xref: /titanic_50/usr/src/uts/sun4u/vm/mach_sfmmu.c (revision e5dcf7beb7c949f9234713d5818b581ec3825443)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <vm/hat.h>
30 #include <vm/hat_sfmmu.h>
31 #include <vm/page.h>
32 #include <sys/pte.h>
33 #include <sys/systm.h>
34 #include <sys/mman.h>
35 #include <sys/sysmacros.h>
36 #include <sys/machparam.h>
37 #include <sys/vtrace.h>
38 #include <sys/kmem.h>
39 #include <sys/mmu.h>
40 #include <sys/cmn_err.h>
41 #include <sys/cpu.h>
42 #include <sys/cpuvar.h>
43 #include <sys/debug.h>
44 #include <sys/lgrp.h>
45 #include <sys/archsystm.h>
46 #include <sys/machsystm.h>
47 #include <sys/vmsystm.h>
48 #include <sys/bitmap.h>
49 #include <vm/rm.h>
50 #include <sys/t_lock.h>
51 #include <sys/vm_machparam.h>
52 #include <sys/promif.h>
53 #include <sys/prom_isa.h>
54 #include <sys/prom_plat.h>
55 #include <sys/prom_debug.h>
56 #include <sys/privregs.h>
57 #include <sys/bootconf.h>
58 #include <sys/memlist.h>
59 #include <sys/memlist_plat.h>
60 #include <sys/cpu_module.h>
61 #include <sys/reboot.h>
62 #include <sys/kdi.h>
63 #include <sys/fpu/fpusystm.h>
64 
65 /*
66  * External routines and data structures
67  */
68 extern void	sfmmu_cache_flushcolor(int, pfn_t);
69 
70 /*
71  * Static routines
72  */
73 static void	sfmmu_set_tlb(void);
74 
75 /*
76  * Global Data:
77  */
78 caddr_t	textva, datava;
79 tte_t	ktext_tte, kdata_tte;		/* ttes for kernel text and data */
80 
81 int	enable_bigktsb = 1;
82 
83 tte_t bigktsb_ttes[MAX_BIGKTSB_TTES];
84 int bigktsb_nttes = 0;
85 
86 
87 /*
88  * Controls the logic which enables the use of the
89  * QUAD_LDD_PHYS ASI for TSB accesses.
90  */
91 int	ktsb_phys = 0;
92 
93 
94 
95 /*
96  * This routine remaps the kernel using large ttes
97  * All entries except locked ones will be removed from the tlb.
98  * It assumes that both the text and data segments reside in a separate
99  * 4mb virtual and physical contigous memory chunk.  This routine
100  * is only executed by the first cpu.  The remaining cpus execute
101  * sfmmu_mp_startup() instead.
102  * XXX It assumes that the start of the text segment is KERNELBASE.  It should
103  * actually be based on start.
104  */
105 void
106 sfmmu_remap_kernel(void)
107 {
108 	pfn_t	pfn;
109 	uint_t	attr;
110 	int	flags;
111 
112 	extern char end[];
113 	extern struct as kas;
114 
115 	textva = (caddr_t)(KERNELBASE & MMU_PAGEMASK4M);
116 	pfn = va_to_pfn(textva);
117 	if (pfn == PFN_INVALID)
118 		prom_panic("can't find kernel text pfn");
119 	pfn &= TTE_PFNMASK(TTE4M);
120 
121 	attr = PROC_TEXT | HAT_NOSYNC;
122 	flags = HAT_LOAD_LOCK | SFMMU_NO_TSBLOAD;
123 	sfmmu_memtte(&ktext_tte, pfn, attr, TTE4M);
124 	/*
125 	 * We set the lock bit in the tte to lock the translation in
126 	 * the tlb. Note we cannot lock Panther 32M/256M pages into the tlb.
127 	 * This note is here to make sure that no one tries to remap the
128 	 * kernel using 32M or 256M tte's on Panther cpus.
129 	 */
130 	TTE_SET_LOCKED(&ktext_tte);
131 	sfmmu_tteload(kas.a_hat, &ktext_tte, textva, NULL, flags);
132 
133 	datava = (caddr_t)((uintptr_t)end & MMU_PAGEMASK4M);
134 	pfn = va_to_pfn(datava);
135 	if (pfn == PFN_INVALID)
136 		prom_panic("can't find kernel data pfn");
137 	pfn &= TTE_PFNMASK(TTE4M);
138 
139 	attr = PROC_DATA | HAT_NOSYNC;
140 	sfmmu_memtte(&kdata_tte, pfn, attr, TTE4M);
141 	/*
142 	 * We set the lock bit in the tte to lock the translation in
143 	 * the tlb.  We also set the mod bit to avoid taking dirty bit
144 	 * traps on kernel data.
145 	 */
146 	TTE_SET_LOCKED(&kdata_tte);
147 	TTE_SET_LOFLAGS(&kdata_tte, 0, TTE_HWWR_INT);
148 	sfmmu_tteload(kas.a_hat, &kdata_tte, datava,
149 	    (struct page *)NULL, flags);
150 
151 	/*
152 	 * create bigktsb ttes if necessary.
153 	 */
154 	if (enable_bigktsb) {
155 		int i = 0;
156 		caddr_t va = ktsb_base;
157 		size_t tsbsz = ktsb_sz;
158 		tte_t tte;
159 
160 		ASSERT(va >= datava + MMU_PAGESIZE4M);
161 		ASSERT(tsbsz >= MMU_PAGESIZE4M);
162 		ASSERT(IS_P2ALIGNED(tsbsz, tsbsz));
163 		ASSERT(IS_P2ALIGNED(va, tsbsz));
164 		attr = PROC_DATA | HAT_NOSYNC;
165 		while (tsbsz != 0) {
166 			ASSERT(i < MAX_BIGKTSB_TTES);
167 			pfn = va_to_pfn(va);
168 			ASSERT(pfn != PFN_INVALID);
169 			ASSERT((pfn & ~TTE_PFNMASK(TTE4M)) == 0);
170 			sfmmu_memtte(&tte, pfn, attr, TTE4M);
171 			ASSERT(TTE_IS_MOD(&tte));
172 			/*
173 			 * No need to lock if we use physical addresses.
174 			 * Since we invalidate the kernel TSB using virtual
175 			 * addresses, it's an optimization to load them now
176 			 * so that we won't have to load them later.
177 			 */
178 			if (!ktsb_phys) {
179 				TTE_SET_LOCKED(&tte);
180 			}
181 			sfmmu_tteload(kas.a_hat, &tte, va, NULL, flags);
182 			bigktsb_ttes[i] = tte;
183 			va += MMU_PAGESIZE4M;
184 			tsbsz -= MMU_PAGESIZE4M;
185 			i++;
186 		}
187 		bigktsb_nttes = i;
188 	}
189 
190 	sfmmu_set_tlb();
191 }
192 
193 #ifndef UTSB_PHYS
194 /*
195  * Unmap all references to user TSBs from the TLB of the current processor.
196  */
197 static void
198 sfmmu_clear_user_tsbs()
199 {
200 	caddr_t va;
201 	caddr_t end_va;
202 
203 	/* Demap all pages in the VA range for the first user TSB */
204 	va = utsb_vabase;
205 	end_va = va + tsb_slab_size;
206 	while (va < end_va) {
207 		vtag_flushpage(va, (uint64_t)ksfmmup);
208 		va += MMU_PAGESIZE;
209 	}
210 
211 	/* Demap all pages in the VA range for the second user TSB */
212 	va = utsb4m_vabase;
213 	end_va = va + tsb_slab_size;
214 	while (va < end_va) {
215 		vtag_flushpage(va, (uint64_t)ksfmmup);
216 		va += MMU_PAGESIZE;
217 	}
218 }
219 #endif /* UTSB_PHYS */
220 
221 /*
222  * Setup the kernel's locked tte's
223  */
224 void
225 sfmmu_set_tlb(void)
226 {
227 	uint_t index;
228 	struct cpu_node *cpunode;
229 
230 	cpunode = &cpunodes[getprocessorid()];
231 	index = cpunode->itlb_size;
232 
233 	/*
234 	 * NOTE: the prom will do an explicit unmap of the VAs from the TLBs
235 	 * in the following functions before loading the new value into the
236 	 * TLB.  Thus if there was an entry already in the TLB at a different
237 	 * location, it will get unmapped before we load the entry at the
238 	 * specified location.
239 	 */
240 	(void) prom_itlb_load(index - 1, *(uint64_t *)&ktext_tte, textva);
241 	index = cpunode->dtlb_size;
242 	(void) prom_dtlb_load(index - 1, *(uint64_t *)&kdata_tte, datava);
243 	(void) prom_dtlb_load(index - 2, *(uint64_t *)&ktext_tte, textva);
244 	index -= 3;
245 
246 #ifndef UTSB_PHYS
247 	utsb_dtlb_ttenum = index--;
248 	utsb4m_dtlb_ttenum = index--;
249 	sfmmu_clear_user_tsbs();
250 #endif /* UTSB_PHYS */
251 
252 	if (!ktsb_phys && enable_bigktsb) {
253 		int i;
254 		caddr_t va = ktsb_base;
255 		uint64_t tte;
256 
257 		ASSERT(bigktsb_nttes <= MAX_BIGKTSB_TTES);
258 		for (i = 0; i < bigktsb_nttes; i++) {
259 			tte = *(uint64_t *)&bigktsb_ttes[i];
260 			(void) prom_dtlb_load(index, tte, va);
261 			va += MMU_PAGESIZE4M;
262 			index--;
263 		}
264 	}
265 
266 	dtlb_resv_ttenum = index + 1;
267 }
268 
269 /*
270  * This routine is executed by all other cpus except the first one
271  * at initialization time.  It is responsible for taking over the
272  * mmu from the prom.  We follow these steps.
273  * Lock the kernel's ttes in the TLB
274  * Initialize the tsb hardware registers
275  * Take over the trap table
276  * Flush the prom's locked entries from the TLB
277  */
278 void
279 sfmmu_mp_startup(void)
280 {
281 	sfmmu_set_tlb();
282 	setwstate(WSTATE_KERN);
283 	prom_set_traptable(&trap_table);
284 	install_va_to_tte();
285 }
286 
287 void
288 kdi_tlb_page_lock(caddr_t va, int do_dtlb)
289 {
290 	tte_t tte;
291 	pfn_t pfn = va_to_pfn(va);
292 
293 	tte.tte_inthi = TTE_VALID_INT | TTE_SZ_INT(TTE8K) | TTE_PFN_INTHI(pfn);
294 	tte.tte_intlo = TTE_PFN_INTLO(pfn) | TTE_LCK_INT | TTE_CP_INT |
295 	    TTE_PRIV_INT | TTE_HWWR_INT;
296 
297 	vtag_flushpage(va, (uint64_t)ksfmmup);
298 
299 	sfmmu_itlb_ld_kva(va, &tte);
300 	if (do_dtlb)
301 		sfmmu_dtlb_ld_kva(va, &tte);
302 }
303 
304 /*ARGSUSED*/
305 void
306 kdi_tlb_page_unlock(caddr_t va, int do_dtlb)
307 {
308 	vtag_flushpage(va, (uint64_t)ksfmmup);
309 }
310 
311 /* clear user TSB information (applicable to hardware TSB walkers) */
312 void
313 sfmmu_clear_utsbinfo()
314 {
315 }
316 
317 /*ARGSUSED*/
318 void
319 sfmmu_setup_tsbinfo(sfmmu_t *sfmmup)
320 {
321 }
322 
323 /*
324  * Invalidate a TSB.  If floating point is enabled we use
325  * a fast block-store routine, otherwise we use the old method
326  * of walking the TSB setting each tag to TSBTAG_INVALID.
327  */
328 void
329 sfmmu_inv_tsb(caddr_t tsb_base, uint_t tsb_bytes)
330 {
331 	extern void sfmmu_inv_tsb_fast(caddr_t, uint_t);
332 	struct tsbe *tsbaddr;
333 
334 	/* CONSTCOND */
335 	if (fpu_exists) {
336 		sfmmu_inv_tsb_fast(tsb_base, tsb_bytes);
337 		return;
338 	}
339 
340 	for (tsbaddr = (struct tsbe *)tsb_base;
341 	    (uintptr_t)tsbaddr < (uintptr_t)(tsb_base + tsb_bytes);
342 	    tsbaddr++) {
343 		tsbaddr->tte_tag.tag_inthi = TSBTAG_INVALID;
344 	}
345 
346 	if (ktsb_phys && tsb_base == ktsb_base)
347 		dcache_flushall();
348 }
349 
350 /*
351  * Completely flush the D-cache on all cpus.
352  */
353 void
354 sfmmu_cache_flushall()
355 {
356 	int i;
357 
358 	for (i = 0; i < CACHE_NUM_COLOR; i++)
359 		sfmmu_cache_flushcolor(i, 0);
360 }
361