xref: /titanic_50/usr/src/uts/sun4v/io/vdc.c (revision c7ee0b5c5eb7b17e7ef152313d57f97c2fee7416)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 
28 /*
29  * LDoms virtual disk client (vdc) device driver
30  *
31  * This driver runs on a guest logical domain and communicates with the virtual
32  * disk server (vds) driver running on the service domain which is exporting
33  * virtualized "disks" to the guest logical domain.
34  *
35  * The driver can be divided into four sections:
36  *
37  * 1) generic device driver housekeeping
38  *	_init, _fini, attach, detach, ops structures, etc.
39  *
40  * 2) communication channel setup
41  *	Setup the communications link over the LDC channel that vdc uses to
42  *	talk to the vDisk server. Initialise the descriptor ring which
43  *	allows the LDC clients to transfer data via memory mappings.
44  *
45  * 3) Support exported to upper layers (filesystems, etc)
46  *	The upper layers call into vdc via strategy(9E) and DKIO(7I)
47  *	ioctl calls. vdc will copy the data to be written to the descriptor
48  *	ring or maps the buffer to store the data read by the vDisk
49  *	server into the descriptor ring. It then sends a message to the
50  *	vDisk server requesting it to complete the operation.
51  *
52  * 4) Handling responses from vDisk server.
53  *	The vDisk server will ACK some or all of the messages vdc sends to it
54  *	(this is configured during the handshake). Upon receipt of an ACK
55  *	vdc will check the descriptor ring and signal to the upper layer
56  *	code waiting on the IO.
57  */
58 
59 #include <sys/atomic.h>
60 #include <sys/conf.h>
61 #include <sys/disp.h>
62 #include <sys/ddi.h>
63 #include <sys/dkio.h>
64 #include <sys/efi_partition.h>
65 #include <sys/fcntl.h>
66 #include <sys/file.h>
67 #include <sys/kstat.h>
68 #include <sys/mach_descrip.h>
69 #include <sys/modctl.h>
70 #include <sys/mdeg.h>
71 #include <sys/note.h>
72 #include <sys/open.h>
73 #include <sys/sdt.h>
74 #include <sys/stat.h>
75 #include <sys/sunddi.h>
76 #include <sys/types.h>
77 #include <sys/promif.h>
78 #include <sys/var.h>
79 #include <sys/vtoc.h>
80 #include <sys/archsystm.h>
81 #include <sys/sysmacros.h>
82 
83 #include <sys/cdio.h>
84 #include <sys/dktp/fdisk.h>
85 #include <sys/dktp/dadkio.h>
86 #include <sys/mhd.h>
87 #include <sys/scsi/generic/sense.h>
88 #include <sys/scsi/impl/uscsi.h>
89 #include <sys/scsi/impl/services.h>
90 #include <sys/scsi/targets/sddef.h>
91 
92 #include <sys/ldoms.h>
93 #include <sys/ldc.h>
94 #include <sys/vio_common.h>
95 #include <sys/vio_mailbox.h>
96 #include <sys/vio_util.h>
97 #include <sys/vdsk_common.h>
98 #include <sys/vdsk_mailbox.h>
99 #include <sys/vdc.h>
100 
101 /*
102  * function prototypes
103  */
104 
105 /* standard driver functions */
106 static int	vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred);
107 static int	vdc_close(dev_t dev, int flag, int otyp, cred_t *cred);
108 static int	vdc_strategy(struct buf *buf);
109 static int	vdc_print(dev_t dev, char *str);
110 static int	vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
111 static int	vdc_read(dev_t dev, struct uio *uio, cred_t *cred);
112 static int	vdc_write(dev_t dev, struct uio *uio, cred_t *cred);
113 static int	vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
114 			cred_t *credp, int *rvalp);
115 static int	vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred);
116 static int	vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred);
117 
118 static int	vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,
119 			void *arg, void **resultp);
120 static int	vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
121 static int	vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
122 static int	vdc_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
123 		    int mod_flags, char *name, caddr_t valuep, int *lengthp);
124 
125 /* setup */
126 static void	vdc_min(struct buf *bufp);
127 static int	vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen);
128 static int	vdc_do_ldc_init(vdc_t *vdc, vdc_server_t *srvr);
129 static int	vdc_start_ldc_connection(vdc_t *vdc);
130 static int	vdc_create_device_nodes(vdc_t *vdc);
131 static int	vdc_create_device_nodes_efi(vdc_t *vdc);
132 static int	vdc_create_device_nodes_vtoc(vdc_t *vdc);
133 static void	vdc_create_io_kstats(vdc_t *vdc);
134 static void	vdc_create_err_kstats(vdc_t *vdc);
135 static void	vdc_set_err_kstats(vdc_t *vdc);
136 static int	vdc_get_md_node(dev_info_t *dip, md_t **mdpp,
137 		    mde_cookie_t *vd_nodep);
138 static int	vdc_init_ports(vdc_t *vdc, md_t *mdp, mde_cookie_t vd_nodep);
139 static void	vdc_fini_ports(vdc_t *vdc);
140 static void	vdc_switch_server(vdc_t *vdcp);
141 static int	vdc_do_ldc_up(vdc_t *vdc);
142 static void	vdc_terminate_ldc(vdc_t *vdc, vdc_server_t *srvr);
143 static int	vdc_init_descriptor_ring(vdc_t *vdc);
144 static void	vdc_destroy_descriptor_ring(vdc_t *vdc);
145 static int	vdc_setup_devid(vdc_t *vdc);
146 static void	vdc_store_label_efi(vdc_t *, efi_gpt_t *, efi_gpe_t *);
147 static void	vdc_store_label_vtoc(vdc_t *, struct dk_geom *, struct vtoc *);
148 static void	vdc_store_label_unk(vdc_t *vdc);
149 static boolean_t vdc_is_opened(vdc_t *vdc);
150 static void	vdc_update_size(vdc_t *vdc, size_t, size_t, size_t);
151 
152 /* handshake with vds */
153 static int		vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver);
154 static int		vdc_ver_negotiation(vdc_t *vdcp);
155 static int		vdc_init_attr_negotiation(vdc_t *vdc);
156 static int		vdc_attr_negotiation(vdc_t *vdcp);
157 static int		vdc_init_dring_negotiate(vdc_t *vdc);
158 static int		vdc_dring_negotiation(vdc_t *vdcp);
159 static int		vdc_send_rdx(vdc_t *vdcp);
160 static int		vdc_rdx_exchange(vdc_t *vdcp);
161 static boolean_t	vdc_is_supported_version(vio_ver_msg_t *ver_msg);
162 
163 /* processing incoming messages from vDisk server */
164 static void	vdc_process_msg_thread(vdc_t *vdc);
165 static int	vdc_recv(vdc_t *vdc, vio_msg_t *msgp, size_t *nbytesp);
166 
167 static uint_t	vdc_handle_cb(uint64_t event, caddr_t arg);
168 static int	vdc_process_data_msg(vdc_t *vdc, vio_msg_t *msg);
169 static int	vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg);
170 static int	vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg);
171 static int	vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *msg);
172 static int 	vdc_send_request(vdc_t *vdcp, int operation,
173 		    caddr_t addr, size_t nbytes, int slice, diskaddr_t offset,
174 		    int cb_type, void *cb_arg, vio_desc_direction_t dir);
175 static int	vdc_map_to_shared_dring(vdc_t *vdcp, int idx);
176 static int 	vdc_populate_descriptor(vdc_t *vdcp, int operation,
177 		    caddr_t addr, size_t nbytes, int slice, diskaddr_t offset,
178 		    int cb_type, void *cb_arg, vio_desc_direction_t dir);
179 static int 	vdc_do_sync_op(vdc_t *vdcp, int operation, caddr_t addr,
180 		    size_t nbytes, int slice, diskaddr_t offset, int cb_type,
181 		    void *cb_arg, vio_desc_direction_t dir, boolean_t);
182 
183 static int	vdc_wait_for_response(vdc_t *vdcp, vio_msg_t *msgp);
184 static int	vdc_drain_response(vdc_t *vdcp, struct buf *buf);
185 static int	vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx);
186 static int	vdc_populate_mem_hdl(vdc_t *vdcp, vdc_local_desc_t *ldep);
187 static int	vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg);
188 
189 /* dkio */
190 static int	vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode,
191 		    int *rvalp);
192 static int	vd_process_efi_ioctl(void *vdisk, int cmd, uintptr_t arg);
193 static void	vdc_create_fake_geometry(vdc_t *vdc);
194 static int	vdc_validate_geometry(vdc_t *vdc);
195 static void	vdc_validate(vdc_t *vdc);
196 static void	vdc_validate_task(void *arg);
197 static int	vdc_null_copy_func(vdc_t *vdc, void *from, void *to,
198 		    int mode, int dir);
199 static int	vdc_get_wce_convert(vdc_t *vdc, void *from, void *to,
200 		    int mode, int dir);
201 static int	vdc_set_wce_convert(vdc_t *vdc, void *from, void *to,
202 		    int mode, int dir);
203 static int	vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to,
204 		    int mode, int dir);
205 static int	vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to,
206 		    int mode, int dir);
207 static int	vdc_get_geom_convert(vdc_t *vdc, void *from, void *to,
208 		    int mode, int dir);
209 static int	vdc_set_geom_convert(vdc_t *vdc, void *from, void *to,
210 		    int mode, int dir);
211 static int	vdc_get_efi_convert(vdc_t *vdc, void *from, void *to,
212 		    int mode, int dir);
213 static int	vdc_set_efi_convert(vdc_t *vdc, void *from, void *to,
214 		    int mode, int dir);
215 
216 static void 	vdc_ownership_update(vdc_t *vdc, int ownership_flags);
217 static int	vdc_access_set(vdc_t *vdc, uint64_t flags, int mode);
218 static vdc_io_t	*vdc_failfast_io_queue(vdc_t *vdc, struct buf *buf);
219 static int	vdc_failfast_check_resv(vdc_t *vdc);
220 
221 /*
222  * Module variables
223  */
224 
225 /*
226  * Tunable variables to control how long vdc waits before timing out on
227  * various operations
228  */
229 static int	vdc_hshake_retries = 3;
230 
231 static int	vdc_timeout = 0; /* units: seconds */
232 static int 	vdc_ldcup_timeout = 1; /* units: seconds */
233 
234 static uint64_t vdc_hz_min_ldc_delay;
235 static uint64_t vdc_min_timeout_ldc = 1 * MILLISEC;
236 static uint64_t vdc_hz_max_ldc_delay;
237 static uint64_t vdc_max_timeout_ldc = 100 * MILLISEC;
238 
239 static uint64_t vdc_ldc_read_init_delay = 1 * MILLISEC;
240 static uint64_t vdc_ldc_read_max_delay = 100 * MILLISEC;
241 
242 /* values for dumping - need to run in a tighter loop */
243 static uint64_t	vdc_usec_timeout_dump = 100 * MILLISEC;	/* 0.1s units: ns */
244 static int	vdc_dump_retries = 100;
245 
246 static uint16_t	vdc_scsi_timeout = 60;	/* 60s units: seconds  */
247 
248 static uint64_t vdc_ownership_delay = 6 * MICROSEC; /* 6s units: usec */
249 
250 /* Count of the number of vdc instances attached */
251 static volatile uint32_t	vdc_instance_count = 0;
252 
253 /* Tunable to log all SCSI errors */
254 static boolean_t vdc_scsi_log_error = B_FALSE;
255 
256 /* Soft state pointer */
257 static void	*vdc_state;
258 
259 /*
260  * Controlling the verbosity of the error/debug messages
261  *
262  * vdc_msglevel - controls level of messages
263  * vdc_matchinst - 64-bit variable where each bit corresponds
264  *                 to the vdc instance the vdc_msglevel applies.
265  */
266 int		vdc_msglevel = 0x0;
267 uint64_t	vdc_matchinst = 0ull;
268 
269 /*
270  * Supported vDisk protocol version pairs.
271  *
272  * The first array entry is the latest and preferred version.
273  */
274 static const vio_ver_t	vdc_version[] = {{1, 1}};
275 
276 static struct cb_ops vdc_cb_ops = {
277 	vdc_open,	/* cb_open */
278 	vdc_close,	/* cb_close */
279 	vdc_strategy,	/* cb_strategy */
280 	vdc_print,	/* cb_print */
281 	vdc_dump,	/* cb_dump */
282 	vdc_read,	/* cb_read */
283 	vdc_write,	/* cb_write */
284 	vdc_ioctl,	/* cb_ioctl */
285 	nodev,		/* cb_devmap */
286 	nodev,		/* cb_mmap */
287 	nodev,		/* cb_segmap */
288 	nochpoll,	/* cb_chpoll */
289 	vdc_prop_op,	/* cb_prop_op */
290 	NULL,		/* cb_str */
291 	D_MP | D_64BIT,	/* cb_flag */
292 	CB_REV,		/* cb_rev */
293 	vdc_aread,	/* cb_aread */
294 	vdc_awrite	/* cb_awrite */
295 };
296 
297 static struct dev_ops vdc_ops = {
298 	DEVO_REV,	/* devo_rev */
299 	0,		/* devo_refcnt */
300 	vdc_getinfo,	/* devo_getinfo */
301 	nulldev,	/* devo_identify */
302 	nulldev,	/* devo_probe */
303 	vdc_attach,	/* devo_attach */
304 	vdc_detach,	/* devo_detach */
305 	nodev,		/* devo_reset */
306 	&vdc_cb_ops,	/* devo_cb_ops */
307 	NULL,		/* devo_bus_ops */
308 	nulldev		/* devo_power */
309 };
310 
311 static struct modldrv modldrv = {
312 	&mod_driverops,
313 	"virtual disk client",
314 	&vdc_ops,
315 };
316 
317 static struct modlinkage modlinkage = {
318 	MODREV_1,
319 	&modldrv,
320 	NULL
321 };
322 
323 /* -------------------------------------------------------------------------- */
324 
325 /*
326  * Device Driver housekeeping and setup
327  */
328 
329 int
330 _init(void)
331 {
332 	int	status;
333 
334 	if ((status = ddi_soft_state_init(&vdc_state, sizeof (vdc_t), 1)) != 0)
335 		return (status);
336 	if ((status = mod_install(&modlinkage)) != 0)
337 		ddi_soft_state_fini(&vdc_state);
338 	return (status);
339 }
340 
341 int
342 _info(struct modinfo *modinfop)
343 {
344 	return (mod_info(&modlinkage, modinfop));
345 }
346 
347 int
348 _fini(void)
349 {
350 	int	status;
351 
352 	if ((status = mod_remove(&modlinkage)) != 0)
353 		return (status);
354 	ddi_soft_state_fini(&vdc_state);
355 	return (0);
356 }
357 
358 static int
359 vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,  void *arg, void **resultp)
360 {
361 	_NOTE(ARGUNUSED(dip))
362 
363 	int	instance = VDCUNIT((dev_t)arg);
364 	vdc_t	*vdc = NULL;
365 
366 	switch (cmd) {
367 	case DDI_INFO_DEVT2DEVINFO:
368 		if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
369 			*resultp = NULL;
370 			return (DDI_FAILURE);
371 		}
372 		*resultp = vdc->dip;
373 		return (DDI_SUCCESS);
374 	case DDI_INFO_DEVT2INSTANCE:
375 		*resultp = (void *)(uintptr_t)instance;
376 		return (DDI_SUCCESS);
377 	default:
378 		*resultp = NULL;
379 		return (DDI_FAILURE);
380 	}
381 }
382 
383 static int
384 vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
385 {
386 	kt_did_t failfast_tid, ownership_tid;
387 	int	instance;
388 	int	rv;
389 	vdc_server_t *srvr;
390 	vdc_t	*vdc = NULL;
391 
392 	switch (cmd) {
393 	case DDI_DETACH:
394 		/* the real work happens below */
395 		break;
396 	case DDI_SUSPEND:
397 		/* nothing to do for this non-device */
398 		return (DDI_SUCCESS);
399 	default:
400 		return (DDI_FAILURE);
401 	}
402 
403 	ASSERT(cmd == DDI_DETACH);
404 	instance = ddi_get_instance(dip);
405 	DMSGX(1, "[%d] Entered\n", instance);
406 
407 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
408 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
409 		return (DDI_FAILURE);
410 	}
411 
412 	/*
413 	 * This function is called when vdc is detached or if it has failed to
414 	 * attach. In that case, the attach may have fail before the vdisk type
415 	 * has been set so we can't call vdc_is_opened(). However as the attach
416 	 * has failed, we know that the vdisk is not opened and we can safely
417 	 * detach.
418 	 */
419 	if (vdc->vdisk_type != VD_DISK_TYPE_UNK && vdc_is_opened(vdc)) {
420 		DMSG(vdc, 0, "[%d] Cannot detach: device is open", instance);
421 		return (DDI_FAILURE);
422 	}
423 
424 	if (vdc->dkio_flush_pending) {
425 		DMSG(vdc, 0,
426 		    "[%d] Cannot detach: %d outstanding DKIO flushes\n",
427 		    instance, vdc->dkio_flush_pending);
428 		return (DDI_FAILURE);
429 	}
430 
431 	if (vdc->validate_pending) {
432 		DMSG(vdc, 0,
433 		    "[%d] Cannot detach: %d outstanding validate request\n",
434 		    instance, vdc->validate_pending);
435 		return (DDI_FAILURE);
436 	}
437 
438 	DMSG(vdc, 0, "[%d] proceeding...\n", instance);
439 
440 	/* If we took ownership, release ownership */
441 	mutex_enter(&vdc->ownership_lock);
442 	if (vdc->ownership & VDC_OWNERSHIP_GRANTED) {
443 		rv = vdc_access_set(vdc, VD_ACCESS_SET_CLEAR, FKIOCTL);
444 		if (rv == 0) {
445 			vdc_ownership_update(vdc, VDC_OWNERSHIP_NONE);
446 		}
447 	}
448 	mutex_exit(&vdc->ownership_lock);
449 
450 	/* mark instance as detaching */
451 	vdc->lifecycle	= VDC_LC_DETACHING;
452 
453 	/*
454 	 * Try and disable callbacks to prevent another handshake. We have to
455 	 * disable callbacks for all servers.
456 	 */
457 	for (srvr = vdc->server_list; srvr != NULL; srvr = srvr->next) {
458 		rv = ldc_set_cb_mode(srvr->ldc_handle, LDC_CB_DISABLE);
459 		DMSG(vdc, 0, "callback disabled (ldc=%lu, rv=%d)\n",
460 		    srvr->ldc_id, rv);
461 	}
462 
463 	if (vdc->initialized & VDC_THREAD) {
464 		mutex_enter(&vdc->read_lock);
465 		if ((vdc->read_state == VDC_READ_WAITING) ||
466 		    (vdc->read_state == VDC_READ_RESET)) {
467 			vdc->read_state = VDC_READ_RESET;
468 			cv_signal(&vdc->read_cv);
469 		}
470 
471 		mutex_exit(&vdc->read_lock);
472 
473 		/* wake up any thread waiting for connection to come online */
474 		mutex_enter(&vdc->lock);
475 		if (vdc->state == VDC_STATE_INIT_WAITING) {
476 			DMSG(vdc, 0,
477 			    "[%d] write reset - move to resetting state...\n",
478 			    instance);
479 			vdc->state = VDC_STATE_RESETTING;
480 			cv_signal(&vdc->initwait_cv);
481 		}
482 		mutex_exit(&vdc->lock);
483 
484 		/* now wait until state transitions to VDC_STATE_DETACH */
485 		thread_join(vdc->msg_proc_thr->t_did);
486 		ASSERT(vdc->state == VDC_STATE_DETACH);
487 		DMSG(vdc, 0, "[%d] Reset thread exit and join ..\n",
488 		    vdc->instance);
489 	}
490 
491 	mutex_enter(&vdc->lock);
492 
493 	if (vdc->initialized & VDC_DRING)
494 		vdc_destroy_descriptor_ring(vdc);
495 
496 	vdc_fini_ports(vdc);
497 
498 	if (vdc->failfast_thread) {
499 		failfast_tid = vdc->failfast_thread->t_did;
500 		vdc->failfast_interval = 0;
501 		cv_signal(&vdc->failfast_cv);
502 	} else {
503 		failfast_tid = 0;
504 	}
505 
506 	if (vdc->ownership & VDC_OWNERSHIP_WANTED) {
507 		ownership_tid = vdc->ownership_thread->t_did;
508 		vdc->ownership = VDC_OWNERSHIP_NONE;
509 		cv_signal(&vdc->ownership_cv);
510 	} else {
511 		ownership_tid = 0;
512 	}
513 
514 	mutex_exit(&vdc->lock);
515 
516 	if (failfast_tid != 0)
517 		thread_join(failfast_tid);
518 
519 	if (ownership_tid != 0)
520 		thread_join(ownership_tid);
521 
522 	if (vdc->initialized & VDC_MINOR)
523 		ddi_remove_minor_node(dip, NULL);
524 
525 	if (vdc->io_stats) {
526 		kstat_delete(vdc->io_stats);
527 		vdc->io_stats = NULL;
528 	}
529 
530 	if (vdc->err_stats) {
531 		kstat_delete(vdc->err_stats);
532 		vdc->err_stats = NULL;
533 	}
534 
535 	if (vdc->initialized & VDC_LOCKS) {
536 		mutex_destroy(&vdc->lock);
537 		mutex_destroy(&vdc->read_lock);
538 		mutex_destroy(&vdc->ownership_lock);
539 		cv_destroy(&vdc->initwait_cv);
540 		cv_destroy(&vdc->dring_free_cv);
541 		cv_destroy(&vdc->membind_cv);
542 		cv_destroy(&vdc->sync_pending_cv);
543 		cv_destroy(&vdc->sync_blocked_cv);
544 		cv_destroy(&vdc->read_cv);
545 		cv_destroy(&vdc->running_cv);
546 		cv_destroy(&vdc->ownership_cv);
547 		cv_destroy(&vdc->failfast_cv);
548 		cv_destroy(&vdc->failfast_io_cv);
549 	}
550 
551 	if (vdc->minfo)
552 		kmem_free(vdc->minfo, sizeof (struct dk_minfo));
553 
554 	if (vdc->cinfo)
555 		kmem_free(vdc->cinfo, sizeof (struct dk_cinfo));
556 
557 	if (vdc->vtoc)
558 		kmem_free(vdc->vtoc, sizeof (struct vtoc));
559 
560 	if (vdc->geom)
561 		kmem_free(vdc->geom, sizeof (struct dk_geom));
562 
563 	if (vdc->devid) {
564 		ddi_devid_unregister(dip);
565 		ddi_devid_free(vdc->devid);
566 	}
567 
568 	if (vdc->initialized & VDC_SOFT_STATE)
569 		ddi_soft_state_free(vdc_state, instance);
570 
571 	DMSG(vdc, 0, "[%d] End %p\n", instance, (void *)vdc);
572 
573 	return (DDI_SUCCESS);
574 }
575 
576 
577 static int
578 vdc_do_attach(dev_info_t *dip)
579 {
580 	int		instance;
581 	vdc_t		*vdc = NULL;
582 	int		status;
583 	md_t		*mdp;
584 	mde_cookie_t	vd_node;
585 
586 	ASSERT(dip != NULL);
587 
588 	instance = ddi_get_instance(dip);
589 	if (ddi_soft_state_zalloc(vdc_state, instance) != DDI_SUCCESS) {
590 		cmn_err(CE_NOTE, "[%d] Couldn't alloc state structure",
591 		    instance);
592 		return (DDI_FAILURE);
593 	}
594 
595 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
596 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
597 		return (DDI_FAILURE);
598 	}
599 
600 	/*
601 	 * We assign the value to initialized in this case to zero out the
602 	 * variable and then set bits in it to indicate what has been done
603 	 */
604 	vdc->initialized = VDC_SOFT_STATE;
605 
606 	vdc_hz_min_ldc_delay = drv_usectohz(vdc_min_timeout_ldc);
607 	vdc_hz_max_ldc_delay = drv_usectohz(vdc_max_timeout_ldc);
608 
609 	vdc->dip	= dip;
610 	vdc->instance	= instance;
611 	vdc->vdisk_type	= VD_DISK_TYPE_UNK;
612 	vdc->vdisk_label = VD_DISK_LABEL_UNK;
613 	vdc->state	= VDC_STATE_INIT;
614 	vdc->lifecycle	= VDC_LC_ATTACHING;
615 	vdc->session_id = 0;
616 	vdc->block_size = DEV_BSIZE;
617 	vdc->max_xfer_sz = maxphys / DEV_BSIZE;
618 
619 	/*
620 	 * We assume, for now, that the vDisk server will export 'read'
621 	 * operations to us at a minimum (this is needed because of checks
622 	 * in vdc for supported operations early in the handshake process).
623 	 * The vDisk server will return ENOTSUP if this is not the case.
624 	 * The value will be overwritten during the attribute exchange with
625 	 * the bitmask of operations exported by server.
626 	 */
627 	vdc->operations = VD_OP_MASK_READ;
628 
629 	vdc->vtoc = NULL;
630 	vdc->geom = NULL;
631 	vdc->cinfo = NULL;
632 	vdc->minfo = NULL;
633 
634 	mutex_init(&vdc->lock, NULL, MUTEX_DRIVER, NULL);
635 	cv_init(&vdc->initwait_cv, NULL, CV_DRIVER, NULL);
636 	cv_init(&vdc->dring_free_cv, NULL, CV_DRIVER, NULL);
637 	cv_init(&vdc->membind_cv, NULL, CV_DRIVER, NULL);
638 	cv_init(&vdc->running_cv, NULL, CV_DRIVER, NULL);
639 
640 	vdc->threads_pending = 0;
641 	vdc->sync_op_pending = B_FALSE;
642 	vdc->sync_op_blocked = B_FALSE;
643 	cv_init(&vdc->sync_pending_cv, NULL, CV_DRIVER, NULL);
644 	cv_init(&vdc->sync_blocked_cv, NULL, CV_DRIVER, NULL);
645 
646 	mutex_init(&vdc->ownership_lock, NULL, MUTEX_DRIVER, NULL);
647 	cv_init(&vdc->ownership_cv, NULL, CV_DRIVER, NULL);
648 	cv_init(&vdc->failfast_cv, NULL, CV_DRIVER, NULL);
649 	cv_init(&vdc->failfast_io_cv, NULL, CV_DRIVER, NULL);
650 
651 	/* init blocking msg read functionality */
652 	mutex_init(&vdc->read_lock, NULL, MUTEX_DRIVER, NULL);
653 	cv_init(&vdc->read_cv, NULL, CV_DRIVER, NULL);
654 	vdc->read_state = VDC_READ_IDLE;
655 
656 	vdc->initialized |= VDC_LOCKS;
657 
658 	/* get device and port MD node for this disk instance */
659 	if (vdc_get_md_node(dip, &mdp, &vd_node) != 0) {
660 		cmn_err(CE_NOTE, "[%d] Could not get machine description node",
661 		    instance);
662 		return (DDI_FAILURE);
663 	}
664 
665 	if (vdc_init_ports(vdc, mdp, vd_node) != 0) {
666 		cmn_err(CE_NOTE, "[%d] Error initialising ports", instance);
667 		return (DDI_FAILURE);
668 	}
669 
670 	(void) md_fini_handle(mdp);
671 
672 	/* Create the kstats for saving the I/O statistics used by iostat(1M) */
673 	vdc_create_io_kstats(vdc);
674 	vdc_create_err_kstats(vdc);
675 
676 	/* Initialize remaining structures before starting the msg thread */
677 	vdc->vdisk_label = VD_DISK_LABEL_UNK;
678 	vdc->vtoc = kmem_zalloc(sizeof (struct vtoc), KM_SLEEP);
679 	vdc->geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
680 	vdc->minfo = kmem_zalloc(sizeof (struct dk_minfo), KM_SLEEP);
681 
682 	/* initialize the thread responsible for managing state with server */
683 	vdc->msg_proc_thr = thread_create(NULL, 0, vdc_process_msg_thread,
684 	    vdc, 0, &p0, TS_RUN, minclsyspri);
685 	if (vdc->msg_proc_thr == NULL) {
686 		cmn_err(CE_NOTE, "[%d] Failed to create msg processing thread",
687 		    instance);
688 		return (DDI_FAILURE);
689 	}
690 
691 	vdc->initialized |= VDC_THREAD;
692 
693 	atomic_inc_32(&vdc_instance_count);
694 
695 	/*
696 	 * Check the disk label. This will send requests and do the handshake.
697 	 * We don't really care about the disk label now. What we really need is
698 	 * the handshake do be done so that we know the type of the disk (slice
699 	 * or full disk) and the appropriate device nodes can be created.
700 	 */
701 
702 	mutex_enter(&vdc->lock);
703 	(void) vdc_validate_geometry(vdc);
704 	mutex_exit(&vdc->lock);
705 
706 	/*
707 	 * Now that we have the device info we can create the device nodes
708 	 */
709 	status = vdc_create_device_nodes(vdc);
710 	if (status) {
711 		DMSG(vdc, 0, "[%d] Failed to create device nodes",
712 		    instance);
713 		goto return_status;
714 	}
715 
716 	/*
717 	 * Setup devid
718 	 */
719 	if (vdc_setup_devid(vdc)) {
720 		DMSG(vdc, 0, "[%d] No device id available\n", instance);
721 	}
722 
723 	/*
724 	 * Fill in the fields of the error statistics kstat that were not
725 	 * available when creating the kstat
726 	 */
727 	vdc_set_err_kstats(vdc);
728 
729 	ddi_report_dev(dip);
730 	vdc->lifecycle	= VDC_LC_ONLINE;
731 	DMSG(vdc, 0, "[%d] Attach tasks successful\n", instance);
732 
733 return_status:
734 	DMSG(vdc, 0, "[%d] Attach completed\n", instance);
735 	return (status);
736 }
737 
738 static int
739 vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
740 {
741 	int	status;
742 
743 	switch (cmd) {
744 	case DDI_ATTACH:
745 		if ((status = vdc_do_attach(dip)) != 0)
746 			(void) vdc_detach(dip, DDI_DETACH);
747 		return (status);
748 	case DDI_RESUME:
749 		/* nothing to do for this non-device */
750 		return (DDI_SUCCESS);
751 	default:
752 		return (DDI_FAILURE);
753 	}
754 }
755 
756 static int
757 vdc_do_ldc_init(vdc_t *vdc, vdc_server_t *srvr)
758 {
759 	int			status = 0;
760 	ldc_status_t		ldc_state;
761 	ldc_attr_t		ldc_attr;
762 
763 	ASSERT(vdc != NULL);
764 	ASSERT(srvr != NULL);
765 
766 	ldc_attr.devclass = LDC_DEV_BLK;
767 	ldc_attr.instance = vdc->instance;
768 	ldc_attr.mode = LDC_MODE_UNRELIABLE;	/* unreliable transport */
769 	ldc_attr.mtu = VD_LDC_MTU;
770 
771 	if ((srvr->state & VDC_LDC_INIT) == 0) {
772 		status = ldc_init(srvr->ldc_id, &ldc_attr,
773 		    &srvr->ldc_handle);
774 		if (status != 0) {
775 			DMSG(vdc, 0, "[%d] ldc_init(chan %ld) returned %d",
776 			    vdc->instance, srvr->ldc_id, status);
777 			return (status);
778 		}
779 		srvr->state |= VDC_LDC_INIT;
780 	}
781 	status = ldc_status(srvr->ldc_handle, &ldc_state);
782 	if (status != 0) {
783 		DMSG(vdc, 0, "[%d] Cannot discover LDC status [err=%d]",
784 		    vdc->instance, status);
785 		goto init_exit;
786 	}
787 	srvr->ldc_state = ldc_state;
788 
789 	if ((srvr->state & VDC_LDC_CB) == 0) {
790 		status = ldc_reg_callback(srvr->ldc_handle, vdc_handle_cb,
791 		    (caddr_t)srvr);
792 		if (status != 0) {
793 			DMSG(vdc, 0, "[%d] LDC callback reg. failed (%d)",
794 			    vdc->instance, status);
795 			goto init_exit;
796 		}
797 		srvr->state |= VDC_LDC_CB;
798 	}
799 
800 	/*
801 	 * At this stage we have initialised LDC, we will now try and open
802 	 * the connection.
803 	 */
804 	if (srvr->ldc_state == LDC_INIT) {
805 		status = ldc_open(srvr->ldc_handle);
806 		if (status != 0) {
807 			DMSG(vdc, 0, "[%d] ldc_open(chan %ld) returned %d",
808 			    vdc->instance, srvr->ldc_id, status);
809 			goto init_exit;
810 		}
811 		srvr->state |= VDC_LDC_OPEN;
812 	}
813 
814 init_exit:
815 	if (status) {
816 		vdc_terminate_ldc(vdc, srvr);
817 	}
818 
819 	return (status);
820 }
821 
822 static int
823 vdc_start_ldc_connection(vdc_t *vdc)
824 {
825 	int		status = 0;
826 
827 	ASSERT(vdc != NULL);
828 
829 	ASSERT(MUTEX_HELD(&vdc->lock));
830 
831 	status = vdc_do_ldc_up(vdc);
832 
833 	DMSG(vdc, 0, "[%d] Finished bringing up LDC\n", vdc->instance);
834 
835 	return (status);
836 }
837 
838 static int
839 vdc_stop_ldc_connection(vdc_t *vdcp)
840 {
841 	int	status;
842 
843 	ASSERT(vdcp != NULL);
844 
845 	ASSERT(MUTEX_HELD(&vdcp->lock));
846 
847 	DMSG(vdcp, 0, ": Resetting connection to vDisk server : state %d\n",
848 	    vdcp->state);
849 
850 	status = ldc_down(vdcp->curr_server->ldc_handle);
851 	DMSG(vdcp, 0, "ldc_down() = %d\n", status);
852 
853 	vdcp->initialized &= ~VDC_HANDSHAKE;
854 	DMSG(vdcp, 0, "initialized=%x\n", vdcp->initialized);
855 
856 	return (status);
857 }
858 
859 static void
860 vdc_create_io_kstats(vdc_t *vdc)
861 {
862 	if (vdc->io_stats != NULL) {
863 		DMSG(vdc, 0, "[%d] I/O kstat already exists\n", vdc->instance);
864 		return;
865 	}
866 
867 	vdc->io_stats = kstat_create(VDC_DRIVER_NAME, vdc->instance, NULL,
868 	    "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
869 	if (vdc->io_stats != NULL) {
870 		vdc->io_stats->ks_lock = &vdc->lock;
871 		kstat_install(vdc->io_stats);
872 	} else {
873 		cmn_err(CE_NOTE, "[%d] Failed to create kstat: I/O statistics"
874 		    " will not be gathered", vdc->instance);
875 	}
876 }
877 
878 static void
879 vdc_create_err_kstats(vdc_t *vdc)
880 {
881 	vd_err_stats_t	*stp;
882 	char	kstatmodule_err[KSTAT_STRLEN];
883 	char	kstatname[KSTAT_STRLEN];
884 	int	ndata = (sizeof (vd_err_stats_t) / sizeof (kstat_named_t));
885 	int	instance = vdc->instance;
886 
887 	if (vdc->err_stats != NULL) {
888 		DMSG(vdc, 0, "[%d] ERR kstat already exists\n", vdc->instance);
889 		return;
890 	}
891 
892 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
893 	    "%serr", VDC_DRIVER_NAME);
894 	(void) snprintf(kstatname, sizeof (kstatname),
895 	    "%s%d,err", VDC_DRIVER_NAME, instance);
896 
897 	vdc->err_stats = kstat_create(kstatmodule_err, instance, kstatname,
898 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
899 
900 	if (vdc->err_stats == NULL) {
901 		cmn_err(CE_NOTE, "[%d] Failed to create kstat: Error statistics"
902 		    " will not be gathered", instance);
903 		return;
904 	}
905 
906 	stp = (vd_err_stats_t *)vdc->err_stats->ks_data;
907 	kstat_named_init(&stp->vd_softerrs,	"Soft Errors",
908 	    KSTAT_DATA_UINT32);
909 	kstat_named_init(&stp->vd_transerrs,	"Transport Errors",
910 	    KSTAT_DATA_UINT32);
911 	kstat_named_init(&stp->vd_protoerrs,	"Protocol Errors",
912 	    KSTAT_DATA_UINT32);
913 	kstat_named_init(&stp->vd_vid,		"Vendor",
914 	    KSTAT_DATA_CHAR);
915 	kstat_named_init(&stp->vd_pid,		"Product",
916 	    KSTAT_DATA_CHAR);
917 	kstat_named_init(&stp->vd_capacity,	"Size",
918 	    KSTAT_DATA_ULONGLONG);
919 
920 	vdc->err_stats->ks_update  = nulldev;
921 
922 	kstat_install(vdc->err_stats);
923 }
924 
925 static void
926 vdc_set_err_kstats(vdc_t *vdc)
927 {
928 	vd_err_stats_t  *stp;
929 
930 	if (vdc->err_stats == NULL)
931 		return;
932 
933 	mutex_enter(&vdc->lock);
934 
935 	stp = (vd_err_stats_t *)vdc->err_stats->ks_data;
936 	ASSERT(stp != NULL);
937 
938 	stp->vd_capacity.value.ui64 = vdc->vdisk_size * vdc->block_size;
939 	(void) strcpy(stp->vd_vid.value.c, "SUN");
940 	(void) strcpy(stp->vd_pid.value.c, "VDSK");
941 
942 	mutex_exit(&vdc->lock);
943 }
944 
945 static int
946 vdc_create_device_nodes_efi(vdc_t *vdc)
947 {
948 	ddi_remove_minor_node(vdc->dip, "h");
949 	ddi_remove_minor_node(vdc->dip, "h,raw");
950 
951 	if (ddi_create_minor_node(vdc->dip, "wd", S_IFBLK,
952 	    VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
953 	    DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
954 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'wd'",
955 		    vdc->instance);
956 		return (EIO);
957 	}
958 
959 	/* if any device node is created we set this flag */
960 	vdc->initialized |= VDC_MINOR;
961 
962 	if (ddi_create_minor_node(vdc->dip, "wd,raw", S_IFCHR,
963 	    VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
964 	    DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
965 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'wd,raw'",
966 		    vdc->instance);
967 		return (EIO);
968 	}
969 
970 	return (0);
971 }
972 
973 static int
974 vdc_create_device_nodes_vtoc(vdc_t *vdc)
975 {
976 	ddi_remove_minor_node(vdc->dip, "wd");
977 	ddi_remove_minor_node(vdc->dip, "wd,raw");
978 
979 	if (ddi_create_minor_node(vdc->dip, "h", S_IFBLK,
980 	    VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
981 	    DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
982 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'h'",
983 		    vdc->instance);
984 		return (EIO);
985 	}
986 
987 	/* if any device node is created we set this flag */
988 	vdc->initialized |= VDC_MINOR;
989 
990 	if (ddi_create_minor_node(vdc->dip, "h,raw", S_IFCHR,
991 	    VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
992 	    DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
993 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'h,raw'",
994 		    vdc->instance);
995 		return (EIO);
996 	}
997 
998 	return (0);
999 }
1000 
1001 /*
1002  * Function:
1003  *	vdc_create_device_nodes
1004  *
1005  * Description:
1006  *	This function creates the block and character device nodes under
1007  *	/devices. It is called as part of the attach(9E) of the instance
1008  *	during the handshake with vds after vds has sent the attributes
1009  *	to vdc.
1010  *
1011  *	If the device is of type VD_DISK_TYPE_SLICE then the minor node
1012  *	of 2 is used in keeping with the Solaris convention that slice 2
1013  *	refers to a whole disk. Slices start at 'a'
1014  *
1015  * Parameters:
1016  *	vdc 		- soft state pointer
1017  *
1018  * Return Values
1019  *	0		- Success
1020  *	EIO		- Failed to create node
1021  *	EINVAL		- Unknown type of disk exported
1022  */
1023 static int
1024 vdc_create_device_nodes(vdc_t *vdc)
1025 {
1026 	char		name[sizeof ("s,raw")];
1027 	dev_info_t	*dip = NULL;
1028 	int		instance, status;
1029 	int		num_slices = 1;
1030 	int		i;
1031 
1032 	ASSERT(vdc != NULL);
1033 
1034 	instance = vdc->instance;
1035 	dip = vdc->dip;
1036 
1037 	switch (vdc->vdisk_type) {
1038 	case VD_DISK_TYPE_DISK:
1039 		num_slices = V_NUMPAR;
1040 		break;
1041 	case VD_DISK_TYPE_SLICE:
1042 		num_slices = 1;
1043 		break;
1044 	case VD_DISK_TYPE_UNK:
1045 	default:
1046 		return (EINVAL);
1047 	}
1048 
1049 	/*
1050 	 * Minor nodes are different for EFI disks: EFI disks do not have
1051 	 * a minor node 'g' for the minor number corresponding to slice
1052 	 * VD_EFI_WD_SLICE (slice 7) instead they have a minor node 'wd'
1053 	 * representing the whole disk.
1054 	 */
1055 	for (i = 0; i < num_slices; i++) {
1056 
1057 		if (i == VD_EFI_WD_SLICE) {
1058 			if (vdc->vdisk_label == VD_DISK_LABEL_EFI)
1059 				status = vdc_create_device_nodes_efi(vdc);
1060 			else
1061 				status = vdc_create_device_nodes_vtoc(vdc);
1062 			if (status != 0)
1063 				return (status);
1064 			continue;
1065 		}
1066 
1067 		(void) snprintf(name, sizeof (name), "%c", 'a' + i);
1068 		if (ddi_create_minor_node(dip, name, S_IFBLK,
1069 		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
1070 			cmn_err(CE_NOTE, "[%d] Couldn't add block node '%s'",
1071 			    instance, name);
1072 			return (EIO);
1073 		}
1074 
1075 		/* if any device node is created we set this flag */
1076 		vdc->initialized |= VDC_MINOR;
1077 
1078 		(void) snprintf(name, sizeof (name), "%c%s", 'a' + i, ",raw");
1079 
1080 		if (ddi_create_minor_node(dip, name, S_IFCHR,
1081 		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
1082 			cmn_err(CE_NOTE, "[%d] Couldn't add raw node '%s'",
1083 			    instance, name);
1084 			return (EIO);
1085 		}
1086 	}
1087 
1088 	return (0);
1089 }
1090 
1091 /*
1092  * Driver prop_op(9e) entry point function. Return the number of blocks for
1093  * the partition in question or forward the request to the property facilities.
1094  */
1095 static int
1096 vdc_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
1097     char *name, caddr_t valuep, int *lengthp)
1098 {
1099 	int instance = ddi_get_instance(dip);
1100 	vdc_t *vdc;
1101 	uint64_t nblocks;
1102 	uint_t blksize;
1103 
1104 	vdc = ddi_get_soft_state(vdc_state, instance);
1105 
1106 	if (dev == DDI_DEV_T_ANY || vdc == NULL) {
1107 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1108 		    name, valuep, lengthp));
1109 	}
1110 
1111 	mutex_enter(&vdc->lock);
1112 	(void) vdc_validate_geometry(vdc);
1113 	if (vdc->vdisk_label == VD_DISK_LABEL_UNK) {
1114 		mutex_exit(&vdc->lock);
1115 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1116 		    name, valuep, lengthp));
1117 	}
1118 	nblocks = vdc->slice[VDCPART(dev)].nblocks;
1119 	blksize = vdc->block_size;
1120 	mutex_exit(&vdc->lock);
1121 
1122 	return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op, mod_flags,
1123 	    name, valuep, lengthp, nblocks, blksize));
1124 }
1125 
1126 /*
1127  * Function:
1128  *	vdc_is_opened
1129  *
1130  * Description:
1131  *	This function checks if any slice of a given virtual disk is
1132  *	currently opened.
1133  *
1134  * Parameters:
1135  *	vdc 		- soft state pointer
1136  *
1137  * Return Values
1138  *	B_TRUE		- at least one slice is opened.
1139  *	B_FALSE		- no slice is opened.
1140  */
1141 static boolean_t
1142 vdc_is_opened(vdc_t *vdc)
1143 {
1144 	int i, nslices;
1145 
1146 	switch (vdc->vdisk_type) {
1147 	case VD_DISK_TYPE_DISK:
1148 		nslices = V_NUMPAR;
1149 		break;
1150 	case VD_DISK_TYPE_SLICE:
1151 		nslices = 1;
1152 		break;
1153 	case VD_DISK_TYPE_UNK:
1154 	default:
1155 		ASSERT(0);
1156 	}
1157 
1158 	/* check if there's any layered open */
1159 	for (i = 0; i < nslices; i++) {
1160 		if (vdc->open_lyr[i] > 0)
1161 			return (B_TRUE);
1162 	}
1163 
1164 	/* check if there is any other kind of open */
1165 	for (i = 0; i < OTYPCNT; i++) {
1166 		if (vdc->open[i] != 0)
1167 			return (B_TRUE);
1168 	}
1169 
1170 	return (B_FALSE);
1171 }
1172 
1173 static int
1174 vdc_mark_opened(vdc_t *vdc, int slice, int flag, int otyp)
1175 {
1176 	uint8_t slicemask;
1177 	int i;
1178 
1179 	ASSERT(otyp < OTYPCNT);
1180 	ASSERT(slice < V_NUMPAR);
1181 	ASSERT(MUTEX_HELD(&vdc->lock));
1182 
1183 	slicemask = 1 << slice;
1184 
1185 	/* check if slice is already exclusively opened */
1186 	if (vdc->open_excl & slicemask)
1187 		return (EBUSY);
1188 
1189 	/* if open exclusive, check if slice is already opened */
1190 	if (flag & FEXCL) {
1191 		if (vdc->open_lyr[slice] > 0)
1192 			return (EBUSY);
1193 		for (i = 0; i < OTYPCNT; i++) {
1194 			if (vdc->open[i] & slicemask)
1195 				return (EBUSY);
1196 		}
1197 		vdc->open_excl |= slicemask;
1198 	}
1199 
1200 	/* mark slice as opened */
1201 	if (otyp == OTYP_LYR) {
1202 		vdc->open_lyr[slice]++;
1203 	} else {
1204 		vdc->open[otyp] |= slicemask;
1205 	}
1206 
1207 	return (0);
1208 }
1209 
1210 static void
1211 vdc_mark_closed(vdc_t *vdc, int slice, int flag, int otyp)
1212 {
1213 	uint8_t slicemask;
1214 
1215 	ASSERT(otyp < OTYPCNT);
1216 	ASSERT(slice < V_NUMPAR);
1217 	ASSERT(MUTEX_HELD(&vdc->lock));
1218 
1219 	slicemask = 1 << slice;
1220 
1221 	if (otyp == OTYP_LYR) {
1222 		ASSERT(vdc->open_lyr[slice] > 0);
1223 		vdc->open_lyr[slice]--;
1224 	} else {
1225 		vdc->open[otyp] &= ~slicemask;
1226 	}
1227 
1228 	if (flag & FEXCL)
1229 		vdc->open_excl &= ~slicemask;
1230 }
1231 
1232 static int
1233 vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred)
1234 {
1235 	_NOTE(ARGUNUSED(cred))
1236 
1237 	int	instance, nodelay;
1238 	int	slice, status = 0;
1239 	vdc_t	*vdc;
1240 
1241 	ASSERT(dev != NULL);
1242 	instance = VDCUNIT(*dev);
1243 
1244 	if (otyp >= OTYPCNT)
1245 		return (EINVAL);
1246 
1247 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1248 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1249 		return (ENXIO);
1250 	}
1251 
1252 	DMSG(vdc, 0, "minor = %d flag = %x, otyp = %x\n",
1253 	    getminor(*dev), flag, otyp);
1254 
1255 	slice = VDCPART(*dev);
1256 
1257 	nodelay = flag & (FNDELAY | FNONBLOCK);
1258 
1259 	if ((flag & FWRITE) && (!nodelay) &&
1260 	    !(VD_OP_SUPPORTED(vdc->operations, VD_OP_BWRITE))) {
1261 		return (EROFS);
1262 	}
1263 
1264 	mutex_enter(&vdc->lock);
1265 
1266 	status = vdc_mark_opened(vdc, slice, flag, otyp);
1267 
1268 	if (status != 0) {
1269 		mutex_exit(&vdc->lock);
1270 		return (status);
1271 	}
1272 
1273 	if (nodelay) {
1274 
1275 		/* don't resubmit a validate request if there's already one */
1276 		if (vdc->validate_pending > 0) {
1277 			mutex_exit(&vdc->lock);
1278 			return (0);
1279 		}
1280 
1281 		/* call vdc_validate() asynchronously to avoid blocking */
1282 		if (taskq_dispatch(system_taskq, vdc_validate_task,
1283 		    (void *)vdc, TQ_NOSLEEP) == NULL) {
1284 			vdc_mark_closed(vdc, slice, flag, otyp);
1285 			mutex_exit(&vdc->lock);
1286 			return (ENXIO);
1287 		}
1288 
1289 		vdc->validate_pending++;
1290 		mutex_exit(&vdc->lock);
1291 		return (0);
1292 	}
1293 
1294 	mutex_exit(&vdc->lock);
1295 
1296 	vdc_validate(vdc);
1297 
1298 	mutex_enter(&vdc->lock);
1299 
1300 	if (vdc->vdisk_label == VD_DISK_LABEL_UNK ||
1301 	    vdc->slice[slice].nblocks == 0) {
1302 		vdc_mark_closed(vdc, slice, flag, otyp);
1303 		status = EIO;
1304 	}
1305 
1306 	mutex_exit(&vdc->lock);
1307 
1308 	return (status);
1309 }
1310 
1311 static int
1312 vdc_close(dev_t dev, int flag, int otyp, cred_t *cred)
1313 {
1314 	_NOTE(ARGUNUSED(cred))
1315 
1316 	int	instance;
1317 	int	slice;
1318 	int	rv, rval;
1319 	vdc_t	*vdc;
1320 
1321 	instance = VDCUNIT(dev);
1322 
1323 	if (otyp >= OTYPCNT)
1324 		return (EINVAL);
1325 
1326 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1327 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1328 		return (ENXIO);
1329 	}
1330 
1331 	DMSG(vdc, 0, "[%d] flag = %x, otyp = %x\n", instance, flag, otyp);
1332 
1333 	slice = VDCPART(dev);
1334 
1335 	/*
1336 	 * Attempt to flush the W$ on a close operation. If this is
1337 	 * not a supported IOCTL command or the backing device is read-only
1338 	 * do not fail the close operation.
1339 	 */
1340 	rv = vd_process_ioctl(dev, DKIOCFLUSHWRITECACHE, NULL, FKIOCTL, &rval);
1341 
1342 	if (rv != 0 && rv != ENOTSUP && rv != ENOTTY && rv != EROFS) {
1343 		DMSG(vdc, 0, "[%d] flush failed with error %d on close\n",
1344 		    instance, rv);
1345 		return (EIO);
1346 	}
1347 
1348 	mutex_enter(&vdc->lock);
1349 	vdc_mark_closed(vdc, slice, flag, otyp);
1350 	mutex_exit(&vdc->lock);
1351 
1352 	return (0);
1353 }
1354 
1355 static int
1356 vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
1357 {
1358 	_NOTE(ARGUNUSED(credp))
1359 
1360 	return (vd_process_ioctl(dev, cmd, (caddr_t)arg, mode, rvalp));
1361 }
1362 
1363 static int
1364 vdc_print(dev_t dev, char *str)
1365 {
1366 	cmn_err(CE_NOTE, "vdc%d:  %s", VDCUNIT(dev), str);
1367 	return (0);
1368 }
1369 
1370 static int
1371 vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
1372 {
1373 	int	rv;
1374 	size_t	nbytes = nblk * DEV_BSIZE;
1375 	int	instance = VDCUNIT(dev);
1376 	vdc_t	*vdc = NULL;
1377 
1378 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1379 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1380 		return (ENXIO);
1381 	}
1382 
1383 	DMSG(vdc, 2, "[%d] dump %ld bytes at block 0x%lx : addr=0x%p\n",
1384 	    instance, nbytes, blkno, (void *)addr);
1385 	rv = vdc_send_request(vdc, VD_OP_BWRITE, addr, nbytes,
1386 	    VDCPART(dev), blkno, CB_STRATEGY, 0, VIO_write_dir);
1387 	if (rv) {
1388 		DMSG(vdc, 0, "Failed to do a disk dump (err=%d)\n", rv);
1389 		return (rv);
1390 	}
1391 
1392 	if (ddi_in_panic())
1393 		(void) vdc_drain_response(vdc, NULL);
1394 
1395 	DMSG(vdc, 0, "[%d] End\n", instance);
1396 
1397 	return (0);
1398 }
1399 
1400 /* -------------------------------------------------------------------------- */
1401 
1402 /*
1403  * Disk access routines
1404  *
1405  */
1406 
1407 /*
1408  * vdc_strategy()
1409  *
1410  * Return Value:
1411  *	0:	As per strategy(9E), the strategy() function must return 0
1412  *		[ bioerror(9f) sets b_flags to the proper error code ]
1413  */
1414 static int
1415 vdc_strategy(struct buf *buf)
1416 {
1417 	int	rv = -1;
1418 	vdc_t	*vdc = NULL;
1419 	int	instance = VDCUNIT(buf->b_edev);
1420 	int	op = (buf->b_flags & B_READ) ? VD_OP_BREAD : VD_OP_BWRITE;
1421 	int	slice;
1422 
1423 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1424 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1425 		bioerror(buf, ENXIO);
1426 		biodone(buf);
1427 		return (0);
1428 	}
1429 
1430 	DMSG(vdc, 2, "[%d] %s %ld bytes at block %llx : b_addr=0x%p\n",
1431 	    instance, (buf->b_flags & B_READ) ? "Read" : "Write",
1432 	    buf->b_bcount, buf->b_lblkno, (void *)buf->b_un.b_addr);
1433 
1434 	bp_mapin(buf);
1435 
1436 	if ((long)buf->b_private == VD_SLICE_NONE) {
1437 		/* I/O using an absolute disk offset */
1438 		slice = VD_SLICE_NONE;
1439 	} else {
1440 		slice = VDCPART(buf->b_edev);
1441 	}
1442 
1443 	rv = vdc_send_request(vdc, op, (caddr_t)buf->b_un.b_addr,
1444 	    buf->b_bcount, slice, buf->b_lblkno,
1445 	    CB_STRATEGY, buf, (op == VD_OP_BREAD) ? VIO_read_dir :
1446 	    VIO_write_dir);
1447 
1448 	/*
1449 	 * If the request was successfully sent, the strategy call returns and
1450 	 * the ACK handler calls the bioxxx functions when the vDisk server is
1451 	 * done otherwise we handle the error here.
1452 	 */
1453 	if (rv) {
1454 		DMSG(vdc, 0, "Failed to read/write (err=%d)\n", rv);
1455 		bioerror(buf, rv);
1456 		biodone(buf);
1457 	} else if (ddi_in_panic()) {
1458 		(void) vdc_drain_response(vdc, buf);
1459 	}
1460 
1461 	return (0);
1462 }
1463 
1464 /*
1465  * Function:
1466  *	vdc_min
1467  *
1468  * Description:
1469  *	Routine to limit the size of a data transfer. Used in
1470  *	conjunction with physio(9F).
1471  *
1472  * Arguments:
1473  *	bp - pointer to the indicated buf(9S) struct.
1474  *
1475  */
1476 static void
1477 vdc_min(struct buf *bufp)
1478 {
1479 	vdc_t	*vdc = NULL;
1480 	int	instance = VDCUNIT(bufp->b_edev);
1481 
1482 	vdc = ddi_get_soft_state(vdc_state, instance);
1483 	VERIFY(vdc != NULL);
1484 
1485 	if (bufp->b_bcount > (vdc->max_xfer_sz * vdc->block_size)) {
1486 		bufp->b_bcount = vdc->max_xfer_sz * vdc->block_size;
1487 	}
1488 }
1489 
1490 static int
1491 vdc_read(dev_t dev, struct uio *uio, cred_t *cred)
1492 {
1493 	_NOTE(ARGUNUSED(cred))
1494 
1495 	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1496 	return (physio(vdc_strategy, NULL, dev, B_READ, vdc_min, uio));
1497 }
1498 
1499 static int
1500 vdc_write(dev_t dev, struct uio *uio, cred_t *cred)
1501 {
1502 	_NOTE(ARGUNUSED(cred))
1503 
1504 	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1505 	return (physio(vdc_strategy, NULL, dev, B_WRITE, vdc_min, uio));
1506 }
1507 
1508 static int
1509 vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred)
1510 {
1511 	_NOTE(ARGUNUSED(cred))
1512 
1513 	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1514 	return (aphysio(vdc_strategy, anocancel, dev, B_READ, vdc_min, aio));
1515 }
1516 
1517 static int
1518 vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred)
1519 {
1520 	_NOTE(ARGUNUSED(cred))
1521 
1522 	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1523 	return (aphysio(vdc_strategy, anocancel, dev, B_WRITE, vdc_min, aio));
1524 }
1525 
1526 
1527 /* -------------------------------------------------------------------------- */
1528 
1529 /*
1530  * Handshake support
1531  */
1532 
1533 
1534 /*
1535  * Function:
1536  *	vdc_init_ver_negotiation()
1537  *
1538  * Description:
1539  *
1540  * Arguments:
1541  *	vdc	- soft state pointer for this instance of the device driver.
1542  *
1543  * Return Code:
1544  *	0	- Success
1545  */
1546 static int
1547 vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver)
1548 {
1549 	vio_ver_msg_t	pkt;
1550 	size_t		msglen = sizeof (pkt);
1551 	int		status = -1;
1552 
1553 	ASSERT(vdc != NULL);
1554 	ASSERT(mutex_owned(&vdc->lock));
1555 
1556 	DMSG(vdc, 0, "[%d] Entered.\n", vdc->instance);
1557 
1558 	/*
1559 	 * set the Session ID to a unique value
1560 	 * (the lower 32 bits of the clock tick)
1561 	 */
1562 	vdc->session_id = ((uint32_t)gettick() & 0xffffffff);
1563 	DMSG(vdc, 0, "[%d] Set SID to 0x%lx\n", vdc->instance, vdc->session_id);
1564 
1565 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1566 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1567 	pkt.tag.vio_subtype_env = VIO_VER_INFO;
1568 	pkt.tag.vio_sid = vdc->session_id;
1569 	pkt.dev_class = VDEV_DISK;
1570 	pkt.ver_major = ver.major;
1571 	pkt.ver_minor = ver.minor;
1572 
1573 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1574 	DMSG(vdc, 0, "[%d] Ver info sent (status = %d)\n",
1575 	    vdc->instance, status);
1576 	if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) {
1577 		DMSG(vdc, 0, "[%d] Failed to send Ver negotiation info: "
1578 		    "id(%lx) rv(%d) size(%ld)", vdc->instance,
1579 		    vdc->curr_server->ldc_handle, status, msglen);
1580 		if (msglen != sizeof (vio_ver_msg_t))
1581 			status = ENOMSG;
1582 	}
1583 
1584 	return (status);
1585 }
1586 
1587 /*
1588  * Function:
1589  *	vdc_ver_negotiation()
1590  *
1591  * Description:
1592  *
1593  * Arguments:
1594  *	vdcp	- soft state pointer for this instance of the device driver.
1595  *
1596  * Return Code:
1597  *	0	- Success
1598  */
1599 static int
1600 vdc_ver_negotiation(vdc_t *vdcp)
1601 {
1602 	vio_msg_t vio_msg;
1603 	int status;
1604 
1605 	if (status = vdc_init_ver_negotiation(vdcp, vdc_version[0]))
1606 		return (status);
1607 
1608 	/* release lock and wait for response */
1609 	mutex_exit(&vdcp->lock);
1610 	status = vdc_wait_for_response(vdcp, &vio_msg);
1611 	mutex_enter(&vdcp->lock);
1612 	if (status) {
1613 		DMSG(vdcp, 0,
1614 		    "[%d] Failed waiting for Ver negotiation response, rv(%d)",
1615 		    vdcp->instance, status);
1616 		return (status);
1617 	}
1618 
1619 	/* check type and sub_type ... */
1620 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1621 	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1622 		DMSG(vdcp, 0, "[%d] Invalid ver negotiation response\n",
1623 		    vdcp->instance);
1624 		return (EPROTO);
1625 	}
1626 
1627 	return (vdc_handle_ver_msg(vdcp, (vio_ver_msg_t *)&vio_msg));
1628 }
1629 
1630 /*
1631  * Function:
1632  *	vdc_init_attr_negotiation()
1633  *
1634  * Description:
1635  *
1636  * Arguments:
1637  *	vdc	- soft state pointer for this instance of the device driver.
1638  *
1639  * Return Code:
1640  *	0	- Success
1641  */
1642 static int
1643 vdc_init_attr_negotiation(vdc_t *vdc)
1644 {
1645 	vd_attr_msg_t	pkt;
1646 	size_t		msglen = sizeof (pkt);
1647 	int		status;
1648 
1649 	ASSERT(vdc != NULL);
1650 	ASSERT(mutex_owned(&vdc->lock));
1651 
1652 	DMSG(vdc, 0, "[%d] entered\n", vdc->instance);
1653 
1654 	/* fill in tag */
1655 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1656 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1657 	pkt.tag.vio_subtype_env = VIO_ATTR_INFO;
1658 	pkt.tag.vio_sid = vdc->session_id;
1659 	/* fill in payload */
1660 	pkt.max_xfer_sz = vdc->max_xfer_sz;
1661 	pkt.vdisk_block_size = vdc->block_size;
1662 	pkt.xfer_mode = VIO_DRING_MODE_V1_0;
1663 	pkt.operations = 0;	/* server will set bits of valid operations */
1664 	pkt.vdisk_type = 0;	/* server will set to valid device type */
1665 	pkt.vdisk_media = 0;	/* server will set to valid media type */
1666 	pkt.vdisk_size = 0;	/* server will set to valid size */
1667 
1668 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1669 	DMSG(vdc, 0, "Attr info sent (status = %d)\n", status);
1670 
1671 	if ((status != 0) || (msglen != sizeof (vd_attr_msg_t))) {
1672 		DMSG(vdc, 0, "[%d] Failed to send Attr negotiation info: "
1673 		    "id(%lx) rv(%d) size(%ld)", vdc->instance,
1674 		    vdc->curr_server->ldc_handle, status, msglen);
1675 		if (msglen != sizeof (vd_attr_msg_t))
1676 			status = ENOMSG;
1677 	}
1678 
1679 	return (status);
1680 }
1681 
1682 /*
1683  * Function:
1684  *	vdc_attr_negotiation()
1685  *
1686  * Description:
1687  *
1688  * Arguments:
1689  *	vdc	- soft state pointer for this instance of the device driver.
1690  *
1691  * Return Code:
1692  *	0	- Success
1693  */
1694 static int
1695 vdc_attr_negotiation(vdc_t *vdcp)
1696 {
1697 	int status;
1698 	vio_msg_t vio_msg;
1699 
1700 	if (status = vdc_init_attr_negotiation(vdcp))
1701 		return (status);
1702 
1703 	/* release lock and wait for response */
1704 	mutex_exit(&vdcp->lock);
1705 	status = vdc_wait_for_response(vdcp, &vio_msg);
1706 	mutex_enter(&vdcp->lock);
1707 	if (status) {
1708 		DMSG(vdcp, 0,
1709 		    "[%d] Failed waiting for Attr negotiation response, rv(%d)",
1710 		    vdcp->instance, status);
1711 		return (status);
1712 	}
1713 
1714 	/* check type and sub_type ... */
1715 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1716 	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1717 		DMSG(vdcp, 0, "[%d] Invalid attr negotiation response\n",
1718 		    vdcp->instance);
1719 		return (EPROTO);
1720 	}
1721 
1722 	return (vdc_handle_attr_msg(vdcp, (vd_attr_msg_t *)&vio_msg));
1723 }
1724 
1725 
1726 /*
1727  * Function:
1728  *	vdc_init_dring_negotiate()
1729  *
1730  * Description:
1731  *
1732  * Arguments:
1733  *	vdc	- soft state pointer for this instance of the device driver.
1734  *
1735  * Return Code:
1736  *	0	- Success
1737  */
1738 static int
1739 vdc_init_dring_negotiate(vdc_t *vdc)
1740 {
1741 	vio_dring_reg_msg_t	pkt;
1742 	size_t			msglen = sizeof (pkt);
1743 	int			status = -1;
1744 	int			retry;
1745 	int			nretries = 10;
1746 
1747 	ASSERT(vdc != NULL);
1748 	ASSERT(mutex_owned(&vdc->lock));
1749 
1750 	for (retry = 0; retry < nretries; retry++) {
1751 		status = vdc_init_descriptor_ring(vdc);
1752 		if (status != EAGAIN)
1753 			break;
1754 		drv_usecwait(vdc_min_timeout_ldc);
1755 	}
1756 
1757 	if (status != 0) {
1758 		DMSG(vdc, 0, "[%d] Failed to init DRing (status = %d)\n",
1759 		    vdc->instance, status);
1760 		return (status);
1761 	}
1762 
1763 	DMSG(vdc, 0, "[%d] Init of descriptor ring completed (status = %d)\n",
1764 	    vdc->instance, status);
1765 
1766 	/* fill in tag */
1767 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1768 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1769 	pkt.tag.vio_subtype_env = VIO_DRING_REG;
1770 	pkt.tag.vio_sid = vdc->session_id;
1771 	/* fill in payload */
1772 	pkt.dring_ident = 0;
1773 	pkt.num_descriptors = vdc->dring_len;
1774 	pkt.descriptor_size = vdc->dring_entry_size;
1775 	pkt.options = (VIO_TX_DRING | VIO_RX_DRING);
1776 	pkt.ncookies = vdc->dring_cookie_count;
1777 	pkt.cookie[0] = vdc->dring_cookie[0];	/* for now just one cookie */
1778 
1779 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1780 	if (status != 0) {
1781 		DMSG(vdc, 0, "[%d] Failed to register DRing (err = %d)",
1782 		    vdc->instance, status);
1783 	}
1784 
1785 	return (status);
1786 }
1787 
1788 
1789 /*
1790  * Function:
1791  *	vdc_dring_negotiation()
1792  *
1793  * Description:
1794  *
1795  * Arguments:
1796  *	vdc	- soft state pointer for this instance of the device driver.
1797  *
1798  * Return Code:
1799  *	0	- Success
1800  */
1801 static int
1802 vdc_dring_negotiation(vdc_t *vdcp)
1803 {
1804 	int status;
1805 	vio_msg_t vio_msg;
1806 
1807 	if (status = vdc_init_dring_negotiate(vdcp))
1808 		return (status);
1809 
1810 	/* release lock and wait for response */
1811 	mutex_exit(&vdcp->lock);
1812 	status = vdc_wait_for_response(vdcp, &vio_msg);
1813 	mutex_enter(&vdcp->lock);
1814 	if (status) {
1815 		DMSG(vdcp, 0,
1816 		    "[%d] Failed waiting for Dring negotiation response,"
1817 		    " rv(%d)", vdcp->instance, status);
1818 		return (status);
1819 	}
1820 
1821 	/* check type and sub_type ... */
1822 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1823 	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1824 		DMSG(vdcp, 0, "[%d] Invalid Dring negotiation response\n",
1825 		    vdcp->instance);
1826 		return (EPROTO);
1827 	}
1828 
1829 	return (vdc_handle_dring_reg_msg(vdcp,
1830 	    (vio_dring_reg_msg_t *)&vio_msg));
1831 }
1832 
1833 
1834 /*
1835  * Function:
1836  *	vdc_send_rdx()
1837  *
1838  * Description:
1839  *
1840  * Arguments:
1841  *	vdc	- soft state pointer for this instance of the device driver.
1842  *
1843  * Return Code:
1844  *	0	- Success
1845  */
1846 static int
1847 vdc_send_rdx(vdc_t *vdcp)
1848 {
1849 	vio_msg_t	msg;
1850 	size_t		msglen = sizeof (vio_msg_t);
1851 	int		status;
1852 
1853 	/*
1854 	 * Send an RDX message to vds to indicate we are ready
1855 	 * to send data
1856 	 */
1857 	msg.tag.vio_msgtype = VIO_TYPE_CTRL;
1858 	msg.tag.vio_subtype = VIO_SUBTYPE_INFO;
1859 	msg.tag.vio_subtype_env = VIO_RDX;
1860 	msg.tag.vio_sid = vdcp->session_id;
1861 	status = vdc_send(vdcp, (caddr_t)&msg, &msglen);
1862 	if (status != 0) {
1863 		DMSG(vdcp, 0, "[%d] Failed to send RDX message (%d)",
1864 		    vdcp->instance, status);
1865 	}
1866 
1867 	return (status);
1868 }
1869 
1870 /*
1871  * Function:
1872  *	vdc_handle_rdx()
1873  *
1874  * Description:
1875  *
1876  * Arguments:
1877  *	vdc	- soft state pointer for this instance of the device driver.
1878  *	msgp	- received msg
1879  *
1880  * Return Code:
1881  *	0	- Success
1882  */
1883 static int
1884 vdc_handle_rdx(vdc_t *vdcp, vio_rdx_msg_t *msgp)
1885 {
1886 	_NOTE(ARGUNUSED(vdcp))
1887 	_NOTE(ARGUNUSED(msgp))
1888 
1889 	ASSERT(msgp->tag.vio_msgtype == VIO_TYPE_CTRL);
1890 	ASSERT(msgp->tag.vio_subtype == VIO_SUBTYPE_ACK);
1891 	ASSERT(msgp->tag.vio_subtype_env == VIO_RDX);
1892 
1893 	DMSG(vdcp, 1, "[%d] Got an RDX msg", vdcp->instance);
1894 
1895 	return (0);
1896 }
1897 
1898 /*
1899  * Function:
1900  *	vdc_rdx_exchange()
1901  *
1902  * Description:
1903  *
1904  * Arguments:
1905  *	vdc	- soft state pointer for this instance of the device driver.
1906  *
1907  * Return Code:
1908  *	0	- Success
1909  */
1910 static int
1911 vdc_rdx_exchange(vdc_t *vdcp)
1912 {
1913 	int status;
1914 	vio_msg_t vio_msg;
1915 
1916 	if (status = vdc_send_rdx(vdcp))
1917 		return (status);
1918 
1919 	/* release lock and wait for response */
1920 	mutex_exit(&vdcp->lock);
1921 	status = vdc_wait_for_response(vdcp, &vio_msg);
1922 	mutex_enter(&vdcp->lock);
1923 	if (status) {
1924 		DMSG(vdcp, 0, "[%d] Failed waiting for RDX response, rv(%d)",
1925 		    vdcp->instance, status);
1926 		return (status);
1927 	}
1928 
1929 	/* check type and sub_type ... */
1930 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1931 	    vio_msg.tag.vio_subtype != VIO_SUBTYPE_ACK) {
1932 		DMSG(vdcp, 0, "[%d] Invalid RDX response\n", vdcp->instance);
1933 		return (EPROTO);
1934 	}
1935 
1936 	return (vdc_handle_rdx(vdcp, (vio_rdx_msg_t *)&vio_msg));
1937 }
1938 
1939 
1940 /* -------------------------------------------------------------------------- */
1941 
1942 /*
1943  * LDC helper routines
1944  */
1945 
1946 static int
1947 vdc_recv(vdc_t *vdc, vio_msg_t *msgp, size_t *nbytesp)
1948 {
1949 	int		status;
1950 	boolean_t	q_has_pkts = B_FALSE;
1951 	uint64_t	delay_time;
1952 	size_t		len;
1953 
1954 	mutex_enter(&vdc->read_lock);
1955 
1956 	if (vdc->read_state == VDC_READ_IDLE)
1957 		vdc->read_state = VDC_READ_WAITING;
1958 
1959 	while (vdc->read_state != VDC_READ_PENDING) {
1960 
1961 		/* detect if the connection has been reset */
1962 		if (vdc->read_state == VDC_READ_RESET) {
1963 			status = ECONNRESET;
1964 			goto done;
1965 		}
1966 
1967 		cv_wait(&vdc->read_cv, &vdc->read_lock);
1968 	}
1969 
1970 	/*
1971 	 * Until we get a blocking ldc read we have to retry
1972 	 * until the entire LDC message has arrived before
1973 	 * ldc_read() will succeed. Note we also bail out if
1974 	 * the channel is reset or goes away.
1975 	 */
1976 	delay_time = vdc_ldc_read_init_delay;
1977 loop:
1978 	len = *nbytesp;
1979 	status = ldc_read(vdc->curr_server->ldc_handle, (caddr_t)msgp, &len);
1980 	switch (status) {
1981 	case EAGAIN:
1982 		delay_time *= 2;
1983 		if (delay_time >= vdc_ldc_read_max_delay)
1984 			delay_time = vdc_ldc_read_max_delay;
1985 		delay(delay_time);
1986 		goto loop;
1987 
1988 	case 0:
1989 		if (len == 0) {
1990 			DMSG(vdc, 1, "[%d] ldc_read returned 0 bytes with "
1991 			    "no error!\n", vdc->instance);
1992 			goto loop;
1993 		}
1994 
1995 		*nbytesp = len;
1996 
1997 		/*
1998 		 * If there are pending messages, leave the
1999 		 * read state as pending. Otherwise, set the state
2000 		 * back to idle.
2001 		 */
2002 		status = ldc_chkq(vdc->curr_server->ldc_handle, &q_has_pkts);
2003 		if (status == 0 && !q_has_pkts)
2004 			vdc->read_state = VDC_READ_IDLE;
2005 
2006 		break;
2007 	default:
2008 		DMSG(vdc, 0, "ldc_read returned %d\n", status);
2009 		break;
2010 	}
2011 
2012 done:
2013 	mutex_exit(&vdc->read_lock);
2014 
2015 	return (status);
2016 }
2017 
2018 
2019 
2020 #ifdef DEBUG
2021 void
2022 vdc_decode_tag(vdc_t *vdcp, vio_msg_t *msg)
2023 {
2024 	char *ms, *ss, *ses;
2025 	switch (msg->tag.vio_msgtype) {
2026 #define	Q(_s)	case _s : ms = #_s; break;
2027 	Q(VIO_TYPE_CTRL)
2028 	Q(VIO_TYPE_DATA)
2029 	Q(VIO_TYPE_ERR)
2030 #undef Q
2031 	default: ms = "unknown"; break;
2032 	}
2033 
2034 	switch (msg->tag.vio_subtype) {
2035 #define	Q(_s)	case _s : ss = #_s; break;
2036 	Q(VIO_SUBTYPE_INFO)
2037 	Q(VIO_SUBTYPE_ACK)
2038 	Q(VIO_SUBTYPE_NACK)
2039 #undef Q
2040 	default: ss = "unknown"; break;
2041 	}
2042 
2043 	switch (msg->tag.vio_subtype_env) {
2044 #define	Q(_s)	case _s : ses = #_s; break;
2045 	Q(VIO_VER_INFO)
2046 	Q(VIO_ATTR_INFO)
2047 	Q(VIO_DRING_REG)
2048 	Q(VIO_DRING_UNREG)
2049 	Q(VIO_RDX)
2050 	Q(VIO_PKT_DATA)
2051 	Q(VIO_DESC_DATA)
2052 	Q(VIO_DRING_DATA)
2053 #undef Q
2054 	default: ses = "unknown"; break;
2055 	}
2056 
2057 	DMSG(vdcp, 3, "(%x/%x/%x) message : (%s/%s/%s)\n",
2058 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
2059 	    msg->tag.vio_subtype_env, ms, ss, ses);
2060 }
2061 #endif
2062 
2063 /*
2064  * Function:
2065  *	vdc_send()
2066  *
2067  * Description:
2068  *	The function encapsulates the call to write a message using LDC.
2069  *	If LDC indicates that the call failed due to the queue being full,
2070  *	we retry the ldc_write(), otherwise we return the error returned by LDC.
2071  *
2072  * Arguments:
2073  *	ldc_handle	- LDC handle for the channel this instance of vdc uses
2074  *	pkt		- address of LDC message to be sent
2075  *	msglen		- the size of the message being sent. When the function
2076  *			  returns, this contains the number of bytes written.
2077  *
2078  * Return Code:
2079  *	0		- Success.
2080  *	EINVAL		- pkt or msglen were NULL
2081  *	ECONNRESET	- The connection was not up.
2082  *	EWOULDBLOCK	- LDC queue is full
2083  *	xxx		- other error codes returned by ldc_write
2084  */
2085 static int
2086 vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen)
2087 {
2088 	size_t	size = 0;
2089 	int	status = 0;
2090 	clock_t delay_ticks;
2091 
2092 	ASSERT(vdc != NULL);
2093 	ASSERT(mutex_owned(&vdc->lock));
2094 	ASSERT(msglen != NULL);
2095 	ASSERT(*msglen != 0);
2096 
2097 #ifdef DEBUG
2098 	vdc_decode_tag(vdc, (vio_msg_t *)(uintptr_t)pkt);
2099 #endif
2100 	/*
2101 	 * Wait indefinitely to send if channel
2102 	 * is busy, but bail out if we succeed or
2103 	 * if the channel closes or is reset.
2104 	 */
2105 	delay_ticks = vdc_hz_min_ldc_delay;
2106 	do {
2107 		size = *msglen;
2108 		status = ldc_write(vdc->curr_server->ldc_handle, pkt, &size);
2109 		if (status == EWOULDBLOCK) {
2110 			delay(delay_ticks);
2111 			/* geometric backoff */
2112 			delay_ticks *= 2;
2113 			if (delay_ticks > vdc_hz_max_ldc_delay)
2114 				delay_ticks = vdc_hz_max_ldc_delay;
2115 		}
2116 	} while (status == EWOULDBLOCK);
2117 
2118 	/* if LDC had serious issues --- reset vdc state */
2119 	if (status == EIO || status == ECONNRESET) {
2120 		/* LDC had serious issues --- reset vdc state */
2121 		mutex_enter(&vdc->read_lock);
2122 		if ((vdc->read_state == VDC_READ_WAITING) ||
2123 		    (vdc->read_state == VDC_READ_RESET))
2124 			cv_signal(&vdc->read_cv);
2125 		vdc->read_state = VDC_READ_RESET;
2126 		mutex_exit(&vdc->read_lock);
2127 
2128 		/* wake up any waiters in the reset thread */
2129 		if (vdc->state == VDC_STATE_INIT_WAITING) {
2130 			DMSG(vdc, 0, "[%d] write reset - "
2131 			    "vdc is resetting ..\n", vdc->instance);
2132 			vdc->state = VDC_STATE_RESETTING;
2133 			cv_signal(&vdc->initwait_cv);
2134 		}
2135 
2136 		return (ECONNRESET);
2137 	}
2138 
2139 	/* return the last size written */
2140 	*msglen = size;
2141 
2142 	return (status);
2143 }
2144 
2145 /*
2146  * Function:
2147  *	vdc_get_md_node
2148  *
2149  * Description:
2150  *	Get the MD, the device node for the given disk instance. The
2151  *	caller is responsible for cleaning up the reference to the
2152  *	returned MD (mdpp) by calling md_fini_handle().
2153  *
2154  * Arguments:
2155  *	dip	- dev info pointer for this instance of the device driver.
2156  *	mdpp	- the returned MD.
2157  *	vd_nodep - the returned device node.
2158  *
2159  * Return Code:
2160  *	0	- Success.
2161  *	ENOENT	- Expected node or property did not exist.
2162  *	ENXIO	- Unexpected error communicating with MD framework
2163  */
2164 static int
2165 vdc_get_md_node(dev_info_t *dip, md_t **mdpp, mde_cookie_t *vd_nodep)
2166 {
2167 	int		status = ENOENT;
2168 	char		*node_name = NULL;
2169 	md_t		*mdp = NULL;
2170 	int		num_nodes;
2171 	int		num_vdevs;
2172 	mde_cookie_t	rootnode;
2173 	mde_cookie_t	*listp = NULL;
2174 	boolean_t	found_inst = B_FALSE;
2175 	int		listsz;
2176 	int		idx;
2177 	uint64_t	md_inst;
2178 	int		obp_inst;
2179 	int		instance = ddi_get_instance(dip);
2180 
2181 	/*
2182 	 * Get the OBP instance number for comparison with the MD instance
2183 	 *
2184 	 * The "cfg-handle" property of a vdc node in an MD contains the MD's
2185 	 * notion of "instance", or unique identifier, for that node; OBP
2186 	 * stores the value of the "cfg-handle" MD property as the value of
2187 	 * the "reg" property on the node in the device tree it builds from
2188 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
2189 	 * "reg" property value to uniquely identify this device instance.
2190 	 * If the "reg" property cannot be found, the device tree state is
2191 	 * presumably so broken that there is no point in continuing.
2192 	 */
2193 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, OBP_REG)) {
2194 		cmn_err(CE_WARN, "'%s' property does not exist", OBP_REG);
2195 		return (ENOENT);
2196 	}
2197 	obp_inst = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2198 	    OBP_REG, -1);
2199 	DMSGX(1, "[%d] OBP inst=%d\n", instance, obp_inst);
2200 
2201 	/*
2202 	 * We now walk the MD nodes to find the node for this vdisk.
2203 	 */
2204 	if ((mdp = md_get_handle()) == NULL) {
2205 		cmn_err(CE_WARN, "unable to init machine description");
2206 		return (ENXIO);
2207 	}
2208 
2209 	num_nodes = md_node_count(mdp);
2210 	ASSERT(num_nodes > 0);
2211 
2212 	listsz = num_nodes * sizeof (mde_cookie_t);
2213 
2214 	/* allocate memory for nodes */
2215 	listp = kmem_zalloc(listsz, KM_SLEEP);
2216 
2217 	rootnode = md_root_node(mdp);
2218 	ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
2219 
2220 	/*
2221 	 * Search for all the virtual devices, we will then check to see which
2222 	 * ones are disk nodes.
2223 	 */
2224 	num_vdevs = md_scan_dag(mdp, rootnode,
2225 	    md_find_name(mdp, VDC_MD_VDEV_NAME),
2226 	    md_find_name(mdp, "fwd"), listp);
2227 
2228 	if (num_vdevs <= 0) {
2229 		cmn_err(CE_NOTE, "No '%s' node found", VDC_MD_VDEV_NAME);
2230 		status = ENOENT;
2231 		goto done;
2232 	}
2233 
2234 	DMSGX(1, "[%d] num_vdevs=%d\n", instance, num_vdevs);
2235 	for (idx = 0; idx < num_vdevs; idx++) {
2236 		status = md_get_prop_str(mdp, listp[idx], "name", &node_name);
2237 		if ((status != 0) || (node_name == NULL)) {
2238 			cmn_err(CE_NOTE, "Unable to get name of node type '%s'"
2239 			    ": err %d", VDC_MD_VDEV_NAME, status);
2240 			continue;
2241 		}
2242 
2243 		DMSGX(1, "[%d] Found node '%s'\n", instance, node_name);
2244 		if (strcmp(VDC_MD_DISK_NAME, node_name) == 0) {
2245 			status = md_get_prop_val(mdp, listp[idx],
2246 			    VDC_MD_CFG_HDL, &md_inst);
2247 			DMSGX(1, "[%d] vdc inst in MD=%lx\n",
2248 			    instance, md_inst);
2249 			if ((status == 0) && (md_inst == obp_inst)) {
2250 				found_inst = B_TRUE;
2251 				break;
2252 			}
2253 		}
2254 	}
2255 
2256 	if (!found_inst) {
2257 		DMSGX(0, "Unable to find correct '%s' node", VDC_MD_DISK_NAME);
2258 		status = ENOENT;
2259 		goto done;
2260 	}
2261 	DMSGX(0, "[%d] MD inst=%lx\n", instance, md_inst);
2262 
2263 	*vd_nodep = listp[idx];
2264 	*mdpp = mdp;
2265 done:
2266 	kmem_free(listp, listsz);
2267 	return (status);
2268 }
2269 
2270 /*
2271  * Function:
2272  *	vdc_init_ports
2273  *
2274  * Description:
2275  *	Initialize all the ports for this vdisk instance.
2276  *
2277  * Arguments:
2278  *	vdc	- soft state pointer for this instance of the device driver.
2279  *	mdp	- md pointer
2280  *	vd_nodep - device md node.
2281  *
2282  * Return Code:
2283  *	0	- Success.
2284  *	ENOENT	- Expected node or property did not exist.
2285  */
2286 static int
2287 vdc_init_ports(vdc_t *vdc, md_t *mdp, mde_cookie_t vd_nodep)
2288 {
2289 	int		status = 0;
2290 	int		idx;
2291 	int		num_nodes;
2292 	int		num_vports;
2293 	int		num_chans;
2294 	int		listsz;
2295 	mde_cookie_t	vd_port;
2296 	mde_cookie_t	*chanp = NULL;
2297 	mde_cookie_t	*portp = NULL;
2298 	vdc_server_t	*srvr;
2299 	vdc_server_t	*prev_srvr = NULL;
2300 
2301 	/*
2302 	 * We now walk the MD nodes to find the port nodes for this vdisk.
2303 	 */
2304 	num_nodes = md_node_count(mdp);
2305 	ASSERT(num_nodes > 0);
2306 
2307 	listsz = num_nodes * sizeof (mde_cookie_t);
2308 
2309 	/* allocate memory for nodes */
2310 	portp = kmem_zalloc(listsz, KM_SLEEP);
2311 	chanp = kmem_zalloc(listsz, KM_SLEEP);
2312 
2313 	num_vports = md_scan_dag(mdp, vd_nodep,
2314 	    md_find_name(mdp, VDC_MD_PORT_NAME),
2315 	    md_find_name(mdp, "fwd"), portp);
2316 	if (num_vports == 0) {
2317 		DMSGX(0, "Found no '%s' node for '%s' port\n",
2318 		    VDC_MD_PORT_NAME, VDC_MD_VDEV_NAME);
2319 		status = ENOENT;
2320 		goto done;
2321 	}
2322 
2323 	DMSGX(1, "Found %d '%s' node(s) for '%s' port\n",
2324 	    num_vports, VDC_MD_PORT_NAME, VDC_MD_VDEV_NAME);
2325 
2326 	vdc->num_servers = 0;
2327 	for (idx = 0; idx < num_vports; idx++) {
2328 
2329 		/* initialize this port */
2330 		vd_port = portp[idx];
2331 		srvr = kmem_zalloc(sizeof (vdc_server_t), KM_SLEEP);
2332 		srvr->vdcp = vdc;
2333 
2334 		/* get port id */
2335 		if (md_get_prop_val(mdp, vd_port, VDC_MD_ID, &srvr->id) != 0) {
2336 			cmn_err(CE_NOTE, "vDisk port '%s' property not found",
2337 			    VDC_MD_ID);
2338 			kmem_free(srvr, sizeof (vdc_server_t));
2339 			continue;
2340 		}
2341 
2342 		/* set the connection timeout */
2343 		if (md_get_prop_val(mdp, vd_port, VDC_MD_TIMEOUT,
2344 		    &srvr->ctimeout) != 0) {
2345 			srvr->ctimeout = 0;
2346 		}
2347 
2348 		/* get the ldc id */
2349 		num_chans = md_scan_dag(mdp, vd_port,
2350 		    md_find_name(mdp, VDC_MD_CHAN_NAME),
2351 		    md_find_name(mdp, "fwd"), chanp);
2352 
2353 		/* expecting at least one channel */
2354 		if (num_chans <= 0) {
2355 			cmn_err(CE_NOTE, "No '%s' node for '%s' port",
2356 			    VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME);
2357 			kmem_free(srvr, sizeof (vdc_server_t));
2358 			continue;
2359 		} else if (num_chans != 1) {
2360 			DMSGX(0, "Expected 1 '%s' node for '%s' port, "
2361 			    "found %d\n", VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME,
2362 			    num_chans);
2363 		}
2364 
2365 		/*
2366 		 * We use the first channel found (index 0), irrespective of how
2367 		 * many are there in total.
2368 		 */
2369 		if (md_get_prop_val(mdp, chanp[0], VDC_MD_ID,
2370 		    &srvr->ldc_id) != 0) {
2371 			cmn_err(CE_NOTE, "Channel '%s' property not found",
2372 			    VDC_MD_ID);
2373 			kmem_free(srvr, sizeof (vdc_server_t));
2374 			continue;
2375 		}
2376 
2377 		/*
2378 		 * now initialise LDC channel which will be used to
2379 		 * communicate with this server
2380 		 */
2381 		if (vdc_do_ldc_init(vdc, srvr) != 0) {
2382 			kmem_free(srvr, sizeof (vdc_server_t));
2383 			continue;
2384 		}
2385 
2386 		/* add server to list */
2387 		if (prev_srvr)
2388 			prev_srvr->next = srvr;
2389 		else
2390 			vdc->server_list = srvr;
2391 
2392 		prev_srvr = srvr;
2393 
2394 		/* inc numbers of servers */
2395 		vdc->num_servers++;
2396 	}
2397 
2398 	/*
2399 	 * Adjust the max number of handshake retries to match
2400 	 * the number of vdisk servers.
2401 	 */
2402 	if (vdc_hshake_retries < vdc->num_servers)
2403 		vdc_hshake_retries = vdc->num_servers;
2404 
2405 	/* pick first server as current server */
2406 	if (vdc->server_list != NULL) {
2407 		vdc->curr_server = vdc->server_list;
2408 		status = 0;
2409 	} else {
2410 		status = ENOENT;
2411 	}
2412 
2413 done:
2414 	kmem_free(chanp, listsz);
2415 	kmem_free(portp, listsz);
2416 	return (status);
2417 }
2418 
2419 
2420 /*
2421  * Function:
2422  *	vdc_do_ldc_up
2423  *
2424  * Description:
2425  *	Bring the channel for the current server up.
2426  *
2427  * Arguments:
2428  *	vdc	- soft state pointer for this instance of the device driver.
2429  *
2430  * Return Code:
2431  *	0		- Success.
2432  *	EINVAL		- Driver is detaching / LDC error
2433  *	ECONNREFUSED	- Other end is not listening
2434  */
2435 static int
2436 vdc_do_ldc_up(vdc_t *vdc)
2437 {
2438 	int		status;
2439 	ldc_status_t	ldc_state;
2440 
2441 	ASSERT(MUTEX_HELD(&vdc->lock));
2442 
2443 	DMSG(vdc, 0, "[%d] Bringing up channel %lx\n",
2444 	    vdc->instance, vdc->curr_server->ldc_id);
2445 
2446 	if (vdc->lifecycle == VDC_LC_DETACHING)
2447 		return (EINVAL);
2448 
2449 	if ((status = ldc_up(vdc->curr_server->ldc_handle)) != 0) {
2450 		switch (status) {
2451 		case ECONNREFUSED:	/* listener not ready at other end */
2452 			DMSG(vdc, 0, "[%d] ldc_up(%lx,...) return %d\n",
2453 			    vdc->instance, vdc->curr_server->ldc_id, status);
2454 			status = 0;
2455 			break;
2456 		default:
2457 			DMSG(vdc, 0, "[%d] Failed to bring up LDC: "
2458 			    "channel=%ld, err=%d", vdc->instance,
2459 			    vdc->curr_server->ldc_id, status);
2460 			break;
2461 		}
2462 	}
2463 
2464 	if (ldc_status(vdc->curr_server->ldc_handle, &ldc_state) == 0) {
2465 		vdc->curr_server->ldc_state = ldc_state;
2466 		if (ldc_state == LDC_UP) {
2467 			DMSG(vdc, 0, "[%d] LDC channel already up\n",
2468 			    vdc->instance);
2469 			vdc->seq_num = 1;
2470 			vdc->seq_num_reply = 0;
2471 		}
2472 	}
2473 
2474 	return (status);
2475 }
2476 
2477 /*
2478  * Function:
2479  *	vdc_terminate_ldc()
2480  *
2481  * Description:
2482  *
2483  * Arguments:
2484  *	vdc	- soft state pointer for this instance of the device driver.
2485  *	srvr	- vdc per-server info structure
2486  *
2487  * Return Code:
2488  *	None
2489  */
2490 static void
2491 vdc_terminate_ldc(vdc_t *vdc, vdc_server_t *srvr)
2492 {
2493 	int	instance = ddi_get_instance(vdc->dip);
2494 
2495 	if (srvr->state & VDC_LDC_OPEN) {
2496 		DMSG(vdc, 0, "[%d] ldc_close()\n", instance);
2497 		(void) ldc_close(srvr->ldc_handle);
2498 	}
2499 	if (srvr->state & VDC_LDC_CB) {
2500 		DMSG(vdc, 0, "[%d] ldc_unreg_callback()\n", instance);
2501 		(void) ldc_unreg_callback(srvr->ldc_handle);
2502 	}
2503 	if (srvr->state & VDC_LDC_INIT) {
2504 		DMSG(vdc, 0, "[%d] ldc_fini()\n", instance);
2505 		(void) ldc_fini(srvr->ldc_handle);
2506 		srvr->ldc_handle = NULL;
2507 	}
2508 
2509 	srvr->state &= ~(VDC_LDC_INIT | VDC_LDC_CB | VDC_LDC_OPEN);
2510 }
2511 
2512 /*
2513  * Function:
2514  *	vdc_fini_ports()
2515  *
2516  * Description:
2517  *	Finalize all ports by closing the channel associated with each
2518  *	port and also freeing the server structure.
2519  *
2520  * Arguments:
2521  *	vdc	- soft state pointer for this instance of the device driver.
2522  *
2523  * Return Code:
2524  *	None
2525  */
2526 static void
2527 vdc_fini_ports(vdc_t *vdc)
2528 {
2529 	int		instance = ddi_get_instance(vdc->dip);
2530 	vdc_server_t	*srvr, *prev_srvr;
2531 
2532 	ASSERT(vdc != NULL);
2533 	ASSERT(mutex_owned(&vdc->lock));
2534 
2535 	DMSG(vdc, 0, "[%d] initialized=%x\n", instance, vdc->initialized);
2536 
2537 	srvr = vdc->server_list;
2538 
2539 	while (srvr) {
2540 
2541 		vdc_terminate_ldc(vdc, srvr);
2542 
2543 		/* next server */
2544 		prev_srvr = srvr;
2545 		srvr = srvr->next;
2546 
2547 		/* free server */
2548 		kmem_free(prev_srvr, sizeof (vdc_server_t));
2549 	}
2550 
2551 	vdc->server_list = NULL;
2552 }
2553 
2554 /* -------------------------------------------------------------------------- */
2555 
2556 /*
2557  * Descriptor Ring helper routines
2558  */
2559 
2560 /*
2561  * Function:
2562  *	vdc_init_descriptor_ring()
2563  *
2564  * Description:
2565  *
2566  * Arguments:
2567  *	vdc	- soft state pointer for this instance of the device driver.
2568  *
2569  * Return Code:
2570  *	0	- Success
2571  */
2572 static int
2573 vdc_init_descriptor_ring(vdc_t *vdc)
2574 {
2575 	vd_dring_entry_t	*dep = NULL;	/* DRing Entry pointer */
2576 	int	status = 0;
2577 	int	i;
2578 
2579 	DMSG(vdc, 0, "[%d] initialized=%x\n", vdc->instance, vdc->initialized);
2580 
2581 	ASSERT(vdc != NULL);
2582 	ASSERT(mutex_owned(&vdc->lock));
2583 
2584 	/* ensure we have enough room to store max sized block */
2585 	ASSERT(maxphys <= VD_MAX_BLOCK_SIZE);
2586 
2587 	if ((vdc->initialized & VDC_DRING_INIT) == 0) {
2588 		DMSG(vdc, 0, "[%d] ldc_mem_dring_create\n", vdc->instance);
2589 		/*
2590 		 * Calculate the maximum block size we can transmit using one
2591 		 * Descriptor Ring entry from the attributes returned by the
2592 		 * vDisk server. This is subject to a minimum of 'maxphys'
2593 		 * as we do not have the capability to split requests over
2594 		 * multiple DRing entries.
2595 		 */
2596 		if ((vdc->max_xfer_sz * vdc->block_size) < maxphys) {
2597 			DMSG(vdc, 0, "[%d] using minimum DRing size\n",
2598 			    vdc->instance);
2599 			vdc->dring_max_cookies = maxphys / PAGESIZE;
2600 		} else {
2601 			vdc->dring_max_cookies =
2602 			    (vdc->max_xfer_sz * vdc->block_size) / PAGESIZE;
2603 		}
2604 		vdc->dring_entry_size = (sizeof (vd_dring_entry_t) +
2605 		    (sizeof (ldc_mem_cookie_t) *
2606 		    (vdc->dring_max_cookies - 1)));
2607 		vdc->dring_len = VD_DRING_LEN;
2608 
2609 		status = ldc_mem_dring_create(vdc->dring_len,
2610 		    vdc->dring_entry_size, &vdc->dring_hdl);
2611 		if ((vdc->dring_hdl == NULL) || (status != 0)) {
2612 			DMSG(vdc, 0, "[%d] Descriptor ring creation failed",
2613 			    vdc->instance);
2614 			return (status);
2615 		}
2616 		vdc->initialized |= VDC_DRING_INIT;
2617 	}
2618 
2619 	if ((vdc->initialized & VDC_DRING_BOUND) == 0) {
2620 		DMSG(vdc, 0, "[%d] ldc_mem_dring_bind\n", vdc->instance);
2621 		vdc->dring_cookie =
2622 		    kmem_zalloc(sizeof (ldc_mem_cookie_t), KM_SLEEP);
2623 
2624 		status = ldc_mem_dring_bind(vdc->curr_server->ldc_handle,
2625 		    vdc->dring_hdl,
2626 		    LDC_SHADOW_MAP|LDC_DIRECT_MAP, LDC_MEM_RW,
2627 		    &vdc->dring_cookie[0],
2628 		    &vdc->dring_cookie_count);
2629 		if (status != 0) {
2630 			DMSG(vdc, 0, "[%d] Failed to bind descriptor ring "
2631 			    "(%lx) to channel (%lx) status=%d\n",
2632 			    vdc->instance, vdc->dring_hdl,
2633 			    vdc->curr_server->ldc_handle, status);
2634 			return (status);
2635 		}
2636 		ASSERT(vdc->dring_cookie_count == 1);
2637 		vdc->initialized |= VDC_DRING_BOUND;
2638 	}
2639 
2640 	status = ldc_mem_dring_info(vdc->dring_hdl, &vdc->dring_mem_info);
2641 	if (status != 0) {
2642 		DMSG(vdc, 0,
2643 		    "[%d] Failed to get info for descriptor ring (%lx)\n",
2644 		    vdc->instance, vdc->dring_hdl);
2645 		return (status);
2646 	}
2647 
2648 	if ((vdc->initialized & VDC_DRING_LOCAL) == 0) {
2649 		DMSG(vdc, 0, "[%d] local dring\n", vdc->instance);
2650 
2651 		/* Allocate the local copy of this dring */
2652 		vdc->local_dring =
2653 		    kmem_zalloc(vdc->dring_len * sizeof (vdc_local_desc_t),
2654 		    KM_SLEEP);
2655 		vdc->initialized |= VDC_DRING_LOCAL;
2656 	}
2657 
2658 	/*
2659 	 * Mark all DRing entries as free and initialize the private
2660 	 * descriptor's memory handles. If any entry is initialized,
2661 	 * we need to free it later so we set the bit in 'initialized'
2662 	 * at the start.
2663 	 */
2664 	vdc->initialized |= VDC_DRING_ENTRY;
2665 	for (i = 0; i < vdc->dring_len; i++) {
2666 		dep = VDC_GET_DRING_ENTRY_PTR(vdc, i);
2667 		dep->hdr.dstate = VIO_DESC_FREE;
2668 
2669 		status = ldc_mem_alloc_handle(vdc->curr_server->ldc_handle,
2670 		    &vdc->local_dring[i].desc_mhdl);
2671 		if (status != 0) {
2672 			DMSG(vdc, 0, "![%d] Failed to alloc mem handle for"
2673 			    " descriptor %d", vdc->instance, i);
2674 			return (status);
2675 		}
2676 		vdc->local_dring[i].is_free = B_TRUE;
2677 		vdc->local_dring[i].dep = dep;
2678 	}
2679 
2680 	/* Initialize the starting index */
2681 	vdc->dring_curr_idx = 0;
2682 
2683 	return (status);
2684 }
2685 
2686 /*
2687  * Function:
2688  *	vdc_destroy_descriptor_ring()
2689  *
2690  * Description:
2691  *
2692  * Arguments:
2693  *	vdc	- soft state pointer for this instance of the device driver.
2694  *
2695  * Return Code:
2696  *	None
2697  */
2698 static void
2699 vdc_destroy_descriptor_ring(vdc_t *vdc)
2700 {
2701 	vdc_local_desc_t	*ldep = NULL;	/* Local Dring Entry Pointer */
2702 	ldc_mem_handle_t	mhdl = NULL;
2703 	ldc_mem_info_t		minfo;
2704 	int			status = -1;
2705 	int			i;	/* loop */
2706 
2707 	ASSERT(vdc != NULL);
2708 	ASSERT(mutex_owned(&vdc->lock));
2709 
2710 	DMSG(vdc, 0, "[%d] Entered\n", vdc->instance);
2711 
2712 	if (vdc->initialized & VDC_DRING_ENTRY) {
2713 		DMSG(vdc, 0,
2714 		    "[%d] Removing Local DRing entries\n", vdc->instance);
2715 		for (i = 0; i < vdc->dring_len; i++) {
2716 			ldep = &vdc->local_dring[i];
2717 			mhdl = ldep->desc_mhdl;
2718 
2719 			if (mhdl == NULL)
2720 				continue;
2721 
2722 			if ((status = ldc_mem_info(mhdl, &minfo)) != 0) {
2723 				DMSG(vdc, 0,
2724 				    "ldc_mem_info returned an error: %d\n",
2725 				    status);
2726 
2727 				/*
2728 				 * This must mean that the mem handle
2729 				 * is not valid. Clear it out so that
2730 				 * no one tries to use it.
2731 				 */
2732 				ldep->desc_mhdl = NULL;
2733 				continue;
2734 			}
2735 
2736 			if (minfo.status == LDC_BOUND) {
2737 				(void) ldc_mem_unbind_handle(mhdl);
2738 			}
2739 
2740 			(void) ldc_mem_free_handle(mhdl);
2741 
2742 			ldep->desc_mhdl = NULL;
2743 		}
2744 		vdc->initialized &= ~VDC_DRING_ENTRY;
2745 	}
2746 
2747 	if (vdc->initialized & VDC_DRING_LOCAL) {
2748 		DMSG(vdc, 0, "[%d] Freeing Local DRing\n", vdc->instance);
2749 		kmem_free(vdc->local_dring,
2750 		    vdc->dring_len * sizeof (vdc_local_desc_t));
2751 		vdc->initialized &= ~VDC_DRING_LOCAL;
2752 	}
2753 
2754 	if (vdc->initialized & VDC_DRING_BOUND) {
2755 		DMSG(vdc, 0, "[%d] Unbinding DRing\n", vdc->instance);
2756 		status = ldc_mem_dring_unbind(vdc->dring_hdl);
2757 		if (status == 0) {
2758 			vdc->initialized &= ~VDC_DRING_BOUND;
2759 		} else {
2760 			DMSG(vdc, 0, "[%d] Error %d unbinding DRing %lx",
2761 			    vdc->instance, status, vdc->dring_hdl);
2762 		}
2763 		kmem_free(vdc->dring_cookie, sizeof (ldc_mem_cookie_t));
2764 	}
2765 
2766 	if (vdc->initialized & VDC_DRING_INIT) {
2767 		DMSG(vdc, 0, "[%d] Destroying DRing\n", vdc->instance);
2768 		status = ldc_mem_dring_destroy(vdc->dring_hdl);
2769 		if (status == 0) {
2770 			vdc->dring_hdl = NULL;
2771 			bzero(&vdc->dring_mem_info, sizeof (ldc_mem_info_t));
2772 			vdc->initialized &= ~VDC_DRING_INIT;
2773 		} else {
2774 			DMSG(vdc, 0, "[%d] Error %d destroying DRing (%lx)",
2775 			    vdc->instance, status, vdc->dring_hdl);
2776 		}
2777 	}
2778 }
2779 
2780 /*
2781  * Function:
2782  *	vdc_map_to_shared_dring()
2783  *
2784  * Description:
2785  *	Copy contents of the local descriptor to the shared
2786  *	memory descriptor.
2787  *
2788  * Arguments:
2789  *	vdcp	- soft state pointer for this instance of the device driver.
2790  *	idx	- descriptor ring index
2791  *
2792  * Return Code:
2793  *	None
2794  */
2795 static int
2796 vdc_map_to_shared_dring(vdc_t *vdcp, int idx)
2797 {
2798 	vdc_local_desc_t	*ldep;
2799 	vd_dring_entry_t	*dep;
2800 	int			rv;
2801 
2802 	ldep = &(vdcp->local_dring[idx]);
2803 
2804 	/* for now leave in the old pop_mem_hdl stuff */
2805 	if (ldep->nbytes > 0) {
2806 		rv = vdc_populate_mem_hdl(vdcp, ldep);
2807 		if (rv) {
2808 			DMSG(vdcp, 0, "[%d] Cannot populate mem handle\n",
2809 			    vdcp->instance);
2810 			return (rv);
2811 		}
2812 	}
2813 
2814 	/*
2815 	 * fill in the data details into the DRing
2816 	 */
2817 	dep = ldep->dep;
2818 	ASSERT(dep != NULL);
2819 
2820 	dep->payload.req_id = VDC_GET_NEXT_REQ_ID(vdcp);
2821 	dep->payload.operation = ldep->operation;
2822 	dep->payload.addr = ldep->offset;
2823 	dep->payload.nbytes = ldep->nbytes;
2824 	dep->payload.status = (uint32_t)-1;	/* vds will set valid value */
2825 	dep->payload.slice = ldep->slice;
2826 	dep->hdr.dstate = VIO_DESC_READY;
2827 	dep->hdr.ack = 1;		/* request an ACK for every message */
2828 
2829 	return (0);
2830 }
2831 
2832 /*
2833  * Function:
2834  *	vdc_send_request
2835  *
2836  * Description:
2837  *	This routine writes the data to be transmitted to vds into the
2838  *	descriptor, notifies vds that the ring has been updated and
2839  *	then waits for the request to be processed.
2840  *
2841  * Arguments:
2842  *	vdcp	  - the soft state pointer
2843  *	operation - operation we want vds to perform (VD_OP_XXX)
2844  *	addr	  - address of data buf to be read/written.
2845  *	nbytes	  - number of bytes to read/write
2846  *	slice	  - the disk slice this request is for
2847  *	offset	  - relative disk offset
2848  *	cb_type   - type of call - STRATEGY or SYNC
2849  *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
2850  *			. mode for ioctl(9e)
2851  *			. LP64 diskaddr_t (block I/O)
2852  *	dir	  - direction of operation (READ/WRITE/BOTH)
2853  *
2854  * Return Codes:
2855  *	0
2856  *	ENXIO
2857  */
2858 static int
2859 vdc_send_request(vdc_t *vdcp, int operation, caddr_t addr,
2860     size_t nbytes, int slice, diskaddr_t offset, int cb_type,
2861     void *cb_arg, vio_desc_direction_t dir)
2862 {
2863 	int	rv = 0;
2864 
2865 	ASSERT(vdcp != NULL);
2866 	ASSERT(slice == VD_SLICE_NONE || slice < V_NUMPAR);
2867 
2868 	mutex_enter(&vdcp->lock);
2869 
2870 	/*
2871 	 * If this is a block read/write operation we update the I/O statistics
2872 	 * to indicate that the request is being put on the waitq to be
2873 	 * serviced.
2874 	 *
2875 	 * We do it here (a common routine for both synchronous and strategy
2876 	 * calls) for performance reasons - we are already holding vdc->lock
2877 	 * so there is no extra locking overhead. We would have to explicitly
2878 	 * grab the 'lock' mutex to update the stats if we were to do this
2879 	 * higher up the stack in vdc_strategy() et. al.
2880 	 */
2881 	if ((operation == VD_OP_BREAD) || (operation == VD_OP_BWRITE)) {
2882 		DTRACE_IO1(start, buf_t *, cb_arg);
2883 		VD_KSTAT_WAITQ_ENTER(vdcp);
2884 	}
2885 
2886 	do {
2887 		while (vdcp->state != VDC_STATE_RUNNING) {
2888 
2889 			/* return error if detaching */
2890 			if (vdcp->state == VDC_STATE_DETACH) {
2891 				rv = ENXIO;
2892 				goto done;
2893 			}
2894 
2895 			/* fail request if connection timeout is reached */
2896 			if (vdcp->ctimeout_reached) {
2897 				rv = EIO;
2898 				goto done;
2899 			}
2900 
2901 			/*
2902 			 * If we are panicking and the disk is not ready then
2903 			 * we can't send any request because we can't complete
2904 			 * the handshake now.
2905 			 */
2906 			if (ddi_in_panic()) {
2907 				rv = EIO;
2908 				goto done;
2909 			}
2910 
2911 			cv_wait(&vdcp->running_cv, &vdcp->lock);
2912 		}
2913 
2914 	} while (vdc_populate_descriptor(vdcp, operation, addr,
2915 	    nbytes, slice, offset, cb_type, cb_arg, dir));
2916 
2917 done:
2918 	/*
2919 	 * If this is a block read/write we update the I/O statistics kstat
2920 	 * to indicate that this request has been placed on the queue for
2921 	 * processing (i.e sent to the vDisk server) - iostat(1M) will
2922 	 * report the time waiting for the vDisk server under the %b column
2923 	 * In the case of an error we simply take it off the wait queue.
2924 	 */
2925 	if ((operation == VD_OP_BREAD) || (operation == VD_OP_BWRITE)) {
2926 		if (rv == 0) {
2927 			VD_KSTAT_WAITQ_TO_RUNQ(vdcp);
2928 			DTRACE_PROBE1(send, buf_t *, cb_arg);
2929 		} else {
2930 			VD_UPDATE_ERR_STATS(vdcp, vd_transerrs);
2931 			VD_KSTAT_WAITQ_EXIT(vdcp);
2932 			DTRACE_IO1(done, buf_t *, cb_arg);
2933 		}
2934 	}
2935 
2936 	mutex_exit(&vdcp->lock);
2937 
2938 	return (rv);
2939 }
2940 
2941 
2942 /*
2943  * Function:
2944  *	vdc_populate_descriptor
2945  *
2946  * Description:
2947  *	This routine writes the data to be transmitted to vds into the
2948  *	descriptor, notifies vds that the ring has been updated and
2949  *	then waits for the request to be processed.
2950  *
2951  * Arguments:
2952  *	vdcp	  - the soft state pointer
2953  *	operation - operation we want vds to perform (VD_OP_XXX)
2954  *	addr	  - address of data buf to be read/written.
2955  *	nbytes	  - number of bytes to read/write
2956  *	slice	  - the disk slice this request is for
2957  *	offset	  - relative disk offset
2958  *	cb_type   - type of call - STRATEGY or SYNC
2959  *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
2960  *			. mode for ioctl(9e)
2961  *			. LP64 diskaddr_t (block I/O)
2962  *	dir	  - direction of operation (READ/WRITE/BOTH)
2963  *
2964  * Return Codes:
2965  *	0
2966  *	EAGAIN
2967  *	ECONNRESET
2968  *	ENXIO
2969  */
2970 static int
2971 vdc_populate_descriptor(vdc_t *vdcp, int operation, caddr_t addr,
2972     size_t nbytes, int slice, diskaddr_t offset, int cb_type,
2973     void *cb_arg, vio_desc_direction_t dir)
2974 {
2975 	vdc_local_desc_t	*local_dep = NULL; /* Local Dring Pointer */
2976 	int			idx;		/* Index of DRing entry used */
2977 	int			next_idx;
2978 	vio_dring_msg_t		dmsg;
2979 	size_t			msglen;
2980 	int			rv;
2981 
2982 	ASSERT(MUTEX_HELD(&vdcp->lock));
2983 	vdcp->threads_pending++;
2984 loop:
2985 	DMSG(vdcp, 2, ": dring_curr_idx = %d\n", vdcp->dring_curr_idx);
2986 
2987 	/* Get next available D-Ring entry */
2988 	idx = vdcp->dring_curr_idx;
2989 	local_dep = &(vdcp->local_dring[idx]);
2990 
2991 	if (!local_dep->is_free) {
2992 		DMSG(vdcp, 2, "[%d]: dring full - waiting for space\n",
2993 		    vdcp->instance);
2994 		cv_wait(&vdcp->dring_free_cv, &vdcp->lock);
2995 		if (vdcp->state == VDC_STATE_RUNNING ||
2996 		    vdcp->state == VDC_STATE_HANDLE_PENDING) {
2997 			goto loop;
2998 		}
2999 		vdcp->threads_pending--;
3000 		return (ECONNRESET);
3001 	}
3002 
3003 	next_idx = idx + 1;
3004 	if (next_idx >= vdcp->dring_len)
3005 		next_idx = 0;
3006 	vdcp->dring_curr_idx = next_idx;
3007 
3008 	ASSERT(local_dep->is_free);
3009 
3010 	local_dep->operation = operation;
3011 	local_dep->addr = addr;
3012 	local_dep->nbytes = nbytes;
3013 	local_dep->slice = slice;
3014 	local_dep->offset = offset;
3015 	local_dep->cb_type = cb_type;
3016 	local_dep->cb_arg = cb_arg;
3017 	local_dep->dir = dir;
3018 
3019 	local_dep->is_free = B_FALSE;
3020 
3021 	rv = vdc_map_to_shared_dring(vdcp, idx);
3022 	if (rv) {
3023 		DMSG(vdcp, 0, "[%d]: cannot bind memory - waiting ..\n",
3024 		    vdcp->instance);
3025 		/* free the descriptor */
3026 		local_dep->is_free = B_TRUE;
3027 		vdcp->dring_curr_idx = idx;
3028 		cv_wait(&vdcp->membind_cv, &vdcp->lock);
3029 		if (vdcp->state == VDC_STATE_RUNNING ||
3030 		    vdcp->state == VDC_STATE_HANDLE_PENDING) {
3031 			goto loop;
3032 		}
3033 		vdcp->threads_pending--;
3034 		return (ECONNRESET);
3035 	}
3036 
3037 	/*
3038 	 * Send a msg with the DRing details to vds
3039 	 */
3040 	VIO_INIT_DRING_DATA_TAG(dmsg);
3041 	VDC_INIT_DRING_DATA_MSG_IDS(dmsg, vdcp);
3042 	dmsg.dring_ident = vdcp->dring_ident;
3043 	dmsg.start_idx = idx;
3044 	dmsg.end_idx = idx;
3045 	vdcp->seq_num++;
3046 
3047 	DTRACE_PROBE2(populate, int, vdcp->instance,
3048 	    vdc_local_desc_t *, local_dep);
3049 	DMSG(vdcp, 2, "ident=0x%lx, st=%u, end=%u, seq=%ld\n",
3050 	    vdcp->dring_ident, dmsg.start_idx, dmsg.end_idx, dmsg.seq_num);
3051 
3052 	/*
3053 	 * note we're still holding the lock here to
3054 	 * make sure the message goes out in order !!!...
3055 	 */
3056 	msglen = sizeof (dmsg);
3057 	rv = vdc_send(vdcp, (caddr_t)&dmsg, &msglen);
3058 	switch (rv) {
3059 	case ECONNRESET:
3060 		/*
3061 		 * vdc_send initiates the reset on failure.
3062 		 * Since the transaction has already been put
3063 		 * on the local dring, it will automatically get
3064 		 * retried when the channel is reset. Given that,
3065 		 * it is ok to just return success even though the
3066 		 * send failed.
3067 		 */
3068 		rv = 0;
3069 		break;
3070 
3071 	case 0: /* EOK */
3072 		DMSG(vdcp, 1, "sent via LDC: rv=%d\n", rv);
3073 		break;
3074 
3075 	default:
3076 		goto cleanup_and_exit;
3077 	}
3078 
3079 	vdcp->threads_pending--;
3080 	return (rv);
3081 
3082 cleanup_and_exit:
3083 	DMSG(vdcp, 0, "unexpected error, rv=%d\n", rv);
3084 	return (ENXIO);
3085 }
3086 
3087 /*
3088  * Function:
3089  *	vdc_do_sync_op
3090  *
3091  * Description:
3092  * 	Wrapper around vdc_populate_descriptor that blocks until the
3093  * 	response to the message is available.
3094  *
3095  * Arguments:
3096  *	vdcp	  - the soft state pointer
3097  *	operation - operation we want vds to perform (VD_OP_XXX)
3098  *	addr	  - address of data buf to be read/written.
3099  *	nbytes	  - number of bytes to read/write
3100  *	slice	  - the disk slice this request is for
3101  *	offset	  - relative disk offset
3102  *	cb_type   - type of call - STRATEGY or SYNC
3103  *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
3104  *			. mode for ioctl(9e)
3105  *			. LP64 diskaddr_t (block I/O)
3106  *	dir	  - direction of operation (READ/WRITE/BOTH)
3107  *	rconflict - check for reservation conflict in case of failure
3108  *
3109  * rconflict should be set to B_TRUE by most callers. Callers invoking the
3110  * VD_OP_SCSICMD operation can set rconflict to B_FALSE if they check the
3111  * result of a successful operation with vd_scsi_status().
3112  *
3113  * Return Codes:
3114  *	0
3115  *	EAGAIN
3116  *	EFAULT
3117  *	ENXIO
3118  *	EIO
3119  */
3120 static int
3121 vdc_do_sync_op(vdc_t *vdcp, int operation, caddr_t addr, size_t nbytes,
3122     int slice, diskaddr_t offset, int cb_type, void *cb_arg,
3123     vio_desc_direction_t dir, boolean_t rconflict)
3124 {
3125 	int status;
3126 	vdc_io_t *vio;
3127 	boolean_t check_resv_conflict = B_FALSE;
3128 
3129 	ASSERT(cb_type == CB_SYNC);
3130 
3131 	/*
3132 	 * Grab the lock, if blocked wait until the server
3133 	 * response causes us to wake up again.
3134 	 */
3135 	mutex_enter(&vdcp->lock);
3136 	vdcp->sync_op_cnt++;
3137 	while (vdcp->sync_op_blocked && vdcp->state != VDC_STATE_DETACH)
3138 		cv_wait(&vdcp->sync_blocked_cv, &vdcp->lock);
3139 
3140 	if (vdcp->state == VDC_STATE_DETACH) {
3141 		cv_broadcast(&vdcp->sync_blocked_cv);
3142 		vdcp->sync_op_cnt--;
3143 		mutex_exit(&vdcp->lock);
3144 		return (ENXIO);
3145 	}
3146 
3147 	/* now block anyone other thread entering after us */
3148 	vdcp->sync_op_blocked = B_TRUE;
3149 	vdcp->sync_op_pending = B_TRUE;
3150 	mutex_exit(&vdcp->lock);
3151 
3152 	status = vdc_send_request(vdcp, operation, addr,
3153 	    nbytes, slice, offset, cb_type, cb_arg, dir);
3154 
3155 	mutex_enter(&vdcp->lock);
3156 
3157 	if (status != 0) {
3158 		vdcp->sync_op_pending = B_FALSE;
3159 	} else {
3160 		/*
3161 		 * block until our transaction completes.
3162 		 * Also anyone else waiting also gets to go next.
3163 		 */
3164 		while (vdcp->sync_op_pending && vdcp->state != VDC_STATE_DETACH)
3165 			cv_wait(&vdcp->sync_pending_cv, &vdcp->lock);
3166 
3167 		DMSG(vdcp, 2, ": operation returned %d\n",
3168 		    vdcp->sync_op_status);
3169 		if (vdcp->state == VDC_STATE_DETACH) {
3170 			vdcp->sync_op_pending = B_FALSE;
3171 			status = ENXIO;
3172 		} else {
3173 			status = vdcp->sync_op_status;
3174 			if (status != 0 && vdcp->failfast_interval != 0) {
3175 				/*
3176 				 * Operation has failed and failfast is enabled.
3177 				 * We need to check if the failure is due to a
3178 				 * reservation conflict if this was requested.
3179 				 */
3180 				check_resv_conflict = rconflict;
3181 			}
3182 
3183 		}
3184 	}
3185 
3186 	vdcp->sync_op_status = 0;
3187 	vdcp->sync_op_blocked = B_FALSE;
3188 	vdcp->sync_op_cnt--;
3189 
3190 	/* signal the next waiting thread */
3191 	cv_signal(&vdcp->sync_blocked_cv);
3192 
3193 	/*
3194 	 * We have to check for reservation conflict after unblocking sync
3195 	 * operations because some sync operations will be used to do this
3196 	 * check.
3197 	 */
3198 	if (check_resv_conflict) {
3199 		vio = vdc_failfast_io_queue(vdcp, NULL);
3200 		while (vio->vio_qtime != 0)
3201 			cv_wait(&vdcp->failfast_io_cv, &vdcp->lock);
3202 		kmem_free(vio, sizeof (vdc_io_t));
3203 	}
3204 
3205 	mutex_exit(&vdcp->lock);
3206 
3207 	return (status);
3208 }
3209 
3210 
3211 /*
3212  * Function:
3213  *	vdc_drain_response()
3214  *
3215  * Description:
3216  * 	When a guest is panicking, the completion of requests needs to be
3217  * 	handled differently because interrupts are disabled and vdc
3218  * 	will not get messages. We have to poll for the messages instead.
3219  *
3220  *	Note: since we are panicking we don't implement	the io:::done
3221  *	DTrace probe or update the I/O statistics kstats.
3222  *
3223  * Arguments:
3224  *	vdc	- soft state pointer for this instance of the device driver.
3225  *	buf	- if buf is NULL then we drain all responses, otherwise we
3226  *		  poll until we receive a ACK/NACK for the specific I/O
3227  *		  described by buf.
3228  *
3229  * Return Code:
3230  *	0	- Success
3231  */
3232 static int
3233 vdc_drain_response(vdc_t *vdc, struct buf *buf)
3234 {
3235 	int 			rv, idx, retries;
3236 	size_t			msglen;
3237 	vdc_local_desc_t 	*ldep = NULL;	/* Local Dring Entry Pointer */
3238 	vio_dring_msg_t		dmsg;
3239 	struct buf		*mbuf;
3240 
3241 	mutex_enter(&vdc->lock);
3242 
3243 	retries = 0;
3244 	for (;;) {
3245 		msglen = sizeof (dmsg);
3246 		rv = ldc_read(vdc->curr_server->ldc_handle, (caddr_t)&dmsg,
3247 		    &msglen);
3248 		if (rv) {
3249 			rv = EINVAL;
3250 			break;
3251 		}
3252 
3253 		/*
3254 		 * if there are no packets wait and check again
3255 		 */
3256 		if ((rv == 0) && (msglen == 0)) {
3257 			if (retries++ > vdc_dump_retries) {
3258 				rv = EAGAIN;
3259 				break;
3260 			}
3261 
3262 			drv_usecwait(vdc_usec_timeout_dump);
3263 			continue;
3264 		}
3265 
3266 		/*
3267 		 * Ignore all messages that are not ACKs/NACKs to
3268 		 * DRing requests.
3269 		 */
3270 		if ((dmsg.tag.vio_msgtype != VIO_TYPE_DATA) ||
3271 		    (dmsg.tag.vio_subtype_env != VIO_DRING_DATA)) {
3272 			DMSG(vdc, 0, "discard pkt: type=%d sub=%d env=%d\n",
3273 			    dmsg.tag.vio_msgtype,
3274 			    dmsg.tag.vio_subtype,
3275 			    dmsg.tag.vio_subtype_env);
3276 			continue;
3277 		}
3278 
3279 		/*
3280 		 * set the appropriate return value for the current request.
3281 		 */
3282 		switch (dmsg.tag.vio_subtype) {
3283 		case VIO_SUBTYPE_ACK:
3284 			rv = 0;
3285 			break;
3286 		case VIO_SUBTYPE_NACK:
3287 			rv = EAGAIN;
3288 			break;
3289 		default:
3290 			continue;
3291 		}
3292 
3293 		idx = dmsg.start_idx;
3294 		if (idx >= vdc->dring_len) {
3295 			DMSG(vdc, 0, "[%d] Bogus ack data : start %d\n",
3296 			    vdc->instance, idx);
3297 			continue;
3298 		}
3299 		ldep = &vdc->local_dring[idx];
3300 		if (ldep->dep->hdr.dstate != VIO_DESC_DONE) {
3301 			DMSG(vdc, 0, "[%d] Entry @ %d - state !DONE %d\n",
3302 			    vdc->instance, idx, ldep->dep->hdr.dstate);
3303 			continue;
3304 		}
3305 
3306 		if (buf != NULL && ldep->cb_type == CB_STRATEGY) {
3307 			mbuf = ldep->cb_arg;
3308 			mbuf->b_resid = mbuf->b_bcount -
3309 			    ldep->dep->payload.nbytes;
3310 			bioerror(mbuf, (rv == EAGAIN)? EIO:
3311 			    ldep->dep->payload.status);
3312 			biodone(mbuf);
3313 		} else {
3314 			mbuf = NULL;
3315 		}
3316 
3317 		DMSG(vdc, 1, "[%d] Depopulating idx=%d state=%d\n",
3318 		    vdc->instance, idx, ldep->dep->hdr.dstate);
3319 
3320 		rv = vdc_depopulate_descriptor(vdc, idx);
3321 		if (rv) {
3322 			DMSG(vdc, 0,
3323 			    "[%d] Entry @ %d - depopulate failed ..\n",
3324 			    vdc->instance, idx);
3325 		}
3326 
3327 		/* we have received an ACK/NACK for the specified buffer */
3328 		if (buf != NULL && buf == mbuf) {
3329 			rv = 0;
3330 			break;
3331 		}
3332 
3333 		/* if this is the last descriptor - break out of loop */
3334 		if ((idx + 1) % vdc->dring_len == vdc->dring_curr_idx) {
3335 			if (buf != NULL) {
3336 				/*
3337 				 * We never got a response for the specified
3338 				 * buffer so we fail the I/O.
3339 				 */
3340 				bioerror(buf, EIO);
3341 				biodone(buf);
3342 			}
3343 			break;
3344 		}
3345 	}
3346 
3347 	mutex_exit(&vdc->lock);
3348 	DMSG(vdc, 0, "End idx=%d\n", idx);
3349 
3350 	return (rv);
3351 }
3352 
3353 
3354 /*
3355  * Function:
3356  *	vdc_depopulate_descriptor()
3357  *
3358  * Description:
3359  *
3360  * Arguments:
3361  *	vdc	- soft state pointer for this instance of the device driver.
3362  *	idx	- Index of the Descriptor Ring entry being modified
3363  *
3364  * Return Code:
3365  *	0	- Success
3366  */
3367 static int
3368 vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx)
3369 {
3370 	vd_dring_entry_t *dep = NULL;		/* Dring Entry Pointer */
3371 	vdc_local_desc_t *ldep = NULL;		/* Local Dring Entry Pointer */
3372 	int		status = ENXIO;
3373 	int		rv = 0;
3374 
3375 	ASSERT(vdc != NULL);
3376 	ASSERT(idx < vdc->dring_len);
3377 	ldep = &vdc->local_dring[idx];
3378 	ASSERT(ldep != NULL);
3379 	ASSERT(MUTEX_HELD(&vdc->lock));
3380 
3381 	DTRACE_PROBE2(depopulate, int, vdc->instance, vdc_local_desc_t *, ldep);
3382 	DMSG(vdc, 2, ": idx = %d\n", idx);
3383 
3384 	dep = ldep->dep;
3385 	ASSERT(dep != NULL);
3386 	ASSERT((dep->hdr.dstate == VIO_DESC_DONE) ||
3387 	    (dep->payload.status == ECANCELED));
3388 
3389 	VDC_MARK_DRING_ENTRY_FREE(vdc, idx);
3390 
3391 	ldep->is_free = B_TRUE;
3392 	status = dep->payload.status;
3393 	DMSG(vdc, 2, ": is_free = %d : status = %d\n", ldep->is_free, status);
3394 
3395 	/*
3396 	 * If no buffers were used to transfer information to the server when
3397 	 * populating the descriptor then no memory handles need to be unbound
3398 	 * and we can return now.
3399 	 */
3400 	if (ldep->nbytes == 0) {
3401 		cv_signal(&vdc->dring_free_cv);
3402 		return (status);
3403 	}
3404 
3405 	/*
3406 	 * If the upper layer passed in a misaligned address we copied the
3407 	 * data into an aligned buffer before sending it to LDC - we now
3408 	 * copy it back to the original buffer.
3409 	 */
3410 	if (ldep->align_addr) {
3411 		ASSERT(ldep->addr != NULL);
3412 
3413 		if (dep->payload.nbytes > 0)
3414 			bcopy(ldep->align_addr, ldep->addr,
3415 			    dep->payload.nbytes);
3416 		kmem_free(ldep->align_addr,
3417 		    sizeof (caddr_t) * P2ROUNDUP(ldep->nbytes, 8));
3418 		ldep->align_addr = NULL;
3419 	}
3420 
3421 	rv = ldc_mem_unbind_handle(ldep->desc_mhdl);
3422 	if (rv != 0) {
3423 		DMSG(vdc, 0, "?[%d] unbind mhdl 0x%lx @ idx %d failed (%d)",
3424 		    vdc->instance, ldep->desc_mhdl, idx, rv);
3425 		/*
3426 		 * The error returned by the vDisk server is more informative
3427 		 * and thus has a higher priority but if it isn't set we ensure
3428 		 * that this function returns an error.
3429 		 */
3430 		if (status == 0)
3431 			status = EINVAL;
3432 	}
3433 
3434 	cv_signal(&vdc->membind_cv);
3435 	cv_signal(&vdc->dring_free_cv);
3436 
3437 	return (status);
3438 }
3439 
3440 /*
3441  * Function:
3442  *	vdc_populate_mem_hdl()
3443  *
3444  * Description:
3445  *
3446  * Arguments:
3447  *	vdc	- soft state pointer for this instance of the device driver.
3448  *	idx	- Index of the Descriptor Ring entry being modified
3449  *	addr	- virtual address being mapped in
3450  *	nybtes	- number of bytes in 'addr'
3451  *	operation - the vDisk operation being performed (VD_OP_xxx)
3452  *
3453  * Return Code:
3454  *	0	- Success
3455  */
3456 static int
3457 vdc_populate_mem_hdl(vdc_t *vdcp, vdc_local_desc_t *ldep)
3458 {
3459 	vd_dring_entry_t	*dep = NULL;
3460 	ldc_mem_handle_t	mhdl;
3461 	caddr_t			vaddr;
3462 	size_t			nbytes;
3463 	uint8_t			perm = LDC_MEM_RW;
3464 	uint8_t			maptype;
3465 	int			rv = 0;
3466 	int			i;
3467 
3468 	ASSERT(vdcp != NULL);
3469 
3470 	dep = ldep->dep;
3471 	mhdl = ldep->desc_mhdl;
3472 
3473 	switch (ldep->dir) {
3474 	case VIO_read_dir:
3475 		perm = LDC_MEM_W;
3476 		break;
3477 
3478 	case VIO_write_dir:
3479 		perm = LDC_MEM_R;
3480 		break;
3481 
3482 	case VIO_both_dir:
3483 		perm = LDC_MEM_RW;
3484 		break;
3485 
3486 	default:
3487 		ASSERT(0);	/* catch bad programming in vdc */
3488 	}
3489 
3490 	/*
3491 	 * LDC expects any addresses passed in to be 8-byte aligned. We need
3492 	 * to copy the contents of any misaligned buffers to a newly allocated
3493 	 * buffer and bind it instead (and copy the the contents back to the
3494 	 * original buffer passed in when depopulating the descriptor)
3495 	 */
3496 	vaddr = ldep->addr;
3497 	nbytes = ldep->nbytes;
3498 	if (((uint64_t)vaddr & 0x7) != 0) {
3499 		ASSERT(ldep->align_addr == NULL);
3500 		ldep->align_addr =
3501 		    kmem_alloc(sizeof (caddr_t) *
3502 		    P2ROUNDUP(nbytes, 8), KM_SLEEP);
3503 		DMSG(vdcp, 0, "[%d] Misaligned address %p reallocating "
3504 		    "(buf=%p nb=%ld op=%d)\n",
3505 		    vdcp->instance, (void *)vaddr, (void *)ldep->align_addr,
3506 		    nbytes, ldep->operation);
3507 		if (perm != LDC_MEM_W)
3508 			bcopy(vaddr, ldep->align_addr, nbytes);
3509 		vaddr = ldep->align_addr;
3510 	}
3511 
3512 	maptype = LDC_IO_MAP|LDC_SHADOW_MAP|LDC_DIRECT_MAP;
3513 	rv = ldc_mem_bind_handle(mhdl, vaddr, P2ROUNDUP(nbytes, 8),
3514 	    maptype, perm, &dep->payload.cookie[0], &dep->payload.ncookies);
3515 	DMSG(vdcp, 2, "[%d] bound mem handle; ncookies=%d\n",
3516 	    vdcp->instance, dep->payload.ncookies);
3517 	if (rv != 0) {
3518 		DMSG(vdcp, 0, "[%d] Failed to bind LDC memory handle "
3519 		    "(mhdl=%p, buf=%p, err=%d)\n",
3520 		    vdcp->instance, (void *)mhdl, (void *)vaddr, rv);
3521 		if (ldep->align_addr) {
3522 			kmem_free(ldep->align_addr,
3523 			    sizeof (caddr_t) * P2ROUNDUP(nbytes, 8));
3524 			ldep->align_addr = NULL;
3525 		}
3526 		return (EAGAIN);
3527 	}
3528 
3529 	/*
3530 	 * Get the other cookies (if any).
3531 	 */
3532 	for (i = 1; i < dep->payload.ncookies; i++) {
3533 		rv = ldc_mem_nextcookie(mhdl, &dep->payload.cookie[i]);
3534 		if (rv != 0) {
3535 			(void) ldc_mem_unbind_handle(mhdl);
3536 			DMSG(vdcp, 0, "?[%d] Failed to get next cookie "
3537 			    "(mhdl=%lx cnum=%d), err=%d",
3538 			    vdcp->instance, mhdl, i, rv);
3539 			if (ldep->align_addr) {
3540 				kmem_free(ldep->align_addr,
3541 				    sizeof (caddr_t) * ldep->nbytes);
3542 				ldep->align_addr = NULL;
3543 			}
3544 			return (EAGAIN);
3545 		}
3546 	}
3547 
3548 	return (rv);
3549 }
3550 
3551 /*
3552  * Interrupt handlers for messages from LDC
3553  */
3554 
3555 /*
3556  * Function:
3557  *	vdc_handle_cb()
3558  *
3559  * Description:
3560  *
3561  * Arguments:
3562  *	event	- Type of event (LDC_EVT_xxx) that triggered the callback
3563  *	arg	- soft state pointer for this instance of the device driver.
3564  *
3565  * Return Code:
3566  *	0	- Success
3567  */
3568 static uint_t
3569 vdc_handle_cb(uint64_t event, caddr_t arg)
3570 {
3571 	ldc_status_t	ldc_state;
3572 	int		rv = 0;
3573 	vdc_server_t	*srvr = (vdc_server_t *)(void *)arg;
3574 	vdc_t		*vdc = srvr->vdcp;
3575 
3576 	ASSERT(vdc != NULL);
3577 
3578 	DMSG(vdc, 1, "evt=%lx seqID=%ld\n", event, vdc->seq_num);
3579 
3580 	/* If callback is not for the current server, ignore it */
3581 	mutex_enter(&vdc->lock);
3582 
3583 	if (vdc->curr_server != srvr) {
3584 		DMSG(vdc, 0, "[%d] Ignoring event 0x%lx for port@%ld\n",
3585 		    vdc->instance, event, srvr->id);
3586 		mutex_exit(&vdc->lock);
3587 		return (LDC_SUCCESS);
3588 	}
3589 
3590 	/*
3591 	 * Depending on the type of event that triggered this callback,
3592 	 * we modify the handshake state or read the data.
3593 	 *
3594 	 * NOTE: not done as a switch() as event could be triggered by
3595 	 * a state change and a read request. Also the ordering	of the
3596 	 * check for the event types is deliberate.
3597 	 */
3598 	if (event & LDC_EVT_UP) {
3599 		DMSG(vdc, 0, "[%d] Received LDC_EVT_UP\n", vdc->instance);
3600 
3601 		/* get LDC state */
3602 		rv = ldc_status(srvr->ldc_handle, &ldc_state);
3603 		if (rv != 0) {
3604 			DMSG(vdc, 0, "[%d] Couldn't get LDC status %d",
3605 			    vdc->instance, rv);
3606 			mutex_exit(&vdc->lock);
3607 			return (LDC_SUCCESS);
3608 		}
3609 		if (srvr->ldc_state != LDC_UP &&
3610 		    ldc_state == LDC_UP) {
3611 			/*
3612 			 * Reset the transaction sequence numbers when
3613 			 * LDC comes up. We then kick off the handshake
3614 			 * negotiation with the vDisk server.
3615 			 */
3616 			vdc->seq_num = 1;
3617 			vdc->seq_num_reply = 0;
3618 			srvr->ldc_state = ldc_state;
3619 			cv_signal(&vdc->initwait_cv);
3620 		}
3621 	}
3622 
3623 	if (event & LDC_EVT_READ) {
3624 		DMSG(vdc, 1, "[%d] Received LDC_EVT_READ\n", vdc->instance);
3625 		mutex_enter(&vdc->read_lock);
3626 		cv_signal(&vdc->read_cv);
3627 		vdc->read_state = VDC_READ_PENDING;
3628 		mutex_exit(&vdc->read_lock);
3629 		mutex_exit(&vdc->lock);
3630 
3631 		/* that's all we have to do - no need to handle DOWN/RESET */
3632 		return (LDC_SUCCESS);
3633 	}
3634 
3635 	if (event & (LDC_EVT_RESET|LDC_EVT_DOWN)) {
3636 
3637 		DMSG(vdc, 0, "[%d] Received LDC RESET event\n", vdc->instance);
3638 
3639 		/*
3640 		 * Need to wake up any readers so they will
3641 		 * detect that a reset has occurred.
3642 		 */
3643 		mutex_enter(&vdc->read_lock);
3644 		if ((vdc->read_state == VDC_READ_WAITING) ||
3645 		    (vdc->read_state == VDC_READ_RESET))
3646 			cv_signal(&vdc->read_cv);
3647 		vdc->read_state = VDC_READ_RESET;
3648 		mutex_exit(&vdc->read_lock);
3649 
3650 		/* wake up any threads waiting for connection to come up */
3651 		if (vdc->state == VDC_STATE_INIT_WAITING) {
3652 			vdc->state = VDC_STATE_RESETTING;
3653 			cv_signal(&vdc->initwait_cv);
3654 		}
3655 
3656 	}
3657 
3658 	mutex_exit(&vdc->lock);
3659 
3660 	if (event & ~(LDC_EVT_UP | LDC_EVT_RESET | LDC_EVT_DOWN | LDC_EVT_READ))
3661 		DMSG(vdc, 0, "![%d] Unexpected LDC event (%lx) received",
3662 		    vdc->instance, event);
3663 
3664 	return (LDC_SUCCESS);
3665 }
3666 
3667 /*
3668  * Function:
3669  *	vdc_wait_for_response()
3670  *
3671  * Description:
3672  *	Block waiting for a response from the server. If there is
3673  *	no data the thread block on the read_cv that is signalled
3674  *	by the callback when an EVT_READ occurs.
3675  *
3676  * Arguments:
3677  *	vdcp	- soft state pointer for this instance of the device driver.
3678  *
3679  * Return Code:
3680  *	0	- Success
3681  */
3682 static int
3683 vdc_wait_for_response(vdc_t *vdcp, vio_msg_t *msgp)
3684 {
3685 	size_t		nbytes = sizeof (*msgp);
3686 	int		status;
3687 
3688 	ASSERT(vdcp != NULL);
3689 
3690 	DMSG(vdcp, 1, "[%d] Entered\n", vdcp->instance);
3691 
3692 	status = vdc_recv(vdcp, msgp, &nbytes);
3693 	DMSG(vdcp, 3, "vdc_read() done.. status=0x%x size=0x%x\n",
3694 	    status, (int)nbytes);
3695 	if (status) {
3696 		DMSG(vdcp, 0, "?[%d] Error %d reading LDC msg\n",
3697 		    vdcp->instance, status);
3698 		return (status);
3699 	}
3700 
3701 	if (nbytes < sizeof (vio_msg_tag_t)) {
3702 		DMSG(vdcp, 0, "?[%d] Expect %lu bytes; recv'd %lu\n",
3703 		    vdcp->instance, sizeof (vio_msg_tag_t), nbytes);
3704 		return (ENOMSG);
3705 	}
3706 
3707 	DMSG(vdcp, 2, "[%d] (%x/%x/%x)\n", vdcp->instance,
3708 	    msgp->tag.vio_msgtype,
3709 	    msgp->tag.vio_subtype,
3710 	    msgp->tag.vio_subtype_env);
3711 
3712 	/*
3713 	 * Verify the Session ID of the message
3714 	 *
3715 	 * Every message after the Version has been negotiated should
3716 	 * have the correct session ID set.
3717 	 */
3718 	if ((msgp->tag.vio_sid != vdcp->session_id) &&
3719 	    (msgp->tag.vio_subtype_env != VIO_VER_INFO)) {
3720 		DMSG(vdcp, 0, "[%d] Invalid SID: received 0x%x, "
3721 		    "expected 0x%lx [seq num %lx @ %d]",
3722 		    vdcp->instance, msgp->tag.vio_sid,
3723 		    vdcp->session_id,
3724 		    ((vio_dring_msg_t *)msgp)->seq_num,
3725 		    ((vio_dring_msg_t *)msgp)->start_idx);
3726 		return (ENOMSG);
3727 	}
3728 	return (0);
3729 }
3730 
3731 
3732 /*
3733  * Function:
3734  *	vdc_resubmit_backup_dring()
3735  *
3736  * Description:
3737  *	Resubmit each descriptor in the backed up dring to
3738  * 	vDisk server. The Dring was backed up during connection
3739  *	reset.
3740  *
3741  * Arguments:
3742  *	vdcp	- soft state pointer for this instance of the device driver.
3743  *
3744  * Return Code:
3745  *	0	- Success
3746  */
3747 static int
3748 vdc_resubmit_backup_dring(vdc_t *vdcp)
3749 {
3750 	int		processed = 0;
3751 	int		count;
3752 	int		b_idx;
3753 	int		rv = 0;
3754 	int		dring_size;
3755 	int		op;
3756 	vio_msg_t	vio_msg;
3757 	vdc_local_desc_t	*curr_ldep;
3758 
3759 	ASSERT(MUTEX_NOT_HELD(&vdcp->lock));
3760 	ASSERT(vdcp->state == VDC_STATE_HANDLE_PENDING);
3761 
3762 	if (vdcp->local_dring_backup == NULL) {
3763 		/* the pending requests have already been processed */
3764 		return (0);
3765 	}
3766 
3767 	DMSG(vdcp, 1, "restoring pending dring entries (len=%d, tail=%d)\n",
3768 	    vdcp->local_dring_backup_len, vdcp->local_dring_backup_tail);
3769 
3770 	/*
3771 	 * Walk the backup copy of the local descriptor ring and
3772 	 * resubmit all the outstanding transactions.
3773 	 */
3774 	b_idx = vdcp->local_dring_backup_tail;
3775 	for (count = 0; count < vdcp->local_dring_backup_len; count++) {
3776 
3777 		curr_ldep = &(vdcp->local_dring_backup[b_idx]);
3778 
3779 		/* only resubmit outstanding transactions */
3780 		if (!curr_ldep->is_free) {
3781 			/*
3782 			 * If we are retrying a block read/write operation we
3783 			 * need to update the I/O statistics to indicate that
3784 			 * the request is being put back on the waitq to be
3785 			 * serviced (it will have been taken off after the
3786 			 * error was reported).
3787 			 */
3788 			mutex_enter(&vdcp->lock);
3789 			op = curr_ldep->operation;
3790 			if ((op == VD_OP_BREAD) || (op == VD_OP_BWRITE)) {
3791 				DTRACE_IO1(start, buf_t *, curr_ldep->cb_arg);
3792 				VD_KSTAT_WAITQ_ENTER(vdcp);
3793 			}
3794 
3795 			DMSG(vdcp, 1, "resubmitting entry idx=%x\n", b_idx);
3796 			rv = vdc_populate_descriptor(vdcp, op,
3797 			    curr_ldep->addr, curr_ldep->nbytes,
3798 			    curr_ldep->slice, curr_ldep->offset,
3799 			    curr_ldep->cb_type, curr_ldep->cb_arg,
3800 			    curr_ldep->dir);
3801 
3802 			if (rv) {
3803 				if (op == VD_OP_BREAD || op == VD_OP_BWRITE) {
3804 					VD_UPDATE_ERR_STATS(vdcp, vd_transerrs);
3805 					VD_KSTAT_WAITQ_EXIT(vdcp);
3806 					DTRACE_IO1(done, buf_t *,
3807 					    curr_ldep->cb_arg);
3808 				}
3809 				DMSG(vdcp, 1, "[%d] cannot resubmit entry %d\n",
3810 				    vdcp->instance, b_idx);
3811 				mutex_exit(&vdcp->lock);
3812 				goto done;
3813 			}
3814 
3815 			/*
3816 			 * If this is a block read/write we update the I/O
3817 			 * statistics kstat to indicate that the request
3818 			 * has been sent back to the vDisk server and should
3819 			 * now be put on the run queue.
3820 			 */
3821 			if ((op == VD_OP_BREAD) || (op == VD_OP_BWRITE)) {
3822 				DTRACE_PROBE1(send, buf_t *, curr_ldep->cb_arg);
3823 				VD_KSTAT_WAITQ_TO_RUNQ(vdcp);
3824 			}
3825 			mutex_exit(&vdcp->lock);
3826 
3827 			/* Wait for the response message. */
3828 			DMSG(vdcp, 1, "waiting for response to idx=%x\n",
3829 			    b_idx);
3830 			rv = vdc_wait_for_response(vdcp, &vio_msg);
3831 			if (rv) {
3832 				/*
3833 				 * If this is a block read/write we update
3834 				 * the I/O statistics kstat to take it
3835 				 * off the run queue.
3836 				 */
3837 				mutex_enter(&vdcp->lock);
3838 				if (op == VD_OP_BREAD || op == VD_OP_BWRITE) {
3839 					VD_UPDATE_ERR_STATS(vdcp, vd_transerrs);
3840 					VD_KSTAT_RUNQ_EXIT(vdcp);
3841 					DTRACE_IO1(done, buf_t *,
3842 					    curr_ldep->cb_arg);
3843 				}
3844 				DMSG(vdcp, 1, "[%d] wait_for_response "
3845 				    "returned err=%d\n", vdcp->instance,
3846 				    rv);
3847 				mutex_exit(&vdcp->lock);
3848 				goto done;
3849 			}
3850 
3851 			DMSG(vdcp, 1, "processing msg for idx=%x\n", b_idx);
3852 			rv = vdc_process_data_msg(vdcp, &vio_msg);
3853 			if (rv) {
3854 				DMSG(vdcp, 1, "[%d] process_data_msg "
3855 				    "returned err=%d\n", vdcp->instance,
3856 				    rv);
3857 				goto done;
3858 			}
3859 			/*
3860 			 * Mark this entry as free so that we will not resubmit
3861 			 * this "done" request again, if we were to use the same
3862 			 * backup_dring again in future. This could happen when
3863 			 * a reset happens while processing the backup_dring.
3864 			 */
3865 			curr_ldep->is_free = B_TRUE;
3866 			processed++;
3867 		}
3868 
3869 		/* get the next element to submit */
3870 		if (++b_idx >= vdcp->local_dring_backup_len)
3871 			b_idx = 0;
3872 	}
3873 
3874 	/* all done - now clear up pending dring copy */
3875 	dring_size = vdcp->local_dring_backup_len *
3876 	    sizeof (vdcp->local_dring_backup[0]);
3877 
3878 	(void) kmem_free(vdcp->local_dring_backup, dring_size);
3879 
3880 	vdcp->local_dring_backup = NULL;
3881 
3882 done:
3883 	DTRACE_PROBE2(processed, int, processed, vdc_t *, vdcp);
3884 
3885 	return (rv);
3886 }
3887 
3888 /*
3889  * Function:
3890  *	vdc_cancel_backup_dring
3891  *
3892  * Description:
3893  *	Cancel each descriptor in the backed up dring to vDisk server.
3894  *	The Dring was backed up during connection reset.
3895  *
3896  * Arguments:
3897  *	vdcp	- soft state pointer for this instance of the device driver.
3898  *
3899  * Return Code:
3900  *	None
3901  */
3902 void
3903 vdc_cancel_backup_dring(vdc_t *vdcp)
3904 {
3905 	vdc_local_desc_t *ldep;
3906 	struct buf 	*bufp;
3907 	int		count;
3908 	int		b_idx;
3909 	int		dring_size;
3910 	int		cancelled = 0;
3911 
3912 	ASSERT(MUTEX_HELD(&vdcp->lock));
3913 	ASSERT(vdcp->state == VDC_STATE_INIT ||
3914 	    vdcp->state == VDC_STATE_INIT_WAITING ||
3915 	    vdcp->state == VDC_STATE_NEGOTIATE ||
3916 	    vdcp->state == VDC_STATE_RESETTING);
3917 
3918 	if (vdcp->local_dring_backup == NULL) {
3919 		/* the pending requests have already been processed */
3920 		return;
3921 	}
3922 
3923 	DMSG(vdcp, 1, "cancelling pending dring entries (len=%d, tail=%d)\n",
3924 	    vdcp->local_dring_backup_len, vdcp->local_dring_backup_tail);
3925 
3926 	/*
3927 	 * Walk the backup copy of the local descriptor ring and
3928 	 * cancel all the outstanding transactions.
3929 	 */
3930 	b_idx = vdcp->local_dring_backup_tail;
3931 	for (count = 0; count < vdcp->local_dring_backup_len; count++) {
3932 
3933 		ldep = &(vdcp->local_dring_backup[b_idx]);
3934 
3935 		/* only cancel outstanding transactions */
3936 		if (!ldep->is_free) {
3937 
3938 			DMSG(vdcp, 1, "cancelling entry idx=%x\n", b_idx);
3939 			cancelled++;
3940 
3941 			/*
3942 			 * All requests have already been cleared from the
3943 			 * local descriptor ring and the LDC channel has been
3944 			 * reset so we will never get any reply for these
3945 			 * requests. Now we just have to notify threads waiting
3946 			 * for replies that the request has failed.
3947 			 */
3948 			switch (ldep->cb_type) {
3949 			case CB_SYNC:
3950 				ASSERT(vdcp->sync_op_pending);
3951 				vdcp->sync_op_status = EIO;
3952 				vdcp->sync_op_pending = B_FALSE;
3953 				cv_signal(&vdcp->sync_pending_cv);
3954 				break;
3955 
3956 			case CB_STRATEGY:
3957 				bufp = ldep->cb_arg;
3958 				ASSERT(bufp != NULL);
3959 				bufp->b_resid = bufp->b_bcount;
3960 				VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
3961 				VD_KSTAT_RUNQ_EXIT(vdcp);
3962 				DTRACE_IO1(done, buf_t *, bufp);
3963 				bioerror(bufp, EIO);
3964 				biodone(bufp);
3965 				break;
3966 
3967 			default:
3968 				ASSERT(0);
3969 			}
3970 
3971 		}
3972 
3973 		/* get the next element to cancel */
3974 		if (++b_idx >= vdcp->local_dring_backup_len)
3975 			b_idx = 0;
3976 	}
3977 
3978 	/* all done - now clear up pending dring copy */
3979 	dring_size = vdcp->local_dring_backup_len *
3980 	    sizeof (vdcp->local_dring_backup[0]);
3981 
3982 	(void) kmem_free(vdcp->local_dring_backup, dring_size);
3983 
3984 	vdcp->local_dring_backup = NULL;
3985 
3986 	DTRACE_PROBE2(cancelled, int, cancelled, vdc_t *, vdcp);
3987 }
3988 
3989 /*
3990  * Function:
3991  *	vdc_connection_timeout
3992  *
3993  * Description:
3994  *	This function is invoked if the timeout set to establish the connection
3995  *	with vds expires. This will happen if we spend too much time in the
3996  *	VDC_STATE_INIT_WAITING or VDC_STATE_NEGOTIATE states. Then we will
3997  *	cancel any pending request and mark them as failed.
3998  *
3999  *	If the timeout does not expire, it will be cancelled when we reach the
4000  *	VDC_STATE_HANDLE_PENDING or VDC_STATE_RESETTING state. This function can
4001  *	be invoked while we are in the VDC_STATE_HANDLE_PENDING or
4002  *	VDC_STATE_RESETTING state in which case we do nothing because the
4003  *	timeout is being cancelled.
4004  *
4005  * Arguments:
4006  *	arg	- argument of the timeout function actually a soft state
4007  *		  pointer for the instance of the device driver.
4008  *
4009  * Return Code:
4010  *	None
4011  */
4012 void
4013 vdc_connection_timeout(void *arg)
4014 {
4015 	vdc_t 		*vdcp = (vdc_t *)arg;
4016 
4017 	mutex_enter(&vdcp->lock);
4018 
4019 	if (vdcp->state == VDC_STATE_HANDLE_PENDING ||
4020 	    vdcp->state == VDC_STATE_DETACH) {
4021 		/*
4022 		 * The connection has just been re-established or
4023 		 * we are detaching.
4024 		 */
4025 		vdcp->ctimeout_reached = B_FALSE;
4026 		mutex_exit(&vdcp->lock);
4027 		return;
4028 	}
4029 
4030 	vdcp->ctimeout_reached = B_TRUE;
4031 
4032 	/* notify requests waiting for sending */
4033 	cv_broadcast(&vdcp->running_cv);
4034 
4035 	/* cancel requests waiting for a result */
4036 	vdc_cancel_backup_dring(vdcp);
4037 
4038 	mutex_exit(&vdcp->lock);
4039 
4040 	cmn_err(CE_NOTE, "[%d] connection to service domain timeout",
4041 	    vdcp->instance);
4042 }
4043 
4044 /*
4045  * Function:
4046  *	vdc_backup_local_dring()
4047  *
4048  * Description:
4049  *	Backup the current dring in the event of a reset. The Dring
4050  *	transactions will be resubmitted to the server when the
4051  *	connection is restored.
4052  *
4053  * Arguments:
4054  *	vdcp	- soft state pointer for this instance of the device driver.
4055  *
4056  * Return Code:
4057  *	NONE
4058  */
4059 static void
4060 vdc_backup_local_dring(vdc_t *vdcp)
4061 {
4062 	int dring_size;
4063 
4064 	ASSERT(MUTEX_HELD(&vdcp->lock));
4065 	ASSERT(vdcp->state == VDC_STATE_RESETTING);
4066 
4067 	/*
4068 	 * If the backup dring is stil around, it means
4069 	 * that the last restore did not complete. However,
4070 	 * since we never got back into the running state,
4071 	 * the backup copy we have is still valid.
4072 	 */
4073 	if (vdcp->local_dring_backup != NULL) {
4074 		DMSG(vdcp, 1, "reusing local descriptor ring backup "
4075 		    "(len=%d, tail=%d)\n", vdcp->local_dring_backup_len,
4076 		    vdcp->local_dring_backup_tail);
4077 		return;
4078 	}
4079 
4080 	/*
4081 	 * The backup dring can be NULL and the local dring may not be
4082 	 * initialized. This can happen if we had a reset while establishing
4083 	 * a new connection but after the connection has timed out. In that
4084 	 * case the backup dring is NULL because the requests have been
4085 	 * cancelled and the request occured before the local dring is
4086 	 * initialized.
4087 	 */
4088 	if (!(vdcp->initialized & VDC_DRING_LOCAL))
4089 		return;
4090 
4091 	DMSG(vdcp, 1, "backing up the local descriptor ring (len=%d, "
4092 	    "tail=%d)\n", vdcp->dring_len, vdcp->dring_curr_idx);
4093 
4094 	dring_size = vdcp->dring_len * sizeof (vdcp->local_dring[0]);
4095 
4096 	vdcp->local_dring_backup = kmem_alloc(dring_size, KM_SLEEP);
4097 	bcopy(vdcp->local_dring, vdcp->local_dring_backup, dring_size);
4098 
4099 	vdcp->local_dring_backup_tail = vdcp->dring_curr_idx;
4100 	vdcp->local_dring_backup_len = vdcp->dring_len;
4101 }
4102 
4103 static void
4104 vdc_switch_server(vdc_t *vdcp)
4105 {
4106 	int		rv;
4107 	vdc_server_t 	*curr_server, *new_server;
4108 
4109 	ASSERT(MUTEX_HELD(&vdcp->lock));
4110 
4111 	/* if there is only one server return back */
4112 	if (vdcp->num_servers == 1) {
4113 		return;
4114 	}
4115 
4116 	/* Get current and next server */
4117 	curr_server = vdcp->curr_server;
4118 	new_server =
4119 	    (curr_server->next) ? curr_server->next : vdcp->server_list;
4120 	ASSERT(curr_server != new_server);
4121 
4122 	/* bring current server's channel down */
4123 	rv = ldc_down(curr_server->ldc_handle);
4124 	if (rv) {
4125 		DMSG(vdcp, 0, "[%d] Cannot bring channel down, port %ld\n",
4126 		    vdcp->instance, curr_server->id);
4127 		return;
4128 	}
4129 
4130 	/* switch the server */
4131 	vdcp->curr_server = new_server;
4132 
4133 	DMSG(vdcp, 0, "[%d] Switched to next vdisk server, port@%ld, ldc@%ld\n",
4134 	    vdcp->instance, vdcp->curr_server->id, vdcp->curr_server->ldc_id);
4135 }
4136 
4137 /* -------------------------------------------------------------------------- */
4138 
4139 /*
4140  * The following functions process the incoming messages from vds
4141  */
4142 
4143 /*
4144  * Function:
4145  *      vdc_process_msg_thread()
4146  *
4147  * Description:
4148  *
4149  *	Main VDC message processing thread. Each vDisk instance
4150  * 	consists of a copy of this thread. This thread triggers
4151  * 	all the handshakes and data exchange with the server. It
4152  * 	also handles all channel resets
4153  *
4154  * Arguments:
4155  *      vdc     - soft state pointer for this instance of the device driver.
4156  *
4157  * Return Code:
4158  *      None
4159  */
4160 static void
4161 vdc_process_msg_thread(vdc_t *vdcp)
4162 {
4163 	int		status;
4164 	int		ctimeout;
4165 	timeout_id_t	tmid = 0;
4166 	clock_t		ldcup_timeout = 0;
4167 
4168 	mutex_enter(&vdcp->lock);
4169 
4170 	for (;;) {
4171 
4172 #define	Q(_s)	(vdcp->state == _s) ? #_s :
4173 		DMSG(vdcp, 3, "state = %d (%s)\n", vdcp->state,
4174 		    Q(VDC_STATE_INIT)
4175 		    Q(VDC_STATE_INIT_WAITING)
4176 		    Q(VDC_STATE_NEGOTIATE)
4177 		    Q(VDC_STATE_HANDLE_PENDING)
4178 		    Q(VDC_STATE_RUNNING)
4179 		    Q(VDC_STATE_RESETTING)
4180 		    Q(VDC_STATE_DETACH)
4181 		    "UNKNOWN");
4182 
4183 		switch (vdcp->state) {
4184 		case VDC_STATE_INIT:
4185 
4186 			/*
4187 			 * If requested, start a timeout to check if the
4188 			 * connection with vds is established in the
4189 			 * specified delay. If the timeout expires, we
4190 			 * will cancel any pending request.
4191 			 *
4192 			 * If some reset have occurred while establishing
4193 			 * the connection, we already have a timeout armed
4194 			 * and in that case we don't need to arm a new one.
4195 			 *
4196 			 * The same rule applies when there are multiple vds'.
4197 			 * If either a connection cannot be established or
4198 			 * the handshake times out, the connection thread will
4199 			 * try another server. The 'ctimeout' will report
4200 			 * back an error after it expires irrespective of
4201 			 * whether the vdisk is trying to connect to just
4202 			 * one or multiple servers.
4203 			 */
4204 			ctimeout = (vdc_timeout != 0)?
4205 			    vdc_timeout : vdcp->curr_server->ctimeout;
4206 
4207 			if (ctimeout != 0 && tmid == 0) {
4208 				tmid = timeout(vdc_connection_timeout, vdcp,
4209 				    ctimeout * drv_usectohz(MICROSEC));
4210 			}
4211 
4212 			/* Check if we are re-initializing repeatedly */
4213 			if (vdcp->hshake_cnt > vdc_hshake_retries &&
4214 			    vdcp->lifecycle != VDC_LC_ONLINE) {
4215 
4216 				DMSG(vdcp, 0, "[%d] too many handshakes,cnt=%d",
4217 				    vdcp->instance, vdcp->hshake_cnt);
4218 				cmn_err(CE_NOTE, "[%d] disk access failed.\n",
4219 				    vdcp->instance);
4220 				vdcp->state = VDC_STATE_DETACH;
4221 				break;
4222 			}
4223 
4224 			/* Switch to STATE_DETACH if drv is detaching */
4225 			if (vdcp->lifecycle == VDC_LC_DETACHING) {
4226 				vdcp->state = VDC_STATE_DETACH;
4227 				break;
4228 			}
4229 
4230 			/* Switch server */
4231 			if (vdcp->hshake_cnt > 0)
4232 				vdc_switch_server(vdcp);
4233 			vdcp->hshake_cnt++;
4234 
4235 			/* Bring up connection with vds via LDC */
4236 			status = vdc_start_ldc_connection(vdcp);
4237 			if (status != EINVAL) {
4238 				vdcp->state = VDC_STATE_INIT_WAITING;
4239 			}
4240 			break;
4241 
4242 		case VDC_STATE_INIT_WAITING:
4243 
4244 			/* if channel is UP, start negotiation */
4245 			if (vdcp->curr_server->ldc_state == LDC_UP) {
4246 				vdcp->state = VDC_STATE_NEGOTIATE;
4247 				break;
4248 			}
4249 
4250 			/* check if only one server exists */
4251 			if (vdcp->num_servers == 1) {
4252 				cv_wait(&vdcp->initwait_cv, &vdcp->lock);
4253 			} else {
4254 				/*
4255 				 * wait for LDC_UP, if it times out, switch
4256 				 * to another server.
4257 				 */
4258 				ldcup_timeout = ddi_get_lbolt() +
4259 				    (vdc_ldcup_timeout *
4260 				    drv_usectohz(MICROSEC));
4261 				status = cv_timedwait(&vdcp->initwait_cv,
4262 				    &vdcp->lock, ldcup_timeout);
4263 				if (status == -1 &&
4264 				    vdcp->state == VDC_STATE_INIT_WAITING &&
4265 				    vdcp->curr_server->ldc_state != LDC_UP) {
4266 					/* timed out & still waiting */
4267 					vdcp->state = VDC_STATE_INIT;
4268 					break;
4269 				}
4270 			}
4271 
4272 			if (vdcp->state != VDC_STATE_INIT_WAITING) {
4273 				DMSG(vdcp, 0,
4274 				    "state moved to %d out from under us...\n",
4275 				    vdcp->state);
4276 			}
4277 			break;
4278 
4279 		case VDC_STATE_NEGOTIATE:
4280 			switch (status = vdc_ver_negotiation(vdcp)) {
4281 			case 0:
4282 				break;
4283 			default:
4284 				DMSG(vdcp, 0, "ver negotiate failed (%d)..\n",
4285 				    status);
4286 				goto reset;
4287 			}
4288 
4289 			switch (status = vdc_attr_negotiation(vdcp)) {
4290 			case 0:
4291 				break;
4292 			default:
4293 				DMSG(vdcp, 0, "attr negotiate failed (%d)..\n",
4294 				    status);
4295 				goto reset;
4296 			}
4297 
4298 			switch (status = vdc_dring_negotiation(vdcp)) {
4299 			case 0:
4300 				break;
4301 			default:
4302 				DMSG(vdcp, 0, "dring negotiate failed (%d)..\n",
4303 				    status);
4304 				goto reset;
4305 			}
4306 
4307 			switch (status = vdc_rdx_exchange(vdcp)) {
4308 			case 0:
4309 				vdcp->state = VDC_STATE_HANDLE_PENDING;
4310 				goto done;
4311 			default:
4312 				DMSG(vdcp, 0, "RDX xchg failed ..(%d)\n",
4313 				    status);
4314 				goto reset;
4315 			}
4316 reset:
4317 			DMSG(vdcp, 0, "negotiation failed: resetting (%d)\n",
4318 			    status);
4319 			vdcp->state = VDC_STATE_RESETTING;
4320 			vdcp->self_reset = B_TRUE;
4321 done:
4322 			DMSG(vdcp, 0, "negotiation complete (state=0x%x)...\n",
4323 			    vdcp->state);
4324 			break;
4325 
4326 		case VDC_STATE_HANDLE_PENDING:
4327 
4328 			if (vdcp->ctimeout_reached) {
4329 				/*
4330 				 * The connection timeout had been reached so
4331 				 * pending requests have been cancelled. Now
4332 				 * that the connection is back we can reset
4333 				 * the timeout.
4334 				 */
4335 				ASSERT(vdcp->local_dring_backup == NULL);
4336 				ASSERT(tmid != 0);
4337 				tmid = 0;
4338 				vdcp->ctimeout_reached = B_FALSE;
4339 				vdcp->state = VDC_STATE_RUNNING;
4340 				DMSG(vdcp, 0, "[%d] connection to service "
4341 				    "domain is up", vdcp->instance);
4342 				break;
4343 			}
4344 
4345 			mutex_exit(&vdcp->lock);
4346 			if (tmid != 0) {
4347 				(void) untimeout(tmid);
4348 				tmid = 0;
4349 			}
4350 			status = vdc_resubmit_backup_dring(vdcp);
4351 			mutex_enter(&vdcp->lock);
4352 
4353 			if (status)
4354 				vdcp->state = VDC_STATE_RESETTING;
4355 			else
4356 				vdcp->state = VDC_STATE_RUNNING;
4357 
4358 			break;
4359 
4360 		/* enter running state */
4361 		case VDC_STATE_RUNNING:
4362 			/*
4363 			 * Signal anyone waiting for the connection
4364 			 * to come on line.
4365 			 */
4366 			vdcp->hshake_cnt = 0;
4367 			cv_broadcast(&vdcp->running_cv);
4368 
4369 			/* failfast has to been checked after reset */
4370 			cv_signal(&vdcp->failfast_cv);
4371 
4372 			/* ownership is lost during reset */
4373 			if (vdcp->ownership & VDC_OWNERSHIP_WANTED)
4374 				vdcp->ownership |= VDC_OWNERSHIP_RESET;
4375 			cv_signal(&vdcp->ownership_cv);
4376 
4377 			cmn_err(CE_CONT, "?vdisk@%d is online using "
4378 			    "ldc@%ld,%ld\n", vdcp->instance,
4379 			    vdcp->curr_server->ldc_id, vdcp->curr_server->id);
4380 
4381 			mutex_exit(&vdcp->lock);
4382 
4383 			for (;;) {
4384 				vio_msg_t msg;
4385 				status = vdc_wait_for_response(vdcp, &msg);
4386 				if (status) break;
4387 
4388 				DMSG(vdcp, 1, "[%d] new pkt(s) available\n",
4389 				    vdcp->instance);
4390 				status = vdc_process_data_msg(vdcp, &msg);
4391 				if (status) {
4392 					DMSG(vdcp, 1, "[%d] process_data_msg "
4393 					    "returned err=%d\n", vdcp->instance,
4394 					    status);
4395 					break;
4396 				}
4397 
4398 			}
4399 
4400 			mutex_enter(&vdcp->lock);
4401 
4402 			cmn_err(CE_CONT, "?vdisk@%d is offline\n",
4403 			    vdcp->instance);
4404 
4405 			vdcp->state = VDC_STATE_RESETTING;
4406 			vdcp->self_reset = B_TRUE;
4407 			break;
4408 
4409 		case VDC_STATE_RESETTING:
4410 			/*
4411 			 * When we reach this state, we either come from the
4412 			 * VDC_STATE_RUNNING state and we can have pending
4413 			 * request but no timeout is armed; or we come from
4414 			 * the VDC_STATE_INIT_WAITING, VDC_NEGOTIATE or
4415 			 * VDC_HANDLE_PENDING state and there is no pending
4416 			 * request or pending requests have already been copied
4417 			 * into the backup dring. So we can safely keep the
4418 			 * connection timeout armed while we are in this state.
4419 			 */
4420 
4421 			DMSG(vdcp, 0, "Initiating channel reset "
4422 			    "(pending = %d)\n", (int)vdcp->threads_pending);
4423 
4424 			if (vdcp->self_reset) {
4425 				DMSG(vdcp, 0,
4426 				    "[%d] calling stop_ldc_connection.\n",
4427 				    vdcp->instance);
4428 				status = vdc_stop_ldc_connection(vdcp);
4429 				vdcp->self_reset = B_FALSE;
4430 			}
4431 
4432 			/*
4433 			 * Wait for all threads currently waiting
4434 			 * for a free dring entry to use.
4435 			 */
4436 			while (vdcp->threads_pending) {
4437 				cv_broadcast(&vdcp->membind_cv);
4438 				cv_broadcast(&vdcp->dring_free_cv);
4439 				mutex_exit(&vdcp->lock);
4440 				/* give the waiters enough time to wake up */
4441 				delay(vdc_hz_min_ldc_delay);
4442 				mutex_enter(&vdcp->lock);
4443 			}
4444 
4445 			ASSERT(vdcp->threads_pending == 0);
4446 
4447 			/* Sanity check that no thread is receiving */
4448 			ASSERT(vdcp->read_state != VDC_READ_WAITING);
4449 
4450 			vdcp->read_state = VDC_READ_IDLE;
4451 
4452 			vdc_backup_local_dring(vdcp);
4453 
4454 			/* cleanup the old d-ring */
4455 			vdc_destroy_descriptor_ring(vdcp);
4456 
4457 			/* go and start again */
4458 			vdcp->state = VDC_STATE_INIT;
4459 
4460 			break;
4461 
4462 		case VDC_STATE_DETACH:
4463 			DMSG(vdcp, 0, "[%d] Reset thread exit cleanup ..\n",
4464 			    vdcp->instance);
4465 
4466 			/* cancel any pending timeout */
4467 			mutex_exit(&vdcp->lock);
4468 			if (tmid != 0) {
4469 				(void) untimeout(tmid);
4470 				tmid = 0;
4471 			}
4472 			mutex_enter(&vdcp->lock);
4473 
4474 			/*
4475 			 * Signal anyone waiting for connection
4476 			 * to come online
4477 			 */
4478 			cv_broadcast(&vdcp->running_cv);
4479 
4480 			while (vdcp->sync_op_pending) {
4481 				cv_signal(&vdcp->sync_pending_cv);
4482 				cv_signal(&vdcp->sync_blocked_cv);
4483 				mutex_exit(&vdcp->lock);
4484 				/* give the waiters enough time to wake up */
4485 				delay(vdc_hz_min_ldc_delay);
4486 				mutex_enter(&vdcp->lock);
4487 			}
4488 
4489 			mutex_exit(&vdcp->lock);
4490 
4491 			DMSG(vdcp, 0, "[%d] Msg processing thread exiting ..\n",
4492 			    vdcp->instance);
4493 			thread_exit();
4494 			break;
4495 		}
4496 	}
4497 }
4498 
4499 
4500 /*
4501  * Function:
4502  *	vdc_process_data_msg()
4503  *
4504  * Description:
4505  *	This function is called by the message processing thread each time
4506  *	a message with a msgtype of VIO_TYPE_DATA is received. It will either
4507  *	be an ACK or NACK from vds[1] which vdc handles as follows.
4508  *		ACK	- wake up the waiting thread
4509  *		NACK	- resend any messages necessary
4510  *
4511  *	[1] Although the message format allows it, vds should not send a
4512  *	    VIO_SUBTYPE_INFO message to vdc asking it to read data; if for
4513  *	    some bizarre reason it does, vdc will reset the connection.
4514  *
4515  * Arguments:
4516  *	vdc	- soft state pointer for this instance of the device driver.
4517  *	msg	- the LDC message sent by vds
4518  *
4519  * Return Code:
4520  *	0	- Success.
4521  *	> 0	- error value returned by LDC
4522  */
4523 static int
4524 vdc_process_data_msg(vdc_t *vdcp, vio_msg_t *msg)
4525 {
4526 	int			status = 0;
4527 	vio_dring_msg_t		*dring_msg;
4528 	vdc_local_desc_t	*ldep = NULL;
4529 	int			start, end;
4530 	int			idx;
4531 	int			op;
4532 
4533 	dring_msg = (vio_dring_msg_t *)msg;
4534 
4535 	ASSERT(msg->tag.vio_msgtype == VIO_TYPE_DATA);
4536 	ASSERT(vdcp != NULL);
4537 
4538 	mutex_enter(&vdcp->lock);
4539 
4540 	/*
4541 	 * Check to see if the message has bogus data
4542 	 */
4543 	idx = start = dring_msg->start_idx;
4544 	end = dring_msg->end_idx;
4545 	if ((start >= vdcp->dring_len) ||
4546 	    (end >= vdcp->dring_len) || (end < -1)) {
4547 		/*
4548 		 * Update the I/O statistics to indicate that an error ocurred.
4549 		 * No need to update the wait/run queues as no specific read or
4550 		 * write request is being completed in response to this 'msg'.
4551 		 */
4552 		VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
4553 		DMSG(vdcp, 0, "[%d] Bogus ACK data : start %d, end %d\n",
4554 		    vdcp->instance, start, end);
4555 		mutex_exit(&vdcp->lock);
4556 		return (EINVAL);
4557 	}
4558 
4559 	/*
4560 	 * Verify that the sequence number is what vdc expects.
4561 	 */
4562 	switch (vdc_verify_seq_num(vdcp, dring_msg)) {
4563 	case VDC_SEQ_NUM_TODO:
4564 		break;	/* keep processing this message */
4565 	case VDC_SEQ_NUM_SKIP:
4566 		mutex_exit(&vdcp->lock);
4567 		return (0);
4568 	case VDC_SEQ_NUM_INVALID:
4569 		/*
4570 		 * Update the I/O statistics to indicate that an error ocurred.
4571 		 * No need to update the wait/run queues as no specific read or
4572 		 * write request is being completed in response to this 'msg'.
4573 		 */
4574 		VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
4575 		DMSG(vdcp, 0, "[%d] invalid seqno\n", vdcp->instance);
4576 		mutex_exit(&vdcp->lock);
4577 		return (ENXIO);
4578 	}
4579 
4580 	if (msg->tag.vio_subtype == VIO_SUBTYPE_NACK) {
4581 		/*
4582 		 * Update the I/O statistics to indicate that an error ocurred.
4583 		 *
4584 		 * We need to update the run queue if a read or write request
4585 		 * is being NACKed - otherwise there will appear to be an
4586 		 * indefinite outstanding request and statistics reported by
4587 		 * iostat(1M) will be incorrect. The transaction will be
4588 		 * resubmitted from the backup DRing following the reset
4589 		 * and the wait/run queues will be entered again.
4590 		 */
4591 		ldep = &vdcp->local_dring[idx];
4592 		op = ldep->operation;
4593 		if ((op == VD_OP_BREAD) || (op == VD_OP_BWRITE)) {
4594 			DTRACE_IO1(done, buf_t *, ldep->cb_arg);
4595 			VD_KSTAT_RUNQ_EXIT(vdcp);
4596 		}
4597 		VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
4598 		VDC_DUMP_DRING_MSG(dring_msg);
4599 		DMSG(vdcp, 0, "[%d] DATA NACK\n", vdcp->instance);
4600 		mutex_exit(&vdcp->lock);
4601 		return (EIO);
4602 
4603 	} else if (msg->tag.vio_subtype == VIO_SUBTYPE_INFO) {
4604 		/*
4605 		 * Update the I/O statistics to indicate that an error occurred.
4606 		 * No need to update the wait/run queues as no specific read or
4607 		 * write request is being completed in response to this 'msg'.
4608 		 */
4609 		VD_UPDATE_ERR_STATS(vdcp, vd_protoerrs);
4610 		mutex_exit(&vdcp->lock);
4611 		return (EPROTO);
4612 	}
4613 
4614 	DMSG(vdcp, 1, ": start %d end %d\n", start, end);
4615 	ASSERT(start == end);
4616 
4617 	ldep = &vdcp->local_dring[idx];
4618 
4619 	DMSG(vdcp, 1, ": state 0x%x - cb_type 0x%x\n",
4620 	    ldep->dep->hdr.dstate, ldep->cb_type);
4621 
4622 	if (ldep->dep->hdr.dstate == VIO_DESC_DONE) {
4623 		struct buf *bufp;
4624 
4625 		switch (ldep->cb_type) {
4626 		case CB_SYNC:
4627 			ASSERT(vdcp->sync_op_pending);
4628 
4629 			status = vdc_depopulate_descriptor(vdcp, idx);
4630 			vdcp->sync_op_status = status;
4631 			vdcp->sync_op_pending = B_FALSE;
4632 			cv_signal(&vdcp->sync_pending_cv);
4633 			break;
4634 
4635 		case CB_STRATEGY:
4636 			bufp = ldep->cb_arg;
4637 			ASSERT(bufp != NULL);
4638 			bufp->b_resid =
4639 			    bufp->b_bcount - ldep->dep->payload.nbytes;
4640 			status = ldep->dep->payload.status; /* Future:ntoh */
4641 			if (status != 0) {
4642 				DMSG(vdcp, 1, "strategy status=%d\n", status);
4643 				VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
4644 				bioerror(bufp, status);
4645 			}
4646 
4647 			(void) vdc_depopulate_descriptor(vdcp, idx);
4648 
4649 			DMSG(vdcp, 1,
4650 			    "strategy complete req=%ld bytes resp=%ld bytes\n",
4651 			    bufp->b_bcount, ldep->dep->payload.nbytes);
4652 
4653 			if (status != 0 && vdcp->failfast_interval != 0) {
4654 				/*
4655 				 * The I/O has failed and failfast is enabled.
4656 				 * We need the failfast thread to check if the
4657 				 * failure is due to a reservation conflict.
4658 				 */
4659 				(void) vdc_failfast_io_queue(vdcp, bufp);
4660 			} else {
4661 				if (status == 0) {
4662 					op = (bufp->b_flags & B_READ) ?
4663 					    VD_OP_BREAD : VD_OP_BWRITE;
4664 					VD_UPDATE_IO_STATS(vdcp, op,
4665 					    ldep->dep->payload.nbytes);
4666 				}
4667 				VD_KSTAT_RUNQ_EXIT(vdcp);
4668 				DTRACE_IO1(done, buf_t *, bufp);
4669 				biodone(bufp);
4670 			}
4671 			break;
4672 
4673 		default:
4674 			ASSERT(0);
4675 		}
4676 	}
4677 
4678 	/* let the arrival signal propogate */
4679 	mutex_exit(&vdcp->lock);
4680 
4681 	/* probe gives the count of how many entries were processed */
4682 	DTRACE_PROBE2(processed, int, 1, vdc_t *, vdcp);
4683 
4684 	return (0);
4685 }
4686 
4687 
4688 /*
4689  * Function:
4690  *	vdc_handle_ver_msg()
4691  *
4692  * Description:
4693  *
4694  * Arguments:
4695  *	vdc	- soft state pointer for this instance of the device driver.
4696  *	ver_msg	- LDC message sent by vDisk server
4697  *
4698  * Return Code:
4699  *	0	- Success
4700  */
4701 static int
4702 vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg)
4703 {
4704 	int status = 0;
4705 
4706 	ASSERT(vdc != NULL);
4707 	ASSERT(mutex_owned(&vdc->lock));
4708 
4709 	if (ver_msg->tag.vio_subtype_env != VIO_VER_INFO) {
4710 		return (EPROTO);
4711 	}
4712 
4713 	if (ver_msg->dev_class != VDEV_DISK_SERVER) {
4714 		return (EINVAL);
4715 	}
4716 
4717 	switch (ver_msg->tag.vio_subtype) {
4718 	case VIO_SUBTYPE_ACK:
4719 		/*
4720 		 * We check to see if the version returned is indeed supported
4721 		 * (The server may have also adjusted the minor number downwards
4722 		 * and if so 'ver_msg' will contain the actual version agreed)
4723 		 */
4724 		if (vdc_is_supported_version(ver_msg)) {
4725 			vdc->ver.major = ver_msg->ver_major;
4726 			vdc->ver.minor = ver_msg->ver_minor;
4727 			ASSERT(vdc->ver.major > 0);
4728 		} else {
4729 			status = EPROTO;
4730 		}
4731 		break;
4732 
4733 	case VIO_SUBTYPE_NACK:
4734 		/*
4735 		 * call vdc_is_supported_version() which will return the next
4736 		 * supported version (if any) in 'ver_msg'
4737 		 */
4738 		(void) vdc_is_supported_version(ver_msg);
4739 		if (ver_msg->ver_major > 0) {
4740 			size_t len = sizeof (*ver_msg);
4741 
4742 			ASSERT(vdc->ver.major > 0);
4743 
4744 			/* reset the necessary fields and resend */
4745 			ver_msg->tag.vio_subtype = VIO_SUBTYPE_INFO;
4746 			ver_msg->dev_class = VDEV_DISK;
4747 
4748 			status = vdc_send(vdc, (caddr_t)ver_msg, &len);
4749 			DMSG(vdc, 0, "[%d] Resend VER info (LDC status = %d)\n",
4750 			    vdc->instance, status);
4751 			if (len != sizeof (*ver_msg))
4752 				status = EBADMSG;
4753 		} else {
4754 			DMSG(vdc, 0, "[%d] No common version with vDisk server",
4755 			    vdc->instance);
4756 			status = ENOTSUP;
4757 		}
4758 
4759 		break;
4760 	case VIO_SUBTYPE_INFO:
4761 		/*
4762 		 * Handle the case where vds starts handshake
4763 		 * (for now only vdc is the instigator)
4764 		 */
4765 		status = ENOTSUP;
4766 		break;
4767 
4768 	default:
4769 		status = EINVAL;
4770 		break;
4771 	}
4772 
4773 	return (status);
4774 }
4775 
4776 /*
4777  * Function:
4778  *	vdc_handle_attr_msg()
4779  *
4780  * Description:
4781  *
4782  * Arguments:
4783  *	vdc	- soft state pointer for this instance of the device driver.
4784  *	attr_msg	- LDC message sent by vDisk server
4785  *
4786  * Return Code:
4787  *	0	- Success
4788  */
4789 static int
4790 vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg)
4791 {
4792 	int status = 0;
4793 
4794 	ASSERT(vdc != NULL);
4795 	ASSERT(mutex_owned(&vdc->lock));
4796 
4797 	if (attr_msg->tag.vio_subtype_env != VIO_ATTR_INFO) {
4798 		return (EPROTO);
4799 	}
4800 
4801 	switch (attr_msg->tag.vio_subtype) {
4802 	case VIO_SUBTYPE_ACK:
4803 		/*
4804 		 * We now verify the attributes sent by vds.
4805 		 */
4806 		if (attr_msg->vdisk_size == 0) {
4807 			DMSG(vdc, 0, "[%d] Invalid disk size from vds",
4808 			    vdc->instance);
4809 			status = EINVAL;
4810 			break;
4811 		}
4812 
4813 		if (attr_msg->max_xfer_sz == 0) {
4814 			DMSG(vdc, 0, "[%d] Invalid transfer size from vds",
4815 			    vdc->instance);
4816 			status = EINVAL;
4817 			break;
4818 		}
4819 
4820 		if (attr_msg->vdisk_size == VD_SIZE_UNKNOWN) {
4821 			DMSG(vdc, 0, "[%d] Unknown disk size from vds",
4822 			    vdc->instance);
4823 			attr_msg->vdisk_size = 0;
4824 		}
4825 		/* update disk, block and transfer sizes */
4826 		vdc_update_size(vdc, attr_msg->vdisk_size,
4827 		    attr_msg->vdisk_block_size, attr_msg->max_xfer_sz);
4828 		vdc->vdisk_type = attr_msg->vdisk_type;
4829 		vdc->operations = attr_msg->operations;
4830 		if (vio_ver_is_supported(vdc->ver, 1, 1))
4831 			vdc->vdisk_media = attr_msg->vdisk_media;
4832 		else
4833 			vdc->vdisk_media = 0;
4834 
4835 		DMSG(vdc, 0, "[%d] max_xfer_sz: sent %lx acked %lx\n",
4836 		    vdc->instance, vdc->max_xfer_sz, attr_msg->max_xfer_sz);
4837 		DMSG(vdc, 0, "[%d] vdisk_block_size: sent %lx acked %x\n",
4838 		    vdc->instance, vdc->block_size,
4839 		    attr_msg->vdisk_block_size);
4840 
4841 		if ((attr_msg->xfer_mode != VIO_DRING_MODE_V1_0) ||
4842 		    (attr_msg->vdisk_size > INT64_MAX) ||
4843 		    (attr_msg->operations == 0) ||
4844 		    (attr_msg->vdisk_type > VD_DISK_TYPE_DISK)) {
4845 			DMSG(vdc, 0, "[%d] Invalid attributes from vds",
4846 			    vdc->instance);
4847 			status = EINVAL;
4848 			break;
4849 		}
4850 
4851 		/*
4852 		 * Now that we have received all attributes we can create a
4853 		 * fake geometry for the disk.
4854 		 */
4855 		vdc_create_fake_geometry(vdc);
4856 		break;
4857 
4858 	case VIO_SUBTYPE_NACK:
4859 		/*
4860 		 * vds could not handle the attributes we sent so we
4861 		 * stop negotiating.
4862 		 */
4863 		status = EPROTO;
4864 		break;
4865 
4866 	case VIO_SUBTYPE_INFO:
4867 		/*
4868 		 * Handle the case where vds starts the handshake
4869 		 * (for now; vdc is the only supported instigatior)
4870 		 */
4871 		status = ENOTSUP;
4872 		break;
4873 
4874 	default:
4875 		status = ENOTSUP;
4876 		break;
4877 	}
4878 
4879 	return (status);
4880 }
4881 
4882 /*
4883  * Function:
4884  *	vdc_handle_dring_reg_msg()
4885  *
4886  * Description:
4887  *
4888  * Arguments:
4889  *	vdc		- soft state pointer for this instance of the driver.
4890  *	dring_msg	- LDC message sent by vDisk server
4891  *
4892  * Return Code:
4893  *	0	- Success
4894  */
4895 static int
4896 vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *dring_msg)
4897 {
4898 	int		status = 0;
4899 
4900 	ASSERT(vdc != NULL);
4901 	ASSERT(mutex_owned(&vdc->lock));
4902 
4903 	if (dring_msg->tag.vio_subtype_env != VIO_DRING_REG) {
4904 		return (EPROTO);
4905 	}
4906 
4907 	switch (dring_msg->tag.vio_subtype) {
4908 	case VIO_SUBTYPE_ACK:
4909 		/* save the received dring_ident */
4910 		vdc->dring_ident = dring_msg->dring_ident;
4911 		DMSG(vdc, 0, "[%d] Received dring ident=0x%lx\n",
4912 		    vdc->instance, vdc->dring_ident);
4913 		break;
4914 
4915 	case VIO_SUBTYPE_NACK:
4916 		/*
4917 		 * vds could not handle the DRing info we sent so we
4918 		 * stop negotiating.
4919 		 */
4920 		DMSG(vdc, 0, "[%d] server could not register DRing\n",
4921 		    vdc->instance);
4922 		status = EPROTO;
4923 		break;
4924 
4925 	case VIO_SUBTYPE_INFO:
4926 		/*
4927 		 * Handle the case where vds starts handshake
4928 		 * (for now only vdc is the instigatior)
4929 		 */
4930 		status = ENOTSUP;
4931 		break;
4932 	default:
4933 		status = ENOTSUP;
4934 	}
4935 
4936 	return (status);
4937 }
4938 
4939 /*
4940  * Function:
4941  *	vdc_verify_seq_num()
4942  *
4943  * Description:
4944  *	This functions verifies that the sequence number sent back by the vDisk
4945  *	server with the latest message is what is expected (i.e. it is greater
4946  *	than the last seq num sent by the vDisk server and less than or equal
4947  *	to the last seq num generated by vdc).
4948  *
4949  *	It then checks the request ID to see if any requests need processing
4950  *	in the DRing.
4951  *
4952  * Arguments:
4953  *	vdc		- soft state pointer for this instance of the driver.
4954  *	dring_msg	- pointer to the LDC message sent by vds
4955  *
4956  * Return Code:
4957  *	VDC_SEQ_NUM_TODO	- Message needs to be processed
4958  *	VDC_SEQ_NUM_SKIP	- Message has already been processed
4959  *	VDC_SEQ_NUM_INVALID	- The seq numbers are so out of sync,
4960  *				  vdc cannot deal with them
4961  */
4962 static int
4963 vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg)
4964 {
4965 	ASSERT(vdc != NULL);
4966 	ASSERT(dring_msg != NULL);
4967 	ASSERT(mutex_owned(&vdc->lock));
4968 
4969 	/*
4970 	 * Check to see if the messages were responded to in the correct
4971 	 * order by vds.
4972 	 */
4973 	if ((dring_msg->seq_num <= vdc->seq_num_reply) ||
4974 	    (dring_msg->seq_num > vdc->seq_num)) {
4975 		DMSG(vdc, 0, "?[%d] Bogus sequence_number %lu: "
4976 		    "%lu > expected <= %lu (last proc req %lu sent %lu)\n",
4977 		    vdc->instance, dring_msg->seq_num,
4978 		    vdc->seq_num_reply, vdc->seq_num,
4979 		    vdc->req_id_proc, vdc->req_id);
4980 		return (VDC_SEQ_NUM_INVALID);
4981 	}
4982 	vdc->seq_num_reply = dring_msg->seq_num;
4983 
4984 	if (vdc->req_id_proc < vdc->req_id)
4985 		return (VDC_SEQ_NUM_TODO);
4986 	else
4987 		return (VDC_SEQ_NUM_SKIP);
4988 }
4989 
4990 
4991 /*
4992  * Function:
4993  *	vdc_is_supported_version()
4994  *
4995  * Description:
4996  *	This routine checks if the major/minor version numbers specified in
4997  *	'ver_msg' are supported. If not it finds the next version that is
4998  *	in the supported version list 'vdc_version[]' and sets the fields in
4999  *	'ver_msg' to those values
5000  *
5001  * Arguments:
5002  *	ver_msg	- LDC message sent by vDisk server
5003  *
5004  * Return Code:
5005  *	B_TRUE	- Success
5006  *	B_FALSE	- Version not supported
5007  */
5008 static boolean_t
5009 vdc_is_supported_version(vio_ver_msg_t *ver_msg)
5010 {
5011 	int vdc_num_versions = sizeof (vdc_version) / sizeof (vdc_version[0]);
5012 
5013 	for (int i = 0; i < vdc_num_versions; i++) {
5014 		ASSERT(vdc_version[i].major > 0);
5015 		ASSERT((i == 0) ||
5016 		    (vdc_version[i].major < vdc_version[i-1].major));
5017 
5018 		/*
5019 		 * If the major versions match, adjust the minor version, if
5020 		 * necessary, down to the highest value supported by this
5021 		 * client. The server should support all minor versions lower
5022 		 * than the value it sent
5023 		 */
5024 		if (ver_msg->ver_major == vdc_version[i].major) {
5025 			if (ver_msg->ver_minor > vdc_version[i].minor) {
5026 				DMSGX(0,
5027 				    "Adjusting minor version from %u to %u",
5028 				    ver_msg->ver_minor, vdc_version[i].minor);
5029 				ver_msg->ver_minor = vdc_version[i].minor;
5030 			}
5031 			return (B_TRUE);
5032 		}
5033 
5034 		/*
5035 		 * If the message contains a higher major version number, set
5036 		 * the message's major/minor versions to the current values
5037 		 * and return false, so this message will get resent with
5038 		 * these values, and the server will potentially try again
5039 		 * with the same or a lower version
5040 		 */
5041 		if (ver_msg->ver_major > vdc_version[i].major) {
5042 			ver_msg->ver_major = vdc_version[i].major;
5043 			ver_msg->ver_minor = vdc_version[i].minor;
5044 			DMSGX(0, "Suggesting major/minor (0x%x/0x%x)\n",
5045 			    ver_msg->ver_major, ver_msg->ver_minor);
5046 
5047 			return (B_FALSE);
5048 		}
5049 
5050 		/*
5051 		 * Otherwise, the message's major version is less than the
5052 		 * current major version, so continue the loop to the next
5053 		 * (lower) supported version
5054 		 */
5055 	}
5056 
5057 	/*
5058 	 * No common version was found; "ground" the version pair in the
5059 	 * message to terminate negotiation
5060 	 */
5061 	ver_msg->ver_major = 0;
5062 	ver_msg->ver_minor = 0;
5063 
5064 	return (B_FALSE);
5065 }
5066 /* -------------------------------------------------------------------------- */
5067 
5068 /*
5069  * DKIO(7) support
5070  */
5071 
5072 typedef struct vdc_dk_arg {
5073 	struct dk_callback	dkc;
5074 	int			mode;
5075 	dev_t			dev;
5076 	vdc_t			*vdc;
5077 } vdc_dk_arg_t;
5078 
5079 /*
5080  * Function:
5081  * 	vdc_dkio_flush_cb()
5082  *
5083  * Description:
5084  *	This routine is a callback for DKIOCFLUSHWRITECACHE which can be called
5085  *	by kernel code.
5086  *
5087  * Arguments:
5088  *	arg	- a pointer to a vdc_dk_arg_t structure.
5089  */
5090 void
5091 vdc_dkio_flush_cb(void *arg)
5092 {
5093 	struct vdc_dk_arg	*dk_arg = (struct vdc_dk_arg *)arg;
5094 	struct dk_callback	*dkc = NULL;
5095 	vdc_t			*vdc = NULL;
5096 	int			rv;
5097 
5098 	if (dk_arg == NULL) {
5099 		cmn_err(CE_NOTE, "?[Unk] DKIOCFLUSHWRITECACHE arg is NULL\n");
5100 		return;
5101 	}
5102 	dkc = &dk_arg->dkc;
5103 	vdc = dk_arg->vdc;
5104 	ASSERT(vdc != NULL);
5105 
5106 	rv = vdc_do_sync_op(vdc, VD_OP_FLUSH, NULL, 0,
5107 	    VDCPART(dk_arg->dev), 0, CB_SYNC, 0, VIO_both_dir, B_TRUE);
5108 	if (rv != 0) {
5109 		DMSG(vdc, 0, "[%d] DKIOCFLUSHWRITECACHE failed %d : model %x\n",
5110 		    vdc->instance, rv,
5111 		    ddi_model_convert_from(dk_arg->mode & FMODELS));
5112 	}
5113 
5114 	/*
5115 	 * Trigger the call back to notify the caller the the ioctl call has
5116 	 * been completed.
5117 	 */
5118 	if ((dk_arg->mode & FKIOCTL) &&
5119 	    (dkc != NULL) &&
5120 	    (dkc->dkc_callback != NULL)) {
5121 		ASSERT(dkc->dkc_cookie != NULL);
5122 		(*dkc->dkc_callback)(dkc->dkc_cookie, rv);
5123 	}
5124 
5125 	/* Indicate that one less DKIO write flush is outstanding */
5126 	mutex_enter(&vdc->lock);
5127 	vdc->dkio_flush_pending--;
5128 	ASSERT(vdc->dkio_flush_pending >= 0);
5129 	mutex_exit(&vdc->lock);
5130 
5131 	/* free the mem that was allocated when the callback was dispatched */
5132 	kmem_free(arg, sizeof (vdc_dk_arg_t));
5133 }
5134 
5135 /*
5136  * Function:
5137  * 	vdc_dkio_gapart()
5138  *
5139  * Description:
5140  *	This function implements the DKIOCGAPART ioctl.
5141  *
5142  * Arguments:
5143  *	vdc	- soft state pointer
5144  *	arg	- a pointer to a dk_map[NDKMAP] or dk_map32[NDKMAP] structure
5145  *	flag	- ioctl flags
5146  */
5147 static int
5148 vdc_dkio_gapart(vdc_t *vdc, caddr_t arg, int flag)
5149 {
5150 	struct dk_geom *geom;
5151 	struct vtoc *vtoc;
5152 	union {
5153 		struct dk_map map[NDKMAP];
5154 		struct dk_map32 map32[NDKMAP];
5155 	} data;
5156 	int i, rv, size;
5157 
5158 	mutex_enter(&vdc->lock);
5159 
5160 	if ((rv = vdc_validate_geometry(vdc)) != 0) {
5161 		mutex_exit(&vdc->lock);
5162 		return (rv);
5163 	}
5164 
5165 	vtoc = vdc->vtoc;
5166 	geom = vdc->geom;
5167 
5168 	if (ddi_model_convert_from(flag & FMODELS) == DDI_MODEL_ILP32) {
5169 
5170 		for (i = 0; i < vtoc->v_nparts; i++) {
5171 			data.map32[i].dkl_cylno = vtoc->v_part[i].p_start /
5172 			    (geom->dkg_nhead * geom->dkg_nsect);
5173 			data.map32[i].dkl_nblk = vtoc->v_part[i].p_size;
5174 		}
5175 		size = NDKMAP * sizeof (struct dk_map32);
5176 
5177 	} else {
5178 
5179 		for (i = 0; i < vtoc->v_nparts; i++) {
5180 			data.map[i].dkl_cylno = vtoc->v_part[i].p_start /
5181 			    (geom->dkg_nhead * geom->dkg_nsect);
5182 			data.map[i].dkl_nblk = vtoc->v_part[i].p_size;
5183 		}
5184 		size = NDKMAP * sizeof (struct dk_map);
5185 
5186 	}
5187 
5188 	mutex_exit(&vdc->lock);
5189 
5190 	if (ddi_copyout(&data, arg, size, flag) != 0)
5191 		return (EFAULT);
5192 
5193 	return (0);
5194 }
5195 
5196 /*
5197  * Function:
5198  * 	vdc_dkio_partition()
5199  *
5200  * Description:
5201  *	This function implements the DKIOCPARTITION ioctl.
5202  *
5203  * Arguments:
5204  *	vdc	- soft state pointer
5205  *	arg	- a pointer to a struct partition64 structure
5206  *	flag	- ioctl flags
5207  */
5208 static int
5209 vdc_dkio_partition(vdc_t *vdc, caddr_t arg, int flag)
5210 {
5211 	struct partition64 p64;
5212 	efi_gpt_t *gpt;
5213 	efi_gpe_t *gpe;
5214 	vd_efi_dev_t edev;
5215 	uint_t partno;
5216 	int rv;
5217 
5218 	if (ddi_copyin(arg, &p64, sizeof (struct partition64), flag)) {
5219 		return (EFAULT);
5220 	}
5221 
5222 	VD_EFI_DEV_SET(edev, vdc, vd_process_efi_ioctl);
5223 
5224 	if ((rv = vd_efi_alloc_and_read(&edev, &gpt, &gpe)) != 0) {
5225 		return (rv);
5226 	}
5227 
5228 	partno = p64.p_partno;
5229 
5230 	if (partno >= gpt->efi_gpt_NumberOfPartitionEntries) {
5231 		vd_efi_free(&edev, gpt, gpe);
5232 		return (ESRCH);
5233 	}
5234 
5235 	bcopy(&gpe[partno].efi_gpe_PartitionTypeGUID, &p64.p_type,
5236 	    sizeof (struct uuid));
5237 	p64.p_start = gpe[partno].efi_gpe_StartingLBA;
5238 	p64.p_size = gpe[partno].efi_gpe_EndingLBA - p64.p_start + 1;
5239 
5240 	if (ddi_copyout(&p64, arg, sizeof (struct partition64), flag)) {
5241 		vd_efi_free(&edev, gpt, gpe);
5242 		return (EFAULT);
5243 	}
5244 
5245 	vd_efi_free(&edev, gpt, gpe);
5246 	return (0);
5247 }
5248 
5249 /*
5250  * Function:
5251  * 	vdc_dioctl_rwcmd()
5252  *
5253  * Description:
5254  *	This function implements the DIOCTL_RWCMD ioctl. This ioctl is used
5255  *	for DKC_DIRECT disks to read or write at an absolute disk offset.
5256  *
5257  * Arguments:
5258  *	dev	- device
5259  *	arg	- a pointer to a dadkio_rwcmd or dadkio_rwcmd32 structure
5260  *	flag	- ioctl flags
5261  */
5262 static int
5263 vdc_dioctl_rwcmd(dev_t dev, caddr_t arg, int flag)
5264 {
5265 	struct dadkio_rwcmd32 rwcmd32;
5266 	struct dadkio_rwcmd rwcmd;
5267 	struct iovec aiov;
5268 	struct uio auio;
5269 	int rw, status;
5270 	struct buf *buf;
5271 
5272 	if (ddi_model_convert_from(flag & FMODELS) == DDI_MODEL_ILP32) {
5273 		if (ddi_copyin((caddr_t)arg, (caddr_t)&rwcmd32,
5274 		    sizeof (struct dadkio_rwcmd32), flag)) {
5275 			return (EFAULT);
5276 		}
5277 		rwcmd.cmd = rwcmd32.cmd;
5278 		rwcmd.flags = rwcmd32.flags;
5279 		rwcmd.blkaddr = (daddr_t)rwcmd32.blkaddr;
5280 		rwcmd.buflen = rwcmd32.buflen;
5281 		rwcmd.bufaddr = (caddr_t)(uintptr_t)rwcmd32.bufaddr;
5282 	} else {
5283 		if (ddi_copyin((caddr_t)arg, (caddr_t)&rwcmd,
5284 		    sizeof (struct dadkio_rwcmd), flag)) {
5285 			return (EFAULT);
5286 		}
5287 	}
5288 
5289 	switch (rwcmd.cmd) {
5290 	case DADKIO_RWCMD_READ:
5291 		rw = B_READ;
5292 		break;
5293 	case DADKIO_RWCMD_WRITE:
5294 		rw = B_WRITE;
5295 		break;
5296 	default:
5297 		return (EINVAL);
5298 	}
5299 
5300 	bzero((caddr_t)&aiov, sizeof (struct iovec));
5301 	aiov.iov_base   = rwcmd.bufaddr;
5302 	aiov.iov_len    = rwcmd.buflen;
5303 
5304 	bzero((caddr_t)&auio, sizeof (struct uio));
5305 	auio.uio_iov    = &aiov;
5306 	auio.uio_iovcnt = 1;
5307 	auio.uio_loffset = rwcmd.blkaddr * DEV_BSIZE;
5308 	auio.uio_resid  = rwcmd.buflen;
5309 	auio.uio_segflg = flag & FKIOCTL ? UIO_SYSSPACE : UIO_USERSPACE;
5310 
5311 	buf = kmem_alloc(sizeof (buf_t), KM_SLEEP);
5312 	bioinit(buf);
5313 	/*
5314 	 * We use the private field of buf to specify that this is an
5315 	 * I/O using an absolute offset.
5316 	 */
5317 	buf->b_private = (void *)VD_SLICE_NONE;
5318 
5319 	status = physio(vdc_strategy, buf, dev, rw, vdc_min, &auio);
5320 
5321 	biofini(buf);
5322 	kmem_free(buf, sizeof (buf_t));
5323 
5324 	return (status);
5325 }
5326 
5327 /*
5328  * Allocate a buffer for a VD_OP_SCSICMD operation. The size of the allocated
5329  * buffer is returned in alloc_len.
5330  */
5331 static vd_scsi_t *
5332 vdc_scsi_alloc(int cdb_len, int sense_len, int datain_len, int dataout_len,
5333     int *alloc_len)
5334 {
5335 	vd_scsi_t *vd_scsi;
5336 	int vd_scsi_len = VD_SCSI_SIZE;
5337 
5338 	vd_scsi_len += P2ROUNDUP(cdb_len, sizeof (uint64_t));
5339 	vd_scsi_len += P2ROUNDUP(sense_len, sizeof (uint64_t));
5340 	vd_scsi_len += P2ROUNDUP(datain_len, sizeof (uint64_t));
5341 	vd_scsi_len += P2ROUNDUP(dataout_len, sizeof (uint64_t));
5342 
5343 	ASSERT(vd_scsi_len % sizeof (uint64_t) == 0);
5344 
5345 	vd_scsi = kmem_zalloc(vd_scsi_len, KM_SLEEP);
5346 
5347 	vd_scsi->cdb_len = cdb_len;
5348 	vd_scsi->sense_len = sense_len;
5349 	vd_scsi->datain_len = datain_len;
5350 	vd_scsi->dataout_len = dataout_len;
5351 
5352 	*alloc_len = vd_scsi_len;
5353 
5354 	return (vd_scsi);
5355 }
5356 
5357 /*
5358  * Convert the status of a SCSI command to a Solaris return code.
5359  *
5360  * Arguments:
5361  *	vd_scsi		- The SCSI operation buffer.
5362  *	log_error	- indicate if an error message should be logged.
5363  *
5364  * Note that our SCSI error messages are rather primitive for the moment
5365  * and could be improved by decoding some data like the SCSI command and
5366  * the sense key.
5367  *
5368  * Return value:
5369  *	0		- Status is good.
5370  *	EACCES		- Status reports a reservation conflict.
5371  *	ENOTSUP		- Status reports a check condition and sense key
5372  *			  reports an illegal request.
5373  *	EIO		- Any other status.
5374  */
5375 static int
5376 vdc_scsi_status(vdc_t *vdc, vd_scsi_t *vd_scsi, boolean_t log_error)
5377 {
5378 	int rv;
5379 	char path_str[MAXPATHLEN];
5380 	char panic_str[VDC_RESV_CONFLICT_FMT_LEN + MAXPATHLEN];
5381 	union scsi_cdb *cdb;
5382 	struct scsi_extended_sense *sense;
5383 
5384 	if (vd_scsi->cmd_status == STATUS_GOOD)
5385 		/* no error */
5386 		return (0);
5387 
5388 	/* when the tunable vdc_scsi_log_error is true we log all errors */
5389 	if (vdc_scsi_log_error)
5390 		log_error = B_TRUE;
5391 
5392 	if (log_error) {
5393 		cmn_err(CE_WARN, "%s (vdc%d):\tError for Command: 0x%x)\n",
5394 		    ddi_pathname(vdc->dip, path_str), vdc->instance,
5395 		    GETCMD(VD_SCSI_DATA_CDB(vd_scsi)));
5396 	}
5397 
5398 	/* default returned value */
5399 	rv = EIO;
5400 
5401 	switch (vd_scsi->cmd_status) {
5402 
5403 	case STATUS_CHECK:
5404 	case STATUS_TERMINATED:
5405 		if (log_error)
5406 			cmn_err(CE_CONT, "\tCheck Condition Error\n");
5407 
5408 		/* check sense buffer */
5409 		if (vd_scsi->sense_len == 0 ||
5410 		    vd_scsi->sense_status != STATUS_GOOD) {
5411 			if (log_error)
5412 				cmn_err(CE_CONT, "\tNo Sense Data Available\n");
5413 			break;
5414 		}
5415 
5416 		sense = VD_SCSI_DATA_SENSE(vd_scsi);
5417 
5418 		if (log_error) {
5419 			cmn_err(CE_CONT, "\tSense Key:  0x%x\n"
5420 			    "\tASC: 0x%x, ASCQ: 0x%x\n",
5421 			    scsi_sense_key((uint8_t *)sense),
5422 			    scsi_sense_asc((uint8_t *)sense),
5423 			    scsi_sense_ascq((uint8_t *)sense));
5424 		}
5425 
5426 		if (scsi_sense_key((uint8_t *)sense) == KEY_ILLEGAL_REQUEST)
5427 			rv = ENOTSUP;
5428 		break;
5429 
5430 	case STATUS_BUSY:
5431 		if (log_error)
5432 			cmn_err(CE_NOTE, "\tDevice Busy\n");
5433 		break;
5434 
5435 	case STATUS_RESERVATION_CONFLICT:
5436 		/*
5437 		 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then
5438 		 * reservation conflict could be due to various reasons like
5439 		 * incorrect keys, not registered or not reserved etc. So,
5440 		 * we should not panic in that case.
5441 		 */
5442 		cdb = VD_SCSI_DATA_CDB(vd_scsi);
5443 		if (vdc->failfast_interval != 0 &&
5444 		    cdb->scc_cmd != SCMD_PERSISTENT_RESERVE_IN &&
5445 		    cdb->scc_cmd != SCMD_PERSISTENT_RESERVE_OUT) {
5446 			/* failfast is enabled so we have to panic */
5447 			(void) snprintf(panic_str, sizeof (panic_str),
5448 			    VDC_RESV_CONFLICT_FMT_STR "%s",
5449 			    ddi_pathname(vdc->dip, path_str));
5450 			panic(panic_str);
5451 		}
5452 		if (log_error)
5453 			cmn_err(CE_NOTE, "\tReservation Conflict\n");
5454 		rv = EACCES;
5455 		break;
5456 
5457 	case STATUS_QFULL:
5458 		if (log_error)
5459 			cmn_err(CE_NOTE, "\tQueue Full\n");
5460 		break;
5461 
5462 	case STATUS_MET:
5463 	case STATUS_INTERMEDIATE:
5464 	case STATUS_SCSI2:
5465 	case STATUS_INTERMEDIATE_MET:
5466 	case STATUS_ACA_ACTIVE:
5467 		if (log_error)
5468 			cmn_err(CE_CONT,
5469 			    "\tUnexpected SCSI status received: 0x%x\n",
5470 			    vd_scsi->cmd_status);
5471 		break;
5472 
5473 	default:
5474 		if (log_error)
5475 			cmn_err(CE_CONT,
5476 			    "\tInvalid SCSI status received: 0x%x\n",
5477 			    vd_scsi->cmd_status);
5478 		break;
5479 	}
5480 
5481 	return (rv);
5482 }
5483 
5484 /*
5485  * Implemented the USCSICMD uscsi(7I) ioctl. This ioctl is converted to
5486  * a VD_OP_SCSICMD operation which is sent to the vdisk server. If a SCSI
5487  * reset is requested (i.e. a flag USCSI_RESET* is set) then the ioctl is
5488  * converted to a VD_OP_RESET operation.
5489  */
5490 static int
5491 vdc_uscsi_cmd(vdc_t *vdc, caddr_t arg, int mode)
5492 {
5493 	struct uscsi_cmd 	uscsi;
5494 	struct uscsi_cmd32	uscsi32;
5495 	vd_scsi_t 		*vd_scsi;
5496 	int 			vd_scsi_len;
5497 	union scsi_cdb		*cdb;
5498 	struct scsi_extended_sense *sense;
5499 	char 			*datain, *dataout;
5500 	size_t			cdb_len, datain_len, dataout_len, sense_len;
5501 	int 			rv;
5502 
5503 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5504 		if (ddi_copyin(arg, &uscsi32, sizeof (struct uscsi_cmd32),
5505 		    mode) != 0)
5506 			return (EFAULT);
5507 		uscsi_cmd32touscsi_cmd((&uscsi32), (&uscsi));
5508 	} else {
5509 		if (ddi_copyin(arg, &uscsi, sizeof (struct uscsi_cmd),
5510 		    mode) != 0)
5511 			return (EFAULT);
5512 	}
5513 
5514 	/* a uscsi reset is converted to a VD_OP_RESET operation */
5515 	if (uscsi.uscsi_flags & (USCSI_RESET | USCSI_RESET_LUN |
5516 	    USCSI_RESET_ALL)) {
5517 		rv = vdc_do_sync_op(vdc, VD_OP_RESET, NULL, 0, 0, 0, CB_SYNC,
5518 		    (void *)(uint64_t)mode, VIO_both_dir, B_TRUE);
5519 		return (rv);
5520 	}
5521 
5522 	/* cdb buffer length */
5523 	cdb_len = uscsi.uscsi_cdblen;
5524 
5525 	/* data in and out buffers length */
5526 	if (uscsi.uscsi_flags & USCSI_READ) {
5527 		datain_len = uscsi.uscsi_buflen;
5528 		dataout_len = 0;
5529 	} else {
5530 		datain_len = 0;
5531 		dataout_len = uscsi.uscsi_buflen;
5532 	}
5533 
5534 	/* sense buffer length */
5535 	if (uscsi.uscsi_flags & USCSI_RQENABLE)
5536 		sense_len = uscsi.uscsi_rqlen;
5537 	else
5538 		sense_len = 0;
5539 
5540 	/* allocate buffer for the VD_SCSICMD_OP operation */
5541 	vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, datain_len, dataout_len,
5542 	    &vd_scsi_len);
5543 
5544 	/*
5545 	 * The documentation of USCSI_ISOLATE and USCSI_DIAGNOSE is very vague,
5546 	 * but basically they prevent a SCSI command from being retried in case
5547 	 * of an error.
5548 	 */
5549 	if ((uscsi.uscsi_flags & USCSI_ISOLATE) ||
5550 	    (uscsi.uscsi_flags & USCSI_DIAGNOSE))
5551 		vd_scsi->options |= VD_SCSI_OPT_NORETRY;
5552 
5553 	/* set task attribute */
5554 	if (uscsi.uscsi_flags & USCSI_NOTAG) {
5555 		vd_scsi->task_attribute = 0;
5556 	} else {
5557 		if (uscsi.uscsi_flags & USCSI_HEAD)
5558 			vd_scsi->task_attribute = VD_SCSI_TASK_ACA;
5559 		else if (uscsi.uscsi_flags & USCSI_HTAG)
5560 			vd_scsi->task_attribute = VD_SCSI_TASK_HQUEUE;
5561 		else if (uscsi.uscsi_flags & USCSI_OTAG)
5562 			vd_scsi->task_attribute = VD_SCSI_TASK_ORDERED;
5563 		else
5564 			vd_scsi->task_attribute = 0;
5565 	}
5566 
5567 	/* set timeout */
5568 	vd_scsi->timeout = uscsi.uscsi_timeout;
5569 
5570 	/* copy-in cdb data */
5571 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
5572 	if (ddi_copyin(uscsi.uscsi_cdb, cdb, cdb_len, mode) != 0) {
5573 		rv = EFAULT;
5574 		goto done;
5575 	}
5576 
5577 	/* keep a pointer to the sense buffer */
5578 	sense = VD_SCSI_DATA_SENSE(vd_scsi);
5579 
5580 	/* keep a pointer to the data-in buffer */
5581 	datain = (char *)VD_SCSI_DATA_IN(vd_scsi);
5582 
5583 	/* copy-in request data to the data-out buffer */
5584 	dataout = (char *)VD_SCSI_DATA_OUT(vd_scsi);
5585 	if (!(uscsi.uscsi_flags & USCSI_READ)) {
5586 		if (ddi_copyin(uscsi.uscsi_bufaddr, dataout, dataout_len,
5587 		    mode)) {
5588 			rv = EFAULT;
5589 			goto done;
5590 		}
5591 	}
5592 
5593 	/* submit the request */
5594 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
5595 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
5596 
5597 	if (rv != 0)
5598 		goto done;
5599 
5600 	/* update scsi status */
5601 	uscsi.uscsi_status = vd_scsi->cmd_status;
5602 
5603 	/* update sense data */
5604 	if ((uscsi.uscsi_flags & USCSI_RQENABLE) &&
5605 	    (uscsi.uscsi_status == STATUS_CHECK ||
5606 	    uscsi.uscsi_status == STATUS_TERMINATED)) {
5607 
5608 		uscsi.uscsi_rqstatus = vd_scsi->sense_status;
5609 
5610 		if (uscsi.uscsi_rqstatus == STATUS_GOOD) {
5611 			uscsi.uscsi_rqresid = uscsi.uscsi_rqlen -
5612 			    vd_scsi->sense_len;
5613 			if (ddi_copyout(sense, uscsi.uscsi_rqbuf,
5614 			    vd_scsi->sense_len, mode) != 0) {
5615 				rv = EFAULT;
5616 				goto done;
5617 			}
5618 		}
5619 	}
5620 
5621 	/* update request data */
5622 	if (uscsi.uscsi_status == STATUS_GOOD) {
5623 		if (uscsi.uscsi_flags & USCSI_READ) {
5624 			uscsi.uscsi_resid = uscsi.uscsi_buflen -
5625 			    vd_scsi->datain_len;
5626 			if (ddi_copyout(datain, uscsi.uscsi_bufaddr,
5627 			    vd_scsi->datain_len, mode) != 0) {
5628 				rv = EFAULT;
5629 				goto done;
5630 			}
5631 		} else {
5632 			uscsi.uscsi_resid = uscsi.uscsi_buflen -
5633 			    vd_scsi->dataout_len;
5634 		}
5635 	}
5636 
5637 	/* copy-out result */
5638 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5639 		uscsi_cmdtouscsi_cmd32((&uscsi), (&uscsi32));
5640 		if (ddi_copyout(&uscsi32, arg, sizeof (struct uscsi_cmd32),
5641 		    mode) != 0) {
5642 			rv = EFAULT;
5643 			goto done;
5644 		}
5645 	} else {
5646 		if (ddi_copyout(&uscsi, arg, sizeof (struct uscsi_cmd),
5647 		    mode) != 0) {
5648 			rv = EFAULT;
5649 			goto done;
5650 		}
5651 	}
5652 
5653 	/* get the return code from the SCSI command status */
5654 	rv = vdc_scsi_status(vdc, vd_scsi,
5655 	    !(uscsi.uscsi_flags & USCSI_SILENT));
5656 
5657 done:
5658 	kmem_free(vd_scsi, vd_scsi_len);
5659 	return (rv);
5660 }
5661 
5662 /*
5663  * Create a VD_OP_SCSICMD buffer for a SCSI PERSISTENT IN command.
5664  *
5665  * Arguments:
5666  *	cmd		- SCSI PERSISTENT IN command
5667  *	len		- length of the SCSI input buffer
5668  *	vd_scsi_len	- return the length of the allocated buffer
5669  *
5670  * Returned Value:
5671  *	a pointer to the allocated VD_OP_SCSICMD buffer.
5672  */
5673 static vd_scsi_t *
5674 vdc_scsi_alloc_persistent_in(uchar_t cmd, int len, int *vd_scsi_len)
5675 {
5676 	int cdb_len, sense_len, datain_len, dataout_len;
5677 	vd_scsi_t *vd_scsi;
5678 	union scsi_cdb *cdb;
5679 
5680 	cdb_len = CDB_GROUP1;
5681 	sense_len = sizeof (struct scsi_extended_sense);
5682 	datain_len = len;
5683 	dataout_len = 0;
5684 
5685 	vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, datain_len, dataout_len,
5686 	    vd_scsi_len);
5687 
5688 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
5689 
5690 	/* set cdb */
5691 	cdb->scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
5692 	cdb->cdb_opaque[1] = cmd;
5693 	FORMG1COUNT(cdb, datain_len);
5694 
5695 	vd_scsi->timeout = vdc_scsi_timeout;
5696 
5697 	return (vd_scsi);
5698 }
5699 
5700 /*
5701  * Create a VD_OP_SCSICMD buffer for a SCSI PERSISTENT OUT command.
5702  *
5703  * Arguments:
5704  *	cmd		- SCSI PERSISTENT OUT command
5705  *	len		- length of the SCSI output buffer
5706  *	vd_scsi_len	- return the length of the allocated buffer
5707  *
5708  * Returned Code:
5709  *	a pointer to the allocated VD_OP_SCSICMD buffer.
5710  */
5711 static vd_scsi_t *
5712 vdc_scsi_alloc_persistent_out(uchar_t cmd, int len, int *vd_scsi_len)
5713 {
5714 	int cdb_len, sense_len, datain_len, dataout_len;
5715 	vd_scsi_t *vd_scsi;
5716 	union scsi_cdb *cdb;
5717 
5718 	cdb_len = CDB_GROUP1;
5719 	sense_len = sizeof (struct scsi_extended_sense);
5720 	datain_len = 0;
5721 	dataout_len = len;
5722 
5723 	vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, datain_len, dataout_len,
5724 	    vd_scsi_len);
5725 
5726 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
5727 
5728 	/* set cdb */
5729 	cdb->scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
5730 	cdb->cdb_opaque[1] = cmd;
5731 	FORMG1COUNT(cdb, dataout_len);
5732 
5733 	vd_scsi->timeout = vdc_scsi_timeout;
5734 
5735 	return (vd_scsi);
5736 }
5737 
5738 /*
5739  * Implement the MHIOCGRP_INKEYS mhd(7i) ioctl. The ioctl is converted
5740  * to a SCSI PERSISTENT IN READ KEYS command which is sent to the vdisk
5741  * server with a VD_OP_SCSICMD operation.
5742  */
5743 static int
5744 vdc_mhd_inkeys(vdc_t *vdc, caddr_t arg, int mode)
5745 {
5746 	vd_scsi_t *vd_scsi;
5747 	mhioc_inkeys_t inkeys;
5748 	mhioc_key_list_t klist;
5749 	struct mhioc_inkeys32 inkeys32;
5750 	struct mhioc_key_list32 klist32;
5751 	sd_prin_readkeys_t *scsi_keys;
5752 	void *user_keys;
5753 	int vd_scsi_len;
5754 	int listsize, listlen, rv;
5755 
5756 	/* copyin arguments */
5757 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5758 		rv = ddi_copyin(arg, &inkeys32, sizeof (inkeys32), mode);
5759 		if (rv != 0)
5760 			return (EFAULT);
5761 
5762 		rv = ddi_copyin((caddr_t)(uintptr_t)inkeys32.li, &klist32,
5763 		    sizeof (klist32), mode);
5764 		if (rv != 0)
5765 			return (EFAULT);
5766 
5767 		listsize = klist32.listsize;
5768 	} else {
5769 		rv = ddi_copyin(arg, &inkeys, sizeof (inkeys), mode);
5770 		if (rv != 0)
5771 			return (EFAULT);
5772 
5773 		rv = ddi_copyin(inkeys.li, &klist, sizeof (klist), mode);
5774 		if (rv != 0)
5775 			return (EFAULT);
5776 
5777 		listsize = klist.listsize;
5778 	}
5779 
5780 	/* build SCSI VD_OP request */
5781 	vd_scsi = vdc_scsi_alloc_persistent_in(SD_READ_KEYS,
5782 	    sizeof (sd_prin_readkeys_t) - sizeof (caddr_t) +
5783 	    (sizeof (mhioc_resv_key_t) * listsize), &vd_scsi_len);
5784 
5785 	scsi_keys = (sd_prin_readkeys_t *)VD_SCSI_DATA_IN(vd_scsi);
5786 
5787 	/* submit the request */
5788 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
5789 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
5790 
5791 	if (rv != 0)
5792 		goto done;
5793 
5794 	listlen = scsi_keys->len / MHIOC_RESV_KEY_SIZE;
5795 
5796 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5797 		inkeys32.generation = scsi_keys->generation;
5798 		rv = ddi_copyout(&inkeys32, arg, sizeof (inkeys32), mode);
5799 		if (rv != 0) {
5800 			rv = EFAULT;
5801 			goto done;
5802 		}
5803 
5804 		klist32.listlen = listlen;
5805 		rv = ddi_copyout(&klist32, (caddr_t)(uintptr_t)inkeys32.li,
5806 		    sizeof (klist32), mode);
5807 		if (rv != 0) {
5808 			rv = EFAULT;
5809 			goto done;
5810 		}
5811 
5812 		user_keys = (caddr_t)(uintptr_t)klist32.list;
5813 	} else {
5814 		inkeys.generation = scsi_keys->generation;
5815 		rv = ddi_copyout(&inkeys, arg, sizeof (inkeys), mode);
5816 		if (rv != 0) {
5817 			rv = EFAULT;
5818 			goto done;
5819 		}
5820 
5821 		klist.listlen = listlen;
5822 		rv = ddi_copyout(&klist, inkeys.li, sizeof (klist), mode);
5823 		if (rv != 0) {
5824 			rv = EFAULT;
5825 			goto done;
5826 		}
5827 
5828 		user_keys = klist.list;
5829 	}
5830 
5831 	/* copy out keys */
5832 	if (listlen > 0 && listsize > 0) {
5833 		if (listsize < listlen)
5834 			listlen = listsize;
5835 		rv = ddi_copyout(&scsi_keys->keylist, user_keys,
5836 		    listlen * MHIOC_RESV_KEY_SIZE, mode);
5837 		if (rv != 0)
5838 			rv = EFAULT;
5839 	}
5840 
5841 	if (rv == 0)
5842 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
5843 
5844 done:
5845 	kmem_free(vd_scsi, vd_scsi_len);
5846 
5847 	return (rv);
5848 }
5849 
5850 /*
5851  * Implement the MHIOCGRP_INRESV mhd(7i) ioctl. The ioctl is converted
5852  * to a SCSI PERSISTENT IN READ RESERVATION command which is sent to
5853  * the vdisk server with a VD_OP_SCSICMD operation.
5854  */
5855 static int
5856 vdc_mhd_inresv(vdc_t *vdc, caddr_t arg, int mode)
5857 {
5858 	vd_scsi_t *vd_scsi;
5859 	mhioc_inresvs_t inresv;
5860 	mhioc_resv_desc_list_t rlist;
5861 	struct mhioc_inresvs32 inresv32;
5862 	struct mhioc_resv_desc_list32 rlist32;
5863 	mhioc_resv_desc_t mhd_resv;
5864 	sd_prin_readresv_t *scsi_resv;
5865 	sd_readresv_desc_t *resv;
5866 	mhioc_resv_desc_t *user_resv;
5867 	int vd_scsi_len;
5868 	int listsize, listlen, i, rv;
5869 
5870 	/* copyin arguments */
5871 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5872 		rv = ddi_copyin(arg, &inresv32, sizeof (inresv32), mode);
5873 		if (rv != 0)
5874 			return (EFAULT);
5875 
5876 		rv = ddi_copyin((caddr_t)(uintptr_t)inresv32.li, &rlist32,
5877 		    sizeof (rlist32), mode);
5878 		if (rv != 0)
5879 			return (EFAULT);
5880 
5881 		listsize = rlist32.listsize;
5882 	} else {
5883 		rv = ddi_copyin(arg, &inresv, sizeof (inresv), mode);
5884 		if (rv != 0)
5885 			return (EFAULT);
5886 
5887 		rv = ddi_copyin(inresv.li, &rlist, sizeof (rlist), mode);
5888 		if (rv != 0)
5889 			return (EFAULT);
5890 
5891 		listsize = rlist.listsize;
5892 	}
5893 
5894 	/* build SCSI VD_OP request */
5895 	vd_scsi = vdc_scsi_alloc_persistent_in(SD_READ_RESV,
5896 	    sizeof (sd_prin_readresv_t) - sizeof (caddr_t) +
5897 	    (SCSI3_RESV_DESC_LEN * listsize), &vd_scsi_len);
5898 
5899 	scsi_resv = (sd_prin_readresv_t *)VD_SCSI_DATA_IN(vd_scsi);
5900 
5901 	/* submit the request */
5902 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
5903 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
5904 
5905 	if (rv != 0)
5906 		goto done;
5907 
5908 	listlen = scsi_resv->len / SCSI3_RESV_DESC_LEN;
5909 
5910 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5911 		inresv32.generation = scsi_resv->generation;
5912 		rv = ddi_copyout(&inresv32, arg, sizeof (inresv32), mode);
5913 		if (rv != 0) {
5914 			rv = EFAULT;
5915 			goto done;
5916 		}
5917 
5918 		rlist32.listlen = listlen;
5919 		rv = ddi_copyout(&rlist32, (caddr_t)(uintptr_t)inresv32.li,
5920 		    sizeof (rlist32), mode);
5921 		if (rv != 0) {
5922 			rv = EFAULT;
5923 			goto done;
5924 		}
5925 
5926 		user_resv = (mhioc_resv_desc_t *)(uintptr_t)rlist32.list;
5927 	} else {
5928 		inresv.generation = scsi_resv->generation;
5929 		rv = ddi_copyout(&inresv, arg, sizeof (inresv), mode);
5930 		if (rv != 0) {
5931 			rv = EFAULT;
5932 			goto done;
5933 		}
5934 
5935 		rlist.listlen = listlen;
5936 		rv = ddi_copyout(&rlist, inresv.li, sizeof (rlist), mode);
5937 		if (rv != 0) {
5938 			rv = EFAULT;
5939 			goto done;
5940 		}
5941 
5942 		user_resv = rlist.list;
5943 	}
5944 
5945 	/* copy out reservations */
5946 	if (listsize > 0 && listlen > 0) {
5947 		if (listsize < listlen)
5948 			listlen = listsize;
5949 		resv = (sd_readresv_desc_t *)&scsi_resv->readresv_desc;
5950 
5951 		for (i = 0; i < listlen; i++) {
5952 			mhd_resv.type = resv->type;
5953 			mhd_resv.scope = resv->scope;
5954 			mhd_resv.scope_specific_addr =
5955 			    BE_32(resv->scope_specific_addr);
5956 			bcopy(&resv->resvkey, &mhd_resv.key,
5957 			    MHIOC_RESV_KEY_SIZE);
5958 
5959 			rv = ddi_copyout(&mhd_resv, user_resv,
5960 			    sizeof (mhd_resv), mode);
5961 			if (rv != 0) {
5962 				rv = EFAULT;
5963 				goto done;
5964 			}
5965 			resv++;
5966 			user_resv++;
5967 		}
5968 	}
5969 
5970 	if (rv == 0)
5971 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
5972 
5973 done:
5974 	kmem_free(vd_scsi, vd_scsi_len);
5975 	return (rv);
5976 }
5977 
5978 /*
5979  * Implement the MHIOCGRP_REGISTER mhd(7i) ioctl. The ioctl is converted
5980  * to a SCSI PERSISTENT OUT REGISTER command which is sent to the vdisk
5981  * server with a VD_OP_SCSICMD operation.
5982  */
5983 static int
5984 vdc_mhd_register(vdc_t *vdc, caddr_t arg, int mode)
5985 {
5986 	vd_scsi_t *vd_scsi;
5987 	sd_prout_t *scsi_prout;
5988 	mhioc_register_t mhd_reg;
5989 	int vd_scsi_len, rv;
5990 
5991 	/* copyin arguments */
5992 	rv = ddi_copyin(arg, &mhd_reg, sizeof (mhd_reg), mode);
5993 	if (rv != 0)
5994 		return (EFAULT);
5995 
5996 	/* build SCSI VD_OP request */
5997 	vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_REGISTER,
5998 	    sizeof (sd_prout_t), &vd_scsi_len);
5999 
6000 	/* set parameters */
6001 	scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi);
6002 	bcopy(mhd_reg.oldkey.key, scsi_prout->res_key, MHIOC_RESV_KEY_SIZE);
6003 	bcopy(mhd_reg.newkey.key, scsi_prout->service_key, MHIOC_RESV_KEY_SIZE);
6004 	scsi_prout->aptpl = (uchar_t)mhd_reg.aptpl;
6005 
6006 	/* submit the request */
6007 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6008 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
6009 
6010 	if (rv == 0)
6011 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6012 
6013 	kmem_free(vd_scsi, vd_scsi_len);
6014 	return (rv);
6015 }
6016 
6017 /*
6018  * Implement the MHIOCGRP_RESERVE mhd(7i) ioctl. The ioctl is converted
6019  * to a SCSI PERSISTENT OUT RESERVE command which is sent to the vdisk
6020  * server with a VD_OP_SCSICMD operation.
6021  */
6022 static int
6023 vdc_mhd_reserve(vdc_t *vdc, caddr_t arg, int mode)
6024 {
6025 	union scsi_cdb *cdb;
6026 	vd_scsi_t *vd_scsi;
6027 	sd_prout_t *scsi_prout;
6028 	mhioc_resv_desc_t mhd_resv;
6029 	int vd_scsi_len, rv;
6030 
6031 	/* copyin arguments */
6032 	rv = ddi_copyin(arg, &mhd_resv, sizeof (mhd_resv), mode);
6033 	if (rv != 0)
6034 		return (EFAULT);
6035 
6036 	/* build SCSI VD_OP request */
6037 	vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_RESERVE,
6038 	    sizeof (sd_prout_t), &vd_scsi_len);
6039 
6040 	/* set parameters */
6041 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
6042 	scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi);
6043 	bcopy(mhd_resv.key.key, scsi_prout->res_key, MHIOC_RESV_KEY_SIZE);
6044 	scsi_prout->scope_address = mhd_resv.scope_specific_addr;
6045 	cdb->cdb_opaque[2] = mhd_resv.type;
6046 
6047 	/* submit the request */
6048 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6049 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
6050 
6051 	if (rv == 0)
6052 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6053 
6054 	kmem_free(vd_scsi, vd_scsi_len);
6055 	return (rv);
6056 }
6057 
6058 /*
6059  * Implement the MHIOCGRP_PREEMPTANDABORT mhd(7i) ioctl. The ioctl is
6060  * converted to a SCSI PERSISTENT OUT PREEMPT AND ABORT command which
6061  * is sent to the vdisk server with a VD_OP_SCSICMD operation.
6062  */
6063 static int
6064 vdc_mhd_preemptabort(vdc_t *vdc, caddr_t arg, int mode)
6065 {
6066 	union scsi_cdb *cdb;
6067 	vd_scsi_t *vd_scsi;
6068 	sd_prout_t *scsi_prout;
6069 	mhioc_preemptandabort_t mhd_preempt;
6070 	int vd_scsi_len, rv;
6071 
6072 	/* copyin arguments */
6073 	rv = ddi_copyin(arg, &mhd_preempt, sizeof (mhd_preempt), mode);
6074 	if (rv != 0)
6075 		return (EFAULT);
6076 
6077 	/* build SCSI VD_OP request */
6078 	vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_PREEMPTANDABORT,
6079 	    sizeof (sd_prout_t), &vd_scsi_len);
6080 
6081 	/* set parameters */
6082 	vd_scsi->task_attribute = VD_SCSI_TASK_ACA;
6083 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
6084 	scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi);
6085 	bcopy(mhd_preempt.resvdesc.key.key, scsi_prout->res_key,
6086 	    MHIOC_RESV_KEY_SIZE);
6087 	bcopy(mhd_preempt.victim_key.key, scsi_prout->service_key,
6088 	    MHIOC_RESV_KEY_SIZE);
6089 	scsi_prout->scope_address = mhd_preempt.resvdesc.scope_specific_addr;
6090 	cdb->cdb_opaque[2] = mhd_preempt.resvdesc.type;
6091 
6092 	/* submit the request */
6093 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6094 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
6095 
6096 	if (rv == 0)
6097 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6098 
6099 	kmem_free(vd_scsi, vd_scsi_len);
6100 	return (rv);
6101 }
6102 
6103 /*
6104  * Implement the MHIOCGRP_REGISTERANDIGNOREKEY mhd(7i) ioctl. The ioctl
6105  * is converted to a SCSI PERSISTENT OUT REGISTER AND IGNORE EXISTING KEY
6106  * command which is sent to the vdisk server with a VD_OP_SCSICMD operation.
6107  */
6108 static int
6109 vdc_mhd_registerignore(vdc_t *vdc, caddr_t arg, int mode)
6110 {
6111 	vd_scsi_t *vd_scsi;
6112 	sd_prout_t *scsi_prout;
6113 	mhioc_registerandignorekey_t mhd_regi;
6114 	int vd_scsi_len, rv;
6115 
6116 	/* copyin arguments */
6117 	rv = ddi_copyin(arg, &mhd_regi, sizeof (mhd_regi), mode);
6118 	if (rv != 0)
6119 		return (EFAULT);
6120 
6121 	/* build SCSI VD_OP request */
6122 	vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_REGISTERANDIGNOREKEY,
6123 	    sizeof (sd_prout_t), &vd_scsi_len);
6124 
6125 	/* set parameters */
6126 	scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi);
6127 	bcopy(mhd_regi.newkey.key, scsi_prout->service_key,
6128 	    MHIOC_RESV_KEY_SIZE);
6129 	scsi_prout->aptpl = (uchar_t)mhd_regi.aptpl;
6130 
6131 	/* submit the request */
6132 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6133 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
6134 
6135 	if (rv == 0)
6136 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6137 
6138 	kmem_free(vd_scsi, vd_scsi_len);
6139 	return (rv);
6140 }
6141 
6142 /*
6143  * This function is used by the failfast mechanism to send a SCSI command
6144  * to check for reservation conflict.
6145  */
6146 static int
6147 vdc_failfast_scsi_cmd(vdc_t *vdc, uchar_t scmd)
6148 {
6149 	int cdb_len, sense_len, vd_scsi_len;
6150 	vd_scsi_t *vd_scsi;
6151 	union scsi_cdb *cdb;
6152 	int rv;
6153 
6154 	ASSERT(scmd == SCMD_TEST_UNIT_READY || scmd == SCMD_WRITE_G1);
6155 
6156 	if (scmd == SCMD_WRITE_G1)
6157 		cdb_len = CDB_GROUP1;
6158 	else
6159 		cdb_len = CDB_GROUP0;
6160 
6161 	sense_len = sizeof (struct scsi_extended_sense);
6162 
6163 	vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, 0, 0, &vd_scsi_len);
6164 
6165 	/* set cdb */
6166 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
6167 	cdb->scc_cmd = scmd;
6168 
6169 	vd_scsi->timeout = vdc_scsi_timeout;
6170 
6171 	/*
6172 	 * Submit the request. The last argument has to be B_FALSE so that
6173 	 * vdc_do_sync_op does not loop checking for reservation conflict if
6174 	 * the operation returns an error.
6175 	 */
6176 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6177 	    0, 0, CB_SYNC, (void *)(uint64_t)FKIOCTL, VIO_both_dir, B_FALSE);
6178 
6179 	if (rv == 0)
6180 		(void) vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6181 
6182 	kmem_free(vd_scsi, vd_scsi_len);
6183 	return (rv);
6184 }
6185 
6186 /*
6187  * This function is used by the failfast mechanism to check for reservation
6188  * conflict. It sends some SCSI commands which will fail with a reservation
6189  * conflict error if the system does not have access to the disk and this
6190  * will panic the system.
6191  *
6192  * Returned Code:
6193  *	0	- disk is accessible without reservation conflict error
6194  *	!= 0	- unable to check if disk is accessible
6195  */
6196 int
6197 vdc_failfast_check_resv(vdc_t *vdc)
6198 {
6199 	int failure = 0;
6200 
6201 	/*
6202 	 * Send a TEST UNIT READY command. The command will panic
6203 	 * the system if it fails with a reservation conflict.
6204 	 */
6205 	if (vdc_failfast_scsi_cmd(vdc, SCMD_TEST_UNIT_READY) != 0)
6206 		failure++;
6207 
6208 	/*
6209 	 * With SPC-3 compliant devices TEST UNIT READY will succeed on
6210 	 * a reserved device, so we also do a WRITE(10) of zero byte in
6211 	 * order to provoke a Reservation Conflict status on those newer
6212 	 * devices.
6213 	 */
6214 	if (vdc_failfast_scsi_cmd(vdc, SCMD_WRITE_G1) != 0)
6215 		failure++;
6216 
6217 	return (failure);
6218 }
6219 
6220 /*
6221  * Add a pending I/O to the failfast I/O queue. An I/O is added to this
6222  * queue when it has failed and failfast is enabled. Then we have to check
6223  * if it has failed because of a reservation conflict in which case we have
6224  * to panic the system.
6225  *
6226  * Async I/O should be queued with their block I/O data transfer structure
6227  * (buf). Sync I/O should be queued with buf = NULL.
6228  */
6229 static vdc_io_t *
6230 vdc_failfast_io_queue(vdc_t *vdc, struct buf *buf)
6231 {
6232 	vdc_io_t *vio;
6233 
6234 	ASSERT(MUTEX_HELD(&vdc->lock));
6235 
6236 	vio = kmem_alloc(sizeof (vdc_io_t), KM_SLEEP);
6237 	vio->vio_next = vdc->failfast_io_queue;
6238 	vio->vio_buf = buf;
6239 	vio->vio_qtime = ddi_get_lbolt();
6240 
6241 	vdc->failfast_io_queue = vio;
6242 
6243 	/* notify the failfast thread that a new I/O is queued */
6244 	cv_signal(&vdc->failfast_cv);
6245 
6246 	return (vio);
6247 }
6248 
6249 /*
6250  * Remove and complete I/O in the failfast I/O queue which have been
6251  * added after the indicated deadline. A deadline of 0 means that all
6252  * I/O have to be unqueued and marked as completed.
6253  */
6254 static void
6255 vdc_failfast_io_unqueue(vdc_t *vdc, clock_t deadline)
6256 {
6257 	vdc_io_t *vio, *vio_tmp;
6258 
6259 	ASSERT(MUTEX_HELD(&vdc->lock));
6260 
6261 	vio_tmp = NULL;
6262 	vio = vdc->failfast_io_queue;
6263 
6264 	if (deadline != 0) {
6265 		/*
6266 		 * Skip any io queued after the deadline. The failfast
6267 		 * I/O queue is ordered starting with the last I/O added
6268 		 * to the queue.
6269 		 */
6270 		while (vio != NULL && vio->vio_qtime > deadline) {
6271 			vio_tmp = vio;
6272 			vio = vio->vio_next;
6273 		}
6274 	}
6275 
6276 	if (vio == NULL)
6277 		/* nothing to unqueue */
6278 		return;
6279 
6280 	/* update the queue */
6281 	if (vio_tmp == NULL)
6282 		vdc->failfast_io_queue = NULL;
6283 	else
6284 		vio_tmp->vio_next = NULL;
6285 
6286 	/*
6287 	 * Complete unqueued I/O. Async I/O have a block I/O data transfer
6288 	 * structure (buf) and they are completed by calling biodone(). Sync
6289 	 * I/O do not have a buf and they are completed by setting the
6290 	 * vio_qtime to zero and signaling failfast_io_cv. In that case, the
6291 	 * thread waiting for the I/O to complete is responsible for freeing
6292 	 * the vio structure.
6293 	 */
6294 	while (vio != NULL) {
6295 		vio_tmp = vio->vio_next;
6296 		if (vio->vio_buf != NULL) {
6297 			VD_KSTAT_RUNQ_EXIT(vdc);
6298 			DTRACE_IO1(done, buf_t *, vio->vio_buf);
6299 			biodone(vio->vio_buf);
6300 			kmem_free(vio, sizeof (vdc_io_t));
6301 		} else {
6302 			vio->vio_qtime = 0;
6303 		}
6304 		vio = vio_tmp;
6305 	}
6306 
6307 	cv_broadcast(&vdc->failfast_io_cv);
6308 }
6309 
6310 /*
6311  * Failfast Thread.
6312  *
6313  * While failfast is enabled, the failfast thread sends a TEST UNIT READY
6314  * and a zero size WRITE(10) SCSI commands on a regular basis to check that
6315  * we still have access to the disk. If a command fails with a RESERVATION
6316  * CONFLICT error then the system will immediatly panic.
6317  *
6318  * The failfast thread is also woken up when an I/O has failed. It then check
6319  * the access to the disk to ensure that the I/O failure was not due to a
6320  * reservation conflict.
6321  *
6322  * There is one failfast thread for each virtual disk for which failfast is
6323  * enabled. We could have only one thread sending requests for all disks but
6324  * this would need vdc to send asynchronous requests and to have callbacks to
6325  * process replies.
6326  */
6327 static void
6328 vdc_failfast_thread(void *arg)
6329 {
6330 	int status;
6331 	vdc_t *vdc = (vdc_t *)arg;
6332 	clock_t timeout, starttime;
6333 
6334 	mutex_enter(&vdc->lock);
6335 
6336 	while (vdc->failfast_interval != 0) {
6337 
6338 		starttime = ddi_get_lbolt();
6339 
6340 		mutex_exit(&vdc->lock);
6341 
6342 		/* check for reservation conflict */
6343 		status = vdc_failfast_check_resv(vdc);
6344 
6345 		mutex_enter(&vdc->lock);
6346 		/*
6347 		 * We have dropped the lock to send the SCSI command so we have
6348 		 * to check that failfast is still enabled.
6349 		 */
6350 		if (vdc->failfast_interval == 0)
6351 			break;
6352 
6353 		/*
6354 		 * If we have successfully check the disk access and there was
6355 		 * no reservation conflict then we can complete any I/O queued
6356 		 * before the last check.
6357 		 */
6358 		if (status == 0)
6359 			vdc_failfast_io_unqueue(vdc, starttime);
6360 
6361 		/* proceed again if some I/O are still in the queue */
6362 		if (vdc->failfast_io_queue != NULL)
6363 			continue;
6364 
6365 		timeout = ddi_get_lbolt() +
6366 		    drv_usectohz(vdc->failfast_interval);
6367 		(void) cv_timedwait(&vdc->failfast_cv, &vdc->lock, timeout);
6368 	}
6369 
6370 	/*
6371 	 * Failfast is being stop so we can complete any queued I/O.
6372 	 */
6373 	vdc_failfast_io_unqueue(vdc, 0);
6374 	vdc->failfast_thread = NULL;
6375 	mutex_exit(&vdc->lock);
6376 	thread_exit();
6377 }
6378 
6379 /*
6380  * Implement the MHIOCENFAILFAST mhd(7i) ioctl.
6381  */
6382 static int
6383 vdc_failfast(vdc_t *vdc, caddr_t arg, int mode)
6384 {
6385 	unsigned int mh_time;
6386 
6387 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), mode))
6388 		return (EFAULT);
6389 
6390 	mutex_enter(&vdc->lock);
6391 	if (mh_time != 0 && vdc->failfast_thread == NULL) {
6392 		vdc->failfast_thread = thread_create(NULL, 0,
6393 		    vdc_failfast_thread, vdc, 0, &p0, TS_RUN,
6394 		    v.v_maxsyspri - 2);
6395 	}
6396 
6397 	vdc->failfast_interval = mh_time * 1000;
6398 	cv_signal(&vdc->failfast_cv);
6399 	mutex_exit(&vdc->lock);
6400 
6401 	return (0);
6402 }
6403 
6404 /*
6405  * Implement the MHIOCTKOWN and MHIOCRELEASE mhd(7i) ioctls. These ioctls are
6406  * converted to VD_OP_SET_ACCESS operations.
6407  */
6408 static int
6409 vdc_access_set(vdc_t *vdc, uint64_t flags, int mode)
6410 {
6411 	int rv;
6412 
6413 	/* submit owership command request */
6414 	rv = vdc_do_sync_op(vdc, VD_OP_SET_ACCESS, (caddr_t)&flags,
6415 	    sizeof (uint64_t), 0, 0, CB_SYNC, (void *)(uint64_t)mode,
6416 	    VIO_both_dir, B_TRUE);
6417 
6418 	return (rv);
6419 }
6420 
6421 /*
6422  * Implement the MHIOCSTATUS mhd(7i) ioctl. This ioctl is converted to a
6423  * VD_OP_GET_ACCESS operation.
6424  */
6425 static int
6426 vdc_access_get(vdc_t *vdc, uint64_t *status, int mode)
6427 {
6428 	int rv;
6429 
6430 	/* submit owership command request */
6431 	rv = vdc_do_sync_op(vdc, VD_OP_GET_ACCESS, (caddr_t)status,
6432 	    sizeof (uint64_t), 0, 0, CB_SYNC, (void *)(uint64_t)mode,
6433 	    VIO_both_dir, B_TRUE);
6434 
6435 	return (rv);
6436 }
6437 
6438 /*
6439  * Disk Ownership Thread.
6440  *
6441  * When we have taken the ownership of a disk, this thread waits to be
6442  * notified when the LDC channel is reset so that it can recover the
6443  * ownership.
6444  *
6445  * Note that the thread handling the LDC reset (vdc_process_msg_thread())
6446  * can not be used to do the ownership recovery because it has to be
6447  * running to handle the reply message to the ownership operation.
6448  */
6449 static void
6450 vdc_ownership_thread(void *arg)
6451 {
6452 	vdc_t *vdc = (vdc_t *)arg;
6453 	clock_t timeout;
6454 	uint64_t status;
6455 
6456 	mutex_enter(&vdc->ownership_lock);
6457 	mutex_enter(&vdc->lock);
6458 
6459 	while (vdc->ownership & VDC_OWNERSHIP_WANTED) {
6460 
6461 		if ((vdc->ownership & VDC_OWNERSHIP_RESET) ||
6462 		    !(vdc->ownership & VDC_OWNERSHIP_GRANTED)) {
6463 			/*
6464 			 * There was a reset so the ownership has been lost,
6465 			 * try to recover. We do this without using the preempt
6466 			 * option so that we don't steal the ownership from
6467 			 * someone who has preempted us.
6468 			 */
6469 			DMSG(vdc, 0, "[%d] Ownership lost, recovering",
6470 			    vdc->instance);
6471 
6472 			vdc->ownership &= ~(VDC_OWNERSHIP_RESET |
6473 			    VDC_OWNERSHIP_GRANTED);
6474 
6475 			mutex_exit(&vdc->lock);
6476 
6477 			status = vdc_access_set(vdc, VD_ACCESS_SET_EXCLUSIVE |
6478 			    VD_ACCESS_SET_PRESERVE, FKIOCTL);
6479 
6480 			mutex_enter(&vdc->lock);
6481 
6482 			if (status == 0) {
6483 				DMSG(vdc, 0, "[%d] Ownership recovered",
6484 				    vdc->instance);
6485 				vdc->ownership |= VDC_OWNERSHIP_GRANTED;
6486 			} else {
6487 				DMSG(vdc, 0, "[%d] Fail to recover ownership",
6488 				    vdc->instance);
6489 			}
6490 
6491 		}
6492 
6493 		/*
6494 		 * If we have the ownership then we just wait for an event
6495 		 * to happen (LDC reset), otherwise we will retry to recover
6496 		 * after a delay.
6497 		 */
6498 		if (vdc->ownership & VDC_OWNERSHIP_GRANTED)
6499 			timeout = 0;
6500 		else
6501 			timeout = ddi_get_lbolt() +
6502 			    drv_usectohz(vdc_ownership_delay);
6503 
6504 		/* Release the ownership_lock and wait on the vdc lock */
6505 		mutex_exit(&vdc->ownership_lock);
6506 
6507 		if (timeout == 0)
6508 			(void) cv_wait(&vdc->ownership_cv, &vdc->lock);
6509 		else
6510 			(void) cv_timedwait(&vdc->ownership_cv,
6511 			    &vdc->lock, timeout);
6512 
6513 		mutex_exit(&vdc->lock);
6514 
6515 		mutex_enter(&vdc->ownership_lock);
6516 		mutex_enter(&vdc->lock);
6517 	}
6518 
6519 	vdc->ownership_thread = NULL;
6520 	mutex_exit(&vdc->lock);
6521 	mutex_exit(&vdc->ownership_lock);
6522 
6523 	thread_exit();
6524 }
6525 
6526 static void
6527 vdc_ownership_update(vdc_t *vdc, int ownership_flags)
6528 {
6529 	ASSERT(MUTEX_HELD(&vdc->ownership_lock));
6530 
6531 	mutex_enter(&vdc->lock);
6532 	vdc->ownership = ownership_flags;
6533 	if ((vdc->ownership & VDC_OWNERSHIP_WANTED) &&
6534 	    vdc->ownership_thread == NULL) {
6535 		/* start ownership thread */
6536 		vdc->ownership_thread = thread_create(NULL, 0,
6537 		    vdc_ownership_thread, vdc, 0, &p0, TS_RUN,
6538 		    v.v_maxsyspri - 2);
6539 	} else {
6540 		/* notify the ownership thread */
6541 		cv_signal(&vdc->ownership_cv);
6542 	}
6543 	mutex_exit(&vdc->lock);
6544 }
6545 
6546 /*
6547  * Get the size and the block size of a virtual disk from the vdisk server.
6548  */
6549 static int
6550 vdc_get_capacity(vdc_t *vdc, size_t *dsk_size, size_t *blk_size)
6551 {
6552 	int rv = 0;
6553 	size_t alloc_len;
6554 	vd_capacity_t *vd_cap;
6555 
6556 	ASSERT(MUTEX_NOT_HELD(&vdc->lock));
6557 
6558 	alloc_len = P2ROUNDUP(sizeof (vd_capacity_t), sizeof (uint64_t));
6559 
6560 	vd_cap = kmem_zalloc(alloc_len, KM_SLEEP);
6561 
6562 	rv = vdc_do_sync_op(vdc, VD_OP_GET_CAPACITY, (caddr_t)vd_cap, alloc_len,
6563 	    0, 0, CB_SYNC, (void *)(uint64_t)FKIOCTL, VIO_both_dir, B_TRUE);
6564 
6565 	*dsk_size = vd_cap->vdisk_size;
6566 	*blk_size = vd_cap->vdisk_block_size;
6567 
6568 	kmem_free(vd_cap, alloc_len);
6569 	return (rv);
6570 }
6571 
6572 /*
6573  * Check the disk capacity. Disk size information is updated if size has
6574  * changed.
6575  *
6576  * Return 0 if the disk capacity is available, or non-zero if it is not.
6577  */
6578 static int
6579 vdc_check_capacity(vdc_t *vdc)
6580 {
6581 	size_t dsk_size, blk_size;
6582 	int rv;
6583 
6584 	if ((rv = vdc_get_capacity(vdc, &dsk_size, &blk_size)) != 0)
6585 		return (rv);
6586 
6587 	if (dsk_size == VD_SIZE_UNKNOWN || dsk_size == 0)
6588 		return (EINVAL);
6589 
6590 	mutex_enter(&vdc->lock);
6591 	vdc_update_size(vdc, dsk_size, blk_size, vdc->max_xfer_sz);
6592 	mutex_exit(&vdc->lock);
6593 
6594 	return (0);
6595 }
6596 
6597 /*
6598  * This structure is used in the DKIO(7I) array below.
6599  */
6600 typedef struct vdc_dk_ioctl {
6601 	uint8_t		op;		/* VD_OP_XXX value */
6602 	int		cmd;		/* Solaris ioctl operation number */
6603 	size_t		nbytes;		/* size of structure to be copied */
6604 
6605 	/* function to convert between vDisk and Solaris structure formats */
6606 	int	(*convert)(vdc_t *vdc, void *vd_buf, void *ioctl_arg,
6607 	    int mode, int dir);
6608 } vdc_dk_ioctl_t;
6609 
6610 /*
6611  * Subset of DKIO(7I) operations currently supported
6612  */
6613 static vdc_dk_ioctl_t	dk_ioctl[] = {
6614 	{VD_OP_FLUSH,		DKIOCFLUSHWRITECACHE,	0,
6615 		vdc_null_copy_func},
6616 	{VD_OP_GET_WCE,		DKIOCGETWCE,		sizeof (int),
6617 		vdc_get_wce_convert},
6618 	{VD_OP_SET_WCE,		DKIOCSETWCE,		sizeof (int),
6619 		vdc_set_wce_convert},
6620 	{VD_OP_GET_VTOC,	DKIOCGVTOC,		sizeof (vd_vtoc_t),
6621 		vdc_get_vtoc_convert},
6622 	{VD_OP_SET_VTOC,	DKIOCSVTOC,		sizeof (vd_vtoc_t),
6623 		vdc_set_vtoc_convert},
6624 	{VD_OP_GET_DISKGEOM,	DKIOCGGEOM,		sizeof (vd_geom_t),
6625 		vdc_get_geom_convert},
6626 	{VD_OP_GET_DISKGEOM,	DKIOCG_PHYGEOM,		sizeof (vd_geom_t),
6627 		vdc_get_geom_convert},
6628 	{VD_OP_GET_DISKGEOM, 	DKIOCG_VIRTGEOM,	sizeof (vd_geom_t),
6629 		vdc_get_geom_convert},
6630 	{VD_OP_SET_DISKGEOM,	DKIOCSGEOM,		sizeof (vd_geom_t),
6631 		vdc_set_geom_convert},
6632 	{VD_OP_GET_EFI,		DKIOCGETEFI,		0,
6633 		vdc_get_efi_convert},
6634 	{VD_OP_SET_EFI,		DKIOCSETEFI,		0,
6635 		vdc_set_efi_convert},
6636 
6637 	/* DIOCTL_RWCMD is converted to a read or a write */
6638 	{0, DIOCTL_RWCMD,  sizeof (struct dadkio_rwcmd), NULL},
6639 
6640 	/* mhd(7I) non-shared multihost disks ioctls */
6641 	{0, MHIOCTKOWN,				0, vdc_null_copy_func},
6642 	{0, MHIOCRELEASE,			0, vdc_null_copy_func},
6643 	{0, MHIOCSTATUS,			0, vdc_null_copy_func},
6644 	{0, MHIOCQRESERVE,			0, vdc_null_copy_func},
6645 
6646 	/* mhd(7I) shared multihost disks ioctls */
6647 	{0, MHIOCGRP_INKEYS,			0, vdc_null_copy_func},
6648 	{0, MHIOCGRP_INRESV,			0, vdc_null_copy_func},
6649 	{0, MHIOCGRP_REGISTER,			0, vdc_null_copy_func},
6650 	{0, MHIOCGRP_RESERVE, 			0, vdc_null_copy_func},
6651 	{0, MHIOCGRP_PREEMPTANDABORT,		0, vdc_null_copy_func},
6652 	{0, MHIOCGRP_REGISTERANDIGNOREKEY,	0, vdc_null_copy_func},
6653 
6654 	/* mhd(7I) failfast ioctl */
6655 	{0, MHIOCENFAILFAST,			0, vdc_null_copy_func},
6656 
6657 	/*
6658 	 * These particular ioctls are not sent to the server - vdc fakes up
6659 	 * the necessary info.
6660 	 */
6661 	{0, DKIOCINFO, sizeof (struct dk_cinfo), vdc_null_copy_func},
6662 	{0, DKIOCGMEDIAINFO, sizeof (struct dk_minfo), vdc_null_copy_func},
6663 	{0, USCSICMD,	sizeof (struct uscsi_cmd), vdc_null_copy_func},
6664 	{0, DKIOCPARTITION, 0, vdc_null_copy_func },
6665 	{0, DKIOCGAPART, 0, vdc_null_copy_func },
6666 	{0, DKIOCREMOVABLE, 0, vdc_null_copy_func},
6667 	{0, CDROMREADOFFSET, 0, vdc_null_copy_func}
6668 };
6669 
6670 /*
6671  * This function handles ioctl requests from the vd_efi_alloc_and_read()
6672  * function and forward them to the vdisk.
6673  */
6674 static int
6675 vd_process_efi_ioctl(void *vdisk, int cmd, uintptr_t arg)
6676 {
6677 	vdc_t *vdc = (vdc_t *)vdisk;
6678 	dev_t dev;
6679 	int rval;
6680 
6681 	dev = makedevice(ddi_driver_major(vdc->dip),
6682 	    VD_MAKE_DEV(vdc->instance, 0));
6683 
6684 	return (vd_process_ioctl(dev, cmd, (caddr_t)arg, FKIOCTL, &rval));
6685 }
6686 
6687 /*
6688  * Function:
6689  *	vd_process_ioctl()
6690  *
6691  * Description:
6692  *	This routine processes disk specific ioctl calls
6693  *
6694  * Arguments:
6695  *	dev	- the device number
6696  *	cmd	- the operation [dkio(7I)] to be processed
6697  *	arg	- pointer to user provided structure
6698  *		  (contains data to be set or reference parameter for get)
6699  *	mode	- bit flag, indicating open settings, 32/64 bit type, etc
6700  *	rvalp	- pointer to return value for calling process.
6701  *
6702  * Return Code:
6703  *	0
6704  *	EFAULT
6705  *	ENXIO
6706  *	EIO
6707  *	ENOTSUP
6708  */
6709 static int
6710 vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode, int *rvalp)
6711 {
6712 	int		instance = VDCUNIT(dev);
6713 	vdc_t		*vdc = NULL;
6714 	int		rv = -1;
6715 	int		idx = 0;		/* index into dk_ioctl[] */
6716 	size_t		len = 0;		/* #bytes to send to vds */
6717 	size_t		alloc_len = 0;		/* #bytes to allocate mem for */
6718 	caddr_t		mem_p = NULL;
6719 	size_t		nioctls = (sizeof (dk_ioctl)) / (sizeof (dk_ioctl[0]));
6720 	vdc_dk_ioctl_t	*iop;
6721 
6722 	vdc = ddi_get_soft_state(vdc_state, instance);
6723 	if (vdc == NULL) {
6724 		cmn_err(CE_NOTE, "![%d] Could not get soft state structure",
6725 		    instance);
6726 		return (ENXIO);
6727 	}
6728 
6729 	DMSG(vdc, 0, "[%d] Processing ioctl(%x) for dev %lx : model %x\n",
6730 	    instance, cmd, dev, ddi_model_convert_from(mode & FMODELS));
6731 
6732 	if (rvalp != NULL) {
6733 		/* the return value of the ioctl is 0 by default */
6734 		*rvalp = 0;
6735 	}
6736 
6737 	/*
6738 	 * Validate the ioctl operation to be performed.
6739 	 *
6740 	 * If we have looped through the array without finding a match then we
6741 	 * don't support this ioctl.
6742 	 */
6743 	for (idx = 0; idx < nioctls; idx++) {
6744 		if (cmd == dk_ioctl[idx].cmd)
6745 			break;
6746 	}
6747 
6748 	if (idx >= nioctls) {
6749 		DMSG(vdc, 0, "[%d] Unsupported ioctl (0x%x)\n",
6750 		    vdc->instance, cmd);
6751 		return (ENOTSUP);
6752 	}
6753 
6754 	iop = &(dk_ioctl[idx]);
6755 
6756 	if (cmd == DKIOCGETEFI || cmd == DKIOCSETEFI) {
6757 		/* size is not fixed for EFI ioctls, it depends on ioctl arg */
6758 		dk_efi_t	dk_efi;
6759 
6760 		rv = ddi_copyin(arg, &dk_efi, sizeof (dk_efi_t), mode);
6761 		if (rv != 0)
6762 			return (EFAULT);
6763 
6764 		len = sizeof (vd_efi_t) - 1 + dk_efi.dki_length;
6765 	} else {
6766 		len = iop->nbytes;
6767 	}
6768 
6769 	/* check if the ioctl is applicable */
6770 	switch (cmd) {
6771 	case CDROMREADOFFSET:
6772 	case DKIOCREMOVABLE:
6773 		return (ENOTTY);
6774 
6775 	case USCSICMD:
6776 	case MHIOCTKOWN:
6777 	case MHIOCSTATUS:
6778 	case MHIOCQRESERVE:
6779 	case MHIOCRELEASE:
6780 	case MHIOCGRP_INKEYS:
6781 	case MHIOCGRP_INRESV:
6782 	case MHIOCGRP_REGISTER:
6783 	case MHIOCGRP_RESERVE:
6784 	case MHIOCGRP_PREEMPTANDABORT:
6785 	case MHIOCGRP_REGISTERANDIGNOREKEY:
6786 	case MHIOCENFAILFAST:
6787 		if (vdc->cinfo == NULL)
6788 			return (ENXIO);
6789 		if (vdc->cinfo->dki_ctype != DKC_SCSI_CCS)
6790 			return (ENOTTY);
6791 		break;
6792 
6793 	case DIOCTL_RWCMD:
6794 		if (vdc->cinfo == NULL)
6795 			return (ENXIO);
6796 		if (vdc->cinfo->dki_ctype != DKC_DIRECT)
6797 			return (ENOTTY);
6798 		break;
6799 
6800 	case DKIOCINFO:
6801 		if (vdc->cinfo == NULL)
6802 			return (ENXIO);
6803 		break;
6804 
6805 	case DKIOCGMEDIAINFO:
6806 		if (vdc->minfo == NULL)
6807 			return (ENXIO);
6808 		if (vdc_check_capacity(vdc) != 0)
6809 			/* disk capacity is not available */
6810 			return (EIO);
6811 		break;
6812 	}
6813 
6814 	/*
6815 	 * Deal with ioctls which require a processing different than
6816 	 * converting ioctl arguments and sending a corresponding
6817 	 * VD operation.
6818 	 */
6819 	switch (cmd) {
6820 
6821 	case USCSICMD:
6822 	{
6823 		return (vdc_uscsi_cmd(vdc, arg, mode));
6824 	}
6825 
6826 	case MHIOCTKOWN:
6827 	{
6828 		mutex_enter(&vdc->ownership_lock);
6829 		/*
6830 		 * We have to set VDC_OWNERSHIP_WANTED now so that the ownership
6831 		 * can be flagged with VDC_OWNERSHIP_RESET if the LDC is reset
6832 		 * while we are processing the ioctl.
6833 		 */
6834 		vdc_ownership_update(vdc, VDC_OWNERSHIP_WANTED);
6835 
6836 		rv = vdc_access_set(vdc, VD_ACCESS_SET_EXCLUSIVE |
6837 		    VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE, mode);
6838 		if (rv == 0) {
6839 			vdc_ownership_update(vdc, VDC_OWNERSHIP_WANTED |
6840 			    VDC_OWNERSHIP_GRANTED);
6841 		} else {
6842 			vdc_ownership_update(vdc, VDC_OWNERSHIP_NONE);
6843 		}
6844 		mutex_exit(&vdc->ownership_lock);
6845 		return (rv);
6846 	}
6847 
6848 	case MHIOCRELEASE:
6849 	{
6850 		mutex_enter(&vdc->ownership_lock);
6851 		rv = vdc_access_set(vdc, VD_ACCESS_SET_CLEAR, mode);
6852 		if (rv == 0) {
6853 			vdc_ownership_update(vdc, VDC_OWNERSHIP_NONE);
6854 		}
6855 		mutex_exit(&vdc->ownership_lock);
6856 		return (rv);
6857 	}
6858 
6859 	case MHIOCSTATUS:
6860 	{
6861 		uint64_t status;
6862 
6863 		rv = vdc_access_get(vdc, &status, mode);
6864 		if (rv == 0 && rvalp != NULL)
6865 			*rvalp = (status & VD_ACCESS_ALLOWED)? 0 : 1;
6866 		return (rv);
6867 	}
6868 
6869 	case MHIOCQRESERVE:
6870 	{
6871 		rv = vdc_access_set(vdc, VD_ACCESS_SET_EXCLUSIVE, mode);
6872 		return (rv);
6873 	}
6874 
6875 	case MHIOCGRP_INKEYS:
6876 	{
6877 		return (vdc_mhd_inkeys(vdc, arg, mode));
6878 	}
6879 
6880 	case MHIOCGRP_INRESV:
6881 	{
6882 		return (vdc_mhd_inresv(vdc, arg, mode));
6883 	}
6884 
6885 	case MHIOCGRP_REGISTER:
6886 	{
6887 		return (vdc_mhd_register(vdc, arg, mode));
6888 	}
6889 
6890 	case MHIOCGRP_RESERVE:
6891 	{
6892 		return (vdc_mhd_reserve(vdc, arg, mode));
6893 	}
6894 
6895 	case MHIOCGRP_PREEMPTANDABORT:
6896 	{
6897 		return (vdc_mhd_preemptabort(vdc, arg, mode));
6898 	}
6899 
6900 	case MHIOCGRP_REGISTERANDIGNOREKEY:
6901 	{
6902 		return (vdc_mhd_registerignore(vdc, arg, mode));
6903 	}
6904 
6905 	case MHIOCENFAILFAST:
6906 	{
6907 		rv = vdc_failfast(vdc, arg, mode);
6908 		return (rv);
6909 	}
6910 
6911 	case DIOCTL_RWCMD:
6912 	{
6913 		return (vdc_dioctl_rwcmd(dev, arg, mode));
6914 	}
6915 
6916 	case DKIOCGAPART:
6917 	{
6918 		return (vdc_dkio_gapart(vdc, arg, mode));
6919 	}
6920 
6921 	case DKIOCPARTITION:
6922 	{
6923 		return (vdc_dkio_partition(vdc, arg, mode));
6924 	}
6925 
6926 	case DKIOCINFO:
6927 	{
6928 		struct dk_cinfo	cinfo;
6929 
6930 		bcopy(vdc->cinfo, &cinfo, sizeof (struct dk_cinfo));
6931 		cinfo.dki_partition = VDCPART(dev);
6932 
6933 		rv = ddi_copyout(&cinfo, (void *)arg,
6934 		    sizeof (struct dk_cinfo), mode);
6935 		if (rv != 0)
6936 			return (EFAULT);
6937 
6938 		return (0);
6939 	}
6940 
6941 	case DKIOCGMEDIAINFO:
6942 	{
6943 		ASSERT(vdc->vdisk_size != 0);
6944 		ASSERT(vdc->minfo->dki_capacity != 0);
6945 		rv = ddi_copyout(vdc->minfo, (void *)arg,
6946 		    sizeof (struct dk_minfo), mode);
6947 		if (rv != 0)
6948 			return (EFAULT);
6949 
6950 		return (0);
6951 	}
6952 
6953 	case DKIOCFLUSHWRITECACHE:
6954 		{
6955 			struct dk_callback *dkc =
6956 			    (struct dk_callback *)(uintptr_t)arg;
6957 			vdc_dk_arg_t	*dkarg = NULL;
6958 
6959 			DMSG(vdc, 1, "[%d] Flush W$: mode %x\n",
6960 			    instance, mode);
6961 
6962 			/*
6963 			 * If arg is NULL, then there is no callback function
6964 			 * registered and the call operates synchronously; we
6965 			 * break and continue with the rest of the function and
6966 			 * wait for vds to return (i.e. after the request to
6967 			 * vds returns successfully, all writes completed prior
6968 			 * to the ioctl will have been flushed from the disk
6969 			 * write cache to persistent media.
6970 			 *
6971 			 * If a callback function is registered, we dispatch
6972 			 * the request on a task queue and return immediately.
6973 			 * The callback will deal with informing the calling
6974 			 * thread that the flush request is completed.
6975 			 */
6976 			if (dkc == NULL)
6977 				break;
6978 
6979 			/*
6980 			 * the asynchronous callback is only supported if
6981 			 * invoked from within the kernel
6982 			 */
6983 			if ((mode & FKIOCTL) == 0)
6984 				return (ENOTSUP);
6985 
6986 			dkarg = kmem_zalloc(sizeof (vdc_dk_arg_t), KM_SLEEP);
6987 
6988 			dkarg->mode = mode;
6989 			dkarg->dev = dev;
6990 			bcopy(dkc, &dkarg->dkc, sizeof (*dkc));
6991 
6992 			mutex_enter(&vdc->lock);
6993 			vdc->dkio_flush_pending++;
6994 			dkarg->vdc = vdc;
6995 			mutex_exit(&vdc->lock);
6996 
6997 			/* put the request on a task queue */
6998 			rv = taskq_dispatch(system_taskq, vdc_dkio_flush_cb,
6999 			    (void *)dkarg, DDI_SLEEP);
7000 			if (rv == NULL) {
7001 				/* clean up if dispatch fails */
7002 				mutex_enter(&vdc->lock);
7003 				vdc->dkio_flush_pending--;
7004 				mutex_exit(&vdc->lock);
7005 				kmem_free(dkarg, sizeof (vdc_dk_arg_t));
7006 			}
7007 
7008 			return (rv == NULL ? ENOMEM : 0);
7009 		}
7010 	}
7011 
7012 	/* catch programming error in vdc - should be a VD_OP_XXX ioctl */
7013 	ASSERT(iop->op != 0);
7014 
7015 	/* check if the vDisk server handles the operation for this vDisk */
7016 	if (VD_OP_SUPPORTED(vdc->operations, iop->op) == B_FALSE) {
7017 		DMSG(vdc, 0, "[%d] Unsupported VD_OP operation (0x%x)\n",
7018 		    vdc->instance, iop->op);
7019 		return (ENOTSUP);
7020 	}
7021 
7022 	/* LDC requires that the memory being mapped is 8-byte aligned */
7023 	alloc_len = P2ROUNDUP(len, sizeof (uint64_t));
7024 	DMSG(vdc, 1, "[%d] struct size %ld alloc %ld\n",
7025 	    instance, len, alloc_len);
7026 
7027 	if (alloc_len > 0)
7028 		mem_p = kmem_zalloc(alloc_len, KM_SLEEP);
7029 
7030 	/*
7031 	 * Call the conversion function for this ioctl which, if necessary,
7032 	 * converts from the Solaris format to the format ARC'ed
7033 	 * as part of the vDisk protocol (FWARC 2006/195)
7034 	 */
7035 	ASSERT(iop->convert != NULL);
7036 	rv = (iop->convert)(vdc, arg, mem_p, mode, VD_COPYIN);
7037 	if (rv != 0) {
7038 		DMSG(vdc, 0, "[%d] convert func returned %d for ioctl 0x%x\n",
7039 		    instance, rv, cmd);
7040 		if (mem_p != NULL)
7041 			kmem_free(mem_p, alloc_len);
7042 		return (rv);
7043 	}
7044 
7045 	/*
7046 	 * send request to vds to service the ioctl.
7047 	 */
7048 	rv = vdc_do_sync_op(vdc, iop->op, mem_p, alloc_len,
7049 	    VDCPART(dev), 0, CB_SYNC, (void *)(uint64_t)mode,
7050 	    VIO_both_dir, B_TRUE);
7051 
7052 	if (rv != 0) {
7053 		/*
7054 		 * This is not necessarily an error. The ioctl could
7055 		 * be returning a value such as ENOTTY to indicate
7056 		 * that the ioctl is not applicable.
7057 		 */
7058 		DMSG(vdc, 0, "[%d] vds returned %d for ioctl 0x%x\n",
7059 		    instance, rv, cmd);
7060 		if (mem_p != NULL)
7061 			kmem_free(mem_p, alloc_len);
7062 
7063 		return (rv);
7064 	}
7065 
7066 	/*
7067 	 * Call the conversion function (if it exists) for this ioctl
7068 	 * which converts from the format ARC'ed as part of the vDisk
7069 	 * protocol (FWARC 2006/195) back to a format understood by
7070 	 * the rest of Solaris.
7071 	 */
7072 	rv = (iop->convert)(vdc, mem_p, arg, mode, VD_COPYOUT);
7073 	if (rv != 0) {
7074 		DMSG(vdc, 0, "[%d] convert func returned %d for ioctl 0x%x\n",
7075 		    instance, rv, cmd);
7076 		if (mem_p != NULL)
7077 			kmem_free(mem_p, alloc_len);
7078 		return (rv);
7079 	}
7080 
7081 	if (mem_p != NULL)
7082 		kmem_free(mem_p, alloc_len);
7083 
7084 	return (rv);
7085 }
7086 
7087 /*
7088  * Function:
7089  *
7090  * Description:
7091  *	This is an empty conversion function used by ioctl calls which
7092  *	do not need to convert the data being passed in/out to userland
7093  */
7094 static int
7095 vdc_null_copy_func(vdc_t *vdc, void *from, void *to, int mode, int dir)
7096 {
7097 	_NOTE(ARGUNUSED(vdc))
7098 	_NOTE(ARGUNUSED(from))
7099 	_NOTE(ARGUNUSED(to))
7100 	_NOTE(ARGUNUSED(mode))
7101 	_NOTE(ARGUNUSED(dir))
7102 
7103 	return (0);
7104 }
7105 
7106 static int
7107 vdc_get_wce_convert(vdc_t *vdc, void *from, void *to,
7108     int mode, int dir)
7109 {
7110 	_NOTE(ARGUNUSED(vdc))
7111 
7112 	if (dir == VD_COPYIN)
7113 		return (0);		/* nothing to do */
7114 
7115 	if (ddi_copyout(from, to, sizeof (int), mode) != 0)
7116 		return (EFAULT);
7117 
7118 	return (0);
7119 }
7120 
7121 static int
7122 vdc_set_wce_convert(vdc_t *vdc, void *from, void *to,
7123     int mode, int dir)
7124 {
7125 	_NOTE(ARGUNUSED(vdc))
7126 
7127 	if (dir == VD_COPYOUT)
7128 		return (0);		/* nothing to do */
7129 
7130 	if (ddi_copyin(from, to, sizeof (int), mode) != 0)
7131 		return (EFAULT);
7132 
7133 	return (0);
7134 }
7135 
7136 /*
7137  * Function:
7138  *	vdc_get_vtoc_convert()
7139  *
7140  * Description:
7141  *	This routine performs the necessary convertions from the DKIOCGVTOC
7142  *	Solaris structure to the format defined in FWARC 2006/195.
7143  *
7144  *	In the struct vtoc definition, the timestamp field is marked as not
7145  *	supported so it is not part of vDisk protocol (FWARC 2006/195).
7146  *	However SVM uses that field to check it can write into the VTOC,
7147  *	so we fake up the info of that field.
7148  *
7149  * Arguments:
7150  *	vdc	- the vDisk client
7151  *	from	- the buffer containing the data to be copied from
7152  *	to	- the buffer to be copied to
7153  *	mode	- flags passed to ioctl() call
7154  *	dir	- the "direction" of the copy - VD_COPYIN or VD_COPYOUT
7155  *
7156  * Return Code:
7157  *	0	- Success
7158  *	ENXIO	- incorrect buffer passed in.
7159  *	EFAULT	- ddi_copyout routine encountered an error.
7160  */
7161 static int
7162 vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7163 {
7164 	int		i;
7165 	void		*tmp_mem = NULL;
7166 	void		*tmp_memp;
7167 	struct vtoc	vt;
7168 	struct vtoc32	vt32;
7169 	int		copy_len = 0;
7170 	int		rv = 0;
7171 
7172 	if (dir != VD_COPYOUT)
7173 		return (0);	/* nothing to do */
7174 
7175 	if ((from == NULL) || (to == NULL))
7176 		return (ENXIO);
7177 
7178 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32)
7179 		copy_len = sizeof (struct vtoc32);
7180 	else
7181 		copy_len = sizeof (struct vtoc);
7182 
7183 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
7184 
7185 	VD_VTOC2VTOC((vd_vtoc_t *)from, &vt);
7186 
7187 	/* fake the VTOC timestamp field */
7188 	for (i = 0; i < V_NUMPAR; i++) {
7189 		vt.timestamp[i] = vdc->vtoc->timestamp[i];
7190 	}
7191 
7192 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
7193 		/* LINTED E_ASSIGN_NARROW_CONV */
7194 		vtoctovtoc32(vt, vt32);
7195 		tmp_memp = &vt32;
7196 	} else {
7197 		tmp_memp = &vt;
7198 	}
7199 	rv = ddi_copyout(tmp_memp, to, copy_len, mode);
7200 	if (rv != 0)
7201 		rv = EFAULT;
7202 
7203 	kmem_free(tmp_mem, copy_len);
7204 	return (rv);
7205 }
7206 
7207 /*
7208  * Function:
7209  *	vdc_set_vtoc_convert()
7210  *
7211  * Description:
7212  *	This routine performs the necessary convertions from the DKIOCSVTOC
7213  *	Solaris structure to the format defined in FWARC 2006/195.
7214  *
7215  * Arguments:
7216  *	vdc	- the vDisk client
7217  *	from	- Buffer with data
7218  *	to	- Buffer where data is to be copied to
7219  *	mode	- flags passed to ioctl
7220  *	dir	- direction of copy (in or out)
7221  *
7222  * Return Code:
7223  *	0	- Success
7224  *	ENXIO	- Invalid buffer passed in
7225  *	EFAULT	- ddi_copyin of data failed
7226  */
7227 static int
7228 vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7229 {
7230 	_NOTE(ARGUNUSED(vdc))
7231 
7232 	void		*tmp_mem = NULL, *uvtoc;
7233 	struct vtoc	vt;
7234 	struct vtoc	*vtp = &vt;
7235 	vd_vtoc_t	vtvd;
7236 	int		copy_len = 0;
7237 	int		i, rv = 0;
7238 
7239 	if ((from == NULL) || (to == NULL))
7240 		return (ENXIO);
7241 
7242 	if (dir == VD_COPYIN)
7243 		uvtoc = from;
7244 	else
7245 		uvtoc = to;
7246 
7247 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32)
7248 		copy_len = sizeof (struct vtoc32);
7249 	else
7250 		copy_len = sizeof (struct vtoc);
7251 
7252 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
7253 
7254 	rv = ddi_copyin(uvtoc, tmp_mem, copy_len, mode);
7255 	if (rv != 0) {
7256 		kmem_free(tmp_mem, copy_len);
7257 		return (EFAULT);
7258 	}
7259 
7260 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
7261 		vtoc32tovtoc((*(struct vtoc32 *)tmp_mem), vt);
7262 	} else {
7263 		vtp = tmp_mem;
7264 	}
7265 
7266 	if (dir == VD_COPYOUT) {
7267 		/*
7268 		 * The disk label may have changed. Revalidate the disk
7269 		 * geometry. This will also update the device nodes.
7270 		 */
7271 		vdc_validate(vdc);
7272 
7273 		/*
7274 		 * We also need to keep track of the timestamp fields.
7275 		 */
7276 		for (i = 0; i < V_NUMPAR; i++) {
7277 			vdc->vtoc->timestamp[i] = vtp->timestamp[i];
7278 		}
7279 
7280 		return (0);
7281 	}
7282 
7283 	VTOC2VD_VTOC(vtp, &vtvd);
7284 	bcopy(&vtvd, to, sizeof (vd_vtoc_t));
7285 	kmem_free(tmp_mem, copy_len);
7286 
7287 	return (0);
7288 }
7289 
7290 /*
7291  * Function:
7292  *	vdc_get_geom_convert()
7293  *
7294  * Description:
7295  *	This routine performs the necessary convertions from the DKIOCGGEOM,
7296  *	DKIOCG_PHYSGEOM and DKIOG_VIRTGEOM Solaris structures to the format
7297  *	defined in FWARC 2006/195
7298  *
7299  * Arguments:
7300  *	vdc	- the vDisk client
7301  *	from	- Buffer with data
7302  *	to	- Buffer where data is to be copied to
7303  *	mode	- flags passed to ioctl
7304  *	dir	- direction of copy (in or out)
7305  *
7306  * Return Code:
7307  *	0	- Success
7308  *	ENXIO	- Invalid buffer passed in
7309  *	EFAULT	- ddi_copyout of data failed
7310  */
7311 static int
7312 vdc_get_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7313 {
7314 	_NOTE(ARGUNUSED(vdc))
7315 
7316 	struct dk_geom	geom;
7317 	int	copy_len = sizeof (struct dk_geom);
7318 	int	rv = 0;
7319 
7320 	if (dir != VD_COPYOUT)
7321 		return (0);	/* nothing to do */
7322 
7323 	if ((from == NULL) || (to == NULL))
7324 		return (ENXIO);
7325 
7326 	VD_GEOM2DK_GEOM((vd_geom_t *)from, &geom);
7327 	rv = ddi_copyout(&geom, to, copy_len, mode);
7328 	if (rv != 0)
7329 		rv = EFAULT;
7330 
7331 	return (rv);
7332 }
7333 
7334 /*
7335  * Function:
7336  *	vdc_set_geom_convert()
7337  *
7338  * Description:
7339  *	This routine performs the necessary convertions from the DKIOCSGEOM
7340  *	Solaris structure to the format defined in FWARC 2006/195.
7341  *
7342  * Arguments:
7343  *	vdc	- the vDisk client
7344  *	from	- Buffer with data
7345  *	to	- Buffer where data is to be copied to
7346  *	mode	- flags passed to ioctl
7347  *	dir	- direction of copy (in or out)
7348  *
7349  * Return Code:
7350  *	0	- Success
7351  *	ENXIO	- Invalid buffer passed in
7352  *	EFAULT	- ddi_copyin of data failed
7353  */
7354 static int
7355 vdc_set_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7356 {
7357 	_NOTE(ARGUNUSED(vdc))
7358 
7359 	vd_geom_t	vdgeom;
7360 	void		*tmp_mem = NULL;
7361 	int		copy_len = sizeof (struct dk_geom);
7362 	int		rv = 0;
7363 
7364 	if (dir != VD_COPYIN)
7365 		return (0);	/* nothing to do */
7366 
7367 	if ((from == NULL) || (to == NULL))
7368 		return (ENXIO);
7369 
7370 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
7371 
7372 	rv = ddi_copyin(from, tmp_mem, copy_len, mode);
7373 	if (rv != 0) {
7374 		kmem_free(tmp_mem, copy_len);
7375 		return (EFAULT);
7376 	}
7377 	DK_GEOM2VD_GEOM((struct dk_geom *)tmp_mem, &vdgeom);
7378 	bcopy(&vdgeom, to, sizeof (vdgeom));
7379 	kmem_free(tmp_mem, copy_len);
7380 
7381 	return (0);
7382 }
7383 
7384 static int
7385 vdc_get_efi_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7386 {
7387 	_NOTE(ARGUNUSED(vdc))
7388 
7389 	vd_efi_t	*vd_efi;
7390 	dk_efi_t	dk_efi;
7391 	int		rv = 0;
7392 	void		*uaddr;
7393 
7394 	if ((from == NULL) || (to == NULL))
7395 		return (ENXIO);
7396 
7397 	if (dir == VD_COPYIN) {
7398 
7399 		vd_efi = (vd_efi_t *)to;
7400 
7401 		rv = ddi_copyin(from, &dk_efi, sizeof (dk_efi_t), mode);
7402 		if (rv != 0)
7403 			return (EFAULT);
7404 
7405 		vd_efi->lba = dk_efi.dki_lba;
7406 		vd_efi->length = dk_efi.dki_length;
7407 		bzero(vd_efi->data, vd_efi->length);
7408 
7409 	} else {
7410 
7411 		rv = ddi_copyin(to, &dk_efi, sizeof (dk_efi_t), mode);
7412 		if (rv != 0)
7413 			return (EFAULT);
7414 
7415 		uaddr = dk_efi.dki_data;
7416 
7417 		dk_efi.dki_data = kmem_alloc(dk_efi.dki_length, KM_SLEEP);
7418 
7419 		VD_EFI2DK_EFI((vd_efi_t *)from, &dk_efi);
7420 
7421 		rv = ddi_copyout(dk_efi.dki_data, uaddr, dk_efi.dki_length,
7422 		    mode);
7423 		if (rv != 0)
7424 			return (EFAULT);
7425 
7426 		kmem_free(dk_efi.dki_data, dk_efi.dki_length);
7427 	}
7428 
7429 	return (0);
7430 }
7431 
7432 static int
7433 vdc_set_efi_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7434 {
7435 	_NOTE(ARGUNUSED(vdc))
7436 
7437 	dk_efi_t	dk_efi;
7438 	void		*uaddr;
7439 
7440 	if (dir == VD_COPYOUT) {
7441 		/*
7442 		 * The disk label may have changed. Revalidate the disk
7443 		 * geometry. This will also update the device nodes.
7444 		 */
7445 		vdc_validate(vdc);
7446 		return (0);
7447 	}
7448 
7449 	if ((from == NULL) || (to == NULL))
7450 		return (ENXIO);
7451 
7452 	if (ddi_copyin(from, &dk_efi, sizeof (dk_efi_t), mode) != 0)
7453 		return (EFAULT);
7454 
7455 	uaddr = dk_efi.dki_data;
7456 
7457 	dk_efi.dki_data = kmem_alloc(dk_efi.dki_length, KM_SLEEP);
7458 
7459 	if (ddi_copyin(uaddr, dk_efi.dki_data, dk_efi.dki_length, mode) != 0)
7460 		return (EFAULT);
7461 
7462 	DK_EFI2VD_EFI(&dk_efi, (vd_efi_t *)to);
7463 
7464 	kmem_free(dk_efi.dki_data, dk_efi.dki_length);
7465 
7466 	return (0);
7467 }
7468 
7469 
7470 /* -------------------------------------------------------------------------- */
7471 
7472 /*
7473  * Function:
7474  *	vdc_create_fake_geometry()
7475  *
7476  * Description:
7477  *	This routine fakes up the disk info needed for some DKIO ioctls such
7478  *	as DKIOCINFO and DKIOCGMEDIAINFO [just like lofi(7D) and ramdisk(7D) do]
7479  *
7480  *	Note: This function must not be called until the vDisk attributes have
7481  *	been exchanged as part of the handshake with the vDisk server.
7482  *
7483  * Arguments:
7484  *	vdc	- soft state pointer for this instance of the device driver.
7485  *
7486  * Return Code:
7487  *	none.
7488  */
7489 static void
7490 vdc_create_fake_geometry(vdc_t *vdc)
7491 {
7492 	ASSERT(vdc != NULL);
7493 	ASSERT(vdc->max_xfer_sz != 0);
7494 
7495 	/*
7496 	 * DKIOCINFO support
7497 	 */
7498 	if (vdc->cinfo == NULL)
7499 		vdc->cinfo = kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
7500 
7501 	(void) strcpy(vdc->cinfo->dki_cname, VDC_DRIVER_NAME);
7502 	(void) strcpy(vdc->cinfo->dki_dname, VDC_DRIVER_NAME);
7503 	/* max_xfer_sz is #blocks so we don't need to divide by DEV_BSIZE */
7504 	vdc->cinfo->dki_maxtransfer = vdc->max_xfer_sz;
7505 
7506 	/*
7507 	 * We set the controller type to DKC_SCSI_CCS only if the VD_OP_SCSICMD
7508 	 * operation is supported, otherwise the controller type is DKC_DIRECT.
7509 	 * Version 1.0 does not support the VD_OP_SCSICMD operation, so the
7510 	 * controller type is always DKC_DIRECT in that case.
7511 	 *
7512 	 * If the virtual disk is backed by a physical CD/DVD device or
7513 	 * an ISO image, modify the controller type to indicate this
7514 	 */
7515 	switch (vdc->vdisk_media) {
7516 	case VD_MEDIA_CD:
7517 	case VD_MEDIA_DVD:
7518 		vdc->cinfo->dki_ctype = DKC_CDROM;
7519 		break;
7520 	case VD_MEDIA_FIXED:
7521 		if (VD_OP_SUPPORTED(vdc->operations, VD_OP_SCSICMD))
7522 			vdc->cinfo->dki_ctype = DKC_SCSI_CCS;
7523 		else
7524 			vdc->cinfo->dki_ctype = DKC_DIRECT;
7525 		break;
7526 	default:
7527 		/* in the case of v1.0 we default to a fixed disk */
7528 		vdc->cinfo->dki_ctype = DKC_DIRECT;
7529 		break;
7530 	}
7531 	vdc->cinfo->dki_flags = DKI_FMTVOL;
7532 	vdc->cinfo->dki_cnum = 0;
7533 	vdc->cinfo->dki_addr = 0;
7534 	vdc->cinfo->dki_space = 0;
7535 	vdc->cinfo->dki_prio = 0;
7536 	vdc->cinfo->dki_vec = 0;
7537 	vdc->cinfo->dki_unit = vdc->instance;
7538 	vdc->cinfo->dki_slave = 0;
7539 	/*
7540 	 * The partition number will be created on the fly depending on the
7541 	 * actual slice (i.e. minor node) that is used to request the data.
7542 	 */
7543 	vdc->cinfo->dki_partition = 0;
7544 
7545 	/*
7546 	 * DKIOCGMEDIAINFO support
7547 	 */
7548 	if (vdc->minfo == NULL)
7549 		vdc->minfo = kmem_zalloc(sizeof (struct dk_minfo), KM_SLEEP);
7550 
7551 	if (vio_ver_is_supported(vdc->ver, 1, 1)) {
7552 		vdc->minfo->dki_media_type =
7553 		    VD_MEDIATYPE2DK_MEDIATYPE(vdc->vdisk_media);
7554 	} else {
7555 		vdc->minfo->dki_media_type = DK_FIXED_DISK;
7556 	}
7557 
7558 	vdc->minfo->dki_capacity = vdc->vdisk_size;
7559 	vdc->minfo->dki_lbsize = vdc->block_size;
7560 }
7561 
7562 static ushort_t
7563 vdc_lbl2cksum(struct dk_label *label)
7564 {
7565 	int	count;
7566 	ushort_t sum, *sp;
7567 
7568 	count =	(sizeof (struct dk_label)) / (sizeof (short)) - 1;
7569 	sp = (ushort_t *)label;
7570 	sum = 0;
7571 	while (count--) {
7572 		sum ^= *sp++;
7573 	}
7574 
7575 	return (sum);
7576 }
7577 
7578 static void
7579 vdc_update_size(vdc_t *vdc, size_t dsk_size, size_t blk_size, size_t xfr_size)
7580 {
7581 	vd_err_stats_t  *stp;
7582 
7583 	ASSERT(MUTEX_HELD(&vdc->lock));
7584 	ASSERT(xfr_size != 0);
7585 
7586 	/*
7587 	 * If the disk size is unknown or sizes are unchanged then don't
7588 	 * update anything.
7589 	 */
7590 	if (dsk_size == VD_SIZE_UNKNOWN || dsk_size == 0 ||
7591 	    (blk_size == vdc->block_size && dsk_size == vdc->vdisk_size &&
7592 	    xfr_size == vdc->max_xfer_sz))
7593 		return;
7594 
7595 	/*
7596 	 * We don't know at compile time what the vDisk server will think
7597 	 * are good values but we apply a large (arbitrary) upper bound to
7598 	 * prevent memory exhaustion in vdc if it was allocating a DRing
7599 	 * based of huge values sent by the server. We probably will never
7600 	 * exceed this except if the message was garbage.
7601 	 */
7602 	if ((xfr_size * blk_size) > (PAGESIZE * DEV_BSIZE)) {
7603 		DMSG(vdc, 0, "[%d] vds block transfer size too big;"
7604 		    " using max supported by vdc", vdc->instance);
7605 		xfr_size = maxphys / DEV_BSIZE;
7606 		dsk_size = (dsk_size * blk_size) / DEV_BSIZE;
7607 		blk_size = DEV_BSIZE;
7608 	}
7609 
7610 	vdc->max_xfer_sz = xfr_size;
7611 	vdc->block_size = blk_size;
7612 	vdc->vdisk_size = dsk_size;
7613 
7614 	stp = (vd_err_stats_t *)vdc->err_stats->ks_data;
7615 	stp->vd_capacity.value.ui64 = dsk_size * blk_size;
7616 
7617 	vdc->minfo->dki_capacity = dsk_size;
7618 	vdc->minfo->dki_lbsize = (uint_t)blk_size;
7619 }
7620 
7621 /*
7622  * Function:
7623  *	vdc_validate_geometry
7624  *
7625  * Description:
7626  *	This routine discovers the label and geometry of the disk. It stores
7627  *	the disk label and related information in the vdc structure. If it
7628  *	fails to validate the geometry or to discover the disk label then
7629  *	the label is marked as unknown (VD_DISK_LABEL_UNK).
7630  *
7631  * Arguments:
7632  *	vdc	- soft state pointer for this instance of the device driver.
7633  *
7634  * Return Code:
7635  *	0	- success.
7636  *	EINVAL	- unknown disk label.
7637  *	ENOTSUP	- geometry not applicable (EFI label).
7638  *	EIO	- error accessing the disk.
7639  */
7640 static int
7641 vdc_validate_geometry(vdc_t *vdc)
7642 {
7643 	buf_t	*buf;	/* BREAD requests need to be in a buf_t structure */
7644 	dev_t	dev;
7645 	int	rv, rval;
7646 	struct dk_label label;
7647 	struct dk_geom geom;
7648 	struct vtoc vtoc;
7649 	efi_gpt_t *gpt;
7650 	efi_gpe_t *gpe;
7651 	vd_efi_dev_t edev;
7652 
7653 	ASSERT(vdc != NULL);
7654 	ASSERT(vdc->vtoc != NULL && vdc->geom != NULL);
7655 	ASSERT(MUTEX_HELD(&vdc->lock));
7656 
7657 	mutex_exit(&vdc->lock);
7658 	/*
7659 	 * Check the disk capacity in case it has changed. If that fails then
7660 	 * we proceed and we will be using the disk size we currently have.
7661 	 */
7662 	(void) vdc_check_capacity(vdc);
7663 	dev = makedevice(ddi_driver_major(vdc->dip),
7664 	    VD_MAKE_DEV(vdc->instance, 0));
7665 
7666 	rv = vd_process_ioctl(dev, DKIOCGGEOM, (caddr_t)&geom, FKIOCTL, &rval);
7667 	if (rv == 0)
7668 		rv = vd_process_ioctl(dev, DKIOCGVTOC, (caddr_t)&vtoc,
7669 		    FKIOCTL, &rval);
7670 
7671 	if (rv == ENOTSUP) {
7672 		/*
7673 		 * If the device does not support VTOC then we try
7674 		 * to read an EFI label.
7675 		 *
7676 		 * We need to know the block size and the disk size to
7677 		 * be able to read an EFI label.
7678 		 */
7679 		if (vdc->vdisk_size == 0) {
7680 			mutex_enter(&vdc->lock);
7681 			vdc_store_label_unk(vdc);
7682 			return (EIO);
7683 		}
7684 
7685 		VD_EFI_DEV_SET(edev, vdc, vd_process_efi_ioctl);
7686 
7687 		rv = vd_efi_alloc_and_read(&edev, &gpt, &gpe);
7688 
7689 		if (rv) {
7690 			DMSG(vdc, 0, "[%d] Failed to get EFI (err=%d)",
7691 			    vdc->instance, rv);
7692 			mutex_enter(&vdc->lock);
7693 			vdc_store_label_unk(vdc);
7694 			return (EIO);
7695 		}
7696 
7697 		mutex_enter(&vdc->lock);
7698 		vdc_store_label_efi(vdc, gpt, gpe);
7699 		vd_efi_free(&edev, gpt, gpe);
7700 		return (ENOTSUP);
7701 	}
7702 
7703 	if (rv != 0) {
7704 		DMSG(vdc, 0, "[%d] Failed to get VTOC (err=%d)",
7705 		    vdc->instance, rv);
7706 		mutex_enter(&vdc->lock);
7707 		vdc_store_label_unk(vdc);
7708 		if (rv != EINVAL)
7709 			rv = EIO;
7710 		return (rv);
7711 	}
7712 
7713 	/* check that geometry and vtoc are valid */
7714 	if (geom.dkg_nhead == 0 || geom.dkg_nsect == 0 ||
7715 	    vtoc.v_sanity != VTOC_SANE) {
7716 		mutex_enter(&vdc->lock);
7717 		vdc_store_label_unk(vdc);
7718 		return (EINVAL);
7719 	}
7720 
7721 	/*
7722 	 * We have a disk and a valid VTOC. However this does not mean
7723 	 * that the disk currently have a VTOC label. The returned VTOC may
7724 	 * be a default VTOC to be used for configuring the disk (this is
7725 	 * what is done for disk image). So we read the label from the
7726 	 * beginning of the disk to ensure we really have a VTOC label.
7727 	 *
7728 	 * FUTURE: This could be the default way for reading the VTOC
7729 	 * from the disk as opposed to sending the VD_OP_GET_VTOC
7730 	 * to the server. This will be the default if vdc is implemented
7731 	 * ontop of cmlb.
7732 	 */
7733 
7734 	/*
7735 	 * Single slice disk does not support read using an absolute disk
7736 	 * offset so we just rely on the DKIOCGVTOC ioctl in that case.
7737 	 */
7738 	if (vdc->vdisk_type == VD_DISK_TYPE_SLICE) {
7739 		mutex_enter(&vdc->lock);
7740 		if (vtoc.v_nparts != 1) {
7741 			vdc_store_label_unk(vdc);
7742 			return (EINVAL);
7743 		}
7744 		vdc_store_label_vtoc(vdc, &geom, &vtoc);
7745 		return (0);
7746 	}
7747 
7748 	if (vtoc.v_nparts != V_NUMPAR) {
7749 		mutex_enter(&vdc->lock);
7750 		vdc_store_label_unk(vdc);
7751 		return (EINVAL);
7752 	}
7753 
7754 	/*
7755 	 * Read disk label from start of disk
7756 	 */
7757 	buf = kmem_alloc(sizeof (buf_t), KM_SLEEP);
7758 	bioinit(buf);
7759 	buf->b_un.b_addr = (caddr_t)&label;
7760 	buf->b_bcount = DK_LABEL_SIZE;
7761 	buf->b_flags = B_BUSY | B_READ;
7762 	buf->b_dev = cmpdev(dev);
7763 	rv = vdc_send_request(vdc, VD_OP_BREAD, (caddr_t)&label,
7764 	    DK_LABEL_SIZE, VD_SLICE_NONE, 0, CB_STRATEGY, buf, VIO_read_dir);
7765 	if (rv) {
7766 		DMSG(vdc, 1, "[%d] Failed to read disk block 0\n",
7767 		    vdc->instance);
7768 	} else {
7769 		rv = biowait(buf);
7770 		biofini(buf);
7771 	}
7772 	kmem_free(buf, sizeof (buf_t));
7773 
7774 	if (rv != 0 || label.dkl_magic != DKL_MAGIC ||
7775 	    label.dkl_cksum != vdc_lbl2cksum(&label)) {
7776 		DMSG(vdc, 1, "[%d] Got VTOC with invalid label\n",
7777 		    vdc->instance);
7778 		mutex_enter(&vdc->lock);
7779 		vdc_store_label_unk(vdc);
7780 		return (EINVAL);
7781 	}
7782 
7783 	mutex_enter(&vdc->lock);
7784 	vdc_store_label_vtoc(vdc, &geom, &vtoc);
7785 	return (0);
7786 }
7787 
7788 /*
7789  * Function:
7790  *	vdc_validate
7791  *
7792  * Description:
7793  *	This routine discovers the label of the disk and create the
7794  *	appropriate device nodes if the label has changed.
7795  *
7796  * Arguments:
7797  *	vdc	- soft state pointer for this instance of the device driver.
7798  *
7799  * Return Code:
7800  *	none.
7801  */
7802 static void
7803 vdc_validate(vdc_t *vdc)
7804 {
7805 	vd_disk_label_t old_label;
7806 	vd_slice_t old_slice[V_NUMPAR];
7807 	int rv;
7808 
7809 	ASSERT(!MUTEX_HELD(&vdc->lock));
7810 
7811 	mutex_enter(&vdc->lock);
7812 
7813 	/* save the current label and vtoc */
7814 	old_label = vdc->vdisk_label;
7815 	bcopy(vdc->slice, &old_slice, sizeof (vd_slice_t) * V_NUMPAR);
7816 
7817 	/* check the geometry */
7818 	(void) vdc_validate_geometry(vdc);
7819 
7820 	/* if the disk label has changed, update device nodes */
7821 	if (vdc->vdisk_label != old_label) {
7822 
7823 		if (vdc->vdisk_label == VD_DISK_LABEL_EFI)
7824 			rv = vdc_create_device_nodes_efi(vdc);
7825 		else
7826 			rv = vdc_create_device_nodes_vtoc(vdc);
7827 
7828 		if (rv != 0) {
7829 			DMSG(vdc, 0, "![%d] Failed to update device nodes",
7830 			    vdc->instance);
7831 		}
7832 	}
7833 
7834 	mutex_exit(&vdc->lock);
7835 }
7836 
7837 static void
7838 vdc_validate_task(void *arg)
7839 {
7840 	vdc_t *vdc = (vdc_t *)arg;
7841 
7842 	vdc_validate(vdc);
7843 
7844 	mutex_enter(&vdc->lock);
7845 	ASSERT(vdc->validate_pending > 0);
7846 	vdc->validate_pending--;
7847 	mutex_exit(&vdc->lock);
7848 }
7849 
7850 /*
7851  * Function:
7852  *	vdc_setup_devid()
7853  *
7854  * Description:
7855  *	This routine discovers the devid of a vDisk. It requests the devid of
7856  *	the underlying device from the vDisk server, builds an encapsulated
7857  *	devid based on the retrieved devid and registers that new devid to
7858  *	the vDisk.
7859  *
7860  * Arguments:
7861  *	vdc	- soft state pointer for this instance of the device driver.
7862  *
7863  * Return Code:
7864  *	0	- A devid was succesfully registered for the vDisk
7865  */
7866 static int
7867 vdc_setup_devid(vdc_t *vdc)
7868 {
7869 	int rv;
7870 	vd_devid_t *vd_devid;
7871 	size_t bufsize, bufid_len;
7872 
7873 	/*
7874 	 * At first sight, we don't know the size of the devid that the
7875 	 * server will return but this size will be encoded into the
7876 	 * reply. So we do a first request using a default size then we
7877 	 * check if this size was large enough. If not then we do a second
7878 	 * request with the correct size returned by the server. Note that
7879 	 * ldc requires size to be 8-byte aligned.
7880 	 */
7881 	bufsize = P2ROUNDUP(VD_DEVID_SIZE(VD_DEVID_DEFAULT_LEN),
7882 	    sizeof (uint64_t));
7883 	vd_devid = kmem_zalloc(bufsize, KM_SLEEP);
7884 	bufid_len = bufsize - sizeof (vd_efi_t) - 1;
7885 
7886 	rv = vdc_do_sync_op(vdc, VD_OP_GET_DEVID, (caddr_t)vd_devid,
7887 	    bufsize, 0, 0, CB_SYNC, 0, VIO_both_dir, B_TRUE);
7888 
7889 	DMSG(vdc, 2, "sync_op returned %d\n", rv);
7890 
7891 	if (rv) {
7892 		kmem_free(vd_devid, bufsize);
7893 		return (rv);
7894 	}
7895 
7896 	if (vd_devid->length > bufid_len) {
7897 		/*
7898 		 * The returned devid is larger than the buffer used. Try again
7899 		 * with a buffer with the right size.
7900 		 */
7901 		kmem_free(vd_devid, bufsize);
7902 		bufsize = P2ROUNDUP(VD_DEVID_SIZE(vd_devid->length),
7903 		    sizeof (uint64_t));
7904 		vd_devid = kmem_zalloc(bufsize, KM_SLEEP);
7905 		bufid_len = bufsize - sizeof (vd_efi_t) - 1;
7906 
7907 		rv = vdc_do_sync_op(vdc, VD_OP_GET_DEVID,
7908 		    (caddr_t)vd_devid, bufsize, 0, 0, CB_SYNC, 0,
7909 		    VIO_both_dir, B_TRUE);
7910 
7911 		if (rv) {
7912 			kmem_free(vd_devid, bufsize);
7913 			return (rv);
7914 		}
7915 	}
7916 
7917 	/*
7918 	 * The virtual disk should have the same device id as the one associated
7919 	 * with the physical disk it is mapped on, otherwise sharing a disk
7920 	 * between a LDom and a non-LDom may not work (for example for a shared
7921 	 * SVM disk set).
7922 	 *
7923 	 * The DDI framework does not allow creating a device id with any
7924 	 * type so we first create a device id of type DEVID_ENCAP and then
7925 	 * we restore the orignal type of the physical device.
7926 	 */
7927 
7928 	DMSG(vdc, 2, ": devid length = %d\n", vd_devid->length);
7929 
7930 	/* build an encapsulated devid based on the returned devid */
7931 	if (ddi_devid_init(vdc->dip, DEVID_ENCAP, vd_devid->length,
7932 	    vd_devid->id, &vdc->devid) != DDI_SUCCESS) {
7933 		DMSG(vdc, 1, "[%d] Fail to created devid\n", vdc->instance);
7934 		kmem_free(vd_devid, bufsize);
7935 		return (1);
7936 	}
7937 
7938 	DEVID_FORMTYPE((impl_devid_t *)vdc->devid, vd_devid->type);
7939 
7940 	ASSERT(ddi_devid_valid(vdc->devid) == DDI_SUCCESS);
7941 
7942 	kmem_free(vd_devid, bufsize);
7943 
7944 	if (ddi_devid_register(vdc->dip, vdc->devid) != DDI_SUCCESS) {
7945 		DMSG(vdc, 1, "[%d] Fail to register devid\n", vdc->instance);
7946 		return (1);
7947 	}
7948 
7949 	return (0);
7950 }
7951 
7952 static void
7953 vdc_store_label_efi(vdc_t *vdc, efi_gpt_t *gpt, efi_gpe_t *gpe)
7954 {
7955 	int i, nparts;
7956 
7957 	ASSERT(MUTEX_HELD(&vdc->lock));
7958 
7959 	vdc->vdisk_label = VD_DISK_LABEL_EFI;
7960 	bzero(vdc->vtoc, sizeof (struct vtoc));
7961 	bzero(vdc->geom, sizeof (struct dk_geom));
7962 	bzero(vdc->slice, sizeof (vd_slice_t) * V_NUMPAR);
7963 
7964 	nparts = gpt->efi_gpt_NumberOfPartitionEntries;
7965 
7966 	for (i = 0; i < nparts && i < VD_EFI_WD_SLICE; i++) {
7967 
7968 		if (gpe[i].efi_gpe_StartingLBA == 0 ||
7969 		    gpe[i].efi_gpe_EndingLBA == 0) {
7970 			continue;
7971 		}
7972 
7973 		vdc->slice[i].start = gpe[i].efi_gpe_StartingLBA;
7974 		vdc->slice[i].nblocks = gpe[i].efi_gpe_EndingLBA -
7975 		    gpe[i].efi_gpe_StartingLBA + 1;
7976 	}
7977 
7978 	ASSERT(vdc->vdisk_size != 0);
7979 	vdc->slice[VD_EFI_WD_SLICE].start = 0;
7980 	vdc->slice[VD_EFI_WD_SLICE].nblocks = vdc->vdisk_size;
7981 
7982 }
7983 
7984 static void
7985 vdc_store_label_vtoc(vdc_t *vdc, struct dk_geom *geom, struct vtoc *vtoc)
7986 {
7987 	int i;
7988 
7989 	ASSERT(MUTEX_HELD(&vdc->lock));
7990 	ASSERT(vdc->block_size == vtoc->v_sectorsz);
7991 
7992 	vdc->vdisk_label = VD_DISK_LABEL_VTOC;
7993 	bcopy(vtoc, vdc->vtoc, sizeof (struct vtoc));
7994 	bcopy(geom, vdc->geom, sizeof (struct dk_geom));
7995 	bzero(vdc->slice, sizeof (vd_slice_t) * V_NUMPAR);
7996 
7997 	for (i = 0; i < vtoc->v_nparts; i++) {
7998 		vdc->slice[i].start = vtoc->v_part[i].p_start;
7999 		vdc->slice[i].nblocks = vtoc->v_part[i].p_size;
8000 	}
8001 }
8002 
8003 static void
8004 vdc_store_label_unk(vdc_t *vdc)
8005 {
8006 	ASSERT(MUTEX_HELD(&vdc->lock));
8007 
8008 	vdc->vdisk_label = VD_DISK_LABEL_UNK;
8009 	bzero(vdc->vtoc, sizeof (struct vtoc));
8010 	bzero(vdc->geom, sizeof (struct dk_geom));
8011 	bzero(vdc->slice, sizeof (vd_slice_t) * V_NUMPAR);
8012 }
8013