xref: /titanic_50/usr/src/uts/sun4u/opl/os/opl.c (revision 73cc0e021f4115db3085cd78083c42c8be4559e3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/cpuvar.h>
29 #include <sys/systm.h>
30 #include <sys/sysmacros.h>
31 #include <sys/promif.h>
32 #include <sys/platform_module.h>
33 #include <sys/cmn_err.h>
34 #include <sys/errno.h>
35 #include <sys/machsystm.h>
36 #include <sys/bootconf.h>
37 #include <sys/nvpair.h>
38 #include <sys/kobj.h>
39 #include <sys/mem_cage.h>
40 #include <sys/opl.h>
41 #include <sys/scfd/scfostoescf.h>
42 #include <sys/cpu_sgnblk_defs.h>
43 #include <sys/utsname.h>
44 #include <sys/ddi.h>
45 #include <sys/sunndi.h>
46 #include <sys/lgrp.h>
47 #include <sys/memnode.h>
48 #include <sys/sysmacros.h>
49 #include <sys/time.h>
50 #include <sys/cpu.h>
51 #include <vm/vm_dep.h>
52 
53 int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *);
54 int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp);
55 int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp);
56 int (*opl_get_mem_addr)(char *unum, char *sid,
57     uint64_t offset, uint64_t *paddr);
58 
59 /* Memory for fcode claims.  16k times # maximum possible IO units */
60 #define	EFCODE_SIZE	(OPL_MAX_BOARDS * OPL_MAX_IO_UNITS_PER_BOARD * 0x4000)
61 int efcode_size = EFCODE_SIZE;
62 
63 #define	OPL_MC_MEMBOARD_SHIFT 38	/* Boards on 256BG boundary */
64 
65 /* Set the maximum number of boards for DR */
66 int opl_boards = OPL_MAX_BOARDS;
67 
68 void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t);
69 
70 extern int tsb_lgrp_affinity;
71 
72 int opl_tsb_spares = (OPL_MAX_BOARDS) * (OPL_MAX_PCICH_UNITS_PER_BOARD) *
73 	(OPL_MAX_TSBS_PER_PCICH);
74 
75 pgcnt_t opl_startup_cage_size = 0;
76 
77 /*
78  * The length of the delay in seconds in communication with XSCF after
79  * which the warning message will be logged.
80  */
81 uint_t	xscf_connect_delay = 60 * 15;
82 
83 static opl_model_info_t opl_models[] = {
84 	{ "FF1", OPL_MAX_BOARDS_FF1, FF1, STD_DISPATCH_TABLE },
85 	{ "FF2", OPL_MAX_BOARDS_FF2, FF2, STD_DISPATCH_TABLE },
86 	{ "DC1", OPL_MAX_BOARDS_DC1, DC1, STD_DISPATCH_TABLE },
87 	{ "DC2", OPL_MAX_BOARDS_DC2, DC2, EXT_DISPATCH_TABLE },
88 	{ "DC3", OPL_MAX_BOARDS_DC3, DC3, EXT_DISPATCH_TABLE },
89 };
90 static	int	opl_num_models = sizeof (opl_models)/sizeof (opl_model_info_t);
91 
92 /*
93  * opl_cur_model
94  */
95 static	opl_model_info_t *opl_cur_model = NULL;
96 
97 static struct memlist *opl_memlist_per_board(struct memlist *ml);
98 static void post_xscf_msg(char *, int);
99 static void pass2xscf_thread();
100 
101 /*
102  * Note FF/DC out-of-order instruction engine takes only a
103  * single cycle to execute each spin loop
104  * for comparison, Panther takes 6 cycles for same loop
105  * 1500 approx nsec for OPL sleep instruction
106  * if spin count = OPL_BOFF_SLEEP*OPL_BOFF_SPIN then
107  * spin time should be equal to OPL_BOFF_TM nsecs
108  * Listed values tuned for 2.15GHz to 2.4GHz systems
109  * Value may change for future systems
110  */
111 #define	OPL_BOFF_SPIN 720
112 #define	OPL_BOFF_BASE 1
113 #define	OPL_BOFF_SLEEP 5
114 #define	OPL_BOFF_CAP1 20
115 #define	OPL_BOFF_CAP2 60
116 #define	OPL_BOFF_MAX (40 * OPL_BOFF_SLEEP)
117 #define	OPL_BOFF_TM 1500
118 
119 int
120 set_platform_max_ncpus(void)
121 {
122 	return (OPL_MAX_CPU_PER_BOARD * OPL_MAX_BOARDS);
123 }
124 
125 int
126 set_platform_tsb_spares(void)
127 {
128 	return (MIN(opl_tsb_spares, MAX_UPA));
129 }
130 
131 static void
132 set_model_info()
133 {
134 	extern int ts_dispatch_extended;
135 	char	name[MAXSYSNAME];
136 	int	i;
137 
138 	/*
139 	 * Get model name from the root node.
140 	 *
141 	 * We are using the prom device tree since, at this point,
142 	 * the Solaris device tree is not yet setup.
143 	 */
144 	(void) prom_getprop(prom_rootnode(), "model", (caddr_t)name);
145 
146 	for (i = 0; i < opl_num_models; i++) {
147 		if (strncmp(name, opl_models[i].model_name, MAXSYSNAME) == 0) {
148 			opl_cur_model = &opl_models[i];
149 			break;
150 		}
151 	}
152 
153 	/*
154 	 * If model not matched, it's an unknown model.
155 	 * just return.
156 	 */
157 	if (i == opl_num_models)
158 		return;
159 
160 	if ((opl_cur_model->model_cmds & EXT_DISPATCH_TABLE) &&
161 	    (ts_dispatch_extended == -1)) {
162 		/*
163 		 * Based on a platform model, select a dispatch table.
164 		 * Only DC2 and DC3 systems uses the alternate/extended
165 		 * TS dispatch table.
166 		 * FF1, FF2 and DC1 systems used standard dispatch tables.
167 		 */
168 		ts_dispatch_extended = 1;
169 	}
170 
171 }
172 
173 static void
174 set_max_mmu_ctxdoms()
175 {
176 	extern uint_t	max_mmu_ctxdoms;
177 	int		max_boards;
178 
179 	/*
180 	 * From the model, get the maximum number of boards
181 	 * supported and set the value accordingly. If the model
182 	 * could not be determined or recognized, we assume the max value.
183 	 */
184 	if (opl_cur_model == NULL)
185 		max_boards = OPL_MAX_BOARDS;
186 	else
187 		max_boards = opl_cur_model->model_max_boards;
188 
189 	/*
190 	 * On OPL, cores and MMUs are one-to-one.
191 	 */
192 	max_mmu_ctxdoms = OPL_MAX_CORE_UNITS_PER_BOARD * max_boards;
193 }
194 
195 #pragma weak mmu_init_large_pages
196 
197 void
198 set_platform_defaults(void)
199 {
200 	extern char *tod_module_name;
201 	extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int);
202 	extern void mmu_init_large_pages(size_t);
203 
204 	/* Set the CPU signature function pointer */
205 	cpu_sgn_func = cpu_sgn_update;
206 
207 	/* Set appropriate tod module for OPL platform */
208 	ASSERT(tod_module_name == NULL);
209 	tod_module_name = "todopl";
210 
211 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
212 	    (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
213 		if (&mmu_init_large_pages)
214 			mmu_init_large_pages(mmu_ism_pagesize);
215 	}
216 
217 	tsb_lgrp_affinity = 1;
218 
219 	set_max_mmu_ctxdoms();
220 }
221 
222 /*
223  * Convert logical a board number to a physical one.
224  */
225 
226 #define	LSBPROP		"board#"
227 #define	PSBPROP		"physical-board#"
228 
229 int
230 opl_get_physical_board(int id)
231 {
232 	dev_info_t	*root_dip, *dip = NULL;
233 	char		*dname = NULL;
234 	int		circ;
235 
236 	pnode_t		pnode;
237 	char		pname[MAXSYSNAME] = {0};
238 
239 	int		lsb_id;	/* Logical System Board ID */
240 	int		psb_id;	/* Physical System Board ID */
241 
242 
243 	/*
244 	 * This function is called on early stage of bootup when the
245 	 * kernel device tree is not initialized yet, and also
246 	 * later on when the device tree is up. We want to try
247 	 * the fast track first.
248 	 */
249 	root_dip = ddi_root_node();
250 	if (root_dip) {
251 		/* Get from devinfo node */
252 		ndi_devi_enter(root_dip, &circ);
253 		for (dip = ddi_get_child(root_dip); dip;
254 		    dip = ddi_get_next_sibling(dip)) {
255 
256 			dname = ddi_node_name(dip);
257 			if (strncmp(dname, "pseudo-mc", 9) != 0)
258 				continue;
259 
260 			if ((lsb_id = (int)ddi_getprop(DDI_DEV_T_ANY, dip,
261 			    DDI_PROP_DONTPASS, LSBPROP, -1)) == -1)
262 				continue;
263 
264 			if (id == lsb_id) {
265 				if ((psb_id = (int)ddi_getprop(DDI_DEV_T_ANY,
266 				    dip, DDI_PROP_DONTPASS, PSBPROP, -1))
267 				    == -1) {
268 					ndi_devi_exit(root_dip, circ);
269 					return (-1);
270 				} else {
271 					ndi_devi_exit(root_dip, circ);
272 					return (psb_id);
273 				}
274 			}
275 		}
276 		ndi_devi_exit(root_dip, circ);
277 	}
278 
279 	/*
280 	 * We do not have the kernel device tree, or we did not
281 	 * find the node for some reason (let's say the kernel
282 	 * device tree was modified), let's try the OBP tree.
283 	 */
284 	pnode = prom_rootnode();
285 	for (pnode = prom_childnode(pnode); pnode;
286 	    pnode = prom_nextnode(pnode)) {
287 
288 		if ((prom_getprop(pnode, "name", (caddr_t)pname) == -1) ||
289 		    (strncmp(pname, "pseudo-mc", 9) != 0))
290 			continue;
291 
292 		if (prom_getprop(pnode, LSBPROP, (caddr_t)&lsb_id) == -1)
293 			continue;
294 
295 		if (id == lsb_id) {
296 			if (prom_getprop(pnode, PSBPROP,
297 			    (caddr_t)&psb_id) == -1) {
298 				return (-1);
299 			} else {
300 				return (psb_id);
301 			}
302 		}
303 	}
304 
305 	return (-1);
306 }
307 
308 /*
309  * For OPL it's possible that memory from two or more successive boards
310  * will be contiguous across the boards, and therefore represented as a
311  * single chunk.
312  * This function splits such chunks down the board boundaries.
313  */
314 static struct memlist *
315 opl_memlist_per_board(struct memlist *ml)
316 {
317 	uint64_t ssize, low, high, boundary;
318 	struct memlist *head, *tail, *new;
319 
320 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
321 
322 	head = tail = NULL;
323 
324 	for (; ml; ml = ml->next) {
325 		low  = (uint64_t)ml->address;
326 		high = low+(uint64_t)(ml->size);
327 		while (low < high) {
328 			boundary = roundup(low+1, ssize);
329 			boundary = MIN(high, boundary);
330 			new = kmem_zalloc(sizeof (struct memlist), KM_SLEEP);
331 			new->address = low;
332 			new->size = boundary - low;
333 			if (head == NULL)
334 				head = new;
335 			if (tail) {
336 				tail->next = new;
337 				new->prev = tail;
338 			}
339 			tail = new;
340 			low = boundary;
341 		}
342 	}
343 	return (head);
344 }
345 
346 void
347 set_platform_cage_params(void)
348 {
349 	extern pgcnt_t total_pages;
350 	extern struct memlist *phys_avail;
351 	struct memlist *ml, *tml;
352 
353 	if (kernel_cage_enable) {
354 		pgcnt_t preferred_cage_size;
355 
356 		preferred_cage_size = MAX(opl_startup_cage_size,
357 		    total_pages / 256);
358 
359 		ml = opl_memlist_per_board(phys_avail);
360 
361 		/*
362 		 * Note: we are assuming that post has load the
363 		 * whole show in to the high end of memory. Having
364 		 * taken this leap, we copy the whole of phys_avail
365 		 * the glist and arrange for the cage to grow
366 		 * downward (descending pfns).
367 		 */
368 		kcage_range_init(ml, KCAGE_DOWN, preferred_cage_size);
369 
370 		/* free the memlist */
371 		do {
372 			tml = ml->next;
373 			kmem_free(ml, sizeof (struct memlist));
374 			ml = tml;
375 		} while (ml != NULL);
376 	}
377 
378 	if (kcage_on)
379 		cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED");
380 	else
381 		cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED");
382 }
383 
384 /*ARGSUSED*/
385 int
386 plat_cpu_poweron(struct cpu *cp)
387 {
388 	int (*opl_cpu_poweron)(struct cpu *) = NULL;
389 
390 	opl_cpu_poweron =
391 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0);
392 
393 	if (opl_cpu_poweron == NULL)
394 		return (ENOTSUP);
395 	else
396 		return ((opl_cpu_poweron)(cp));
397 
398 }
399 
400 /*ARGSUSED*/
401 int
402 plat_cpu_poweroff(struct cpu *cp)
403 {
404 	int (*opl_cpu_poweroff)(struct cpu *) = NULL;
405 
406 	opl_cpu_poweroff =
407 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0);
408 
409 	if (opl_cpu_poweroff == NULL)
410 		return (ENOTSUP);
411 	else
412 		return ((opl_cpu_poweroff)(cp));
413 
414 }
415 
416 int
417 plat_max_boards(void)
418 {
419 	return (OPL_MAX_BOARDS);
420 }
421 
422 int
423 plat_max_cpu_units_per_board(void)
424 {
425 	return (OPL_MAX_CPU_PER_BOARD);
426 }
427 
428 int
429 plat_max_mem_units_per_board(void)
430 {
431 	return (OPL_MAX_MEM_UNITS_PER_BOARD);
432 }
433 
434 int
435 plat_max_io_units_per_board(void)
436 {
437 	return (OPL_MAX_IO_UNITS_PER_BOARD);
438 }
439 
440 int
441 plat_max_cmp_units_per_board(void)
442 {
443 	return (OPL_MAX_CMP_UNITS_PER_BOARD);
444 }
445 
446 int
447 plat_max_core_units_per_board(void)
448 {
449 	return (OPL_MAX_CORE_UNITS_PER_BOARD);
450 }
451 
452 int
453 plat_pfn_to_mem_node(pfn_t pfn)
454 {
455 	return (pfn >> mem_node_pfn_shift);
456 }
457 
458 /* ARGSUSED */
459 void
460 plat_build_mem_nodes(u_longlong_t *list, size_t nelems)
461 {
462 	size_t	elem;
463 	pfn_t	basepfn;
464 	pgcnt_t	npgs;
465 	uint64_t	boundary, ssize;
466 	uint64_t	low, high;
467 
468 	/*
469 	 * OPL mem slices are always aligned on a 256GB boundary.
470 	 */
471 	mem_node_pfn_shift = OPL_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT;
472 	mem_node_physalign = 0;
473 
474 	/*
475 	 * Boot install lists are arranged <addr, len>, <addr, len>, ...
476 	 */
477 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
478 	for (elem = 0; elem < nelems; elem += 2) {
479 		low  = (uint64_t)list[elem];
480 		high = low+(uint64_t)(list[elem+1]);
481 		while (low < high) {
482 			boundary = roundup(low+1, ssize);
483 			boundary = MIN(high, boundary);
484 			basepfn = btop(low);
485 			npgs = btop(boundary - low);
486 			mem_node_add_slice(basepfn, basepfn + npgs - 1);
487 			low = boundary;
488 		}
489 	}
490 }
491 
492 /*
493  * Find the CPU associated with a slice at boot-time.
494  */
495 void
496 plat_fill_mc(pnode_t nodeid)
497 {
498 	int board;
499 	int memnode;
500 	struct {
501 		uint64_t	addr;
502 		uint64_t	size;
503 	} mem_range;
504 
505 	if (prom_getprop(nodeid, "board#", (caddr_t)&board) < 0) {
506 		panic("Can not find board# property in mc node %x", nodeid);
507 	}
508 	if (prom_getprop(nodeid, "sb-mem-ranges", (caddr_t)&mem_range) < 0) {
509 		panic("Can not find sb-mem-ranges property in mc node %x",
510 		    nodeid);
511 	}
512 	memnode = mem_range.addr >> OPL_MC_MEMBOARD_SHIFT;
513 	plat_assign_lgrphand_to_mem_node(board, memnode);
514 }
515 
516 /*
517  * Return the platform handle for the lgroup containing the given CPU
518  *
519  * For OPL, lgroup platform handle == board #.
520  */
521 
522 extern int mpo_disabled;
523 extern lgrp_handle_t lgrp_default_handle;
524 
525 lgrp_handle_t
526 plat_lgrp_cpu_to_hand(processorid_t id)
527 {
528 	lgrp_handle_t plathand;
529 
530 	/*
531 	 * Return the real platform handle for the CPU until
532 	 * such time as we know that MPO should be disabled.
533 	 * At that point, we set the "mpo_disabled" flag to true,
534 	 * and from that point on, return the default handle.
535 	 *
536 	 * By the time we know that MPO should be disabled, the
537 	 * first CPU will have already been added to a leaf
538 	 * lgroup, but that's ok. The common lgroup code will
539 	 * double check that the boot CPU is in the correct place,
540 	 * and in the case where mpo should be disabled, will move
541 	 * it to the root if necessary.
542 	 */
543 	if (mpo_disabled) {
544 		/* If MPO is disabled, return the default (UMA) handle */
545 		plathand = lgrp_default_handle;
546 	} else
547 		plathand = (lgrp_handle_t)LSB_ID(id);
548 	return (plathand);
549 }
550 
551 /*
552  * Platform specific lgroup initialization
553  */
554 void
555 plat_lgrp_init(void)
556 {
557 	extern uint32_t lgrp_expand_proc_thresh;
558 	extern uint32_t lgrp_expand_proc_diff;
559 
560 	/*
561 	 * Set tuneables for the OPL architecture
562 	 *
563 	 * lgrp_expand_proc_thresh is the minimum load on the lgroups
564 	 * this process is currently running on before considering
565 	 * expanding threads to another lgroup.
566 	 *
567 	 * lgrp_expand_proc_diff determines how much less the remote lgroup
568 	 * must be loaded before expanding to it.
569 	 *
570 	 * Since remote latencies can be costly, attempt to keep 3 threads
571 	 * within the same lgroup before expanding to the next lgroup.
572 	 */
573 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX * 3;
574 	lgrp_expand_proc_diff = LGRP_LOADAVG_THREAD_MAX;
575 }
576 
577 /*
578  * Platform notification of lgroup (re)configuration changes
579  */
580 /*ARGSUSED*/
581 void
582 plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg)
583 {
584 	update_membounds_t *umb;
585 	lgrp_config_mem_rename_t lmr;
586 	int sbd, tbd;
587 	lgrp_handle_t hand, shand, thand;
588 	int mnode, snode, tnode;
589 	pfn_t start, end;
590 
591 	if (mpo_disabled)
592 		return;
593 
594 	switch (evt) {
595 
596 	case LGRP_CONFIG_MEM_ADD:
597 		/*
598 		 * Establish the lgroup handle to memnode translation.
599 		 */
600 		umb = (update_membounds_t *)arg;
601 
602 		hand = umb->u_board;
603 		mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT);
604 		plat_assign_lgrphand_to_mem_node(hand, mnode);
605 
606 		break;
607 
608 	case LGRP_CONFIG_MEM_DEL:
609 		/*
610 		 * Special handling for possible memory holes.
611 		 */
612 		umb = (update_membounds_t *)arg;
613 		hand = umb->u_board;
614 		if ((mnode = plat_lgrphand_to_mem_node(hand)) != -1) {
615 			if (mem_node_config[mnode].exists) {
616 				start = mem_node_config[mnode].physbase;
617 				end = mem_node_config[mnode].physmax;
618 				mem_node_pre_del_slice(start, end);
619 				mem_node_post_del_slice(start, end, 0);
620 			}
621 		}
622 
623 		break;
624 
625 	case LGRP_CONFIG_MEM_RENAME:
626 		/*
627 		 * During a DR copy-rename operation, all of the memory
628 		 * on one board is moved to another board -- but the
629 		 * addresses/pfns and memnodes don't change. This means
630 		 * the memory has changed locations without changing identity.
631 		 *
632 		 * Source is where we are copying from and target is where we
633 		 * are copying to.  After source memnode is copied to target
634 		 * memnode, the physical addresses of the target memnode are
635 		 * renamed to match what the source memnode had.  Then target
636 		 * memnode can be removed and source memnode can take its
637 		 * place.
638 		 *
639 		 * To do this, swap the lgroup handle to memnode mappings for
640 		 * the boards, so target lgroup will have source memnode and
641 		 * source lgroup will have empty target memnode which is where
642 		 * its memory will go (if any is added to it later).
643 		 *
644 		 * Then source memnode needs to be removed from its lgroup
645 		 * and added to the target lgroup where the memory was living
646 		 * but under a different name/memnode.  The memory was in the
647 		 * target memnode and now lives in the source memnode with
648 		 * different physical addresses even though it is the same
649 		 * memory.
650 		 */
651 		sbd = arg & 0xffff;
652 		tbd = (arg & 0xffff0000) >> 16;
653 		shand = sbd;
654 		thand = tbd;
655 		snode = plat_lgrphand_to_mem_node(shand);
656 		tnode = plat_lgrphand_to_mem_node(thand);
657 
658 		/*
659 		 * Special handling for possible memory holes.
660 		 */
661 		if (tnode != -1 && mem_node_config[tnode].exists) {
662 			start = mem_node_config[tnode].physbase;
663 			end = mem_node_config[tnode].physmax;
664 			mem_node_pre_del_slice(start, end);
665 			mem_node_post_del_slice(start, end, 0);
666 		}
667 
668 		plat_assign_lgrphand_to_mem_node(thand, snode);
669 		plat_assign_lgrphand_to_mem_node(shand, tnode);
670 
671 		lmr.lmem_rename_from = shand;
672 		lmr.lmem_rename_to = thand;
673 
674 		/*
675 		 * Remove source memnode of copy rename from its lgroup
676 		 * and add it to its new target lgroup
677 		 */
678 		lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode,
679 		    (uintptr_t)&lmr);
680 
681 		break;
682 
683 	default:
684 		break;
685 	}
686 }
687 
688 /*
689  * Return latency between "from" and "to" lgroups
690  *
691  * This latency number can only be used for relative comparison
692  * between lgroups on the running system, cannot be used across platforms,
693  * and may not reflect the actual latency.  It is platform and implementation
694  * specific, so platform gets to decide its value.  It would be nice if the
695  * number was at least proportional to make comparisons more meaningful though.
696  * NOTE: The numbers below are supposed to be load latencies for uncached
697  * memory divided by 10.
698  *
699  */
700 int
701 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
702 {
703 	/*
704 	 * Return min remote latency when there are more than two lgroups
705 	 * (root and child) and getting latency between two different lgroups
706 	 * or root is involved
707 	 */
708 	if (lgrp_optimizations() && (from != to ||
709 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
710 		return (42);
711 	else
712 		return (35);
713 }
714 
715 /*
716  * Return platform handle for root lgroup
717  */
718 lgrp_handle_t
719 plat_lgrp_root_hand(void)
720 {
721 	if (mpo_disabled)
722 		return (lgrp_default_handle);
723 
724 	return (LGRP_DEFAULT_HANDLE);
725 }
726 
727 /*ARGSUSED*/
728 void
729 plat_freelist_process(int mnode)
730 {
731 }
732 
733 void
734 load_platform_drivers(void)
735 {
736 	(void) i_ddi_attach_pseudo_node("dr");
737 }
738 
739 /*
740  * No platform drivers on this platform
741  */
742 char *platform_module_list[] = {
743 	(char *)0
744 };
745 
746 /*ARGSUSED*/
747 void
748 plat_tod_fault(enum tod_fault_type tod_bad)
749 {
750 }
751 
752 /*ARGSUSED*/
753 void
754 cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid)
755 {
756 	static void (*scf_panic_callback)(int);
757 	static void (*scf_shutdown_callback)(int);
758 
759 	/*
760 	 * This is for notifing system panic/shutdown to SCF.
761 	 * In case of shutdown and panic, SCF call back
762 	 * function should be called.
763 	 *  <SCF call back functions>
764 	 *   scf_panic_callb()   : panicsys()->panic_quiesce_hw()
765 	 *   scf_shutdown_callb(): halt() or power_down() or reboot_machine()
766 	 * cpuid should be -1 and state should be SIGST_EXIT.
767 	 */
768 	if (state == SIGST_EXIT && cpuid == -1) {
769 
770 		/*
771 		 * find the symbol for the SCF panic callback routine in driver
772 		 */
773 		if (scf_panic_callback == NULL)
774 			scf_panic_callback = (void (*)(int))
775 			    modgetsymvalue("scf_panic_callb", 0);
776 		if (scf_shutdown_callback == NULL)
777 			scf_shutdown_callback = (void (*)(int))
778 			    modgetsymvalue("scf_shutdown_callb", 0);
779 
780 		switch (sub_state) {
781 		case SIGSUBST_PANIC:
782 			if (scf_panic_callback == NULL) {
783 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
784 				    "scf_panic_callb not found\n");
785 				return;
786 			}
787 			scf_panic_callback(SIGSUBST_PANIC);
788 			break;
789 
790 		case SIGSUBST_HALT:
791 			if (scf_shutdown_callback == NULL) {
792 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
793 				    "scf_shutdown_callb not found\n");
794 				return;
795 			}
796 			scf_shutdown_callback(SIGSUBST_HALT);
797 			break;
798 
799 		case SIGSUBST_ENVIRON:
800 			if (scf_shutdown_callback == NULL) {
801 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
802 				    "scf_shutdown_callb not found\n");
803 				return;
804 			}
805 			scf_shutdown_callback(SIGSUBST_ENVIRON);
806 			break;
807 
808 		case SIGSUBST_REBOOT:
809 			if (scf_shutdown_callback == NULL) {
810 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
811 				    "scf_shutdown_callb not found\n");
812 				return;
813 			}
814 			scf_shutdown_callback(SIGSUBST_REBOOT);
815 			break;
816 		}
817 	}
818 }
819 
820 /*ARGSUSED*/
821 int
822 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
823 	int flt_in_memory, ushort_t flt_status,
824 	char *buf, int buflen, int *lenp)
825 {
826 	/*
827 	 * check if it's a Memory error.
828 	 */
829 	if (flt_in_memory) {
830 		if (opl_get_mem_unum != NULL) {
831 			return (opl_get_mem_unum(synd_code, flt_addr, buf,
832 			    buflen, lenp));
833 		} else {
834 			return (ENOTSUP);
835 		}
836 	} else {
837 		return (ENOTSUP);
838 	}
839 }
840 
841 /*ARGSUSED*/
842 int
843 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
844 {
845 	int	ret = 0;
846 	int	sb;
847 	int	plen;
848 
849 	sb = opl_get_physical_board(LSB_ID(cpuid));
850 	if (sb == -1) {
851 		return (ENXIO);
852 	}
853 
854 	/*
855 	 * opl_cur_model is assigned here
856 	 */
857 	if (opl_cur_model == NULL) {
858 		set_model_info();
859 
860 		/*
861 		 * if not matched, return
862 		 */
863 		if (opl_cur_model == NULL)
864 			return (ENODEV);
865 	}
866 
867 	ASSERT((opl_cur_model - opl_models) == (opl_cur_model->model_type));
868 
869 	switch (opl_cur_model->model_type) {
870 	case FF1:
871 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_A",
872 		    CHIP_ID(cpuid) / 2);
873 		break;
874 
875 	case FF2:
876 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_B",
877 		    (CHIP_ID(cpuid) / 2) + (sb * 2));
878 		break;
879 
880 	case DC1:
881 	case DC2:
882 	case DC3:
883 		plen = snprintf(buf, buflen, "/%s%02d/CPUM%d", "CMU", sb,
884 		    CHIP_ID(cpuid));
885 		break;
886 
887 	default:
888 		/* This should never happen */
889 		return (ENODEV);
890 	}
891 
892 	if (plen >= buflen) {
893 		ret = ENOSPC;
894 	} else {
895 		if (lenp)
896 			*lenp = strlen(buf);
897 	}
898 	return (ret);
899 }
900 
901 void
902 plat_nodename_set(void)
903 {
904 	post_xscf_msg((char *)&utsname, sizeof (struct utsname));
905 }
906 
907 caddr_t	efcode_vaddr = NULL;
908 
909 /*
910  * Preallocate enough memory for fcode claims.
911  */
912 
913 caddr_t
914 efcode_alloc(caddr_t alloc_base)
915 {
916 	caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
917 	    MMU_PAGESIZE);
918 	caddr_t vaddr;
919 
920 	/*
921 	 * allocate the physical memory for the Oberon fcode.
922 	 */
923 	if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base,
924 	    efcode_size, MMU_PAGESIZE)) == NULL)
925 		cmn_err(CE_PANIC, "Cannot allocate Efcode Memory");
926 
927 	efcode_vaddr = vaddr;
928 
929 	return (efcode_alloc_base + efcode_size);
930 }
931 
932 caddr_t
933 plat_startup_memlist(caddr_t alloc_base)
934 {
935 	caddr_t tmp_alloc_base;
936 
937 	tmp_alloc_base = efcode_alloc(alloc_base);
938 	tmp_alloc_base =
939 	    (caddr_t)roundup((uintptr_t)tmp_alloc_base, ecache_alignsize);
940 	return (tmp_alloc_base);
941 }
942 
943 void
944 startup_platform(void)
945 {
946 }
947 
948 void
949 plat_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *info)
950 {
951 	int	impl;
952 
953 	impl = cpunodes[cpuid].implementation;
954 	if (IS_OLYMPUS_C(impl) || IS_JUPITER(impl)) {
955 		info->mmu_idx = MMU_ID(cpuid);
956 		info->mmu_nctxs = 8192;
957 	} else {
958 		cmn_err(CE_PANIC, "Unknown processor %d", impl);
959 	}
960 }
961 
962 int
963 plat_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
964 {
965 	if (opl_get_mem_sid == NULL) {
966 		return (ENOTSUP);
967 	}
968 	return (opl_get_mem_sid(unum, buf, buflen, lenp));
969 }
970 
971 int
972 plat_get_mem_offset(uint64_t paddr, uint64_t *offp)
973 {
974 	if (opl_get_mem_offset == NULL) {
975 		return (ENOTSUP);
976 	}
977 	return (opl_get_mem_offset(paddr, offp));
978 }
979 
980 int
981 plat_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
982 {
983 	if (opl_get_mem_addr == NULL) {
984 		return (ENOTSUP);
985 	}
986 	return (opl_get_mem_addr(unum, sid, offset, addrp));
987 }
988 
989 void
990 plat_lock_delay(int *backoff)
991 {
992 	int i;
993 	int cnt;
994 	int flag;
995 	int ctr;
996 	hrtime_t delay_start;
997 	/*
998 	 * Platform specific lock delay code for OPL
999 	 *
1000 	 * Using staged linear increases in the delay.
1001 	 * The sleep instruction is the preferred method of delay,
1002 	 * but is too large of granularity for the initial backoff.
1003 	 */
1004 
1005 	if (*backoff == 0) *backoff = OPL_BOFF_BASE;
1006 
1007 	flag = !*backoff;
1008 
1009 	if (*backoff < OPL_BOFF_CAP1) {
1010 		/*
1011 		 * If desired backoff is long enough,
1012 		 * use sleep for most of it
1013 		 */
1014 		for (cnt = *backoff; cnt >= OPL_BOFF_SLEEP;
1015 		    cnt -= OPL_BOFF_SLEEP) {
1016 			cpu_smt_pause();
1017 		}
1018 		/*
1019 		 * spin for small remainder of backoff
1020 		 *
1021 		 * fake call to nulldev included to prevent
1022 		 * compiler from optimizing out the spin loop
1023 		 */
1024 		for (ctr = cnt * OPL_BOFF_SPIN; ctr; ctr--) {
1025 			if (flag) (void) nulldev();
1026 		}
1027 	} else {
1028 		/* backoff is very large.  Fill it by sleeping */
1029 		delay_start = gethrtime();
1030 		cnt = *backoff/OPL_BOFF_SLEEP;
1031 		/*
1032 		 * use sleep instructions for delay
1033 		 */
1034 		for (i = 0; i < cnt; i++) {
1035 			cpu_smt_pause();
1036 		}
1037 
1038 		/*
1039 		 * Note: if the other strand executes a sleep instruction,
1040 		 * then the sleep ends immediately with a minimum time of
1041 		 * 42 clocks.  We check gethrtime to insure we have
1042 		 * waited long enough.  And we include both a short
1043 		 * spin loop and a sleep for any final delay time.
1044 		 */
1045 
1046 		while ((gethrtime() - delay_start) < cnt * OPL_BOFF_TM) {
1047 			cpu_smt_pause();
1048 			for (ctr = OPL_BOFF_SPIN; ctr; ctr--) {
1049 				if (flag) (void) nulldev();
1050 			}
1051 		}
1052 	}
1053 
1054 	/*
1055 	 * We adjust the backoff in three linear stages
1056 	 * The initial stage has small increases as this phase is
1057 	 * usually handle locks with light contention.  We don't want
1058 	 * to have a long backoff on a lock that is available.
1059 	 *
1060 	 * In the second stage, we are in transition, unsure whether
1061 	 * the lock is under heavy contention.  As the failures to
1062 	 * obtain the lock increase, we back off further.
1063 	 *
1064 	 * For the final stage, we are in a heavily contended or
1065 	 * long held long so we want to reduce the number of tries.
1066 	 */
1067 	if (*backoff < OPL_BOFF_CAP1) {
1068 		*backoff += 1;
1069 	} else {
1070 		if (*backoff < OPL_BOFF_CAP2) {
1071 			*backoff += OPL_BOFF_SLEEP;
1072 		} else {
1073 			*backoff += 2 * OPL_BOFF_SLEEP;
1074 		}
1075 		if (*backoff > OPL_BOFF_MAX) {
1076 			*backoff = OPL_BOFF_MAX;
1077 		}
1078 	}
1079 }
1080 
1081 /*
1082  * The following code implements asynchronous call to XSCF to setup the
1083  * domain node name.
1084  */
1085 
1086 #define	FREE_MSG(m)		kmem_free((m), NM_LEN((m)->len))
1087 
1088 /*
1089  * The following three macros define the all operations on the request
1090  * list we are using here, and hide the details of the list
1091  * implementation from the code.
1092  */
1093 #define	PUSH(m) \
1094 	{ \
1095 		(m)->next = ctl_msg.head; \
1096 		(m)->prev = NULL; \
1097 		if ((m)->next != NULL) \
1098 			(m)->next->prev = (m); \
1099 		ctl_msg.head = (m); \
1100 	}
1101 
1102 #define	REMOVE(m) \
1103 	{ \
1104 		if ((m)->prev != NULL) \
1105 			(m)->prev->next = (m)->next; \
1106 		else \
1107 			ctl_msg.head = (m)->next; \
1108 		if ((m)->next != NULL) \
1109 			(m)->next->prev = (m)->prev; \
1110 	}
1111 
1112 #define	FREE_THE_TAIL(head) \
1113 	{ \
1114 		nm_msg_t *n_msg, *m; \
1115 		m = (head)->next; \
1116 		(head)->next = NULL; \
1117 		while (m != NULL) { \
1118 			n_msg = m->next; \
1119 			FREE_MSG(m); \
1120 			m = n_msg; \
1121 		} \
1122 	}
1123 
1124 #define	SCF_PUTINFO(f, s, p) \
1125 	f(KEY_ESCF, 0x01, 0, s, p)
1126 
1127 #define	PASS2XSCF(m, r)	((r = SCF_PUTINFO(ctl_msg.scf_service_function, \
1128 					    (m)->len, (m)->data)) == 0)
1129 
1130 /*
1131  * The value of the following macro loosely depends on the
1132  * value of the "device busy" timeout used in the SCF driver.
1133  * (See pass2xscf_thread()).
1134  */
1135 #define	SCF_DEVBUSY_DELAY	10
1136 
1137 /*
1138  * The default number of attempts to contact the scf driver
1139  * if we cannot fetch any information about the timeout value
1140  * it uses.
1141  */
1142 
1143 #define	REPEATS		4
1144 
1145 typedef struct nm_msg {
1146 	struct nm_msg *next;
1147 	struct nm_msg *prev;
1148 	int len;
1149 	char data[1];
1150 } nm_msg_t;
1151 
1152 #define	NM_LEN(len)		(sizeof (nm_msg_t) + (len) - 1)
1153 
1154 static struct ctlmsg {
1155 	nm_msg_t	*head;
1156 	nm_msg_t	*now_serving;
1157 	kmutex_t	nm_lock;
1158 	kthread_t	*nmt;
1159 	int		cnt;
1160 	int (*scf_service_function)(uint32_t, uint8_t,
1161 				    uint32_t, uint32_t, void *);
1162 } ctl_msg;
1163 
1164 static void
1165 post_xscf_msg(char *dp, int len)
1166 {
1167 	nm_msg_t *msg;
1168 
1169 	msg = (nm_msg_t *)kmem_zalloc(NM_LEN(len), KM_SLEEP);
1170 
1171 	bcopy(dp, msg->data, len);
1172 	msg->len = len;
1173 
1174 	mutex_enter(&ctl_msg.nm_lock);
1175 	if (ctl_msg.nmt == NULL) {
1176 		ctl_msg.nmt =  thread_create(NULL, 0, pass2xscf_thread,
1177 		    NULL, 0, &p0, TS_RUN, minclsyspri);
1178 	}
1179 
1180 	PUSH(msg);
1181 	ctl_msg.cnt++;
1182 	mutex_exit(&ctl_msg.nm_lock);
1183 }
1184 
1185 static void
1186 pass2xscf_thread()
1187 {
1188 	nm_msg_t *msg;
1189 	int ret;
1190 	uint_t i, msg_sent, xscf_driver_delay;
1191 	static uint_t repeat_cnt;
1192 	uint_t *scf_wait_cnt;
1193 
1194 	mutex_enter(&ctl_msg.nm_lock);
1195 
1196 	/*
1197 	 * Find the address of the SCF put routine if it's not done yet.
1198 	 */
1199 	if (ctl_msg.scf_service_function == NULL) {
1200 		if ((ctl_msg.scf_service_function =
1201 		    (int (*)(uint32_t, uint8_t, uint32_t, uint32_t, void *))
1202 		    modgetsymvalue("scf_service_putinfo", 0)) == NULL) {
1203 			cmn_err(CE_NOTE, "pass2xscf_thread: "
1204 			    "scf_service_putinfo not found\n");
1205 			ctl_msg.nmt = NULL;
1206 			mutex_exit(&ctl_msg.nm_lock);
1207 			return;
1208 		}
1209 	}
1210 
1211 	/*
1212 	 * Calculate the number of attempts to connect XSCF based on the
1213 	 * scf driver delay (which is
1214 	 * SCF_DEVBUSY_DELAY*scf_online_wait_rcnt seconds) and the value
1215 	 * of xscf_connect_delay (the total number of seconds to wait
1216 	 * till xscf get ready.)
1217 	 */
1218 	if (repeat_cnt == 0) {
1219 		if ((scf_wait_cnt =
1220 		    (uint_t *)
1221 		    modgetsymvalue("scf_online_wait_rcnt", 0)) == NULL) {
1222 			repeat_cnt = REPEATS;
1223 		} else {
1224 
1225 			xscf_driver_delay = *scf_wait_cnt *
1226 			    SCF_DEVBUSY_DELAY;
1227 			repeat_cnt = (xscf_connect_delay/xscf_driver_delay) + 1;
1228 		}
1229 	}
1230 
1231 	while (ctl_msg.cnt != 0) {
1232 
1233 		/*
1234 		 * Take the very last request from the queue,
1235 		 */
1236 		ctl_msg.now_serving = ctl_msg.head;
1237 		ASSERT(ctl_msg.now_serving != NULL);
1238 
1239 		/*
1240 		 * and discard all the others if any.
1241 		 */
1242 		FREE_THE_TAIL(ctl_msg.now_serving);
1243 		ctl_msg.cnt = 1;
1244 		mutex_exit(&ctl_msg.nm_lock);
1245 
1246 		/*
1247 		 * Pass the name to XSCF. Note please, we do not hold the
1248 		 * mutex while we are doing this.
1249 		 */
1250 		msg_sent = 0;
1251 		for (i = 0; i < repeat_cnt; i++) {
1252 			if (PASS2XSCF(ctl_msg.now_serving, ret)) {
1253 				msg_sent = 1;
1254 				break;
1255 			} else {
1256 				if (ret != EBUSY) {
1257 					cmn_err(CE_NOTE, "pass2xscf_thread:"
1258 					    " unexpected return code"
1259 					    " from scf_service_putinfo():"
1260 					    " %d\n", ret);
1261 				}
1262 			}
1263 		}
1264 
1265 		if (msg_sent) {
1266 
1267 			/*
1268 			 * Remove the request from the list
1269 			 */
1270 			mutex_enter(&ctl_msg.nm_lock);
1271 			msg = ctl_msg.now_serving;
1272 			ctl_msg.now_serving = NULL;
1273 			REMOVE(msg);
1274 			ctl_msg.cnt--;
1275 			mutex_exit(&ctl_msg.nm_lock);
1276 			FREE_MSG(msg);
1277 		} else {
1278 
1279 			/*
1280 			 * If while we have tried to communicate with
1281 			 * XSCF there were any other requests we are
1282 			 * going to drop this one and take the latest
1283 			 * one.  Otherwise we will try to pass this one
1284 			 * again.
1285 			 */
1286 			cmn_err(CE_NOTE,
1287 			    "pass2xscf_thread: "
1288 			    "scf_service_putinfo "
1289 			    "not responding\n");
1290 		}
1291 		mutex_enter(&ctl_msg.nm_lock);
1292 	}
1293 
1294 	/*
1295 	 * The request queue is empty, exit.
1296 	 */
1297 	ctl_msg.nmt = NULL;
1298 	mutex_exit(&ctl_msg.nm_lock);
1299 }
1300