xref: /titanic_50/usr/src/uts/sun4v/io/vdc.c (revision 830f48a7bfcdf70f694abbdd46d94b09f1e4227f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * LDoms virtual disk client (vdc) device driver
31  *
32  * This driver runs on a guest logical domain and communicates with the virtual
33  * disk server (vds) driver running on the service domain which is exporting
34  * virtualized "disks" to the guest logical domain.
35  *
36  * The driver can be divided into four sections:
37  *
38  * 1) generic device driver housekeeping
39  *	_init, _fini, attach, detach, ops structures, etc.
40  *
41  * 2) communication channel setup
42  *	Setup the communications link over the LDC channel that vdc uses to
43  *	talk to the vDisk server. Initialise the descriptor ring which
44  *	allows the LDC clients to transfer data via memory mappings.
45  *
46  * 3) Support exported to upper layers (filesystems, etc)
47  *	The upper layers call into vdc via strategy(9E) and DKIO(7I)
48  *	ioctl calls. vdc will copy the data to be written to the descriptor
49  *	ring or maps the buffer to store the data read by the vDisk
50  *	server into the descriptor ring. It then sends a message to the
51  *	vDisk server requesting it to complete the operation.
52  *
53  * 4) Handling responses from vDisk server.
54  *	The vDisk server will ACK some or all of the messages vdc sends to it
55  *	(this is configured during the handshake). Upon receipt of an ACK
56  *	vdc will check the descriptor ring and signal to the upper layer
57  *	code waiting on the IO.
58  */
59 
60 #include <sys/atomic.h>
61 #include <sys/conf.h>
62 #include <sys/disp.h>
63 #include <sys/ddi.h>
64 #include <sys/dkio.h>
65 #include <sys/efi_partition.h>
66 #include <sys/fcntl.h>
67 #include <sys/file.h>
68 #include <sys/mach_descrip.h>
69 #include <sys/modctl.h>
70 #include <sys/mdeg.h>
71 #include <sys/note.h>
72 #include <sys/open.h>
73 #include <sys/sdt.h>
74 #include <sys/stat.h>
75 #include <sys/sunddi.h>
76 #include <sys/types.h>
77 #include <sys/promif.h>
78 #include <sys/vtoc.h>
79 #include <sys/archsystm.h>
80 #include <sys/sysmacros.h>
81 
82 #include <sys/cdio.h>
83 #include <sys/dktp/cm.h>
84 #include <sys/dktp/fdisk.h>
85 #include <sys/scsi/generic/sense.h>
86 #include <sys/scsi/impl/uscsi.h>	/* Needed for defn of USCSICMD ioctl */
87 
88 #include <sys/ldoms.h>
89 #include <sys/ldc.h>
90 #include <sys/vio_common.h>
91 #include <sys/vio_mailbox.h>
92 #include <sys/vdsk_common.h>
93 #include <sys/vdsk_mailbox.h>
94 #include <sys/vdc.h>
95 
96 /*
97  * function prototypes
98  */
99 
100 /* standard driver functions */
101 static int	vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred);
102 static int	vdc_close(dev_t dev, int flag, int otyp, cred_t *cred);
103 static int	vdc_strategy(struct buf *buf);
104 static int	vdc_print(dev_t dev, char *str);
105 static int	vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
106 static int	vdc_read(dev_t dev, struct uio *uio, cred_t *cred);
107 static int	vdc_write(dev_t dev, struct uio *uio, cred_t *cred);
108 static int	vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
109 			cred_t *credp, int *rvalp);
110 static int	vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred);
111 static int	vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred);
112 
113 static int	vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,
114 			void *arg, void **resultp);
115 static int	vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
116 static int	vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
117 
118 /* setup */
119 static void	vdc_min(struct buf *bufp);
120 static int	vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen);
121 static int	vdc_do_ldc_init(vdc_t *vdc);
122 static int	vdc_start_ldc_connection(vdc_t *vdc);
123 static int	vdc_create_device_nodes(vdc_t *vdc);
124 static int	vdc_create_device_nodes_efi(vdc_t *vdc);
125 static int	vdc_create_device_nodes_vtoc(vdc_t *vdc);
126 static int	vdc_create_device_nodes_props(vdc_t *vdc);
127 static int	vdc_get_ldc_id(dev_info_t *dip, uint64_t *ldc_id);
128 static int	vdc_do_ldc_up(vdc_t *vdc);
129 static void	vdc_terminate_ldc(vdc_t *vdc);
130 static int	vdc_init_descriptor_ring(vdc_t *vdc);
131 static void	vdc_destroy_descriptor_ring(vdc_t *vdc);
132 static int	vdc_setup_devid(vdc_t *vdc);
133 static void	vdc_store_efi(vdc_t *vdc, struct dk_gpt *efi);
134 
135 /* handshake with vds */
136 static int		vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver);
137 static int		vdc_ver_negotiation(vdc_t *vdcp);
138 static int		vdc_init_attr_negotiation(vdc_t *vdc);
139 static int		vdc_attr_negotiation(vdc_t *vdcp);
140 static int		vdc_init_dring_negotiate(vdc_t *vdc);
141 static int		vdc_dring_negotiation(vdc_t *vdcp);
142 static int		vdc_send_rdx(vdc_t *vdcp);
143 static int		vdc_rdx_exchange(vdc_t *vdcp);
144 static boolean_t	vdc_is_supported_version(vio_ver_msg_t *ver_msg);
145 
146 /* processing incoming messages from vDisk server */
147 static void	vdc_process_msg_thread(vdc_t *vdc);
148 static int	vdc_recv(vdc_t *vdc, vio_msg_t *msgp, size_t *nbytesp);
149 
150 static uint_t	vdc_handle_cb(uint64_t event, caddr_t arg);
151 static int	vdc_process_data_msg(vdc_t *vdc, vio_msg_t *msg);
152 static int	vdc_process_err_msg(vdc_t *vdc, vio_msg_t msg);
153 static int	vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg);
154 static int	vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg);
155 static int	vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *msg);
156 static int 	vdc_send_request(vdc_t *vdcp, int operation,
157 		    caddr_t addr, size_t nbytes, int slice, diskaddr_t offset,
158 		    int cb_type, void *cb_arg, vio_desc_direction_t dir);
159 static int	vdc_map_to_shared_dring(vdc_t *vdcp, int idx);
160 static int 	vdc_populate_descriptor(vdc_t *vdcp, int operation,
161 		    caddr_t addr, size_t nbytes, int slice, diskaddr_t offset,
162 		    int cb_type, void *cb_arg, vio_desc_direction_t dir);
163 static int 	vdc_do_sync_op(vdc_t *vdcp, int operation,
164 		    caddr_t addr, size_t nbytes, int slice, diskaddr_t offset,
165 		    int cb_type, void *cb_arg, vio_desc_direction_t dir);
166 
167 static int	vdc_wait_for_response(vdc_t *vdcp, vio_msg_t *msgp);
168 static int	vdc_drain_response(vdc_t *vdcp);
169 static int	vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx);
170 static int	vdc_populate_mem_hdl(vdc_t *vdcp, vdc_local_desc_t *ldep);
171 static int	vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg);
172 
173 /* dkio */
174 static int	vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode);
175 static int	vdc_create_fake_geometry(vdc_t *vdc);
176 static int	vdc_setup_disk_layout(vdc_t *vdc);
177 static int	vdc_null_copy_func(vdc_t *vdc, void *from, void *to,
178 		    int mode, int dir);
179 static int	vdc_get_wce_convert(vdc_t *vdc, void *from, void *to,
180 		    int mode, int dir);
181 static int	vdc_set_wce_convert(vdc_t *vdc, void *from, void *to,
182 		    int mode, int dir);
183 static int	vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to,
184 		    int mode, int dir);
185 static int	vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to,
186 		    int mode, int dir);
187 static int	vdc_get_geom_convert(vdc_t *vdc, void *from, void *to,
188 		    int mode, int dir);
189 static int	vdc_set_geom_convert(vdc_t *vdc, void *from, void *to,
190 		    int mode, int dir);
191 static int	vdc_uscsicmd_convert(vdc_t *vdc, void *from, void *to,
192 		    int mode, int dir);
193 static int	vdc_get_efi_convert(vdc_t *vdc, void *from, void *to,
194 		    int mode, int dir);
195 static int	vdc_set_efi_convert(vdc_t *vdc, void *from, void *to,
196 		    int mode, int dir);
197 
198 /*
199  * Module variables
200  */
201 
202 /*
203  * Tunable variables to control how long vdc waits before timing out on
204  * various operations
205  */
206 static int	vdc_retries = 10;
207 
208 /* calculated from 'vdc_usec_timeout' during attach */
209 static uint64_t	vdc_hz_timeout;				/* units: Hz */
210 static uint64_t	vdc_usec_timeout = 30 * MICROSEC;	/* 30s units: ns */
211 
212 static uint64_t vdc_hz_min_ldc_delay;
213 static uint64_t vdc_min_timeout_ldc = 1 * MILLISEC;
214 static uint64_t vdc_hz_max_ldc_delay;
215 static uint64_t vdc_max_timeout_ldc = 100 * MILLISEC;
216 
217 static uint64_t vdc_ldc_read_init_delay = 1 * MILLISEC;
218 static uint64_t vdc_ldc_read_max_delay = 100 * MILLISEC;
219 
220 /* values for dumping - need to run in a tighter loop */
221 static uint64_t	vdc_usec_timeout_dump = 100 * MILLISEC;	/* 0.1s units: ns */
222 static int	vdc_dump_retries = 100;
223 
224 /* Count of the number of vdc instances attached */
225 static volatile uint32_t	vdc_instance_count = 0;
226 
227 /* Soft state pointer */
228 static void	*vdc_state;
229 
230 /*
231  * Controlling the verbosity of the error/debug messages
232  *
233  * vdc_msglevel - controls level of messages
234  * vdc_matchinst - 64-bit variable where each bit corresponds
235  *                 to the vdc instance the vdc_msglevel applies.
236  */
237 int		vdc_msglevel = 0x0;
238 uint64_t	vdc_matchinst = 0ull;
239 
240 /*
241  * Supported vDisk protocol version pairs.
242  *
243  * The first array entry is the latest and preferred version.
244  */
245 static const vio_ver_t	vdc_version[] = {{1, 0}};
246 
247 static struct cb_ops vdc_cb_ops = {
248 	vdc_open,	/* cb_open */
249 	vdc_close,	/* cb_close */
250 	vdc_strategy,	/* cb_strategy */
251 	vdc_print,	/* cb_print */
252 	vdc_dump,	/* cb_dump */
253 	vdc_read,	/* cb_read */
254 	vdc_write,	/* cb_write */
255 	vdc_ioctl,	/* cb_ioctl */
256 	nodev,		/* cb_devmap */
257 	nodev,		/* cb_mmap */
258 	nodev,		/* cb_segmap */
259 	nochpoll,	/* cb_chpoll */
260 	ddi_prop_op,	/* cb_prop_op */
261 	NULL,		/* cb_str */
262 	D_MP | D_64BIT,	/* cb_flag */
263 	CB_REV,		/* cb_rev */
264 	vdc_aread,	/* cb_aread */
265 	vdc_awrite	/* cb_awrite */
266 };
267 
268 static struct dev_ops vdc_ops = {
269 	DEVO_REV,	/* devo_rev */
270 	0,		/* devo_refcnt */
271 	vdc_getinfo,	/* devo_getinfo */
272 	nulldev,	/* devo_identify */
273 	nulldev,	/* devo_probe */
274 	vdc_attach,	/* devo_attach */
275 	vdc_detach,	/* devo_detach */
276 	nodev,		/* devo_reset */
277 	&vdc_cb_ops,	/* devo_cb_ops */
278 	NULL,		/* devo_bus_ops */
279 	nulldev		/* devo_power */
280 };
281 
282 static struct modldrv modldrv = {
283 	&mod_driverops,
284 	"virtual disk client %I%",
285 	&vdc_ops,
286 };
287 
288 static struct modlinkage modlinkage = {
289 	MODREV_1,
290 	&modldrv,
291 	NULL
292 };
293 
294 /* -------------------------------------------------------------------------- */
295 
296 /*
297  * Device Driver housekeeping and setup
298  */
299 
300 int
301 _init(void)
302 {
303 	int	status;
304 
305 	if ((status = ddi_soft_state_init(&vdc_state, sizeof (vdc_t), 1)) != 0)
306 		return (status);
307 	if ((status = mod_install(&modlinkage)) != 0)
308 		ddi_soft_state_fini(&vdc_state);
309 	vdc_efi_init(vd_process_ioctl);
310 	return (status);
311 }
312 
313 int
314 _info(struct modinfo *modinfop)
315 {
316 	return (mod_info(&modlinkage, modinfop));
317 }
318 
319 int
320 _fini(void)
321 {
322 	int	status;
323 
324 	if ((status = mod_remove(&modlinkage)) != 0)
325 		return (status);
326 	vdc_efi_fini();
327 	ddi_soft_state_fini(&vdc_state);
328 	return (0);
329 }
330 
331 static int
332 vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,  void *arg, void **resultp)
333 {
334 	_NOTE(ARGUNUSED(dip))
335 
336 	int	instance = VDCUNIT((dev_t)arg);
337 	vdc_t	*vdc = NULL;
338 
339 	switch (cmd) {
340 	case DDI_INFO_DEVT2DEVINFO:
341 		if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
342 			*resultp = NULL;
343 			return (DDI_FAILURE);
344 		}
345 		*resultp = vdc->dip;
346 		return (DDI_SUCCESS);
347 	case DDI_INFO_DEVT2INSTANCE:
348 		*resultp = (void *)(uintptr_t)instance;
349 		return (DDI_SUCCESS);
350 	default:
351 		*resultp = NULL;
352 		return (DDI_FAILURE);
353 	}
354 }
355 
356 static int
357 vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
358 {
359 	int	instance;
360 	int	rv;
361 	vdc_t	*vdc = NULL;
362 
363 	switch (cmd) {
364 	case DDI_DETACH:
365 		/* the real work happens below */
366 		break;
367 	case DDI_SUSPEND:
368 		/* nothing to do for this non-device */
369 		return (DDI_SUCCESS);
370 	default:
371 		return (DDI_FAILURE);
372 	}
373 
374 	ASSERT(cmd == DDI_DETACH);
375 	instance = ddi_get_instance(dip);
376 	DMSGX(1, "[%d] Entered\n", instance);
377 
378 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
379 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
380 		return (DDI_FAILURE);
381 	}
382 
383 	if (vdc->open_count) {
384 		DMSG(vdc, 0, "[%d] Cannot detach: device is open", instance);
385 		return (DDI_FAILURE);
386 	}
387 
388 	DMSG(vdc, 0, "[%d] proceeding...\n", instance);
389 
390 	/* mark instance as detaching */
391 	vdc->lifecycle	= VDC_LC_DETACHING;
392 
393 	/*
394 	 * try and disable callbacks to prevent another handshake
395 	 */
396 	rv = ldc_set_cb_mode(vdc->ldc_handle, LDC_CB_DISABLE);
397 	DMSG(vdc, 0, "callback disabled (rv=%d)\n", rv);
398 
399 	if (vdc->initialized & VDC_THREAD) {
400 		mutex_enter(&vdc->read_lock);
401 		if ((vdc->read_state == VDC_READ_WAITING) ||
402 		    (vdc->read_state == VDC_READ_RESET)) {
403 			vdc->read_state = VDC_READ_RESET;
404 			cv_signal(&vdc->read_cv);
405 		}
406 
407 		mutex_exit(&vdc->read_lock);
408 
409 		/* wake up any thread waiting for connection to come online */
410 		mutex_enter(&vdc->lock);
411 		if (vdc->state == VDC_STATE_INIT_WAITING) {
412 			DMSG(vdc, 0,
413 			    "[%d] write reset - move to resetting state...\n",
414 			    instance);
415 			vdc->state = VDC_STATE_RESETTING;
416 			cv_signal(&vdc->initwait_cv);
417 		}
418 		mutex_exit(&vdc->lock);
419 
420 		/* now wait until state transitions to VDC_STATE_DETACH */
421 		thread_join(vdc->msg_proc_thr->t_did);
422 		ASSERT(vdc->state == VDC_STATE_DETACH);
423 		DMSG(vdc, 0, "[%d] Reset thread exit and join ..\n",
424 		    vdc->instance);
425 	}
426 
427 	mutex_enter(&vdc->lock);
428 
429 	if (vdc->initialized & VDC_DRING)
430 		vdc_destroy_descriptor_ring(vdc);
431 
432 	if (vdc->initialized & VDC_LDC)
433 		vdc_terminate_ldc(vdc);
434 
435 	mutex_exit(&vdc->lock);
436 
437 	if (vdc->initialized & VDC_MINOR) {
438 		ddi_prop_remove_all(dip);
439 		ddi_remove_minor_node(dip, NULL);
440 	}
441 
442 	if (vdc->initialized & VDC_LOCKS) {
443 		mutex_destroy(&vdc->lock);
444 		mutex_destroy(&vdc->read_lock);
445 		cv_destroy(&vdc->initwait_cv);
446 		cv_destroy(&vdc->dring_free_cv);
447 		cv_destroy(&vdc->membind_cv);
448 		cv_destroy(&vdc->sync_pending_cv);
449 		cv_destroy(&vdc->sync_blocked_cv);
450 		cv_destroy(&vdc->read_cv);
451 		cv_destroy(&vdc->running_cv);
452 	}
453 
454 	if (vdc->minfo)
455 		kmem_free(vdc->minfo, sizeof (struct dk_minfo));
456 
457 	if (vdc->cinfo)
458 		kmem_free(vdc->cinfo, sizeof (struct dk_cinfo));
459 
460 	if (vdc->vtoc)
461 		kmem_free(vdc->vtoc, sizeof (struct vtoc));
462 
463 	if (vdc->label)
464 		kmem_free(vdc->label, DK_LABEL_SIZE);
465 
466 	if (vdc->devid) {
467 		ddi_devid_unregister(dip);
468 		ddi_devid_free(vdc->devid);
469 	}
470 
471 	if (vdc->initialized & VDC_SOFT_STATE)
472 		ddi_soft_state_free(vdc_state, instance);
473 
474 	DMSG(vdc, 0, "[%d] End %p\n", instance, (void *)vdc);
475 
476 	return (DDI_SUCCESS);
477 }
478 
479 
480 static int
481 vdc_do_attach(dev_info_t *dip)
482 {
483 	int		instance;
484 	vdc_t		*vdc = NULL;
485 	int		status;
486 
487 	ASSERT(dip != NULL);
488 
489 	instance = ddi_get_instance(dip);
490 	if (ddi_soft_state_zalloc(vdc_state, instance) != DDI_SUCCESS) {
491 		cmn_err(CE_NOTE, "[%d] Couldn't alloc state structure",
492 		    instance);
493 		return (DDI_FAILURE);
494 	}
495 
496 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
497 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
498 		return (DDI_FAILURE);
499 	}
500 
501 	/*
502 	 * We assign the value to initialized in this case to zero out the
503 	 * variable and then set bits in it to indicate what has been done
504 	 */
505 	vdc->initialized = VDC_SOFT_STATE;
506 
507 	vdc_hz_timeout = drv_usectohz(vdc_usec_timeout);
508 
509 	vdc_hz_min_ldc_delay = drv_usectohz(vdc_min_timeout_ldc);
510 	vdc_hz_max_ldc_delay = drv_usectohz(vdc_max_timeout_ldc);
511 
512 	vdc->dip	= dip;
513 	vdc->instance	= instance;
514 	vdc->open_count	= 0;
515 	vdc->vdisk_type	= VD_DISK_TYPE_UNK;
516 	vdc->vdisk_label = VD_DISK_LABEL_UNK;
517 	vdc->state	= VDC_STATE_INIT;
518 	vdc->lifecycle	= VDC_LC_ATTACHING;
519 	vdc->ldc_state	= 0;
520 	vdc->session_id = 0;
521 	vdc->block_size = DEV_BSIZE;
522 	vdc->max_xfer_sz = maxphys / DEV_BSIZE;
523 
524 	vdc->vtoc = NULL;
525 	vdc->cinfo = NULL;
526 	vdc->minfo = NULL;
527 
528 	mutex_init(&vdc->lock, NULL, MUTEX_DRIVER, NULL);
529 	cv_init(&vdc->initwait_cv, NULL, CV_DRIVER, NULL);
530 	cv_init(&vdc->dring_free_cv, NULL, CV_DRIVER, NULL);
531 	cv_init(&vdc->membind_cv, NULL, CV_DRIVER, NULL);
532 	cv_init(&vdc->running_cv, NULL, CV_DRIVER, NULL);
533 
534 	vdc->threads_pending = 0;
535 	vdc->sync_op_pending = B_FALSE;
536 	vdc->sync_op_blocked = B_FALSE;
537 	cv_init(&vdc->sync_pending_cv, NULL, CV_DRIVER, NULL);
538 	cv_init(&vdc->sync_blocked_cv, NULL, CV_DRIVER, NULL);
539 
540 	/* init blocking msg read functionality */
541 	mutex_init(&vdc->read_lock, NULL, MUTEX_DRIVER, NULL);
542 	cv_init(&vdc->read_cv, NULL, CV_DRIVER, NULL);
543 	vdc->read_state = VDC_READ_IDLE;
544 
545 	vdc->initialized |= VDC_LOCKS;
546 
547 	/* initialise LDC channel which will be used to communicate with vds */
548 	if ((status = vdc_do_ldc_init(vdc)) != 0) {
549 		cmn_err(CE_NOTE, "[%d] Couldn't initialize LDC", instance);
550 		goto return_status;
551 	}
552 
553 	/* initialize the thread responsible for managing state with server */
554 	vdc->msg_proc_thr = thread_create(NULL, 0, vdc_process_msg_thread,
555 	    vdc, 0, &p0, TS_RUN, minclsyspri);
556 	if (vdc->msg_proc_thr == NULL) {
557 		cmn_err(CE_NOTE, "[%d] Failed to create msg processing thread",
558 		    instance);
559 		return (DDI_FAILURE);
560 	}
561 
562 	vdc->initialized |= VDC_THREAD;
563 
564 	atomic_inc_32(&vdc_instance_count);
565 
566 	/*
567 	 * Once the handshake is complete, we can use the DRing to send
568 	 * requests to the vDisk server to calculate the geometry and
569 	 * VTOC of the "disk"
570 	 */
571 	status = vdc_setup_disk_layout(vdc);
572 	if (status != 0) {
573 		DMSG(vdc, 0, "[%d] Failed to discover disk layout (err%d)",
574 			vdc->instance, status);
575 		goto return_status;
576 	}
577 
578 	/*
579 	 * Now that we have the device info we can create the
580 	 * device nodes and properties
581 	 */
582 	status = vdc_create_device_nodes(vdc);
583 	if (status) {
584 		DMSG(vdc, 0, "[%d] Failed to create device nodes",
585 				instance);
586 		goto return_status;
587 	}
588 	status = vdc_create_device_nodes_props(vdc);
589 	if (status) {
590 		DMSG(vdc, 0, "[%d] Failed to create device nodes"
591 				" properties (%d)", instance, status);
592 		goto return_status;
593 	}
594 
595 	/*
596 	 * Setup devid
597 	 */
598 	if (vdc_setup_devid(vdc)) {
599 		DMSG(vdc, 0, "[%d] No device id available\n", instance);
600 	}
601 
602 	ddi_report_dev(dip);
603 	vdc->lifecycle	= VDC_LC_ONLINE;
604 	DMSG(vdc, 0, "[%d] Attach tasks successful\n", instance);
605 
606 return_status:
607 	DMSG(vdc, 0, "[%d] Attach completed\n", instance);
608 	return (status);
609 }
610 
611 static int
612 vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
613 {
614 	int	status;
615 
616 	switch (cmd) {
617 	case DDI_ATTACH:
618 		if ((status = vdc_do_attach(dip)) != 0)
619 			(void) vdc_detach(dip, DDI_DETACH);
620 		return (status);
621 	case DDI_RESUME:
622 		/* nothing to do for this non-device */
623 		return (DDI_SUCCESS);
624 	default:
625 		return (DDI_FAILURE);
626 	}
627 }
628 
629 static int
630 vdc_do_ldc_init(vdc_t *vdc)
631 {
632 	int			status = 0;
633 	ldc_status_t		ldc_state;
634 	ldc_attr_t		ldc_attr;
635 	uint64_t		ldc_id = 0;
636 	dev_info_t		*dip = NULL;
637 
638 	ASSERT(vdc != NULL);
639 
640 	dip = vdc->dip;
641 	vdc->initialized |= VDC_LDC;
642 
643 	if ((status = vdc_get_ldc_id(dip, &ldc_id)) != 0) {
644 		DMSG(vdc, 0, "[%d] Failed to get LDC channel ID property",
645 				vdc->instance);
646 		return (EIO);
647 	}
648 	vdc->ldc_id = ldc_id;
649 
650 	ldc_attr.devclass = LDC_DEV_BLK;
651 	ldc_attr.instance = vdc->instance;
652 	ldc_attr.mode = LDC_MODE_UNRELIABLE;	/* unreliable transport */
653 	ldc_attr.mtu = VD_LDC_MTU;
654 
655 	if ((vdc->initialized & VDC_LDC_INIT) == 0) {
656 		status = ldc_init(ldc_id, &ldc_attr, &vdc->ldc_handle);
657 		if (status != 0) {
658 			DMSG(vdc, 0, "[%d] ldc_init(chan %ld) returned %d",
659 					vdc->instance, ldc_id, status);
660 			return (status);
661 		}
662 		vdc->initialized |= VDC_LDC_INIT;
663 	}
664 	status = ldc_status(vdc->ldc_handle, &ldc_state);
665 	if (status != 0) {
666 		DMSG(vdc, 0, "[%d] Cannot discover LDC status [err=%d]",
667 				vdc->instance, status);
668 		return (status);
669 	}
670 	vdc->ldc_state = ldc_state;
671 
672 	if ((vdc->initialized & VDC_LDC_CB) == 0) {
673 		status = ldc_reg_callback(vdc->ldc_handle, vdc_handle_cb,
674 		    (caddr_t)vdc);
675 		if (status != 0) {
676 			DMSG(vdc, 0, "[%d] LDC callback reg. failed (%d)",
677 					vdc->instance, status);
678 			return (status);
679 		}
680 		vdc->initialized |= VDC_LDC_CB;
681 	}
682 
683 	vdc->initialized |= VDC_LDC;
684 
685 	/*
686 	 * At this stage we have initialised LDC, we will now try and open
687 	 * the connection.
688 	 */
689 	if (vdc->ldc_state == LDC_INIT) {
690 		status = ldc_open(vdc->ldc_handle);
691 		if (status != 0) {
692 			DMSG(vdc, 0, "[%d] ldc_open(chan %ld) returned %d",
693 					vdc->instance, vdc->ldc_id, status);
694 			return (status);
695 		}
696 		vdc->initialized |= VDC_LDC_OPEN;
697 	}
698 
699 	return (status);
700 }
701 
702 static int
703 vdc_start_ldc_connection(vdc_t *vdc)
704 {
705 	int		status = 0;
706 
707 	ASSERT(vdc != NULL);
708 
709 	ASSERT(MUTEX_HELD(&vdc->lock));
710 
711 	status = vdc_do_ldc_up(vdc);
712 
713 	DMSG(vdc, 0, "[%d] Finished bringing up LDC\n", vdc->instance);
714 
715 	return (status);
716 }
717 
718 static int
719 vdc_stop_ldc_connection(vdc_t *vdcp)
720 {
721 	int	status;
722 
723 	DMSG(vdcp, 0, ": Resetting connection to vDisk server : state %d\n",
724 		vdcp->state);
725 
726 	status = ldc_down(vdcp->ldc_handle);
727 	DMSG(vdcp, 0, "ldc_down() = %d\n", status);
728 
729 	vdcp->initialized &= ~VDC_HANDSHAKE;
730 	DMSG(vdcp, 0, "initialized=%x\n", vdcp->initialized);
731 
732 	return (status);
733 }
734 
735 static int
736 vdc_create_device_nodes_efi(vdc_t *vdc)
737 {
738 	ddi_remove_minor_node(vdc->dip, "h");
739 	ddi_remove_minor_node(vdc->dip, "h,raw");
740 
741 	if (ddi_create_minor_node(vdc->dip, "wd", S_IFBLK,
742 		VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
743 		DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
744 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'wd'",
745 		    vdc->instance);
746 		return (EIO);
747 	}
748 
749 	/* if any device node is created we set this flag */
750 	vdc->initialized |= VDC_MINOR;
751 
752 	if (ddi_create_minor_node(vdc->dip, "wd,raw", S_IFCHR,
753 		VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
754 		DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
755 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'wd,raw'",
756 		    vdc->instance);
757 		return (EIO);
758 	}
759 
760 	return (0);
761 }
762 
763 static int
764 vdc_create_device_nodes_vtoc(vdc_t *vdc)
765 {
766 	ddi_remove_minor_node(vdc->dip, "wd");
767 	ddi_remove_minor_node(vdc->dip, "wd,raw");
768 
769 	if (ddi_create_minor_node(vdc->dip, "h", S_IFBLK,
770 		VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
771 		DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
772 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'h'",
773 		    vdc->instance);
774 		return (EIO);
775 	}
776 
777 	/* if any device node is created we set this flag */
778 	vdc->initialized |= VDC_MINOR;
779 
780 	if (ddi_create_minor_node(vdc->dip, "h,raw", S_IFCHR,
781 		VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
782 		DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
783 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'h,raw'",
784 		    vdc->instance);
785 		return (EIO);
786 	}
787 
788 	return (0);
789 }
790 
791 /*
792  * Function:
793  *	vdc_create_device_nodes
794  *
795  * Description:
796  *	This function creates the block and character device nodes under
797  *	/devices along with the node properties. It is called as part of
798  *	the attach(9E) of the instance during the handshake with vds after
799  *	vds has sent the attributes to vdc.
800  *
801  *	If the device is of type VD_DISK_TYPE_SLICE then the minor node
802  *	of 2 is used in keeping with the Solaris convention that slice 2
803  *	refers to a whole disk. Slices start at 'a'
804  *
805  * Parameters:
806  *	vdc 		- soft state pointer
807  *
808  * Return Values
809  *	0		- Success
810  *	EIO		- Failed to create node
811  *	EINVAL		- Unknown type of disk exported
812  */
813 static int
814 vdc_create_device_nodes(vdc_t *vdc)
815 {
816 	char		name[sizeof ("s,raw")];
817 	dev_info_t	*dip = NULL;
818 	int		instance, status;
819 	int		num_slices = 1;
820 	int		i;
821 
822 	ASSERT(vdc != NULL);
823 
824 	instance = vdc->instance;
825 	dip = vdc->dip;
826 
827 	switch (vdc->vdisk_type) {
828 	case VD_DISK_TYPE_DISK:
829 		num_slices = V_NUMPAR;
830 		break;
831 	case VD_DISK_TYPE_SLICE:
832 		num_slices = 1;
833 		break;
834 	case VD_DISK_TYPE_UNK:
835 	default:
836 		return (EINVAL);
837 	}
838 
839 	/*
840 	 * Minor nodes are different for EFI disks: EFI disks do not have
841 	 * a minor node 'g' for the minor number corresponding to slice
842 	 * VD_EFI_WD_SLICE (slice 7) instead they have a minor node 'wd'
843 	 * representing the whole disk.
844 	 */
845 	for (i = 0; i < num_slices; i++) {
846 
847 		if (i == VD_EFI_WD_SLICE) {
848 			if (vdc->vdisk_label == VD_DISK_LABEL_EFI)
849 				status = vdc_create_device_nodes_efi(vdc);
850 			else
851 				status = vdc_create_device_nodes_vtoc(vdc);
852 			if (status != 0)
853 				return (status);
854 			continue;
855 		}
856 
857 		(void) snprintf(name, sizeof (name), "%c", 'a' + i);
858 		if (ddi_create_minor_node(dip, name, S_IFBLK,
859 		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
860 			cmn_err(CE_NOTE, "[%d] Couldn't add block node '%s'",
861 				instance, name);
862 			return (EIO);
863 		}
864 
865 		/* if any device node is created we set this flag */
866 		vdc->initialized |= VDC_MINOR;
867 
868 		(void) snprintf(name, sizeof (name), "%c%s",
869 			'a' + i, ",raw");
870 		if (ddi_create_minor_node(dip, name, S_IFCHR,
871 		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
872 			cmn_err(CE_NOTE, "[%d] Couldn't add raw node '%s'",
873 				instance, name);
874 			return (EIO);
875 		}
876 	}
877 
878 	return (0);
879 }
880 
881 /*
882  * Function:
883  *	vdc_create_device_nodes_props
884  *
885  * Description:
886  *	This function creates the block and character device nodes under
887  *	/devices along with the node properties. It is called as part of
888  *	the attach(9E) of the instance during the handshake with vds after
889  *	vds has sent the attributes to vdc.
890  *
891  * Parameters:
892  *	vdc 		- soft state pointer
893  *
894  * Return Values
895  *	0		- Success
896  *	EIO		- Failed to create device node property
897  *	EINVAL		- Unknown type of disk exported
898  */
899 static int
900 vdc_create_device_nodes_props(vdc_t *vdc)
901 {
902 	dev_info_t	*dip = NULL;
903 	int		instance;
904 	int		num_slices = 1;
905 	int64_t		size = 0;
906 	dev_t		dev;
907 	int		rv;
908 	int		i;
909 
910 	ASSERT(vdc != NULL);
911 
912 	instance = vdc->instance;
913 	dip = vdc->dip;
914 
915 	if ((vdc->vtoc == NULL) || (vdc->vtoc->v_sanity != VTOC_SANE)) {
916 		DMSG(vdc, 0, "![%d] Could not create device node property."
917 				" No VTOC available", instance);
918 		return (ENXIO);
919 	}
920 
921 	switch (vdc->vdisk_type) {
922 	case VD_DISK_TYPE_DISK:
923 		num_slices = V_NUMPAR;
924 		break;
925 	case VD_DISK_TYPE_SLICE:
926 		num_slices = 1;
927 		break;
928 	case VD_DISK_TYPE_UNK:
929 	default:
930 		return (EINVAL);
931 	}
932 
933 	for (i = 0; i < num_slices; i++) {
934 		dev = makedevice(ddi_driver_major(dip),
935 			VD_MAKE_DEV(instance, i));
936 
937 		size = vdc->vtoc->v_part[i].p_size * vdc->vtoc->v_sectorsz;
938 		DMSG(vdc, 0, "[%d] sz %ld (%ld Mb)  p_size %lx\n",
939 				instance, size, size / (1024 * 1024),
940 				vdc->vtoc->v_part[i].p_size);
941 
942 		rv = ddi_prop_update_int64(dev, dip, VDC_SIZE_PROP_NAME, size);
943 		if (rv != DDI_PROP_SUCCESS) {
944 			cmn_err(CE_NOTE, "[%d] Couldn't add '%s' prop of [%ld]",
945 				instance, VDC_SIZE_PROP_NAME, size);
946 			return (EIO);
947 		}
948 
949 		rv = ddi_prop_update_int64(dev, dip, VDC_NBLOCKS_PROP_NAME,
950 			lbtodb(size));
951 		if (rv != DDI_PROP_SUCCESS) {
952 			cmn_err(CE_NOTE, "[%d] Couldn't add '%s' prop [%llu]",
953 				instance, VDC_NBLOCKS_PROP_NAME, lbtodb(size));
954 			return (EIO);
955 		}
956 	}
957 
958 	return (0);
959 }
960 
961 static int
962 vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred)
963 {
964 	_NOTE(ARGUNUSED(cred))
965 
966 	int		instance;
967 	vdc_t		*vdc;
968 
969 	ASSERT(dev != NULL);
970 	instance = VDCUNIT(*dev);
971 
972 	if ((otyp != OTYP_CHR) && (otyp != OTYP_BLK))
973 		return (EINVAL);
974 
975 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
976 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
977 		return (ENXIO);
978 	}
979 
980 	DMSG(vdc, 0, "minor = %d flag = %x, otyp = %x\n",
981 			getminor(*dev), flag, otyp);
982 
983 	mutex_enter(&vdc->lock);
984 	vdc->open_count++;
985 	mutex_exit(&vdc->lock);
986 
987 	return (0);
988 }
989 
990 static int
991 vdc_close(dev_t dev, int flag, int otyp, cred_t *cred)
992 {
993 	_NOTE(ARGUNUSED(cred))
994 
995 	int	instance;
996 	vdc_t	*vdc;
997 
998 	instance = VDCUNIT(dev);
999 
1000 	if ((otyp != OTYP_CHR) && (otyp != OTYP_BLK))
1001 		return (EINVAL);
1002 
1003 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1004 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1005 		return (ENXIO);
1006 	}
1007 
1008 	DMSG(vdc, 0, "[%d] flag = %x, otyp = %x\n", instance, flag, otyp);
1009 	if (vdc->dkio_flush_pending) {
1010 		DMSG(vdc, 0,
1011 		    "[%d] Cannot detach: %d outstanding DKIO flushes\n",
1012 		    instance, vdc->dkio_flush_pending);
1013 		return (EBUSY);
1014 	}
1015 
1016 	/*
1017 	 * Should not need the mutex here, since the framework should protect
1018 	 * against more opens on this device, but just in case.
1019 	 */
1020 	mutex_enter(&vdc->lock);
1021 	vdc->open_count--;
1022 	mutex_exit(&vdc->lock);
1023 
1024 	return (0);
1025 }
1026 
1027 static int
1028 vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
1029 {
1030 	_NOTE(ARGUNUSED(credp))
1031 	_NOTE(ARGUNUSED(rvalp))
1032 
1033 	return (vd_process_ioctl(dev, cmd, (caddr_t)arg, mode));
1034 }
1035 
1036 static int
1037 vdc_print(dev_t dev, char *str)
1038 {
1039 	cmn_err(CE_NOTE, "vdc%d:  %s", VDCUNIT(dev), str);
1040 	return (0);
1041 }
1042 
1043 static int
1044 vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
1045 {
1046 	int	rv;
1047 	size_t	nbytes = nblk * DEV_BSIZE;
1048 	int	instance = VDCUNIT(dev);
1049 	vdc_t	*vdc = NULL;
1050 
1051 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1052 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1053 		return (ENXIO);
1054 	}
1055 
1056 	DMSG(vdc, 2, "[%d] dump %ld bytes at block 0x%lx : addr=0x%p\n",
1057 	    instance, nbytes, blkno, (void *)addr);
1058 	rv = vdc_send_request(vdc, VD_OP_BWRITE, addr, nbytes,
1059 	    VDCPART(dev), blkno, CB_STRATEGY, 0, VIO_write_dir);
1060 	if (rv) {
1061 		DMSG(vdc, 0, "Failed to do a disk dump (err=%d)\n", rv);
1062 		return (rv);
1063 	}
1064 
1065 	if (ddi_in_panic())
1066 		(void) vdc_drain_response(vdc);
1067 
1068 	DMSG(vdc, 0, "[%d] End\n", instance);
1069 
1070 	return (0);
1071 }
1072 
1073 /* -------------------------------------------------------------------------- */
1074 
1075 /*
1076  * Disk access routines
1077  *
1078  */
1079 
1080 /*
1081  * vdc_strategy()
1082  *
1083  * Return Value:
1084  *	0:	As per strategy(9E), the strategy() function must return 0
1085  *		[ bioerror(9f) sets b_flags to the proper error code ]
1086  */
1087 static int
1088 vdc_strategy(struct buf *buf)
1089 {
1090 	int	rv = -1;
1091 	vdc_t	*vdc = NULL;
1092 	int	instance = VDCUNIT(buf->b_edev);
1093 	int	op = (buf->b_flags & B_READ) ? VD_OP_BREAD : VD_OP_BWRITE;
1094 
1095 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1096 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1097 		bioerror(buf, ENXIO);
1098 		biodone(buf);
1099 		return (0);
1100 	}
1101 
1102 	DMSG(vdc, 2, "[%d] %s %ld bytes at block %llx : b_addr=0x%p\n",
1103 	    instance, (buf->b_flags & B_READ) ? "Read" : "Write",
1104 	    buf->b_bcount, buf->b_lblkno, (void *)buf->b_un.b_addr);
1105 	DTRACE_IO2(vstart, buf_t *, buf, vdc_t *, vdc);
1106 
1107 	bp_mapin(buf);
1108 
1109 	rv = vdc_send_request(vdc, op, (caddr_t)buf->b_un.b_addr,
1110 	    buf->b_bcount, VDCPART(buf->b_edev), buf->b_lblkno,
1111 	    CB_STRATEGY, buf, (op == VD_OP_BREAD) ? VIO_read_dir :
1112 	    VIO_write_dir);
1113 
1114 	ASSERT(rv == 0 || rv == EINVAL);
1115 
1116 	/*
1117 	 * If the request was successfully sent, the strategy call returns and
1118 	 * the ACK handler calls the bioxxx functions when the vDisk server is
1119 	 * done.
1120 	 */
1121 	if (rv) {
1122 		DMSG(vdc, 0, "Failed to read/write (err=%d)\n", rv);
1123 		bioerror(buf, rv);
1124 		biodone(buf);
1125 	}
1126 
1127 	return (0);
1128 }
1129 
1130 /*
1131  * Function:
1132  *	vdc_min
1133  *
1134  * Description:
1135  *	Routine to limit the size of a data transfer. Used in
1136  *	conjunction with physio(9F).
1137  *
1138  * Arguments:
1139  *	bp - pointer to the indicated buf(9S) struct.
1140  *
1141  */
1142 static void
1143 vdc_min(struct buf *bufp)
1144 {
1145 	vdc_t	*vdc = NULL;
1146 	int	instance = VDCUNIT(bufp->b_edev);
1147 
1148 	vdc = ddi_get_soft_state(vdc_state, instance);
1149 	VERIFY(vdc != NULL);
1150 
1151 	if (bufp->b_bcount > (vdc->max_xfer_sz * vdc->block_size)) {
1152 		bufp->b_bcount = vdc->max_xfer_sz * vdc->block_size;
1153 	}
1154 }
1155 
1156 static int
1157 vdc_read(dev_t dev, struct uio *uio, cred_t *cred)
1158 {
1159 	_NOTE(ARGUNUSED(cred))
1160 
1161 	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1162 	return (physio(vdc_strategy, NULL, dev, B_READ, vdc_min, uio));
1163 }
1164 
1165 static int
1166 vdc_write(dev_t dev, struct uio *uio, cred_t *cred)
1167 {
1168 	_NOTE(ARGUNUSED(cred))
1169 
1170 	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1171 	return (physio(vdc_strategy, NULL, dev, B_WRITE, vdc_min, uio));
1172 }
1173 
1174 static int
1175 vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred)
1176 {
1177 	_NOTE(ARGUNUSED(cred))
1178 
1179 	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1180 	return (aphysio(vdc_strategy, anocancel, dev, B_READ, vdc_min, aio));
1181 }
1182 
1183 static int
1184 vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred)
1185 {
1186 	_NOTE(ARGUNUSED(cred))
1187 
1188 	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1189 	return (aphysio(vdc_strategy, anocancel, dev, B_WRITE, vdc_min, aio));
1190 }
1191 
1192 
1193 /* -------------------------------------------------------------------------- */
1194 
1195 /*
1196  * Handshake support
1197  */
1198 
1199 
1200 /*
1201  * Function:
1202  *	vdc_init_ver_negotiation()
1203  *
1204  * Description:
1205  *
1206  * Arguments:
1207  *	vdc	- soft state pointer for this instance of the device driver.
1208  *
1209  * Return Code:
1210  *	0	- Success
1211  */
1212 static int
1213 vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver)
1214 {
1215 	vio_ver_msg_t	pkt;
1216 	size_t		msglen = sizeof (pkt);
1217 	int		status = -1;
1218 
1219 	ASSERT(vdc != NULL);
1220 	ASSERT(mutex_owned(&vdc->lock));
1221 
1222 	DMSG(vdc, 0, "[%d] Entered.\n", vdc->instance);
1223 
1224 	/*
1225 	 * set the Session ID to a unique value
1226 	 * (the lower 32 bits of the clock tick)
1227 	 */
1228 	vdc->session_id = ((uint32_t)gettick() & 0xffffffff);
1229 	DMSG(vdc, 0, "[%d] Set SID to 0x%lx\n", vdc->instance, vdc->session_id);
1230 
1231 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1232 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1233 	pkt.tag.vio_subtype_env = VIO_VER_INFO;
1234 	pkt.tag.vio_sid = vdc->session_id;
1235 	pkt.dev_class = VDEV_DISK;
1236 	pkt.ver_major = ver.major;
1237 	pkt.ver_minor = ver.minor;
1238 
1239 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1240 	DMSG(vdc, 0, "[%d] Ver info sent (status = %d)\n",
1241 	    vdc->instance, status);
1242 	if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) {
1243 		DMSG(vdc, 0, "[%d] Failed to send Ver negotiation info: "
1244 				"id(%lx) rv(%d) size(%ld)",
1245 				vdc->instance, vdc->ldc_handle,
1246 				status, msglen);
1247 		if (msglen != sizeof (vio_ver_msg_t))
1248 			status = ENOMSG;
1249 	}
1250 
1251 	return (status);
1252 }
1253 
1254 /*
1255  * Function:
1256  *	vdc_ver_negotiation()
1257  *
1258  * Description:
1259  *
1260  * Arguments:
1261  *	vdcp	- soft state pointer for this instance of the device driver.
1262  *
1263  * Return Code:
1264  *	0	- Success
1265  */
1266 static int
1267 vdc_ver_negotiation(vdc_t *vdcp)
1268 {
1269 	vio_msg_t vio_msg;
1270 	int status;
1271 
1272 	if (status = vdc_init_ver_negotiation(vdcp, vdc_version[0]))
1273 		return (status);
1274 
1275 	/* release lock and wait for response */
1276 	mutex_exit(&vdcp->lock);
1277 	status = vdc_wait_for_response(vdcp, &vio_msg);
1278 	mutex_enter(&vdcp->lock);
1279 	if (status) {
1280 		DMSG(vdcp, 0,
1281 		    "[%d] Failed waiting for Ver negotiation response, rv(%d)",
1282 		    vdcp->instance, status);
1283 		return (status);
1284 	}
1285 
1286 	/* check type and sub_type ... */
1287 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1288 	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1289 		DMSG(vdcp, 0, "[%d] Invalid ver negotiation response\n",
1290 				vdcp->instance);
1291 		return (EPROTO);
1292 	}
1293 
1294 	return (vdc_handle_ver_msg(vdcp, (vio_ver_msg_t *)&vio_msg));
1295 }
1296 
1297 /*
1298  * Function:
1299  *	vdc_init_attr_negotiation()
1300  *
1301  * Description:
1302  *
1303  * Arguments:
1304  *	vdc	- soft state pointer for this instance of the device driver.
1305  *
1306  * Return Code:
1307  *	0	- Success
1308  */
1309 static int
1310 vdc_init_attr_negotiation(vdc_t *vdc)
1311 {
1312 	vd_attr_msg_t	pkt;
1313 	size_t		msglen = sizeof (pkt);
1314 	int		status;
1315 
1316 	ASSERT(vdc != NULL);
1317 	ASSERT(mutex_owned(&vdc->lock));
1318 
1319 	DMSG(vdc, 0, "[%d] entered\n", vdc->instance);
1320 
1321 	/* fill in tag */
1322 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1323 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1324 	pkt.tag.vio_subtype_env = VIO_ATTR_INFO;
1325 	pkt.tag.vio_sid = vdc->session_id;
1326 	/* fill in payload */
1327 	pkt.max_xfer_sz = vdc->max_xfer_sz;
1328 	pkt.vdisk_block_size = vdc->block_size;
1329 	pkt.xfer_mode = VIO_DRING_MODE;
1330 	pkt.operations = 0;	/* server will set bits of valid operations */
1331 	pkt.vdisk_type = 0;	/* server will set to valid device type */
1332 	pkt.vdisk_size = 0;	/* server will set to valid size */
1333 
1334 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1335 	DMSG(vdc, 0, "Attr info sent (status = %d)\n", status);
1336 
1337 	if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) {
1338 		DMSG(vdc, 0, "[%d] Failed to send Attr negotiation info: "
1339 				"id(%lx) rv(%d) size(%ld)",
1340 				vdc->instance, vdc->ldc_handle,
1341 				status, msglen);
1342 		if (msglen != sizeof (vio_ver_msg_t))
1343 			status = ENOMSG;
1344 	}
1345 
1346 	return (status);
1347 }
1348 
1349 /*
1350  * Function:
1351  *	vdc_attr_negotiation()
1352  *
1353  * Description:
1354  *
1355  * Arguments:
1356  *	vdc	- soft state pointer for this instance of the device driver.
1357  *
1358  * Return Code:
1359  *	0	- Success
1360  */
1361 static int
1362 vdc_attr_negotiation(vdc_t *vdcp)
1363 {
1364 	int status;
1365 	vio_msg_t vio_msg;
1366 
1367 	if (status = vdc_init_attr_negotiation(vdcp))
1368 		return (status);
1369 
1370 	/* release lock and wait for response */
1371 	mutex_exit(&vdcp->lock);
1372 	status = vdc_wait_for_response(vdcp, &vio_msg);
1373 	mutex_enter(&vdcp->lock);
1374 	if (status) {
1375 		DMSG(vdcp, 0,
1376 		    "[%d] Failed waiting for Attr negotiation response, rv(%d)",
1377 		    vdcp->instance, status);
1378 		return (status);
1379 	}
1380 
1381 	/* check type and sub_type ... */
1382 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1383 	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1384 		DMSG(vdcp, 0, "[%d] Invalid attr negotiation response\n",
1385 				vdcp->instance);
1386 		return (EPROTO);
1387 	}
1388 
1389 	return (vdc_handle_attr_msg(vdcp, (vd_attr_msg_t *)&vio_msg));
1390 }
1391 
1392 
1393 /*
1394  * Function:
1395  *	vdc_init_dring_negotiate()
1396  *
1397  * Description:
1398  *
1399  * Arguments:
1400  *	vdc	- soft state pointer for this instance of the device driver.
1401  *
1402  * Return Code:
1403  *	0	- Success
1404  */
1405 static int
1406 vdc_init_dring_negotiate(vdc_t *vdc)
1407 {
1408 	vio_dring_reg_msg_t	pkt;
1409 	size_t			msglen = sizeof (pkt);
1410 	int			status = -1;
1411 	int			retry;
1412 	int			nretries = 10;
1413 
1414 	ASSERT(vdc != NULL);
1415 	ASSERT(mutex_owned(&vdc->lock));
1416 
1417 	for (retry = 0; retry < nretries; retry++) {
1418 		status = vdc_init_descriptor_ring(vdc);
1419 		if (status != EAGAIN)
1420 			break;
1421 		drv_usecwait(vdc_min_timeout_ldc);
1422 	}
1423 
1424 	if (status != 0) {
1425 		DMSG(vdc, 0, "[%d] Failed to init DRing (status = %d)\n",
1426 				vdc->instance, status);
1427 		return (status);
1428 	}
1429 
1430 	DMSG(vdc, 0, "[%d] Init of descriptor ring completed (status = %d)\n",
1431 			vdc->instance, status);
1432 
1433 	/* fill in tag */
1434 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1435 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1436 	pkt.tag.vio_subtype_env = VIO_DRING_REG;
1437 	pkt.tag.vio_sid = vdc->session_id;
1438 	/* fill in payload */
1439 	pkt.dring_ident = 0;
1440 	pkt.num_descriptors = vdc->dring_len;
1441 	pkt.descriptor_size = vdc->dring_entry_size;
1442 	pkt.options = (VIO_TX_DRING | VIO_RX_DRING);
1443 	pkt.ncookies = vdc->dring_cookie_count;
1444 	pkt.cookie[0] = vdc->dring_cookie[0];	/* for now just one cookie */
1445 
1446 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1447 	if (status != 0) {
1448 		DMSG(vdc, 0, "[%d] Failed to register DRing (err = %d)",
1449 				vdc->instance, status);
1450 	}
1451 
1452 	return (status);
1453 }
1454 
1455 
1456 /*
1457  * Function:
1458  *	vdc_dring_negotiation()
1459  *
1460  * Description:
1461  *
1462  * Arguments:
1463  *	vdc	- soft state pointer for this instance of the device driver.
1464  *
1465  * Return Code:
1466  *	0	- Success
1467  */
1468 static int
1469 vdc_dring_negotiation(vdc_t *vdcp)
1470 {
1471 	int status;
1472 	vio_msg_t vio_msg;
1473 
1474 	if (status = vdc_init_dring_negotiate(vdcp))
1475 		return (status);
1476 
1477 	/* release lock and wait for response */
1478 	mutex_exit(&vdcp->lock);
1479 	status = vdc_wait_for_response(vdcp, &vio_msg);
1480 	mutex_enter(&vdcp->lock);
1481 	if (status) {
1482 		DMSG(vdcp, 0,
1483 		    "[%d] Failed waiting for Dring negotiation response,"
1484 		    " rv(%d)", vdcp->instance, status);
1485 		return (status);
1486 	}
1487 
1488 	/* check type and sub_type ... */
1489 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1490 	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1491 		DMSG(vdcp, 0, "[%d] Invalid Dring negotiation response\n",
1492 				vdcp->instance);
1493 		return (EPROTO);
1494 	}
1495 
1496 	return (vdc_handle_dring_reg_msg(vdcp,
1497 		    (vio_dring_reg_msg_t *)&vio_msg));
1498 }
1499 
1500 
1501 /*
1502  * Function:
1503  *	vdc_send_rdx()
1504  *
1505  * Description:
1506  *
1507  * Arguments:
1508  *	vdc	- soft state pointer for this instance of the device driver.
1509  *
1510  * Return Code:
1511  *	0	- Success
1512  */
1513 static int
1514 vdc_send_rdx(vdc_t *vdcp)
1515 {
1516 	vio_msg_t	msg;
1517 	size_t		msglen = sizeof (vio_msg_t);
1518 	int		status;
1519 
1520 	/*
1521 	 * Send an RDX message to vds to indicate we are ready
1522 	 * to send data
1523 	 */
1524 	msg.tag.vio_msgtype = VIO_TYPE_CTRL;
1525 	msg.tag.vio_subtype = VIO_SUBTYPE_INFO;
1526 	msg.tag.vio_subtype_env = VIO_RDX;
1527 	msg.tag.vio_sid = vdcp->session_id;
1528 	status = vdc_send(vdcp, (caddr_t)&msg, &msglen);
1529 	if (status != 0) {
1530 		DMSG(vdcp, 0, "[%d] Failed to send RDX message (%d)",
1531 		    vdcp->instance, status);
1532 	}
1533 
1534 	return (status);
1535 }
1536 
1537 /*
1538  * Function:
1539  *	vdc_handle_rdx()
1540  *
1541  * Description:
1542  *
1543  * Arguments:
1544  *	vdc	- soft state pointer for this instance of the device driver.
1545  *	msgp	- received msg
1546  *
1547  * Return Code:
1548  *	0	- Success
1549  */
1550 static int
1551 vdc_handle_rdx(vdc_t *vdcp, vio_rdx_msg_t *msgp)
1552 {
1553 	_NOTE(ARGUNUSED(vdcp))
1554 	_NOTE(ARGUNUSED(msgp))
1555 
1556 	ASSERT(msgp->tag.vio_msgtype == VIO_TYPE_CTRL);
1557 	ASSERT(msgp->tag.vio_subtype == VIO_SUBTYPE_ACK);
1558 	ASSERT(msgp->tag.vio_subtype_env == VIO_RDX);
1559 
1560 	DMSG(vdcp, 1, "[%d] Got an RDX msg", vdcp->instance);
1561 
1562 	return (0);
1563 }
1564 
1565 /*
1566  * Function:
1567  *	vdc_rdx_exchange()
1568  *
1569  * Description:
1570  *
1571  * Arguments:
1572  *	vdc	- soft state pointer for this instance of the device driver.
1573  *
1574  * Return Code:
1575  *	0	- Success
1576  */
1577 static int
1578 vdc_rdx_exchange(vdc_t *vdcp)
1579 {
1580 	int status;
1581 	vio_msg_t vio_msg;
1582 
1583 	if (status = vdc_send_rdx(vdcp))
1584 		return (status);
1585 
1586 	/* release lock and wait for response */
1587 	mutex_exit(&vdcp->lock);
1588 	status = vdc_wait_for_response(vdcp, &vio_msg);
1589 	mutex_enter(&vdcp->lock);
1590 	if (status) {
1591 		DMSG(vdcp, 0,
1592 		    "[%d] Failed waiting for RDX response,"
1593 		    " rv(%d)", vdcp->instance, status);
1594 		return (status);
1595 	}
1596 
1597 	/* check type and sub_type ... */
1598 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1599 	    vio_msg.tag.vio_subtype != VIO_SUBTYPE_ACK) {
1600 		DMSG(vdcp, 0, "[%d] Invalid RDX response\n",
1601 				vdcp->instance);
1602 		return (EPROTO);
1603 	}
1604 
1605 	return (vdc_handle_rdx(vdcp, (vio_rdx_msg_t *)&vio_msg));
1606 }
1607 
1608 
1609 /* -------------------------------------------------------------------------- */
1610 
1611 /*
1612  * LDC helper routines
1613  */
1614 
1615 static int
1616 vdc_recv(vdc_t *vdc, vio_msg_t *msgp, size_t *nbytesp)
1617 {
1618 	int		status;
1619 	boolean_t	q_has_pkts = B_FALSE;
1620 	int		delay_time;
1621 	size_t		len;
1622 
1623 	mutex_enter(&vdc->read_lock);
1624 
1625 	if (vdc->read_state == VDC_READ_IDLE)
1626 		vdc->read_state = VDC_READ_WAITING;
1627 
1628 	while (vdc->read_state != VDC_READ_PENDING) {
1629 
1630 		/* detect if the connection has been reset */
1631 		if (vdc->read_state == VDC_READ_RESET) {
1632 			status = ECONNRESET;
1633 			goto done;
1634 		}
1635 
1636 		cv_wait(&vdc->read_cv, &vdc->read_lock);
1637 	}
1638 
1639 	/*
1640 	 * Until we get a blocking ldc read we have to retry
1641 	 * until the entire LDC message has arrived before
1642 	 * ldc_read() will succeed. Note we also bail out if
1643 	 * the chanel is reset or goes away.
1644 	 */
1645 	delay_time = vdc_ldc_read_init_delay;
1646 loop:
1647 	len = *nbytesp;
1648 	status = ldc_read(vdc->ldc_handle, (caddr_t)msgp, &len);
1649 	switch (status) {
1650 	case EAGAIN:
1651 		delay_time *= 2;
1652 		if (delay_time >= vdc_ldc_read_max_delay)
1653 			delay_time = vdc_ldc_read_max_delay;
1654 		delay(delay_time);
1655 		goto loop;
1656 
1657 	case 0:
1658 		if (len == 0) {
1659 			DMSG(vdc, 0, "[%d] ldc_read returned 0 bytes with "
1660 				"no error!\n", vdc->instance);
1661 			goto loop;
1662 		}
1663 
1664 		*nbytesp = len;
1665 
1666 		/*
1667 		 * If there are pending messages, leave the
1668 		 * read state as pending. Otherwise, set the state
1669 		 * back to idle.
1670 		 */
1671 		status = ldc_chkq(vdc->ldc_handle, &q_has_pkts);
1672 		if (status == 0 && !q_has_pkts)
1673 			vdc->read_state = VDC_READ_IDLE;
1674 
1675 		break;
1676 	default:
1677 		DMSG(vdc, 0, "ldc_read returned %d\n", status);
1678 		break;
1679 	}
1680 
1681 done:
1682 	mutex_exit(&vdc->read_lock);
1683 
1684 	return (status);
1685 }
1686 
1687 
1688 
1689 #ifdef DEBUG
1690 void
1691 vdc_decode_tag(vdc_t *vdcp, vio_msg_t *msg)
1692 {
1693 	char *ms, *ss, *ses;
1694 	switch (msg->tag.vio_msgtype) {
1695 #define	Q(_s)	case _s : ms = #_s; break;
1696 	Q(VIO_TYPE_CTRL)
1697 	Q(VIO_TYPE_DATA)
1698 	Q(VIO_TYPE_ERR)
1699 #undef Q
1700 	default: ms = "unknown"; break;
1701 	}
1702 
1703 	switch (msg->tag.vio_subtype) {
1704 #define	Q(_s)	case _s : ss = #_s; break;
1705 	Q(VIO_SUBTYPE_INFO)
1706 	Q(VIO_SUBTYPE_ACK)
1707 	Q(VIO_SUBTYPE_NACK)
1708 #undef Q
1709 	default: ss = "unknown"; break;
1710 	}
1711 
1712 	switch (msg->tag.vio_subtype_env) {
1713 #define	Q(_s)	case _s : ses = #_s; break;
1714 	Q(VIO_VER_INFO)
1715 	Q(VIO_ATTR_INFO)
1716 	Q(VIO_DRING_REG)
1717 	Q(VIO_DRING_UNREG)
1718 	Q(VIO_RDX)
1719 	Q(VIO_PKT_DATA)
1720 	Q(VIO_DESC_DATA)
1721 	Q(VIO_DRING_DATA)
1722 #undef Q
1723 	default: ses = "unknown"; break;
1724 	}
1725 
1726 	DMSG(vdcp, 3, "(%x/%x/%x) message : (%s/%s/%s)\n",
1727 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
1728 	    msg->tag.vio_subtype_env, ms, ss, ses);
1729 }
1730 #endif
1731 
1732 /*
1733  * Function:
1734  *	vdc_send()
1735  *
1736  * Description:
1737  *	The function encapsulates the call to write a message using LDC.
1738  *	If LDC indicates that the call failed due to the queue being full,
1739  *	we retry the ldc_write() [ up to 'vdc_retries' time ], otherwise
1740  *	we return the error returned by LDC.
1741  *
1742  * Arguments:
1743  *	ldc_handle	- LDC handle for the channel this instance of vdc uses
1744  *	pkt		- address of LDC message to be sent
1745  *	msglen		- the size of the message being sent. When the function
1746  *			  returns, this contains the number of bytes written.
1747  *
1748  * Return Code:
1749  *	0		- Success.
1750  *	EINVAL		- pkt or msglen were NULL
1751  *	ECONNRESET	- The connection was not up.
1752  *	EWOULDBLOCK	- LDC queue is full
1753  *	xxx		- other error codes returned by ldc_write
1754  */
1755 static int
1756 vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen)
1757 {
1758 	size_t	size = 0;
1759 	int	status = 0;
1760 	clock_t delay_ticks;
1761 
1762 	ASSERT(vdc != NULL);
1763 	ASSERT(mutex_owned(&vdc->lock));
1764 	ASSERT(msglen != NULL);
1765 	ASSERT(*msglen != 0);
1766 
1767 #ifdef DEBUG
1768 	vdc_decode_tag(vdc, (vio_msg_t *)pkt);
1769 #endif
1770 	/*
1771 	 * Wait indefinitely to send if channel
1772 	 * is busy, but bail out if we succeed or
1773 	 * if the channel closes or is reset.
1774 	 */
1775 	delay_ticks = vdc_hz_min_ldc_delay;
1776 	do {
1777 		size = *msglen;
1778 		status = ldc_write(vdc->ldc_handle, pkt, &size);
1779 		if (status == EWOULDBLOCK) {
1780 			delay(delay_ticks);
1781 			/* geometric backoff */
1782 			delay_ticks *= 2;
1783 			if (delay_ticks > vdc_hz_max_ldc_delay)
1784 				delay_ticks = vdc_hz_max_ldc_delay;
1785 		}
1786 	} while (status == EWOULDBLOCK);
1787 
1788 	/* if LDC had serious issues --- reset vdc state */
1789 	if (status == EIO || status == ECONNRESET) {
1790 		/* LDC had serious issues --- reset vdc state */
1791 		mutex_enter(&vdc->read_lock);
1792 		if ((vdc->read_state == VDC_READ_WAITING) ||
1793 		    (vdc->read_state == VDC_READ_RESET))
1794 			cv_signal(&vdc->read_cv);
1795 		vdc->read_state = VDC_READ_RESET;
1796 		mutex_exit(&vdc->read_lock);
1797 
1798 		/* wake up any waiters in the reset thread */
1799 		if (vdc->state == VDC_STATE_INIT_WAITING) {
1800 			DMSG(vdc, 0, "[%d] write reset - "
1801 			    "vdc is resetting ..\n", vdc->instance);
1802 			vdc->state = VDC_STATE_RESETTING;
1803 			cv_signal(&vdc->initwait_cv);
1804 		}
1805 
1806 		return (ECONNRESET);
1807 	}
1808 
1809 	/* return the last size written */
1810 	*msglen = size;
1811 
1812 	return (status);
1813 }
1814 
1815 /*
1816  * Function:
1817  *	vdc_get_ldc_id()
1818  *
1819  * Description:
1820  *	This function gets the 'ldc-id' for this particular instance of vdc.
1821  *	The id returned is the guest domain channel endpoint LDC uses for
1822  *	communication with vds.
1823  *
1824  * Arguments:
1825  *	dip	- dev info pointer for this instance of the device driver.
1826  *	ldc_id	- pointer to variable used to return the 'ldc-id' found.
1827  *
1828  * Return Code:
1829  *	0	- Success.
1830  *	ENOENT	- Expected node or property did not exist.
1831  *	ENXIO	- Unexpected error communicating with MD framework
1832  */
1833 static int
1834 vdc_get_ldc_id(dev_info_t *dip, uint64_t *ldc_id)
1835 {
1836 	int		status = ENOENT;
1837 	char		*node_name = NULL;
1838 	md_t		*mdp = NULL;
1839 	int		num_nodes;
1840 	int		num_vdevs;
1841 	int		num_chans;
1842 	mde_cookie_t	rootnode;
1843 	mde_cookie_t	*listp = NULL;
1844 	mde_cookie_t	*chanp = NULL;
1845 	boolean_t	found_inst = B_FALSE;
1846 	int		listsz;
1847 	int		idx;
1848 	uint64_t	md_inst;
1849 	int		obp_inst;
1850 	int		instance = ddi_get_instance(dip);
1851 
1852 	ASSERT(ldc_id != NULL);
1853 	*ldc_id = 0;
1854 
1855 	/*
1856 	 * Get the OBP instance number for comparison with the MD instance
1857 	 *
1858 	 * The "cfg-handle" property of a vdc node in an MD contains the MD's
1859 	 * notion of "instance", or unique identifier, for that node; OBP
1860 	 * stores the value of the "cfg-handle" MD property as the value of
1861 	 * the "reg" property on the node in the device tree it builds from
1862 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
1863 	 * "reg" property value to uniquely identify this device instance.
1864 	 * If the "reg" property cannot be found, the device tree state is
1865 	 * presumably so broken that there is no point in continuing.
1866 	 */
1867 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, OBP_REG)) {
1868 		cmn_err(CE_WARN, "'%s' property does not exist", OBP_REG);
1869 		return (ENOENT);
1870 	}
1871 	obp_inst = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
1872 			OBP_REG, -1);
1873 	DMSGX(1, "[%d] OBP inst=%d\n", instance, obp_inst);
1874 
1875 	/*
1876 	 * We now walk the MD nodes and if an instance of a vdc node matches
1877 	 * the instance got from OBP we get the ldc-id property.
1878 	 */
1879 	if ((mdp = md_get_handle()) == NULL) {
1880 		cmn_err(CE_WARN, "unable to init machine description");
1881 		return (ENXIO);
1882 	}
1883 
1884 	num_nodes = md_node_count(mdp);
1885 	ASSERT(num_nodes > 0);
1886 
1887 	listsz = num_nodes * sizeof (mde_cookie_t);
1888 
1889 	/* allocate memory for nodes */
1890 	listp = kmem_zalloc(listsz, KM_SLEEP);
1891 	chanp = kmem_zalloc(listsz, KM_SLEEP);
1892 
1893 	rootnode = md_root_node(mdp);
1894 	ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
1895 
1896 	/*
1897 	 * Search for all the virtual devices, we will then check to see which
1898 	 * ones are disk nodes.
1899 	 */
1900 	num_vdevs = md_scan_dag(mdp, rootnode,
1901 			md_find_name(mdp, VDC_MD_VDEV_NAME),
1902 			md_find_name(mdp, "fwd"), listp);
1903 
1904 	if (num_vdevs <= 0) {
1905 		cmn_err(CE_NOTE, "No '%s' node found", VDC_MD_VDEV_NAME);
1906 		status = ENOENT;
1907 		goto done;
1908 	}
1909 
1910 	DMSGX(1, "[%d] num_vdevs=%d\n", instance, num_vdevs);
1911 	for (idx = 0; idx < num_vdevs; idx++) {
1912 		status = md_get_prop_str(mdp, listp[idx], "name", &node_name);
1913 		if ((status != 0) || (node_name == NULL)) {
1914 			cmn_err(CE_NOTE, "Unable to get name of node type '%s'"
1915 					": err %d", VDC_MD_VDEV_NAME, status);
1916 			continue;
1917 		}
1918 
1919 		DMSGX(1, "[%d] Found node '%s'\n", instance, node_name);
1920 		if (strcmp(VDC_MD_DISK_NAME, node_name) == 0) {
1921 			status = md_get_prop_val(mdp, listp[idx],
1922 					VDC_MD_CFG_HDL, &md_inst);
1923 			DMSGX(1, "[%d] vdc inst in MD=%lx\n",
1924 			    instance, md_inst);
1925 			if ((status == 0) && (md_inst == obp_inst)) {
1926 				found_inst = B_TRUE;
1927 				break;
1928 			}
1929 		}
1930 	}
1931 
1932 	if (!found_inst) {
1933 		DMSGX(0, "Unable to find correct '%s' node", VDC_MD_DISK_NAME);
1934 		status = ENOENT;
1935 		goto done;
1936 	}
1937 	DMSGX(0, "[%d] MD inst=%lx\n", instance, md_inst);
1938 
1939 	/* get the channels for this node */
1940 	num_chans = md_scan_dag(mdp, listp[idx],
1941 			md_find_name(mdp, VDC_MD_CHAN_NAME),
1942 			md_find_name(mdp, "fwd"), chanp);
1943 
1944 	/* expecting at least one channel */
1945 	if (num_chans <= 0) {
1946 		cmn_err(CE_NOTE, "No '%s' node for '%s' port",
1947 				VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME);
1948 		status = ENOENT;
1949 		goto done;
1950 
1951 	} else if (num_chans != 1) {
1952 		DMSGX(0, "[%d] Expected 1 '%s' node for '%s' port, found %d\n",
1953 			instance, VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME,
1954 			num_chans);
1955 	}
1956 
1957 	/*
1958 	 * We use the first channel found (index 0), irrespective of how
1959 	 * many are there in total.
1960 	 */
1961 	if (md_get_prop_val(mdp, chanp[0], VDC_ID_PROP, ldc_id) != 0) {
1962 		cmn_err(CE_NOTE, "Channel '%s' property not found",
1963 				VDC_ID_PROP);
1964 		status = ENOENT;
1965 	}
1966 
1967 	DMSGX(0, "[%d] LDC id is 0x%lx\n", instance, *ldc_id);
1968 
1969 done:
1970 	if (chanp)
1971 		kmem_free(chanp, listsz);
1972 	if (listp)
1973 		kmem_free(listp, listsz);
1974 
1975 	(void) md_fini_handle(mdp);
1976 
1977 	return (status);
1978 }
1979 
1980 static int
1981 vdc_do_ldc_up(vdc_t *vdc)
1982 {
1983 	int		status;
1984 	ldc_status_t	ldc_state;
1985 
1986 	DMSG(vdc, 0, "[%d] Bringing up channel %lx\n",
1987 	    vdc->instance, vdc->ldc_id);
1988 
1989 	if (vdc->lifecycle == VDC_LC_DETACHING)
1990 		return (EINVAL);
1991 
1992 	if ((status = ldc_up(vdc->ldc_handle)) != 0) {
1993 		switch (status) {
1994 		case ECONNREFUSED:	/* listener not ready at other end */
1995 			DMSG(vdc, 0, "[%d] ldc_up(%lx,...) return %d\n",
1996 					vdc->instance, vdc->ldc_id, status);
1997 			status = 0;
1998 			break;
1999 		default:
2000 			DMSG(vdc, 0, "[%d] Failed to bring up LDC: "
2001 			    "channel=%ld, err=%d", vdc->instance, vdc->ldc_id,
2002 			    status);
2003 			break;
2004 		}
2005 	}
2006 
2007 	if (ldc_status(vdc->ldc_handle, &ldc_state) == 0) {
2008 		vdc->ldc_state = ldc_state;
2009 		if (ldc_state == LDC_UP) {
2010 			DMSG(vdc, 0, "[%d] LDC channel already up\n",
2011 			    vdc->instance);
2012 			vdc->seq_num = 1;
2013 			vdc->seq_num_reply = 0;
2014 		}
2015 	}
2016 
2017 	return (status);
2018 }
2019 
2020 /*
2021  * Function:
2022  *	vdc_terminate_ldc()
2023  *
2024  * Description:
2025  *
2026  * Arguments:
2027  *	vdc	- soft state pointer for this instance of the device driver.
2028  *
2029  * Return Code:
2030  *	None
2031  */
2032 static void
2033 vdc_terminate_ldc(vdc_t *vdc)
2034 {
2035 	int	instance = ddi_get_instance(vdc->dip);
2036 
2037 	ASSERT(vdc != NULL);
2038 	ASSERT(mutex_owned(&vdc->lock));
2039 
2040 	DMSG(vdc, 0, "[%d] initialized=%x\n", instance, vdc->initialized);
2041 
2042 	if (vdc->initialized & VDC_LDC_OPEN) {
2043 		DMSG(vdc, 0, "[%d] ldc_close()\n", instance);
2044 		(void) ldc_close(vdc->ldc_handle);
2045 	}
2046 	if (vdc->initialized & VDC_LDC_CB) {
2047 		DMSG(vdc, 0, "[%d] ldc_unreg_callback()\n", instance);
2048 		(void) ldc_unreg_callback(vdc->ldc_handle);
2049 	}
2050 	if (vdc->initialized & VDC_LDC) {
2051 		DMSG(vdc, 0, "[%d] ldc_fini()\n", instance);
2052 		(void) ldc_fini(vdc->ldc_handle);
2053 		vdc->ldc_handle = NULL;
2054 	}
2055 
2056 	vdc->initialized &= ~(VDC_LDC | VDC_LDC_CB | VDC_LDC_OPEN);
2057 }
2058 
2059 /* -------------------------------------------------------------------------- */
2060 
2061 /*
2062  * Descriptor Ring helper routines
2063  */
2064 
2065 /*
2066  * Function:
2067  *	vdc_init_descriptor_ring()
2068  *
2069  * Description:
2070  *
2071  * Arguments:
2072  *	vdc	- soft state pointer for this instance of the device driver.
2073  *
2074  * Return Code:
2075  *	0	- Success
2076  */
2077 static int
2078 vdc_init_descriptor_ring(vdc_t *vdc)
2079 {
2080 	vd_dring_entry_t	*dep = NULL;	/* DRing Entry pointer */
2081 	int	status = 0;
2082 	int	i;
2083 
2084 	DMSG(vdc, 0, "[%d] initialized=%x\n", vdc->instance, vdc->initialized);
2085 
2086 	ASSERT(vdc != NULL);
2087 	ASSERT(mutex_owned(&vdc->lock));
2088 	ASSERT(vdc->ldc_handle != NULL);
2089 
2090 	/* ensure we have enough room to store max sized block */
2091 	ASSERT(maxphys <= VD_MAX_BLOCK_SIZE);
2092 
2093 	if ((vdc->initialized & VDC_DRING_INIT) == 0) {
2094 		DMSG(vdc, 0, "[%d] ldc_mem_dring_create\n", vdc->instance);
2095 		/*
2096 		 * Calculate the maximum block size we can transmit using one
2097 		 * Descriptor Ring entry from the attributes returned by the
2098 		 * vDisk server. This is subject to a minimum of 'maxphys'
2099 		 * as we do not have the capability to split requests over
2100 		 * multiple DRing entries.
2101 		 */
2102 		if ((vdc->max_xfer_sz * vdc->block_size) < maxphys) {
2103 			DMSG(vdc, 0, "[%d] using minimum DRing size\n",
2104 					vdc->instance);
2105 			vdc->dring_max_cookies = maxphys / PAGESIZE;
2106 		} else {
2107 			vdc->dring_max_cookies =
2108 				(vdc->max_xfer_sz * vdc->block_size) / PAGESIZE;
2109 		}
2110 		vdc->dring_entry_size = (sizeof (vd_dring_entry_t) +
2111 				(sizeof (ldc_mem_cookie_t) *
2112 					(vdc->dring_max_cookies - 1)));
2113 		vdc->dring_len = VD_DRING_LEN;
2114 
2115 		status = ldc_mem_dring_create(vdc->dring_len,
2116 				vdc->dring_entry_size, &vdc->ldc_dring_hdl);
2117 		if ((vdc->ldc_dring_hdl == NULL) || (status != 0)) {
2118 			DMSG(vdc, 0, "[%d] Descriptor ring creation failed",
2119 					vdc->instance);
2120 			return (status);
2121 		}
2122 		vdc->initialized |= VDC_DRING_INIT;
2123 	}
2124 
2125 	if ((vdc->initialized & VDC_DRING_BOUND) == 0) {
2126 		DMSG(vdc, 0, "[%d] ldc_mem_dring_bind\n", vdc->instance);
2127 		vdc->dring_cookie =
2128 			kmem_zalloc(sizeof (ldc_mem_cookie_t), KM_SLEEP);
2129 
2130 		status = ldc_mem_dring_bind(vdc->ldc_handle, vdc->ldc_dring_hdl,
2131 				LDC_SHADOW_MAP|LDC_DIRECT_MAP, LDC_MEM_RW,
2132 				&vdc->dring_cookie[0],
2133 				&vdc->dring_cookie_count);
2134 		if (status != 0) {
2135 			DMSG(vdc, 0, "[%d] Failed to bind descriptor ring "
2136 				"(%lx) to channel (%lx) status=%d\n",
2137 				vdc->instance, vdc->ldc_dring_hdl,
2138 				vdc->ldc_handle, status);
2139 			return (status);
2140 		}
2141 		ASSERT(vdc->dring_cookie_count == 1);
2142 		vdc->initialized |= VDC_DRING_BOUND;
2143 	}
2144 
2145 	status = ldc_mem_dring_info(vdc->ldc_dring_hdl, &vdc->dring_mem_info);
2146 	if (status != 0) {
2147 		DMSG(vdc, 0,
2148 		    "[%d] Failed to get info for descriptor ring (%lx)\n",
2149 		    vdc->instance, vdc->ldc_dring_hdl);
2150 		return (status);
2151 	}
2152 
2153 	if ((vdc->initialized & VDC_DRING_LOCAL) == 0) {
2154 		DMSG(vdc, 0, "[%d] local dring\n", vdc->instance);
2155 
2156 		/* Allocate the local copy of this dring */
2157 		vdc->local_dring =
2158 			kmem_zalloc(vdc->dring_len * sizeof (vdc_local_desc_t),
2159 						KM_SLEEP);
2160 		vdc->initialized |= VDC_DRING_LOCAL;
2161 	}
2162 
2163 	/*
2164 	 * Mark all DRing entries as free and initialize the private
2165 	 * descriptor's memory handles. If any entry is initialized,
2166 	 * we need to free it later so we set the bit in 'initialized'
2167 	 * at the start.
2168 	 */
2169 	vdc->initialized |= VDC_DRING_ENTRY;
2170 	for (i = 0; i < vdc->dring_len; i++) {
2171 		dep = VDC_GET_DRING_ENTRY_PTR(vdc, i);
2172 		dep->hdr.dstate = VIO_DESC_FREE;
2173 
2174 		status = ldc_mem_alloc_handle(vdc->ldc_handle,
2175 				&vdc->local_dring[i].desc_mhdl);
2176 		if (status != 0) {
2177 			DMSG(vdc, 0, "![%d] Failed to alloc mem handle for"
2178 					" descriptor %d", vdc->instance, i);
2179 			return (status);
2180 		}
2181 		vdc->local_dring[i].is_free = B_TRUE;
2182 		vdc->local_dring[i].dep = dep;
2183 	}
2184 
2185 	/* Initialize the starting index */
2186 	vdc->dring_curr_idx = 0;
2187 
2188 	return (status);
2189 }
2190 
2191 /*
2192  * Function:
2193  *	vdc_destroy_descriptor_ring()
2194  *
2195  * Description:
2196  *
2197  * Arguments:
2198  *	vdc	- soft state pointer for this instance of the device driver.
2199  *
2200  * Return Code:
2201  *	None
2202  */
2203 static void
2204 vdc_destroy_descriptor_ring(vdc_t *vdc)
2205 {
2206 	vdc_local_desc_t	*ldep = NULL;	/* Local Dring Entry Pointer */
2207 	ldc_mem_handle_t	mhdl = NULL;
2208 	ldc_mem_info_t		minfo;
2209 	int			status = -1;
2210 	int			i;	/* loop */
2211 
2212 	ASSERT(vdc != NULL);
2213 	ASSERT(mutex_owned(&vdc->lock));
2214 
2215 	DMSG(vdc, 0, "[%d] Entered\n", vdc->instance);
2216 
2217 	if (vdc->initialized & VDC_DRING_ENTRY) {
2218 		DMSG(vdc, 0,
2219 		    "[%d] Removing Local DRing entries\n", vdc->instance);
2220 		for (i = 0; i < vdc->dring_len; i++) {
2221 			ldep = &vdc->local_dring[i];
2222 			mhdl = ldep->desc_mhdl;
2223 
2224 			if (mhdl == NULL)
2225 				continue;
2226 
2227 			if ((status = ldc_mem_info(mhdl, &minfo)) != 0) {
2228 				DMSG(vdc, 0,
2229 				    "ldc_mem_info returned an error: %d\n",
2230 				    status);
2231 
2232 				/*
2233 				 * This must mean that the mem handle
2234 				 * is not valid. Clear it out so that
2235 				 * no one tries to use it.
2236 				 */
2237 				ldep->desc_mhdl = NULL;
2238 				continue;
2239 			}
2240 
2241 			if (minfo.status == LDC_BOUND) {
2242 				(void) ldc_mem_unbind_handle(mhdl);
2243 			}
2244 
2245 			(void) ldc_mem_free_handle(mhdl);
2246 
2247 			ldep->desc_mhdl = NULL;
2248 		}
2249 		vdc->initialized &= ~VDC_DRING_ENTRY;
2250 	}
2251 
2252 	if (vdc->initialized & VDC_DRING_LOCAL) {
2253 		DMSG(vdc, 0, "[%d] Freeing Local DRing\n", vdc->instance);
2254 		kmem_free(vdc->local_dring,
2255 				vdc->dring_len * sizeof (vdc_local_desc_t));
2256 		vdc->initialized &= ~VDC_DRING_LOCAL;
2257 	}
2258 
2259 	if (vdc->initialized & VDC_DRING_BOUND) {
2260 		DMSG(vdc, 0, "[%d] Unbinding DRing\n", vdc->instance);
2261 		status = ldc_mem_dring_unbind(vdc->ldc_dring_hdl);
2262 		if (status == 0) {
2263 			vdc->initialized &= ~VDC_DRING_BOUND;
2264 		} else {
2265 			DMSG(vdc, 0, "[%d] Error %d unbinding DRing %lx",
2266 				vdc->instance, status, vdc->ldc_dring_hdl);
2267 		}
2268 		kmem_free(vdc->dring_cookie, sizeof (ldc_mem_cookie_t));
2269 	}
2270 
2271 	if (vdc->initialized & VDC_DRING_INIT) {
2272 		DMSG(vdc, 0, "[%d] Destroying DRing\n", vdc->instance);
2273 		status = ldc_mem_dring_destroy(vdc->ldc_dring_hdl);
2274 		if (status == 0) {
2275 			vdc->ldc_dring_hdl = NULL;
2276 			bzero(&vdc->dring_mem_info, sizeof (ldc_mem_info_t));
2277 			vdc->initialized &= ~VDC_DRING_INIT;
2278 		} else {
2279 			DMSG(vdc, 0, "[%d] Error %d destroying DRing (%lx)",
2280 				vdc->instance, status, vdc->ldc_dring_hdl);
2281 		}
2282 	}
2283 }
2284 
2285 /*
2286  * Function:
2287  *	vdc_map_to_shared_ring()
2288  *
2289  * Description:
2290  *	Copy contents of the local descriptor to the shared
2291  *	memory descriptor.
2292  *
2293  * Arguments:
2294  *	vdcp	- soft state pointer for this instance of the device driver.
2295  *	idx	- descriptor ring index
2296  *
2297  * Return Code:
2298  *	None
2299  */
2300 static int
2301 vdc_map_to_shared_dring(vdc_t *vdcp, int idx)
2302 {
2303 	vdc_local_desc_t	*ldep;
2304 	vd_dring_entry_t	*dep;
2305 	int			rv;
2306 
2307 	ldep = &(vdcp->local_dring[idx]);
2308 
2309 	/* for now leave in the old pop_mem_hdl stuff */
2310 	if (ldep->nbytes > 0) {
2311 		rv = vdc_populate_mem_hdl(vdcp, ldep);
2312 		if (rv) {
2313 			DMSG(vdcp, 0, "[%d] Cannot populate mem handle\n",
2314 			    vdcp->instance);
2315 			return (rv);
2316 		}
2317 	}
2318 
2319 	/*
2320 	 * fill in the data details into the DRing
2321 	 */
2322 	dep = ldep->dep;
2323 	ASSERT(dep != NULL);
2324 
2325 	dep->payload.req_id = VDC_GET_NEXT_REQ_ID(vdcp);
2326 	dep->payload.operation = ldep->operation;
2327 	dep->payload.addr = ldep->offset;
2328 	dep->payload.nbytes = ldep->nbytes;
2329 	dep->payload.status = (uint32_t)-1;	/* vds will set valid value */
2330 	dep->payload.slice = ldep->slice;
2331 	dep->hdr.dstate = VIO_DESC_READY;
2332 	dep->hdr.ack = 1;		/* request an ACK for every message */
2333 
2334 	return (0);
2335 }
2336 
2337 /*
2338  * Function:
2339  *	vdc_send_request
2340  *
2341  * Description:
2342  *	This routine writes the data to be transmitted to vds into the
2343  *	descriptor, notifies vds that the ring has been updated and
2344  *	then waits for the request to be processed.
2345  *
2346  * Arguments:
2347  *	vdcp	  - the soft state pointer
2348  *	operation - operation we want vds to perform (VD_OP_XXX)
2349  *	addr	  - address of data buf to be read/written.
2350  *	nbytes	  - number of bytes to read/write
2351  *	slice	  - the disk slice this request is for
2352  *	offset	  - relative disk offset
2353  *	cb_type   - type of call - STRATEGY or SYNC
2354  *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
2355  *			. mode for ioctl(9e)
2356  *			. LP64 diskaddr_t (block I/O)
2357  *	dir	  - direction of operation (READ/WRITE/BOTH)
2358  *
2359  * Return Codes:
2360  *	0
2361  *	EAGAIN
2362  *		EFAULT
2363  *		ENXIO
2364  *		EIO
2365  */
2366 static int
2367 vdc_send_request(vdc_t *vdcp, int operation, caddr_t addr,
2368     size_t nbytes, int slice, diskaddr_t offset, int cb_type,
2369     void *cb_arg, vio_desc_direction_t dir)
2370 {
2371 	ASSERT(vdcp != NULL);
2372 	ASSERT(slice < V_NUMPAR);
2373 
2374 	mutex_enter(&vdcp->lock);
2375 
2376 	do {
2377 		while (vdcp->state != VDC_STATE_RUNNING)
2378 			cv_wait(&vdcp->running_cv, &vdcp->lock);
2379 
2380 	} while (vdc_populate_descriptor(vdcp, operation, addr,
2381 	    nbytes, slice, offset, cb_type, cb_arg, dir));
2382 
2383 	mutex_exit(&vdcp->lock);
2384 	return (0);
2385 }
2386 
2387 
2388 /*
2389  * Function:
2390  *	vdc_populate_descriptor
2391  *
2392  * Description:
2393  *	This routine writes the data to be transmitted to vds into the
2394  *	descriptor, notifies vds that the ring has been updated and
2395  *	then waits for the request to be processed.
2396  *
2397  * Arguments:
2398  *	vdcp	  - the soft state pointer
2399  *	operation - operation we want vds to perform (VD_OP_XXX)
2400  *	addr	  - address of data buf to be read/written.
2401  *	nbytes	  - number of bytes to read/write
2402  *	slice	  - the disk slice this request is for
2403  *	offset	  - relative disk offset
2404  *	cb_type   - type of call - STRATEGY or SYNC
2405  *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
2406  *			. mode for ioctl(9e)
2407  *			. LP64 diskaddr_t (block I/O)
2408  *	dir	  - direction of operation (READ/WRITE/BOTH)
2409  *
2410  * Return Codes:
2411  *	0
2412  *	EAGAIN
2413  *		EFAULT
2414  *		ENXIO
2415  *		EIO
2416  */
2417 static int
2418 vdc_populate_descriptor(vdc_t *vdcp, int operation, caddr_t addr,
2419     size_t nbytes, int slice, diskaddr_t offset, int cb_type,
2420     void *cb_arg, vio_desc_direction_t dir)
2421 {
2422 	vdc_local_desc_t	*local_dep = NULL; /* Local Dring Pointer */
2423 	int			idx;		/* Index of DRing entry used */
2424 	int			next_idx;
2425 	vio_dring_msg_t		dmsg;
2426 	size_t			msglen;
2427 	int			rv;
2428 
2429 	ASSERT(MUTEX_HELD(&vdcp->lock));
2430 	vdcp->threads_pending++;
2431 loop:
2432 	DMSG(vdcp, 2, ": dring_curr_idx = %d\n", vdcp->dring_curr_idx);
2433 
2434 	/* Get next available D-Ring entry */
2435 	idx = vdcp->dring_curr_idx;
2436 	local_dep = &(vdcp->local_dring[idx]);
2437 
2438 	if (!local_dep->is_free) {
2439 		DMSG(vdcp, 2, "[%d]: dring full - waiting for space\n",
2440 		    vdcp->instance);
2441 		cv_wait(&vdcp->dring_free_cv, &vdcp->lock);
2442 		if (vdcp->state == VDC_STATE_RUNNING ||
2443 		    vdcp->state == VDC_STATE_HANDLE_PENDING) {
2444 			goto loop;
2445 		}
2446 		vdcp->threads_pending--;
2447 		return (ECONNRESET);
2448 	}
2449 
2450 	next_idx = idx + 1;
2451 	if (next_idx >= vdcp->dring_len)
2452 		next_idx = 0;
2453 	vdcp->dring_curr_idx = next_idx;
2454 
2455 	ASSERT(local_dep->is_free);
2456 
2457 	local_dep->operation = operation;
2458 	local_dep->addr = addr;
2459 	local_dep->nbytes = nbytes;
2460 	local_dep->slice = slice;
2461 	local_dep->offset = offset;
2462 	local_dep->cb_type = cb_type;
2463 	local_dep->cb_arg = cb_arg;
2464 	local_dep->dir = dir;
2465 
2466 	local_dep->is_free = B_FALSE;
2467 
2468 	rv = vdc_map_to_shared_dring(vdcp, idx);
2469 	if (rv) {
2470 		DMSG(vdcp, 0, "[%d]: cannot bind memory - waiting ..\n",
2471 		    vdcp->instance);
2472 		/* free the descriptor */
2473 		local_dep->is_free = B_TRUE;
2474 		vdcp->dring_curr_idx = idx;
2475 		cv_wait(&vdcp->membind_cv, &vdcp->lock);
2476 		if (vdcp->state == VDC_STATE_RUNNING ||
2477 		    vdcp->state == VDC_STATE_HANDLE_PENDING) {
2478 			goto loop;
2479 		}
2480 		vdcp->threads_pending--;
2481 		return (ECONNRESET);
2482 	}
2483 
2484 	/*
2485 	 * Send a msg with the DRing details to vds
2486 	 */
2487 	VIO_INIT_DRING_DATA_TAG(dmsg);
2488 	VDC_INIT_DRING_DATA_MSG_IDS(dmsg, vdcp);
2489 	dmsg.dring_ident = vdcp->dring_ident;
2490 	dmsg.start_idx = idx;
2491 	dmsg.end_idx = idx;
2492 	vdcp->seq_num++;
2493 
2494 	DTRACE_IO2(send, vio_dring_msg_t *, &dmsg, vdc_t *, vdcp);
2495 
2496 	DMSG(vdcp, 2, "ident=0x%lx, st=%u, end=%u, seq=%ld\n",
2497 	    vdcp->dring_ident, dmsg.start_idx, dmsg.end_idx, dmsg.seq_num);
2498 
2499 	/*
2500 	 * note we're still holding the lock here to
2501 	 * make sure the message goes out in order !!!...
2502 	 */
2503 	msglen = sizeof (dmsg);
2504 	rv = vdc_send(vdcp, (caddr_t)&dmsg, &msglen);
2505 	switch (rv) {
2506 	case ECONNRESET:
2507 		/*
2508 		 * vdc_send initiates the reset on failure.
2509 		 * Since the transaction has already been put
2510 		 * on the local dring, it will automatically get
2511 		 * retried when the channel is reset. Given that,
2512 		 * it is ok to just return success even though the
2513 		 * send failed.
2514 		 */
2515 		rv = 0;
2516 		break;
2517 
2518 	case 0: /* EOK */
2519 		DMSG(vdcp, 1, "sent via LDC: rv=%d\n", rv);
2520 		break;
2521 
2522 	default:
2523 		goto cleanup_and_exit;
2524 	}
2525 
2526 	vdcp->threads_pending--;
2527 	return (rv);
2528 
2529 cleanup_and_exit:
2530 	DMSG(vdcp, 0, "unexpected error, rv=%d\n", rv);
2531 	return (ENXIO);
2532 }
2533 
2534 /*
2535  * Function:
2536  *	vdc_do_sync_op
2537  *
2538  * Description:
2539  * 	Wrapper around vdc_populate_descriptor that blocks until the
2540  * 	response to the message is available.
2541  *
2542  * Arguments:
2543  *	vdcp	  - the soft state pointer
2544  *	operation - operation we want vds to perform (VD_OP_XXX)
2545  *	addr	  - address of data buf to be read/written.
2546  *	nbytes	  - number of bytes to read/write
2547  *	slice	  - the disk slice this request is for
2548  *	offset	  - relative disk offset
2549  *	cb_type   - type of call - STRATEGY or SYNC
2550  *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
2551  *			. mode for ioctl(9e)
2552  *			. LP64 diskaddr_t (block I/O)
2553  *	dir	  - direction of operation (READ/WRITE/BOTH)
2554  *
2555  * Return Codes:
2556  *	0
2557  *	EAGAIN
2558  *		EFAULT
2559  *		ENXIO
2560  *		EIO
2561  */
2562 static int
2563 vdc_do_sync_op(vdc_t *vdcp, int operation, caddr_t addr, size_t nbytes,
2564     int slice, diskaddr_t offset, int cb_type, void *cb_arg,
2565     vio_desc_direction_t dir)
2566 {
2567 	int status;
2568 
2569 	ASSERT(cb_type == CB_SYNC);
2570 
2571 	/*
2572 	 * Grab the lock, if blocked wait until the server
2573 	 * response causes us to wake up again.
2574 	 */
2575 	mutex_enter(&vdcp->lock);
2576 	vdcp->sync_op_cnt++;
2577 	while (vdcp->sync_op_blocked && vdcp->state != VDC_STATE_DETACH)
2578 		cv_wait(&vdcp->sync_blocked_cv, &vdcp->lock);
2579 
2580 	if (vdcp->state == VDC_STATE_DETACH) {
2581 		cv_broadcast(&vdcp->sync_blocked_cv);
2582 		vdcp->sync_op_cnt--;
2583 		mutex_exit(&vdcp->lock);
2584 		return (ENXIO);
2585 	}
2586 
2587 	/* now block anyone other thread entering after us */
2588 	vdcp->sync_op_blocked = B_TRUE;
2589 	vdcp->sync_op_pending = B_TRUE;
2590 	mutex_exit(&vdcp->lock);
2591 
2592 	/*
2593 	 * No need to check return value - will return error only
2594 	 * in the DETACH case and we can fall through
2595 	 */
2596 	(void) vdc_send_request(vdcp, operation, addr,
2597 	    nbytes, slice, offset, cb_type, cb_arg, dir);
2598 
2599 	/*
2600 	 * block until our transaction completes.
2601 	 * Also anyone else waiting also gets to go next.
2602 	 */
2603 	mutex_enter(&vdcp->lock);
2604 	while (vdcp->sync_op_pending && vdcp->state != VDC_STATE_DETACH)
2605 		cv_wait(&vdcp->sync_pending_cv, &vdcp->lock);
2606 
2607 	DMSG(vdcp, 2, ": operation returned %d\n", vdcp->sync_op_status);
2608 	if (vdcp->state == VDC_STATE_DETACH)
2609 		status = ENXIO;
2610 	else
2611 		status = vdcp->sync_op_status;
2612 	vdcp->sync_op_status = 0;
2613 	vdcp->sync_op_blocked = B_FALSE;
2614 	vdcp->sync_op_cnt--;
2615 
2616 	/* signal the next waiting thread */
2617 	cv_signal(&vdcp->sync_blocked_cv);
2618 	mutex_exit(&vdcp->lock);
2619 
2620 	return (status);
2621 }
2622 
2623 
2624 /*
2625  * Function:
2626  *	vdc_drain_response()
2627  *
2628  * Description:
2629  * 	When a guest is panicking, the completion of requests needs to be
2630  * 	handled differently because interrupts are disabled and vdc
2631  * 	will not get messages. We have to poll for the messages instead.
2632  *
2633  * Arguments:
2634  *	vdc	- soft state pointer for this instance of the device driver.
2635  *
2636  * Return Code:
2637  *	0	- Success
2638  */
2639 static int
2640 vdc_drain_response(vdc_t *vdc)
2641 {
2642 	int 			rv, idx, retries;
2643 	size_t			msglen;
2644 	vdc_local_desc_t 	*ldep = NULL;	/* Local Dring Entry Pointer */
2645 	vio_dring_msg_t		dmsg;
2646 
2647 	mutex_enter(&vdc->lock);
2648 
2649 	retries = 0;
2650 	for (;;) {
2651 		msglen = sizeof (dmsg);
2652 		rv = ldc_read(vdc->ldc_handle, (caddr_t)&dmsg, &msglen);
2653 		if (rv) {
2654 			rv = EINVAL;
2655 			break;
2656 		}
2657 
2658 		/*
2659 		 * if there are no packets wait and check again
2660 		 */
2661 		if ((rv == 0) && (msglen == 0)) {
2662 			if (retries++ > vdc_dump_retries) {
2663 				rv = EAGAIN;
2664 				break;
2665 			}
2666 
2667 			drv_usecwait(vdc_usec_timeout_dump);
2668 			continue;
2669 		}
2670 
2671 		/*
2672 		 * Ignore all messages that are not ACKs/NACKs to
2673 		 * DRing requests.
2674 		 */
2675 		if ((dmsg.tag.vio_msgtype != VIO_TYPE_DATA) ||
2676 		    (dmsg.tag.vio_subtype_env != VIO_DRING_DATA)) {
2677 			DMSG(vdc, 0, "discard pkt: type=%d sub=%d env=%d\n",
2678 			    dmsg.tag.vio_msgtype,
2679 			    dmsg.tag.vio_subtype,
2680 			    dmsg.tag.vio_subtype_env);
2681 			continue;
2682 		}
2683 
2684 		/*
2685 		 * set the appropriate return value for the current request.
2686 		 */
2687 		switch (dmsg.tag.vio_subtype) {
2688 		case VIO_SUBTYPE_ACK:
2689 			rv = 0;
2690 			break;
2691 		case VIO_SUBTYPE_NACK:
2692 			rv = EAGAIN;
2693 			break;
2694 		default:
2695 			continue;
2696 		}
2697 
2698 		idx = dmsg.start_idx;
2699 		if (idx >= vdc->dring_len) {
2700 			DMSG(vdc, 0, "[%d] Bogus ack data : start %d\n",
2701 			    vdc->instance, idx);
2702 			continue;
2703 		}
2704 		ldep = &vdc->local_dring[idx];
2705 		if (ldep->dep->hdr.dstate != VIO_DESC_DONE) {
2706 			DMSG(vdc, 0, "[%d] Entry @ %d - state !DONE %d\n",
2707 			    vdc->instance, idx, ldep->dep->hdr.dstate);
2708 			continue;
2709 		}
2710 
2711 		DMSG(vdc, 1, "[%d] Depopulating idx=%d state=%d\n",
2712 		    vdc->instance, idx, ldep->dep->hdr.dstate);
2713 		rv = vdc_depopulate_descriptor(vdc, idx);
2714 		if (rv) {
2715 			DMSG(vdc, 0,
2716 			    "[%d] Entry @ %d - depopulate failed ..\n",
2717 			    vdc->instance, idx);
2718 		}
2719 
2720 		/* if this is the last descriptor - break out of loop */
2721 		if ((idx + 1) % vdc->dring_len == vdc->dring_curr_idx)
2722 			break;
2723 	}
2724 
2725 	mutex_exit(&vdc->lock);
2726 	DMSG(vdc, 0, "End idx=%d\n", idx);
2727 
2728 	return (rv);
2729 }
2730 
2731 
2732 /*
2733  * Function:
2734  *	vdc_depopulate_descriptor()
2735  *
2736  * Description:
2737  *
2738  * Arguments:
2739  *	vdc	- soft state pointer for this instance of the device driver.
2740  *	idx	- Index of the Descriptor Ring entry being modified
2741  *
2742  * Return Code:
2743  *	0	- Success
2744  */
2745 static int
2746 vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx)
2747 {
2748 	vd_dring_entry_t *dep = NULL;		/* Dring Entry Pointer */
2749 	vdc_local_desc_t *ldep = NULL;		/* Local Dring Entry Pointer */
2750 	int		status = ENXIO;
2751 	int		operation;
2752 	int		rv = 0;
2753 
2754 	ASSERT(vdc != NULL);
2755 	ASSERT(idx < vdc->dring_len);
2756 	ldep = &vdc->local_dring[idx];
2757 	ASSERT(ldep != NULL);
2758 	ASSERT(MUTEX_HELD(&vdc->lock));
2759 
2760 	DMSG(vdc, 2, ": idx = %d\n", idx);
2761 	dep = ldep->dep;
2762 	ASSERT(dep != NULL);
2763 	ASSERT((dep->hdr.dstate == VIO_DESC_DONE) ||
2764 			(dep->payload.status == ECANCELED));
2765 
2766 	VDC_MARK_DRING_ENTRY_FREE(vdc, idx);
2767 
2768 	ldep->is_free = B_TRUE;
2769 	DMSG(vdc, 2, ": is_free = %d\n", ldep->is_free);
2770 	status = dep->payload.status;
2771 	operation = dep->payload.operation;
2772 
2773 	/* the DKIO FLUSH operation never bind handles so we can return now */
2774 	if (operation == VD_OP_FLUSH)
2775 		return (status);
2776 
2777 	/*
2778 	 * If the upper layer passed in a misaligned address we copied the
2779 	 * data into an aligned buffer before sending it to LDC - we now
2780 	 * copy it back to the original buffer.
2781 	 */
2782 	if (ldep->align_addr) {
2783 		ASSERT(ldep->addr != NULL);
2784 		ASSERT(dep->payload.nbytes > 0);
2785 
2786 		bcopy(ldep->align_addr, ldep->addr, dep->payload.nbytes);
2787 		kmem_free(ldep->align_addr,
2788 			sizeof (caddr_t) * P2ROUNDUP(dep->payload.nbytes, 8));
2789 		ldep->align_addr = NULL;
2790 	}
2791 
2792 	rv = ldc_mem_unbind_handle(ldep->desc_mhdl);
2793 	if (rv != 0) {
2794 		DMSG(vdc, 0, "?[%d] unbind mhdl 0x%lx @ idx %d failed (%d)",
2795 				vdc->instance, ldep->desc_mhdl, idx, rv);
2796 		/*
2797 		 * The error returned by the vDisk server is more informative
2798 		 * and thus has a higher priority but if it isn't set we ensure
2799 		 * that this function returns an error.
2800 		 */
2801 		if (status == 0)
2802 			status = EINVAL;
2803 	}
2804 
2805 	cv_signal(&vdc->membind_cv);
2806 	cv_signal(&vdc->dring_free_cv);
2807 
2808 	return (status);
2809 }
2810 
2811 /*
2812  * Function:
2813  *	vdc_populate_mem_hdl()
2814  *
2815  * Description:
2816  *
2817  * Arguments:
2818  *	vdc	- soft state pointer for this instance of the device driver.
2819  *	idx	- Index of the Descriptor Ring entry being modified
2820  *	addr	- virtual address being mapped in
2821  *	nybtes	- number of bytes in 'addr'
2822  *	operation - the vDisk operation being performed (VD_OP_xxx)
2823  *
2824  * Return Code:
2825  *	0	- Success
2826  */
2827 static int
2828 vdc_populate_mem_hdl(vdc_t *vdcp, vdc_local_desc_t *ldep)
2829 {
2830 	vd_dring_entry_t	*dep = NULL;
2831 	ldc_mem_handle_t	mhdl;
2832 	caddr_t			vaddr;
2833 	size_t			nbytes;
2834 	uint8_t			perm = LDC_MEM_RW;
2835 	uint8_t			maptype;
2836 	int			rv = 0;
2837 	int			i;
2838 
2839 	ASSERT(vdcp != NULL);
2840 
2841 	dep = ldep->dep;
2842 	mhdl = ldep->desc_mhdl;
2843 
2844 	switch (ldep->dir) {
2845 	case VIO_read_dir:
2846 		perm = LDC_MEM_W;
2847 		break;
2848 
2849 	case VIO_write_dir:
2850 		perm = LDC_MEM_R;
2851 		break;
2852 
2853 	case VIO_both_dir:
2854 		perm = LDC_MEM_RW;
2855 		break;
2856 
2857 	default:
2858 		ASSERT(0);	/* catch bad programming in vdc */
2859 	}
2860 
2861 	/*
2862 	 * LDC expects any addresses passed in to be 8-byte aligned. We need
2863 	 * to copy the contents of any misaligned buffers to a newly allocated
2864 	 * buffer and bind it instead (and copy the the contents back to the
2865 	 * original buffer passed in when depopulating the descriptor)
2866 	 */
2867 	vaddr = ldep->addr;
2868 	nbytes = ldep->nbytes;
2869 	if (((uint64_t)vaddr & 0x7) != 0) {
2870 		ASSERT(ldep->align_addr == NULL);
2871 		ldep->align_addr =
2872 			kmem_alloc(sizeof (caddr_t) *
2873 				P2ROUNDUP(nbytes, 8), KM_SLEEP);
2874 		DMSG(vdcp, 0, "[%d] Misaligned address %p reallocating "
2875 		    "(buf=%p nb=%ld op=%d)\n",
2876 		    vdcp->instance, (void *)vaddr, (void *)ldep->align_addr,
2877 		    nbytes, ldep->operation);
2878 		if (perm != LDC_MEM_W)
2879 			bcopy(vaddr, ldep->align_addr, nbytes);
2880 		vaddr = ldep->align_addr;
2881 	}
2882 
2883 	maptype = LDC_IO_MAP|LDC_SHADOW_MAP|LDC_DIRECT_MAP;
2884 	rv = ldc_mem_bind_handle(mhdl, vaddr, P2ROUNDUP(nbytes, 8),
2885 		maptype, perm, &dep->payload.cookie[0],
2886 		&dep->payload.ncookies);
2887 	DMSG(vdcp, 2, "[%d] bound mem handle; ncookies=%d\n",
2888 			vdcp->instance, dep->payload.ncookies);
2889 	if (rv != 0) {
2890 		DMSG(vdcp, 0, "[%d] Failed to bind LDC memory handle "
2891 		    "(mhdl=%p, buf=%p, err=%d)\n",
2892 		    vdcp->instance, (void *)mhdl, (void *)vaddr, rv);
2893 		if (ldep->align_addr) {
2894 			kmem_free(ldep->align_addr,
2895 				sizeof (caddr_t) * P2ROUNDUP(nbytes, 8));
2896 			ldep->align_addr = NULL;
2897 		}
2898 		return (EAGAIN);
2899 	}
2900 
2901 	/*
2902 	 * Get the other cookies (if any).
2903 	 */
2904 	for (i = 1; i < dep->payload.ncookies; i++) {
2905 		rv = ldc_mem_nextcookie(mhdl, &dep->payload.cookie[i]);
2906 		if (rv != 0) {
2907 			(void) ldc_mem_unbind_handle(mhdl);
2908 			DMSG(vdcp, 0, "?[%d] Failed to get next cookie "
2909 					"(mhdl=%lx cnum=%d), err=%d",
2910 					vdcp->instance, mhdl, i, rv);
2911 			if (ldep->align_addr) {
2912 				kmem_free(ldep->align_addr,
2913 					sizeof (caddr_t) * dep->payload.nbytes);
2914 				ldep->align_addr = NULL;
2915 			}
2916 			return (EAGAIN);
2917 		}
2918 	}
2919 
2920 	return (rv);
2921 }
2922 
2923 /*
2924  * Interrupt handlers for messages from LDC
2925  */
2926 
2927 /*
2928  * Function:
2929  *	vdc_handle_cb()
2930  *
2931  * Description:
2932  *
2933  * Arguments:
2934  *	event	- Type of event (LDC_EVT_xxx) that triggered the callback
2935  *	arg	- soft state pointer for this instance of the device driver.
2936  *
2937  * Return Code:
2938  *	0	- Success
2939  */
2940 static uint_t
2941 vdc_handle_cb(uint64_t event, caddr_t arg)
2942 {
2943 	ldc_status_t	ldc_state;
2944 	int		rv = 0;
2945 
2946 	vdc_t	*vdc = (vdc_t *)(void *)arg;
2947 
2948 	ASSERT(vdc != NULL);
2949 
2950 	DMSG(vdc, 1, "evt=%lx seqID=%ld\n", event, vdc->seq_num);
2951 
2952 	/*
2953 	 * Depending on the type of event that triggered this callback,
2954 	 * we modify the handshake state or read the data.
2955 	 *
2956 	 * NOTE: not done as a switch() as event could be triggered by
2957 	 * a state change and a read request. Also the ordering	of the
2958 	 * check for the event types is deliberate.
2959 	 */
2960 	if (event & LDC_EVT_UP) {
2961 		DMSG(vdc, 0, "[%d] Received LDC_EVT_UP\n", vdc->instance);
2962 
2963 		mutex_enter(&vdc->lock);
2964 
2965 		/* get LDC state */
2966 		rv = ldc_status(vdc->ldc_handle, &ldc_state);
2967 		if (rv != 0) {
2968 			DMSG(vdc, 0, "[%d] Couldn't get LDC status %d",
2969 			    vdc->instance, rv);
2970 			return (LDC_SUCCESS);
2971 		}
2972 		if (vdc->ldc_state != LDC_UP && ldc_state == LDC_UP) {
2973 			/*
2974 			 * Reset the transaction sequence numbers when
2975 			 * LDC comes up. We then kick off the handshake
2976 			 * negotiation with the vDisk server.
2977 			 */
2978 			vdc->seq_num = 1;
2979 			vdc->seq_num_reply = 0;
2980 			vdc->ldc_state = ldc_state;
2981 			cv_signal(&vdc->initwait_cv);
2982 		}
2983 
2984 		mutex_exit(&vdc->lock);
2985 	}
2986 
2987 	if (event & LDC_EVT_READ) {
2988 		DMSG(vdc, 0, "[%d] Received LDC_EVT_READ\n", vdc->instance);
2989 		mutex_enter(&vdc->read_lock);
2990 		cv_signal(&vdc->read_cv);
2991 		vdc->read_state = VDC_READ_PENDING;
2992 		mutex_exit(&vdc->read_lock);
2993 
2994 		/* that's all we have to do - no need to handle DOWN/RESET */
2995 		return (LDC_SUCCESS);
2996 	}
2997 
2998 	if (event & (LDC_EVT_RESET|LDC_EVT_DOWN)) {
2999 
3000 		DMSG(vdc, 0, "[%d] Received LDC RESET event\n", vdc->instance);
3001 
3002 		mutex_enter(&vdc->lock);
3003 		/*
3004 		 * Need to wake up any readers so they will
3005 		 * detect that a reset has occurred.
3006 		 */
3007 		mutex_enter(&vdc->read_lock);
3008 		if ((vdc->read_state == VDC_READ_WAITING) ||
3009 		    (vdc->read_state == VDC_READ_RESET))
3010 			cv_signal(&vdc->read_cv);
3011 		vdc->read_state = VDC_READ_RESET;
3012 		mutex_exit(&vdc->read_lock);
3013 
3014 		/* wake up any threads waiting for connection to come up */
3015 		if (vdc->state == VDC_STATE_INIT_WAITING) {
3016 			vdc->state = VDC_STATE_RESETTING;
3017 			cv_signal(&vdc->initwait_cv);
3018 		}
3019 
3020 		mutex_exit(&vdc->lock);
3021 	}
3022 
3023 	if (event & ~(LDC_EVT_UP | LDC_EVT_RESET | LDC_EVT_DOWN | LDC_EVT_READ))
3024 		DMSG(vdc, 0, "![%d] Unexpected LDC event (%lx) received",
3025 				vdc->instance, event);
3026 
3027 	return (LDC_SUCCESS);
3028 }
3029 
3030 /*
3031  * Function:
3032  *	vdc_wait_for_response()
3033  *
3034  * Description:
3035  *	Block waiting for a response from the server. If there is
3036  *	no data the thread block on the read_cv that is signalled
3037  *	by the callback when an EVT_READ occurs.
3038  *
3039  * Arguments:
3040  *	vdcp	- soft state pointer for this instance of the device driver.
3041  *
3042  * Return Code:
3043  *	0	- Success
3044  */
3045 static int
3046 vdc_wait_for_response(vdc_t *vdcp, vio_msg_t *msgp)
3047 {
3048 	size_t		nbytes = sizeof (*msgp);
3049 	int		status;
3050 
3051 	ASSERT(vdcp != NULL);
3052 
3053 	DMSG(vdcp, 1, "[%d] Entered\n", vdcp->instance);
3054 
3055 	status = vdc_recv(vdcp, msgp, &nbytes);
3056 	DMSG(vdcp, 3, "vdc_read() done.. status=0x%x size=0x%x\n",
3057 		status, (int)nbytes);
3058 	if (status) {
3059 		DMSG(vdcp, 0, "?[%d] Error %d reading LDC msg\n",
3060 				vdcp->instance, status);
3061 		return (status);
3062 	}
3063 
3064 	if (nbytes < sizeof (vio_msg_tag_t)) {
3065 		DMSG(vdcp, 0, "?[%d] Expect %lu bytes; recv'd %lu\n",
3066 			vdcp->instance, sizeof (vio_msg_tag_t), nbytes);
3067 		return (ENOMSG);
3068 	}
3069 
3070 	DMSG(vdcp, 2, "[%d] (%x/%x/%x)\n", vdcp->instance,
3071 	    msgp->tag.vio_msgtype,
3072 	    msgp->tag.vio_subtype,
3073 	    msgp->tag.vio_subtype_env);
3074 
3075 	/*
3076 	 * Verify the Session ID of the message
3077 	 *
3078 	 * Every message after the Version has been negotiated should
3079 	 * have the correct session ID set.
3080 	 */
3081 	if ((msgp->tag.vio_sid != vdcp->session_id) &&
3082 	    (msgp->tag.vio_subtype_env != VIO_VER_INFO)) {
3083 		DMSG(vdcp, 0, "[%d] Invalid SID: received 0x%x, "
3084 				"expected 0x%lx [seq num %lx @ %d]",
3085 			vdcp->instance, msgp->tag.vio_sid,
3086 			vdcp->session_id,
3087 			((vio_dring_msg_t *)msgp)->seq_num,
3088 			((vio_dring_msg_t *)msgp)->start_idx);
3089 		return (ENOMSG);
3090 	}
3091 	return (0);
3092 }
3093 
3094 
3095 /*
3096  * Function:
3097  *	vdc_resubmit_backup_dring()
3098  *
3099  * Description:
3100  *	Resubmit each descriptor in the backed up dring to
3101  * 	vDisk server. The Dring was backed up during connection
3102  *	reset.
3103  *
3104  * Arguments:
3105  *	vdcp	- soft state pointer for this instance of the device driver.
3106  *
3107  * Return Code:
3108  *	0	- Success
3109  */
3110 static int
3111 vdc_resubmit_backup_dring(vdc_t *vdcp)
3112 {
3113 	int		count;
3114 	int		b_idx;
3115 	int		rv;
3116 	int		dring_size;
3117 	int		status;
3118 	vio_msg_t	vio_msg;
3119 	vdc_local_desc_t	*curr_ldep;
3120 
3121 	ASSERT(MUTEX_NOT_HELD(&vdcp->lock));
3122 	ASSERT(vdcp->state == VDC_STATE_HANDLE_PENDING);
3123 
3124 	DMSG(vdcp, 1, "restoring pending dring entries (len=%d, tail=%d)\n",
3125 	    vdcp->local_dring_backup_len, vdcp->local_dring_backup_tail);
3126 
3127 	/*
3128 	 * Walk the backup copy of the local descriptor ring and
3129 	 * resubmit all the outstanding transactions.
3130 	 */
3131 	b_idx = vdcp->local_dring_backup_tail;
3132 	for (count = 0; count < vdcp->local_dring_backup_len; count++) {
3133 
3134 		curr_ldep = &(vdcp->local_dring_backup[b_idx]);
3135 
3136 		/* only resubmit oustanding transactions */
3137 		if (!curr_ldep->is_free) {
3138 
3139 			DMSG(vdcp, 1, "resubmitting entry idx=%x\n", b_idx);
3140 			mutex_enter(&vdcp->lock);
3141 			rv = vdc_populate_descriptor(vdcp, curr_ldep->operation,
3142 			    curr_ldep->addr, curr_ldep->nbytes,
3143 			    curr_ldep->slice, curr_ldep->offset,
3144 			    curr_ldep->cb_type, curr_ldep->cb_arg,
3145 			    curr_ldep->dir);
3146 			mutex_exit(&vdcp->lock);
3147 			if (rv) {
3148 				DMSG(vdcp, 1, "[%d] cannot resubmit entry %d\n",
3149 				    vdcp->instance, b_idx);
3150 				return (rv);
3151 			}
3152 
3153 			/* Wait for the response message. */
3154 			DMSG(vdcp, 1, "waiting for response to idx=%x\n",
3155 			    b_idx);
3156 			status = vdc_wait_for_response(vdcp, &vio_msg);
3157 			if (status) {
3158 				DMSG(vdcp, 1, "[%d] wait_for_response "
3159 				    "returned err=%d\n", vdcp->instance,
3160 				    status);
3161 				return (status);
3162 			}
3163 
3164 			DMSG(vdcp, 1, "processing msg for idx=%x\n", b_idx);
3165 			status = vdc_process_data_msg(vdcp, &vio_msg);
3166 			if (status) {
3167 				DMSG(vdcp, 1, "[%d] process_data_msg "
3168 				    "returned err=%d\n", vdcp->instance,
3169 				    status);
3170 				return (status);
3171 			}
3172 		}
3173 
3174 		/* get the next element to submit */
3175 		if (++b_idx >= vdcp->local_dring_backup_len)
3176 			b_idx = 0;
3177 	}
3178 
3179 	/* all done - now clear up pending dring copy */
3180 	dring_size = vdcp->local_dring_backup_len *
3181 		sizeof (vdcp->local_dring_backup[0]);
3182 
3183 	(void) kmem_free(vdcp->local_dring_backup, dring_size);
3184 
3185 	vdcp->local_dring_backup = NULL;
3186 
3187 	return (0);
3188 }
3189 
3190 /*
3191  * Function:
3192  *	vdc_backup_local_dring()
3193  *
3194  * Description:
3195  *	Backup the current dring in the event of a reset. The Dring
3196  *	transactions will be resubmitted to the server when the
3197  *	connection is restored.
3198  *
3199  * Arguments:
3200  *	vdcp	- soft state pointer for this instance of the device driver.
3201  *
3202  * Return Code:
3203  *	NONE
3204  */
3205 static void
3206 vdc_backup_local_dring(vdc_t *vdcp)
3207 {
3208 	int dring_size;
3209 
3210 	ASSERT(vdcp->state == VDC_STATE_RESETTING);
3211 
3212 	/*
3213 	 * If the backup dring is stil around, it means
3214 	 * that the last restore did not complete. However,
3215 	 * since we never got back into the running state,
3216 	 * the backup copy we have is still valid.
3217 	 */
3218 	if (vdcp->local_dring_backup != NULL) {
3219 		DMSG(vdcp, 1, "reusing local descriptor ring backup "
3220 		    "(len=%d, tail=%d)\n", vdcp->local_dring_backup_len,
3221 		    vdcp->local_dring_backup_tail);
3222 		return;
3223 	}
3224 
3225 	DMSG(vdcp, 1, "backing up the local descriptor ring (len=%d, "
3226 	    "tail=%d)\n", vdcp->dring_len, vdcp->dring_curr_idx);
3227 
3228 	dring_size = vdcp->dring_len * sizeof (vdcp->local_dring[0]);
3229 
3230 	vdcp->local_dring_backup = kmem_alloc(dring_size, KM_SLEEP);
3231 	bcopy(vdcp->local_dring, vdcp->local_dring_backup, dring_size);
3232 
3233 	vdcp->local_dring_backup_tail = vdcp->dring_curr_idx;
3234 	vdcp->local_dring_backup_len = vdcp->dring_len;
3235 }
3236 
3237 /* -------------------------------------------------------------------------- */
3238 
3239 /*
3240  * The following functions process the incoming messages from vds
3241  */
3242 
3243 /*
3244  * Function:
3245  *      vdc_process_msg_thread()
3246  *
3247  * Description:
3248  *
3249  *	Main VDC message processing thread. Each vDisk instance
3250  * 	consists of a copy of this thread. This thread triggers
3251  * 	all the handshakes and data exchange with the server. It
3252  * 	also handles all channel resets
3253  *
3254  * Arguments:
3255  *      vdc     - soft state pointer for this instance of the device driver.
3256  *
3257  * Return Code:
3258  *      None
3259  */
3260 static void
3261 vdc_process_msg_thread(vdc_t *vdcp)
3262 {
3263 	int	status;
3264 
3265 	mutex_enter(&vdcp->lock);
3266 
3267 	for (;;) {
3268 
3269 #define	Q(_s)	(vdcp->state == _s) ? #_s :
3270 		DMSG(vdcp, 3, "state = %d (%s)\n", vdcp->state,
3271 		Q(VDC_STATE_INIT)
3272 		Q(VDC_STATE_INIT_WAITING)
3273 		Q(VDC_STATE_NEGOTIATE)
3274 		Q(VDC_STATE_HANDLE_PENDING)
3275 		Q(VDC_STATE_RUNNING)
3276 		Q(VDC_STATE_RESETTING)
3277 		Q(VDC_STATE_DETACH)
3278 		"UNKNOWN");
3279 
3280 		switch (vdcp->state) {
3281 		case VDC_STATE_INIT:
3282 
3283 			/* Check if have re-initializing repeatedly */
3284 			if (vdcp->hshake_cnt++ > VDC_RETRIES) {
3285 				vdcp->state = VDC_STATE_DETACH;
3286 				break;
3287 			}
3288 
3289 			/* Bring up connection with vds via LDC */
3290 			status = vdc_start_ldc_connection(vdcp);
3291 			switch (status) {
3292 			case EINVAL:
3293 				DMSG(vdcp, 0, "[%d] Could not start LDC",
3294 				    vdcp->instance);
3295 				vdcp->state = VDC_STATE_DETACH;
3296 				break;
3297 			case 0:
3298 				vdcp->state = VDC_STATE_INIT_WAITING;
3299 				break;
3300 			default:
3301 				vdcp->state = VDC_STATE_INIT_WAITING;
3302 				break;
3303 			}
3304 			break;
3305 
3306 		case VDC_STATE_INIT_WAITING:
3307 
3308 			/*
3309 			 * Let the callback event move us on
3310 			 * when channel is open to server
3311 			 */
3312 			while (vdcp->ldc_state != LDC_UP) {
3313 				cv_wait(&vdcp->initwait_cv, &vdcp->lock);
3314 				if (vdcp->state != VDC_STATE_INIT_WAITING) {
3315 					DMSG(vdcp, 0,
3316 				"state moved to %d out from under us...\n",
3317 					    vdcp->state);
3318 
3319 					break;
3320 				}
3321 			}
3322 			if (vdcp->state == VDC_STATE_INIT_WAITING &&
3323 			    vdcp->ldc_state == LDC_UP) {
3324 				vdcp->state = VDC_STATE_NEGOTIATE;
3325 			}
3326 			break;
3327 
3328 		case VDC_STATE_NEGOTIATE:
3329 			switch (status = vdc_ver_negotiation(vdcp)) {
3330 			case 0:
3331 				break;
3332 			default:
3333 				DMSG(vdcp, 0, "ver negotiate failed (%d)..\n",
3334 				    status);
3335 				goto reset;
3336 			}
3337 
3338 			switch (status = vdc_attr_negotiation(vdcp)) {
3339 			case 0:
3340 				break;
3341 			default:
3342 				DMSG(vdcp, 0, "attr negotiate failed (%d)..\n",
3343 				    status);
3344 				goto reset;
3345 			}
3346 
3347 			switch (status = vdc_dring_negotiation(vdcp)) {
3348 			case 0:
3349 				break;
3350 			default:
3351 				DMSG(vdcp, 0, "dring negotiate failed (%d)..\n",
3352 				    status);
3353 				goto reset;
3354 			}
3355 
3356 			switch (status = vdc_rdx_exchange(vdcp)) {
3357 			case 0:
3358 				vdcp->state = VDC_STATE_HANDLE_PENDING;
3359 				goto done;
3360 			default:
3361 				DMSG(vdcp, 0, "RDX xchg failed ..(%d)\n",
3362 				    status);
3363 				goto reset;
3364 			}
3365 reset:
3366 			DMSG(vdcp, 0, "negotiation failed: resetting (%d)\n",
3367 			    status);
3368 			vdcp->state = VDC_STATE_RESETTING;
3369 done:
3370 			DMSG(vdcp, 0, "negotiation complete (state=0x%x)...\n",
3371 			    vdcp->state);
3372 			break;
3373 
3374 		case VDC_STATE_HANDLE_PENDING:
3375 
3376 			mutex_exit(&vdcp->lock);
3377 			status = vdc_resubmit_backup_dring(vdcp);
3378 			mutex_enter(&vdcp->lock);
3379 
3380 			if (status)
3381 				vdcp->state = VDC_STATE_RESETTING;
3382 			else
3383 				vdcp->state = VDC_STATE_RUNNING;
3384 
3385 			break;
3386 
3387 		/* enter running state */
3388 		case VDC_STATE_RUNNING:
3389 			/*
3390 			 * Signal anyone waiting for the connection
3391 			 * to come on line.
3392 			 */
3393 			vdcp->hshake_cnt = 0;
3394 			cv_broadcast(&vdcp->running_cv);
3395 			mutex_exit(&vdcp->lock);
3396 
3397 			for (;;) {
3398 				vio_msg_t msg;
3399 				status = vdc_wait_for_response(vdcp, &msg);
3400 				if (status) break;
3401 
3402 				DMSG(vdcp, 1, "[%d] new pkt(s) available\n",
3403 					vdcp->instance);
3404 				status = vdc_process_data_msg(vdcp, &msg);
3405 				if (status) {
3406 					DMSG(vdcp, 1, "[%d] process_data_msg "
3407 					    "returned err=%d\n", vdcp->instance,
3408 					    status);
3409 					break;
3410 				}
3411 
3412 			}
3413 
3414 			mutex_enter(&vdcp->lock);
3415 
3416 			vdcp->state = VDC_STATE_RESETTING;
3417 			break;
3418 
3419 		case VDC_STATE_RESETTING:
3420 			DMSG(vdcp, 0, "Initiating channel reset "
3421 			    "(pending = %d)\n", (int)vdcp->threads_pending);
3422 
3423 			if (vdcp->self_reset) {
3424 				DMSG(vdcp, 0,
3425 				    "[%d] calling stop_ldc_connection.\n",
3426 				    vdcp->instance);
3427 				status = vdc_stop_ldc_connection(vdcp);
3428 				vdcp->self_reset = B_FALSE;
3429 			}
3430 
3431 			/*
3432 			 * Wait for all threads currently waiting
3433 			 * for a free dring entry to use.
3434 			 */
3435 			while (vdcp->threads_pending) {
3436 				cv_broadcast(&vdcp->membind_cv);
3437 				cv_broadcast(&vdcp->dring_free_cv);
3438 				mutex_exit(&vdcp->lock);
3439 				/* let them wake up */
3440 				drv_usecwait(vdc_min_timeout_ldc);
3441 				mutex_enter(&vdcp->lock);
3442 			}
3443 
3444 			ASSERT(vdcp->threads_pending == 0);
3445 
3446 			/* Sanity check that no thread is receiving */
3447 			ASSERT(vdcp->read_state != VDC_READ_WAITING);
3448 
3449 			vdcp->read_state = VDC_READ_IDLE;
3450 
3451 			vdc_backup_local_dring(vdcp);
3452 
3453 			/* cleanup the old d-ring */
3454 			vdc_destroy_descriptor_ring(vdcp);
3455 
3456 			/* go and start again */
3457 			vdcp->state = VDC_STATE_INIT;
3458 
3459 			break;
3460 
3461 		case VDC_STATE_DETACH:
3462 			DMSG(vdcp, 0, "[%d] Reset thread exit cleanup ..\n",
3463 			    vdcp->instance);
3464 
3465 			while (vdcp->sync_op_pending) {
3466 				cv_signal(&vdcp->sync_pending_cv);
3467 				cv_signal(&vdcp->sync_blocked_cv);
3468 				mutex_exit(&vdcp->lock);
3469 				drv_usecwait(vdc_min_timeout_ldc);
3470 				mutex_enter(&vdcp->lock);
3471 			}
3472 
3473 			cv_signal(&vdcp->running_cv);
3474 			mutex_exit(&vdcp->lock);
3475 
3476 			DMSG(vdcp, 0, "[%d] Msg processing thread exiting ..\n",
3477 				vdcp->instance);
3478 			thread_exit();
3479 			break;
3480 		}
3481 	}
3482 }
3483 
3484 
3485 /*
3486  * Function:
3487  *	vdc_process_data_msg()
3488  *
3489  * Description:
3490  *	This function is called by the message processing thread each time
3491  *	a message with a msgtype of VIO_TYPE_DATA is received. It will either
3492  *	be an ACK or NACK from vds[1] which vdc handles as follows.
3493  *		ACK	- wake up the waiting thread
3494  *		NACK	- resend any messages necessary
3495  *
3496  *	[1] Although the message format allows it, vds should not send a
3497  *	    VIO_SUBTYPE_INFO message to vdc asking it to read data; if for
3498  *	    some bizarre reason it does, vdc will reset the connection.
3499  *
3500  * Arguments:
3501  *	vdc	- soft state pointer for this instance of the device driver.
3502  *	msg	- the LDC message sent by vds
3503  *
3504  * Return Code:
3505  *	0	- Success.
3506  *	> 0	- error value returned by LDC
3507  */
3508 static int
3509 vdc_process_data_msg(vdc_t *vdcp, vio_msg_t *msg)
3510 {
3511 	int			status = 0;
3512 	vio_dring_msg_t		*dring_msg;
3513 	vdc_local_desc_t	*ldep = NULL;
3514 	int			start, end;
3515 	int			idx;
3516 
3517 	dring_msg = (vio_dring_msg_t *)msg;
3518 
3519 	ASSERT(msg->tag.vio_msgtype == VIO_TYPE_DATA);
3520 	ASSERT(vdcp != NULL);
3521 
3522 	mutex_enter(&vdcp->lock);
3523 
3524 	/*
3525 	 * Check to see if the message has bogus data
3526 	 */
3527 	idx = start = dring_msg->start_idx;
3528 	end = dring_msg->end_idx;
3529 	if ((start >= vdcp->dring_len) ||
3530 	    (end >= vdcp->dring_len) || (end < -1)) {
3531 		DMSG(vdcp, 0, "[%d] Bogus ACK data : start %d, end %d\n",
3532 			vdcp->instance, start, end);
3533 		mutex_exit(&vdcp->lock);
3534 		return (EINVAL);
3535 	}
3536 
3537 	/*
3538 	 * Verify that the sequence number is what vdc expects.
3539 	 */
3540 	switch (vdc_verify_seq_num(vdcp, dring_msg)) {
3541 	case VDC_SEQ_NUM_TODO:
3542 		break;	/* keep processing this message */
3543 	case VDC_SEQ_NUM_SKIP:
3544 		mutex_exit(&vdcp->lock);
3545 		return (0);
3546 	case VDC_SEQ_NUM_INVALID:
3547 		mutex_exit(&vdcp->lock);
3548 		DMSG(vdcp, 0, "[%d] invalid seqno\n", vdcp->instance);
3549 		return (ENXIO);
3550 	}
3551 
3552 	if (msg->tag.vio_subtype == VIO_SUBTYPE_NACK) {
3553 		DMSG(vdcp, 0, "[%d] DATA NACK\n", vdcp->instance);
3554 		VDC_DUMP_DRING_MSG(dring_msg);
3555 		mutex_exit(&vdcp->lock);
3556 		return (EIO);
3557 
3558 	} else if (msg->tag.vio_subtype == VIO_SUBTYPE_INFO) {
3559 		mutex_exit(&vdcp->lock);
3560 		return (EPROTO);
3561 	}
3562 
3563 	DTRACE_IO2(recv, vio_dring_msg_t, dring_msg, vdc_t *, vdcp);
3564 	DMSG(vdcp, 1, ": start %d end %d\n", start, end);
3565 	ASSERT(start == end);
3566 
3567 	ldep = &vdcp->local_dring[idx];
3568 
3569 	DMSG(vdcp, 1, ": state 0x%x - cb_type 0x%x\n",
3570 		ldep->dep->hdr.dstate, ldep->cb_type);
3571 
3572 	if (ldep->dep->hdr.dstate == VIO_DESC_DONE) {
3573 		struct buf *bufp;
3574 
3575 		switch (ldep->cb_type) {
3576 		case CB_SYNC:
3577 			ASSERT(vdcp->sync_op_pending);
3578 
3579 			status = vdc_depopulate_descriptor(vdcp, idx);
3580 			vdcp->sync_op_status = status;
3581 			vdcp->sync_op_pending = B_FALSE;
3582 			cv_signal(&vdcp->sync_pending_cv);
3583 			break;
3584 
3585 		case CB_STRATEGY:
3586 			bufp = ldep->cb_arg;
3587 			ASSERT(bufp != NULL);
3588 			status = ldep->dep->payload.status; /* Future:ntoh */
3589 			if (status != 0) {
3590 				DMSG(vdcp, 1, "strategy status=%d\n", status);
3591 				bioerror(bufp, status);
3592 			}
3593 			status = vdc_depopulate_descriptor(vdcp, idx);
3594 			biodone(bufp);
3595 			break;
3596 
3597 		default:
3598 			ASSERT(0);
3599 		}
3600 	}
3601 
3602 	/* let the arrival signal propogate */
3603 	mutex_exit(&vdcp->lock);
3604 
3605 	/* probe gives the count of how many entries were processed */
3606 	DTRACE_IO2(processed, int, 1, vdc_t *, vdcp);
3607 
3608 	return (0);
3609 }
3610 
3611 /*
3612  * Function:
3613  *	vdc_process_err_msg()
3614  *
3615  * NOTE: No error messages are used as part of the vDisk protocol
3616  */
3617 static int
3618 vdc_process_err_msg(vdc_t *vdc, vio_msg_t msg)
3619 {
3620 	_NOTE(ARGUNUSED(vdc))
3621 	_NOTE(ARGUNUSED(msg))
3622 
3623 	ASSERT(msg.tag.vio_msgtype == VIO_TYPE_ERR);
3624 	DMSG(vdc, 1, "[%d] Got an ERR msg", vdc->instance);
3625 
3626 	return (ENOTSUP);
3627 }
3628 
3629 /*
3630  * Function:
3631  *	vdc_handle_ver_msg()
3632  *
3633  * Description:
3634  *
3635  * Arguments:
3636  *	vdc	- soft state pointer for this instance of the device driver.
3637  *	ver_msg	- LDC message sent by vDisk server
3638  *
3639  * Return Code:
3640  *	0	- Success
3641  */
3642 static int
3643 vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg)
3644 {
3645 	int status = 0;
3646 
3647 	ASSERT(vdc != NULL);
3648 	ASSERT(mutex_owned(&vdc->lock));
3649 
3650 	if (ver_msg->tag.vio_subtype_env != VIO_VER_INFO) {
3651 		return (EPROTO);
3652 	}
3653 
3654 	if (ver_msg->dev_class != VDEV_DISK_SERVER) {
3655 		return (EINVAL);
3656 	}
3657 
3658 	switch (ver_msg->tag.vio_subtype) {
3659 	case VIO_SUBTYPE_ACK:
3660 		/*
3661 		 * We check to see if the version returned is indeed supported
3662 		 * (The server may have also adjusted the minor number downwards
3663 		 * and if so 'ver_msg' will contain the actual version agreed)
3664 		 */
3665 		if (vdc_is_supported_version(ver_msg)) {
3666 			vdc->ver.major = ver_msg->ver_major;
3667 			vdc->ver.minor = ver_msg->ver_minor;
3668 			ASSERT(vdc->ver.major > 0);
3669 		} else {
3670 			status = EPROTO;
3671 		}
3672 		break;
3673 
3674 	case VIO_SUBTYPE_NACK:
3675 		/*
3676 		 * call vdc_is_supported_version() which will return the next
3677 		 * supported version (if any) in 'ver_msg'
3678 		 */
3679 		(void) vdc_is_supported_version(ver_msg);
3680 		if (ver_msg->ver_major > 0) {
3681 			size_t len = sizeof (*ver_msg);
3682 
3683 			ASSERT(vdc->ver.major > 0);
3684 
3685 			/* reset the necessary fields and resend */
3686 			ver_msg->tag.vio_subtype = VIO_SUBTYPE_INFO;
3687 			ver_msg->dev_class = VDEV_DISK;
3688 
3689 			status = vdc_send(vdc, (caddr_t)ver_msg, &len);
3690 			DMSG(vdc, 0, "[%d] Resend VER info (LDC status = %d)\n",
3691 					vdc->instance, status);
3692 			if (len != sizeof (*ver_msg))
3693 				status = EBADMSG;
3694 		} else {
3695 			DMSG(vdc, 0, "[%d] No common version with "
3696 					"vDisk server", vdc->instance);
3697 			status = ENOTSUP;
3698 		}
3699 
3700 		break;
3701 	case VIO_SUBTYPE_INFO:
3702 		/*
3703 		 * Handle the case where vds starts handshake
3704 		 * (for now only vdc is the instigatior)
3705 		 */
3706 		status = ENOTSUP;
3707 		break;
3708 
3709 	default:
3710 		status = EINVAL;
3711 		break;
3712 	}
3713 
3714 	return (status);
3715 }
3716 
3717 /*
3718  * Function:
3719  *	vdc_handle_attr_msg()
3720  *
3721  * Description:
3722  *
3723  * Arguments:
3724  *	vdc	- soft state pointer for this instance of the device driver.
3725  *	attr_msg	- LDC message sent by vDisk server
3726  *
3727  * Return Code:
3728  *	0	- Success
3729  */
3730 static int
3731 vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg)
3732 {
3733 	int status = 0;
3734 
3735 	ASSERT(vdc != NULL);
3736 	ASSERT(mutex_owned(&vdc->lock));
3737 
3738 	if (attr_msg->tag.vio_subtype_env != VIO_ATTR_INFO) {
3739 		return (EPROTO);
3740 	}
3741 
3742 	switch (attr_msg->tag.vio_subtype) {
3743 	case VIO_SUBTYPE_ACK:
3744 		/*
3745 		 * We now verify the attributes sent by vds.
3746 		 */
3747 		vdc->vdisk_size = attr_msg->vdisk_size;
3748 		vdc->vdisk_type = attr_msg->vdisk_type;
3749 
3750 		DMSG(vdc, 0, "[%d] max_xfer_sz: sent %lx acked %lx\n",
3751 			vdc->instance, vdc->max_xfer_sz, attr_msg->max_xfer_sz);
3752 		DMSG(vdc, 0, "[%d] vdisk_block_size: sent %lx acked %x\n",
3753 			vdc->instance, vdc->block_size,
3754 			attr_msg->vdisk_block_size);
3755 
3756 		/*
3757 		 * We don't know at compile time what the vDisk server will
3758 		 * think are good values but we apply an large (arbitrary)
3759 		 * upper bound to prevent memory exhaustion in vdc if it was
3760 		 * allocating a DRing based of huge values sent by the server.
3761 		 * We probably will never exceed this except if the message
3762 		 * was garbage.
3763 		 */
3764 		if ((attr_msg->max_xfer_sz * attr_msg->vdisk_block_size) <=
3765 				(PAGESIZE * DEV_BSIZE)) {
3766 			vdc->max_xfer_sz = attr_msg->max_xfer_sz;
3767 			vdc->block_size = attr_msg->vdisk_block_size;
3768 		} else {
3769 			DMSG(vdc, 0, "[%d] vds block transfer size too big;"
3770 				" using max supported by vdc", vdc->instance);
3771 		}
3772 
3773 		if ((attr_msg->xfer_mode != VIO_DRING_MODE) ||
3774 		    (attr_msg->vdisk_size > INT64_MAX) ||
3775 		    (attr_msg->vdisk_type > VD_DISK_TYPE_DISK)) {
3776 			DMSG(vdc, 0, "[%d] Invalid attributes from vds",
3777 					vdc->instance);
3778 			status = EINVAL;
3779 			break;
3780 		}
3781 
3782 		break;
3783 
3784 	case VIO_SUBTYPE_NACK:
3785 		/*
3786 		 * vds could not handle the attributes we sent so we
3787 		 * stop negotiating.
3788 		 */
3789 		status = EPROTO;
3790 		break;
3791 
3792 	case VIO_SUBTYPE_INFO:
3793 		/*
3794 		 * Handle the case where vds starts the handshake
3795 		 * (for now; vdc is the only supported instigatior)
3796 		 */
3797 		status = ENOTSUP;
3798 		break;
3799 
3800 	default:
3801 		status = ENOTSUP;
3802 		break;
3803 	}
3804 
3805 	return (status);
3806 }
3807 
3808 /*
3809  * Function:
3810  *	vdc_handle_dring_reg_msg()
3811  *
3812  * Description:
3813  *
3814  * Arguments:
3815  *	vdc		- soft state pointer for this instance of the driver.
3816  *	dring_msg	- LDC message sent by vDisk server
3817  *
3818  * Return Code:
3819  *	0	- Success
3820  */
3821 static int
3822 vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *dring_msg)
3823 {
3824 	int		status = 0;
3825 
3826 	ASSERT(vdc != NULL);
3827 	ASSERT(mutex_owned(&vdc->lock));
3828 
3829 	if (dring_msg->tag.vio_subtype_env != VIO_DRING_REG) {
3830 		return (EPROTO);
3831 	}
3832 
3833 	switch (dring_msg->tag.vio_subtype) {
3834 	case VIO_SUBTYPE_ACK:
3835 		/* save the received dring_ident */
3836 		vdc->dring_ident = dring_msg->dring_ident;
3837 		DMSG(vdc, 0, "[%d] Received dring ident=0x%lx\n",
3838 			vdc->instance, vdc->dring_ident);
3839 		break;
3840 
3841 	case VIO_SUBTYPE_NACK:
3842 		/*
3843 		 * vds could not handle the DRing info we sent so we
3844 		 * stop negotiating.
3845 		 */
3846 		DMSG(vdc, 0, "[%d] server could not register DRing\n",
3847 		    vdc->instance);
3848 		status = EPROTO;
3849 		break;
3850 
3851 	case VIO_SUBTYPE_INFO:
3852 		/*
3853 		 * Handle the case where vds starts handshake
3854 		 * (for now only vdc is the instigatior)
3855 		 */
3856 		status = ENOTSUP;
3857 		break;
3858 	default:
3859 		status = ENOTSUP;
3860 	}
3861 
3862 	return (status);
3863 }
3864 
3865 /*
3866  * Function:
3867  *	vdc_verify_seq_num()
3868  *
3869  * Description:
3870  *	This functions verifies that the sequence number sent back by the vDisk
3871  *	server with the latest message is what is expected (i.e. it is greater
3872  *	than the last seq num sent by the vDisk server and less than or equal
3873  *	to the last seq num generated by vdc).
3874  *
3875  *	It then checks the request ID to see if any requests need processing
3876  *	in the DRing.
3877  *
3878  * Arguments:
3879  *	vdc		- soft state pointer for this instance of the driver.
3880  *	dring_msg	- pointer to the LDC message sent by vds
3881  *
3882  * Return Code:
3883  *	VDC_SEQ_NUM_TODO	- Message needs to be processed
3884  *	VDC_SEQ_NUM_SKIP	- Message has already been processed
3885  *	VDC_SEQ_NUM_INVALID	- The seq numbers are so out of sync,
3886  *				  vdc cannot deal with them
3887  */
3888 static int
3889 vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg)
3890 {
3891 	ASSERT(vdc != NULL);
3892 	ASSERT(dring_msg != NULL);
3893 	ASSERT(mutex_owned(&vdc->lock));
3894 
3895 	/*
3896 	 * Check to see if the messages were responded to in the correct
3897 	 * order by vds.
3898 	 */
3899 	if ((dring_msg->seq_num <= vdc->seq_num_reply) ||
3900 	    (dring_msg->seq_num > vdc->seq_num)) {
3901 		DMSG(vdc, 0, "?[%d] Bogus sequence_number %lu: "
3902 			"%lu > expected <= %lu (last proc req %lu sent %lu)\n",
3903 				vdc->instance, dring_msg->seq_num,
3904 				vdc->seq_num_reply, vdc->seq_num,
3905 				vdc->req_id_proc, vdc->req_id);
3906 		return (VDC_SEQ_NUM_INVALID);
3907 	}
3908 	vdc->seq_num_reply = dring_msg->seq_num;
3909 
3910 	if (vdc->req_id_proc < vdc->req_id)
3911 		return (VDC_SEQ_NUM_TODO);
3912 	else
3913 		return (VDC_SEQ_NUM_SKIP);
3914 }
3915 
3916 
3917 /*
3918  * Function:
3919  *	vdc_is_supported_version()
3920  *
3921  * Description:
3922  *	This routine checks if the major/minor version numbers specified in
3923  *	'ver_msg' are supported. If not it finds the next version that is
3924  *	in the supported version list 'vdc_version[]' and sets the fields in
3925  *	'ver_msg' to those values
3926  *
3927  * Arguments:
3928  *	ver_msg	- LDC message sent by vDisk server
3929  *
3930  * Return Code:
3931  *	B_TRUE	- Success
3932  *	B_FALSE	- Version not supported
3933  */
3934 static boolean_t
3935 vdc_is_supported_version(vio_ver_msg_t *ver_msg)
3936 {
3937 	int vdc_num_versions = sizeof (vdc_version) / sizeof (vdc_version[0]);
3938 
3939 	for (int i = 0; i < vdc_num_versions; i++) {
3940 		ASSERT(vdc_version[i].major > 0);
3941 		ASSERT((i == 0) ||
3942 		    (vdc_version[i].major < vdc_version[i-1].major));
3943 
3944 		/*
3945 		 * If the major versions match, adjust the minor version, if
3946 		 * necessary, down to the highest value supported by this
3947 		 * client. The server should support all minor versions lower
3948 		 * than the value it sent
3949 		 */
3950 		if (ver_msg->ver_major == vdc_version[i].major) {
3951 			if (ver_msg->ver_minor > vdc_version[i].minor) {
3952 				DMSGX(0,
3953 				    "Adjusting minor version from %u to %u",
3954 				    ver_msg->ver_minor, vdc_version[i].minor);
3955 				ver_msg->ver_minor = vdc_version[i].minor;
3956 			}
3957 			return (B_TRUE);
3958 		}
3959 
3960 		/*
3961 		 * If the message contains a higher major version number, set
3962 		 * the message's major/minor versions to the current values
3963 		 * and return false, so this message will get resent with
3964 		 * these values, and the server will potentially try again
3965 		 * with the same or a lower version
3966 		 */
3967 		if (ver_msg->ver_major > vdc_version[i].major) {
3968 			ver_msg->ver_major = vdc_version[i].major;
3969 			ver_msg->ver_minor = vdc_version[i].minor;
3970 			DMSGX(0, "Suggesting major/minor (0x%x/0x%x)\n",
3971 				ver_msg->ver_major, ver_msg->ver_minor);
3972 
3973 			return (B_FALSE);
3974 		}
3975 
3976 		/*
3977 		 * Otherwise, the message's major version is less than the
3978 		 * current major version, so continue the loop to the next
3979 		 * (lower) supported version
3980 		 */
3981 	}
3982 
3983 	/*
3984 	 * No common version was found; "ground" the version pair in the
3985 	 * message to terminate negotiation
3986 	 */
3987 	ver_msg->ver_major = 0;
3988 	ver_msg->ver_minor = 0;
3989 
3990 	return (B_FALSE);
3991 }
3992 /* -------------------------------------------------------------------------- */
3993 
3994 /*
3995  * DKIO(7) support
3996  */
3997 
3998 typedef struct vdc_dk_arg {
3999 	struct dk_callback	dkc;
4000 	int			mode;
4001 	dev_t			dev;
4002 	vdc_t			*vdc;
4003 } vdc_dk_arg_t;
4004 
4005 /*
4006  * Function:
4007  * 	vdc_dkio_flush_cb()
4008  *
4009  * Description:
4010  *	This routine is a callback for DKIOCFLUSHWRITECACHE which can be called
4011  *	by kernel code.
4012  *
4013  * Arguments:
4014  *	arg	- a pointer to a vdc_dk_arg_t structure.
4015  */
4016 void
4017 vdc_dkio_flush_cb(void *arg)
4018 {
4019 	struct vdc_dk_arg	*dk_arg = (struct vdc_dk_arg *)arg;
4020 	struct dk_callback	*dkc = NULL;
4021 	vdc_t			*vdc = NULL;
4022 	int			rv;
4023 
4024 	if (dk_arg == NULL) {
4025 		cmn_err(CE_NOTE, "?[Unk] DKIOCFLUSHWRITECACHE arg is NULL\n");
4026 		return;
4027 	}
4028 	dkc = &dk_arg->dkc;
4029 	vdc = dk_arg->vdc;
4030 	ASSERT(vdc != NULL);
4031 
4032 	rv = vdc_do_sync_op(vdc, VD_OP_FLUSH, NULL, 0,
4033 	    VDCPART(dk_arg->dev), 0, CB_SYNC, 0, VIO_both_dir);
4034 	if (rv != 0) {
4035 		DMSG(vdc, 0, "[%d] DKIOCFLUSHWRITECACHE failed %d : model %x\n",
4036 			vdc->instance, rv,
4037 			ddi_model_convert_from(dk_arg->mode & FMODELS));
4038 	}
4039 
4040 	/*
4041 	 * Trigger the call back to notify the caller the the ioctl call has
4042 	 * been completed.
4043 	 */
4044 	if ((dk_arg->mode & FKIOCTL) &&
4045 	    (dkc != NULL) &&
4046 	    (dkc->dkc_callback != NULL)) {
4047 		ASSERT(dkc->dkc_cookie != NULL);
4048 		(*dkc->dkc_callback)(dkc->dkc_cookie, rv);
4049 	}
4050 
4051 	/* Indicate that one less DKIO write flush is outstanding */
4052 	mutex_enter(&vdc->lock);
4053 	vdc->dkio_flush_pending--;
4054 	ASSERT(vdc->dkio_flush_pending >= 0);
4055 	mutex_exit(&vdc->lock);
4056 
4057 	/* free the mem that was allocated when the callback was dispatched */
4058 	kmem_free(arg, sizeof (vdc_dk_arg_t));
4059 }
4060 
4061 /*
4062  * This structure is used in the DKIO(7I) array below.
4063  */
4064 typedef struct vdc_dk_ioctl {
4065 	uint8_t		op;		/* VD_OP_XXX value */
4066 	int		cmd;		/* Solaris ioctl operation number */
4067 	size_t		nbytes;		/* size of structure to be copied */
4068 
4069 	/* function to convert between vDisk and Solaris structure formats */
4070 	int	(*convert)(vdc_t *vdc, void *vd_buf, void *ioctl_arg,
4071 	    int mode, int dir);
4072 } vdc_dk_ioctl_t;
4073 
4074 /*
4075  * Subset of DKIO(7I) operations currently supported
4076  */
4077 static vdc_dk_ioctl_t	dk_ioctl[] = {
4078 	{VD_OP_FLUSH,		DKIOCFLUSHWRITECACHE,	sizeof (int),
4079 		vdc_null_copy_func},
4080 	{VD_OP_GET_WCE,		DKIOCGETWCE,		sizeof (int),
4081 		vdc_get_wce_convert},
4082 	{VD_OP_SET_WCE,		DKIOCSETWCE,		sizeof (int),
4083 		vdc_set_wce_convert},
4084 	{VD_OP_GET_VTOC,	DKIOCGVTOC,		sizeof (vd_vtoc_t),
4085 		vdc_get_vtoc_convert},
4086 	{VD_OP_SET_VTOC,	DKIOCSVTOC,		sizeof (vd_vtoc_t),
4087 		vdc_set_vtoc_convert},
4088 	{VD_OP_GET_DISKGEOM,	DKIOCGGEOM,		sizeof (vd_geom_t),
4089 		vdc_get_geom_convert},
4090 	{VD_OP_GET_DISKGEOM,	DKIOCG_PHYGEOM,		sizeof (vd_geom_t),
4091 		vdc_get_geom_convert},
4092 	{VD_OP_GET_DISKGEOM, 	DKIOCG_VIRTGEOM,	sizeof (vd_geom_t),
4093 		vdc_get_geom_convert},
4094 	{VD_OP_SET_DISKGEOM,	DKIOCSGEOM,		sizeof (vd_geom_t),
4095 		vdc_set_geom_convert},
4096 	{VD_OP_GET_EFI,		DKIOCGETEFI,		0,
4097 		vdc_get_efi_convert},
4098 	{VD_OP_SET_EFI,		DKIOCSETEFI,		0,
4099 		vdc_set_efi_convert},
4100 
4101 	/*
4102 	 * These particular ioctls are not sent to the server - vdc fakes up
4103 	 * the necessary info.
4104 	 */
4105 	{0, DKIOCINFO, sizeof (struct dk_cinfo), vdc_null_copy_func},
4106 	{0, DKIOCGMEDIAINFO, sizeof (struct dk_minfo), vdc_null_copy_func},
4107 	{0, USCSICMD,	sizeof (struct uscsi_cmd), vdc_null_copy_func},
4108 	{0, DKIOCREMOVABLE, 0, vdc_null_copy_func},
4109 	{0, CDROMREADOFFSET, 0, vdc_null_copy_func}
4110 };
4111 
4112 /*
4113  * Function:
4114  *	vd_process_ioctl()
4115  *
4116  * Description:
4117  *	This routine processes disk specific ioctl calls
4118  *
4119  * Arguments:
4120  *	dev	- the device number
4121  *	cmd	- the operation [dkio(7I)] to be processed
4122  *	arg	- pointer to user provided structure
4123  *		  (contains data to be set or reference parameter for get)
4124  *	mode	- bit flag, indicating open settings, 32/64 bit type, etc
4125  *
4126  * Return Code:
4127  *	0
4128  *	EFAULT
4129  *	ENXIO
4130  *	EIO
4131  *	ENOTSUP
4132  */
4133 static int
4134 vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode)
4135 {
4136 	int		instance = VDCUNIT(dev);
4137 	vdc_t		*vdc = NULL;
4138 	int		rv = -1;
4139 	int		idx = 0;		/* index into dk_ioctl[] */
4140 	size_t		len = 0;		/* #bytes to send to vds */
4141 	size_t		alloc_len = 0;		/* #bytes to allocate mem for */
4142 	caddr_t		mem_p = NULL;
4143 	size_t		nioctls = (sizeof (dk_ioctl)) / (sizeof (dk_ioctl[0]));
4144 	struct vtoc	vtoc_saved;
4145 	vdc_dk_ioctl_t	*iop;
4146 
4147 	vdc = ddi_get_soft_state(vdc_state, instance);
4148 	if (vdc == NULL) {
4149 		cmn_err(CE_NOTE, "![%d] Could not get soft state structure",
4150 		    instance);
4151 		return (ENXIO);
4152 	}
4153 
4154 	DMSG(vdc, 0, "[%d] Processing ioctl(%x) for dev %lx : model %x\n",
4155 		instance, cmd, dev, ddi_model_convert_from(mode & FMODELS));
4156 
4157 	/*
4158 	 * Validate the ioctl operation to be performed.
4159 	 *
4160 	 * If we have looped through the array without finding a match then we
4161 	 * don't support this ioctl.
4162 	 */
4163 	for (idx = 0; idx < nioctls; idx++) {
4164 		if (cmd == dk_ioctl[idx].cmd)
4165 			break;
4166 	}
4167 
4168 	if (idx >= nioctls) {
4169 		DMSG(vdc, 0, "[%d] Unsupported ioctl (0x%x)\n",
4170 		    vdc->instance, cmd);
4171 		return (ENOTSUP);
4172 	}
4173 
4174 	iop = &(dk_ioctl[idx]);
4175 
4176 	if (cmd == DKIOCGETEFI || cmd == DKIOCSETEFI) {
4177 		/* size is not fixed for EFI ioctls, it depends on ioctl arg */
4178 		dk_efi_t	dk_efi;
4179 
4180 		rv = ddi_copyin(arg, &dk_efi, sizeof (dk_efi_t), mode);
4181 		if (rv != 0)
4182 			return (EFAULT);
4183 
4184 		len = sizeof (vd_efi_t) - 1 + dk_efi.dki_length;
4185 	} else {
4186 		len = iop->nbytes;
4187 	}
4188 
4189 	/*
4190 	 * Deal with the ioctls which the server does not provide. vdc can
4191 	 * fake these up and return immediately
4192 	 */
4193 	switch (cmd) {
4194 	case CDROMREADOFFSET:
4195 	case DKIOCREMOVABLE:
4196 	case USCSICMD:
4197 		return (ENOTTY);
4198 
4199 	case DKIOCINFO:
4200 		{
4201 			struct dk_cinfo	cinfo;
4202 			if (vdc->cinfo == NULL)
4203 				return (ENXIO);
4204 
4205 			bcopy(vdc->cinfo, &cinfo, sizeof (struct dk_cinfo));
4206 			cinfo.dki_partition = VDCPART(dev);
4207 
4208 			rv = ddi_copyout(&cinfo, (void *)arg,
4209 					sizeof (struct dk_cinfo), mode);
4210 			if (rv != 0)
4211 				return (EFAULT);
4212 
4213 			return (0);
4214 		}
4215 
4216 	case DKIOCGMEDIAINFO:
4217 		{
4218 			if (vdc->minfo == NULL)
4219 				return (ENXIO);
4220 
4221 			rv = ddi_copyout(vdc->minfo, (void *)arg,
4222 					sizeof (struct dk_minfo), mode);
4223 			if (rv != 0)
4224 				return (EFAULT);
4225 
4226 			return (0);
4227 		}
4228 
4229 	case DKIOCFLUSHWRITECACHE:
4230 		{
4231 			struct dk_callback *dkc = (struct dk_callback *)arg;
4232 			vdc_dk_arg_t	*dkarg = NULL;
4233 
4234 			DMSG(vdc, 1, "[%d] Flush W$: mode %x\n",
4235 			    instance, mode);
4236 
4237 			/*
4238 			 * If the backing device is not a 'real' disk then the
4239 			 * W$ operation request to the vDisk server will fail
4240 			 * so we might as well save the cycles and return now.
4241 			 */
4242 			if (vdc->vdisk_type != VD_DISK_TYPE_DISK)
4243 				return (ENOTTY);
4244 
4245 			/*
4246 			 * If arg is NULL, then there is no callback function
4247 			 * registered and the call operates synchronously; we
4248 			 * break and continue with the rest of the function and
4249 			 * wait for vds to return (i.e. after the request to
4250 			 * vds returns successfully, all writes completed prior
4251 			 * to the ioctl will have been flushed from the disk
4252 			 * write cache to persistent media.
4253 			 *
4254 			 * If a callback function is registered, we dispatch
4255 			 * the request on a task queue and return immediately.
4256 			 * The callback will deal with informing the calling
4257 			 * thread that the flush request is completed.
4258 			 */
4259 			if (dkc == NULL)
4260 				break;
4261 
4262 			dkarg = kmem_zalloc(sizeof (vdc_dk_arg_t), KM_SLEEP);
4263 
4264 			dkarg->mode = mode;
4265 			dkarg->dev = dev;
4266 			bcopy(dkc, &dkarg->dkc, sizeof (*dkc));
4267 
4268 			mutex_enter(&vdc->lock);
4269 			vdc->dkio_flush_pending++;
4270 			dkarg->vdc = vdc;
4271 			mutex_exit(&vdc->lock);
4272 
4273 			/* put the request on a task queue */
4274 			rv = taskq_dispatch(system_taskq, vdc_dkio_flush_cb,
4275 				(void *)dkarg, DDI_SLEEP);
4276 			if (rv == NULL) {
4277 				/* clean up if dispatch fails */
4278 				mutex_enter(&vdc->lock);
4279 				vdc->dkio_flush_pending--;
4280 				kmem_free(dkarg, sizeof (vdc_dk_arg_t));
4281 			}
4282 
4283 			return (rv == NULL ? ENOMEM : 0);
4284 		}
4285 	}
4286 
4287 	/* catch programming error in vdc - should be a VD_OP_XXX ioctl */
4288 	ASSERT(iop->op != 0);
4289 
4290 	/* LDC requires that the memory being mapped is 8-byte aligned */
4291 	alloc_len = P2ROUNDUP(len, sizeof (uint64_t));
4292 	DMSG(vdc, 1, "[%d] struct size %ld alloc %ld\n",
4293 	    instance, len, alloc_len);
4294 
4295 	ASSERT(alloc_len != 0);	/* sanity check */
4296 	mem_p = kmem_zalloc(alloc_len, KM_SLEEP);
4297 
4298 	if (cmd == DKIOCSVTOC) {
4299 		/*
4300 		 * Save a copy of the current VTOC so that we can roll back
4301 		 * if the setting of the new VTOC fails.
4302 		 */
4303 		bcopy(vdc->vtoc, &vtoc_saved, sizeof (struct vtoc));
4304 	}
4305 
4306 	/*
4307 	 * Call the conversion function for this ioctl whhich if necessary
4308 	 * converts from the Solaris format to the format ARC'ed
4309 	 * as part of the vDisk protocol (FWARC 2006/195)
4310 	 */
4311 	ASSERT(iop->convert != NULL);
4312 	rv = (iop->convert)(vdc, arg, mem_p, mode, VD_COPYIN);
4313 	if (rv != 0) {
4314 		DMSG(vdc, 0, "[%d] convert func returned %d for ioctl 0x%x\n",
4315 				instance, rv, cmd);
4316 		if (mem_p != NULL)
4317 			kmem_free(mem_p, alloc_len);
4318 		return (rv);
4319 	}
4320 
4321 	/*
4322 	 * send request to vds to service the ioctl.
4323 	 */
4324 	rv = vdc_do_sync_op(vdc, iop->op, mem_p, alloc_len,
4325 	    VDCPART(dev), 0, CB_SYNC, (void *)(uint64_t)mode,
4326 	    VIO_both_dir);
4327 
4328 	if (rv != 0) {
4329 		/*
4330 		 * This is not necessarily an error. The ioctl could
4331 		 * be returning a value such as ENOTTY to indicate
4332 		 * that the ioctl is not applicable.
4333 		 */
4334 		DMSG(vdc, 0, "[%d] vds returned %d for ioctl 0x%x\n",
4335 			instance, rv, cmd);
4336 		if (mem_p != NULL)
4337 			kmem_free(mem_p, alloc_len);
4338 
4339 		if (cmd == DKIOCSVTOC) {
4340 			/* update of the VTOC has failed, roll back */
4341 			bcopy(&vtoc_saved, vdc->vtoc, sizeof (struct vtoc));
4342 		}
4343 
4344 		return (rv);
4345 	}
4346 
4347 	if (cmd == DKIOCSVTOC) {
4348 		/*
4349 		 * The VTOC has been changed. We need to update the device
4350 		 * nodes to handle the case where an EFI label has been
4351 		 * changed to a VTOC label. We also try and update the device
4352 		 * node properties. Failing to set the properties should
4353 		 * not cause an error to be return the caller though.
4354 		 */
4355 		vdc->vdisk_label = VD_DISK_LABEL_VTOC;
4356 		(void) vdc_create_device_nodes_vtoc(vdc);
4357 
4358 		if (vdc_create_device_nodes_props(vdc)) {
4359 			DMSG(vdc, 0, "![%d] Failed to update device nodes"
4360 			    " properties", vdc->instance);
4361 		}
4362 
4363 	} else if (cmd == DKIOCSETEFI) {
4364 		/*
4365 		 * The EFI has been changed. We need to update the device
4366 		 * nodes to handle the case where a VTOC label has been
4367 		 * changed to an EFI label. We also try and update the device
4368 		 * node properties. Failing to set the properties should
4369 		 * not cause an error to be return the caller though.
4370 		 */
4371 		struct dk_gpt *efi;
4372 		size_t efi_len;
4373 
4374 		vdc->vdisk_label = VD_DISK_LABEL_EFI;
4375 		(void) vdc_create_device_nodes_efi(vdc);
4376 
4377 		rv = vdc_efi_alloc_and_read(dev, &efi, &efi_len);
4378 
4379 		if (rv == 0) {
4380 			vdc_store_efi(vdc, efi);
4381 			rv = vdc_create_device_nodes_props(vdc);
4382 			vd_efi_free(efi, efi_len);
4383 		}
4384 
4385 		if (rv) {
4386 			DMSG(vdc, 0, "![%d] Failed to update device nodes"
4387 			    " properties", vdc->instance);
4388 		}
4389 	}
4390 
4391 	/*
4392 	 * Call the conversion function (if it exists) for this ioctl
4393 	 * which converts from the format ARC'ed as part of the vDisk
4394 	 * protocol (FWARC 2006/195) back to a format understood by
4395 	 * the rest of Solaris.
4396 	 */
4397 	rv = (iop->convert)(vdc, mem_p, arg, mode, VD_COPYOUT);
4398 	if (rv != 0) {
4399 		DMSG(vdc, 0, "[%d] convert func returned %d for ioctl 0x%x\n",
4400 				instance, rv, cmd);
4401 		if (mem_p != NULL)
4402 			kmem_free(mem_p, alloc_len);
4403 		return (rv);
4404 	}
4405 
4406 	if (mem_p != NULL)
4407 		kmem_free(mem_p, alloc_len);
4408 
4409 	return (rv);
4410 }
4411 
4412 /*
4413  * Function:
4414  *
4415  * Description:
4416  *	This is an empty conversion function used by ioctl calls which
4417  *	do not need to convert the data being passed in/out to userland
4418  */
4419 static int
4420 vdc_null_copy_func(vdc_t *vdc, void *from, void *to, int mode, int dir)
4421 {
4422 	_NOTE(ARGUNUSED(vdc))
4423 	_NOTE(ARGUNUSED(from))
4424 	_NOTE(ARGUNUSED(to))
4425 	_NOTE(ARGUNUSED(mode))
4426 	_NOTE(ARGUNUSED(dir))
4427 
4428 	return (0);
4429 }
4430 
4431 static int
4432 vdc_get_wce_convert(vdc_t *vdc, void *from, void *to,
4433     int mode, int dir)
4434 {
4435 	_NOTE(ARGUNUSED(vdc))
4436 
4437 	if (dir == VD_COPYIN)
4438 		return (0);		/* nothing to do */
4439 
4440 	if (ddi_copyout(from, to, sizeof (int), mode) != 0)
4441 		return (EFAULT);
4442 
4443 	return (0);
4444 }
4445 
4446 static int
4447 vdc_set_wce_convert(vdc_t *vdc, void *from, void *to,
4448     int mode, int dir)
4449 {
4450 	_NOTE(ARGUNUSED(vdc))
4451 
4452 	if (dir == VD_COPYOUT)
4453 		return (0);		/* nothing to do */
4454 
4455 	if (ddi_copyin(from, to, sizeof (int), mode) != 0)
4456 		return (EFAULT);
4457 
4458 	return (0);
4459 }
4460 
4461 /*
4462  * Function:
4463  *	vdc_get_vtoc_convert()
4464  *
4465  * Description:
4466  *	This routine performs the necessary convertions from the DKIOCGVTOC
4467  *	Solaris structure to the format defined in FWARC 2006/195.
4468  *
4469  *	In the struct vtoc definition, the timestamp field is marked as not
4470  *	supported so it is not part of vDisk protocol (FWARC 2006/195).
4471  *	However SVM uses that field to check it can write into the VTOC,
4472  *	so we fake up the info of that field.
4473  *
4474  * Arguments:
4475  *	vdc	- the vDisk client
4476  *	from	- the buffer containing the data to be copied from
4477  *	to	- the buffer to be copied to
4478  *	mode	- flags passed to ioctl() call
4479  *	dir	- the "direction" of the copy - VD_COPYIN or VD_COPYOUT
4480  *
4481  * Return Code:
4482  *	0	- Success
4483  *	ENXIO	- incorrect buffer passed in.
4484  *	EFAULT	- ddi_copyout routine encountered an error.
4485  */
4486 static int
4487 vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
4488 {
4489 	int		i;
4490 	void		*tmp_mem = NULL;
4491 	void		*tmp_memp;
4492 	struct vtoc	vt;
4493 	struct vtoc32	vt32;
4494 	int		copy_len = 0;
4495 	int		rv = 0;
4496 
4497 	if (dir != VD_COPYOUT)
4498 		return (0);	/* nothing to do */
4499 
4500 	if ((from == NULL) || (to == NULL))
4501 		return (ENXIO);
4502 
4503 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32)
4504 		copy_len = sizeof (struct vtoc32);
4505 	else
4506 		copy_len = sizeof (struct vtoc);
4507 
4508 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
4509 
4510 	VD_VTOC2VTOC((vd_vtoc_t *)from, &vt);
4511 
4512 	/* fake the VTOC timestamp field */
4513 	for (i = 0; i < V_NUMPAR; i++) {
4514 		vt.timestamp[i] = vdc->vtoc->timestamp[i];
4515 	}
4516 
4517 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
4518 		vtoctovtoc32(vt, vt32);
4519 		tmp_memp = &vt32;
4520 	} else {
4521 		tmp_memp = &vt;
4522 	}
4523 	rv = ddi_copyout(tmp_memp, to, copy_len, mode);
4524 	if (rv != 0)
4525 		rv = EFAULT;
4526 
4527 	kmem_free(tmp_mem, copy_len);
4528 	return (rv);
4529 }
4530 
4531 /*
4532  * Function:
4533  *	vdc_set_vtoc_convert()
4534  *
4535  * Description:
4536  *	This routine performs the necessary convertions from the DKIOCSVTOC
4537  *	Solaris structure to the format defined in FWARC 2006/195.
4538  *
4539  * Arguments:
4540  *	vdc	- the vDisk client
4541  *	from	- Buffer with data
4542  *	to	- Buffer where data is to be copied to
4543  *	mode	- flags passed to ioctl
4544  *	dir	- direction of copy (in or out)
4545  *
4546  * Return Code:
4547  *	0	- Success
4548  *	ENXIO	- Invalid buffer passed in
4549  *	EFAULT	- ddi_copyin of data failed
4550  */
4551 static int
4552 vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
4553 {
4554 	void		*tmp_mem = NULL;
4555 	struct vtoc	vt;
4556 	struct vtoc	*vtp = &vt;
4557 	vd_vtoc_t	vtvd;
4558 	int		copy_len = 0;
4559 	int		rv = 0;
4560 
4561 	if (dir != VD_COPYIN)
4562 		return (0);	/* nothing to do */
4563 
4564 	if ((from == NULL) || (to == NULL))
4565 		return (ENXIO);
4566 
4567 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32)
4568 		copy_len = sizeof (struct vtoc32);
4569 	else
4570 		copy_len = sizeof (struct vtoc);
4571 
4572 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
4573 
4574 	rv = ddi_copyin(from, tmp_mem, copy_len, mode);
4575 	if (rv != 0) {
4576 		kmem_free(tmp_mem, copy_len);
4577 		return (EFAULT);
4578 	}
4579 
4580 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
4581 		vtoc32tovtoc((*(struct vtoc32 *)tmp_mem), vt);
4582 	} else {
4583 		vtp = tmp_mem;
4584 	}
4585 
4586 	/*
4587 	 * The VTOC is being changed, then vdc needs to update the copy
4588 	 * it saved in the soft state structure.
4589 	 */
4590 	bcopy(vtp, vdc->vtoc, sizeof (struct vtoc));
4591 
4592 	VTOC2VD_VTOC(vtp, &vtvd);
4593 	bcopy(&vtvd, to, sizeof (vd_vtoc_t));
4594 	kmem_free(tmp_mem, copy_len);
4595 
4596 	return (0);
4597 }
4598 
4599 /*
4600  * Function:
4601  *	vdc_get_geom_convert()
4602  *
4603  * Description:
4604  *	This routine performs the necessary convertions from the DKIOCGGEOM,
4605  *	DKIOCG_PHYSGEOM and DKIOG_VIRTGEOM Solaris structures to the format
4606  *	defined in FWARC 2006/195
4607  *
4608  * Arguments:
4609  *	vdc	- the vDisk client
4610  *	from	- Buffer with data
4611  *	to	- Buffer where data is to be copied to
4612  *	mode	- flags passed to ioctl
4613  *	dir	- direction of copy (in or out)
4614  *
4615  * Return Code:
4616  *	0	- Success
4617  *	ENXIO	- Invalid buffer passed in
4618  *	EFAULT	- ddi_copyout of data failed
4619  */
4620 static int
4621 vdc_get_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
4622 {
4623 	_NOTE(ARGUNUSED(vdc))
4624 
4625 	struct dk_geom	geom;
4626 	int	copy_len = sizeof (struct dk_geom);
4627 	int	rv = 0;
4628 
4629 	if (dir != VD_COPYOUT)
4630 		return (0);	/* nothing to do */
4631 
4632 	if ((from == NULL) || (to == NULL))
4633 		return (ENXIO);
4634 
4635 	VD_GEOM2DK_GEOM((vd_geom_t *)from, &geom);
4636 	rv = ddi_copyout(&geom, to, copy_len, mode);
4637 	if (rv != 0)
4638 		rv = EFAULT;
4639 
4640 	return (rv);
4641 }
4642 
4643 /*
4644  * Function:
4645  *	vdc_set_geom_convert()
4646  *
4647  * Description:
4648  *	This routine performs the necessary convertions from the DKIOCSGEOM
4649  *	Solaris structure to the format defined in FWARC 2006/195.
4650  *
4651  * Arguments:
4652  *	vdc	- the vDisk client
4653  *	from	- Buffer with data
4654  *	to	- Buffer where data is to be copied to
4655  *	mode	- flags passed to ioctl
4656  *	dir	- direction of copy (in or out)
4657  *
4658  * Return Code:
4659  *	0	- Success
4660  *	ENXIO	- Invalid buffer passed in
4661  *	EFAULT	- ddi_copyin of data failed
4662  */
4663 static int
4664 vdc_set_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
4665 {
4666 	_NOTE(ARGUNUSED(vdc))
4667 
4668 	vd_geom_t	vdgeom;
4669 	void		*tmp_mem = NULL;
4670 	int		copy_len = sizeof (struct dk_geom);
4671 	int		rv = 0;
4672 
4673 	if (dir != VD_COPYIN)
4674 		return (0);	/* nothing to do */
4675 
4676 	if ((from == NULL) || (to == NULL))
4677 		return (ENXIO);
4678 
4679 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
4680 
4681 	rv = ddi_copyin(from, tmp_mem, copy_len, mode);
4682 	if (rv != 0) {
4683 		kmem_free(tmp_mem, copy_len);
4684 		return (EFAULT);
4685 	}
4686 	DK_GEOM2VD_GEOM((struct dk_geom *)tmp_mem, &vdgeom);
4687 	bcopy(&vdgeom, to, sizeof (vdgeom));
4688 	kmem_free(tmp_mem, copy_len);
4689 
4690 	return (0);
4691 }
4692 
4693 static int
4694 vdc_get_efi_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
4695 {
4696 	_NOTE(ARGUNUSED(vdc))
4697 
4698 	vd_efi_t	*vd_efi;
4699 	dk_efi_t	dk_efi;
4700 	int		rv = 0;
4701 	void		*uaddr;
4702 
4703 	if ((from == NULL) || (to == NULL))
4704 		return (ENXIO);
4705 
4706 	if (dir == VD_COPYIN) {
4707 
4708 		vd_efi = (vd_efi_t *)to;
4709 
4710 		rv = ddi_copyin(from, &dk_efi, sizeof (dk_efi_t), mode);
4711 		if (rv != 0)
4712 			return (EFAULT);
4713 
4714 		vd_efi->lba = dk_efi.dki_lba;
4715 		vd_efi->length = dk_efi.dki_length;
4716 		bzero(vd_efi->data, vd_efi->length);
4717 
4718 	} else {
4719 
4720 		rv = ddi_copyin(to, &dk_efi, sizeof (dk_efi_t), mode);
4721 		if (rv != 0)
4722 			return (EFAULT);
4723 
4724 		uaddr = dk_efi.dki_data;
4725 
4726 		dk_efi.dki_data = kmem_alloc(dk_efi.dki_length, KM_SLEEP);
4727 
4728 		VD_EFI2DK_EFI((vd_efi_t *)from, &dk_efi);
4729 
4730 		rv = ddi_copyout(dk_efi.dki_data, uaddr, dk_efi.dki_length,
4731 		    mode);
4732 		if (rv != 0)
4733 			return (EFAULT);
4734 
4735 		kmem_free(dk_efi.dki_data, dk_efi.dki_length);
4736 	}
4737 
4738 	return (0);
4739 }
4740 
4741 static int
4742 vdc_set_efi_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
4743 {
4744 	_NOTE(ARGUNUSED(vdc))
4745 
4746 	dk_efi_t	dk_efi;
4747 	void		*uaddr;
4748 
4749 	if (dir == VD_COPYOUT)
4750 		return (0);	/* nothing to do */
4751 
4752 	if ((from == NULL) || (to == NULL))
4753 		return (ENXIO);
4754 
4755 	if (ddi_copyin(from, &dk_efi, sizeof (dk_efi_t), mode) != 0)
4756 		return (EFAULT);
4757 
4758 	uaddr = dk_efi.dki_data;
4759 
4760 	dk_efi.dki_data = kmem_alloc(dk_efi.dki_length, KM_SLEEP);
4761 
4762 	if (ddi_copyin(uaddr, dk_efi.dki_data, dk_efi.dki_length, mode) != 0)
4763 		return (EFAULT);
4764 
4765 	DK_EFI2VD_EFI(&dk_efi, (vd_efi_t *)to);
4766 
4767 	kmem_free(dk_efi.dki_data, dk_efi.dki_length);
4768 
4769 	return (0);
4770 }
4771 
4772 /*
4773  * Function:
4774  *	vdc_create_fake_geometry()
4775  *
4776  * Description:
4777  *	This routine fakes up the disk info needed for some DKIO ioctls.
4778  *		- DKIOCINFO
4779  *		- DKIOCGMEDIAINFO
4780  *
4781  *	[ just like lofi(7D) and ramdisk(7D) ]
4782  *
4783  * Arguments:
4784  *	vdc	- soft state pointer for this instance of the device driver.
4785  *
4786  * Return Code:
4787  *	0	- Success
4788  */
4789 static int
4790 vdc_create_fake_geometry(vdc_t *vdc)
4791 {
4792 	ASSERT(vdc != NULL);
4793 
4794 	/*
4795 	 * Check if max_xfer_sz and vdisk_size are valid
4796 	 */
4797 	if (vdc->vdisk_size == 0 || vdc->max_xfer_sz == 0)
4798 		return (EIO);
4799 
4800 	/*
4801 	 * DKIOCINFO support
4802 	 */
4803 	vdc->cinfo = kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
4804 
4805 	(void) strcpy(vdc->cinfo->dki_cname, VDC_DRIVER_NAME);
4806 	(void) strcpy(vdc->cinfo->dki_dname, VDC_DRIVER_NAME);
4807 	/* max_xfer_sz is #blocks so we don't need to divide by DEV_BSIZE */
4808 	vdc->cinfo->dki_maxtransfer = vdc->max_xfer_sz;
4809 	vdc->cinfo->dki_ctype = DKC_SCSI_CCS;
4810 	vdc->cinfo->dki_flags = DKI_FMTVOL;
4811 	vdc->cinfo->dki_cnum = 0;
4812 	vdc->cinfo->dki_addr = 0;
4813 	vdc->cinfo->dki_space = 0;
4814 	vdc->cinfo->dki_prio = 0;
4815 	vdc->cinfo->dki_vec = 0;
4816 	vdc->cinfo->dki_unit = vdc->instance;
4817 	vdc->cinfo->dki_slave = 0;
4818 	/*
4819 	 * The partition number will be created on the fly depending on the
4820 	 * actual slice (i.e. minor node) that is used to request the data.
4821 	 */
4822 	vdc->cinfo->dki_partition = 0;
4823 
4824 	/*
4825 	 * DKIOCGMEDIAINFO support
4826 	 */
4827 	if (vdc->minfo == NULL)
4828 		vdc->minfo = kmem_zalloc(sizeof (struct dk_minfo), KM_SLEEP);
4829 	vdc->minfo->dki_media_type = DK_FIXED_DISK;
4830 	vdc->minfo->dki_capacity = vdc->vdisk_size;
4831 	vdc->minfo->dki_lbsize = DEV_BSIZE;
4832 
4833 	return (0);
4834 }
4835 
4836 /*
4837  * Function:
4838  *	vdc_setup_disk_layout()
4839  *
4840  * Description:
4841  *	This routine discovers all the necessary details about the "disk"
4842  *	by requesting the data that is available from the vDisk server and by
4843  *	faking up the rest of the data.
4844  *
4845  * Arguments:
4846  *	vdc	- soft state pointer for this instance of the device driver.
4847  *
4848  * Return Code:
4849  *	0	- Success
4850  */
4851 static int
4852 vdc_setup_disk_layout(vdc_t *vdc)
4853 {
4854 	buf_t	*buf;	/* BREAD requests need to be in a buf_t structure */
4855 	dev_t	dev;
4856 	int	slice = 0;
4857 	int	rv, error;
4858 
4859 	ASSERT(vdc != NULL);
4860 
4861 	if (vdc->vtoc == NULL)
4862 		vdc->vtoc = kmem_zalloc(sizeof (struct vtoc), KM_SLEEP);
4863 
4864 	dev = makedevice(ddi_driver_major(vdc->dip),
4865 				VD_MAKE_DEV(vdc->instance, 0));
4866 	rv = vd_process_ioctl(dev, DKIOCGVTOC, (caddr_t)vdc->vtoc, FKIOCTL);
4867 
4868 	if (rv && rv != ENOTSUP) {
4869 		DMSG(vdc, 0, "[%d] Failed to get VTOC (err=%d)",
4870 				vdc->instance, rv);
4871 		return (rv);
4872 	}
4873 
4874 	/*
4875 	 * The process of attempting to read VTOC will initiate
4876 	 * the handshake and establish a connection. Following
4877 	 * handshake, go ahead and create geometry.
4878 	 */
4879 	error = vdc_create_fake_geometry(vdc);
4880 	if (error != 0) {
4881 		DMSG(vdc, 0, "[%d] Failed to create disk geometry (err%d)",
4882 		    vdc->instance, error);
4883 		return (error);
4884 	}
4885 
4886 	if (rv == ENOTSUP) {
4887 		/*
4888 		 * If the device does not support VTOC then we try
4889 		 * to read an EFI label.
4890 		 */
4891 		struct dk_gpt *efi;
4892 		size_t efi_len;
4893 
4894 		rv = vdc_efi_alloc_and_read(dev, &efi, &efi_len);
4895 
4896 		if (rv) {
4897 			DMSG(vdc, 0, "[%d] Failed to get EFI (err=%d)",
4898 			    vdc->instance, rv);
4899 			return (rv);
4900 		}
4901 
4902 		vdc->vdisk_label = VD_DISK_LABEL_EFI;
4903 		vdc_store_efi(vdc, efi);
4904 		vd_efi_free(efi, efi_len);
4905 
4906 		return (0);
4907 	}
4908 
4909 	vdc->vdisk_label = VD_DISK_LABEL_VTOC;
4910 
4911 	/*
4912 	 * FUTURE: This could be default way for reading the VTOC
4913 	 * from the disk as supposed to sending the VD_OP_GET_VTOC
4914 	 * to the server. Currently this is a sanity check.
4915 	 *
4916 	 * find the slice that represents the entire "disk" and use that to
4917 	 * read the disk label. The convention in Solaris is that slice 2
4918 	 * represents the whole disk so we check that it is, otherwise we
4919 	 * default to slice 0
4920 	 */
4921 	if ((vdc->vdisk_type == VD_DISK_TYPE_DISK) &&
4922 	    (vdc->vtoc->v_part[2].p_tag == V_BACKUP)) {
4923 		slice = 2;
4924 	} else {
4925 		slice = 0;
4926 	}
4927 
4928 	/*
4929 	 * Read disk label from start of disk
4930 	 */
4931 	vdc->label = kmem_zalloc(DK_LABEL_SIZE, KM_SLEEP);
4932 	buf = kmem_alloc(sizeof (buf_t), KM_SLEEP);
4933 	bioinit(buf);
4934 	buf->b_un.b_addr = (caddr_t)vdc->label;
4935 	buf->b_bcount = DK_LABEL_SIZE;
4936 	buf->b_flags = B_BUSY | B_READ;
4937 	buf->b_dev = dev;
4938 	rv = vdc_send_request(vdc, VD_OP_BREAD, (caddr_t)vdc->label,
4939 	    DK_LABEL_SIZE, slice, 0, CB_STRATEGY, buf, VIO_read_dir);
4940 	if (rv) {
4941 		DMSG(vdc, 1, "[%d] Failed to read disk block 0\n",
4942 		    vdc->instance);
4943 		kmem_free(buf, sizeof (buf_t));
4944 		return (rv);
4945 	}
4946 	rv = biowait(buf);
4947 	biofini(buf);
4948 	kmem_free(buf, sizeof (buf_t));
4949 
4950 	return (rv);
4951 }
4952 
4953 /*
4954  * Function:
4955  *	vdc_setup_devid()
4956  *
4957  * Description:
4958  *	This routine discovers the devid of a vDisk. It requests the devid of
4959  *	the underlying device from the vDisk server, builds an encapsulated
4960  *	devid based on the retrieved devid and registers that new devid to
4961  *	the vDisk.
4962  *
4963  * Arguments:
4964  *	vdc	- soft state pointer for this instance of the device driver.
4965  *
4966  * Return Code:
4967  *	0	- A devid was succesfully registered for the vDisk
4968  */
4969 static int
4970 vdc_setup_devid(vdc_t *vdc)
4971 {
4972 	int rv;
4973 	vd_devid_t *vd_devid;
4974 	size_t bufsize, bufid_len;
4975 
4976 	/*
4977 	 * At first sight, we don't know the size of the devid that the
4978 	 * server will return but this size will be encoded into the
4979 	 * reply. So we do a first request using a default size then we
4980 	 * check if this size was large enough. If not then we do a second
4981 	 * request with the correct size returned by the server. Note that
4982 	 * ldc requires size to be 8-byte aligned.
4983 	 */
4984 	bufsize = P2ROUNDUP(VD_DEVID_SIZE(VD_DEVID_DEFAULT_LEN),
4985 	    sizeof (uint64_t));
4986 	vd_devid = kmem_zalloc(bufsize, KM_SLEEP);
4987 	bufid_len = bufsize - sizeof (vd_efi_t) - 1;
4988 
4989 	rv = vdc_do_sync_op(vdc, VD_OP_GET_DEVID, (caddr_t)vd_devid,
4990 	    bufsize, 0, 0, CB_SYNC, 0, VIO_both_dir);
4991 
4992 	DMSG(vdc, 2, "sync_op returned %d\n", rv);
4993 
4994 	if (rv) {
4995 		kmem_free(vd_devid, bufsize);
4996 		return (rv);
4997 	}
4998 
4999 	if (vd_devid->length > bufid_len) {
5000 		/*
5001 		 * The returned devid is larger than the buffer used. Try again
5002 		 * with a buffer with the right size.
5003 		 */
5004 		kmem_free(vd_devid, bufsize);
5005 		bufsize = P2ROUNDUP(VD_DEVID_SIZE(vd_devid->length),
5006 		    sizeof (uint64_t));
5007 		vd_devid = kmem_zalloc(bufsize, KM_SLEEP);
5008 		bufid_len = bufsize - sizeof (vd_efi_t) - 1;
5009 
5010 		rv = vdc_do_sync_op(vdc, VD_OP_GET_DEVID,
5011 		    (caddr_t)vd_devid, bufsize, 0, 0, CB_SYNC, 0,
5012 		    VIO_both_dir);
5013 
5014 		if (rv) {
5015 			kmem_free(vd_devid, bufsize);
5016 			return (rv);
5017 		}
5018 	}
5019 
5020 	/*
5021 	 * The virtual disk should have the same device id as the one associated
5022 	 * with the physical disk it is mapped on, otherwise sharing a disk
5023 	 * between a LDom and a non-LDom may not work (for example for a shared
5024 	 * SVM disk set).
5025 	 *
5026 	 * The DDI framework does not allow creating a device id with any
5027 	 * type so we first create a device id of type DEVID_ENCAP and then
5028 	 * we restore the orignal type of the physical device.
5029 	 */
5030 
5031 	DMSG(vdc, 2, ": devid length = %d\n", vd_devid->length);
5032 
5033 	/* build an encapsulated devid based on the returned devid */
5034 	if (ddi_devid_init(vdc->dip, DEVID_ENCAP, vd_devid->length,
5035 		vd_devid->id, &vdc->devid) != DDI_SUCCESS) {
5036 		DMSG(vdc, 1, "[%d] Fail to created devid\n", vdc->instance);
5037 		kmem_free(vd_devid, bufsize);
5038 		return (1);
5039 	}
5040 
5041 	DEVID_FORMTYPE((impl_devid_t *)vdc->devid, vd_devid->type);
5042 
5043 	ASSERT(ddi_devid_valid(vdc->devid) == DDI_SUCCESS);
5044 
5045 	kmem_free(vd_devid, bufsize);
5046 
5047 	if (ddi_devid_register(vdc->dip, vdc->devid) != DDI_SUCCESS) {
5048 		DMSG(vdc, 1, "[%d] Fail to register devid\n", vdc->instance);
5049 		return (1);
5050 	}
5051 
5052 	return (0);
5053 }
5054 
5055 static void
5056 vdc_store_efi(vdc_t *vdc, struct dk_gpt *efi)
5057 {
5058 	struct vtoc *vtoc = vdc->vtoc;
5059 
5060 	vd_efi_to_vtoc(efi, vtoc);
5061 	if (vdc->vdisk_type == VD_DISK_TYPE_SLICE) {
5062 		/*
5063 		 * vd_efi_to_vtoc() will store information about the EFI Sun
5064 		 * reserved partition (representing the entire disk) into
5065 		 * partition 7. However single-slice device will only have
5066 		 * that single partition and the vdc driver expects to find
5067 		 * information about that partition in slice 0. So we need
5068 		 * to copy information from slice 7 to slice 0.
5069 		 */
5070 		vtoc->v_part[0].p_tag = vtoc->v_part[VD_EFI_WD_SLICE].p_tag;
5071 		vtoc->v_part[0].p_flag = vtoc->v_part[VD_EFI_WD_SLICE].p_flag;
5072 		vtoc->v_part[0].p_start = vtoc->v_part[VD_EFI_WD_SLICE].p_start;
5073 		vtoc->v_part[0].p_size =  vtoc->v_part[VD_EFI_WD_SLICE].p_size;
5074 	}
5075 }
5076