xref: /titanic_50/usr/src/uts/sun4u/opl/os/opl.c (revision c77a61a72b5ecdc507d6cf104142edd371a16c84)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/cpuvar.h>
29 #include <sys/systm.h>
30 #include <sys/sysmacros.h>
31 #include <sys/promif.h>
32 #include <sys/platform_module.h>
33 #include <sys/cmn_err.h>
34 #include <sys/errno.h>
35 #include <sys/machsystm.h>
36 #include <sys/bootconf.h>
37 #include <sys/nvpair.h>
38 #include <sys/kobj.h>
39 #include <sys/mem_cage.h>
40 #include <sys/opl.h>
41 #include <sys/scfd/scfostoescf.h>
42 #include <sys/cpu_sgnblk_defs.h>
43 #include <sys/utsname.h>
44 #include <sys/ddi.h>
45 #include <sys/sunndi.h>
46 #include <sys/lgrp.h>
47 #include <sys/memnode.h>
48 #include <sys/sysmacros.h>
49 #include <vm/vm_dep.h>
50 
51 int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *);
52 int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp);
53 int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp);
54 int (*opl_get_mem_addr)(char *unum, char *sid,
55     uint64_t offset, uint64_t *paddr);
56 
57 /* Memory for fcode claims.  16k times # maximum possible IO units */
58 #define	EFCODE_SIZE	(OPL_MAX_BOARDS * OPL_MAX_IO_UNITS_PER_BOARD * 0x4000)
59 int efcode_size = EFCODE_SIZE;
60 
61 #define	OPL_MC_MEMBOARD_SHIFT 38	/* Boards on 256BG boundary */
62 
63 /* Set the maximum number of boards for DR */
64 int opl_boards = OPL_MAX_BOARDS;
65 
66 void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t);
67 
68 extern int tsb_lgrp_affinity;
69 
70 int opl_tsb_spares = (OPL_MAX_BOARDS) * (OPL_MAX_PCICH_UNITS_PER_BOARD) *
71 	(OPL_MAX_TSBS_PER_PCICH);
72 
73 pgcnt_t opl_startup_cage_size = 0;
74 
75 static opl_model_info_t opl_models[] = {
76 	{ "FF1", OPL_MAX_BOARDS_FF1, FF1, STD_DISPATCH_TABLE },
77 	{ "FF2", OPL_MAX_BOARDS_FF2, FF2, STD_DISPATCH_TABLE },
78 	{ "DC1", OPL_MAX_BOARDS_DC1, DC1, STD_DISPATCH_TABLE },
79 	{ "DC2", OPL_MAX_BOARDS_DC2, DC2, EXT_DISPATCH_TABLE },
80 	{ "DC3", OPL_MAX_BOARDS_DC3, DC3, EXT_DISPATCH_TABLE },
81 };
82 static	int	opl_num_models = sizeof (opl_models)/sizeof (opl_model_info_t);
83 
84 /*
85  * opl_cur_model defaults to FF1.
86  */
87 static	opl_model_info_t *opl_cur_model = &opl_models[0];
88 
89 static struct memlist *opl_memlist_per_board(struct memlist *ml);
90 
91 int
92 set_platform_max_ncpus(void)
93 {
94 	return (OPL_MAX_CPU_PER_BOARD * OPL_MAX_BOARDS);
95 }
96 
97 int
98 set_platform_tsb_spares(void)
99 {
100 	return (MIN(opl_tsb_spares, MAX_UPA));
101 }
102 
103 static void
104 set_model_info()
105 {
106 	extern int ts_dispatch_extended;
107 	char	name[MAXSYSNAME];
108 	int	i;
109 
110 	/*
111 	 * Get model name from the root node.
112 	 *
113 	 * We are using the prom device tree since, at this point,
114 	 * the Solaris device tree is not yet setup.
115 	 */
116 	(void) prom_getprop(prom_rootnode(), "model", (caddr_t)name);
117 
118 	for (i = 0; i < opl_num_models; i++) {
119 		if (strncmp(name, opl_models[i].model_name, MAXSYSNAME) == 0) {
120 			opl_cur_model = &opl_models[i];
121 			break;
122 		}
123 	}
124 
125 	if (i == opl_num_models)
126 		halt("No valid OPL model is found!");
127 
128 	if ((opl_cur_model->model_cmds & EXT_DISPATCH_TABLE) &&
129 				(ts_dispatch_extended == -1)) {
130 		/*
131 		 * Based on a platform model, select a dispatch table.
132 		 * Only DC2 and DC3 systems uses the alternate/extended
133 		 * TS dispatch table.
134 		 * FF1, FF2 and DC1 systems used standard dispatch tables.
135 		 */
136 		ts_dispatch_extended = 1;
137 	}
138 
139 }
140 
141 static void
142 set_max_mmu_ctxdoms()
143 {
144 	extern uint_t	max_mmu_ctxdoms;
145 	int		max_boards;
146 
147 	/*
148 	 * From the model, get the maximum number of boards
149 	 * supported and set the value accordingly. If the model
150 	 * could not be determined or recognized, we assume the max value.
151 	 */
152 	if (opl_cur_model == NULL)
153 		max_boards = OPL_MAX_BOARDS;
154 	else
155 		max_boards = opl_cur_model->model_max_boards;
156 
157 	/*
158 	 * On OPL, cores and MMUs are one-to-one.
159 	 */
160 	max_mmu_ctxdoms = OPL_MAX_CORE_UNITS_PER_BOARD * max_boards;
161 }
162 
163 #pragma weak mmu_init_large_pages
164 
165 void
166 set_platform_defaults(void)
167 {
168 	extern char *tod_module_name;
169 	extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int);
170 	extern void mmu_init_large_pages(size_t);
171 
172 	/* Set the CPU signature function pointer */
173 	cpu_sgn_func = cpu_sgn_update;
174 
175 	/* Set appropriate tod module for OPL platform */
176 	ASSERT(tod_module_name == NULL);
177 	tod_module_name = "todopl";
178 
179 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
180 	    (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
181 		if (&mmu_init_large_pages)
182 			mmu_init_large_pages(mmu_ism_pagesize);
183 	}
184 
185 	tsb_lgrp_affinity = 1;
186 
187 	set_model_info();
188 	set_max_mmu_ctxdoms();
189 }
190 
191 /*
192  * Convert logical a board number to a physical one.
193  */
194 
195 #define	LSBPROP		"board#"
196 #define	PSBPROP		"physical-board#"
197 
198 int
199 opl_get_physical_board(int id)
200 {
201 	dev_info_t	*root_dip, *dip = NULL;
202 	char		*dname = NULL;
203 	int		circ;
204 
205 	pnode_t		pnode;
206 	char		pname[MAXSYSNAME] = {0};
207 
208 	int		lsb_id;	/* Logical System Board ID */
209 	int		psb_id;	/* Physical System Board ID */
210 
211 
212 	/*
213 	 * This function is called on early stage of bootup when the
214 	 * kernel device tree is not initialized yet, and also
215 	 * later on when the device tree is up. We want to try
216 	 * the fast track first.
217 	 */
218 	root_dip = ddi_root_node();
219 	if (root_dip) {
220 		/* Get from devinfo node */
221 		ndi_devi_enter(root_dip, &circ);
222 		for (dip = ddi_get_child(root_dip); dip;
223 		    dip = ddi_get_next_sibling(dip)) {
224 
225 			dname = ddi_node_name(dip);
226 			if (strncmp(dname, "pseudo-mc", 9) != 0)
227 				continue;
228 
229 			if ((lsb_id = (int)ddi_getprop(DDI_DEV_T_ANY, dip,
230 			    DDI_PROP_DONTPASS, LSBPROP, -1)) == -1)
231 				continue;
232 
233 			if (id == lsb_id) {
234 				if ((psb_id = (int)ddi_getprop(DDI_DEV_T_ANY,
235 				    dip, DDI_PROP_DONTPASS, PSBPROP, -1))
236 				    == -1) {
237 					ndi_devi_exit(root_dip, circ);
238 					return (-1);
239 				} else {
240 					ndi_devi_exit(root_dip, circ);
241 					return (psb_id);
242 				}
243 			}
244 		}
245 		ndi_devi_exit(root_dip, circ);
246 	}
247 
248 	/*
249 	 * We do not have the kernel device tree, or we did not
250 	 * find the node for some reason (let's say the kernel
251 	 * device tree was modified), let's try the OBP tree.
252 	 */
253 	pnode = prom_rootnode();
254 	for (pnode = prom_childnode(pnode); pnode;
255 	    pnode = prom_nextnode(pnode)) {
256 
257 		if ((prom_getprop(pnode, "name", (caddr_t)pname) == -1) ||
258 		    (strncmp(pname, "pseudo-mc", 9) != 0))
259 			continue;
260 
261 		if (prom_getprop(pnode, LSBPROP, (caddr_t)&lsb_id) == -1)
262 			continue;
263 
264 		if (id == lsb_id) {
265 			if (prom_getprop(pnode, PSBPROP,
266 			    (caddr_t)&psb_id) == -1) {
267 				return (-1);
268 			} else {
269 				return (psb_id);
270 			}
271 		}
272 	}
273 
274 	return (-1);
275 }
276 
277 /*
278  * For OPL it's possible that memory from two or more successive boards
279  * will be contiguous across the boards, and therefore represented as a
280  * single chunk.
281  * This function splits such chunks down the board boundaries.
282  */
283 static struct memlist *
284 opl_memlist_per_board(struct memlist *ml)
285 {
286 	uint64_t ssize, low, high, boundary;
287 	struct memlist *head, *tail, *new;
288 
289 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
290 
291 	head = tail = NULL;
292 
293 	for (; ml; ml = ml->next) {
294 		low  = (uint64_t)ml->address;
295 		high = low+(uint64_t)(ml->size);
296 		while (low < high) {
297 			boundary = roundup(low+1, ssize);
298 			boundary = MIN(high, boundary);
299 			new = kmem_zalloc(sizeof (struct memlist), KM_SLEEP);
300 			new->address = low;
301 			new->size = boundary - low;
302 			if (head == NULL)
303 				head = new;
304 			if (tail) {
305 				tail->next = new;
306 				new->prev = tail;
307 			}
308 			tail = new;
309 			low = boundary;
310 		}
311 	}
312 	return (head);
313 }
314 
315 void
316 set_platform_cage_params(void)
317 {
318 	extern pgcnt_t total_pages;
319 	extern struct memlist *phys_avail;
320 	struct memlist *ml, *tml;
321 	int ret;
322 
323 	if (kernel_cage_enable) {
324 		pgcnt_t preferred_cage_size;
325 
326 		preferred_cage_size =
327 			MAX(opl_startup_cage_size, total_pages / 256);
328 
329 		ml = opl_memlist_per_board(phys_avail);
330 
331 		kcage_range_lock();
332 		/*
333 		 * Note: we are assuming that post has load the
334 		 * whole show in to the high end of memory. Having
335 		 * taken this leap, we copy the whole of phys_avail
336 		 * the glist and arrange for the cage to grow
337 		 * downward (descending pfns).
338 		 */
339 		ret = kcage_range_init(ml, 1);
340 
341 		/* free the memlist */
342 		do {
343 			tml = ml->next;
344 			kmem_free(ml, sizeof (struct memlist));
345 			ml = tml;
346 		} while (ml != NULL);
347 
348 		if (ret == 0)
349 			kcage_init(preferred_cage_size);
350 		kcage_range_unlock();
351 	}
352 
353 	if (kcage_on)
354 		cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED");
355 	else
356 		cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED");
357 }
358 
359 /*ARGSUSED*/
360 int
361 plat_cpu_poweron(struct cpu *cp)
362 {
363 	int (*opl_cpu_poweron)(struct cpu *) = NULL;
364 
365 	opl_cpu_poweron =
366 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0);
367 
368 	if (opl_cpu_poweron == NULL)
369 		return (ENOTSUP);
370 	else
371 		return ((opl_cpu_poweron)(cp));
372 
373 }
374 
375 /*ARGSUSED*/
376 int
377 plat_cpu_poweroff(struct cpu *cp)
378 {
379 	int (*opl_cpu_poweroff)(struct cpu *) = NULL;
380 
381 	opl_cpu_poweroff =
382 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0);
383 
384 	if (opl_cpu_poweroff == NULL)
385 		return (ENOTSUP);
386 	else
387 		return ((opl_cpu_poweroff)(cp));
388 
389 }
390 
391 int
392 plat_max_boards(void)
393 {
394 	return (OPL_MAX_BOARDS);
395 }
396 
397 int
398 plat_max_cpu_units_per_board(void)
399 {
400 	return (OPL_MAX_CPU_PER_BOARD);
401 }
402 
403 int
404 plat_max_mem_units_per_board(void)
405 {
406 	return (OPL_MAX_MEM_UNITS_PER_BOARD);
407 }
408 
409 int
410 plat_max_io_units_per_board(void)
411 {
412 	return (OPL_MAX_IO_UNITS_PER_BOARD);
413 }
414 
415 int
416 plat_max_cmp_units_per_board(void)
417 {
418 	return (OPL_MAX_CMP_UNITS_PER_BOARD);
419 }
420 
421 int
422 plat_max_core_units_per_board(void)
423 {
424 	return (OPL_MAX_CORE_UNITS_PER_BOARD);
425 }
426 
427 int
428 plat_pfn_to_mem_node(pfn_t pfn)
429 {
430 	return (pfn >> mem_node_pfn_shift);
431 }
432 
433 /* ARGSUSED */
434 void
435 plat_build_mem_nodes(u_longlong_t *list, size_t nelems)
436 {
437 	size_t	elem;
438 	pfn_t	basepfn;
439 	pgcnt_t	npgs;
440 	uint64_t	boundary, ssize;
441 	uint64_t	low, high;
442 
443 	/*
444 	 * OPL mem slices are always aligned on a 256GB boundary.
445 	 */
446 	mem_node_pfn_shift = OPL_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT;
447 	mem_node_physalign = 0;
448 
449 	/*
450 	 * Boot install lists are arranged <addr, len>, <addr, len>, ...
451 	 */
452 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
453 	for (elem = 0; elem < nelems; elem += 2) {
454 		low  = (uint64_t)list[elem];
455 		high = low+(uint64_t)(list[elem+1]);
456 		while (low < high) {
457 			boundary = roundup(low+1, ssize);
458 			boundary = MIN(high, boundary);
459 			basepfn = btop(low);
460 			npgs = btop(boundary - low);
461 			mem_node_add_slice(basepfn, basepfn + npgs - 1);
462 			low = boundary;
463 		}
464 	}
465 }
466 
467 /*
468  * Find the CPU associated with a slice at boot-time.
469  */
470 void
471 plat_fill_mc(pnode_t nodeid)
472 {
473 	int board;
474 	int memnode;
475 	struct {
476 		uint64_t	addr;
477 		uint64_t	size;
478 	} mem_range;
479 
480 	if (prom_getprop(nodeid, "board#", (caddr_t)&board) < 0) {
481 		panic("Can not find board# property in mc node %x", nodeid);
482 	}
483 	if (prom_getprop(nodeid, "sb-mem-ranges", (caddr_t)&mem_range) < 0) {
484 		panic("Can not find sb-mem-ranges property in mc node %x",
485 			nodeid);
486 	}
487 	memnode = mem_range.addr >> OPL_MC_MEMBOARD_SHIFT;
488 	plat_assign_lgrphand_to_mem_node(board, memnode);
489 }
490 
491 /*
492  * Return the platform handle for the lgroup containing the given CPU
493  *
494  * For OPL, lgroup platform handle == board #.
495  */
496 
497 extern int mpo_disabled;
498 extern lgrp_handle_t lgrp_default_handle;
499 
500 lgrp_handle_t
501 plat_lgrp_cpu_to_hand(processorid_t id)
502 {
503 	lgrp_handle_t plathand;
504 
505 	/*
506 	 * Return the real platform handle for the CPU until
507 	 * such time as we know that MPO should be disabled.
508 	 * At that point, we set the "mpo_disabled" flag to true,
509 	 * and from that point on, return the default handle.
510 	 *
511 	 * By the time we know that MPO should be disabled, the
512 	 * first CPU will have already been added to a leaf
513 	 * lgroup, but that's ok. The common lgroup code will
514 	 * double check that the boot CPU is in the correct place,
515 	 * and in the case where mpo should be disabled, will move
516 	 * it to the root if necessary.
517 	 */
518 	if (mpo_disabled) {
519 		/* If MPO is disabled, return the default (UMA) handle */
520 		plathand = lgrp_default_handle;
521 	} else
522 		plathand = (lgrp_handle_t)LSB_ID(id);
523 	return (plathand);
524 }
525 
526 /*
527  * Platform specific lgroup initialization
528  */
529 void
530 plat_lgrp_init(void)
531 {
532 	extern uint32_t lgrp_expand_proc_thresh;
533 	extern uint32_t lgrp_expand_proc_diff;
534 
535 	/*
536 	 * Set tuneables for the OPL architecture
537 	 *
538 	 * lgrp_expand_proc_thresh is the minimum load on the lgroups
539 	 * this process is currently running on before considering
540 	 * expanding threads to another lgroup.
541 	 *
542 	 * lgrp_expand_proc_diff determines how much less the remote lgroup
543 	 * must be loaded before expanding to it.
544 	 *
545 	 * Since remote latencies can be costly, attempt to keep 3 threads
546 	 * within the same lgroup before expanding to the next lgroup.
547 	 */
548 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX * 3;
549 	lgrp_expand_proc_diff = LGRP_LOADAVG_THREAD_MAX;
550 }
551 
552 /*
553  * Platform notification of lgroup (re)configuration changes
554  */
555 /*ARGSUSED*/
556 void
557 plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg)
558 {
559 	update_membounds_t *umb;
560 	lgrp_config_mem_rename_t lmr;
561 	int sbd, tbd;
562 	lgrp_handle_t hand, shand, thand;
563 	int mnode, snode, tnode;
564 	pfn_t start, end;
565 
566 	if (mpo_disabled)
567 		return;
568 
569 	switch (evt) {
570 
571 	case LGRP_CONFIG_MEM_ADD:
572 		/*
573 		 * Establish the lgroup handle to memnode translation.
574 		 */
575 		umb = (update_membounds_t *)arg;
576 
577 		hand = umb->u_board;
578 		mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT);
579 		plat_assign_lgrphand_to_mem_node(hand, mnode);
580 
581 		break;
582 
583 	case LGRP_CONFIG_MEM_DEL:
584 		/*
585 		 * Special handling for possible memory holes.
586 		 */
587 		umb = (update_membounds_t *)arg;
588 		hand = umb->u_board;
589 		if ((mnode = plat_lgrphand_to_mem_node(hand)) != -1) {
590 			if (mem_node_config[mnode].exists) {
591 				start = mem_node_config[mnode].physbase;
592 				end = mem_node_config[mnode].physmax;
593 				mem_node_pre_del_slice(start, end);
594 				mem_node_post_del_slice(start, end, 0);
595 			}
596 		}
597 
598 		break;
599 
600 	case LGRP_CONFIG_MEM_RENAME:
601 		/*
602 		 * During a DR copy-rename operation, all of the memory
603 		 * on one board is moved to another board -- but the
604 		 * addresses/pfns and memnodes don't change. This means
605 		 * the memory has changed locations without changing identity.
606 		 *
607 		 * Source is where we are copying from and target is where we
608 		 * are copying to.  After source memnode is copied to target
609 		 * memnode, the physical addresses of the target memnode are
610 		 * renamed to match what the source memnode had.  Then target
611 		 * memnode can be removed and source memnode can take its
612 		 * place.
613 		 *
614 		 * To do this, swap the lgroup handle to memnode mappings for
615 		 * the boards, so target lgroup will have source memnode and
616 		 * source lgroup will have empty target memnode which is where
617 		 * its memory will go (if any is added to it later).
618 		 *
619 		 * Then source memnode needs to be removed from its lgroup
620 		 * and added to the target lgroup where the memory was living
621 		 * but under a different name/memnode.  The memory was in the
622 		 * target memnode and now lives in the source memnode with
623 		 * different physical addresses even though it is the same
624 		 * memory.
625 		 */
626 		sbd = arg & 0xffff;
627 		tbd = (arg & 0xffff0000) >> 16;
628 		shand = sbd;
629 		thand = tbd;
630 		snode = plat_lgrphand_to_mem_node(shand);
631 		tnode = plat_lgrphand_to_mem_node(thand);
632 
633 		/*
634 		 * Special handling for possible memory holes.
635 		 */
636 		if (tnode != -1 && mem_node_config[tnode].exists) {
637 			start = mem_node_config[mnode].physbase;
638 			end = mem_node_config[mnode].physmax;
639 			mem_node_pre_del_slice(start, end);
640 			mem_node_post_del_slice(start, end, 0);
641 		}
642 
643 		plat_assign_lgrphand_to_mem_node(thand, snode);
644 		plat_assign_lgrphand_to_mem_node(shand, tnode);
645 
646 		lmr.lmem_rename_from = shand;
647 		lmr.lmem_rename_to = thand;
648 
649 		/*
650 		 * Remove source memnode of copy rename from its lgroup
651 		 * and add it to its new target lgroup
652 		 */
653 		lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode,
654 		    (uintptr_t)&lmr);
655 
656 		break;
657 
658 	default:
659 		break;
660 	}
661 }
662 
663 /*
664  * Return latency between "from" and "to" lgroups
665  *
666  * This latency number can only be used for relative comparison
667  * between lgroups on the running system, cannot be used across platforms,
668  * and may not reflect the actual latency.  It is platform and implementation
669  * specific, so platform gets to decide its value.  It would be nice if the
670  * number was at least proportional to make comparisons more meaningful though.
671  * NOTE: The numbers below are supposed to be load latencies for uncached
672  * memory divided by 10.
673  *
674  */
675 int
676 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
677 {
678 	/*
679 	 * Return min remote latency when there are more than two lgroups
680 	 * (root and child) and getting latency between two different lgroups
681 	 * or root is involved
682 	 */
683 	if (lgrp_optimizations() && (from != to ||
684 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
685 		return (42);
686 	else
687 		return (35);
688 }
689 
690 /*
691  * Return platform handle for root lgroup
692  */
693 lgrp_handle_t
694 plat_lgrp_root_hand(void)
695 {
696 	if (mpo_disabled)
697 		return (lgrp_default_handle);
698 
699 	return (LGRP_DEFAULT_HANDLE);
700 }
701 
702 /*ARGSUSED*/
703 void
704 plat_freelist_process(int mnode)
705 {
706 }
707 
708 void
709 load_platform_drivers(void)
710 {
711 	(void) i_ddi_attach_pseudo_node("dr");
712 }
713 
714 /*
715  * No platform drivers on this platform
716  */
717 char *platform_module_list[] = {
718 	(char *)0
719 };
720 
721 /*ARGSUSED*/
722 void
723 plat_tod_fault(enum tod_fault_type tod_bad)
724 {
725 }
726 
727 /*ARGSUSED*/
728 void
729 cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid)
730 {
731 	static void (*scf_panic_callback)(int);
732 	static void (*scf_shutdown_callback)(int);
733 
734 	/*
735 	 * This is for notifing system panic/shutdown to SCF.
736 	 * In case of shutdown and panic, SCF call back
737 	 * function should be called.
738 	 *  <SCF call back functions>
739 	 *   scf_panic_callb()   : panicsys()->panic_quiesce_hw()
740 	 *   scf_shutdown_callb(): halt() or power_down() or reboot_machine()
741 	 * cpuid should be -1 and state should be SIGST_EXIT.
742 	 */
743 	if (state == SIGST_EXIT && cpuid == -1) {
744 
745 		/*
746 		 * find the symbol for the SCF panic callback routine in driver
747 		 */
748 		if (scf_panic_callback == NULL)
749 			scf_panic_callback = (void (*)(int))
750 				modgetsymvalue("scf_panic_callb", 0);
751 		if (scf_shutdown_callback == NULL)
752 			scf_shutdown_callback = (void (*)(int))
753 				modgetsymvalue("scf_shutdown_callb", 0);
754 
755 		switch (sub_state) {
756 		case SIGSUBST_PANIC:
757 			if (scf_panic_callback == NULL) {
758 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
759 				    "scf_panic_callb not found\n");
760 				return;
761 			}
762 			scf_panic_callback(SIGSUBST_PANIC);
763 			break;
764 
765 		case SIGSUBST_HALT:
766 			if (scf_shutdown_callback == NULL) {
767 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
768 				    "scf_shutdown_callb not found\n");
769 				return;
770 			}
771 			scf_shutdown_callback(SIGSUBST_HALT);
772 			break;
773 
774 		case SIGSUBST_ENVIRON:
775 			if (scf_shutdown_callback == NULL) {
776 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
777 				    "scf_shutdown_callb not found\n");
778 				return;
779 			}
780 			scf_shutdown_callback(SIGSUBST_ENVIRON);
781 			break;
782 
783 		case SIGSUBST_REBOOT:
784 			if (scf_shutdown_callback == NULL) {
785 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
786 				    "scf_shutdown_callb not found\n");
787 				return;
788 			}
789 			scf_shutdown_callback(SIGSUBST_REBOOT);
790 			break;
791 		}
792 	}
793 }
794 
795 /*ARGSUSED*/
796 int
797 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
798 	int flt_in_memory, ushort_t flt_status,
799 	char *buf, int buflen, int *lenp)
800 {
801 	/*
802 	 * check if it's a Memory error.
803 	 */
804 	if (flt_in_memory) {
805 		if (opl_get_mem_unum != NULL) {
806 			return (opl_get_mem_unum(synd_code, flt_addr,
807 				buf, buflen, lenp));
808 		} else {
809 			return (ENOTSUP);
810 		}
811 	} else {
812 		return (ENOTSUP);
813 	}
814 }
815 
816 /*ARGSUSED*/
817 int
818 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
819 {
820 	int	ret = 0;
821 	uint_t	sb;
822 	int	plen;
823 
824 	sb = opl_get_physical_board(LSB_ID(cpuid));
825 	if (sb == -1) {
826 		return (ENXIO);
827 	}
828 
829 	ASSERT((opl_cur_model - opl_models) == (opl_cur_model->model_type));
830 
831 	switch (opl_cur_model->model_type) {
832 	case FF1:
833 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_A",
834 		    CHIP_ID(cpuid) / 2);
835 		break;
836 
837 	case FF2:
838 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_B",
839 		    (CHIP_ID(cpuid) / 2) + (sb * 2));
840 		break;
841 
842 	case DC1:
843 	case DC2:
844 	case DC3:
845 		plen = snprintf(buf, buflen, "/%s%02d/CPUM%d", "CMU", sb,
846 		    CHIP_ID(cpuid));
847 		break;
848 
849 	default:
850 		/* This should never happen */
851 		return (ENODEV);
852 	}
853 
854 	if (plen >= buflen) {
855 		ret = ENOSPC;
856 	} else {
857 		if (lenp)
858 			*lenp = strlen(buf);
859 	}
860 	return (ret);
861 }
862 
863 #define	SCF_PUTINFO(f, s, p)	\
864 	f(KEY_ESCF, 0x01, 0, s, p)
865 void
866 plat_nodename_set(void)
867 {
868 	void *datap;
869 	static int (*scf_service_function)(uint32_t, uint8_t,
870 	    uint32_t, uint32_t, void *);
871 	int counter = 5;
872 
873 	/*
874 	 * find the symbol for the SCF put routine in driver
875 	 */
876 	if (scf_service_function == NULL)
877 		scf_service_function =
878 			(int (*)(uint32_t, uint8_t, uint32_t, uint32_t, void *))
879 			modgetsymvalue("scf_service_putinfo", 0);
880 
881 	/*
882 	 * If the symbol was found, call it.  Otherwise, log a note (but not to
883 	 * the console).
884 	 */
885 
886 	if (scf_service_function == NULL) {
887 		cmn_err(CE_NOTE,
888 		    "!plat_nodename_set: scf_service_putinfo not found\n");
889 		return;
890 	}
891 
892 	datap =
893 	    (struct utsname *)kmem_zalloc(sizeof (struct utsname), KM_SLEEP);
894 
895 	if (datap == NULL) {
896 		return;
897 	}
898 
899 	bcopy((struct utsname *)&utsname,
900 	    (struct utsname *)datap, sizeof (struct utsname));
901 
902 	while ((SCF_PUTINFO(scf_service_function,
903 		sizeof (struct utsname), datap) == EBUSY) && (counter-- > 0)) {
904 		delay(10 * drv_usectohz(1000000));
905 	}
906 	if (counter == 0)
907 		cmn_err(CE_NOTE,
908 			"!plat_nodename_set: "
909 			"scf_service_putinfo not responding\n");
910 
911 	kmem_free(datap, sizeof (struct utsname));
912 }
913 
914 caddr_t	efcode_vaddr = NULL;
915 
916 /*
917  * Preallocate enough memory for fcode claims.
918  */
919 
920 caddr_t
921 efcode_alloc(caddr_t alloc_base)
922 {
923 	caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
924 	    MMU_PAGESIZE);
925 	caddr_t vaddr;
926 
927 	/*
928 	 * allocate the physical memory for the Oberon fcode.
929 	 */
930 	if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base,
931 	    efcode_size, MMU_PAGESIZE)) == NULL)
932 		cmn_err(CE_PANIC, "Cannot allocate Efcode Memory");
933 
934 	efcode_vaddr = vaddr;
935 
936 	return (efcode_alloc_base + efcode_size);
937 }
938 
939 caddr_t
940 plat_startup_memlist(caddr_t alloc_base)
941 {
942 	caddr_t tmp_alloc_base;
943 
944 	tmp_alloc_base = efcode_alloc(alloc_base);
945 	tmp_alloc_base =
946 	    (caddr_t)roundup((uintptr_t)tmp_alloc_base, ecache_alignsize);
947 	return (tmp_alloc_base);
948 }
949 
950 void
951 startup_platform(void)
952 {
953 }
954 
955 void
956 plat_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *info)
957 {
958 	int	impl;
959 
960 	impl = cpunodes[cpuid].implementation;
961 	if (IS_OLYMPUS_C(impl)) {
962 		info->mmu_idx = MMU_ID(cpuid);
963 		info->mmu_nctxs = 8192;
964 	} else {
965 		cmn_err(CE_PANIC, "Unknown processor %d", impl);
966 	}
967 }
968 
969 int
970 plat_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
971 {
972 	if (opl_get_mem_sid == NULL) {
973 		return (ENOTSUP);
974 	}
975 	return (opl_get_mem_sid(unum, buf, buflen, lenp));
976 }
977 
978 int
979 plat_get_mem_offset(uint64_t paddr, uint64_t *offp)
980 {
981 	if (opl_get_mem_offset == NULL) {
982 		return (ENOTSUP);
983 	}
984 	return (opl_get_mem_offset(paddr, offp));
985 }
986 
987 int
988 plat_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
989 {
990 	if (opl_get_mem_addr == NULL) {
991 		return (ENOTSUP);
992 	}
993 	return (opl_get_mem_addr(unum, sid, offset, addrp));
994 }
995