xref: /titanic_50/usr/src/uts/sun4u/opl/os/opl.c (revision e704a8f24a369484ba8f4a1cf49d4db00dd91166)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/cpuvar.h>
29 #include <sys/systm.h>
30 #include <sys/sysmacros.h>
31 #include <sys/promif.h>
32 #include <sys/platform_module.h>
33 #include <sys/cmn_err.h>
34 #include <sys/errno.h>
35 #include <sys/machsystm.h>
36 #include <sys/bootconf.h>
37 #include <sys/nvpair.h>
38 #include <sys/kobj.h>
39 #include <sys/mem_cage.h>
40 #include <sys/opl.h>
41 #include <sys/scfd/scfostoescf.h>
42 #include <sys/cpu_sgnblk_defs.h>
43 #include <sys/utsname.h>
44 #include <sys/ddi.h>
45 #include <sys/sunndi.h>
46 #include <sys/lgrp.h>
47 #include <sys/memnode.h>
48 #include <sys/sysmacros.h>
49 #include <sys/time.h>
50 #include <sys/cpu.h>
51 #include <vm/vm_dep.h>
52 
53 int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *);
54 int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp);
55 int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp);
56 int (*opl_get_mem_addr)(char *unum, char *sid,
57     uint64_t offset, uint64_t *paddr);
58 
59 /* Memory for fcode claims.  16k times # maximum possible IO units */
60 #define	EFCODE_SIZE	(OPL_MAX_BOARDS * OPL_MAX_IO_UNITS_PER_BOARD * 0x4000)
61 int efcode_size = EFCODE_SIZE;
62 
63 #define	OPL_MC_MEMBOARD_SHIFT 38	/* Boards on 256BG boundary */
64 
65 /* Set the maximum number of boards for DR */
66 int opl_boards = OPL_MAX_BOARDS;
67 
68 void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t);
69 
70 extern int tsb_lgrp_affinity;
71 
72 int opl_tsb_spares = (OPL_MAX_BOARDS) * (OPL_MAX_PCICH_UNITS_PER_BOARD) *
73 	(OPL_MAX_TSBS_PER_PCICH);
74 
75 pgcnt_t opl_startup_cage_size = 0;
76 
77 /*
78  * The length of the delay in seconds in communication with XSCF after
79  * which the warning message will be logged.
80  */
81 uint_t	xscf_connect_delay = 60 * 15;
82 
83 static opl_model_info_t opl_models[] = {
84 	{ "FF1", OPL_MAX_BOARDS_FF1, FF1, STD_DISPATCH_TABLE },
85 	{ "FF2", OPL_MAX_BOARDS_FF2, FF2, STD_DISPATCH_TABLE },
86 	{ "DC1", OPL_MAX_BOARDS_DC1, DC1, STD_DISPATCH_TABLE },
87 	{ "DC2", OPL_MAX_BOARDS_DC2, DC2, EXT_DISPATCH_TABLE },
88 	{ "DC3", OPL_MAX_BOARDS_DC3, DC3, EXT_DISPATCH_TABLE },
89 };
90 static	int	opl_num_models = sizeof (opl_models)/sizeof (opl_model_info_t);
91 
92 /*
93  * opl_cur_model
94  */
95 static	opl_model_info_t *opl_cur_model = NULL;
96 
97 static struct memlist *opl_memlist_per_board(struct memlist *ml);
98 static void post_xscf_msg(char *, int);
99 static void pass2xscf_thread();
100 
101 /*
102  * Note FF/DC out-of-order instruction engine takes only a
103  * single cycle to execute each spin loop
104  * for comparison, Panther takes 6 cycles for same loop
105  * 1500 approx nsec for OPL sleep instruction
106  * if spin count = OPL_BOFF_SLEEP*OPL_BOFF_SPIN then
107  * spin time should be equal to OPL_BOFF_TM nsecs
108  * Listed values tuned for 2.15GHz to 2.4GHz systems
109  * Value may change for future systems
110  */
111 #define	OPL_BOFF_SPIN 720
112 #define	OPL_BOFF_BASE 1
113 #define	OPL_BOFF_SLEEP 5
114 #define	OPL_BOFF_CAP1 20
115 #define	OPL_BOFF_CAP2 60
116 #define	OPL_BOFF_MAX (40 * OPL_BOFF_SLEEP)
117 #define	OPL_BOFF_TM 1500
118 
119 int
120 set_platform_max_ncpus(void)
121 {
122 	return (OPL_MAX_CPU_PER_BOARD * OPL_MAX_BOARDS);
123 }
124 
125 int
126 set_platform_tsb_spares(void)
127 {
128 	return (MIN(opl_tsb_spares, MAX_UPA));
129 }
130 
131 static void
132 set_model_info()
133 {
134 	extern int ts_dispatch_extended;
135 	char	name[MAXSYSNAME];
136 	int	i;
137 
138 	/*
139 	 * Get model name from the root node.
140 	 *
141 	 * We are using the prom device tree since, at this point,
142 	 * the Solaris device tree is not yet setup.
143 	 */
144 	(void) prom_getprop(prom_rootnode(), "model", (caddr_t)name);
145 
146 	for (i = 0; i < opl_num_models; i++) {
147 		if (strncmp(name, opl_models[i].model_name, MAXSYSNAME) == 0) {
148 			opl_cur_model = &opl_models[i];
149 			break;
150 		}
151 	}
152 
153 	if (i == opl_num_models)
154 		halt("No valid OPL model is found!");
155 
156 	if ((opl_cur_model->model_cmds & EXT_DISPATCH_TABLE) &&
157 	    (ts_dispatch_extended == -1)) {
158 		/*
159 		 * Based on a platform model, select a dispatch table.
160 		 * Only DC2 and DC3 systems uses the alternate/extended
161 		 * TS dispatch table.
162 		 * FF1, FF2 and DC1 systems used standard dispatch tables.
163 		 */
164 		ts_dispatch_extended = 1;
165 	}
166 
167 }
168 
169 static void
170 set_max_mmu_ctxdoms()
171 {
172 	extern uint_t	max_mmu_ctxdoms;
173 	int		max_boards;
174 
175 	/*
176 	 * From the model, get the maximum number of boards
177 	 * supported and set the value accordingly. If the model
178 	 * could not be determined or recognized, we assume the max value.
179 	 */
180 	if (opl_cur_model == NULL)
181 		max_boards = OPL_MAX_BOARDS;
182 	else
183 		max_boards = opl_cur_model->model_max_boards;
184 
185 	/*
186 	 * On OPL, cores and MMUs are one-to-one.
187 	 */
188 	max_mmu_ctxdoms = OPL_MAX_CORE_UNITS_PER_BOARD * max_boards;
189 }
190 
191 #pragma weak mmu_init_large_pages
192 
193 void
194 set_platform_defaults(void)
195 {
196 	extern char *tod_module_name;
197 	extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int);
198 	extern void mmu_init_large_pages(size_t);
199 
200 	/* Set the CPU signature function pointer */
201 	cpu_sgn_func = cpu_sgn_update;
202 
203 	/* Set appropriate tod module for OPL platform */
204 	ASSERT(tod_module_name == NULL);
205 	tod_module_name = "todopl";
206 
207 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
208 	    (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
209 		if (&mmu_init_large_pages)
210 			mmu_init_large_pages(mmu_ism_pagesize);
211 	}
212 
213 	tsb_lgrp_affinity = 1;
214 
215 	set_max_mmu_ctxdoms();
216 }
217 
218 /*
219  * Convert logical a board number to a physical one.
220  */
221 
222 #define	LSBPROP		"board#"
223 #define	PSBPROP		"physical-board#"
224 
225 int
226 opl_get_physical_board(int id)
227 {
228 	dev_info_t	*root_dip, *dip = NULL;
229 	char		*dname = NULL;
230 	int		circ;
231 
232 	pnode_t		pnode;
233 	char		pname[MAXSYSNAME] = {0};
234 
235 	int		lsb_id;	/* Logical System Board ID */
236 	int		psb_id;	/* Physical System Board ID */
237 
238 
239 	/*
240 	 * This function is called on early stage of bootup when the
241 	 * kernel device tree is not initialized yet, and also
242 	 * later on when the device tree is up. We want to try
243 	 * the fast track first.
244 	 */
245 	root_dip = ddi_root_node();
246 	if (root_dip) {
247 		/* Get from devinfo node */
248 		ndi_devi_enter(root_dip, &circ);
249 		for (dip = ddi_get_child(root_dip); dip;
250 		    dip = ddi_get_next_sibling(dip)) {
251 
252 			dname = ddi_node_name(dip);
253 			if (strncmp(dname, "pseudo-mc", 9) != 0)
254 				continue;
255 
256 			if ((lsb_id = (int)ddi_getprop(DDI_DEV_T_ANY, dip,
257 			    DDI_PROP_DONTPASS, LSBPROP, -1)) == -1)
258 				continue;
259 
260 			if (id == lsb_id) {
261 				if ((psb_id = (int)ddi_getprop(DDI_DEV_T_ANY,
262 				    dip, DDI_PROP_DONTPASS, PSBPROP, -1))
263 				    == -1) {
264 					ndi_devi_exit(root_dip, circ);
265 					return (-1);
266 				} else {
267 					ndi_devi_exit(root_dip, circ);
268 					return (psb_id);
269 				}
270 			}
271 		}
272 		ndi_devi_exit(root_dip, circ);
273 	}
274 
275 	/*
276 	 * We do not have the kernel device tree, or we did not
277 	 * find the node for some reason (let's say the kernel
278 	 * device tree was modified), let's try the OBP tree.
279 	 */
280 	pnode = prom_rootnode();
281 	for (pnode = prom_childnode(pnode); pnode;
282 	    pnode = prom_nextnode(pnode)) {
283 
284 		if ((prom_getprop(pnode, "name", (caddr_t)pname) == -1) ||
285 		    (strncmp(pname, "pseudo-mc", 9) != 0))
286 			continue;
287 
288 		if (prom_getprop(pnode, LSBPROP, (caddr_t)&lsb_id) == -1)
289 			continue;
290 
291 		if (id == lsb_id) {
292 			if (prom_getprop(pnode, PSBPROP,
293 			    (caddr_t)&psb_id) == -1) {
294 				return (-1);
295 			} else {
296 				return (psb_id);
297 			}
298 		}
299 	}
300 
301 	return (-1);
302 }
303 
304 /*
305  * For OPL it's possible that memory from two or more successive boards
306  * will be contiguous across the boards, and therefore represented as a
307  * single chunk.
308  * This function splits such chunks down the board boundaries.
309  */
310 static struct memlist *
311 opl_memlist_per_board(struct memlist *ml)
312 {
313 	uint64_t ssize, low, high, boundary;
314 	struct memlist *head, *tail, *new;
315 
316 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
317 
318 	head = tail = NULL;
319 
320 	for (; ml; ml = ml->next) {
321 		low  = (uint64_t)ml->address;
322 		high = low+(uint64_t)(ml->size);
323 		while (low < high) {
324 			boundary = roundup(low+1, ssize);
325 			boundary = MIN(high, boundary);
326 			new = kmem_zalloc(sizeof (struct memlist), KM_SLEEP);
327 			new->address = low;
328 			new->size = boundary - low;
329 			if (head == NULL)
330 				head = new;
331 			if (tail) {
332 				tail->next = new;
333 				new->prev = tail;
334 			}
335 			tail = new;
336 			low = boundary;
337 		}
338 	}
339 	return (head);
340 }
341 
342 void
343 set_platform_cage_params(void)
344 {
345 	extern pgcnt_t total_pages;
346 	extern struct memlist *phys_avail;
347 	struct memlist *ml, *tml;
348 
349 	if (kernel_cage_enable) {
350 		pgcnt_t preferred_cage_size;
351 
352 		preferred_cage_size = MAX(opl_startup_cage_size,
353 		    total_pages / 256);
354 
355 		ml = opl_memlist_per_board(phys_avail);
356 
357 		/*
358 		 * Note: we are assuming that post has load the
359 		 * whole show in to the high end of memory. Having
360 		 * taken this leap, we copy the whole of phys_avail
361 		 * the glist and arrange for the cage to grow
362 		 * downward (descending pfns).
363 		 */
364 		kcage_range_init(ml, KCAGE_DOWN, preferred_cage_size);
365 
366 		/* free the memlist */
367 		do {
368 			tml = ml->next;
369 			kmem_free(ml, sizeof (struct memlist));
370 			ml = tml;
371 		} while (ml != NULL);
372 	}
373 
374 	if (kcage_on)
375 		cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED");
376 	else
377 		cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED");
378 }
379 
380 /*ARGSUSED*/
381 int
382 plat_cpu_poweron(struct cpu *cp)
383 {
384 	int (*opl_cpu_poweron)(struct cpu *) = NULL;
385 
386 	opl_cpu_poweron =
387 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0);
388 
389 	if (opl_cpu_poweron == NULL)
390 		return (ENOTSUP);
391 	else
392 		return ((opl_cpu_poweron)(cp));
393 
394 }
395 
396 /*ARGSUSED*/
397 int
398 plat_cpu_poweroff(struct cpu *cp)
399 {
400 	int (*opl_cpu_poweroff)(struct cpu *) = NULL;
401 
402 	opl_cpu_poweroff =
403 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0);
404 
405 	if (opl_cpu_poweroff == NULL)
406 		return (ENOTSUP);
407 	else
408 		return ((opl_cpu_poweroff)(cp));
409 
410 }
411 
412 int
413 plat_max_boards(void)
414 {
415 	return (OPL_MAX_BOARDS);
416 }
417 
418 int
419 plat_max_cpu_units_per_board(void)
420 {
421 	return (OPL_MAX_CPU_PER_BOARD);
422 }
423 
424 int
425 plat_max_mem_units_per_board(void)
426 {
427 	return (OPL_MAX_MEM_UNITS_PER_BOARD);
428 }
429 
430 int
431 plat_max_io_units_per_board(void)
432 {
433 	return (OPL_MAX_IO_UNITS_PER_BOARD);
434 }
435 
436 int
437 plat_max_cmp_units_per_board(void)
438 {
439 	return (OPL_MAX_CMP_UNITS_PER_BOARD);
440 }
441 
442 int
443 plat_max_core_units_per_board(void)
444 {
445 	return (OPL_MAX_CORE_UNITS_PER_BOARD);
446 }
447 
448 int
449 plat_pfn_to_mem_node(pfn_t pfn)
450 {
451 	return (pfn >> mem_node_pfn_shift);
452 }
453 
454 /* ARGSUSED */
455 void
456 plat_build_mem_nodes(u_longlong_t *list, size_t nelems)
457 {
458 	size_t	elem;
459 	pfn_t	basepfn;
460 	pgcnt_t	npgs;
461 	uint64_t	boundary, ssize;
462 	uint64_t	low, high;
463 
464 	/*
465 	 * OPL mem slices are always aligned on a 256GB boundary.
466 	 */
467 	mem_node_pfn_shift = OPL_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT;
468 	mem_node_physalign = 0;
469 
470 	/*
471 	 * Boot install lists are arranged <addr, len>, <addr, len>, ...
472 	 */
473 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
474 	for (elem = 0; elem < nelems; elem += 2) {
475 		low  = (uint64_t)list[elem];
476 		high = low+(uint64_t)(list[elem+1]);
477 		while (low < high) {
478 			boundary = roundup(low+1, ssize);
479 			boundary = MIN(high, boundary);
480 			basepfn = btop(low);
481 			npgs = btop(boundary - low);
482 			mem_node_add_slice(basepfn, basepfn + npgs - 1);
483 			low = boundary;
484 		}
485 	}
486 }
487 
488 /*
489  * Find the CPU associated with a slice at boot-time.
490  */
491 void
492 plat_fill_mc(pnode_t nodeid)
493 {
494 	int board;
495 	int memnode;
496 	struct {
497 		uint64_t	addr;
498 		uint64_t	size;
499 	} mem_range;
500 
501 	if (prom_getprop(nodeid, "board#", (caddr_t)&board) < 0) {
502 		panic("Can not find board# property in mc node %x", nodeid);
503 	}
504 	if (prom_getprop(nodeid, "sb-mem-ranges", (caddr_t)&mem_range) < 0) {
505 		panic("Can not find sb-mem-ranges property in mc node %x",
506 		    nodeid);
507 	}
508 	memnode = mem_range.addr >> OPL_MC_MEMBOARD_SHIFT;
509 	plat_assign_lgrphand_to_mem_node(board, memnode);
510 }
511 
512 /*
513  * Return the platform handle for the lgroup containing the given CPU
514  *
515  * For OPL, lgroup platform handle == board #.
516  */
517 
518 extern int mpo_disabled;
519 extern lgrp_handle_t lgrp_default_handle;
520 
521 lgrp_handle_t
522 plat_lgrp_cpu_to_hand(processorid_t id)
523 {
524 	lgrp_handle_t plathand;
525 
526 	/*
527 	 * Return the real platform handle for the CPU until
528 	 * such time as we know that MPO should be disabled.
529 	 * At that point, we set the "mpo_disabled" flag to true,
530 	 * and from that point on, return the default handle.
531 	 *
532 	 * By the time we know that MPO should be disabled, the
533 	 * first CPU will have already been added to a leaf
534 	 * lgroup, but that's ok. The common lgroup code will
535 	 * double check that the boot CPU is in the correct place,
536 	 * and in the case where mpo should be disabled, will move
537 	 * it to the root if necessary.
538 	 */
539 	if (mpo_disabled) {
540 		/* If MPO is disabled, return the default (UMA) handle */
541 		plathand = lgrp_default_handle;
542 	} else
543 		plathand = (lgrp_handle_t)LSB_ID(id);
544 	return (plathand);
545 }
546 
547 /*
548  * Platform specific lgroup initialization
549  */
550 void
551 plat_lgrp_init(void)
552 {
553 	extern uint32_t lgrp_expand_proc_thresh;
554 	extern uint32_t lgrp_expand_proc_diff;
555 
556 	/*
557 	 * Set tuneables for the OPL architecture
558 	 *
559 	 * lgrp_expand_proc_thresh is the minimum load on the lgroups
560 	 * this process is currently running on before considering
561 	 * expanding threads to another lgroup.
562 	 *
563 	 * lgrp_expand_proc_diff determines how much less the remote lgroup
564 	 * must be loaded before expanding to it.
565 	 *
566 	 * Since remote latencies can be costly, attempt to keep 3 threads
567 	 * within the same lgroup before expanding to the next lgroup.
568 	 */
569 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX * 3;
570 	lgrp_expand_proc_diff = LGRP_LOADAVG_THREAD_MAX;
571 }
572 
573 /*
574  * Platform notification of lgroup (re)configuration changes
575  */
576 /*ARGSUSED*/
577 void
578 plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg)
579 {
580 	update_membounds_t *umb;
581 	lgrp_config_mem_rename_t lmr;
582 	int sbd, tbd;
583 	lgrp_handle_t hand, shand, thand;
584 	int mnode, snode, tnode;
585 	pfn_t start, end;
586 
587 	if (mpo_disabled)
588 		return;
589 
590 	switch (evt) {
591 
592 	case LGRP_CONFIG_MEM_ADD:
593 		/*
594 		 * Establish the lgroup handle to memnode translation.
595 		 */
596 		umb = (update_membounds_t *)arg;
597 
598 		hand = umb->u_board;
599 		mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT);
600 		plat_assign_lgrphand_to_mem_node(hand, mnode);
601 
602 		break;
603 
604 	case LGRP_CONFIG_MEM_DEL:
605 		/*
606 		 * Special handling for possible memory holes.
607 		 */
608 		umb = (update_membounds_t *)arg;
609 		hand = umb->u_board;
610 		if ((mnode = plat_lgrphand_to_mem_node(hand)) != -1) {
611 			if (mem_node_config[mnode].exists) {
612 				start = mem_node_config[mnode].physbase;
613 				end = mem_node_config[mnode].physmax;
614 				mem_node_pre_del_slice(start, end);
615 				mem_node_post_del_slice(start, end, 0);
616 			}
617 		}
618 
619 		break;
620 
621 	case LGRP_CONFIG_MEM_RENAME:
622 		/*
623 		 * During a DR copy-rename operation, all of the memory
624 		 * on one board is moved to another board -- but the
625 		 * addresses/pfns and memnodes don't change. This means
626 		 * the memory has changed locations without changing identity.
627 		 *
628 		 * Source is where we are copying from and target is where we
629 		 * are copying to.  After source memnode is copied to target
630 		 * memnode, the physical addresses of the target memnode are
631 		 * renamed to match what the source memnode had.  Then target
632 		 * memnode can be removed and source memnode can take its
633 		 * place.
634 		 *
635 		 * To do this, swap the lgroup handle to memnode mappings for
636 		 * the boards, so target lgroup will have source memnode and
637 		 * source lgroup will have empty target memnode which is where
638 		 * its memory will go (if any is added to it later).
639 		 *
640 		 * Then source memnode needs to be removed from its lgroup
641 		 * and added to the target lgroup where the memory was living
642 		 * but under a different name/memnode.  The memory was in the
643 		 * target memnode and now lives in the source memnode with
644 		 * different physical addresses even though it is the same
645 		 * memory.
646 		 */
647 		sbd = arg & 0xffff;
648 		tbd = (arg & 0xffff0000) >> 16;
649 		shand = sbd;
650 		thand = tbd;
651 		snode = plat_lgrphand_to_mem_node(shand);
652 		tnode = plat_lgrphand_to_mem_node(thand);
653 
654 		/*
655 		 * Special handling for possible memory holes.
656 		 */
657 		if (tnode != -1 && mem_node_config[tnode].exists) {
658 			start = mem_node_config[tnode].physbase;
659 			end = mem_node_config[tnode].physmax;
660 			mem_node_pre_del_slice(start, end);
661 			mem_node_post_del_slice(start, end, 0);
662 		}
663 
664 		plat_assign_lgrphand_to_mem_node(thand, snode);
665 		plat_assign_lgrphand_to_mem_node(shand, tnode);
666 
667 		lmr.lmem_rename_from = shand;
668 		lmr.lmem_rename_to = thand;
669 
670 		/*
671 		 * Remove source memnode of copy rename from its lgroup
672 		 * and add it to its new target lgroup
673 		 */
674 		lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode,
675 		    (uintptr_t)&lmr);
676 
677 		break;
678 
679 	default:
680 		break;
681 	}
682 }
683 
684 /*
685  * Return latency between "from" and "to" lgroups
686  *
687  * This latency number can only be used for relative comparison
688  * between lgroups on the running system, cannot be used across platforms,
689  * and may not reflect the actual latency.  It is platform and implementation
690  * specific, so platform gets to decide its value.  It would be nice if the
691  * number was at least proportional to make comparisons more meaningful though.
692  * NOTE: The numbers below are supposed to be load latencies for uncached
693  * memory divided by 10.
694  *
695  */
696 int
697 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
698 {
699 	/*
700 	 * Return min remote latency when there are more than two lgroups
701 	 * (root and child) and getting latency between two different lgroups
702 	 * or root is involved
703 	 */
704 	if (lgrp_optimizations() && (from != to ||
705 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
706 		return (42);
707 	else
708 		return (35);
709 }
710 
711 /*
712  * Return platform handle for root lgroup
713  */
714 lgrp_handle_t
715 plat_lgrp_root_hand(void)
716 {
717 	if (mpo_disabled)
718 		return (lgrp_default_handle);
719 
720 	return (LGRP_DEFAULT_HANDLE);
721 }
722 
723 /*ARGSUSED*/
724 void
725 plat_freelist_process(int mnode)
726 {
727 }
728 
729 void
730 load_platform_drivers(void)
731 {
732 	(void) i_ddi_attach_pseudo_node("dr");
733 }
734 
735 /*
736  * No platform drivers on this platform
737  */
738 char *platform_module_list[] = {
739 	(char *)0
740 };
741 
742 /*ARGSUSED*/
743 void
744 plat_tod_fault(enum tod_fault_type tod_bad)
745 {
746 }
747 
748 /*ARGSUSED*/
749 void
750 cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid)
751 {
752 	static void (*scf_panic_callback)(int);
753 	static void (*scf_shutdown_callback)(int);
754 
755 	/*
756 	 * This is for notifing system panic/shutdown to SCF.
757 	 * In case of shutdown and panic, SCF call back
758 	 * function should be called.
759 	 *  <SCF call back functions>
760 	 *   scf_panic_callb()   : panicsys()->panic_quiesce_hw()
761 	 *   scf_shutdown_callb(): halt() or power_down() or reboot_machine()
762 	 * cpuid should be -1 and state should be SIGST_EXIT.
763 	 */
764 	if (state == SIGST_EXIT && cpuid == -1) {
765 
766 		/*
767 		 * find the symbol for the SCF panic callback routine in driver
768 		 */
769 		if (scf_panic_callback == NULL)
770 			scf_panic_callback = (void (*)(int))
771 			    modgetsymvalue("scf_panic_callb", 0);
772 		if (scf_shutdown_callback == NULL)
773 			scf_shutdown_callback = (void (*)(int))
774 			    modgetsymvalue("scf_shutdown_callb", 0);
775 
776 		switch (sub_state) {
777 		case SIGSUBST_PANIC:
778 			if (scf_panic_callback == NULL) {
779 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
780 				    "scf_panic_callb not found\n");
781 				return;
782 			}
783 			scf_panic_callback(SIGSUBST_PANIC);
784 			break;
785 
786 		case SIGSUBST_HALT:
787 			if (scf_shutdown_callback == NULL) {
788 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
789 				    "scf_shutdown_callb not found\n");
790 				return;
791 			}
792 			scf_shutdown_callback(SIGSUBST_HALT);
793 			break;
794 
795 		case SIGSUBST_ENVIRON:
796 			if (scf_shutdown_callback == NULL) {
797 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
798 				    "scf_shutdown_callb not found\n");
799 				return;
800 			}
801 			scf_shutdown_callback(SIGSUBST_ENVIRON);
802 			break;
803 
804 		case SIGSUBST_REBOOT:
805 			if (scf_shutdown_callback == NULL) {
806 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
807 				    "scf_shutdown_callb not found\n");
808 				return;
809 			}
810 			scf_shutdown_callback(SIGSUBST_REBOOT);
811 			break;
812 		}
813 	}
814 }
815 
816 /*ARGSUSED*/
817 int
818 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
819 	int flt_in_memory, ushort_t flt_status,
820 	char *buf, int buflen, int *lenp)
821 {
822 	/*
823 	 * check if it's a Memory error.
824 	 */
825 	if (flt_in_memory) {
826 		if (opl_get_mem_unum != NULL) {
827 			return (opl_get_mem_unum(synd_code, flt_addr, buf,
828 			    buflen, lenp));
829 		} else {
830 			return (ENOTSUP);
831 		}
832 	} else {
833 		return (ENOTSUP);
834 	}
835 }
836 
837 /*ARGSUSED*/
838 int
839 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
840 {
841 	int	ret = 0;
842 	int	sb;
843 	int	plen;
844 
845 	sb = opl_get_physical_board(LSB_ID(cpuid));
846 	if (sb == -1) {
847 		return (ENXIO);
848 	}
849 
850 	/*
851 	 * opl_cur_model is assigned here
852 	 */
853 	if (opl_cur_model == NULL) {
854 		set_model_info();
855 	}
856 
857 	ASSERT((opl_cur_model - opl_models) == (opl_cur_model->model_type));
858 
859 	switch (opl_cur_model->model_type) {
860 	case FF1:
861 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_A",
862 		    CHIP_ID(cpuid) / 2);
863 		break;
864 
865 	case FF2:
866 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_B",
867 		    (CHIP_ID(cpuid) / 2) + (sb * 2));
868 		break;
869 
870 	case DC1:
871 	case DC2:
872 	case DC3:
873 		plen = snprintf(buf, buflen, "/%s%02d/CPUM%d", "CMU", sb,
874 		    CHIP_ID(cpuid));
875 		break;
876 
877 	default:
878 		/* This should never happen */
879 		return (ENODEV);
880 	}
881 
882 	if (plen >= buflen) {
883 		ret = ENOSPC;
884 	} else {
885 		if (lenp)
886 			*lenp = strlen(buf);
887 	}
888 	return (ret);
889 }
890 
891 void
892 plat_nodename_set(void)
893 {
894 	post_xscf_msg((char *)&utsname, sizeof (struct utsname));
895 }
896 
897 caddr_t	efcode_vaddr = NULL;
898 
899 /*
900  * Preallocate enough memory for fcode claims.
901  */
902 
903 caddr_t
904 efcode_alloc(caddr_t alloc_base)
905 {
906 	caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
907 	    MMU_PAGESIZE);
908 	caddr_t vaddr;
909 
910 	/*
911 	 * allocate the physical memory for the Oberon fcode.
912 	 */
913 	if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base,
914 	    efcode_size, MMU_PAGESIZE)) == NULL)
915 		cmn_err(CE_PANIC, "Cannot allocate Efcode Memory");
916 
917 	efcode_vaddr = vaddr;
918 
919 	return (efcode_alloc_base + efcode_size);
920 }
921 
922 caddr_t
923 plat_startup_memlist(caddr_t alloc_base)
924 {
925 	caddr_t tmp_alloc_base;
926 
927 	tmp_alloc_base = efcode_alloc(alloc_base);
928 	tmp_alloc_base =
929 	    (caddr_t)roundup((uintptr_t)tmp_alloc_base, ecache_alignsize);
930 	return (tmp_alloc_base);
931 }
932 
933 void
934 startup_platform(void)
935 {
936 }
937 
938 void
939 plat_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *info)
940 {
941 	int	impl;
942 
943 	impl = cpunodes[cpuid].implementation;
944 	if (IS_OLYMPUS_C(impl) || IS_JUPITER(impl)) {
945 		info->mmu_idx = MMU_ID(cpuid);
946 		info->mmu_nctxs = 8192;
947 	} else {
948 		cmn_err(CE_PANIC, "Unknown processor %d", impl);
949 	}
950 }
951 
952 int
953 plat_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
954 {
955 	if (opl_get_mem_sid == NULL) {
956 		return (ENOTSUP);
957 	}
958 	return (opl_get_mem_sid(unum, buf, buflen, lenp));
959 }
960 
961 int
962 plat_get_mem_offset(uint64_t paddr, uint64_t *offp)
963 {
964 	if (opl_get_mem_offset == NULL) {
965 		return (ENOTSUP);
966 	}
967 	return (opl_get_mem_offset(paddr, offp));
968 }
969 
970 int
971 plat_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
972 {
973 	if (opl_get_mem_addr == NULL) {
974 		return (ENOTSUP);
975 	}
976 	return (opl_get_mem_addr(unum, sid, offset, addrp));
977 }
978 
979 void
980 plat_lock_delay(int *backoff)
981 {
982 	int i;
983 	int cnt;
984 	int flag;
985 	int ctr;
986 	hrtime_t delay_start;
987 	/*
988 	 * Platform specific lock delay code for OPL
989 	 *
990 	 * Using staged linear increases in the delay.
991 	 * The sleep instruction is the preferred method of delay,
992 	 * but is too large of granularity for the initial backoff.
993 	 */
994 
995 	if (*backoff == 0) *backoff = OPL_BOFF_BASE;
996 
997 	flag = !*backoff;
998 
999 	if (*backoff < OPL_BOFF_CAP1) {
1000 		/*
1001 		 * If desired backoff is long enough,
1002 		 * use sleep for most of it
1003 		 */
1004 		for (cnt = *backoff; cnt >= OPL_BOFF_SLEEP;
1005 		    cnt -= OPL_BOFF_SLEEP) {
1006 			cpu_smt_pause();
1007 		}
1008 		/*
1009 		 * spin for small remainder of backoff
1010 		 *
1011 		 * fake call to nulldev included to prevent
1012 		 * compiler from optimizing out the spin loop
1013 		 */
1014 		for (ctr = cnt * OPL_BOFF_SPIN; ctr; ctr--) {
1015 			if (flag) (void) nulldev();
1016 		}
1017 	} else {
1018 		/* backoff is very large.  Fill it by sleeping */
1019 		delay_start = gethrtime();
1020 		cnt = *backoff/OPL_BOFF_SLEEP;
1021 		/*
1022 		 * use sleep instructions for delay
1023 		 */
1024 		for (i = 0; i < cnt; i++) {
1025 			cpu_smt_pause();
1026 		}
1027 
1028 		/*
1029 		 * Note: if the other strand executes a sleep instruction,
1030 		 * then the sleep ends immediately with a minimum time of
1031 		 * 42 clocks.  We check gethrtime to insure we have
1032 		 * waited long enough.  And we include both a short
1033 		 * spin loop and a sleep for any final delay time.
1034 		 */
1035 
1036 		while ((gethrtime() - delay_start) < cnt * OPL_BOFF_TM) {
1037 			cpu_smt_pause();
1038 			for (ctr = OPL_BOFF_SPIN; ctr; ctr--) {
1039 				if (flag) (void) nulldev();
1040 			}
1041 		}
1042 	}
1043 
1044 	/*
1045 	 * We adjust the backoff in three linear stages
1046 	 * The initial stage has small increases as this phase is
1047 	 * usually handle locks with light contention.  We don't want
1048 	 * to have a long backoff on a lock that is available.
1049 	 *
1050 	 * In the second stage, we are in transition, unsure whether
1051 	 * the lock is under heavy contention.  As the failures to
1052 	 * obtain the lock increase, we back off further.
1053 	 *
1054 	 * For the final stage, we are in a heavily contended or
1055 	 * long held long so we want to reduce the number of tries.
1056 	 */
1057 	if (*backoff < OPL_BOFF_CAP1) {
1058 		*backoff += 1;
1059 	} else {
1060 		if (*backoff < OPL_BOFF_CAP2) {
1061 			*backoff += OPL_BOFF_SLEEP;
1062 		} else {
1063 			*backoff += 2 * OPL_BOFF_SLEEP;
1064 		}
1065 		if (*backoff > OPL_BOFF_MAX) {
1066 			*backoff = OPL_BOFF_MAX;
1067 		}
1068 	}
1069 }
1070 
1071 /*
1072  * The following code implements asynchronous call to XSCF to setup the
1073  * domain node name.
1074  */
1075 
1076 #define	FREE_MSG(m)		kmem_free((m), NM_LEN((m)->len))
1077 
1078 /*
1079  * The following three macros define the all operations on the request
1080  * list we are using here, and hide the details of the list
1081  * implementation from the code.
1082  */
1083 #define	PUSH(m) \
1084 	{ \
1085 		(m)->next = ctl_msg.head; \
1086 		(m)->prev = NULL; \
1087 		if ((m)->next != NULL) \
1088 			(m)->next->prev = (m); \
1089 		ctl_msg.head = (m); \
1090 	}
1091 
1092 #define	REMOVE(m) \
1093 	{ \
1094 		if ((m)->prev != NULL) \
1095 			(m)->prev->next = (m)->next; \
1096 		else \
1097 			ctl_msg.head = (m)->next; \
1098 		if ((m)->next != NULL) \
1099 			(m)->next->prev = (m)->prev; \
1100 	}
1101 
1102 #define	FREE_THE_TAIL(head) \
1103 	{ \
1104 		nm_msg_t *n_msg, *m; \
1105 		m = (head)->next; \
1106 		(head)->next = NULL; \
1107 		while (m != NULL) { \
1108 			n_msg = m->next; \
1109 			FREE_MSG(m); \
1110 			m = n_msg; \
1111 		} \
1112 	}
1113 
1114 #define	SCF_PUTINFO(f, s, p) \
1115 	f(KEY_ESCF, 0x01, 0, s, p)
1116 
1117 #define	PASS2XSCF(m, r)	((r = SCF_PUTINFO(ctl_msg.scf_service_function, \
1118 					    (m)->len, (m)->data)) == 0)
1119 
1120 /*
1121  * The value of the following macro loosely depends on the
1122  * value of the "device busy" timeout used in the SCF driver.
1123  * (See pass2xscf_thread()).
1124  */
1125 #define	SCF_DEVBUSY_DELAY	10
1126 
1127 /*
1128  * The default number of attempts to contact the scf driver
1129  * if we cannot fetch any information about the timeout value
1130  * it uses.
1131  */
1132 
1133 #define	REPEATS		4
1134 
1135 typedef struct nm_msg {
1136 	struct nm_msg *next;
1137 	struct nm_msg *prev;
1138 	int len;
1139 	char data[1];
1140 } nm_msg_t;
1141 
1142 #define	NM_LEN(len)		(sizeof (nm_msg_t) + (len) - 1)
1143 
1144 static struct ctlmsg {
1145 	nm_msg_t	*head;
1146 	nm_msg_t	*now_serving;
1147 	kmutex_t	nm_lock;
1148 	kthread_t	*nmt;
1149 	int		cnt;
1150 	int (*scf_service_function)(uint32_t, uint8_t,
1151 				    uint32_t, uint32_t, void *);
1152 } ctl_msg;
1153 
1154 static void
1155 post_xscf_msg(char *dp, int len)
1156 {
1157 	nm_msg_t *msg;
1158 
1159 	msg = (nm_msg_t *)kmem_zalloc(NM_LEN(len), KM_SLEEP);
1160 
1161 	bcopy(dp, msg->data, len);
1162 	msg->len = len;
1163 
1164 	mutex_enter(&ctl_msg.nm_lock);
1165 	if (ctl_msg.nmt == NULL) {
1166 		ctl_msg.nmt =  thread_create(NULL, 0, pass2xscf_thread,
1167 		    NULL, 0, &p0, TS_RUN, minclsyspri);
1168 	}
1169 
1170 	PUSH(msg);
1171 	ctl_msg.cnt++;
1172 	mutex_exit(&ctl_msg.nm_lock);
1173 }
1174 
1175 static void
1176 pass2xscf_thread()
1177 {
1178 	nm_msg_t *msg;
1179 	int ret;
1180 	uint_t i, msg_sent, xscf_driver_delay;
1181 	static uint_t repeat_cnt;
1182 	uint_t *scf_wait_cnt;
1183 
1184 	mutex_enter(&ctl_msg.nm_lock);
1185 
1186 	/*
1187 	 * Find the address of the SCF put routine if it's not done yet.
1188 	 */
1189 	if (ctl_msg.scf_service_function == NULL) {
1190 		if ((ctl_msg.scf_service_function =
1191 		    (int (*)(uint32_t, uint8_t, uint32_t, uint32_t, void *))
1192 		    modgetsymvalue("scf_service_putinfo", 0)) == NULL) {
1193 			cmn_err(CE_NOTE, "pass2xscf_thread: "
1194 			    "scf_service_putinfo not found\n");
1195 			ctl_msg.nmt = NULL;
1196 			mutex_exit(&ctl_msg.nm_lock);
1197 			return;
1198 		}
1199 	}
1200 
1201 	/*
1202 	 * Calculate the number of attempts to connect XSCF based on the
1203 	 * scf driver delay (which is
1204 	 * SCF_DEVBUSY_DELAY*scf_online_wait_rcnt seconds) and the value
1205 	 * of xscf_connect_delay (the total number of seconds to wait
1206 	 * till xscf get ready.)
1207 	 */
1208 	if (repeat_cnt == 0) {
1209 		if ((scf_wait_cnt =
1210 		    (uint_t *)
1211 		    modgetsymvalue("scf_online_wait_rcnt", 0)) == NULL) {
1212 			repeat_cnt = REPEATS;
1213 		} else {
1214 
1215 			xscf_driver_delay = *scf_wait_cnt *
1216 			    SCF_DEVBUSY_DELAY;
1217 			repeat_cnt = (xscf_connect_delay/xscf_driver_delay) + 1;
1218 		}
1219 	}
1220 
1221 	while (ctl_msg.cnt != 0) {
1222 
1223 		/*
1224 		 * Take the very last request from the queue,
1225 		 */
1226 		ctl_msg.now_serving = ctl_msg.head;
1227 		ASSERT(ctl_msg.now_serving != NULL);
1228 
1229 		/*
1230 		 * and discard all the others if any.
1231 		 */
1232 		FREE_THE_TAIL(ctl_msg.now_serving);
1233 		ctl_msg.cnt = 1;
1234 		mutex_exit(&ctl_msg.nm_lock);
1235 
1236 		/*
1237 		 * Pass the name to XSCF. Note please, we do not hold the
1238 		 * mutex while we are doing this.
1239 		 */
1240 		msg_sent = 0;
1241 		for (i = 0; i < repeat_cnt; i++) {
1242 			if (PASS2XSCF(ctl_msg.now_serving, ret)) {
1243 				msg_sent = 1;
1244 				break;
1245 			} else {
1246 				if (ret != EBUSY) {
1247 					cmn_err(CE_NOTE, "pass2xscf_thread:"
1248 					    " unexpected return code"
1249 					    " from scf_service_putinfo():"
1250 					    " %d\n", ret);
1251 				}
1252 			}
1253 		}
1254 
1255 		if (msg_sent) {
1256 
1257 			/*
1258 			 * Remove the request from the list
1259 			 */
1260 			mutex_enter(&ctl_msg.nm_lock);
1261 			msg = ctl_msg.now_serving;
1262 			ctl_msg.now_serving = NULL;
1263 			REMOVE(msg);
1264 			ctl_msg.cnt--;
1265 			mutex_exit(&ctl_msg.nm_lock);
1266 			FREE_MSG(msg);
1267 		} else {
1268 
1269 			/*
1270 			 * If while we have tried to communicate with
1271 			 * XSCF there were any other requests we are
1272 			 * going to drop this one and take the latest
1273 			 * one.  Otherwise we will try to pass this one
1274 			 * again.
1275 			 */
1276 			cmn_err(CE_NOTE,
1277 			    "pass2xscf_thread: "
1278 			    "scf_service_putinfo "
1279 			    "not responding\n");
1280 		}
1281 		mutex_enter(&ctl_msg.nm_lock);
1282 	}
1283 
1284 	/*
1285 	 * The request queue is empty, exit.
1286 	 */
1287 	ctl_msg.nmt = NULL;
1288 	mutex_exit(&ctl_msg.nm_lock);
1289 }
1290