free(vd->vio_msgp, vd->max_msglen); 6381 vd->vio_msgp = NULL; 6382 } 6383 6384 /* Free the inband message buffer */ 6385 if (vd->inband_task.msg != NULL) { 6386 kmem_free(vd->inband_task.msg, vd->max_msglen); 6387 vd->inband_task.msg = NULL; 6388 } 6389 6390 if (vd->file) { 6391 /* Close file */ 6392 (void) VOP_CLOSE(vd->file_vnode, vd->open_flags, 1, 6393 0, kcred, NULL); 6394 VN_RELE(vd->file_vnode); 6395 if (vd->file_devid != NULL) 6396 ddi_devid_free(vd->file_devid); 6397 } else { 6398 /* Close any open backing-device slices */ 6399 for (uint_t slice = 0; slice < V_NUMPAR; slice++) { 6400 if (vd->ldi_handle[slice] != NULL) { 6401 PR0("Closing slice %u", slice); 6402 (void) ldi_close(vd->ldi_handle[slice], 6403 vd->open_flags, kcred); 6404 } 6405 } 6406 } 6407 6408 /* Free any fake label */ 6409 if (vd->flabel) { 6410 kmem_free(vd->flabel, vd->flabel_size); 6411 vd->flabel = NULL; 6412 vd->flabel_size = 0; 6413 } 6414 6415 /* Free lock */ 6416 if (vd->initialized & VD_LOCKING) 6417 mutex_destroy(&vd->lock); 6418 6419 /* Finally, free the vdisk structure itself */ 6420 kmem_free(vd, sizeof (*vd)); 6421 } 6422 6423 static int 6424 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options, 6425 uint64_t ldc_id) 6426 { 6427 int status; 6428 vd_t *vd = NULL; 6429 6430 6431 if ((status = vds_do_init_vd(vds, id, device_path, options, 6432 ldc_id, &vd)) != 0) 6433 vds_destroy_vd(vd); 6434 6435 return (status); 6436 } 6437 6438 static int 6439 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel, 6440 uint64_t *ldc_id) 6441 { 6442 int num_channels; 6443 6444 6445 /* Look for channel endpoint child(ren) of the vdisk MD node */ 6446 if ((num_channels = md_scan_dag(md, vd_node, 6447 md_find_name(md, VD_CHANNEL_ENDPOINT), 6448 md_find_name(md, "fwd"), channel)) <= 0) { 6449 PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT); 6450 return (-1); 6451 } 6452 6453 /* Get the "id" value for the first channel endpoint node */ 6454 if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) { 6455 PRN("No \"%s\" property found for \"%s\" of vdisk", 6456 VD_ID_PROP, VD_CHANNEL_ENDPOINT); 6457 return (-1); 6458 } 6459 6460 if (num_channels > 1) { 6461 PRN("Using ID of first of multiple channels for this vdisk"); 6462 } 6463 6464 return (0); 6465 } 6466 6467 static int 6468 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id) 6469 { 6470 int num_nodes, status; 6471 size_t size; 6472 mde_cookie_t *channel; 6473 6474 6475 if ((num_nodes = md_node_count(md)) <= 0) { 6476 PRN("Invalid node count in Machine Description subtree"); 6477 return (-1); 6478 } 6479 size = num_nodes*(sizeof (*channel)); 6480 channel = kmem_zalloc(size, KM_SLEEP); 6481 status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id); 6482 kmem_free(channel, size); 6483 6484 return (status); 6485 } 6486 6487 /* 6488 * Function: 6489 * vds_get_options 6490 * 6491 * Description: 6492 * Parse the options of a vds node. Options are defined as an array 6493 * of strings in the vds-block-device-opts property of the vds node 6494 * in the machine description. Options are returned as a bitmask. The 6495 * mapping between the bitmask options and the options strings from the 6496 * machine description is defined in the vd_bdev_options[] array. 6497 * 6498 * The vds-block-device-opts property is optional. If a vds has no such 6499 * property then no option is defined. 6500 * 6501 * Parameters: 6502 * md - machine description. 6503 * vd_node - vds node in the machine description for which 6504 * options have to be parsed. 6505 * options - the returned options. 6506 * 6507 * Return Code: 6508 * none. 6509 */ 6510 static void 6511 vds_get_options(md_t *md, mde_cookie_t vd_node, uint64_t *options) 6512 { 6513 char *optstr, *opt; 6514 int len, n, i; 6515 6516 *options = 0; 6517 6518 if (md_get_prop_data(md, vd_node, VD_BLOCK_DEVICE_OPTS, 6519 (uint8_t **)&optstr, &len) != 0) { 6520 PR0("No options found"); 6521 return; 6522 } 6523 6524 /* parse options */ 6525 opt = optstr; 6526 n = sizeof (vd_bdev_options) / sizeof (vd_option_t); 6527 6528 while (opt < optstr + len) { 6529 for (i = 0; i < n; i++) { 6530 if (strncmp(vd_bdev_options[i].vdo_name, 6531 opt, VD_OPTION_NLEN) == 0) { 6532 *options |= vd_bdev_options[i].vdo_value; 6533 break; 6534 } 6535 } 6536 6537 if (i < n) { 6538 PR0("option: %s", opt); 6539 } else { 6540 PRN("option %s is unknown or unsupported", opt); 6541 } 6542 6543 opt += strlen(opt) + 1; 6544 } 6545 } 6546 6547 static void 6548 vds_driver_types_free(vds_t *vds) 6549 { 6550 if (vds->driver_types != NULL) { 6551 kmem_free(vds->driver_types, sizeof (vd_driver_type_t) * 6552 vds->num_drivers); 6553 vds->driver_types = NULL; 6554 vds->num_drivers = 0; 6555 } 6556 } 6557 6558 /* 6559 * Update the driver type list with information from vds.conf. 6560 */ 6561 static void 6562 vds_driver_types_update(vds_t *vds) 6563 { 6564 char **list, *s; 6565 uint_t i, num, count = 0, len; 6566 6567 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, vds->dip, 6568 DDI_PROP_DONTPASS, "driver-type-list", &list, &num) != 6569 DDI_PROP_SUCCESS) 6570 return; 6571 6572 /* 6573 * We create a driver_types list with as many as entries as there 6574 * is in the driver-type-list from vds.conf. However only valid 6575 * entries will be populated (i.e. entries from driver-type-list 6576 * with a valid syntax). Invalid entries will be left blank so 6577 * they will have no driver name and the driver type will be 6578 * VD_DRIVER_UNKNOWN (= 0). 6579 */ 6580 vds->num_drivers = num; 6581 vds->driver_types = kmem_zalloc(sizeof (vd_driver_type_t) * num, 6582 KM_SLEEP); 6583 6584 for (i = 0; i < num; i++) { 6585 6586 s = strchr(list[i], ':'); 6587 6588 if (s == NULL) { 6589 PRN("vds.conf: driver-type-list, entry %d (%s): " 6590 "a colon is expected in the entry", 6591 i, list[i]); 6592 continue; 6593 } 6594 6595 len = (uintptr_t)s - (uintptr_t)list[i]; 6596 6597 if (len == 0) { 6598 PRN("vds.conf: driver-type-list, entry %d (%s): " 6599 "the driver name is empty", 6600 i, list[i]); 6601 continue; 6602 } 6603 6604 if (len >= VD_DRIVER_NAME_LEN) { 6605 PRN("vds.conf: driver-type-list, entry %d (%s): " 6606 "the driver name is too long", 6607 i, list[i]); 6608 continue; 6609 } 6610 6611 if (strcmp(s + 1, "disk") == 0) { 6612 6613 vds->driver_types[i].type = VD_DRIVER_DISK; 6614 6615 } else if (strcmp(s + 1, "volume") == 0) { 6616 6617 vds->driver_types[i].type = VD_DRIVER_VOLUME; 6618 6619 } else { 6620 PRN("vds.conf: driver-type-list, entry %d (%s): " 6621 "the driver type is invalid", 6622 i, list[i]); 6623 continue; 6624 } 6625 6626 (void) strncpy(vds->driver_types[i].name, list[i], len); 6627 6628 PR0("driver-type-list, entry %d (%s) added", 6629 i, list[i]); 6630 6631 count++; 6632 } 6633 6634 ddi_prop_free(list); 6635 6636 if (count == 0) { 6637 /* nothing was added, clean up */ 6638 vds_driver_types_free(vds); 6639 } 6640 } 6641 6642 static void 6643 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node) 6644 { 6645 char *device_path = NULL; 6646 uint64_t id = 0, ldc_id = 0, options = 0; 6647 6648 if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) { 6649 PRN("Error getting vdisk \"%s\"", VD_ID_PROP); 6650 return; 6651 } 6652 PR0("Adding vdisk ID %lu", id); 6653 if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP, 6654 &device_path) != 0) { 6655 PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP); 6656 return; 6657 } 6658 6659 vds_get_options(md, vd_node, &options); 6660 6661 if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) { 6662 PRN("Error getting LDC ID for vdisk %lu", id); 6663 return; 6664 } 6665 6666 if (vds_init_vd(vds, id, device_path, options, ldc_id) != 0) { 6667 PRN("Failed to add vdisk ID %lu", id); 6668 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0) 6669 PRN("No vDisk entry found for vdisk ID %lu", id); 6670 return; 6671 } 6672 } 6673 6674 static void 6675 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node) 6676 { 6677 uint64_t id = 0; 6678 6679 6680 if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) { 6681 PRN("Unable to get \"%s\" property from vdisk's MD node", 6682 VD_ID_PROP); 6683 return; 6684 } 6685 PR0("Removing vdisk ID %lu", id); 6686 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0) 6687 PRN("No vdisk entry found for vdisk ID %lu", id); 6688 } 6689 6690 static void 6691 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node, 6692 md_t *curr_md, mde_cookie_t curr_vd_node) 6693 { 6694 char *curr_dev, *prev_dev; 6695 uint64_t curr_id = 0, curr_ldc_id = 0, curr_options = 0; 6696 uint64_t prev_id = 0, prev_ldc_id = 0, prev_options = 0; 6697 size_t len; 6698 6699 6700 /* Validate that vdisk ID has not changed */ 6701 if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) { 6702 PRN("Error getting previous vdisk \"%s\" property", 6703 VD_ID_PROP); 6704 return; 6705 } 6706 if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) { 6707 PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP); 6708 return; 6709 } 6710 if (curr_id != prev_id) { 6711 PRN("Not changing vdisk: ID changed from %lu to %lu", 6712 prev_id, curr_id); 6713 return; 6714 } 6715 6716 /* Validate that LDC ID has not changed */ 6717 if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) { 6718 PRN("Error getting LDC ID for vdisk %lu", prev_id); 6719 return; 6720 } 6721 6722 if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) { 6723 PRN("Error getting LDC ID for vdisk %lu", curr_id); 6724 return; 6725 } 6726 if (curr_ldc_id != prev_ldc_id) { 6727 _NOTE(NOTREACHED); /* lint is confused */ 6728 PRN("Not changing vdisk: " 6729 "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id); 6730 return; 6731 } 6732 6733 /* Determine whether device path has changed */ 6734 if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP, 6735 &prev_dev) != 0) { 6736 PRN("Error getting previous vdisk \"%s\"", 6737 VD_BLOCK_DEVICE_PROP); 6738 return; 6739 } 6740 if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP, 6741 &curr_dev) != 0) { 6742 PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP); 6743 return; 6744 } 6745 if (((len = strlen(curr_dev)) == strlen(prev_dev)) && 6746 (strncmp(curr_dev, prev_dev, len) == 0)) 6747 return; /* no relevant (supported) change */ 6748 6749 /* Validate that options have not changed */ 6750 vds_get_options(prev_md, prev_vd_node, &prev_options); 6751 vds_get_options(curr_md, curr_vd_node, &curr_options); 6752 if (prev_options != curr_options) { 6753 PRN("Not changing vdisk: options changed from %lx to %lx", 6754 prev_options, curr_options); 6755 return; 6756 } 6757 6758 PR0("Changing vdisk ID %lu", prev_id); 6759 6760 /* Remove old state, which will close vdisk and reset */ 6761 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0) 6762 PRN("No entry found for vdisk ID %lu", prev_id); 6763 6764 /* Re-initialize vdisk with new state */ 6765 if (vds_init_vd(vds, curr_id, curr_dev, curr_options, 6766 curr_ldc_id) != 0) { 6767 PRN("Failed to change vdisk ID %lu", curr_id); 6768 return; 6769 } 6770 } 6771 6772 static int 6773 vds_process_md(void *arg, mdeg_result_t *md) 6774 { 6775 int i; 6776 vds_t *vds = arg; 6777 6778 6779 if (md == NULL) 6780 return (MDEG_FAILURE); 6781 ASSERT(vds != NULL); 6782 6783 for (i = 0; i < md->removed.nelem; i++) 6784 vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]); 6785 for (i = 0; i < md->match_curr.nelem; i++) 6786 vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i], 6787 md->match_curr.mdp, md->match_curr.mdep[i]); 6788 for (i = 0; i < md->added.nelem; i++) 6789 vds_add_vd(vds, md->added.mdp, md->added.mdep[i]); 6790 6791 return (MDEG_SUCCESS); 6792 } 6793 6794 6795 static int 6796 vds_do_attach(dev_info_t *dip) 6797 { 6798 int status, sz; 6799 int cfg_handle; 6800 minor_t instance = ddi_get_instance(dip); 6801 vds_t *vds; 6802 mdeg_prop_spec_t *pspecp; 6803 mdeg_node_spec_t *ispecp; 6804 6805 /* 6806 * The "cfg-handle" property of a vds node in an MD contains the MD's 6807 * notion of "instance", or unique identifier, for that node; OBP 6808 * stores the value of the "cfg-handle" MD property as the value of 6809 * the "reg" property on the node in the device tree it builds from 6810 * the MD and passes to Solaris. Thus, we look up the devinfo node's 6811 * "reg" property value to uniquely identify this device instance when 6812 * registering with the MD event-generation framework. If the "reg" 6813 * property cannot be found, the device tree state is presumably so 6814 * broken that there is no point in continuing. 6815 */ 6816 if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 6817 VD_REG_PROP)) { 6818 PRN("vds \"%s\" property does not exist", VD_REG_PROP); 6819 return (DDI_FAILURE); 6820 } 6821 6822 /* Get the MD instance for later MDEG registration */ 6823 cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 6824 VD_REG_PROP, -1); 6825 6826 if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) { 6827 PRN("Could not allocate state for instance %u", instance); 6828 return (DDI_FAILURE); 6829 } 6830 6831 if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) { 6832 PRN("Could not get state for instance %u", instance); 6833 ddi_soft_state_free(vds_state, instance); 6834 return (DDI_FAILURE); 6835 } 6836 6837 vds->dip = dip; 6838 vds->vd_table = mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS, 6839 vds_destroy_vd, sizeof (void *)); 6840 6841 ASSERT(vds->vd_table != NULL); 6842 6843 if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) { 6844 PRN("ldi_ident_from_dip() returned errno %d", status); 6845 return (DDI_FAILURE); 6846 } 6847 vds->initialized |= VDS_LDI; 6848 6849 /* Register for MD updates */ 6850 sz = sizeof (vds_prop_template); 6851 pspecp = kmem_alloc(sz, KM_SLEEP); 6852 bcopy(vds_prop_template, pspecp, sz); 6853 6854 VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle); 6855 6856 /* initialize the complete prop spec structure */ 6857 ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP); 6858 ispecp->namep = "virtual-device"; 6859 ispecp->specp = pspecp; 6860 6861 if (mdeg_register(ispecp, &vd_match, vds_process_md, vds, 6862 &vds->mdeg) != MDEG_SUCCESS) { 6863 PRN("Unable to register for MD updates"); 6864 kmem_free(ispecp, sizeof (mdeg_node_spec_t)); 6865 kmem_free(pspecp, sz); 6866 return (DDI_FAILURE); 6867 } 6868 6869 vds->ispecp = ispecp; 6870 vds->initialized |= VDS_MDEG; 6871 6872 /* Prevent auto-detaching so driver is available whenever MD changes */ 6873 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) != 6874 DDI_PROP_SUCCESS) { 6875 PRN("failed to set \"%s\" property for instance %u", 6876 DDI_NO_AUTODETACH, instance); 6877 } 6878 6879 /* read any user defined driver types from conf file and update list */ 6880 vds_driver_types_update(vds); 6881 6882 ddi_report_dev(dip); 6883 return (DDI_SUCCESS); 6884 } 6885 6886 static int 6887 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 6888 { 6889 int status; 6890 6891 switch (cmd) { 6892 case DDI_ATTACH: 6893 PR0("Attaching"); 6894 if ((status = vds_do_attach(dip)) != DDI_SUCCESS) 6895 (void) vds_detach(dip, DDI_DETACH); 6896 return (status); 6897 case DDI_RESUME: 6898 PR0("No action required for DDI_RESUME"); 6899 return (DDI_SUCCESS); 6900 default: 6901 return (DDI_FAILURE); 6902 } 6903 } 6904 6905 static struct dev_ops vds_ops = { 6906 DEVO_REV, /* devo_rev */ 6907 0, /* devo_refcnt */ 6908 ddi_no_info, /* devo_getinfo */ 6909 nulldev, /* devo_identify */ 6910 nulldev, /* devo_probe */ 6911 vds_attach, /* devo_attach */ 6912 vds_detach, /* devo_detach */ 6913 nodev, /* devo_reset */ 6914 NULL, /* devo_cb_ops */ 6915 NULL, /* devo_bus_ops */ 6916 nulldev /* devo_power */ 6917 }; 6918 6919 static struct modldrv modldrv = { 6920 &mod_driverops, 6921 "virtual disk server", 6922 &vds_ops, 6923 }; 6924 6925 static struct modlinkage modlinkage = { 6926 MODREV_1, 6927 &modldrv, 6928 NULL 6929 }; 6930 6931 6932 int 6933 _init(void) 6934 { 6935 int status; 6936 6937 if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0) 6938 return (status); 6939 6940 if ((status = mod_install(&modlinkage)) != 0) { 6941 ddi_soft_state_fini(&vds_state); 6942 return (status); 6943 } 6944 6945 return (0); 6946 } 6947 6948 int 6949 _info(struct modinfo *modinfop) 6950 { 6951 return (mod_info(&modlinkage, modinfop)); 6952 } 6953 6954 int 6955 _fini(void) 6956 { 6957 int status; 6958 6959 if ((status = mod_remove(&modlinkage)) != 0) 6960 return (status); 6961 ddi_soft_state_fini(&vds_state); 6962 return (0); 6963 } 6964