xref: /titanic_50/usr/src/uts/sun4v/io/vdc.c (revision 0ea5e3a571e3da934507bdd32924d11659c70704)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * LDoms virtual disk client (vdc) device driver
31  *
32  * This driver runs on a guest logical domain and communicates with the virtual
33  * disk server (vds) driver running on the service domain which is exporting
34  * virtualized "disks" to the guest logical domain.
35  *
36  * The driver can be divided into four sections:
37  *
38  * 1) generic device driver housekeeping
39  *	_init, _fini, attach, detach, ops structures, etc.
40  *
41  * 2) communication channel setup
42  *	Setup the communications link over the LDC channel that vdc uses to
43  *	talk to the vDisk server. Initialise the descriptor ring which
44  *	allows the LDC clients to transfer data via memory mappings.
45  *
46  * 3) Support exported to upper layers (filesystems, etc)
47  *	The upper layers call into vdc via strategy(9E) and DKIO(7I)
48  *	ioctl calls. vdc will copy the data to be written to the descriptor
49  *	ring or maps the buffer to store the data read by the vDisk
50  *	server into the descriptor ring. It then sends a message to the
51  *	vDisk server requesting it to complete the operation.
52  *
53  * 4) Handling responses from vDisk server.
54  *	The vDisk server will ACK some or all of the messages vdc sends to it
55  *	(this is configured during the handshake). Upon receipt of an ACK
56  *	vdc will check the descriptor ring and signal to the upper layer
57  *	code waiting on the IO.
58  */
59 
60 #include <sys/conf.h>
61 #include <sys/disp.h>
62 #include <sys/ddi.h>
63 #include <sys/dkio.h>
64 #include <sys/efi_partition.h>
65 #include <sys/fcntl.h>
66 #include <sys/file.h>
67 #include <sys/mach_descrip.h>
68 #include <sys/modctl.h>
69 #include <sys/mdeg.h>
70 #include <sys/note.h>
71 #include <sys/open.h>
72 #include <sys/stat.h>
73 #include <sys/sunddi.h>
74 #include <sys/types.h>
75 #include <sys/promif.h>
76 #include <sys/vtoc.h>
77 #include <sys/archsystm.h>
78 #include <sys/sysmacros.h>
79 
80 #include <sys/cdio.h>
81 #include <sys/dktp/cm.h>
82 #include <sys/dktp/fdisk.h>
83 #include <sys/scsi/generic/sense.h>
84 #include <sys/scsi/impl/uscsi.h>	/* Needed for defn of USCSICMD ioctl */
85 #include <sys/scsi/targets/sddef.h>
86 
87 #include <sys/ldoms.h>
88 #include <sys/ldc.h>
89 #include <sys/vio_common.h>
90 #include <sys/vio_mailbox.h>
91 #include <sys/vdsk_common.h>
92 #include <sys/vdsk_mailbox.h>
93 #include <sys/vdc.h>
94 
95 /*
96  * function prototypes
97  */
98 
99 /* standard driver functions */
100 static int	vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred);
101 static int	vdc_close(dev_t dev, int flag, int otyp, cred_t *cred);
102 static int	vdc_strategy(struct buf *buf);
103 static int	vdc_print(dev_t dev, char *str);
104 static int	vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
105 static int	vdc_read(dev_t dev, struct uio *uio, cred_t *cred);
106 static int	vdc_write(dev_t dev, struct uio *uio, cred_t *cred);
107 static int	vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
108 			cred_t *credp, int *rvalp);
109 static int	vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred);
110 static int	vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred);
111 
112 static int	vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,
113 			void *arg, void **resultp);
114 static int	vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
115 static int	vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
116 
117 /* setup */
118 static int	vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen);
119 static int	vdc_do_ldc_init(vdc_t *vdc);
120 static int	vdc_start_ldc_connection(vdc_t *vdc);
121 static int	vdc_create_device_nodes(vdc_t *vdc);
122 static int	vdc_create_device_nodes_props(vdc_t *vdc);
123 static int	vdc_get_ldc_id(dev_info_t *dip, uint64_t *ldc_id);
124 static int	vdc_do_ldc_up(vdc_t *vdc);
125 static void	vdc_terminate_ldc(vdc_t *vdc);
126 static int	vdc_init_descriptor_ring(vdc_t *vdc);
127 static void	vdc_destroy_descriptor_ring(vdc_t *vdc);
128 
129 /* handshake with vds */
130 static void		vdc_init_handshake_negotiation(void *arg);
131 static int		vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver);
132 static int		vdc_init_attr_negotiation(vdc_t *vdc);
133 static int		vdc_init_dring_negotiate(vdc_t *vdc);
134 static void		vdc_reset_connection(vdc_t *vdc, boolean_t resetldc);
135 static boolean_t	vdc_is_able_to_tx_data(vdc_t *vdc, int flag);
136 static boolean_t	vdc_is_supported_version(vio_ver_msg_t *ver_msg);
137 
138 /* processing incoming messages from vDisk server */
139 static void	vdc_process_msg_thread(vdc_t *vdc);
140 static void	vdc_process_msg(void *arg);
141 static void	vdc_do_process_msg(vdc_t *vdc);
142 static uint_t	vdc_handle_cb(uint64_t event, caddr_t arg);
143 static int	vdc_process_ctrl_msg(vdc_t *vdc, vio_msg_t msg);
144 static int	vdc_process_data_msg(vdc_t *vdc, vio_msg_t msg);
145 static int	vdc_process_err_msg(vdc_t *vdc, vio_msg_t msg);
146 static int	vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg);
147 static int	vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg);
148 static int	vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *msg);
149 static int	vdc_get_next_dring_entry_id(vdc_t *vdc, uint_t needed);
150 static int	vdc_populate_descriptor(vdc_t *vdc, caddr_t addr,
151 			size_t nbytes, int op, uint64_t arg, uint64_t slice);
152 static int	vdc_wait_for_descriptor_update(vdc_t *vdc, uint_t idx,
153 			vio_dring_msg_t dmsg);
154 static int	vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx);
155 static int	vdc_get_response(vdc_t *vdc, int start, int end);
156 static int	vdc_populate_mem_hdl(vdc_t *vdc, uint_t idx,
157 			caddr_t addr, size_t nbytes, int operation);
158 static boolean_t vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg, int
159 			num_msgs);
160 
161 /* dkio */
162 static int	vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode);
163 static int	vdc_create_fake_geometry(vdc_t *vdc);
164 static int	vdc_setup_disk_layout(vdc_t *vdc);
165 static int	vdc_null_copy_func(void *from, void *to, int mode, int dir);
166 static int	vdc_get_vtoc_convert(void *from, void *to, int mode, int dir);
167 static int	vdc_set_vtoc_convert(void *from, void *to, int mode, int dir);
168 static int	vdc_get_geom_convert(void *from, void *to, int mode, int dir);
169 static int	vdc_set_geom_convert(void *from, void *to, int mode, int dir);
170 static int	vdc_uscsicmd_convert(void *from, void *to, int mode, int dir);
171 
172 /*
173  * Module variables
174  */
175 uint64_t	vdc_hz_timeout;
176 uint64_t	vdc_usec_timeout = VDC_USEC_TIMEOUT_MIN;
177 uint64_t	vdc_dump_usec_timeout = VDC_USEC_TIMEOUT_MIN / 300;
178 static int	vdc_retries = VDC_RETRIES;
179 static int	vdc_dump_retries = VDC_RETRIES * 10;
180 
181 /* Soft state pointer */
182 static void	*vdc_state;
183 
184 /* variable level controlling the verbosity of the error/debug messages */
185 int	vdc_msglevel = 0;
186 
187 /*
188  * Supported vDisk protocol version pairs.
189  *
190  * The first array entry is the latest and preferred version.
191  */
192 static const vio_ver_t	vdc_version[] = {{1, 0}};
193 
194 static void
195 vdc_msg(const char *format, ...)
196 {
197 	va_list	args;
198 
199 	va_start(args, format);
200 	vcmn_err(CE_CONT, format, args);
201 	va_end(args);
202 }
203 
204 static struct cb_ops vdc_cb_ops = {
205 	vdc_open,	/* cb_open */
206 	vdc_close,	/* cb_close */
207 	vdc_strategy,	/* cb_strategy */
208 	vdc_print,	/* cb_print */
209 	vdc_dump,	/* cb_dump */
210 	vdc_read,	/* cb_read */
211 	vdc_write,	/* cb_write */
212 	vdc_ioctl,	/* cb_ioctl */
213 	nodev,		/* cb_devmap */
214 	nodev,		/* cb_mmap */
215 	nodev,		/* cb_segmap */
216 	nochpoll,	/* cb_chpoll */
217 	ddi_prop_op,	/* cb_prop_op */
218 	NULL,		/* cb_str */
219 	D_MP | D_64BIT,	/* cb_flag */
220 	CB_REV,		/* cb_rev */
221 	vdc_aread,	/* cb_aread */
222 	vdc_awrite	/* cb_awrite */
223 };
224 
225 static struct dev_ops vdc_ops = {
226 	DEVO_REV,	/* devo_rev */
227 	0,		/* devo_refcnt */
228 	vdc_getinfo,	/* devo_getinfo */
229 	nulldev,	/* devo_identify */
230 	nulldev,	/* devo_probe */
231 	vdc_attach,	/* devo_attach */
232 	vdc_detach,	/* devo_detach */
233 	nodev,		/* devo_reset */
234 	&vdc_cb_ops,	/* devo_cb_ops */
235 	NULL,		/* devo_bus_ops */
236 	nulldev		/* devo_power */
237 };
238 
239 static struct modldrv modldrv = {
240 	&mod_driverops,
241 	"virtual disk client %I%",
242 	&vdc_ops,
243 };
244 
245 static struct modlinkage modlinkage = {
246 	MODREV_1,
247 	&modldrv,
248 	NULL
249 };
250 
251 /* -------------------------------------------------------------------------- */
252 
253 /*
254  * Device Driver housekeeping and setup
255  */
256 
257 int
258 _init(void)
259 {
260 	int	status;
261 
262 	if ((status = ddi_soft_state_init(&vdc_state, sizeof (vdc_t), 1)) != 0)
263 		return (status);
264 	if ((status = mod_install(&modlinkage)) != 0)
265 		ddi_soft_state_fini(&vdc_state);
266 	return (status);
267 }
268 
269 int
270 _info(struct modinfo *modinfop)
271 {
272 	return (mod_info(&modlinkage, modinfop));
273 }
274 
275 int
276 _fini(void)
277 {
278 	int	status;
279 
280 	if ((status = mod_remove(&modlinkage)) != 0)
281 		return (status);
282 	ddi_soft_state_fini(&vdc_state);
283 	return (0);
284 }
285 
286 static int
287 vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,  void *arg, void **resultp)
288 {
289 	_NOTE(ARGUNUSED(dip))
290 
291 	int	instance = SDUNIT(getminor((dev_t)arg));
292 	vdc_t	*vdc = NULL;
293 
294 	switch (cmd) {
295 	case DDI_INFO_DEVT2DEVINFO:
296 		if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
297 			*resultp = NULL;
298 			return (DDI_FAILURE);
299 		}
300 		*resultp = vdc->dip;
301 		return (DDI_SUCCESS);
302 	case DDI_INFO_DEVT2INSTANCE:
303 		*resultp = (void *)(uintptr_t)instance;
304 		return (DDI_SUCCESS);
305 	default:
306 		*resultp = NULL;
307 		return (DDI_FAILURE);
308 	}
309 }
310 
311 static int
312 vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
313 {
314 	int	instance;
315 	int	rv;
316 	uint_t	retries = 0;
317 	vdc_t	*vdc = NULL;
318 
319 	switch (cmd) {
320 	case DDI_DETACH:
321 		/* the real work happens below */
322 		break;
323 	case DDI_SUSPEND:
324 		/* nothing to do for this non-device */
325 		return (DDI_SUCCESS);
326 	default:
327 		return (DDI_FAILURE);
328 	}
329 
330 	ASSERT(cmd == DDI_DETACH);
331 	instance = ddi_get_instance(dip);
332 	PR1("%s[%d] Entered\n", __func__, instance);
333 
334 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
335 		vdc_msg("%s[%d]:  Could not get state structure.",
336 		    __func__, instance);
337 		return (DDI_FAILURE);
338 	}
339 
340 	if (vdc->open) {
341 		PR0("%s[%d]: Cannot detach: device is open",
342 				__func__, instance);
343 		return (DDI_FAILURE);
344 	}
345 
346 	PR0("%s[%d] proceeding...\n", __func__, instance);
347 
348 	/*
349 	 * try and disable callbacks to prevent another handshake
350 	 */
351 	rv = ldc_set_cb_mode(vdc->ldc_handle, LDC_CB_DISABLE);
352 	PR0("%s[%d] callback disabled (rv=%d)\n", __func__, instance, rv);
353 
354 	/*
355 	 * Prevent any more attempts to start a handshake with the vdisk
356 	 * server and tear down the existing connection.
357 	 */
358 	mutex_enter(&vdc->lock);
359 	vdc->initialized |= VDC_HANDSHAKE_STOP;
360 	vdc_reset_connection(vdc, B_TRUE);
361 	mutex_exit(&vdc->lock);
362 
363 	if (vdc->initialized & VDC_THREAD) {
364 		mutex_enter(&vdc->msg_proc_lock);
365 		vdc->msg_proc_thr_state = VDC_THR_STOP;
366 		vdc->msg_pending = B_TRUE;
367 		cv_signal(&vdc->msg_proc_cv);
368 
369 		while (vdc->msg_proc_thr_state != VDC_THR_DONE) {
370 			PR0("%s[%d]: Waiting for thread to exit\n",
371 				__func__, instance);
372 			rv = cv_timedwait(&vdc->msg_proc_cv,
373 				&vdc->msg_proc_lock, VD_GET_TIMEOUT_HZ(1));
374 			if ((rv == -1) && (retries++ > vdc_retries))
375 				break;
376 		}
377 		mutex_exit(&vdc->msg_proc_lock);
378 	}
379 
380 	mutex_enter(&vdc->lock);
381 
382 	if (vdc->initialized & VDC_DRING)
383 		vdc_destroy_descriptor_ring(vdc);
384 
385 	if (vdc->initialized & VDC_LDC)
386 		vdc_terminate_ldc(vdc);
387 
388 	mutex_exit(&vdc->lock);
389 
390 	if (vdc->initialized & VDC_MINOR) {
391 		ddi_prop_remove_all(dip);
392 		ddi_remove_minor_node(dip, NULL);
393 	}
394 
395 	if (vdc->initialized & VDC_LOCKS) {
396 		mutex_destroy(&vdc->lock);
397 		mutex_destroy(&vdc->attach_lock);
398 		mutex_destroy(&vdc->msg_proc_lock);
399 		mutex_destroy(&vdc->dring_lock);
400 		cv_destroy(&vdc->cv);
401 		cv_destroy(&vdc->attach_cv);
402 		cv_destroy(&vdc->msg_proc_cv);
403 	}
404 
405 	if (vdc->minfo)
406 		kmem_free(vdc->minfo, sizeof (struct dk_minfo));
407 
408 	if (vdc->cinfo)
409 		kmem_free(vdc->cinfo, sizeof (struct dk_cinfo));
410 
411 	if (vdc->vtoc)
412 		kmem_free(vdc->vtoc, sizeof (struct vtoc));
413 
414 	if (vdc->label)
415 		kmem_free(vdc->label, DK_LABEL_SIZE);
416 
417 	if (vdc->initialized & VDC_SOFT_STATE)
418 		ddi_soft_state_free(vdc_state, instance);
419 
420 	PR0("%s[%d] End %p\n", __func__, instance, vdc);
421 
422 	return (DDI_SUCCESS);
423 }
424 
425 
426 static int
427 vdc_do_attach(dev_info_t *dip)
428 {
429 	int		instance;
430 	vdc_t		*vdc = NULL;
431 	int		status;
432 	uint_t		retries = 0;
433 
434 	ASSERT(dip != NULL);
435 
436 	instance = ddi_get_instance(dip);
437 	if (ddi_soft_state_zalloc(vdc_state, instance) != DDI_SUCCESS) {
438 		vdc_msg("%s:(%d): Couldn't alloc state structure",
439 		    __func__, instance);
440 		return (DDI_FAILURE);
441 	}
442 
443 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
444 		vdc_msg("%s:(%d): Could not get state structure.",
445 		    __func__, instance);
446 		return (DDI_FAILURE);
447 	}
448 
449 	/*
450 	 * We assign the value to initialized in this case to zero out the
451 	 * variable and then set bits in it to indicate what has been done
452 	 */
453 	vdc->initialized = VDC_SOFT_STATE;
454 
455 	vdc_hz_timeout = drv_usectohz(vdc_usec_timeout);
456 
457 	vdc->dip	= dip;
458 	vdc->instance	= instance;
459 	vdc->open	= 0;
460 	vdc->vdisk_type	= VD_DISK_TYPE_UNK;
461 	vdc->state	= VD_STATE_INIT;
462 	vdc->ldc_state	= 0;
463 	vdc->session_id = 0;
464 	vdc->block_size = DEV_BSIZE;
465 	vdc->max_xfer_sz = VD_MAX_BLOCK_SIZE / DEV_BSIZE;
466 
467 	vdc->vtoc = NULL;
468 	vdc->cinfo = NULL;
469 	vdc->minfo = NULL;
470 
471 	mutex_init(&vdc->lock, NULL, MUTEX_DRIVER, NULL);
472 	mutex_init(&vdc->attach_lock, NULL, MUTEX_DRIVER, NULL);
473 	mutex_init(&vdc->msg_proc_lock, NULL, MUTEX_DRIVER, NULL);
474 	mutex_init(&vdc->dring_lock, NULL, MUTEX_DRIVER, NULL);
475 	cv_init(&vdc->cv, NULL, CV_DRIVER, NULL);
476 	cv_init(&vdc->attach_cv, NULL, CV_DRIVER, NULL);
477 	cv_init(&vdc->msg_proc_cv, NULL, CV_DRIVER, NULL);
478 	vdc->initialized |= VDC_LOCKS;
479 
480 	vdc->msg_pending = B_FALSE;
481 	vdc->msg_proc_thr_id = thread_create(NULL, 0, vdc_process_msg_thread,
482 		vdc, 0, &p0, TS_RUN, minclsyspri);
483 	if (vdc->msg_proc_thr_id == NULL) {
484 		cmn_err(CE_NOTE, "[%d] Failed to create msg processing thread",
485 				instance);
486 		return (DDI_FAILURE);
487 	}
488 	vdc->initialized |= VDC_THREAD;
489 
490 	/* initialise LDC channel which will be used to communicate with vds */
491 	if (vdc_do_ldc_init(vdc) != 0) {
492 		cmn_err(CE_NOTE, "[%d] Couldn't initialize LDC", instance);
493 		return (DDI_FAILURE);
494 	}
495 
496 	/* Bring up connection with vds via LDC */
497 	status = vdc_start_ldc_connection(vdc);
498 	if (status != 0) {
499 		vdc_msg("%s[%d]  Could not start LDC", __func__, instance);
500 		return (DDI_FAILURE);
501 	}
502 
503 	/*
504 	 * We need to wait until the handshake has completed before leaving
505 	 * the attach(). This is to allow the device node(s) to be created
506 	 * and the first usage of the filesystem to succeed.
507 	 */
508 	mutex_enter(&vdc->attach_lock);
509 	while ((vdc->ldc_state != LDC_UP) ||
510 		(vdc->state != VD_STATE_DATA)) {
511 
512 		PR0("%s[%d] handshake in progress [VD %d (LDC %d)]\n",
513 			__func__, instance, vdc->state, vdc->ldc_state);
514 
515 		status = cv_timedwait(&vdc->attach_cv, &vdc->attach_lock,
516 				VD_GET_TIMEOUT_HZ(1));
517 		if (status == -1) {
518 			if (retries >= vdc_retries) {
519 				PR0("%s[%d] Give up handshake wait.\n",
520 						__func__, instance);
521 				mutex_exit(&vdc->attach_lock);
522 				return (DDI_FAILURE);
523 			} else {
524 				PR0("%s[%d] Retry #%d for handshake.\n",
525 						__func__, instance, retries);
526 				vdc_init_handshake_negotiation(vdc);
527 				retries++;
528 			}
529 		}
530 	}
531 	mutex_exit(&vdc->attach_lock);
532 
533 	/*
534 	 * Once the handshake is complete, we can use the DRing to send
535 	 * requests to the vDisk server to calculate the geometry and
536 	 * VTOC of the "disk"
537 	 */
538 	status = vdc_setup_disk_layout(vdc);
539 	if (status != 0) {
540 		cmn_err(CE_NOTE, "[%d] Failed to discover disk layout (err%d)",
541 				vdc->instance, status);
542 	}
543 
544 	/*
545 	 * Now that we have the device info we can create the
546 	 * device nodes and properties
547 	 */
548 	status = vdc_create_device_nodes(vdc);
549 	if (status) {
550 		cmn_err(CE_NOTE, "[%d] Failed to create device nodes",
551 				instance);
552 		return (status);
553 	}
554 	status = vdc_create_device_nodes_props(vdc);
555 	if (status) {
556 		cmn_err(CE_NOTE, "[%d] Failed to create device nodes"
557 				" properties (%d)", instance, status);
558 		return (status);
559 	}
560 
561 	ddi_report_dev(dip);
562 
563 	PR0("%s[%d] Attach completed\n", __func__, instance);
564 	return (status);
565 }
566 
567 static int
568 vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
569 {
570 	int	status;
571 
572 	PR0("%s[%d]  Entered.  Built %s %s\n", __func__, ddi_get_instance(dip),
573 		__DATE__, __TIME__);
574 
575 	switch (cmd) {
576 	case DDI_ATTACH:
577 		if ((status = vdc_do_attach(dip)) != 0)
578 			(void) vdc_detach(dip, DDI_DETACH);
579 		return (status);
580 	case DDI_RESUME:
581 		/* nothing to do for this non-device */
582 		return (DDI_SUCCESS);
583 	default:
584 		return (DDI_FAILURE);
585 	}
586 }
587 
588 static int
589 vdc_do_ldc_init(vdc_t *vdc)
590 {
591 	int			status = 0;
592 	ldc_status_t		ldc_state;
593 	ldc_attr_t		ldc_attr;
594 	uint64_t		ldc_id = 0;
595 	dev_info_t		*dip = NULL;
596 
597 	ASSERT(vdc != NULL);
598 
599 	dip = vdc->dip;
600 	vdc->initialized |= VDC_LDC;
601 
602 	if ((status = vdc_get_ldc_id(dip, &ldc_id)) != 0) {
603 		vdc_msg("%s:  Failed to get <ldc_id> property\n", __func__);
604 		return (EIO);
605 	}
606 	vdc->ldc_id = ldc_id;
607 
608 	ldc_attr.devclass = LDC_DEV_BLK;
609 	ldc_attr.instance = vdc->instance;
610 	ldc_attr.mode = LDC_MODE_UNRELIABLE;	/* unreliable transport */
611 	ldc_attr.qlen = VD_LDC_QLEN;
612 
613 	if ((vdc->initialized & VDC_LDC_INIT) == 0) {
614 		status = ldc_init(ldc_id, &ldc_attr, &vdc->ldc_handle);
615 		if (status != 0) {
616 			cmn_err(CE_NOTE, "[%d] ldc_init(chan %ld) returned %d",
617 					vdc->instance, ldc_id, status);
618 			return (status);
619 		}
620 		vdc->initialized |= VDC_LDC_INIT;
621 	}
622 	status = ldc_status(vdc->ldc_handle, &ldc_state);
623 	if (status != 0) {
624 		vdc_msg("Cannot discover LDC status [err=%d].", status);
625 		return (status);
626 	}
627 	vdc->ldc_state = ldc_state;
628 
629 	if ((vdc->initialized & VDC_LDC_CB) == 0) {
630 		status = ldc_reg_callback(vdc->ldc_handle, vdc_handle_cb,
631 		    (caddr_t)vdc);
632 		if (status != 0) {
633 			vdc_msg("%s: ldc_reg_callback()=%d", __func__, status);
634 			return (status);
635 		}
636 		vdc->initialized |= VDC_LDC_CB;
637 	}
638 
639 	vdc->initialized |= VDC_LDC;
640 
641 	/*
642 	 * At this stage we have initialised LDC, we will now try and open
643 	 * the connection.
644 	 */
645 	if (vdc->ldc_state == LDC_INIT) {
646 		status = ldc_open(vdc->ldc_handle);
647 		if (status != 0) {
648 			cmn_err(CE_NOTE, "[%d] ldc_open(chan %ld) returned %d",
649 					vdc->instance, vdc->ldc_id, status);
650 			return (status);
651 		}
652 		vdc->initialized |= VDC_LDC_OPEN;
653 	}
654 
655 	return (status);
656 }
657 
658 static int
659 vdc_start_ldc_connection(vdc_t *vdc)
660 {
661 	int		status = 0;
662 
663 	ASSERT(vdc != NULL);
664 
665 	mutex_enter(&vdc->lock);
666 
667 	if (vdc->ldc_state == LDC_UP) {
668 		PR0("%s:  LDC is already UP ..\n", __func__);
669 		mutex_exit(&vdc->lock);
670 		return (0);
671 	}
672 
673 	status = vdc_do_ldc_up(vdc);
674 
675 	PR0("%s[%d] Finished bringing up LDC\n", __func__, vdc->instance);
676 
677 	mutex_exit(&vdc->lock);
678 
679 	return (status);
680 }
681 
682 
683 /*
684  * Function:
685  *	vdc_create_device_nodes
686  *
687  * Description:
688  *	This function creates the block and character device nodes under
689  *	/devices along with the node properties. It is called as part of
690  *	the attach(9E) of the instance during the handshake with vds after
691  *	vds has sent the attributes to vdc.
692  *
693  *	If the device is of type VD_DISK_TYPE_SLICE then the minor node
694  *	of 2 is used in keeping with the Solaris convention that slice 2
695  *	refers to a whole disk. Slices start at 'a'
696  *
697  * Parameters:
698  *	vdc 		- soft state pointer
699  *
700  * Return Values
701  *	0		- Success
702  *	EIO		- Failed to create node
703  *	EINVAL		- Unknown type of disk exported
704  */
705 static int
706 vdc_create_device_nodes(vdc_t *vdc)
707 {
708 	/* uses NNNN which is OK as long as # of disks <= 10000 */
709 	char		name[sizeof ("disk@NNNN:s,raw")];
710 	dev_info_t	*dip = NULL;
711 	int		instance;
712 	int		num_slices = 1;
713 	int		i;
714 
715 	ASSERT(vdc != NULL);
716 
717 	instance = vdc->instance;
718 	dip = vdc->dip;
719 
720 	switch (vdc->vdisk_type) {
721 	case VD_DISK_TYPE_DISK:
722 		num_slices = V_NUMPAR;
723 		break;
724 	case VD_DISK_TYPE_SLICE:
725 		num_slices = 1;
726 		break;
727 	case VD_DISK_TYPE_UNK:
728 	default:
729 		return (EINVAL);
730 	}
731 
732 	for (i = 0; i < num_slices; i++) {
733 		(void) snprintf(name, sizeof (name), "%c", 'a' + i);
734 		if (ddi_create_minor_node(dip, name, S_IFBLK,
735 		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
736 			vdc_msg("%s[%d]: Couldn't add block node %s.",
737 				__func__, instance, name);
738 			return (EIO);
739 		}
740 
741 		/* if any device node is created we set this flag */
742 		vdc->initialized |= VDC_MINOR;
743 
744 		(void) snprintf(name, sizeof (name), "%c%s",
745 			'a' + i, ",raw");
746 		if (ddi_create_minor_node(dip, name, S_IFCHR,
747 		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
748 			vdc_msg("%s[%d]:  Could not add raw node %s.",
749 				__func__, instance, name);
750 			return (EIO);
751 		}
752 	}
753 
754 	return (0);
755 }
756 
757 /*
758  * Function:
759  *	vdc_create_device_nodes_props
760  *
761  * Description:
762  *	This function creates the block and character device nodes under
763  *	/devices along with the node properties. It is called as part of
764  *	the attach(9E) of the instance during the handshake with vds after
765  *	vds has sent the attributes to vdc.
766  *
767  * Parameters:
768  *	vdc 		- soft state pointer
769  *
770  * Return Values
771  *	0		- Success
772  *	EIO		- Failed to create device node property
773  *	EINVAL		- Unknown type of disk exported
774  */
775 static int
776 vdc_create_device_nodes_props(vdc_t *vdc)
777 {
778 	dev_info_t	*dip = NULL;
779 	int		instance;
780 	int		num_slices = 1;
781 	int64_t		size = 0;
782 	dev_t		dev;
783 	int		rv;
784 	int		i;
785 
786 	ASSERT(vdc != NULL);
787 
788 	instance = vdc->instance;
789 	dip = vdc->dip;
790 
791 	if ((vdc->vtoc == NULL) || (vdc->vtoc->v_sanity != VTOC_SANE)) {
792 		cmn_err(CE_NOTE, "![%d] Could not create device node property."
793 				" No VTOC available", instance);
794 		return (ENXIO);
795 	}
796 
797 	switch (vdc->vdisk_type) {
798 	case VD_DISK_TYPE_DISK:
799 		num_slices = V_NUMPAR;
800 		break;
801 	case VD_DISK_TYPE_SLICE:
802 		num_slices = 1;
803 		break;
804 	case VD_DISK_TYPE_UNK:
805 	default:
806 		return (EINVAL);
807 	}
808 
809 	for (i = 0; i < num_slices; i++) {
810 		dev = makedevice(ddi_driver_major(dip),
811 			VD_MAKE_DEV(instance, i));
812 
813 		size = vdc->vtoc->v_part[i].p_size * vdc->vtoc->v_sectorsz;
814 		PR0("%s[%d] sz %ld (%ld Mb)  p_size %lx\n",
815 				__func__, instance, size, size / (1024 * 1024),
816 				vdc->vtoc->v_part[i].p_size);
817 
818 		rv = ddi_prop_update_int64(dev, dip, VDC_SIZE_PROP_NAME, size);
819 		if (rv != DDI_PROP_SUCCESS) {
820 			vdc_msg("%s:(%d): Couldn't add \"%s\" [%d]\n",
821 				__func__, instance, VDC_SIZE_PROP_NAME, size);
822 			return (EIO);
823 		}
824 
825 		rv = ddi_prop_update_int64(dev, dip, VDC_NBLOCKS_PROP_NAME,
826 			lbtodb(size));
827 		if (rv != DDI_PROP_SUCCESS) {
828 			vdc_msg("%s:(%d): Couldn't add \"%s\" [%d]\n", __func__,
829 				instance, VDC_NBLOCKS_PROP_NAME, lbtodb(size));
830 			return (EIO);
831 		}
832 	}
833 
834 	return (0);
835 }
836 
837 static int
838 vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred)
839 {
840 	_NOTE(ARGUNUSED(cred))
841 
842 	int		instance;
843 	vdc_t		*vdc;
844 
845 	ASSERT(dev != NULL);
846 	instance = SDUNIT(getminor(*dev));
847 
848 	PR0("%s[%d] minor = %d flag = %x, otyp = %x\n", __func__, instance,
849 			getminor(*dev), flag, otyp);
850 
851 	if ((otyp != OTYP_CHR) && (otyp != OTYP_BLK))
852 		return (EINVAL);
853 
854 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
855 		vdc_msg("%s[%d] Could not get state.", __func__, instance);
856 		return (ENXIO);
857 	}
858 
859 	/*
860 	 * Check to see if we can communicate with vds
861 	 */
862 	if (!vdc_is_able_to_tx_data(vdc, flag)) {
863 		PR0("%s[%d] Not ready to transmit data\n", __func__, instance);
864 		return (ENOLINK);
865 	}
866 
867 	mutex_enter(&vdc->lock);
868 	vdc->open++;
869 	mutex_exit(&vdc->lock);
870 
871 	return (0);
872 }
873 
874 static int
875 vdc_close(dev_t dev, int flag, int otyp, cred_t *cred)
876 {
877 	_NOTE(ARGUNUSED(cred))
878 
879 	int	instance;
880 	vdc_t	*vdc;
881 
882 	instance = SDUNIT(getminor(dev));
883 
884 	PR0("%s[%d] flag = %x, otyp = %x\n", __func__, instance, flag, otyp);
885 
886 	if ((otyp != OTYP_CHR) && (otyp != OTYP_BLK))
887 		return (EINVAL);
888 
889 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
890 		vdc_msg("%s[%d] Could not get state.", __func__, instance);
891 		return (ENXIO);
892 	}
893 
894 	/*
895 	 * Check to see if we can communicate with vds
896 	 */
897 	if (!vdc_is_able_to_tx_data(vdc, 0)) {
898 		PR0("%s[%d] Not ready to transmit data\n", __func__, instance);
899 		return (ETIMEDOUT);
900 	}
901 
902 	if (vdc->dkio_flush_pending) {
903 		PR0("%s[%d]: Cannot detach: %d outstanding DKIO flushes",
904 			__func__, instance, vdc->dkio_flush_pending);
905 		return (EBUSY);
906 	}
907 
908 	/*
909 	 * Should not need the mutex here, since the framework should protect
910 	 * against more opens on this device, but just in case.
911 	 */
912 	mutex_enter(&vdc->lock);
913 	vdc->open--;
914 	mutex_exit(&vdc->lock);
915 
916 	return (0);
917 }
918 
919 static int
920 vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
921 {
922 	_NOTE(ARGUNUSED(credp))
923 	_NOTE(ARGUNUSED(rvalp))
924 
925 	return (vd_process_ioctl(dev, cmd, (caddr_t)arg, mode));
926 }
927 
928 static int
929 vdc_print(dev_t dev, char *str)
930 {
931 	cmn_err(CE_NOTE, "vdc%d:  %s", SDUNIT(getminor(dev)), str);
932 	return (0);
933 }
934 
935 static int
936 vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
937 {
938 	int			rv = 0;
939 	size_t			nbytes = (nblk * DEV_BSIZE);
940 	int			instance = SDUNIT(getminor(dev));
941 	vdc_t			*vdc;
942 
943 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
944 		vdc_msg("%s (%d):  Could not get state.", __func__, instance);
945 		return (ENXIO);
946 	}
947 
948 	rv = vdc_populate_descriptor(vdc, addr, nbytes, VD_OP_BWRITE,
949 					blkno, SDPART(getminor(dev)));
950 
951 	PR1("%s: status=%d\n", __func__, rv);
952 
953 	return (rv);
954 }
955 
956 /* -------------------------------------------------------------------------- */
957 
958 /*
959  * Disk access routines
960  *
961  */
962 
963 /*
964  * vdc_strategy()
965  *
966  * Return Value:
967  *	0:	As per strategy(9E), the strategy() function must return 0
968  *		[ bioerror(9f) sets b_flags to the proper error code ]
969  */
970 static int
971 vdc_strategy(struct buf *buf)
972 {
973 	int		rv = -1;
974 	vdc_t		*vdc = NULL;
975 	int		instance = SDUNIT(getminor(buf->b_edev));
976 	int	op = (buf->b_flags & B_READ) ? VD_OP_BREAD : VD_OP_BWRITE;
977 
978 	PR1("%s: %s %ld bytes at block %ld : b_addr=0x%p",
979 	    __func__, (buf->b_flags & B_READ) ? "Read" : "Write",
980 	    buf->b_bcount, buf->b_lblkno, buf->b_un.b_addr);
981 
982 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
983 		vdc_msg("%s[%d]:  Could not get state.", __func__, instance);
984 		bioerror(buf, ENXIO);
985 		biodone(buf);
986 		return (0);
987 	}
988 
989 	ASSERT(buf->b_bcount <= (vdc->max_xfer_sz * vdc->block_size));
990 
991 	if (!vdc_is_able_to_tx_data(vdc, O_NONBLOCK)) {
992 		vdc_msg("%s: Not ready to transmit data", __func__);
993 		bioerror(buf, ENXIO);
994 		biodone(buf);
995 		return (0);
996 	}
997 	bp_mapin(buf);
998 
999 	rv = vdc_populate_descriptor(vdc, buf->b_un.b_addr, buf->b_bcount, op,
1000 			buf->b_lblkno, SDPART(getminor(buf->b_edev)));
1001 
1002 	PR1("%s: status=%d", __func__, rv);
1003 	bioerror(buf, rv);
1004 	biodone(buf);
1005 	return (0);
1006 }
1007 
1008 
1009 static int
1010 vdc_read(dev_t dev, struct uio *uio, cred_t *cred)
1011 {
1012 	_NOTE(ARGUNUSED(cred))
1013 
1014 	PR1("vdc_read():  Entered");
1015 	return (physio(vdc_strategy, NULL, dev, B_READ, minphys, uio));
1016 }
1017 
1018 static int
1019 vdc_write(dev_t dev, struct uio *uio, cred_t *cred)
1020 {
1021 	_NOTE(ARGUNUSED(cred))
1022 
1023 	PR1("vdc_write():  Entered");
1024 	return (physio(vdc_strategy, NULL, dev, B_WRITE, minphys, uio));
1025 }
1026 
1027 static int
1028 vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred)
1029 {
1030 	_NOTE(ARGUNUSED(cred))
1031 
1032 	PR1("vdc_aread():  Entered");
1033 	return (aphysio(vdc_strategy, anocancel, dev, B_READ, minphys, aio));
1034 }
1035 
1036 static int
1037 vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred)
1038 {
1039 	_NOTE(ARGUNUSED(cred))
1040 
1041 	PR1("vdc_awrite():  Entered");
1042 	return (aphysio(vdc_strategy, anocancel, dev, B_WRITE, minphys, aio));
1043 }
1044 
1045 
1046 /* -------------------------------------------------------------------------- */
1047 
1048 /*
1049  * Handshake support
1050  */
1051 
1052 /*
1053  * vdc_init_handshake_negotiation
1054  *
1055  * Description:
1056  *	This function is called to trigger the handshake negotiations between
1057  *	the client (vdc) and the server (vds). It may be called multiple times.
1058  *
1059  * Parameters:
1060  *	vdc - soft state pointer
1061  */
1062 static void
1063 vdc_init_handshake_negotiation(void *arg)
1064 {
1065 	vdc_t		*vdc = (vdc_t *)(void *)arg;
1066 	ldc_status_t	ldc_state;
1067 	vd_state_t	state;
1068 	int		status;
1069 
1070 	ASSERT(vdc != NULL);
1071 
1072 	PR0("[%d] Initializing vdc<->vds handshake\n", vdc->instance);
1073 
1074 	/* get LDC state */
1075 	status = ldc_status(vdc->ldc_handle, &ldc_state);
1076 	if (status != 0) {
1077 		cmn_err(CE_NOTE, "[%d] Couldn't get LDC status: err=%d",
1078 				vdc->instance, status);
1079 		return;
1080 	}
1081 
1082 	/*
1083 	 * If the LDC connection is not UP we bring it up now and return.
1084 	 * The handshake will be started again when the callback is
1085 	 * triggered due to the UP event.
1086 	 */
1087 	if (ldc_state != LDC_UP) {
1088 		PR0("[%d] Triggering an LDC_UP and returning\n", vdc->instance);
1089 		(void) vdc_do_ldc_up(vdc);
1090 		return;
1091 	}
1092 
1093 	mutex_enter(&vdc->lock);
1094 	/*
1095 	 * Do not continue if another thread has triggered a handshake which
1096 	 * has not been reset or detach() has stopped further handshakes.
1097 	 */
1098 	if (vdc->initialized & (VDC_HANDSHAKE | VDC_HANDSHAKE_STOP)) {
1099 		PR0("%s[%d] Negotiation not triggered. [init=%x]\n",
1100 			__func__, vdc->instance, vdc->initialized);
1101 		mutex_exit(&vdc->lock);
1102 		return;
1103 	}
1104 
1105 	if (vdc->hshake_cnt++ > vdc_retries) {
1106 		cmn_err(CE_NOTE, "[%d] Failed repeatedly to complete handshake"
1107 				"with vDisk server", vdc->instance);
1108 		mutex_exit(&vdc->lock);
1109 		return;
1110 	}
1111 
1112 	vdc->initialized |= VDC_HANDSHAKE;
1113 	vdc->ldc_state = ldc_state;
1114 
1115 	state = vdc->state;
1116 
1117 	if (state == VD_STATE_INIT) {
1118 		/*
1119 		 * Set the desired version parameter to the first entry in the
1120 		 * version array. If this specific version is not supported,
1121 		 * the response handling code will step down the version number
1122 		 * to the next array entry and deal with it accordingly.
1123 		 */
1124 		(void) vdc_init_ver_negotiation(vdc, vdc_version[0]);
1125 	} else if (state == VD_STATE_VER) {
1126 		(void) vdc_init_attr_negotiation(vdc);
1127 	} else if (state == VD_STATE_ATTR) {
1128 		(void) vdc_init_dring_negotiate(vdc);
1129 	} else if (state == VD_STATE_DATA) {
1130 		/*
1131 		 * nothing to do - we have already completed the negotiation
1132 		 * and we can transmit data when ready.
1133 		 */
1134 		PR0("%s[%d] Negotiation triggered after handshake completed",
1135 			__func__, vdc->instance);
1136 	}
1137 
1138 	mutex_exit(&vdc->lock);
1139 }
1140 
1141 /*
1142  * Function:
1143  *	vdc_init_ver_negotiation()
1144  *
1145  * Description:
1146  *
1147  * Arguments:
1148  *	vdc	- soft state pointer for this instance of the device driver.
1149  *
1150  * Return Code:
1151  *	0	- Success
1152  */
1153 static int
1154 vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver)
1155 {
1156 	vio_ver_msg_t	pkt;
1157 	size_t		msglen = sizeof (pkt);
1158 	int		status = -1;
1159 
1160 	PR0("%s: Entered.\n", __func__);
1161 
1162 	ASSERT(vdc != NULL);
1163 	ASSERT(mutex_owned(&vdc->lock));
1164 
1165 	/*
1166 	 * set the Session ID to a unique value
1167 	 * (the lower 32 bits of the clock tick)
1168 	 */
1169 	vdc->session_id = ((uint32_t)gettick() & 0xffffffff);
1170 
1171 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1172 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1173 	pkt.tag.vio_subtype_env = VIO_VER_INFO;
1174 	pkt.tag.vio_sid = vdc->session_id;
1175 	pkt.dev_class = VDEV_DISK;
1176 	pkt.ver_major = ver.major;
1177 	pkt.ver_minor = ver.minor;
1178 
1179 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1180 	PR0("%s: vdc_send(status = %d)\n", __func__, status);
1181 
1182 	if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) {
1183 		PR0("%s[%d] vdc_send failed: id(%lx) rv(%d) size(%d)\n",
1184 				__func__, vdc->instance, vdc->ldc_handle,
1185 				status, msglen);
1186 		if (msglen != sizeof (vio_ver_msg_t))
1187 			status = ENOMSG;
1188 	}
1189 
1190 	return (status);
1191 }
1192 
1193 /*
1194  * Function:
1195  *	vdc_init_attr_negotiation()
1196  *
1197  * Description:
1198  *
1199  * Arguments:
1200  *	vdc	- soft state pointer for this instance of the device driver.
1201  *
1202  * Return Code:
1203  *	0	- Success
1204  */
1205 static int
1206 vdc_init_attr_negotiation(vdc_t *vdc)
1207 {
1208 	vd_attr_msg_t	pkt;
1209 	size_t		msglen = sizeof (pkt);
1210 	int		status;
1211 
1212 	ASSERT(vdc != NULL);
1213 	ASSERT(mutex_owned(&vdc->lock));
1214 
1215 	PR0("%s[%d] entered\n", __func__, vdc->instance);
1216 
1217 	/* fill in tag */
1218 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1219 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1220 	pkt.tag.vio_subtype_env = VIO_ATTR_INFO;
1221 	pkt.tag.vio_sid = vdc->session_id;
1222 	/* fill in payload */
1223 	pkt.max_xfer_sz = vdc->max_xfer_sz;
1224 	pkt.vdisk_block_size = vdc->block_size;
1225 	pkt.xfer_mode = VIO_DRING_MODE;
1226 	pkt.operations = 0;	/* server will set bits of valid operations */
1227 	pkt.vdisk_type = 0;	/* server will set to valid device type */
1228 	pkt.vdisk_size = 0;	/* server will set to valid size */
1229 
1230 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1231 	PR0("%s: vdc_send(status = %d)\n", __func__, status);
1232 
1233 	if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) {
1234 		PR0("%s[%d] ldc_write failed: id(%lx) rv(%d) size (%d)\n",
1235 			__func__, vdc->instance, vdc->ldc_handle,
1236 			status, msglen);
1237 		if (msglen != sizeof (vio_ver_msg_t))
1238 			status = ENOMSG;
1239 	}
1240 
1241 	return (status);
1242 }
1243 
1244 /*
1245  * Function:
1246  *	vdc_init_dring_negotiate()
1247  *
1248  * Description:
1249  *
1250  * Arguments:
1251  *	vdc	- soft state pointer for this instance of the device driver.
1252  *
1253  * Return Code:
1254  *	0	- Success
1255  */
1256 static int
1257 vdc_init_dring_negotiate(vdc_t *vdc)
1258 {
1259 	vio_dring_reg_msg_t	pkt;
1260 	size_t			msglen = sizeof (pkt);
1261 	int			status = -1;
1262 
1263 	ASSERT(vdc != NULL);
1264 	ASSERT(mutex_owned(&vdc->lock));
1265 
1266 	status = vdc_init_descriptor_ring(vdc);
1267 	if (status != 0) {
1268 		cmn_err(CE_CONT, "[%d] Failed to init DRing (status = %d)\n",
1269 				vdc->instance, status);
1270 		vdc_destroy_descriptor_ring(vdc);
1271 		vdc_reset_connection(vdc, B_FALSE);
1272 		return (status);
1273 	}
1274 	PR0("%s[%d] Init of descriptor ring completed (status = %d)\n",
1275 			__func__, vdc->instance, status);
1276 
1277 	/* fill in tag */
1278 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1279 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1280 	pkt.tag.vio_subtype_env = VIO_DRING_REG;
1281 	pkt.tag.vio_sid = vdc->session_id;
1282 	/* fill in payload */
1283 	pkt.dring_ident = 0;
1284 	pkt.num_descriptors = VD_DRING_LEN;
1285 	pkt.descriptor_size = VD_DRING_ENTRY_SZ;
1286 	pkt.options = (VIO_TX_DRING | VIO_RX_DRING);
1287 	pkt.ncookies = vdc->dring_cookie_count;
1288 	pkt.cookie[0] = vdc->dring_cookie[0];	/* for now just one cookie */
1289 
1290 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1291 	if (status != 0) {
1292 		PR0("%s[%d] Failed to register DRing (status = %d)\n",
1293 				__func__, vdc->instance, status);
1294 		vdc_reset_connection(vdc, B_FALSE);
1295 	}
1296 
1297 	return (status);
1298 }
1299 
1300 
1301 /* -------------------------------------------------------------------------- */
1302 
1303 /*
1304  * LDC helper routines
1305  */
1306 
1307 /*
1308  * Function:
1309  *	vdc_send()
1310  *
1311  * Description:
1312  *	The function encapsulates the call to write a message using LDC.
1313  *	If LDC indicates that the call failed due to the queue being full,
1314  *	we retry the ldc_write() [ up to 'vdc_retries' time ], otherwise
1315  *	we return the error returned by LDC.
1316  *
1317  * Arguments:
1318  *	ldc_handle	- LDC handle for the channel this instance of vdc uses
1319  *	pkt		- address of LDC message to be sent
1320  *	msglen		- the size of the message being sent. When the function
1321  *			  returns, this contains the number of bytes written.
1322  *
1323  * Return Code:
1324  *	0		- Success.
1325  *	EINVAL		- pkt or msglen were NULL
1326  *	ECONNRESET	- The connection was not up.
1327  *	EWOULDBLOCK	- LDC queue is full
1328  *	xxx		- other error codes returned by ldc_write
1329  */
1330 static int
1331 vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen)
1332 {
1333 	size_t	size = 0;
1334 	int	retries = 0;
1335 	int	status = 0;
1336 
1337 	ASSERT(vdc != NULL);
1338 	ASSERT(mutex_owned(&vdc->lock));
1339 	ASSERT(msglen != NULL);
1340 	ASSERT(*msglen != 0);
1341 
1342 	do {
1343 		size = *msglen;
1344 		status = ldc_write(vdc->ldc_handle, pkt, &size);
1345 	} while (status == EWOULDBLOCK && retries++ < vdc_retries);
1346 
1347 	/* if LDC had serious issues --- reset vdc state */
1348 	if (status == EIO || status == ECONNRESET) {
1349 		vdc_reset_connection(vdc, B_TRUE);
1350 	}
1351 
1352 	/* return the last size written */
1353 	*msglen = size;
1354 
1355 	return (status);
1356 }
1357 
1358 /*
1359  * Function:
1360  *	vdc_get_ldc_id()
1361  *
1362  * Description:
1363  *	This function gets the 'ldc-id' for this particular instance of vdc.
1364  *	The id returned is the guest domain channel endpoint LDC uses for
1365  *	communication with vds.
1366  *
1367  * Arguments:
1368  *	dip	- dev info pointer for this instance of the device driver.
1369  *	ldc_id	- pointer to variable used to return the 'ldc-id' found.
1370  *
1371  * Return Code:
1372  *	0	- Success.
1373  *	ENOENT	- Expected node or property did not exist.
1374  *	ENXIO	- Unexpected error communicating with MD framework
1375  */
1376 static int
1377 vdc_get_ldc_id(dev_info_t *dip, uint64_t *ldc_id)
1378 {
1379 	int		status = ENOENT;
1380 	char		*node_name = NULL;
1381 	md_t		*mdp = NULL;
1382 	int		num_nodes;
1383 	int		num_vdevs;
1384 	int		num_chans;
1385 	mde_cookie_t	rootnode;
1386 	mde_cookie_t	*listp = NULL;
1387 	mde_cookie_t	*chanp = NULL;
1388 	boolean_t	found_inst = B_FALSE;
1389 	int		listsz;
1390 	int		idx;
1391 	uint64_t	md_inst;
1392 	int		obp_inst;
1393 	int		instance = ddi_get_instance(dip);
1394 
1395 	ASSERT(ldc_id != NULL);
1396 	*ldc_id = 0;
1397 
1398 	/*
1399 	 * Get the OBP instance number for comparison with the MD instance
1400 	 *
1401 	 * The "cfg-handle" property of a vdc node in an MD contains the MD's
1402 	 * notion of "instance", or unique identifier, for that node; OBP
1403 	 * stores the value of the "cfg-handle" MD property as the value of
1404 	 * the "reg" property on the node in the device tree it builds from
1405 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
1406 	 * "reg" property value to uniquely identify this device instance.
1407 	 * If the "reg" property cannot be found, the device tree state is
1408 	 * presumably so broken that there is no point in continuing.
1409 	 */
1410 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, OBP_REG)) {
1411 		cmn_err(CE_WARN, "'%s' property does not exist", OBP_REG);
1412 		return (ENOENT);
1413 	}
1414 	obp_inst = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
1415 			OBP_REG, -1);
1416 	PR1("%s[%d]: OBP inst=%d\n", __func__, instance, obp_inst);
1417 
1418 	/*
1419 	 * We now walk the MD nodes and if an instance of a vdc node matches
1420 	 * the instance got from OBP we get the ldc-id property.
1421 	 */
1422 	if ((mdp = md_get_handle()) == NULL) {
1423 		cmn_err(CE_WARN, "unable to init machine description");
1424 		return (ENXIO);
1425 	}
1426 
1427 	num_nodes = md_node_count(mdp);
1428 	ASSERT(num_nodes > 0);
1429 
1430 	listsz = num_nodes * sizeof (mde_cookie_t);
1431 
1432 	/* allocate memory for nodes */
1433 	listp = kmem_zalloc(listsz, KM_SLEEP);
1434 	chanp = kmem_zalloc(listsz, KM_SLEEP);
1435 
1436 	rootnode = md_root_node(mdp);
1437 	ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
1438 
1439 	/*
1440 	 * Search for all the virtual devices, we will then check to see which
1441 	 * ones are disk nodes.
1442 	 */
1443 	num_vdevs = md_scan_dag(mdp, rootnode,
1444 			md_find_name(mdp, VDC_MD_VDEV_NAME),
1445 			md_find_name(mdp, "fwd"), listp);
1446 
1447 	if (num_vdevs <= 0) {
1448 		cmn_err(CE_NOTE, "No '%s' node found", VDC_MD_VDEV_NAME);
1449 		status = ENOENT;
1450 		goto done;
1451 	}
1452 
1453 	PR1("%s[%d] num_vdevs=%d\n", __func__, instance, num_vdevs);
1454 	for (idx = 0; idx < num_vdevs; idx++) {
1455 		status = md_get_prop_str(mdp, listp[idx], "name", &node_name);
1456 		if ((status != 0) || (node_name == NULL)) {
1457 			cmn_err(CE_NOTE, "Unable to get name of node type '%s'"
1458 					": err %d", VDC_MD_VDEV_NAME, status);
1459 			continue;
1460 		}
1461 
1462 		PR1("%s[%d] Found node %s\n", __func__, instance, node_name);
1463 		if (strcmp(VDC_MD_DISK_NAME, node_name) == 0) {
1464 			status = md_get_prop_val(mdp, listp[idx],
1465 					VDC_MD_CFG_HDL, &md_inst);
1466 			PR1("%s[%d] vdc inst# in MD=%d\n",
1467 					__func__, instance, md_inst);
1468 			if ((status == 0) && (md_inst == obp_inst)) {
1469 				found_inst = B_TRUE;
1470 				break;
1471 			}
1472 		}
1473 	}
1474 
1475 	if (!found_inst) {
1476 		cmn_err(CE_NOTE, "Unable to find correct '%s' node",
1477 				VDC_MD_DISK_NAME);
1478 		status = ENOENT;
1479 		goto done;
1480 	}
1481 	PR0("%s[%d] MD inst=%d\n", __func__, instance, md_inst);
1482 
1483 	/* get the channels for this node */
1484 	num_chans = md_scan_dag(mdp, listp[idx],
1485 			md_find_name(mdp, VDC_MD_CHAN_NAME),
1486 			md_find_name(mdp, "fwd"), chanp);
1487 
1488 	/* expecting at least one channel */
1489 	if (num_chans <= 0) {
1490 		cmn_err(CE_NOTE, "No '%s' node for '%s' port",
1491 				VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME);
1492 		status = ENOENT;
1493 		goto done;
1494 
1495 	} else if (num_chans != 1) {
1496 		PR0("%s[%d] Expected 1 '%s' node for '%s' port, found %d\n",
1497 			__func__, instance, VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME,
1498 			num_chans);
1499 	}
1500 
1501 	/*
1502 	 * We use the first channel found (index 0), irrespective of how
1503 	 * many are there in total.
1504 	 */
1505 	if (md_get_prop_val(mdp, chanp[0], VDC_ID_PROP, ldc_id) != 0) {
1506 		cmn_err(CE_NOTE, "Channel '%s' property not found",
1507 				VDC_ID_PROP);
1508 		status = ENOENT;
1509 	}
1510 
1511 	PR0("%s[%d] LDC id is 0x%lx\n", __func__, instance, *ldc_id);
1512 
1513 done:
1514 	if (chanp)
1515 		kmem_free(chanp, listsz);
1516 	if (listp)
1517 		kmem_free(listp, listsz);
1518 
1519 	(void) md_fini_handle(mdp);
1520 
1521 	return (status);
1522 }
1523 
1524 static int
1525 vdc_do_ldc_up(vdc_t *vdc)
1526 {
1527 	int	status;
1528 
1529 	PR0("[%d] Bringing up channel %x\n", vdc->instance, vdc->ldc_id);
1530 
1531 	if ((status = ldc_up(vdc->ldc_handle)) != 0) {
1532 		switch (status) {
1533 		case ECONNREFUSED:	/* listener not ready at other end */
1534 			PR0("%s: ldc_up(%d,...) return %d\n",
1535 					__func__, vdc->ldc_id, status);
1536 			status = 0;
1537 			break;
1538 		default:
1539 			cmn_err(CE_NOTE, "[%d] Failed to bring up LDC: "
1540 					"channel=%ld, err=%d",
1541 					vdc->instance, vdc->ldc_id, status);
1542 		}
1543 	}
1544 
1545 	return (status);
1546 }
1547 
1548 
1549 /*
1550  * vdc_is_able_to_tx_data()
1551  *
1552  * Description:
1553  *	This function checks if we are able to send data to the
1554  *	vDisk server (vds). The LDC connection needs to be up and
1555  *	vdc & vds need to have completed the handshake negotiation.
1556  *
1557  * Parameters:
1558  *	vdc 		- soft state pointer
1559  *	flag		- flag to indicate if we can block or not
1560  *			  [ If O_NONBLOCK or O_NDELAY (which are defined in
1561  *			    open(2)) are set then do not block)
1562  *
1563  * Return Values
1564  *	B_TRUE		- can talk to vds
1565  *	B_FALSE		- unable to talk to vds
1566  */
1567 static boolean_t
1568 vdc_is_able_to_tx_data(vdc_t *vdc, int flag)
1569 {
1570 	vd_state_t	state;
1571 	uint32_t	ldc_state;
1572 	uint_t		retries = 0;
1573 	int		rv = -1;
1574 
1575 	ASSERT(vdc != NULL);
1576 
1577 	mutex_enter(&vdc->lock);
1578 	state = vdc->state;
1579 	ldc_state = vdc->ldc_state;
1580 	mutex_exit(&vdc->lock);
1581 
1582 	if ((state == VD_STATE_DATA) && (ldc_state == LDC_UP))
1583 		return (B_TRUE);
1584 
1585 	if ((flag & O_NONBLOCK) || (flag & O_NDELAY)) {
1586 		PR0("%s[%d] Not ready to tx - state %d LDC state %d\n",
1587 			__func__, vdc->instance, state, ldc_state);
1588 		return (B_FALSE);
1589 	}
1590 
1591 	/*
1592 	 * We want to check and see if any negotiations triggered earlier
1593 	 * have succeeded. We are prepared to wait a little while in case
1594 	 * they are still in progress.
1595 	 */
1596 	mutex_enter(&vdc->lock);
1597 	while ((vdc->ldc_state != LDC_UP) || (vdc->state != VD_STATE_DATA)) {
1598 		PR0("%s: Waiting for connection at state %d (LDC state %d)\n",
1599 			__func__, vdc->state, vdc->ldc_state);
1600 
1601 		rv = cv_timedwait(&vdc->cv, &vdc->lock,
1602 			VD_GET_TIMEOUT_HZ(retries));
1603 
1604 		/*
1605 		 * An rv of -1 indicates that we timed out without the LDC
1606 		 * state changing so it looks like the other side (vdc) is
1607 		 * not yet ready/responding.
1608 		 *
1609 		 * Any other value of rv indicates that the LDC triggered an
1610 		 * interrupt so we just loop again, check the handshake state
1611 		 * and keep waiting if necessary.
1612 		 */
1613 		if (rv == -1) {
1614 			if (retries >= vdc_retries) {
1615 				PR0("%s[%d] handshake wait timed out.\n",
1616 						__func__, vdc->instance);
1617 				mutex_exit(&vdc->lock);
1618 				return (B_FALSE);
1619 			} else {
1620 				PR1("%s[%d] Retry #%d for handshake timedout\n",
1621 					__func__, vdc->instance, retries);
1622 				retries++;
1623 			}
1624 		}
1625 	}
1626 
1627 	ASSERT(vdc->ldc_state == LDC_UP);
1628 	ASSERT(vdc->state == VD_STATE_DATA);
1629 
1630 	mutex_exit(&vdc->lock);
1631 
1632 	return (B_TRUE);
1633 }
1634 
1635 
1636 /*
1637  * Function:
1638  *	vdc_terminate_ldc()
1639  *
1640  * Description:
1641  *
1642  * Arguments:
1643  *	vdc	- soft state pointer for this instance of the device driver.
1644  *
1645  * Return Code:
1646  *	None
1647  */
1648 static void
1649 vdc_terminate_ldc(vdc_t *vdc)
1650 {
1651 	int	instance = ddi_get_instance(vdc->dip);
1652 
1653 	ASSERT(vdc != NULL);
1654 	ASSERT(mutex_owned(&vdc->lock));
1655 
1656 	PR0("%s[%d] initialized=%x\n", __func__, instance, vdc->initialized);
1657 
1658 	if (vdc->initialized & VDC_LDC_OPEN) {
1659 		PR0("%s[%d]: ldc_close()\n", __func__, instance);
1660 		(void) ldc_close(vdc->ldc_handle);
1661 	}
1662 	if (vdc->initialized & VDC_LDC_CB) {
1663 		PR0("%s[%d]: ldc_unreg_callback()\n", __func__, instance);
1664 		(void) ldc_unreg_callback(vdc->ldc_handle);
1665 	}
1666 	if (vdc->initialized & VDC_LDC) {
1667 		PR0("%s[%d]: ldc_fini()\n", __func__, instance);
1668 		(void) ldc_fini(vdc->ldc_handle);
1669 		vdc->ldc_handle = NULL;
1670 	}
1671 
1672 	vdc->initialized &= ~(VDC_LDC | VDC_LDC_CB | VDC_LDC_OPEN);
1673 }
1674 
1675 /*
1676  * Function:
1677  *	vdc_reset_connection()
1678  *
1679  * Description:
1680  *
1681  * Arguments:
1682  *	vdc	- soft state pointer for this instance of the device driver.
1683  *	reset_ldc - Flag whether or not to reset the LDC connection also.
1684  *
1685  * Return Code:
1686  *	None
1687  */
1688 static void
1689 vdc_reset_connection(vdc_t *vdc, boolean_t reset_ldc)
1690 {
1691 	int	status;
1692 
1693 	ASSERT(vdc != NULL);
1694 	ASSERT(mutex_owned(&vdc->lock));
1695 
1696 	PR0("%s[%d] Entered\n", __func__, vdc->instance);
1697 
1698 	vdc->state = VD_STATE_INIT;
1699 
1700 	if (reset_ldc) {
1701 		status = ldc_reset(vdc->ldc_handle);
1702 		PR0("%s[%d]  ldc_reset() = %d\n",
1703 				__func__, vdc->instance, status);
1704 	}
1705 
1706 	vdc->initialized &= ~VDC_HANDSHAKE;
1707 	PR0("%s[%d] init=%x\n", __func__, vdc->instance, vdc->initialized);
1708 }
1709 
1710 /* -------------------------------------------------------------------------- */
1711 
1712 /*
1713  * Descriptor Ring helper routines
1714  */
1715 
1716 /*
1717  * Function:
1718  *	vdc_init_descriptor_ring()
1719  *
1720  * Description:
1721  *
1722  * Arguments:
1723  *	vdc	- soft state pointer for this instance of the device driver.
1724  *
1725  * Return Code:
1726  *	0	- Success
1727  */
1728 static int
1729 vdc_init_descriptor_ring(vdc_t *vdc)
1730 {
1731 	vd_dring_entry_t	*dep = NULL;	/* DRing Entry pointer */
1732 	int	status = 0;
1733 	int	i;
1734 
1735 	PR0("%s[%d] initialized=%x\n",
1736 			__func__, vdc->instance, vdc->initialized);
1737 
1738 	ASSERT(vdc != NULL);
1739 	ASSERT(mutex_owned(&vdc->lock));
1740 	ASSERT(vdc->ldc_handle != NULL);
1741 
1742 	if ((vdc->initialized & VDC_DRING_INIT) == 0) {
1743 		PR0("%s[%d] ldc_mem_dring_create\n", __func__, vdc->instance);
1744 		status = ldc_mem_dring_create(VD_DRING_LEN, VD_DRING_ENTRY_SZ,
1745 				&vdc->ldc_dring_hdl);
1746 		if ((vdc->ldc_dring_hdl == NULL) || (status != 0)) {
1747 			PR0("%s: Failed to create a descriptor ring", __func__);
1748 			return (status);
1749 		}
1750 		vdc->dring_entry_size = VD_DRING_ENTRY_SZ;
1751 		vdc->dring_len = VD_DRING_LEN;
1752 		vdc->initialized |= VDC_DRING_INIT;
1753 	}
1754 
1755 	if ((vdc->initialized & VDC_DRING_BOUND) == 0) {
1756 		PR0("%s[%d] ldc_mem_dring_bind\n", __func__, vdc->instance);
1757 		vdc->dring_cookie =
1758 			kmem_zalloc(sizeof (ldc_mem_cookie_t), KM_SLEEP);
1759 
1760 		status = ldc_mem_dring_bind(vdc->ldc_handle, vdc->ldc_dring_hdl,
1761 				LDC_SHADOW_MAP, LDC_MEM_RW,
1762 				&vdc->dring_cookie[0],
1763 				&vdc->dring_cookie_count);
1764 		if (status != 0) {
1765 			PR0("%s: Failed to bind descriptor ring (%p) "
1766 				"to channel (%p)\n",
1767 				__func__, vdc->ldc_dring_hdl, vdc->ldc_handle);
1768 			return (status);
1769 		}
1770 		ASSERT(vdc->dring_cookie_count == 1);
1771 		vdc->initialized |= VDC_DRING_BOUND;
1772 	}
1773 
1774 	status = ldc_mem_dring_info(vdc->ldc_dring_hdl, &vdc->dring_mem_info);
1775 	if (status != 0) {
1776 		PR0("%s: Failed to get info for descriptor ring (%p)\n",
1777 			__func__, vdc->ldc_dring_hdl);
1778 		return (status);
1779 	}
1780 
1781 	if ((vdc->initialized & VDC_DRING_LOCAL) == 0) {
1782 		PR0("%s[%d] local dring\n", __func__, vdc->instance);
1783 
1784 		/* Allocate the local copy of this dring */
1785 		vdc->local_dring =
1786 			kmem_zalloc(VD_DRING_LEN * sizeof (vdc_local_desc_t),
1787 						KM_SLEEP);
1788 		vdc->initialized |= VDC_DRING_LOCAL;
1789 	}
1790 
1791 	/*
1792 	 * Mark all DRing entries as free and initialize the private
1793 	 * descriptor's memory handles. If any entry is initialized,
1794 	 * we need to free it later so we set the bit in 'initialized'
1795 	 * at the start.
1796 	 */
1797 	vdc->initialized |= VDC_DRING_ENTRY;
1798 	for (i = 0; i < VD_DRING_LEN; i++) {
1799 		dep = VDC_GET_DRING_ENTRY_PTR(vdc, i);
1800 		dep->hdr.dstate = VIO_DESC_FREE;
1801 
1802 		status = ldc_mem_alloc_handle(vdc->ldc_handle,
1803 				&vdc->local_dring[i].desc_mhdl);
1804 		if (status != 0) {
1805 			cmn_err(CE_NOTE, "![%d] Failed to alloc mem handle for"
1806 					" descriptor %d", vdc->instance, i);
1807 			return (status);
1808 		}
1809 		vdc->local_dring[i].flags = VIO_DESC_FREE;
1810 		vdc->local_dring[i].dep = dep;
1811 
1812 		mutex_init(&vdc->local_dring[i].lock, NULL, MUTEX_DRIVER, NULL);
1813 		cv_init(&vdc->local_dring[i].cv, NULL, CV_DRIVER, NULL);
1814 	}
1815 
1816 	/*
1817 	 * We init the index of the last DRing entry used. Since the code to
1818 	 * get the next available entry increments it before selecting one,
1819 	 * we set it to the last DRing entry so that it wraps around to zero
1820 	 * for the 1st entry to be used.
1821 	 */
1822 	vdc->dring_curr_idx = VD_DRING_LEN - 1;
1823 
1824 	return (status);
1825 }
1826 
1827 /*
1828  * Function:
1829  *	vdc_destroy_descriptor_ring()
1830  *
1831  * Description:
1832  *
1833  * Arguments:
1834  *	vdc	- soft state pointer for this instance of the device driver.
1835  *
1836  * Return Code:
1837  *	None
1838  */
1839 static void
1840 vdc_destroy_descriptor_ring(vdc_t *vdc)
1841 {
1842 	vdc_local_desc_t	*ldep = NULL;	/* Local Dring Entry Pointer */
1843 	ldc_mem_handle_t	mhdl = NULL;
1844 	int			status = -1;
1845 	int			i;	/* loop */
1846 
1847 	ASSERT(vdc != NULL);
1848 	ASSERT(mutex_owned(&vdc->lock));
1849 	ASSERT(vdc->state == VD_STATE_INIT);
1850 
1851 	PR0("%s: Entered\n", __func__);
1852 
1853 	if (vdc->initialized & VDC_DRING_ENTRY) {
1854 		PR0("[%d] Removing Local DRing entries\n", vdc->instance);
1855 		for (i = 0; i < VD_DRING_LEN; i++) {
1856 			ldep = &vdc->local_dring[i];
1857 			mhdl = ldep->desc_mhdl;
1858 
1859 			if (mhdl == NULL)
1860 				continue;
1861 
1862 			(void) ldc_mem_free_handle(mhdl);
1863 			mutex_destroy(&ldep->lock);
1864 			cv_destroy(&ldep->cv);
1865 		}
1866 		vdc->initialized &= ~VDC_DRING_ENTRY;
1867 	}
1868 
1869 	if (vdc->initialized & VDC_DRING_LOCAL) {
1870 		PR0("[%d] Freeing Local DRing\n", vdc->instance);
1871 		kmem_free(vdc->local_dring,
1872 				VD_DRING_LEN * sizeof (vdc_local_desc_t));
1873 		vdc->initialized &= ~VDC_DRING_LOCAL;
1874 	}
1875 
1876 	if (vdc->initialized & VDC_DRING_BOUND) {
1877 		PR0("[%d] Unbinding DRing\n", vdc->instance);
1878 		status = ldc_mem_dring_unbind(vdc->ldc_dring_hdl);
1879 		if (status == 0) {
1880 			vdc->initialized &= ~VDC_DRING_BOUND;
1881 		} else {
1882 			vdc_msg("%s: Failed to unbind Descriptor Ring (%lx)\n",
1883 				vdc->ldc_dring_hdl);
1884 		}
1885 	}
1886 
1887 	if (vdc->initialized & VDC_DRING_INIT) {
1888 		PR0("[%d] Destroying DRing\n", vdc->instance);
1889 		status = ldc_mem_dring_destroy(vdc->ldc_dring_hdl);
1890 		if (status == 0) {
1891 			vdc->ldc_dring_hdl = NULL;
1892 			bzero(&vdc->dring_mem_info, sizeof (ldc_mem_info_t));
1893 			vdc->initialized &= ~VDC_DRING_INIT;
1894 		} else {
1895 			vdc_msg("%s: Failed to destroy Descriptor Ring (%lx)\n",
1896 					vdc->ldc_dring_hdl);
1897 		}
1898 	}
1899 }
1900 
1901 /*
1902  * vdc_get_next_dring_entry_idx()
1903  *
1904  * Description:
1905  *	This function gets the index of the next Descriptor Ring entry available
1906  *
1907  * Return Value:
1908  *	0 <= rv < VD_DRING_LEN		Next available slot
1909  *	-1 				DRing is full
1910  */
1911 static int
1912 vdc_get_next_dring_entry_idx(vdc_t *vdc, uint_t num_slots_needed)
1913 {
1914 	_NOTE(ARGUNUSED(num_slots_needed))
1915 
1916 	vd_dring_entry_t	*dep = NULL;	/* Dring Entry Pointer */
1917 	int			idx = -1;
1918 	int			start_idx = 0;
1919 
1920 	ASSERT(vdc != NULL);
1921 	ASSERT(vdc->dring_len == VD_DRING_LEN);
1922 	ASSERT(vdc->dring_curr_idx >= 0);
1923 	ASSERT(vdc->dring_curr_idx < VD_DRING_LEN);
1924 	ASSERT(mutex_owned(&vdc->dring_lock));
1925 
1926 	/* Start at the last entry used */
1927 	idx = start_idx = vdc->dring_curr_idx;
1928 
1929 	/*
1930 	 * Loop through Descriptor Ring checking for a free entry until we reach
1931 	 * the entry we started at. We should never come close to filling the
1932 	 * Ring at any stage, instead this is just to prevent an entry which
1933 	 * gets into an inconsistent state (e.g. due to a request timing out)
1934 	 * from blocking progress.
1935 	 */
1936 	do {
1937 		/* Get the next entry after the last known index tried */
1938 		idx = (idx + 1) % VD_DRING_LEN;
1939 
1940 		dep = VDC_GET_DRING_ENTRY_PTR(vdc, idx);
1941 		ASSERT(dep != NULL);
1942 
1943 		if (dep->hdr.dstate == VIO_DESC_FREE) {
1944 			ASSERT(idx >= 0);
1945 			ASSERT(idx < VD_DRING_LEN);
1946 			vdc->dring_curr_idx = idx;
1947 			return (idx);
1948 
1949 		} else if (dep->hdr.dstate == VIO_DESC_READY) {
1950 			PR0("%s: Entry %d waiting to be accepted\n",
1951 					__func__, idx);
1952 			continue;
1953 
1954 		} else if (dep->hdr.dstate == VIO_DESC_ACCEPTED) {
1955 			PR0("%s: Entry %d waiting to be processed\n",
1956 					__func__, idx);
1957 			continue;
1958 
1959 		} else if (dep->hdr.dstate == VIO_DESC_DONE) {
1960 			PR0("%s: Entry %d done but not marked free\n",
1961 					__func__, idx);
1962 
1963 			/*
1964 			 * If we are currently panicking, interrupts are
1965 			 * disabled and we will not be getting ACKs from the
1966 			 * vDisk server so we mark the descriptor ring entries
1967 			 * as FREE here instead of in the ACK handler.
1968 			 */
1969 			if (panicstr) {
1970 				(void) vdc_depopulate_descriptor(vdc, idx);
1971 				dep->hdr.dstate = VIO_DESC_FREE;
1972 				vdc->local_dring[idx].flags = VIO_DESC_FREE;
1973 			}
1974 			continue;
1975 
1976 		} else {
1977 			vdc_msg("Public Descriptor Ring entry corrupted");
1978 			mutex_enter(&vdc->lock);
1979 			vdc_reset_connection(vdc, B_FALSE);
1980 			mutex_exit(&vdc->lock);
1981 			return (-1);
1982 		}
1983 
1984 	} while (idx != start_idx);
1985 
1986 	return (-1);
1987 }
1988 
1989 /*
1990  * Function:
1991  *	vdc_populate_descriptor
1992  *
1993  * Description:
1994  *	This routine writes the data to be transmitted to vds into the
1995  *	descriptor, notifies vds that the ring has been updated and
1996  *	then waits for the request to be processed.
1997  *
1998  * Arguments:
1999  *	vdc	- the soft state pointer
2000  *	addr	- start address of memory region.
2001  *	nbytes	- number of bytes to read/write
2002  *	operation - operation we want vds to perform (VD_OP_XXX)
2003  *	arg	- parameter to be sent to server (depends on VD_OP_XXX type)
2004  *			. mode for ioctl(9e)
2005  *			. LP64 diskaddr_t (block I/O)
2006  *	slice	- the disk slice this request is for
2007  *
2008  * Return Codes:
2009  *	0
2010  *	EAGAIN
2011  *		EFAULT
2012  *		ENXIO
2013  *		EIO
2014  */
2015 static int
2016 vdc_populate_descriptor(vdc_t *vdc, caddr_t addr, size_t nbytes, int operation,
2017 				uint64_t arg, uint64_t slice)
2018 {
2019 	vdc_local_desc_t *local_dep = NULL;	/* Local Dring Entry Pointer */
2020 	vd_dring_entry_t *dep = NULL;		/* Dring Entry Pointer */
2021 	int			idx = 0;	/* Index of DRing entry used */
2022 	vio_dring_msg_t		dmsg;
2023 	size_t			msglen = sizeof (dmsg);
2024 	int			status = 0;
2025 	int			rv;
2026 	int			retries = 0;
2027 
2028 	ASSERT(vdc != NULL);
2029 	ASSERT(slice < V_NUMPAR);
2030 
2031 	/*
2032 	 * Get next available DRing entry.
2033 	 */
2034 	mutex_enter(&vdc->dring_lock);
2035 	idx = vdc_get_next_dring_entry_idx(vdc, 1);
2036 	if (idx == -1) {
2037 		mutex_exit(&vdc->dring_lock);
2038 		vdc_msg("%s[%d]: no descriptor ring entry avail, seq=%d\n",
2039 				__func__, vdc->instance, vdc->seq_num);
2040 
2041 		/*
2042 		 * Since strategy should not block we don't wait for the DRing
2043 		 * to empty and instead return
2044 		 */
2045 		return (EAGAIN);
2046 	}
2047 
2048 	ASSERT(idx < VD_DRING_LEN);
2049 	local_dep = &vdc->local_dring[idx];
2050 	dep = local_dep->dep;
2051 	ASSERT(dep != NULL);
2052 
2053 	/*
2054 	 * Wait for anybody still using the DRing entry to finish.
2055 	 * (e.g. still waiting for vds to respond to a request)
2056 	 */
2057 	mutex_enter(&local_dep->lock);
2058 
2059 	switch (operation) {
2060 	case VD_OP_BREAD:
2061 	case VD_OP_BWRITE:
2062 		PR1("buf=%p, block=%lx, nbytes=%lx\n", addr, arg, nbytes);
2063 		dep->payload.addr = (diskaddr_t)arg;
2064 		rv = vdc_populate_mem_hdl(vdc, idx, addr, nbytes, operation);
2065 		break;
2066 
2067 	case VD_OP_FLUSH:
2068 	case VD_OP_GET_VTOC:
2069 	case VD_OP_SET_VTOC:
2070 	case VD_OP_GET_DISKGEOM:
2071 	case VD_OP_SET_DISKGEOM:
2072 	case VD_OP_SCSICMD:
2073 		if (nbytes > 0) {
2074 			rv = vdc_populate_mem_hdl(vdc, idx, addr, nbytes,
2075 							operation);
2076 		}
2077 		break;
2078 	default:
2079 		cmn_err(CE_NOTE, "[%d] Unsupported vDisk operation [%d]\n",
2080 				vdc->instance, operation);
2081 		rv = EINVAL;
2082 	}
2083 
2084 	if (rv != 0) {
2085 		mutex_exit(&local_dep->lock);
2086 		mutex_exit(&vdc->dring_lock);
2087 		return (rv);
2088 	}
2089 
2090 	/*
2091 	 * fill in the data details into the DRing
2092 	 */
2093 	dep->payload.req_id = VDC_GET_NEXT_REQ_ID(vdc);
2094 	dep->payload.operation = operation;
2095 	dep->payload.nbytes = nbytes;
2096 	dep->payload.status = EINPROGRESS;	/* vds will set valid value */
2097 	dep->payload.slice = slice;
2098 	dep->hdr.dstate = VIO_DESC_READY;
2099 	dep->hdr.ack = 1;		/* request an ACK for every message */
2100 
2101 	local_dep->flags = VIO_DESC_READY;
2102 	local_dep->addr = addr;
2103 
2104 	/*
2105 	 * Send a msg with the DRing details to vds
2106 	 */
2107 	VIO_INIT_DRING_DATA_TAG(dmsg);
2108 	VDC_INIT_DRING_DATA_MSG_IDS(dmsg, vdc);
2109 	dmsg.dring_ident = vdc->dring_ident;
2110 	dmsg.start_idx = idx;
2111 	dmsg.end_idx = idx;
2112 
2113 	PR1("ident=0x%llx, st=%d, end=%d, seq=%d req=%d dep=%p\n",
2114 			vdc->dring_ident, dmsg.start_idx, dmsg.end_idx,
2115 			dmsg.seq_num, dep->payload.req_id, dep);
2116 
2117 	mutex_enter(&vdc->lock);
2118 	status = vdc_send(vdc, (caddr_t)&dmsg, &msglen);
2119 	mutex_exit(&vdc->lock);
2120 	PR1("%s[%d]: ldc_write() status=%d\n", __func__, vdc->instance, status);
2121 	if (status != 0) {
2122 		mutex_exit(&local_dep->lock);
2123 		mutex_exit(&vdc->dring_lock);
2124 		vdc_msg("%s: ldc_write(%d)\n", __func__, status);
2125 		return (EAGAIN);
2126 	}
2127 
2128 	/*
2129 	 * If the message was successfully sent, we increment the sequence
2130 	 * number to be used by the next message
2131 	 */
2132 	vdc->seq_num++;
2133 
2134 	/*
2135 	 * XXX - potential performance enhancement (Investigate at a later date)
2136 	 *
2137 	 * for calls from strategy(9E), instead of waiting for a response from
2138 	 * vds, we could return at this stage and let the ACK handling code
2139 	 * trigger the biodone(9F)
2140 	 */
2141 
2142 	/*
2143 	 * When a guest is panicking, the completion of requests needs to be
2144 	 * handled differently because interrupts are disabled and vdc
2145 	 * will not get messages. We have to poll for the messages instead.
2146 	 */
2147 	if (ddi_in_panic()) {
2148 		int start = 0;
2149 		retries = 0;
2150 		for (;;) {
2151 			msglen = sizeof (dmsg);
2152 			status = ldc_read(vdc->ldc_handle, (caddr_t)&dmsg,
2153 					&msglen);
2154 			if (status) {
2155 				status = EINVAL;
2156 				break;
2157 			}
2158 
2159 			/*
2160 			 * if there are no packets wait and check again
2161 			 */
2162 			if ((status == 0) && (msglen == 0)) {
2163 				if (retries++ > vdc_dump_retries) {
2164 					PR0("[%d] Giving up waiting, idx %d\n",
2165 							vdc->instance, idx);
2166 					status = EAGAIN;
2167 					break;
2168 				}
2169 
2170 				PR1("Waiting for next packet @ %d\n", idx);
2171 				delay(drv_usectohz(vdc_dump_usec_timeout));
2172 				continue;
2173 			}
2174 
2175 			/*
2176 			 * Ignore all messages that are not ACKs/NACKs to
2177 			 * DRing requests.
2178 			 */
2179 			if ((dmsg.tag.vio_msgtype != VIO_TYPE_DATA) ||
2180 			    (dmsg.tag.vio_subtype_env != VIO_DRING_DATA)) {
2181 				PR0("discarding pkt: type=%d sub=%d env=%d\n",
2182 					dmsg.tag.vio_msgtype,
2183 					dmsg.tag.vio_subtype,
2184 					dmsg.tag.vio_subtype_env);
2185 				continue;
2186 			}
2187 
2188 			/*
2189 			 * set the appropriate return value for the
2190 			 * current request.
2191 			 */
2192 			switch (dmsg.tag.vio_subtype) {
2193 			case VIO_SUBTYPE_ACK:
2194 				status = 0;
2195 				break;
2196 			case VIO_SUBTYPE_NACK:
2197 				status = EAGAIN;
2198 				break;
2199 			default:
2200 				continue;
2201 			}
2202 
2203 			start = dmsg.start_idx;
2204 			if (start >= VD_DRING_LEN) {
2205 				PR0("[%d] Bogus ack data : start %d\n",
2206 					vdc->instance, start);
2207 				continue;
2208 			}
2209 
2210 			dep = VDC_GET_DRING_ENTRY_PTR(vdc, start);
2211 
2212 			PR1("[%d] Dumping start=%d idx=%d state=%d\n",
2213 				vdc->instance, start, idx, dep->hdr.dstate);
2214 
2215 			if (dep->hdr.dstate != VIO_DESC_DONE) {
2216 				PR0("[%d] Entry @ %d - state !DONE %d\n",
2217 					vdc->instance, start, dep->hdr.dstate);
2218 				continue;
2219 			}
2220 
2221 			(void) vdc_depopulate_descriptor(vdc, start);
2222 
2223 			/*
2224 			 * We want to process all Dring entries up to
2225 			 * the current one so that we can return an
2226 			 * error with the correct request.
2227 			 */
2228 			if (idx > start) {
2229 				PR0("[%d] Looping: start %d, idx %d\n",
2230 						vdc->instance, idx, start);
2231 				continue;
2232 			}
2233 
2234 			/* exit - all outstanding requests are completed */
2235 			break;
2236 		}
2237 
2238 		mutex_exit(&local_dep->lock);
2239 		mutex_exit(&vdc->dring_lock);
2240 
2241 		return (status);
2242 	}
2243 
2244 	/*
2245 	 * Now watch the DRing entries we modified to get the response
2246 	 * from vds.
2247 	 */
2248 	status = vdc_wait_for_descriptor_update(vdc, idx, dmsg);
2249 	if (status == ETIMEDOUT) {
2250 		/* debug info when dumping state on vds side */
2251 		dep->payload.status = ECANCELED;
2252 	}
2253 
2254 	status = vdc_depopulate_descriptor(vdc, idx);
2255 	PR1("%s[%d] Status=%d\n", __func__, vdc->instance, status);
2256 
2257 	mutex_exit(&local_dep->lock);
2258 	mutex_exit(&vdc->dring_lock);
2259 
2260 	return (status);
2261 }
2262 
2263 /*
2264  * Function:
2265  *	vdc_wait_for_descriptor_update()
2266  *
2267  * Description:
2268  *
2269  * Arguments:
2270  *	vdc	- soft state pointer for this instance of the device driver.
2271  *	idx	- Index of the Descriptor Ring entry being modified
2272  *	dmsg	- LDC message sent by vDisk server
2273  *
2274  * Return Code:
2275  *	0	- Success
2276  */
2277 static int
2278 vdc_wait_for_descriptor_update(vdc_t *vdc, uint_t idx, vio_dring_msg_t dmsg)
2279 {
2280 	vd_dring_entry_t *dep = NULL;		/* Dring Entry Pointer */
2281 	vdc_local_desc_t *local_dep = NULL;	/* Local Dring Entry Pointer */
2282 	size_t	msglen = sizeof (dmsg);
2283 	int	retries = 0;
2284 	int	status = 0;
2285 	int	rv = 0;
2286 
2287 	ASSERT(vdc != NULL);
2288 	ASSERT(mutex_owned(&vdc->dring_lock));
2289 	ASSERT(idx < VD_DRING_LEN);
2290 	local_dep = &vdc->local_dring[idx];
2291 	ASSERT(local_dep != NULL);
2292 	dep = local_dep->dep;
2293 	ASSERT(dep != NULL);
2294 
2295 	while (dep->hdr.dstate != VIO_DESC_DONE) {
2296 		rv = cv_timedwait(&local_dep->cv, &local_dep->lock,
2297 			VD_GET_TIMEOUT_HZ(retries));
2298 		if (rv == -1) {
2299 			/*
2300 			 * If they persist in ignoring us we'll storm off in a
2301 			 * huff and return ETIMEDOUT to the upper layers.
2302 			 */
2303 			if (retries >= vdc_retries) {
2304 				PR0("%s: Finished waiting on entry %d\n",
2305 					__func__, idx);
2306 				status = ETIMEDOUT;
2307 				break;
2308 			} else {
2309 				retries++;
2310 				PR0("%s[%d]: Timeout #%d on entry %d "
2311 				    "[seq %d][req %d]\n", __func__,
2312 				    vdc->instance,
2313 				    retries, idx, dmsg.seq_num,
2314 				    dep->payload.req_id);
2315 			}
2316 
2317 			if (dep->hdr.dstate & VIO_DESC_ACCEPTED) {
2318 				PR0("%s[%d]: vds has accessed entry %d [seq %d]"
2319 				    "[req %d] but not ack'ed it yet\n",
2320 				    __func__, vdc->instance, idx, dmsg.seq_num,
2321 				    dep->payload.req_id);
2322 				continue;
2323 			}
2324 
2325 			/*
2326 			 * we resend the message as it may have been dropped
2327 			 * and have never made it to the other side (vds).
2328 			 * (We reuse the original message but update seq ID)
2329 			 */
2330 			VDC_INIT_DRING_DATA_MSG_IDS(dmsg, vdc);
2331 			retries = 0;
2332 			mutex_enter(&vdc->lock);
2333 			status = vdc_send(vdc, (caddr_t)&dmsg, &msglen);
2334 			mutex_exit(&vdc->lock);
2335 			if (status != 0) {
2336 				vdc_msg("%s: Error (%d) while resending after "
2337 					"timeout\n", __func__, status);
2338 				status = ETIMEDOUT;
2339 				break;
2340 			}
2341 			/*
2342 			 * If the message was successfully sent, we increment
2343 			 * the sequence number to be used by the next message.
2344 			 */
2345 			vdc->seq_num++;
2346 		}
2347 	}
2348 
2349 	return (status);
2350 }
2351 
2352 static int
2353 vdc_get_response(vdc_t *vdc, int start, int end)
2354 {
2355 	vdc_local_desc_t	*ldep = NULL;	/* Local Dring Entry Pointer */
2356 	vd_dring_entry_t	*dep = NULL;	/* Dring Entry Pointer */
2357 	int			status = ENXIO;
2358 	int			idx = -1;
2359 
2360 	ASSERT(vdc != NULL);
2361 	ASSERT(start >= 0);
2362 	ASSERT(start <= VD_DRING_LEN);
2363 	ASSERT(start >= -1);
2364 	ASSERT(start <= VD_DRING_LEN);
2365 
2366 	idx = start;
2367 	ldep = &vdc->local_dring[idx];
2368 	ASSERT(ldep != NULL);
2369 	dep = ldep->dep;
2370 	ASSERT(dep != NULL);
2371 
2372 	PR0("%s[%d] DRING entry=%d status=%d\n", __func__, vdc->instance,
2373 			idx, VIO_GET_DESC_STATE(dep->hdr.dstate));
2374 	while (VIO_GET_DESC_STATE(dep->hdr.dstate) == VIO_DESC_DONE) {
2375 		if ((end != -1) && (idx > end))
2376 			return (0);
2377 
2378 		switch (ldep->operation) {
2379 		case VD_OP_BREAD:
2380 		case VD_OP_BWRITE:
2381 			/* call bioxxx */
2382 			break;
2383 		default:
2384 			/* signal waiter */
2385 			break;
2386 		}
2387 
2388 		/* Clear the DRing entry */
2389 		status = vdc_depopulate_descriptor(vdc, idx);
2390 		PR0("%s[%d] Status=%d\n", __func__, vdc->instance, status);
2391 
2392 		/* loop accounting to get next DRing entry */
2393 		idx++;
2394 		ldep = &vdc->local_dring[idx];
2395 		dep = ldep->dep;
2396 	}
2397 
2398 	return (status);
2399 }
2400 
2401 /*
2402  * Function:
2403  *	vdc_depopulate_descriptor()
2404  *
2405  * Description:
2406  *
2407  * Arguments:
2408  *	vdc	- soft state pointer for this instance of the device driver.
2409  *	idx	- Index of the Descriptor Ring entry being modified
2410  *
2411  * Return Code:
2412  *	0	- Success
2413  */
2414 static int
2415 vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx)
2416 {
2417 	vd_dring_entry_t *dep = NULL;		/* Dring Entry Pointer */
2418 	vdc_local_desc_t *ldep = NULL;	/* Local Dring Entry Pointer */
2419 	int	status = ENXIO;
2420 
2421 	ASSERT(vdc != NULL);
2422 	ASSERT(idx < VD_DRING_LEN);
2423 	ldep = &vdc->local_dring[idx];
2424 	ASSERT(ldep != NULL);
2425 	dep = ldep->dep;
2426 	ASSERT(dep != NULL);
2427 
2428 	status = dep->payload.status;
2429 	VDC_MARK_DRING_ENTRY_FREE(vdc, idx);
2430 	ldep = &vdc->local_dring[idx];
2431 	VIO_SET_DESC_STATE(ldep->flags, VIO_DESC_FREE);
2432 
2433 	/*
2434 	 * If the upper layer passed in a misaligned address we copied the
2435 	 * data into an aligned buffer before sending it to LDC - we now
2436 	 * copy it back to the original buffer.
2437 	 */
2438 	if (ldep->align_addr) {
2439 		ASSERT(ldep->addr != NULL);
2440 		ASSERT(dep->payload.nbytes > 0);
2441 
2442 		bcopy(ldep->align_addr, ldep->addr, dep->payload.nbytes);
2443 		kmem_free(ldep->align_addr,
2444 				sizeof (caddr_t) * dep->payload.nbytes);
2445 		ldep->align_addr = NULL;
2446 	}
2447 
2448 	status = ldc_mem_unbind_handle(ldep->desc_mhdl);
2449 	if (status != 0) {
2450 		cmn_err(CE_NOTE, "[%d] unbind mem hdl 0x%lx @ idx %d failed:%d",
2451 				vdc->instance, ldep->desc_mhdl, idx, status);
2452 	}
2453 
2454 	return (status);
2455 }
2456 
2457 /*
2458  * Function:
2459  *	vdc_populate_mem_hdl()
2460  *
2461  * Description:
2462  *
2463  * Arguments:
2464  *	vdc	- soft state pointer for this instance of the device driver.
2465  *	idx	- Index of the Descriptor Ring entry being modified
2466  *	addr	- virtual address being mapped in
2467  *	nybtes	- number of bytes in 'addr'
2468  *	operation - the vDisk operation being performed (VD_OP_xxx)
2469  *
2470  * Return Code:
2471  *	0	- Success
2472  */
2473 static int
2474 vdc_populate_mem_hdl(vdc_t *vdc, uint_t idx, caddr_t addr, size_t nbytes,
2475 			int operation)
2476 {
2477 	vd_dring_entry_t	*dep = NULL;
2478 	vdc_local_desc_t	*ldep = NULL;
2479 	ldc_mem_handle_t	mhdl;
2480 	caddr_t			vaddr;
2481 	int			perm = LDC_MEM_RW;
2482 	int			rv = 0;
2483 	int			i;
2484 
2485 	ASSERT(vdc != NULL);
2486 	ASSERT(idx < VD_DRING_LEN);
2487 
2488 	dep = VDC_GET_DRING_ENTRY_PTR(vdc, idx);
2489 	ldep = &vdc->local_dring[idx];
2490 	mhdl = ldep->desc_mhdl;
2491 
2492 	switch (operation) {
2493 	case VD_OP_BREAD:
2494 		perm = LDC_MEM_W;
2495 		break;
2496 
2497 	case VD_OP_BWRITE:
2498 		perm = LDC_MEM_R;
2499 		break;
2500 
2501 	case VD_OP_FLUSH:
2502 	case VD_OP_GET_VTOC:
2503 	case VD_OP_SET_VTOC:
2504 	case VD_OP_GET_DISKGEOM:
2505 	case VD_OP_SET_DISKGEOM:
2506 	case VD_OP_SCSICMD:
2507 		perm = LDC_MEM_RW;
2508 		break;
2509 
2510 	default:
2511 		ASSERT(0);	/* catch bad programming in vdc */
2512 	}
2513 
2514 	/*
2515 	 * LDC expects any addresses passed in to be 8-byte aligned. We need
2516 	 * to copy the contents of any misaligned buffers to a newly allocated
2517 	 * buffer and bind it instead (and copy the the contents back to the
2518 	 * original buffer passed in when depopulating the descriptor)
2519 	 */
2520 	vaddr = addr;
2521 	if (((uint64_t)addr & 0x7) != 0) {
2522 		ldep->align_addr =
2523 			kmem_zalloc(sizeof (caddr_t) * nbytes, KM_SLEEP);
2524 		PR0("%s[%d] Misaligned address %lx reallocating "
2525 		    "(buf=%lx entry=%d)\n",
2526 		    __func__, vdc->instance, addr, ldep->align_addr, idx);
2527 		bcopy(addr, ldep->align_addr, nbytes);
2528 		vaddr = ldep->align_addr;
2529 	}
2530 
2531 	rv = ldc_mem_bind_handle(mhdl, vaddr, P2ROUNDUP(nbytes, 8),
2532 		vdc->dring_mem_info.mtype, perm, &dep->payload.cookie[0],
2533 		&dep->payload.ncookies);
2534 	PR1("%s[%d] bound mem handle; ncookies=%d\n",
2535 			__func__, vdc->instance, dep->payload.ncookies);
2536 	if (rv != 0) {
2537 		vdc_msg("%s[%d] failed to ldc_mem_bind_handle "
2538 		    "(mhdl=%lx, buf=%lx entry=%d err=%d)\n",
2539 		    __func__, vdc->instance, mhdl, addr, idx, rv);
2540 		if (ldep->align_addr) {
2541 			kmem_free(ldep->align_addr,
2542 					sizeof (caddr_t) * dep->payload.nbytes);
2543 			ldep->align_addr = NULL;
2544 		}
2545 		return (EAGAIN);
2546 	}
2547 
2548 	/*
2549 	 * Get the other cookies (if any).
2550 	 */
2551 	for (i = 1; i < dep->payload.ncookies; i++) {
2552 		rv = ldc_mem_nextcookie(mhdl, &dep->payload.cookie[i]);
2553 		if (rv != 0) {
2554 			(void) ldc_mem_unbind_handle(mhdl);
2555 			vdc_msg("%s: failed to get next cookie(mhdl=%lx "
2556 				"cnum=%d), err=%d", __func__, mhdl, i, rv);
2557 			if (ldep->align_addr) {
2558 				kmem_free(ldep->align_addr,
2559 					sizeof (caddr_t) * dep->payload.nbytes);
2560 				ldep->align_addr = NULL;
2561 			}
2562 			return (EAGAIN);
2563 		}
2564 	}
2565 
2566 	return (rv);
2567 }
2568 
2569 /*
2570  * Interrupt handlers for messages from LDC
2571  */
2572 
2573 /*
2574  * Function:
2575  *	vdc_handle_cb()
2576  *
2577  * Description:
2578  *
2579  * Arguments:
2580  *	event	- Type of event (LDC_EVT_xxx) that triggered the callback
2581  *	arg	- soft state pointer for this instance of the device driver.
2582  *
2583  * Return Code:
2584  *	0	- Success
2585  */
2586 static uint_t
2587 vdc_handle_cb(uint64_t event, caddr_t arg)
2588 {
2589 	ldc_status_t	ldc_state;
2590 	int		rv = 0;
2591 
2592 	vdc_t	*vdc = (vdc_t *)(void *)arg;
2593 
2594 	ASSERT(vdc != NULL);
2595 
2596 	PR1("%s[%d] event=%x seqID=%d\n",
2597 			__func__, vdc->instance, event, vdc->seq_num);
2598 
2599 	/*
2600 	 * Depending on the type of event that triggered this callback,
2601 	 * we modify the handhske state or read the data.
2602 	 *
2603 	 * NOTE: not done as a switch() as event could be triggered by
2604 	 * a state change and a read request. Also the ordering	of the
2605 	 * check for the event types is deliberate.
2606 	 */
2607 	if (event & LDC_EVT_UP) {
2608 		PR0("%s[%d] Received LDC_EVT_UP\n", __func__, vdc->instance);
2609 
2610 		/* get LDC state */
2611 		rv = ldc_status(vdc->ldc_handle, &ldc_state);
2612 		if (rv != 0) {
2613 			cmn_err(CE_NOTE, "[%d] Couldn't get LDC status %d",
2614 					vdc->instance, rv);
2615 			mutex_enter(&vdc->lock);
2616 			vdc_reset_connection(vdc, B_TRUE);
2617 			mutex_exit(&vdc->lock);
2618 			return (LDC_SUCCESS);
2619 		}
2620 
2621 		/*
2622 		 * Reset the transaction sequence numbers when LDC comes up.
2623 		 * We then kick off the handshake negotiation with the vDisk
2624 		 * server.
2625 		 */
2626 		mutex_enter(&vdc->lock);
2627 		vdc->seq_num = 1;
2628 		vdc->seq_num_reply = 0;
2629 		vdc->ldc_state = ldc_state;
2630 		ASSERT(ldc_state == LDC_UP);
2631 		mutex_exit(&vdc->lock);
2632 
2633 		vdc_init_handshake_negotiation(vdc);
2634 
2635 		ASSERT((event & (LDC_EVT_RESET | LDC_EVT_DOWN)) == 0);
2636 	}
2637 
2638 	if (event & LDC_EVT_READ) {
2639 		/*
2640 		 * Wake up the worker thread to process the message
2641 		 */
2642 		mutex_enter(&vdc->msg_proc_lock);
2643 		vdc->msg_pending = B_TRUE;
2644 		cv_signal(&vdc->msg_proc_cv);
2645 		mutex_exit(&vdc->msg_proc_lock);
2646 
2647 		ASSERT((event & (LDC_EVT_RESET | LDC_EVT_DOWN)) == 0);
2648 
2649 		/* that's all we have to do - no need to handle DOWN/RESET */
2650 		return (LDC_SUCCESS);
2651 	}
2652 
2653 	if (event & LDC_EVT_RESET) {
2654 		PR0("%s[%d] Recvd LDC RESET event\n", __func__, vdc->instance);
2655 
2656 		/* get LDC state */
2657 		rv = ldc_status(vdc->ldc_handle, &ldc_state);
2658 		if (rv != 0) {
2659 			cmn_err(CE_NOTE, "[%d] Couldn't get LDC status %d",
2660 					vdc->instance, rv);
2661 			ldc_state = LDC_OPEN;
2662 		}
2663 		mutex_enter(&vdc->lock);
2664 		vdc->ldc_state = ldc_state;
2665 		vdc_reset_connection(vdc, B_FALSE);
2666 		mutex_exit(&vdc->lock);
2667 
2668 		vdc_init_handshake_negotiation(vdc);
2669 	}
2670 
2671 	if (event & LDC_EVT_DOWN) {
2672 		PR0("%s[%d] Recvd LDC DOWN event\n", __func__, vdc->instance);
2673 
2674 		/* get LDC state */
2675 		rv = ldc_status(vdc->ldc_handle, &ldc_state);
2676 		if (rv != 0) {
2677 			cmn_err(CE_NOTE, "[%d] Couldn't get LDC status %d",
2678 					vdc->instance, rv);
2679 			ldc_state = LDC_OPEN;
2680 		}
2681 		mutex_enter(&vdc->lock);
2682 		vdc->ldc_state = ldc_state;
2683 		vdc_reset_connection(vdc, B_TRUE);
2684 		mutex_exit(&vdc->lock);
2685 	}
2686 
2687 	if (event & ~(LDC_EVT_UP | LDC_EVT_RESET | LDC_EVT_DOWN | LDC_EVT_READ))
2688 		cmn_err(CE_NOTE, "![%d] Unexpected LDC event (%lx) received",
2689 				vdc->instance, event);
2690 
2691 	return (LDC_SUCCESS);
2692 }
2693 
2694 /* -------------------------------------------------------------------------- */
2695 
2696 /*
2697  * The following functions process the incoming messages from vds
2698  */
2699 
2700 
2701 /*
2702  * Function:
2703  *	vdc_process_msg_thread()
2704  *
2705  * Description:
2706  *
2707  * Arguments:
2708  *	vdc	- soft state pointer for this instance of the device driver.
2709  *
2710  * Return Code:
2711  *	None
2712  */
2713 static void
2714 vdc_process_msg_thread(vdc_t *vdc)
2715 {
2716 	int		status = 0;
2717 	boolean_t	q_is_empty = B_TRUE;
2718 
2719 	ASSERT(vdc != NULL);
2720 
2721 	mutex_enter(&vdc->msg_proc_lock);
2722 	PR0("%s[%d]: Starting\n", __func__, vdc->instance);
2723 
2724 	vdc->msg_proc_thr_state = VDC_THR_RUNNING;
2725 
2726 	while (vdc->msg_proc_thr_state == VDC_THR_RUNNING) {
2727 
2728 		PR1("%s[%d] Waiting\n", __func__, vdc->instance);
2729 		while (!vdc->msg_pending)
2730 			cv_wait(&vdc->msg_proc_cv, &vdc->msg_proc_lock);
2731 
2732 		PR1("%s[%d] Message Received\n", __func__, vdc->instance);
2733 
2734 		/* check if there is data */
2735 		status = ldc_chkq(vdc->ldc_handle, &q_is_empty);
2736 		if ((status != 0) &&
2737 		    (vdc->msg_proc_thr_state == VDC_THR_RUNNING)) {
2738 			cmn_err(CE_NOTE, "[%d] Unable to communicate with vDisk"
2739 					" server. Cannot check LDC queue: %d",
2740 					vdc->instance, status);
2741 			mutex_enter(&vdc->lock);
2742 			vdc_reset_connection(vdc, B_FALSE);
2743 			mutex_exit(&vdc->lock);
2744 			vdc->msg_proc_thr_state = VDC_THR_STOP;
2745 			continue;
2746 		}
2747 
2748 		if (!q_is_empty) {
2749 			PR1("%s: new pkt(s) available\n", __func__);
2750 			vdc_process_msg(vdc);
2751 		}
2752 
2753 		vdc->msg_pending = B_FALSE;
2754 	}
2755 
2756 	PR0("Message processing thread stopped\n");
2757 	vdc->msg_pending = B_FALSE;
2758 	vdc->msg_proc_thr_state = VDC_THR_DONE;
2759 	cv_signal(&vdc->msg_proc_cv);
2760 	mutex_exit(&vdc->msg_proc_lock);
2761 	thread_exit();
2762 }
2763 
2764 
2765 /*
2766  * Function:
2767  *	vdc_process_msg()
2768  *
2769  * Description:
2770  *	This function is called by the message processing thread each time it
2771  *	is triggered when LDC sends an interrupt to indicate that there are
2772  *	more packets on the queue. When it is called it will continue to loop
2773  *	and read the messages until there are no more left of the queue. If it
2774  *	encounters an invalid sized message it will drop it and check the next
2775  *	message.
2776  *
2777  * Arguments:
2778  *	arg	- soft state pointer for this instance of the device driver.
2779  *
2780  * Return Code:
2781  *	None.
2782  */
2783 static void
2784 vdc_process_msg(void *arg)
2785 {
2786 	vdc_t		*vdc = (vdc_t *)(void *)arg;
2787 	vio_msg_t	vio_msg;
2788 	size_t		nbytes = sizeof (vio_msg);
2789 	int		status;
2790 
2791 	ASSERT(vdc != NULL);
2792 
2793 	mutex_enter(&vdc->lock);
2794 
2795 	PR1("%s\n", __func__);
2796 
2797 	for (;;) {
2798 
2799 		/* read all messages - until no more left */
2800 		status = ldc_read(vdc->ldc_handle, (caddr_t)&vio_msg, &nbytes);
2801 
2802 		if (status) {
2803 			vdc_msg("%s: ldc_read() failed = %d", __func__, status);
2804 
2805 			/* if status is ECONNRESET --- reset vdc state */
2806 			if (status == EIO || status == ECONNRESET) {
2807 				vdc_reset_connection(vdc, B_TRUE);
2808 			}
2809 
2810 			mutex_exit(&vdc->lock);
2811 			return;
2812 		}
2813 
2814 		if ((nbytes > 0) && (nbytes < sizeof (vio_msg_tag_t))) {
2815 			cmn_err(CE_CONT, "![%d] Expect %lu bytes; recv'd %lu\n",
2816 				vdc->instance, sizeof (vio_msg_tag_t), nbytes);
2817 			mutex_exit(&vdc->lock);
2818 			return;
2819 		}
2820 
2821 		if (nbytes == 0) {
2822 			PR2("%s[%d]: ldc_read() done..\n",
2823 					__func__, vdc->instance);
2824 			mutex_exit(&vdc->lock);
2825 			return;
2826 		}
2827 
2828 		PR1("%s[%d] (%x/%x/%x)\n", __func__, vdc->instance,
2829 		    vio_msg.tag.vio_msgtype,
2830 		    vio_msg.tag.vio_subtype,
2831 		    vio_msg.tag.vio_subtype_env);
2832 
2833 		/*
2834 		 * Verify the Session ID of the message
2835 		 *
2836 		 * Every message after the Version has been negotiated should
2837 		 * have the correct session ID set.
2838 		 */
2839 		if ((vio_msg.tag.vio_sid != vdc->session_id) &&
2840 		    (vio_msg.tag.vio_subtype_env != VIO_VER_INFO)) {
2841 			cmn_err(CE_NOTE, "[%d] Invalid SID 0x%x, expect 0x%lx",
2842 				vdc->instance, vio_msg.tag.vio_sid,
2843 				vdc->session_id);
2844 			vdc_reset_connection(vdc, B_FALSE);
2845 			mutex_exit(&vdc->lock);
2846 			return;
2847 		}
2848 
2849 		switch (vio_msg.tag.vio_msgtype) {
2850 		case VIO_TYPE_CTRL:
2851 			status = vdc_process_ctrl_msg(vdc, vio_msg);
2852 			break;
2853 		case VIO_TYPE_DATA:
2854 			status = vdc_process_data_msg(vdc, vio_msg);
2855 			break;
2856 		case VIO_TYPE_ERR:
2857 			status = vdc_process_err_msg(vdc, vio_msg);
2858 			break;
2859 		default:
2860 			PR1("%s", __func__);
2861 			status = EINVAL;
2862 			break;
2863 		}
2864 
2865 		if (status != 0) {
2866 			PR0("%s[%d] Error (%d) occcurred processing msg\n",
2867 					__func__, vdc->instance, status);
2868 			vdc_reset_connection(vdc, B_FALSE);
2869 		}
2870 	}
2871 	_NOTE(NOTREACHED)
2872 }
2873 
2874 /*
2875  * Function:
2876  *	vdc_process_ctrl_msg()
2877  *
2878  * Description:
2879  *	This function is called by the message processing thread each time
2880  *	an LDC message with a msgtype of VIO_TYPE_CTRL is received.
2881  *
2882  * Arguments:
2883  *	vdc	- soft state pointer for this instance of the device driver.
2884  *	msg	- the LDC message sent by vds
2885  *
2886  * Return Codes:
2887  *	0	- Success.
2888  *	EPROTO	- A message was received which shouldn't have happened according
2889  *		  to the protocol
2890  *	ENOTSUP	- An action which is allowed according to the protocol but which
2891  *		  isn't (or doesn't need to be) implemented yet.
2892  *	EINVAL	- An invalid value was returned as part of a message.
2893  */
2894 static int
2895 vdc_process_ctrl_msg(vdc_t *vdc, vio_msg_t msg)
2896 {
2897 	int			status = -1;
2898 
2899 	ASSERT(msg.tag.vio_msgtype == VIO_TYPE_CTRL);
2900 	ASSERT(vdc != NULL);
2901 	ASSERT(mutex_owned(&vdc->lock));
2902 
2903 	/* Depending on which state we are in; process the message */
2904 	switch (vdc->state) {
2905 	case VD_STATE_INIT:
2906 		status = vdc_handle_ver_msg(vdc, (vio_ver_msg_t *)&msg);
2907 		break;
2908 
2909 	case VD_STATE_VER:
2910 		status = vdc_handle_attr_msg(vdc, (vd_attr_msg_t *)&msg);
2911 		break;
2912 
2913 	case VD_STATE_ATTR:
2914 		status = vdc_handle_dring_reg_msg(vdc,
2915 				(vio_dring_reg_msg_t *)&msg);
2916 		break;
2917 
2918 	case VD_STATE_RDX:
2919 		if (msg.tag.vio_subtype_env != VIO_RDX) {
2920 			status = EPROTO;
2921 			break;
2922 		}
2923 
2924 		PR0("%s: Received RDX - handshake successful\n", __func__);
2925 
2926 		vdc->hshake_cnt = 0;	/* reset failed handshake count */
2927 		status = 0;
2928 		vdc->state = VD_STATE_DATA;
2929 
2930 		cv_broadcast(&vdc->attach_cv);
2931 		break;
2932 
2933 	case VD_STATE_DATA:
2934 	default:
2935 		cmn_err(CE_NOTE, "[%d] Unexpected handshake state %d",
2936 				vdc->instance, vdc->state);
2937 		status = EPROTO;
2938 		break;
2939 	}
2940 
2941 	return (status);
2942 }
2943 
2944 
2945 /*
2946  * Function:
2947  *	vdc_process_data_msg()
2948  *
2949  * Description:
2950  *	This function is called by the message processing thread each time
2951  *	a message with a msgtype of VIO_TYPE_DATA is received. It will either
2952  *	be an ACK or NACK from vds[1] which vdc handles as follows.
2953  *		ACK	- wake up the waiting thread
2954  *		NACK	- resend any messages necessary
2955  *
2956  *	[1] Although the message format allows it, vds should not send a
2957  *	    VIO_SUBTYPE_INFO message to vdc asking it to read data; if for
2958  *	    some bizarre reason it does, vdc will reset the connection.
2959  *
2960  * Arguments:
2961  *	vdc	- soft state pointer for this instance of the device driver.
2962  *	msg	- the LDC message sent by vds
2963  *
2964  * Return Code:
2965  *	0	- Success.
2966  *	> 0	- error value returned by LDC
2967  */
2968 static int
2969 vdc_process_data_msg(vdc_t *vdc, vio_msg_t msg)
2970 {
2971 	int			status = 0;
2972 	vdc_local_desc_t	*local_dep = NULL;
2973 	vio_dring_msg_t		*dring_msg = NULL;
2974 	uint_t			num_msgs;
2975 	uint_t			start;
2976 	uint_t			end;
2977 	uint_t			i;
2978 
2979 	ASSERT(msg.tag.vio_msgtype == VIO_TYPE_DATA);
2980 	ASSERT(vdc != NULL);
2981 	ASSERT(mutex_owned(&vdc->lock));
2982 
2983 	dring_msg = (vio_dring_msg_t *)&msg;
2984 
2985 	/*
2986 	 * Check to see if the message has bogus data
2987 	 */
2988 	start = dring_msg->start_idx;
2989 	end = dring_msg->end_idx;
2990 	if ((start >= VD_DRING_LEN) || (end >= VD_DRING_LEN)) {
2991 		vdc_msg("%s: Bogus ACK data : start %d, end %d\n",
2992 			__func__, start, end);
2993 		return (EPROTO);
2994 	}
2995 
2996 	/*
2997 	 * calculate the number of messages that vds ACK'ed
2998 	 *
2999 	 * Assumes, (like the rest of vdc) that there is a 1:1 mapping
3000 	 * between requests and Dring entries.
3001 	 */
3002 	num_msgs = (end >= start) ?
3003 			(end - start + 1) :
3004 			(VD_DRING_LEN - start + end + 1);
3005 
3006 	/*
3007 	 * Verify that the sequence number is what vdc expects.
3008 	 */
3009 	if (!vdc_verify_seq_num(vdc, dring_msg, num_msgs)) {
3010 		return (ENXIO);
3011 	}
3012 
3013 	/*
3014 	 * Wake the thread waiting for each DRing entry ACK'ed
3015 	 */
3016 	for (i = 0; i < num_msgs; i++) {
3017 		int idx = (start + i) % VD_DRING_LEN;
3018 
3019 		local_dep = &vdc->local_dring[idx];
3020 		mutex_enter(&local_dep->lock);
3021 		cv_signal(&local_dep->cv);
3022 		mutex_exit(&local_dep->lock);
3023 	}
3024 
3025 	if (msg.tag.vio_subtype == VIO_SUBTYPE_NACK) {
3026 		PR0("%s: DATA NACK\n", __func__);
3027 		VDC_DUMP_DRING_MSG(dring_msg);
3028 		vdc_reset_connection(vdc, B_FALSE);
3029 
3030 		/* we need to drop the lock to trigger the handshake */
3031 		mutex_exit(&vdc->lock);
3032 		vdc_init_handshake_negotiation(vdc);
3033 		mutex_enter(&vdc->lock);
3034 	} else if (msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
3035 		status = EPROTO;
3036 	}
3037 
3038 	return (status);
3039 }
3040 
3041 /*
3042  * Function:
3043  *	vdc_process_err_msg()
3044  *
3045  * NOTE: No error messages are used as part of the vDisk protocol
3046  */
3047 static int
3048 vdc_process_err_msg(vdc_t *vdc, vio_msg_t msg)
3049 {
3050 	_NOTE(ARGUNUSED(vdc))
3051 	_NOTE(ARGUNUSED(msg))
3052 
3053 	ASSERT(msg.tag.vio_msgtype == VIO_TYPE_ERR);
3054 	cmn_err(CE_NOTE, "[%d] Got an ERR msg", vdc->instance);
3055 
3056 	return (ENOTSUP);
3057 }
3058 
3059 /*
3060  * Function:
3061  *	vdc_handle_ver_msg()
3062  *
3063  * Description:
3064  *
3065  * Arguments:
3066  *	vdc	- soft state pointer for this instance of the device driver.
3067  *	ver_msg	- LDC message sent by vDisk server
3068  *
3069  * Return Code:
3070  *	0	- Success
3071  */
3072 static int
3073 vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg)
3074 {
3075 	int status = 0;
3076 
3077 	ASSERT(vdc != NULL);
3078 	ASSERT(mutex_owned(&vdc->lock));
3079 
3080 	if (ver_msg->tag.vio_subtype_env != VIO_VER_INFO) {
3081 		return (EPROTO);
3082 	}
3083 
3084 	if (ver_msg->dev_class != VDEV_DISK_SERVER) {
3085 		return (EINVAL);
3086 	}
3087 
3088 	switch (ver_msg->tag.vio_subtype) {
3089 	case VIO_SUBTYPE_ACK:
3090 		/*
3091 		 * We check to see if the version returned is indeed supported
3092 		 * (The server may have also adjusted the minor number downwards
3093 		 * and if so 'ver_msg' will contain the actual version agreed)
3094 		 */
3095 		if (vdc_is_supported_version(ver_msg)) {
3096 			vdc->ver.major = ver_msg->ver_major;
3097 			vdc->ver.minor = ver_msg->ver_minor;
3098 			ASSERT(vdc->ver.major > 0);
3099 
3100 			vdc->state = VD_STATE_VER;
3101 			status = vdc_init_attr_negotiation(vdc);
3102 		} else {
3103 			status = EPROTO;
3104 		}
3105 		break;
3106 
3107 	case VIO_SUBTYPE_NACK:
3108 		/*
3109 		 * call vdc_is_supported_version() which will return the next
3110 		 * supported version (if any) in 'ver_msg'
3111 		 */
3112 		(void) vdc_is_supported_version(ver_msg);
3113 		if (ver_msg->ver_major > 0) {
3114 			size_t len = sizeof (*ver_msg);
3115 
3116 			ASSERT(vdc->ver.major > 0);
3117 
3118 			/* reset the necessary fields and resend */
3119 			ver_msg->tag.vio_subtype = VIO_SUBTYPE_INFO;
3120 			ver_msg->dev_class = VDEV_DISK;
3121 
3122 			status = vdc_send(vdc, (caddr_t)ver_msg, &len);
3123 			PR0("[%d] Resend VER info (LDC status = %d)\n",
3124 					vdc->instance, status);
3125 			if (len != sizeof (*ver_msg))
3126 				status = EBADMSG;
3127 		} else {
3128 			cmn_err(CE_NOTE, "[%d] No common version with "
3129 					"vDisk server", vdc->instance);
3130 			status = ENOTSUP;
3131 		}
3132 
3133 		break;
3134 	case VIO_SUBTYPE_INFO:
3135 		/*
3136 		 * Handle the case where vds starts handshake
3137 		 * (for now only vdc is the instigatior)
3138 		 */
3139 		status = ENOTSUP;
3140 		break;
3141 
3142 	default:
3143 		status = EINVAL;
3144 		break;
3145 	}
3146 
3147 	return (status);
3148 }
3149 
3150 /*
3151  * Function:
3152  *	vdc_handle_attr_msg()
3153  *
3154  * Description:
3155  *
3156  * Arguments:
3157  *	vdc	- soft state pointer for this instance of the device driver.
3158  *	attr_msg	- LDC message sent by vDisk server
3159  *
3160  * Return Code:
3161  *	0	- Success
3162  */
3163 static int
3164 vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg)
3165 {
3166 	int status = 0;
3167 
3168 	ASSERT(vdc != NULL);
3169 	ASSERT(mutex_owned(&vdc->lock));
3170 
3171 	if (attr_msg->tag.vio_subtype_env != VIO_ATTR_INFO) {
3172 		return (EPROTO);
3173 	}
3174 
3175 	switch (attr_msg->tag.vio_subtype) {
3176 	case VIO_SUBTYPE_ACK:
3177 		/*
3178 		 * We now verify the attributes sent by vds.
3179 		 */
3180 		vdc->vdisk_size = attr_msg->vdisk_size;
3181 		vdc->vdisk_type = attr_msg->vdisk_type;
3182 
3183 		if ((attr_msg->max_xfer_sz != vdc->max_xfer_sz) ||
3184 		    (attr_msg->vdisk_block_size != vdc->block_size)) {
3185 			/*
3186 			 * Future support: step down to the block size
3187 			 * and max transfer size suggested by the
3188 			 * server. (If this value is less than 128K
3189 			 * then multiple Dring entries per request
3190 			 * would need to be implemented)
3191 			 */
3192 			cmn_err(CE_NOTE, "[%d] Couldn't process block "
3193 				"attributes from vds", vdc->instance);
3194 			status = EINVAL;
3195 			break;
3196 		}
3197 
3198 		if ((attr_msg->xfer_mode != VIO_DRING_MODE) ||
3199 		    (attr_msg->vdisk_size > INT64_MAX) ||
3200 		    (attr_msg->vdisk_type > VD_DISK_TYPE_DISK)) {
3201 			vdc_msg("%s[%d] Couldn't process attrs "
3202 			    "from vds", __func__, vdc->instance);
3203 			status = EINVAL;
3204 			break;
3205 		}
3206 
3207 		vdc->state = VD_STATE_ATTR;
3208 		status = vdc_init_dring_negotiate(vdc);
3209 		break;
3210 
3211 	case VIO_SUBTYPE_NACK:
3212 		/*
3213 		 * vds could not handle the attributes we sent so we
3214 		 * stop negotiating.
3215 		 */
3216 		status = EPROTO;
3217 		break;
3218 
3219 	case VIO_SUBTYPE_INFO:
3220 		/*
3221 		 * Handle the case where vds starts the handshake
3222 		 * (for now; vdc is the only supported instigatior)
3223 		 */
3224 		status = ENOTSUP;
3225 		break;
3226 
3227 	default:
3228 		status = ENOTSUP;
3229 		break;
3230 	}
3231 
3232 	return (status);
3233 }
3234 
3235 /*
3236  * Function:
3237  *	vdc_handle_dring_reg_msg()
3238  *
3239  * Description:
3240  *
3241  * Arguments:
3242  *	vdc		- soft state pointer for this instance of the driver.
3243  *	dring_msg	- LDC message sent by vDisk server
3244  *
3245  * Return Code:
3246  *	0	- Success
3247  */
3248 static int
3249 vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *dring_msg)
3250 {
3251 	int		status = 0;
3252 	vio_rdx_msg_t	msg = {0};
3253 	size_t		msglen = sizeof (msg);
3254 
3255 	ASSERT(vdc != NULL);
3256 	ASSERT(mutex_owned(&vdc->lock));
3257 
3258 	if (dring_msg->tag.vio_subtype_env != VIO_DRING_REG) {
3259 		return (EPROTO);
3260 	}
3261 
3262 	switch (dring_msg->tag.vio_subtype) {
3263 	case VIO_SUBTYPE_ACK:
3264 		/* save the received dring_ident */
3265 		vdc->dring_ident = dring_msg->dring_ident;
3266 		PR0("%s[%d] Received dring ident=0x%lx\n",
3267 			__func__, vdc->instance, vdc->dring_ident);
3268 
3269 		/*
3270 		 * Send an RDX message to vds to indicate we are ready
3271 		 * to send data
3272 		 */
3273 		msg.tag.vio_msgtype = VIO_TYPE_CTRL;
3274 		msg.tag.vio_subtype = VIO_SUBTYPE_INFO;
3275 		msg.tag.vio_subtype_env = VIO_RDX;
3276 		msg.tag.vio_sid = vdc->session_id;
3277 		status = vdc_send(vdc, (caddr_t)&msg, &msglen);
3278 		if (status != 0) {
3279 			cmn_err(CE_NOTE, "[%d] Failed to send RDX"
3280 				" message (%d)", vdc->instance, status);
3281 			break;
3282 		}
3283 
3284 		vdc->state = VD_STATE_RDX;
3285 		break;
3286 
3287 	case VIO_SUBTYPE_NACK:
3288 		/*
3289 		 * vds could not handle the DRing info we sent so we
3290 		 * stop negotiating.
3291 		 */
3292 		cmn_err(CE_CONT, "server could not register DRing\n");
3293 		vdc_reset_connection(vdc, B_FALSE);
3294 		vdc_destroy_descriptor_ring(vdc);
3295 		status = EPROTO;
3296 		break;
3297 
3298 	case VIO_SUBTYPE_INFO:
3299 		/*
3300 		 * Handle the case where vds starts handshake
3301 		 * (for now only vdc is the instigatior)
3302 		 */
3303 		status = ENOTSUP;
3304 		break;
3305 	default:
3306 		status = ENOTSUP;
3307 	}
3308 
3309 	return (status);
3310 }
3311 
3312 /*
3313  * Function:
3314  *	vdc_verify_seq_num()
3315  *
3316  * Description:
3317  *	This functions verifies that the sequence number sent back by vds with
3318  *	the latest message correctly follows the last request processed.
3319  *
3320  * Arguments:
3321  *	vdc		- soft state pointer for this instance of the driver.
3322  *	dring_msg	- pointer to the LDC message sent by vds
3323  *	num_msgs	- the number of requests being acknowledged
3324  *
3325  * Return Code:
3326  *	B_TRUE	- Success.
3327  *	B_FALSE	- The seq numbers are so out of sync, vdc cannot deal with them
3328  */
3329 static boolean_t
3330 vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg, int num_msgs)
3331 {
3332 	ASSERT(vdc != NULL);
3333 	ASSERT(dring_msg != NULL);
3334 
3335 	/*
3336 	 * Check to see if the messages were responded to in the correct
3337 	 * order by vds. There are 3 possible scenarios:
3338 	 *	- the seq_num we expected is returned (everything is OK)
3339 	 *	- a seq_num earlier than the last one acknowledged is returned,
3340 	 *	  if so something is seriously wrong so we reset the connection
3341 	 *	- a seq_num greater than what we expected is returned.
3342 	 */
3343 	if (dring_msg->seq_num != (vdc->seq_num_reply + num_msgs)) {
3344 		vdc_msg("%s[%d]: Bogus seq_num %d, expected %d\n",
3345 			__func__, vdc->instance, dring_msg->seq_num,
3346 			vdc->seq_num_reply + num_msgs);
3347 		if (dring_msg->seq_num < (vdc->seq_num_reply + num_msgs)) {
3348 			return (B_FALSE);
3349 		} else {
3350 			/*
3351 			 * vds has responded with a seq_num greater than what we
3352 			 * expected
3353 			 */
3354 			return (B_FALSE);
3355 		}
3356 	}
3357 	vdc->seq_num_reply += num_msgs;
3358 
3359 	return (B_TRUE);
3360 }
3361 
3362 
3363 /*
3364  * Function:
3365  *	vdc_is_supported_version()
3366  *
3367  * Description:
3368  *	This routine checks if the major/minor version numbers specified in
3369  *	'ver_msg' are supported. If not it finds the next version that is
3370  *	in the supported version list 'vdc_version[]' and sets the fields in
3371  *	'ver_msg' to those values
3372  *
3373  * Arguments:
3374  *	ver_msg	- LDC message sent by vDisk server
3375  *
3376  * Return Code:
3377  *	B_TRUE	- Success
3378  *	B_FALSE	- Version not supported
3379  */
3380 static boolean_t
3381 vdc_is_supported_version(vio_ver_msg_t *ver_msg)
3382 {
3383 	int vdc_num_versions = sizeof (vdc_version) / sizeof (vdc_version[0]);
3384 
3385 	for (int i = 0; i < vdc_num_versions; i++) {
3386 		ASSERT(vdc_version[i].major > 0);
3387 		ASSERT((i == 0) ||
3388 		    (vdc_version[i].major < vdc_version[i-1].major));
3389 
3390 		/*
3391 		 * If the major versions match, adjust the minor version, if
3392 		 * necessary, down to the highest value supported by this
3393 		 * client. The server should support all minor versions lower
3394 		 * than the value it sent
3395 		 */
3396 		if (ver_msg->ver_major == vdc_version[i].major) {
3397 			if (ver_msg->ver_minor > vdc_version[i].minor) {
3398 				PR0("Adjusting minor version from %u to %u",
3399 				    ver_msg->ver_minor, vdc_version[i].minor);
3400 				ver_msg->ver_minor = vdc_version[i].minor;
3401 			}
3402 			return (B_TRUE);
3403 		}
3404 
3405 		/*
3406 		 * If the message contains a higher major version number, set
3407 		 * the message's major/minor versions to the current values
3408 		 * and return false, so this message will get resent with
3409 		 * these values, and the server will potentially try again
3410 		 * with the same or a lower version
3411 		 */
3412 		if (ver_msg->ver_major > vdc_version[i].major) {
3413 			ver_msg->ver_major = vdc_version[i].major;
3414 			ver_msg->ver_minor = vdc_version[i].minor;
3415 			PR0("Suggesting major/minor (0x%x/0x%x)\n",
3416 				ver_msg->ver_major, ver_msg->ver_minor);
3417 
3418 			return (B_FALSE);
3419 		}
3420 
3421 		/*
3422 		 * Otherwise, the message's major version is less than the
3423 		 * current major version, so continue the loop to the next
3424 		 * (lower) supported version
3425 		 */
3426 	}
3427 
3428 	/*
3429 	 * No common version was found; "ground" the version pair in the
3430 	 * message to terminate negotiation
3431 	 */
3432 	ver_msg->ver_major = 0;
3433 	ver_msg->ver_minor = 0;
3434 
3435 	return (B_FALSE);
3436 }
3437 /* -------------------------------------------------------------------------- */
3438 
3439 /*
3440  * DKIO(7) support
3441  */
3442 
3443 typedef struct vdc_dk_arg {
3444 	struct dk_callback	dkc;
3445 	int			mode;
3446 	dev_t			dev;
3447 	vdc_t			*vdc;
3448 } vdc_dk_arg_t;
3449 
3450 /*
3451  * Function:
3452  * 	vdc_dkio_flush_cb()
3453  *
3454  * Description:
3455  *	This routine is a callback for DKIOCFLUSHWRITECACHE which can be called
3456  *	by kernel code.
3457  *
3458  * Arguments:
3459  *	arg	- a pointer to a vdc_dk_arg_t structure.
3460  */
3461 void
3462 vdc_dkio_flush_cb(void *arg)
3463 {
3464 	struct vdc_dk_arg	*dk_arg = (struct vdc_dk_arg *)arg;
3465 	struct dk_callback	*dkc = NULL;
3466 	vdc_t			*vdc = NULL;
3467 	int			rv;
3468 
3469 	if (dk_arg == NULL) {
3470 		vdc_msg("%s[?] DKIOCFLUSHWRITECACHE arg is NULL\n", __func__);
3471 		return;
3472 	}
3473 	dkc = &dk_arg->dkc;
3474 	vdc = dk_arg->vdc;
3475 	ASSERT(vdc != NULL);
3476 
3477 	rv = vdc_populate_descriptor(vdc, NULL, 0, VD_OP_FLUSH,
3478 		dk_arg->mode, SDPART(getminor(dk_arg->dev)));
3479 	if (rv != 0) {
3480 		PR0("%s[%d] DKIOCFLUSHWRITECACHE failed : model %x\n",
3481 			__func__, vdc->instance,
3482 			ddi_model_convert_from(dk_arg->mode & FMODELS));
3483 		return;
3484 	}
3485 
3486 	/*
3487 	 * Trigger the call back to notify the caller the the ioctl call has
3488 	 * been completed.
3489 	 */
3490 	if ((dk_arg->mode & FKIOCTL) &&
3491 	    (dkc != NULL) &&
3492 	    (dkc->dkc_callback != NULL)) {
3493 		ASSERT(dkc->dkc_cookie != NULL);
3494 		(*dkc->dkc_callback)(dkc->dkc_cookie, ENOTSUP);
3495 	}
3496 
3497 	/* Indicate that one less DKIO write flush is outstanding */
3498 	mutex_enter(&vdc->lock);
3499 	vdc->dkio_flush_pending--;
3500 	ASSERT(vdc->dkio_flush_pending >= 0);
3501 	mutex_exit(&vdc->lock);
3502 }
3503 
3504 /*
3505  * This structure is used in the DKIO(7I) array below.
3506  */
3507 typedef struct vdc_dk_ioctl {
3508 	uint8_t		op;		/* VD_OP_XXX value */
3509 	int		cmd;		/* Solaris ioctl operation number */
3510 	size_t		nbytes;		/* size of structure to be copied */
3511 
3512 	/* function to convert between vDisk and Solaris structure formats */
3513 	int	(*convert)(void *vd_buf, void *ioctl_arg, int mode, int dir);
3514 } vdc_dk_ioctl_t;
3515 
3516 /*
3517  * Subset of DKIO(7I) operations currently supported
3518  */
3519 static vdc_dk_ioctl_t	dk_ioctl[] = {
3520 	{VD_OP_FLUSH,		DKIOCFLUSHWRITECACHE,	sizeof (int),
3521 		vdc_null_copy_func},
3522 	{VD_OP_GET_WCE,		DKIOCGETWCE,		sizeof (int),
3523 		vdc_null_copy_func},
3524 	{VD_OP_SET_WCE,		DKIOCSETWCE,		sizeof (int),
3525 		vdc_null_copy_func},
3526 	{VD_OP_GET_VTOC,	DKIOCGVTOC,		sizeof (vd_vtoc_t),
3527 		vdc_get_vtoc_convert},
3528 	{VD_OP_SET_VTOC,	DKIOCSVTOC,		sizeof (vd_vtoc_t),
3529 		vdc_set_vtoc_convert},
3530 	{VD_OP_SET_DISKGEOM,	DKIOCSGEOM,		sizeof (vd_geom_t),
3531 		vdc_get_geom_convert},
3532 	{VD_OP_GET_DISKGEOM,	DKIOCGGEOM,		sizeof (vd_geom_t),
3533 		vdc_get_geom_convert},
3534 	{VD_OP_GET_DISKGEOM,	DKIOCG_PHYGEOM,		sizeof (vd_geom_t),
3535 		vdc_get_geom_convert},
3536 	{VD_OP_GET_DISKGEOM, DKIOCG_VIRTGEOM,		sizeof (vd_geom_t),
3537 		vdc_get_geom_convert},
3538 	{VD_OP_SET_DISKGEOM, DKIOCSGEOM,		sizeof (vd_geom_t),
3539 		vdc_set_geom_convert},
3540 
3541 	/*
3542 	 * These particular ioctls are not sent to the server - vdc fakes up
3543 	 * the necessary info.
3544 	 */
3545 	{0, DKIOCINFO, sizeof (struct dk_cinfo), vdc_null_copy_func},
3546 	{0, DKIOCGMEDIAINFO, sizeof (struct dk_minfo), vdc_null_copy_func},
3547 	{0, USCSICMD,	sizeof (struct uscsi_cmd), vdc_null_copy_func},
3548 	{0, DKIOCREMOVABLE, 0, vdc_null_copy_func},
3549 	{0, CDROMREADOFFSET, 0, vdc_null_copy_func}
3550 };
3551 
3552 /*
3553  * Function:
3554  *	vd_process_ioctl()
3555  *
3556  * Description:
3557  *	This routine processes disk specific ioctl calls
3558  *
3559  * Arguments:
3560  *	dev	- the device number
3561  *	cmd	- the operation [dkio(7I)] to be processed
3562  *	arg	- pointer to user provided structure
3563  *		  (contains data to be set or reference parameter for get)
3564  *	mode	- bit flag, indicating open settings, 32/64 bit type, etc
3565  *
3566  * Return Code:
3567  *	0
3568  *	EFAULT
3569  *	ENXIO
3570  *	EIO
3571  *	ENOTSUP
3572  */
3573 static int
3574 vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode)
3575 {
3576 	int		instance = SDUNIT(getminor(dev));
3577 	vdc_t		*vdc = NULL;
3578 	int		rv = -1;
3579 	int		idx = 0;		/* index into dk_ioctl[] */
3580 	size_t		len = 0;		/* #bytes to send to vds */
3581 	size_t		alloc_len = 0;		/* #bytes to allocate mem for */
3582 	caddr_t		mem_p = NULL;
3583 	size_t		nioctls = (sizeof (dk_ioctl)) / (sizeof (dk_ioctl[0]));
3584 
3585 	PR0("%s: Processing ioctl(%x) for dev %x : model %x\n",
3586 		__func__, cmd, dev, ddi_model_convert_from(mode & FMODELS));
3587 
3588 	vdc = ddi_get_soft_state(vdc_state, instance);
3589 	if (vdc == NULL) {
3590 		cmn_err(CE_NOTE, "![%d] Could not get soft state structure",
3591 		    instance);
3592 		return (ENXIO);
3593 	}
3594 
3595 	/*
3596 	 * Check to see if we can communicate with the vDisk server
3597 	 */
3598 	if (!vdc_is_able_to_tx_data(vdc, O_NONBLOCK)) {
3599 		PR0("%s[%d] Not ready to transmit data\n", __func__, instance);
3600 		return (ENOLINK);
3601 	}
3602 
3603 	/*
3604 	 * Validate the ioctl operation to be performed.
3605 	 *
3606 	 * If we have looped through the array without finding a match then we
3607 	 * don't support this ioctl.
3608 	 */
3609 	for (idx = 0; idx < nioctls; idx++) {
3610 		if (cmd == dk_ioctl[idx].cmd)
3611 			break;
3612 	}
3613 
3614 	if (idx >= nioctls) {
3615 		PR0("%s[%d] Unsupported ioctl(%x)\n",
3616 				__func__, vdc->instance, cmd);
3617 		return (ENOTSUP);
3618 	}
3619 
3620 	len = dk_ioctl[idx].nbytes;
3621 
3622 	/*
3623 	 * Deal with the ioctls which the server does not provide. vdc can
3624 	 * fake these up and return immediately
3625 	 */
3626 	switch (cmd) {
3627 	case CDROMREADOFFSET:
3628 	case DKIOCREMOVABLE:
3629 	case USCSICMD:
3630 		return (ENOTTY);
3631 
3632 	case DKIOCINFO:
3633 		{
3634 			struct dk_cinfo	cinfo;
3635 			if (vdc->cinfo == NULL)
3636 				return (ENXIO);
3637 
3638 			bcopy(vdc->cinfo, &cinfo, sizeof (struct dk_cinfo));
3639 			cinfo.dki_partition = SDPART(getminor(dev));
3640 
3641 			rv = ddi_copyout(&cinfo, (void *)arg,
3642 					sizeof (struct dk_cinfo), mode);
3643 			if (rv != 0)
3644 				return (EFAULT);
3645 
3646 			return (0);
3647 		}
3648 
3649 	case DKIOCGMEDIAINFO:
3650 		if (vdc->minfo == NULL)
3651 			return (ENXIO);
3652 
3653 		rv = ddi_copyout(vdc->minfo, (void *)arg,
3654 				sizeof (struct dk_minfo), mode);
3655 		if (rv != 0)
3656 			return (EFAULT);
3657 
3658 		return (0);
3659 	}
3660 
3661 	/* catch programming error in vdc - should be a VD_OP_XXX ioctl */
3662 	ASSERT(dk_ioctl[idx].op != 0);
3663 
3664 	/* LDC requires that the memory being mapped is 8-byte aligned */
3665 	alloc_len = P2ROUNDUP(len, sizeof (uint64_t));
3666 	PR1("%s[%d]: struct size %d alloc %d\n",
3667 			__func__, instance, len, alloc_len);
3668 
3669 	ASSERT(alloc_len != 0);	/* sanity check */
3670 	mem_p = kmem_zalloc(alloc_len, KM_SLEEP);
3671 
3672 	/*
3673 	 * Call the conversion function for this ioctl whhich if necessary
3674 	 * converts from the Solaris format to the format ARC'ed
3675 	 * as part of the vDisk protocol (FWARC 2006/195)
3676 	 */
3677 	ASSERT(dk_ioctl[idx].convert != NULL);
3678 	rv = (dk_ioctl[idx].convert)(arg, mem_p, mode, VD_COPYIN);
3679 	if (rv != 0) {
3680 		PR0("%s[%d]: convert returned %d for ioctl 0x%x\n",
3681 				__func__, instance, rv, cmd);
3682 		if (mem_p != NULL)
3683 			kmem_free(mem_p, alloc_len);
3684 		return (rv);
3685 	}
3686 
3687 	/*
3688 	 * handle the special case of DKIOCFLUSHWRITECACHE
3689 	 */
3690 	if (cmd == DKIOCFLUSHWRITECACHE) {
3691 		struct dk_callback *dkc = (struct dk_callback *)arg;
3692 
3693 		PR0("%s[%d]: DKIOCFLUSHWRITECACHE\n", __func__, instance);
3694 
3695 		/* no mem should have been allocated hence no need to free it */
3696 		ASSERT(mem_p == NULL);
3697 
3698 		/*
3699 		 * If arg is NULL, we break here and the call operates
3700 		 * synchronously; waiting for vds to return.
3701 		 *
3702 		 * i.e. after the request to vds returns successfully,
3703 		 * all writes completed prior to the ioctl will have been
3704 		 * flushed from the disk write cache to persistent media.
3705 		 */
3706 		if (dkc != NULL) {
3707 			vdc_dk_arg_t	arg;
3708 			arg.mode = mode;
3709 			arg.dev = dev;
3710 			bcopy(dkc, &arg.dkc, sizeof (*dkc));
3711 
3712 			mutex_enter(&vdc->lock);
3713 			vdc->dkio_flush_pending++;
3714 			arg.vdc = vdc;
3715 			mutex_exit(&vdc->lock);
3716 
3717 			/* put the request on a task queue */
3718 			rv = taskq_dispatch(system_taskq, vdc_dkio_flush_cb,
3719 				(void *)&arg, DDI_SLEEP);
3720 
3721 			return (rv == NULL ? ENOMEM : 0);
3722 		}
3723 	}
3724 
3725 	/*
3726 	 * send request to vds to service the ioctl.
3727 	 */
3728 	rv = vdc_populate_descriptor(vdc, mem_p, alloc_len, dk_ioctl[idx].op,
3729 			mode, SDPART((getminor(dev))));
3730 	if (rv != 0) {
3731 		/*
3732 		 * This is not necessarily an error. The ioctl could
3733 		 * be returning a value such as ENOTTY to indicate
3734 		 * that the ioctl is not applicable.
3735 		 */
3736 		PR0("%s[%d]: vds returned %d for ioctl 0x%x\n",
3737 			__func__, instance, rv, cmd);
3738 		if (mem_p != NULL)
3739 			kmem_free(mem_p, alloc_len);
3740 		return (rv);
3741 	}
3742 
3743 	/*
3744 	 * If the VTOC has been changed, then vdc needs to update the copy
3745 	 * it saved in the soft state structure and try and update the device
3746 	 * node properties. Failing to set the properties should not cause
3747 	 * an error to be return the caller though.
3748 	 */
3749 	if (cmd == DKIOCSVTOC) {
3750 		bcopy(mem_p, vdc->vtoc, sizeof (struct vtoc));
3751 		if (vdc_create_device_nodes_props(vdc)) {
3752 			cmn_err(CE_NOTE, "![%d] Failed to update device nodes"
3753 				" properties", instance);
3754 		}
3755 	}
3756 
3757 	/*
3758 	 * Call the conversion function (if it exists) for this ioctl
3759 	 * which converts from the format ARC'ed as part of the vDisk
3760 	 * protocol (FWARC 2006/195) back to a format understood by
3761 	 * the rest of Solaris.
3762 	 */
3763 	rv = (dk_ioctl[idx].convert)(mem_p, arg, mode, VD_COPYOUT);
3764 	if (rv != 0) {
3765 		PR0("%s[%d]: convert returned %d for ioctl 0x%x\n",
3766 				__func__, instance, rv, cmd);
3767 		if (mem_p != NULL)
3768 			kmem_free(mem_p, alloc_len);
3769 		return (rv);
3770 	}
3771 
3772 	if (mem_p != NULL)
3773 		kmem_free(mem_p, alloc_len);
3774 
3775 	return (rv);
3776 }
3777 
3778 /*
3779  * Function:
3780  *
3781  * Description:
3782  *	This is an empty conversion function used by ioctl calls which
3783  *	do not need to convert the data being passed in/out to userland
3784  */
3785 static int
3786 vdc_null_copy_func(void *from, void *to, int mode, int dir)
3787 {
3788 	_NOTE(ARGUNUSED(from))
3789 	_NOTE(ARGUNUSED(to))
3790 	_NOTE(ARGUNUSED(mode))
3791 	_NOTE(ARGUNUSED(dir))
3792 
3793 	return (0);
3794 }
3795 
3796 /*
3797  * Function:
3798  *	vdc_get_vtoc_convert()
3799  *
3800  * Description:
3801  *	This routine fakes up the disk info needed for some DKIO ioctls.
3802  *
3803  * Arguments:
3804  *	from	- the buffer containing the data to be copied from
3805  *	to	- the buffer to be copied to
3806  *	mode	- flags passed to ioctl() call
3807  *	dir	- the "direction" of the copy - VD_COPYIN or VD_COPYOUT
3808  *
3809  * Return Code:
3810  *	0	- Success
3811  *	ENXIO	- incorrect buffer passed in.
3812  *	EFAULT	- ddi_copyxxx routine encountered an error.
3813  */
3814 static int
3815 vdc_get_vtoc_convert(void *from, void *to, int mode, int dir)
3816 {
3817 	void		*tmp_mem = NULL;
3818 	void		*tmp_memp;
3819 	struct vtoc	vt;
3820 	struct vtoc32	vt32;
3821 	int		copy_len = 0;
3822 	int		rv = 0;
3823 
3824 	if (dir != VD_COPYOUT)
3825 		return (0);	/* nothing to do */
3826 
3827 	if ((from == NULL) || (to == NULL))
3828 		return (ENXIO);
3829 
3830 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32)
3831 		copy_len = sizeof (struct vtoc32);
3832 	else
3833 		copy_len = sizeof (struct vtoc);
3834 
3835 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
3836 
3837 	VD_VTOC2VTOC((vd_vtoc_t *)from, &vt);
3838 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
3839 		vtoctovtoc32(vt, vt32);
3840 		tmp_memp = &vt32;
3841 	} else {
3842 		tmp_memp = &vt;
3843 	}
3844 	rv = ddi_copyout(tmp_memp, to, copy_len, mode);
3845 	if (rv != 0)
3846 		rv = EFAULT;
3847 
3848 	kmem_free(tmp_mem, copy_len);
3849 	return (rv);
3850 }
3851 
3852 /*
3853  * Function:
3854  *	vdc_set_vtoc_convert()
3855  *
3856  * Description:
3857  *
3858  * Arguments:
3859  *	from	- Buffer with data
3860  *	to	- Buffer where data is to be copied to
3861  *	mode	- flags passed to ioctl
3862  *	dir	- direction of copy (in or out)
3863  *
3864  * Return Code:
3865  *	0	- Success
3866  *	ENXIO	- Invalid buffer passed in
3867  *	EFAULT	- ddi_copyin of data failed
3868  */
3869 static int
3870 vdc_set_vtoc_convert(void *from, void *to, int mode, int dir)
3871 {
3872 	void		*tmp_mem = NULL;
3873 	struct vtoc	vt;
3874 	struct vtoc	*vtp = &vt;
3875 	vd_vtoc_t	vtvd;
3876 	int		copy_len = 0;
3877 	int		rv = 0;
3878 
3879 	if (dir != VD_COPYIN)
3880 		return (0);	/* nothing to do */
3881 
3882 	if ((from == NULL) || (to == NULL))
3883 		return (ENXIO);
3884 
3885 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32)
3886 		copy_len = sizeof (struct vtoc32);
3887 	else
3888 		copy_len = sizeof (struct vtoc);
3889 
3890 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
3891 
3892 	rv = ddi_copyin(from, tmp_mem, copy_len, mode);
3893 	if (rv != 0) {
3894 		kmem_free(tmp_mem, copy_len);
3895 		return (EFAULT);
3896 	}
3897 
3898 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
3899 		vtoc32tovtoc((*(struct vtoc32 *)tmp_mem), vt);
3900 	} else {
3901 		vtp = tmp_mem;
3902 	}
3903 
3904 	VTOC2VD_VTOC(vtp, &vtvd);
3905 	bcopy(&vtvd, to, sizeof (vd_vtoc_t));
3906 	kmem_free(tmp_mem, copy_len);
3907 
3908 	return (0);
3909 }
3910 
3911 /*
3912  * Function:
3913  *	vdc_get_geom_convert()
3914  *
3915  * Description:
3916  *
3917  * Arguments:
3918  *	from	- Buffer with data
3919  *	to	- Buffer where data is to be copied to
3920  *	mode	- flags passed to ioctl
3921  *	dir	- direction of copy (in or out)
3922  *
3923  * Return Code:
3924  *	0	- Success
3925  *	ENXIO	- Invalid buffer passed in
3926  *	EFAULT	- ddi_copyin of data failed
3927  */
3928 static int
3929 vdc_get_geom_convert(void *from, void *to, int mode, int dir)
3930 {
3931 	struct dk_geom	geom;
3932 	int	copy_len = sizeof (struct dk_geom);
3933 	int	rv = 0;
3934 
3935 	if (dir != VD_COPYOUT)
3936 		return (0);	/* nothing to do */
3937 
3938 	if ((from == NULL) || (to == NULL))
3939 		return (ENXIO);
3940 
3941 	VD_GEOM2DK_GEOM((vd_geom_t *)from, &geom);
3942 	rv = ddi_copyout(&geom, to, copy_len, mode);
3943 	if (rv != 0)
3944 		rv = EFAULT;
3945 
3946 	return (rv);
3947 }
3948 
3949 /*
3950  * Function:
3951  *	vdc_set_geom_convert()
3952  *
3953  * Description:
3954  *	This routine performs the necessary convertions from the DKIOCSVTOC
3955  *	Solaris structure to the format defined in FWARC 2006/195
3956  *
3957  * Arguments:
3958  *	from	- Buffer with data
3959  *	to	- Buffer where data is to be copied to
3960  *	mode	- flags passed to ioctl
3961  *	dir	- direction of copy (in or out)
3962  *
3963  * Return Code:
3964  *	0	- Success
3965  *	ENXIO	- Invalid buffer passed in
3966  *	EFAULT	- ddi_copyin of data failed
3967  */
3968 static int
3969 vdc_set_geom_convert(void *from, void *to, int mode, int dir)
3970 {
3971 	vd_geom_t	vdgeom;
3972 	void		*tmp_mem = NULL;
3973 	int		copy_len = sizeof (struct dk_geom);
3974 	int		rv = 0;
3975 
3976 	if (dir != VD_COPYIN)
3977 		return (0);	/* nothing to do */
3978 
3979 	if ((from == NULL) || (to == NULL))
3980 		return (ENXIO);
3981 
3982 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
3983 
3984 	rv = ddi_copyin(from, tmp_mem, copy_len, mode);
3985 	if (rv != 0) {
3986 		kmem_free(tmp_mem, copy_len);
3987 		return (EFAULT);
3988 	}
3989 	DK_GEOM2VD_GEOM((struct dk_geom *)tmp_mem, &vdgeom);
3990 	bcopy(&vdgeom, to, sizeof (vdgeom));
3991 	kmem_free(tmp_mem, copy_len);
3992 
3993 	return (0);
3994 }
3995 
3996 /*
3997  * Function:
3998  *	vdc_create_fake_geometry()
3999  *
4000  * Description:
4001  *	This routine fakes up the disk info needed for some DKIO ioctls.
4002  *		- DKIOCINFO
4003  *		- DKIOCGMEDIAINFO
4004  *
4005  *	[ just like lofi(7D) and ramdisk(7D) ]
4006  *
4007  * Arguments:
4008  *	vdc	- soft state pointer for this instance of the device driver.
4009  *
4010  * Return Code:
4011  *	0	- Success
4012  */
4013 static int
4014 vdc_create_fake_geometry(vdc_t *vdc)
4015 {
4016 	int	rv = 0;
4017 
4018 	ASSERT(vdc != NULL);
4019 
4020 	/*
4021 	 * DKIOCINFO support
4022 	 */
4023 	vdc->cinfo = kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
4024 
4025 	(void) strcpy(vdc->cinfo->dki_cname, VDC_DRIVER_NAME);
4026 	(void) strcpy(vdc->cinfo->dki_dname, VDC_DRIVER_NAME);
4027 	vdc->cinfo->dki_maxtransfer = vdc->max_xfer_sz / vdc->block_size;
4028 	vdc->cinfo->dki_ctype = DKC_SCSI_CCS;
4029 	vdc->cinfo->dki_flags = DKI_FMTVOL;
4030 	vdc->cinfo->dki_cnum = 0;
4031 	vdc->cinfo->dki_addr = 0;
4032 	vdc->cinfo->dki_space = 0;
4033 	vdc->cinfo->dki_prio = 0;
4034 	vdc->cinfo->dki_vec = 0;
4035 	vdc->cinfo->dki_unit = vdc->instance;
4036 	vdc->cinfo->dki_slave = 0;
4037 	/*
4038 	 * The partition number will be created on the fly depending on the
4039 	 * actual slice (i.e. minor node) that is used to request the data.
4040 	 */
4041 	vdc->cinfo->dki_partition = 0;
4042 
4043 	/*
4044 	 * DKIOCGMEDIAINFO support
4045 	 */
4046 	if (vdc->minfo == NULL)
4047 		vdc->minfo = kmem_zalloc(sizeof (struct dk_minfo), KM_SLEEP);
4048 	vdc->minfo->dki_media_type = DK_FIXED_DISK;
4049 	vdc->minfo->dki_capacity = 1;
4050 	vdc->minfo->dki_lbsize = DEV_BSIZE;
4051 
4052 	return (rv);
4053 }
4054 
4055 /*
4056  * Function:
4057  *	vdc_setup_disk_layout()
4058  *
4059  * Description:
4060  *	This routine discovers all the necessary details about the "disk"
4061  *	by requesting the data that is available from the vDisk server and by
4062  *	faking up the rest of the data.
4063  *
4064  * Arguments:
4065  *	vdc	- soft state pointer for this instance of the device driver.
4066  *
4067  * Return Code:
4068  *	0	- Success
4069  */
4070 static int
4071 vdc_setup_disk_layout(vdc_t *vdc)
4072 {
4073 	dev_t	dev;
4074 	int	slice = 0;
4075 	int	rv;
4076 
4077 	ASSERT(vdc != NULL);
4078 
4079 	rv = vdc_create_fake_geometry(vdc);
4080 	if (rv != 0) {
4081 		cmn_err(CE_NOTE, "[%d] Failed to create disk geometry (err%d)",
4082 				vdc->instance, rv);
4083 	}
4084 
4085 	if (vdc->vtoc == NULL)
4086 		vdc->vtoc = kmem_zalloc(sizeof (struct vtoc), KM_SLEEP);
4087 
4088 	dev = makedevice(ddi_driver_major(vdc->dip),
4089 				VD_MAKE_DEV(vdc->instance, 0));
4090 	rv = vd_process_ioctl(dev, DKIOCGVTOC, (caddr_t)vdc->vtoc, FKIOCTL);
4091 	if (rv) {
4092 		cmn_err(CE_NOTE, "[%d] Failed to get VTOC (err=%d)",
4093 				vdc->instance, rv);
4094 		return (rv);
4095 	}
4096 
4097 	/*
4098 	 * Read disk label from start of disk
4099 	 */
4100 	vdc->label = kmem_zalloc(DK_LABEL_SIZE, KM_SLEEP);
4101 
4102 	/*
4103 	 * find the slice that represents the entire "disk" and use that to
4104 	 * read the disk label. The convention in Solaris is that slice 2
4105 	 * represents the whole disk so we check that it is otherwise we
4106 	 * default to slice 0
4107 	 */
4108 	if ((vdc->vdisk_type == VD_DISK_TYPE_DISK) &&
4109 	    (vdc->vtoc->v_part[2].p_tag == V_BACKUP)) {
4110 		slice = 2;
4111 	} else {
4112 		slice = 0;
4113 	}
4114 	rv = vdc_populate_descriptor(vdc, (caddr_t)vdc->label, DK_LABEL_SIZE,
4115 			VD_OP_BREAD, 0, slice);
4116 
4117 	return (rv);
4118 }
4119