xref: /titanic_50/usr/src/uts/sun4u/starcat/os/starcat.c (revision 7b0bedd42192a2f6bcd6fc4b637d23892303a962)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/param.h>
27 #include <sys/systm.h>
28 #include <sys/sysmacros.h>
29 #include <sys/sunddi.h>
30 #include <sys/esunddi.h>
31 #include <sys/sunndi.h>
32 #include <sys/modctl.h>
33 #include <sys/promif.h>
34 #include <sys/machparam.h>
35 #include <sys/kobj.h>
36 #include <sys/cpuvar.h>
37 #include <sys/mem_cage.h>
38 #include <sys/promif.h>
39 #include <sys/promimpl.h>
40 #include <sys/platform_module.h>
41 #include <sys/errno.h>
42 #include <sys/cpu_sgnblk_defs.h>
43 #include <sys/iosramio.h>
44 #include <sys/domaind.h>
45 #include <sys/starcat.h>
46 #include <sys/machsystm.h>
47 #include <sys/bootconf.h>
48 #include <sys/memnode.h>
49 #include <vm/vm_dep.h>
50 #include <vm/page.h>
51 #include <sys/cheetahregs.h>
52 #include <sys/plat_ecc_unum.h>
53 #include <sys/plat_ecc_dimm.h>
54 #include <sys/lgrp.h>
55 #include <sys/dr.h>
56 #include <sys/post/scat_dcd.h>
57 #include <sys/kdi_impl.h>
58 #include <sys/iosramreg.h>
59 #include <sys/iosramvar.h>
60 #include <sys/mc-us3.h>
61 #include <sys/clock_impl.h>
62 
63 /* Preallocation of spare tsb's for DR */
64 int starcat_tsb_spares = STARCAT_SPARE_TSB_MAX;
65 
66 /* Set the maximum number of slot0 + slot1 boards. .. for DR */
67 int starcat_boards = STARCAT_BDSET_MAX * STARCAT_BDSET_SLOT_MAX;
68 
69 /* Maximum number of cpus per board... for DR */
70 int starcat_cpu_per_board = MAX(STARCAT_SLOT0_CPU_MAX, STARCAT_SLOT1_CPU_MAX);
71 
72 /* Maximum number of mem-units per board... for DR */
73 int starcat_mem_per_board = MAX(STARCAT_SLOT0_MEM_MAX, STARCAT_SLOT1_MEM_MAX);
74 
75 /* Maximum number of io-units (buses) per board... for DR */
76 int starcat_io_per_board = 2 * MAX(STARCAT_SLOT0_IO_MAX, STARCAT_SLOT1_IO_MAX);
77 
78 /* Preferred minimum cage size (expressed in pages)... for DR */
79 pgcnt_t starcat_startup_cage_size = 0;
80 
81 /* Platform specific function to get unum information */
82 int (*p2get_mem_unum)(int, uint64_t, char *, int, int *);
83 
84 /* Memory for fcode claims.  16k times # maximum possible schizos */
85 #define	EFCODE_SIZE	(STARCAT_BDSET_MAX * 4 * 0x4000)
86 int efcode_size = EFCODE_SIZE;
87 
88 void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t);
89 
90 /*
91  * The IOSRAM driver is loaded in load_platform_drivers() any cpu signature
92  * usage prior to that time will have not have a function to call.
93  */
94 static int (*iosram_rdp)(uint32_t key, uint32_t off, uint32_t len,
95 	    caddr_t dptr) = prom_starcat_iosram_read;
96 static int (*iosram_wrp)(uint32_t key, uint32_t off, uint32_t len,
97 	    caddr_t dptr) = prom_starcat_iosram_write;
98 
99 plat_dimm_sid_board_t	domain_dimm_sids[STARCAT_BDSET_MAX];
100 
101 /*
102  * set_platform_max_ncpus should return the maximum number of CPUs that the
103  * platform supports.  This function is called from check_cpus() to set the
104  * value of max_ncpus [see PSARC 1997/165 CPU Dynamic Reconfiguration].
105  * Data elements which are allocated based upon max_ncpus are all accessed
106  * via cpu_seqid and not physical IDs.  Previously, the value of max_ncpus
107  * was being set to the largest physical ID, which led to boot problems on
108  * systems with less than 1.25GB of memory.
109  */
110 
111 int
112 set_platform_max_ncpus(void)
113 {
114 	int n;
115 
116 	/*
117 	 * Convert number of slot0 + slot1 boards to number of expander brds
118 	 * and constrain the value to an architecturally plausible range
119 	 */
120 	n = MAX(starcat_boards, STARCAT_BDSET_MIN * STARCAT_BDSET_SLOT_MAX);
121 	n = MIN(n, STARCAT_BDSET_MAX * STARCAT_BDSET_SLOT_MAX);
122 	n = (n + STARCAT_BDSET_SLOT_MAX - 1) / STARCAT_BDSET_SLOT_MAX;
123 
124 	/* return maximum number of cpus possible on N expander boards */
125 	return (n * STARCAT_BDSET_CPU_MAX - STARCAT_SLOT1_CPU_MAX);
126 }
127 
128 int
129 set_platform_tsb_spares()
130 {
131 	return (MIN(starcat_tsb_spares, MAX_UPA));
132 }
133 
134 #pragma weak mmu_init_large_pages
135 
136 void
137 set_platform_defaults(void)
138 {
139 	extern char *tod_module_name;
140 	extern int ts_dispatch_extended;
141 	extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int);
142 	extern int tsb_lgrp_affinity;
143 	extern int segkmem_reloc;
144 	extern void mmu_init_large_pages(size_t);
145 	extern int ncpunode;	/* number of CPUs detected by OBP */
146 
147 #ifdef DEBUG
148 	ce_verbose_memory = 2;
149 	ce_verbose_other = 2;
150 #endif
151 
152 	/* Set the CPU signature function pointer */
153 	cpu_sgn_func = cpu_sgn_update;
154 
155 	/* Set appropriate tod module for starcat */
156 	ASSERT(tod_module_name == NULL);
157 	tod_module_name = "todstarcat";
158 
159 	/*
160 	 * Use the alternate TS dispatch table, which is better
161 	 * tuned for large servers.
162 	 */
163 	if (ts_dispatch_extended == -1)
164 		ts_dispatch_extended = 1;
165 
166 	/*
167 	 * Use lgroup-aware TSB allocations on this platform,
168 	 * since they are a considerable performance win.
169 	 */
170 	tsb_lgrp_affinity = 1;
171 
172 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
173 	    (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
174 		if (&mmu_init_large_pages)
175 			mmu_init_large_pages(mmu_ism_pagesize);
176 	}
177 
178 	/*
179 	 * KPR (kernel page relocation) is supported on this platform.
180 	 */
181 	if (hat_kpr_enabled && kernel_cage_enable && ncpunode >= 32) {
182 		segkmem_reloc = 1;
183 		cmn_err(CE_NOTE, "!Kernel Page Relocation is ENABLED");
184 	} else {
185 		cmn_err(CE_NOTE, "!Kernel Page Relocation is DISABLED");
186 	}
187 }
188 
189 #ifdef DEBUG
190 pgcnt_t starcat_cage_size_limit;
191 #endif
192 
193 void
194 set_platform_cage_params(void)
195 {
196 	extern pgcnt_t total_pages;
197 	extern struct memlist *phys_avail;
198 
199 	if (kernel_cage_enable) {
200 		pgcnt_t preferred_cage_size;
201 
202 		preferred_cage_size =
203 		    MAX(starcat_startup_cage_size, total_pages / 256);
204 
205 #ifdef DEBUG
206 		if (starcat_cage_size_limit)
207 			preferred_cage_size = starcat_cage_size_limit;
208 #endif
209 		/*
210 		 * Note: we are assuming that post has load the
211 		 * whole show in to the high end of memory. Having
212 		 * taken this leap, we copy the whole of phys_avail
213 		 * the glist and arrange for the cage to grow
214 		 * downward (descending pfns).
215 		 */
216 		kcage_range_init(phys_avail, KCAGE_DOWN, preferred_cage_size);
217 	}
218 
219 	if (kcage_on)
220 		cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED");
221 	else
222 		cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED");
223 }
224 
225 void
226 load_platform_modules(void)
227 {
228 	if (modload("misc", "pcihp") < 0) {
229 		cmn_err(CE_NOTE, "pcihp driver failed to load");
230 	}
231 }
232 
233 /*
234  * Starcat does not support power control of CPUs from the OS.
235  */
236 /*ARGSUSED*/
237 int
238 plat_cpu_poweron(struct cpu *cp)
239 {
240 	int (*starcat_cpu_poweron)(struct cpu *) = NULL;
241 
242 	starcat_cpu_poweron =
243 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0);
244 
245 	if (starcat_cpu_poweron == NULL)
246 		return (ENOTSUP);
247 	else
248 		return ((starcat_cpu_poweron)(cp));
249 }
250 
251 /*ARGSUSED*/
252 int
253 plat_cpu_poweroff(struct cpu *cp)
254 {
255 	int (*starcat_cpu_poweroff)(struct cpu *) = NULL;
256 
257 	starcat_cpu_poweroff =
258 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0);
259 
260 	if (starcat_cpu_poweroff == NULL)
261 		return (ENOTSUP);
262 	else
263 		return ((starcat_cpu_poweroff)(cp));
264 }
265 
266 /*
267  * The following are currently private to Starcat DR
268  */
269 int
270 plat_max_boards()
271 {
272 	return (starcat_boards);
273 }
274 
275 int
276 plat_max_cpu_units_per_board()
277 {
278 	return (starcat_cpu_per_board);
279 }
280 
281 int
282 plat_max_mc_units_per_board()
283 {
284 	return (starcat_mem_per_board); /* each CPU has a memory controller */
285 }
286 
287 int
288 plat_max_mem_units_per_board()
289 {
290 	return (starcat_mem_per_board);
291 }
292 
293 int
294 plat_max_io_units_per_board()
295 {
296 	return (starcat_io_per_board);
297 }
298 
299 int
300 plat_max_cpumem_boards(void)
301 {
302 	return (STARCAT_BDSET_MAX);
303 }
304 
305 int
306 plat_pfn_to_mem_node(pfn_t pfn)
307 {
308 	return (pfn >> mem_node_pfn_shift);
309 }
310 
311 #define	STARCAT_MC_MEMBOARD_SHIFT 37	/* Boards on 128BG boundary */
312 
313 /* ARGSUSED */
314 void
315 plat_build_mem_nodes(prom_memlist_t *list, size_t nelems)
316 {
317 	size_t	elem;
318 	pfn_t	basepfn;
319 	pgcnt_t	npgs;
320 
321 	/*
322 	 * Starcat mem slices are always aligned on a 128GB boundary,
323 	 * fixed, and limited to one slice per expander due to design
324 	 * of the centerplane ASICs.
325 	 */
326 	mem_node_pfn_shift = STARCAT_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT;
327 	mem_node_physalign = 0;
328 
329 	/*
330 	 * Boot install lists are arranged <addr, len>, <addr, len>, ...
331 	 */
332 	for (elem = 0; elem < nelems; list++, elem++) {
333 		basepfn = btop(list->addr);
334 		npgs = btop(list->size);
335 		mem_node_add_slice(basepfn, basepfn + npgs - 1);
336 	}
337 }
338 
339 /*
340  * Find the CPU associated with a slice at boot-time.
341  */
342 void
343 plat_fill_mc(pnode_t nodeid)
344 {
345 	int		len;
346 	uint64_t	mc_addr, mask;
347 	uint64_t	mc_decode[MAX_BANKS_PER_MC];
348 	uint32_t	regs[4];
349 	int		local_mc;
350 	int		portid;
351 	int		expnum;
352 	int		i;
353 
354 	/*
355 	 * Memory address decoding registers
356 	 * (see Chap 9 of SPARCV9 JSP-1 US-III implementation)
357 	 */
358 	const uint64_t	mc_decode_addr[MAX_BANKS_PER_MC] = {
359 		0x400028, 0x400010, 0x400018, 0x400020
360 	};
361 
362 	/*
363 	 * Starcat memory controller portid == global CPU id
364 	 */
365 	if ((prom_getprop(nodeid, "portid", (caddr_t)&portid) < 0) ||
366 	    (portid == -1))
367 		return;
368 
369 	expnum = STARCAT_CPUID_TO_EXPANDER(portid);
370 
371 	/*
372 	 * The "reg" property returns 4 32-bit values. The first two are
373 	 * combined to form a 64-bit address.  The second two are for a
374 	 * 64-bit size, but we don't actually need to look at that value.
375 	 */
376 	len = prom_getproplen(nodeid, "reg");
377 	if (len != (sizeof (uint32_t) * 4)) {
378 		prom_printf("Warning: malformed 'reg' property\n");
379 		return;
380 	}
381 	if (prom_getprop(nodeid, "reg", (caddr_t)regs) < 0)
382 		return;
383 	mc_addr = ((uint64_t)regs[0]) << 32;
384 	mc_addr |= (uint64_t)regs[1];
385 
386 	/*
387 	 * Figure out whether the memory controller we are examining
388 	 * belongs to this CPU/CMP or a different one.
389 	 */
390 	if (portid == cpunodes[CPU->cpu_id].portid)
391 		local_mc = 1;
392 	else
393 		local_mc = 0;
394 
395 	for (i = 0; i < MAX_BANKS_PER_MC; i++) {
396 
397 		mask = mc_decode_addr[i];
398 
399 		/*
400 		 * If the memory controller is local to this CPU, we use
401 		 * the special ASI to read the decode registers.
402 		 * Otherwise, we load the values from a magic address in
403 		 * I/O space.
404 		 */
405 		if (local_mc)
406 			mc_decode[i] = lddmcdecode(mask & MC_OFFSET_MASK);
407 		else
408 			mc_decode[i] = lddphysio((mc_addr | mask));
409 
410 		if (mc_decode[i] >> MC_VALID_SHIFT) {
411 			uint64_t base = MC_BASE(mc_decode[i]) << PHYS2UM_SHIFT;
412 			int sliceid = (base >> STARCAT_MC_MEMBOARD_SHIFT);
413 
414 			if (sliceid < max_mem_nodes) {
415 				/*
416 				 * Establish start-of-day mappings of
417 				 * lgroup platform handles to memnodes.
418 				 * Handle == Expander Number
419 				 * Memnode == Fixed 128GB Slice
420 				 */
421 				plat_assign_lgrphand_to_mem_node(expnum,
422 				    sliceid);
423 			}
424 		}
425 	}
426 }
427 
428 /*
429  * Starcat support for lgroups.
430  *
431  * On Starcat, an lgroup platform handle == expander number.
432  * For split-slot configurations (e.g. slot 0 and slot 1 boards
433  * in different domains) an MCPU board has only remote memory.
434  *
435  * The centerplane logic provides fixed 128GB memory slices
436  * each of which map to a memnode.  The initial mapping of
437  * memnodes to lgroup handles is determined at boot time.
438  * A DR addition of memory adds a new mapping. A DR copy-rename
439  * swaps mappings.
440  */
441 
442 /*
443  * Convert board number to expander number.
444  */
445 #define	BOARDNUM_2_EXPANDER(b)	(b >> 1)
446 
447 /*
448  * Return the number of boards configured with NULL LPA.
449  */
450 static int
451 check_for_null_lpa(void)
452 {
453 	gdcd_t	*gdcd;
454 	uint_t	exp, nlpa;
455 
456 	/*
457 	 * Read GDCD from IOSRAM.
458 	 * If this fails indicate a NULL LPA condition.
459 	 */
460 	if ((gdcd = kmem_zalloc(sizeof (gdcd_t), KM_NOSLEEP)) == NULL)
461 		return (EXP_COUNT+1);
462 
463 	if ((*iosram_rdp)(GDCD_MAGIC, 0, sizeof (gdcd_t), (caddr_t)gdcd) ||
464 	    (gdcd->h.dcd_magic != GDCD_MAGIC) ||
465 	    (gdcd->h.dcd_version != DCD_VERSION)) {
466 		kmem_free(gdcd, sizeof (gdcd_t));
467 		cmn_err(CE_WARN, "check_for_null_lpa: failed to access GDCD\n");
468 		return (EXP_COUNT+2);
469 	}
470 
471 	/*
472 	 * Check for NULL LPAs on all slot 0 boards in domain
473 	 * (i.e. in all expanders marked good for this domain).
474 	 */
475 	nlpa = 0;
476 	for (exp = 0; exp < EXP_COUNT; exp++) {
477 		if (RSV_GOOD(gdcd->dcd_slot[exp][0].l1ss_rsv) &&
478 		    (gdcd->dcd_slot[exp][0].l1ss_flags &
479 		    L1SSFLG_THIS_L1_NULL_PROC_LPA))
480 			nlpa++;
481 	}
482 
483 	kmem_free(gdcd, sizeof (gdcd_t));
484 	return (nlpa);
485 }
486 
487 /*
488  * Return the platform handle for the lgroup containing the given CPU
489  *
490  * For Starcat, lgroup platform handle == expander.
491  */
492 
493 extern int mpo_disabled;
494 extern lgrp_handle_t lgrp_default_handle;
495 int null_lpa_boards = -1;
496 
497 lgrp_handle_t
498 plat_lgrp_cpu_to_hand(processorid_t id)
499 {
500 	lgrp_handle_t		plathand;
501 
502 	plathand = STARCAT_CPUID_TO_EXPANDER(id);
503 
504 	/*
505 	 * Return the real platform handle for the CPU until
506 	 * such time as we know that MPO should be disabled.
507 	 * At that point, we set the "mpo_disabled" flag to true,
508 	 * and from that point on, return the default handle.
509 	 *
510 	 * By the time we know that MPO should be disabled, the
511 	 * first CPU will have already been added to a leaf
512 	 * lgroup, but that's ok. The common lgroup code will
513 	 * double check that the boot CPU is in the correct place,
514 	 * and in the case where mpo should be disabled, will move
515 	 * it to the root if necessary.
516 	 */
517 	if (mpo_disabled) {
518 		/* If MPO is disabled, return the default (UMA) handle */
519 		plathand = lgrp_default_handle;
520 	} else {
521 		if (null_lpa_boards > 0) {
522 			/* Determine if MPO should be disabled */
523 			mpo_disabled = 1;
524 			plathand = lgrp_default_handle;
525 		}
526 	}
527 	return (plathand);
528 }
529 
530 /*
531  * Platform specific lgroup initialization
532  */
533 void
534 plat_lgrp_init(void)
535 {
536 	extern uint32_t lgrp_expand_proc_thresh;
537 	extern uint32_t lgrp_expand_proc_diff;
538 
539 	/*
540 	 * Set tuneables for Starcat architecture
541 	 *
542 	 * lgrp_expand_proc_thresh is the minimum load on the lgroups
543 	 * this process is currently running on before considering
544 	 * expanding threads to another lgroup.
545 	 *
546 	 * lgrp_expand_proc_diff determines how much less the remote lgroup
547 	 * must be loaded before expanding to it.
548 	 *
549 	 * Since remote latencies can be costly, attempt to keep 3 threads
550 	 * within the same lgroup before expanding to the next lgroup.
551 	 */
552 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX * 3;
553 	lgrp_expand_proc_diff = LGRP_LOADAVG_THREAD_MAX;
554 }
555 
556 /*
557  * Platform notification of lgroup (re)configuration changes
558  */
559 /*ARGSUSED*/
560 void
561 plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg)
562 {
563 	update_membounds_t	*umb;
564 	lgrp_config_mem_rename_t lmr;
565 	int			sbd, tbd;
566 	lgrp_handle_t		hand, shand, thand;
567 	int			mnode, snode, tnode;
568 
569 	if (mpo_disabled)
570 		return;
571 
572 	switch (evt) {
573 
574 	case LGRP_CONFIG_MEM_ADD:
575 		/*
576 		 * Establish the lgroup handle to memnode translation.
577 		 */
578 		umb = (update_membounds_t *)arg;
579 
580 		hand = BOARDNUM_2_EXPANDER(umb->u_board);
581 		mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT);
582 		plat_assign_lgrphand_to_mem_node(hand, mnode);
583 
584 		break;
585 
586 	case LGRP_CONFIG_MEM_DEL:
587 		/* We don't have to do anything */
588 
589 		break;
590 
591 	case LGRP_CONFIG_MEM_RENAME:
592 		/*
593 		 * During a DR copy-rename operation, all of the memory
594 		 * on one board is moved to another board -- but the
595 		 * addresses/pfns and memnodes don't change. This means
596 		 * the memory has changed locations without changing identity.
597 		 *
598 		 * Source is where we are copying from and target is where we
599 		 * are copying to.  After source memnode is copied to target
600 		 * memnode, the physical addresses of the target memnode are
601 		 * renamed to match what the source memnode had.  Then target
602 		 * memnode can be removed and source memnode can take its
603 		 * place.
604 		 *
605 		 * To do this, swap the lgroup handle to memnode mappings for
606 		 * the boards, so target lgroup will have source memnode and
607 		 * source lgroup will have empty target memnode which is where
608 		 * its memory will go (if any is added to it later).
609 		 *
610 		 * Then source memnode needs to be removed from its lgroup
611 		 * and added to the target lgroup where the memory was living
612 		 * but under a different name/memnode.  The memory was in the
613 		 * target memnode and now lives in the source memnode with
614 		 * different physical addresses even though it is the same
615 		 * memory.
616 		 */
617 		sbd = arg & 0xffff;
618 		tbd = (arg & 0xffff0000) >> 16;
619 		shand = BOARDNUM_2_EXPANDER(sbd);
620 		thand = BOARDNUM_2_EXPANDER(tbd);
621 		snode = plat_lgrphand_to_mem_node(shand);
622 		tnode = plat_lgrphand_to_mem_node(thand);
623 
624 		plat_assign_lgrphand_to_mem_node(thand, snode);
625 		plat_assign_lgrphand_to_mem_node(shand, tnode);
626 
627 		lmr.lmem_rename_from = shand;
628 		lmr.lmem_rename_to = thand;
629 
630 		/*
631 		 * Remove source memnode of copy rename from its lgroup
632 		 * and add it to its new target lgroup
633 		 */
634 		lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode,
635 		    (uintptr_t)&lmr);
636 
637 		break;
638 
639 	default:
640 		break;
641 	}
642 }
643 
644 /*
645  * Return latency between "from" and "to" lgroups
646  *
647  * This latency number can only be used for relative comparison
648  * between lgroups on the running system, cannot be used across platforms,
649  * and may not reflect the actual latency.  It is platform and implementation
650  * specific, so platform gets to decide its value.  It would be nice if the
651  * number was at least proportional to make comparisons more meaningful though.
652  * NOTE: The numbers below are supposed to be load latencies for uncached
653  * memory divided by 10.
654  */
655 int
656 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
657 {
658 	/*
659 	 * Return min remote latency when there are more than two lgroups
660 	 * (root and child) and getting latency between two different lgroups
661 	 * or root is involved
662 	 */
663 	if (lgrp_optimizations() && (from != to ||
664 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
665 		return (48);
666 	else
667 		return (28);
668 }
669 
670 /*
671  * Return platform handle for root lgroup
672  */
673 lgrp_handle_t
674 plat_lgrp_root_hand(void)
675 {
676 	if (mpo_disabled)
677 		return (lgrp_default_handle);
678 
679 	return (LGRP_DEFAULT_HANDLE);
680 }
681 
682 /* ARGSUSED */
683 void
684 plat_freelist_process(int mnode)
685 {
686 }
687 
688 void
689 load_platform_drivers(void)
690 {
691 	uint_t		tunnel;
692 	pnode_t		nodeid;
693 	dev_info_t	*chosen_devi;
694 	char		chosen_iosram[MAXNAMELEN];
695 
696 	/*
697 	 * Get /chosen node - that's where the tunnel property is
698 	 */
699 	nodeid = prom_chosennode();
700 
701 	/*
702 	 * Get the iosram property from the chosen node.
703 	 */
704 	if (prom_getprop(nodeid, IOSRAM_CHOSEN_PROP, (caddr_t)&tunnel) <= 0) {
705 		prom_printf("Unable to get iosram property\n");
706 		cmn_err(CE_PANIC, "Unable to get iosram property\n");
707 	}
708 
709 	if (prom_phandle_to_path((phandle_t)tunnel, chosen_iosram,
710 	    sizeof (chosen_iosram)) < 0) {
711 		(void) prom_printf("prom_phandle_to_path(0x%x) failed\n",
712 		    tunnel);
713 		cmn_err(CE_PANIC, "prom_phandle_to_path(0x%x) failed\n",
714 		    tunnel);
715 	}
716 
717 	/*
718 	 * Attach all driver instances along the iosram's device path
719 	 */
720 	if (i_ddi_attach_hw_nodes("iosram") != DDI_SUCCESS) {
721 		cmn_err(CE_WARN, "IOSRAM failed to load\n");
722 	}
723 
724 	if ((chosen_devi = e_ddi_hold_devi_by_path(chosen_iosram, 0)) == NULL) {
725 		(void) prom_printf("e_ddi_hold_devi_by_path(%s) failed\n",
726 		    chosen_iosram);
727 		cmn_err(CE_PANIC, "e_ddi_hold_devi_by_path(%s) failed\n",
728 		    chosen_iosram);
729 	}
730 	ndi_rele_devi(chosen_devi);
731 
732 	/*
733 	 * iosram driver is now loaded so we need to set our read and
734 	 * write pointers.
735 	 */
736 	iosram_rdp = (int (*)(uint32_t, uint32_t, uint32_t, caddr_t))
737 	    modgetsymvalue("iosram_rd", 0);
738 	iosram_wrp = (int (*)(uint32_t, uint32_t, uint32_t, caddr_t))
739 	    modgetsymvalue("iosram_wr", 0);
740 
741 	/*
742 	 * Need to check for null proc LPA after IOSRAM driver is loaded
743 	 * and before multiple lgroups created (when start_other_cpus() called)
744 	 */
745 	null_lpa_boards = check_for_null_lpa();
746 
747 	/* load and attach the axq driver */
748 	if (i_ddi_attach_hw_nodes("axq") != DDI_SUCCESS) {
749 		cmn_err(CE_WARN, "AXQ failed to load\n");
750 	}
751 
752 	/* load Starcat Solaris Mailbox Client driver */
753 	if (modload("misc", "scosmb") < 0) {
754 		cmn_err(CE_WARN, "SCOSMB failed to load\n");
755 	}
756 
757 	/* load the DR driver */
758 	if (i_ddi_attach_hw_nodes("dr") != DDI_SUCCESS) {
759 		cmn_err(CE_WARN, "dr failed to load");
760 	}
761 
762 	/*
763 	 * Load the mc-us3 memory driver.
764 	 */
765 	if (i_ddi_attach_hw_nodes("mc-us3") != DDI_SUCCESS)
766 		cmn_err(CE_WARN, "mc-us3 failed to load");
767 	else
768 		(void) ddi_hold_driver(ddi_name_to_major("mc-us3"));
769 
770 	/* Load the schizo pci bus nexus driver. */
771 	if (i_ddi_attach_hw_nodes("pcisch") != DDI_SUCCESS)
772 		cmn_err(CE_WARN, "pcisch failed to load");
773 
774 	plat_ecc_init();
775 }
776 
777 
778 /*
779  * No platform drivers on this platform
780  */
781 char *platform_module_list[] = {
782 	(char *)0
783 };
784 
785 
786 /*ARGSUSED*/
787 void
788 plat_tod_fault(enum tod_fault_type tod_bad)
789 {
790 }
791 
792 /*
793  * Update the signature(s) in the IOSRAM's domain data section.
794  */
795 void
796 cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid)
797 {
798 	sig_state_t new_sgn;
799 	sig_state_t current_sgn;
800 
801 	/*
802 	 * If the substate is REBOOT, then check for panic flow
803 	 */
804 	if (sub_state == SIGSUBST_REBOOT) {
805 		(*iosram_rdp)(DOMD_MAGIC, DOMD_DSTATE_OFFSET,
806 		    sizeof (sig_state_t), (caddr_t)&current_sgn);
807 		if (current_sgn.state_t.state == SIGST_EXIT)
808 			sub_state = SIGSUBST_PANIC_REBOOT;
809 	}
810 
811 	/*
812 	 * cpuid == -1 indicates that the operation applies to all cpus.
813 	 */
814 	if (cpuid < 0) {
815 		sgn_update_all_cpus(sgn, state, sub_state);
816 		return;
817 	}
818 
819 	new_sgn.signature = CPU_SIG_BLD(sgn, state, sub_state);
820 	(*iosram_wrp)(DOMD_MAGIC,
821 	    DOMD_CPUSIGS_OFFSET + cpuid * sizeof (sig_state_t),
822 	    sizeof (sig_state_t), (caddr_t)&new_sgn);
823 
824 	/*
825 	 * Under certain conditions we don't update the signature
826 	 * of the domain_state.
827 	 */
828 	if ((sgn == OS_SIG) &&
829 	    ((state == SIGST_OFFLINE) || (state == SIGST_DETACHED)))
830 		return;
831 	(*iosram_wrp)(DOMD_MAGIC, DOMD_DSTATE_OFFSET, sizeof (sig_state_t),
832 	    (caddr_t)&new_sgn);
833 }
834 
835 /*
836  * Update the signature(s) in the IOSRAM's domain data section for all CPUs.
837  */
838 void
839 sgn_update_all_cpus(ushort_t sgn, uchar_t state, uchar_t sub_state)
840 {
841 	sig_state_t new_sgn;
842 	int i = 0;
843 
844 	new_sgn.signature = CPU_SIG_BLD(sgn, state, sub_state);
845 
846 	/*
847 	 * First update the domain_state signature
848 	 */
849 	(*iosram_wrp)(DOMD_MAGIC, DOMD_DSTATE_OFFSET, sizeof (sig_state_t),
850 	    (caddr_t)&new_sgn);
851 
852 	for (i = 0; i < NCPU; i++) {
853 		if (cpu[i] != NULL && (cpu[i]->cpu_flags &
854 		    (CPU_EXISTS|CPU_QUIESCED))) {
855 			(*iosram_wrp)(DOMD_MAGIC,
856 			    DOMD_CPUSIGS_OFFSET + i * sizeof (sig_state_t),
857 			    sizeof (sig_state_t), (caddr_t)&new_sgn);
858 		}
859 	}
860 }
861 
862 ushort_t
863 get_cpu_sgn(int cpuid)
864 {
865 	sig_state_t cpu_sgn;
866 
867 	(*iosram_rdp)(DOMD_MAGIC,
868 	    DOMD_CPUSIGS_OFFSET + cpuid * sizeof (sig_state_t),
869 	    sizeof (sig_state_t), (caddr_t)&cpu_sgn);
870 
871 	return (cpu_sgn.state_t.sig);
872 }
873 
874 uchar_t
875 get_cpu_sgn_state(int cpuid)
876 {
877 	sig_state_t cpu_sgn;
878 
879 	(*iosram_rdp)(DOMD_MAGIC,
880 	    DOMD_CPUSIGS_OFFSET + cpuid * sizeof (sig_state_t),
881 	    sizeof (sig_state_t), (caddr_t)&cpu_sgn);
882 
883 	return (cpu_sgn.state_t.state);
884 }
885 
886 
887 /*
888  * Type of argument passed into plat_get_ecache_cpu via ddi_walk_devs
889  * for matching on specific CPU node in device tree
890  */
891 
892 typedef struct {
893 	char		*jnum;	/* output, kmem_alloc'd	if successful */
894 	int		cpuid;	/* input, to match cpuid/portid/upa-portid */
895 	uint_t		dimm;	/* input, index into ecache-dimm-label */
896 } plat_ecache_cpu_arg_t;
897 
898 
899 /*
900  * plat_get_ecache_cpu is called repeatedly by ddi_walk_devs with pointers
901  * to device tree nodes (dip) and to a plat_ecache_cpu_arg_t structure (arg).
902  * Returning DDI_WALK_CONTINUE tells ddi_walk_devs to keep going, returning
903  * DDI_WALK_TERMINATE ends the walk.  When the node for the specific CPU
904  * being searched for is found, the walk is done.  But before returning to
905  * ddi_walk_devs and plat_get_ecacheunum, we grab this CPU's ecache-dimm-label
906  * property and set the jnum member of the plat_ecache_cpu_arg_t structure to
907  * point to the label corresponding to this specific ecache DIMM.  It is up
908  * to plat_get_ecacheunum to kmem_free this string.
909  */
910 
911 static int
912 plat_get_ecache_cpu(dev_info_t *dip, void *arg)
913 {
914 	char			*devtype;
915 	plat_ecache_cpu_arg_t	*cpuarg;
916 	char			**dimm_labels;
917 	uint_t			numlabels;
918 	int			portid;
919 
920 	/*
921 	 * Check device_type, must be "cpu"
922 	 */
923 
924 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
925 	    "device_type", &devtype) != DDI_PROP_SUCCESS)
926 		return (DDI_WALK_CONTINUE);
927 
928 	if (strcmp(devtype, "cpu")) {
929 		ddi_prop_free((void *)devtype);
930 		return (DDI_WALK_CONTINUE);
931 	}
932 
933 	ddi_prop_free((void *)devtype);
934 
935 	/*
936 	 * Check cpuid, portid, upa-portid (in that order), must
937 	 * match the cpuid being sought
938 	 */
939 
940 	portid = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
941 	    DDI_PROP_DONTPASS, "cpuid", -1);
942 
943 	if (portid == -1)
944 		portid = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
945 		    DDI_PROP_DONTPASS, "portid", -1);
946 
947 	if (portid == -1)
948 		portid = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
949 		    DDI_PROP_DONTPASS, "upa-portid", -1);
950 
951 	cpuarg = (plat_ecache_cpu_arg_t *)arg;
952 
953 	if (portid != cpuarg->cpuid)
954 		return (DDI_WALK_CONTINUE);
955 
956 	/*
957 	 * Found the right CPU, fetch ecache-dimm-label property
958 	 */
959 
960 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
961 	    "ecache-dimm-label", &dimm_labels, &numlabels)
962 	    != DDI_PROP_SUCCESS) {
963 #ifdef	DEBUG
964 		cmn_err(CE_NOTE, "cpuid=%d missing ecache-dimm-label property",
965 		    portid);
966 #endif	/* DEBUG */
967 		return (DDI_WALK_TERMINATE);
968 	}
969 
970 	if (cpuarg->dimm < numlabels) {
971 		cpuarg->jnum = kmem_alloc(strlen(dimm_labels[cpuarg->dimm]) + 1,
972 		    KM_SLEEP);
973 		if (cpuarg->jnum != (char *)NULL)
974 			(void) strcpy(cpuarg->jnum, dimm_labels[cpuarg->dimm]);
975 #ifdef	DEBUG
976 		else
977 			cmn_err(CE_WARN,
978 			    "cannot kmem_alloc for ecache dimm label");
979 #endif	/* DEBUG */
980 	}
981 
982 	ddi_prop_free((void *)dimm_labels);
983 	return (DDI_WALK_TERMINATE);
984 }
985 
986 
987 /*
988  * Bit 4 of physical address indicates ecache 0 or 1
989  */
990 
991 #define	ECACHE_DIMM_MASK	0x10
992 
993 /*
994  * plat_get_ecacheunum is called to generate the unum for an ecache error.
995  * After some initialization, nearly all of the work is done by ddi_walk_devs
996  * and plat_get_ecache_cpu.
997  */
998 
999 int
1000 plat_get_ecacheunum(int cpuid, unsigned long long physaddr, char *buf,
1001 		    int buflen, int *ustrlen)
1002 {
1003 	plat_ecache_cpu_arg_t	findcpu;
1004 	uint_t	expander, slot, proc;
1005 
1006 	findcpu.jnum = (char *)NULL;
1007 	findcpu.cpuid = cpuid;
1008 
1009 	/*
1010 	 * Bit 4 of physaddr equal 0 maps to E0 and 1 maps to E1
1011 	 * except for Panther and Jaguar where it indicates the reverse
1012 	 */
1013 	if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation) ||
1014 	    IS_JAGUAR(cpunodes[CPU->cpu_id].implementation))
1015 		findcpu.dimm =  (physaddr & ECACHE_DIMM_MASK) ? 0 : 1;
1016 	else
1017 		findcpu.dimm =  (physaddr & ECACHE_DIMM_MASK) ? 1 : 0;
1018 
1019 	/*
1020 	 * Walk the device tree, find this specific CPU, and get the label
1021 	 * for this ecache, returned here in findcpu.jnum
1022 	 */
1023 
1024 	ddi_walk_devs(ddi_root_node(), plat_get_ecache_cpu, (void *)&findcpu);
1025 
1026 	if (findcpu.jnum == (char *)NULL)
1027 		return (-1);
1028 
1029 	expander = STARCAT_CPUID_TO_EXPANDER(cpuid);
1030 	slot = STARCAT_CPUID_TO_BOARDSLOT(cpuid);
1031 
1032 	/*
1033 	 * STARCAT_CPUID_TO_PORTID clears the CoreID bit so that
1034 	 * STARCAT_CPUID_TO_AGENT will return a physical proc (0 - 3).
1035 	 */
1036 	proc = STARCAT_CPUID_TO_AGENT(STARCAT_CPUID_TO_PORTID(cpuid));
1037 
1038 	/*
1039 	 * NOTE: Any modifications to the snprintf() call below will require
1040 	 * changing plat_log_fruid_error() as well!
1041 	 */
1042 	(void) snprintf(buf, buflen, "%s%u/P%u/E%u J%s", (slot ? "IO" : "SB"),
1043 	    expander, proc, findcpu.dimm, findcpu.jnum);
1044 
1045 	*ustrlen = strlen(buf);
1046 
1047 	kmem_free(findcpu.jnum, strlen(findcpu.jnum) + 1);
1048 
1049 	return (0);
1050 }
1051 
1052 /*ARGSUSED*/
1053 int
1054 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
1055     int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp)
1056 {
1057 	int ret;
1058 
1059 	/*
1060 	 * check if it's a Memory or an Ecache error.
1061 	 */
1062 	if (flt_in_memory) {
1063 		if (p2get_mem_unum != NULL) {
1064 			return (p2get_mem_unum(synd_code, P2ALIGN(flt_addr, 8),
1065 			    buf, buflen, lenp));
1066 		} else {
1067 			return (ENOTSUP);
1068 		}
1069 	} else if (flt_status & ECC_ECACHE) {
1070 		if ((ret = plat_get_ecacheunum(flt_bus_id,
1071 		    P2ALIGN(flt_addr, 8), buf, buflen, lenp)) != 0)
1072 			return (EIO);
1073 	} else {
1074 		return (ENOTSUP);
1075 	}
1076 
1077 	return (ret);
1078 }
1079 
1080 static int (*ecc_mailbox_msg_func)(plat_ecc_message_type_t, void *) = NULL;
1081 
1082 /*
1083  * To keep OS mailbox handling localized, all we do is forward the call to the
1084  * scosmb module (if it is available).
1085  */
1086 int
1087 plat_send_ecc_mailbox_msg(plat_ecc_message_type_t msg_type, void *datap)
1088 {
1089 	/*
1090 	 * find the symbol for the mailbox sender routine in the scosmb module
1091 	 */
1092 	if (ecc_mailbox_msg_func == NULL)
1093 		ecc_mailbox_msg_func = (int (*)(plat_ecc_message_type_t,
1094 		    void *))modgetsymvalue("scosmb_log_ecc_error", 0);
1095 
1096 	/*
1097 	 * If the symbol was found, call it.  Otherwise, there is not much
1098 	 * else we can do and console messages will have to suffice.
1099 	 */
1100 	if (ecc_mailbox_msg_func)
1101 		return ((*ecc_mailbox_msg_func)(msg_type, datap));
1102 	else
1103 		return (ENODEV);
1104 }
1105 
1106 int
1107 plat_make_fru_cpuid(int sb, int m, int proc)
1108 {
1109 	return (MAKE_CPUID(sb, m, proc));
1110 }
1111 
1112 /*
1113  * board number for a given proc
1114  */
1115 int
1116 plat_make_fru_boardnum(int proc)
1117 {
1118 	return (STARCAT_CPUID_TO_EXPANDER(proc));
1119 }
1120 
1121 /*
1122  * This platform hook gets called from mc_add_mem_unum_label() in the mc-us3
1123  * driver giving each platform the opportunity to add platform
1124  * specific label information to the unum for ECC error logging purposes.
1125  */
1126 void
1127 plat_add_mem_unum_label(char *unum, int mcid, int bank, int dimm)
1128 {
1129 	char	new_unum[UNUM_NAMLEN];
1130 	uint_t	expander = STARCAT_CPUID_TO_EXPANDER(mcid);
1131 	uint_t	slot = STARCAT_CPUID_TO_BOARDSLOT(mcid);
1132 
1133 	/*
1134 	 * STARCAT_CPUID_TO_PORTID clears the CoreID bit so that
1135 	 * STARCAT_CPUID_TO_AGENT will return a physical proc (0 - 3).
1136 	 */
1137 	uint_t	proc = STARCAT_CPUID_TO_AGENT(STARCAT_CPUID_TO_PORTID(mcid));
1138 
1139 	/*
1140 	 * NOTE: Any modifications to the two sprintf() calls below will
1141 	 * require changing plat_log_fruid_error() as well!
1142 	 */
1143 	if (dimm == -1)
1144 		(void) snprintf(new_unum, UNUM_NAMLEN, "%s%u/P%u/B%d %s",
1145 		    (slot ? "IO" : "SB"), expander, proc, (bank & 0x1), unum);
1146 	else
1147 		(void) snprintf(new_unum, UNUM_NAMLEN, "%s%u/P%u/B%d/D%d %s",
1148 		    (slot ? "IO" : "SB"), expander,
1149 		    proc, (bank & 0x1), (dimm & 0x3), unum);
1150 
1151 	(void) strcpy(unum, new_unum);
1152 }
1153 
1154 int
1155 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
1156 {
1157 	int	expander = STARCAT_CPUID_TO_EXPANDER(cpuid);
1158 	int	slot = STARCAT_CPUID_TO_BOARDSLOT(cpuid);
1159 
1160 	if (snprintf(buf, buflen, "%s%d", (slot ? "IO" : "SB"), expander)
1161 	    >= buflen) {
1162 		return (ENOSPC);
1163 	} else {
1164 		*lenp = strlen(buf);
1165 		return (0);
1166 	}
1167 }
1168 
1169 /*
1170  * This routine is used by the data bearing mondo (DMV) initialization
1171  * routine to determine the number of hardware and software DMV interrupts
1172  * that a platform supports.
1173  */
1174 void
1175 plat_dmv_params(uint_t *hwint, uint_t *swint)
1176 {
1177 	*hwint = STARCAT_DMV_HWINT;
1178 	*swint = 0;
1179 }
1180 
1181 /*
1182  * If provided, this function will be called whenever the nodename is updated.
1183  * To keep OS mailbox handling localized, all we do is forward the call to the
1184  * scosmb module (if it is available).
1185  */
1186 void
1187 plat_nodename_set(void)
1188 {
1189 	void (*nodename_update_func)(uint64_t) = NULL;
1190 
1191 	/*
1192 	 * find the symbol for the nodename update routine in the scosmb module
1193 	 */
1194 	nodename_update_func = (void (*)(uint64_t))
1195 	    modgetsymvalue("scosmb_update_nodename", 0);
1196 
1197 	/*
1198 	 * If the symbol was found, call it.  Otherwise, log a note (but not to
1199 	 * the console).
1200 	 */
1201 	if (nodename_update_func != NULL) {
1202 		nodename_update_func(0);
1203 	} else {
1204 		cmn_err(CE_NOTE,
1205 		    "!plat_nodename_set: scosmb_update_nodename not found\n");
1206 	}
1207 }
1208 
1209 caddr_t	efcode_vaddr = NULL;
1210 caddr_t efcode_paddr = NULL;
1211 /*
1212  * Preallocate enough memory for fcode claims.
1213  */
1214 
1215 caddr_t
1216 efcode_alloc(caddr_t alloc_base)
1217 {
1218 	caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1219 	    MMU_PAGESIZE);
1220 	caddr_t vaddr;
1221 
1222 	/*
1223 	 * allocate the physical memory schizo fcode.
1224 	 */
1225 	if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base,
1226 	    efcode_size, MMU_PAGESIZE)) == NULL)
1227 		cmn_err(CE_PANIC, "Cannot allocate Efcode Memory");
1228 
1229 	efcode_vaddr = vaddr;
1230 
1231 	return (efcode_alloc_base + efcode_size);
1232 }
1233 
1234 caddr_t
1235 plat_startup_memlist(caddr_t alloc_base)
1236 {
1237 	caddr_t tmp_alloc_base;
1238 
1239 	tmp_alloc_base = efcode_alloc(alloc_base);
1240 	tmp_alloc_base = (caddr_t)roundup((uintptr_t)tmp_alloc_base,
1241 	    ecache_alignsize);
1242 	return (tmp_alloc_base);
1243 }
1244 
1245 /*
1246  * This is a helper function to determine if a given
1247  * node should be considered for a dr operation according
1248  * to predefined dr names. This is accomplished using
1249  * a function defined in drmach module. The drmach module
1250  * owns the definition of dr allowable names.
1251  * Formal Parameter: The name of a device node.
1252  * Expected Return Value: -1, device node name does not map to a valid dr name.
1253  *               A value greater or equal to 0, name is valid.
1254  */
1255 int
1256 starcat_dr_name(char *name)
1257 {
1258 	int (*drmach_name2type)(char *) = NULL;
1259 
1260 	/* Get a pointer to helper function in the dramch module. */
1261 	drmach_name2type =
1262 	    (int (*)(char *))kobj_getsymvalue("drmach_name2type_idx", 0);
1263 
1264 	if (drmach_name2type == NULL)
1265 		return (-1);
1266 
1267 	return ((*drmach_name2type)(name));
1268 }
1269 
1270 void
1271 startup_platform(void)
1272 {
1273 	/* set per platform constants for mutex backoff */
1274 	mutex_backoff_base = 2;
1275 	mutex_cap_factor = 64;
1276 }
1277 
1278 /*
1279  * KDI functions - used by the in-situ kernel debugger (kmdb) to perform
1280  * platform-specific operations.  These functions execute when the world is
1281  * stopped, and as such cannot make any blocking calls, hold locks, etc.
1282  * promif functions are a special case, and may be used.
1283  */
1284 
1285 static void
1286 starcat_system_claim(void)
1287 {
1288 	lbolt_debug_entry();
1289 
1290 	prom_interpret("sigb-sig! my-sigb-sig!", OBP_SIG, OBP_SIG, 0, 0, 0);
1291 }
1292 
1293 static void
1294 starcat_system_release(void)
1295 {
1296 	prom_interpret("sigb-sig! my-sigb-sig!", OS_SIG, OS_SIG, 0, 0, 0);
1297 
1298 	lbolt_debug_return();
1299 }
1300 
1301 void
1302 plat_kdi_init(kdi_t *kdi)
1303 {
1304 	kdi->pkdi_system_claim = starcat_system_claim;
1305 	kdi->pkdi_system_release = starcat_system_release;
1306 }
1307 
1308 /*
1309  * This function returns 1 if large pages for kernel heap are supported
1310  * and 0 otherwise.
1311  *
1312  * Currently we disable lp kmem support if kpr is going to be enabled
1313  * because in the case of large pages hat_add_callback()/hat_delete_callback()
1314  * cause network performance degradation
1315  */
1316 int
1317 plat_lpkmem_is_supported(void)
1318 {
1319 	extern int segkmem_reloc;
1320 
1321 	if (hat_kpr_enabled && kernel_cage_enable &&
1322 	    (ncpunode >= 32 || segkmem_reloc == 1))
1323 		return (0);
1324 
1325 	return (1);
1326 }
1327