xref: /titanic_50/usr/src/uts/sun4u/io/px/px_hlib.c (revision eb2b0a6162b47bdee86cc3d2e844dc8f89d95371)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/cmn_err.h>
30 #include <sys/vmsystm.h>
31 #include <sys/vmem.h>
32 #include <sys/machsystm.h>	/* lddphys() */
33 #include <sys/iommutsb.h>
34 #include <sys/pci.h>
35 #include <sys/hotplug/pci/pciehpc.h>
36 #include <pcie_pwr.h>
37 #include <px_obj.h>
38 #include "px_regs.h"
39 #include "oberon_regs.h"
40 #include "px_csr.h"
41 #include "px_lib4u.h"
42 #include "px_err.h"
43 
44 /*
45  * Registers that need to be saved and restored during suspend/resume.
46  */
47 
48 /*
49  * Registers in the PEC Module.
50  * LPU_RESET should be set to 0ull during resume
51  *
52  * This array is in reg,chip form. PX_CHIP_UNIDENTIFIED is for all chips
53  * or PX_CHIP_FIRE for Fire only, or PX_CHIP_OBERON for Oberon only.
54  */
55 static struct px_pec_regs {
56 	uint64_t reg;
57 	uint64_t chip;
58 } pec_config_state_regs[] = {
59 	{PEC_CORE_AND_BLOCK_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
60 	{ILU_ERROR_LOG_ENABLE, PX_CHIP_UNIDENTIFIED},
61 	{ILU_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
62 	{TLU_CONTROL, PX_CHIP_UNIDENTIFIED},
63 	{TLU_OTHER_EVENT_LOG_ENABLE, PX_CHIP_UNIDENTIFIED},
64 	{TLU_OTHER_EVENT_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
65 	{TLU_DEVICE_CONTROL, PX_CHIP_UNIDENTIFIED},
66 	{TLU_LINK_CONTROL, PX_CHIP_UNIDENTIFIED},
67 	{TLU_UNCORRECTABLE_ERROR_LOG_ENABLE, PX_CHIP_UNIDENTIFIED},
68 	{TLU_UNCORRECTABLE_ERROR_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
69 	{TLU_CORRECTABLE_ERROR_LOG_ENABLE, PX_CHIP_UNIDENTIFIED},
70 	{TLU_CORRECTABLE_ERROR_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
71 	{DLU_LINK_LAYER_CONFIG, PX_CHIP_OBERON},
72 	{DLU_FLOW_CONTROL_UPDATE_CONTROL, PX_CHIP_OBERON},
73 	{DLU_TXLINK_REPLAY_TIMER_THRESHOLD, PX_CHIP_OBERON},
74 	{LPU_LINK_LAYER_INTERRUPT_MASK, PX_CHIP_FIRE},
75 	{LPU_PHY_INTERRUPT_MASK, PX_CHIP_FIRE},
76 	{LPU_RECEIVE_PHY_INTERRUPT_MASK, PX_CHIP_FIRE},
77 	{LPU_TRANSMIT_PHY_INTERRUPT_MASK, PX_CHIP_FIRE},
78 	{LPU_GIGABLAZE_GLUE_INTERRUPT_MASK, PX_CHIP_FIRE},
79 	{LPU_LTSSM_INTERRUPT_MASK, PX_CHIP_FIRE},
80 	{LPU_RESET, PX_CHIP_FIRE},
81 	{LPU_DEBUG_CONFIG, PX_CHIP_FIRE},
82 	{LPU_INTERRUPT_MASK, PX_CHIP_FIRE},
83 	{LPU_LINK_LAYER_CONFIG, PX_CHIP_FIRE},
84 	{LPU_FLOW_CONTROL_UPDATE_CONTROL, PX_CHIP_FIRE},
85 	{LPU_TXLINK_FREQUENT_NAK_LATENCY_TIMER_THRESHOLD, PX_CHIP_FIRE},
86 	{LPU_TXLINK_REPLAY_TIMER_THRESHOLD, PX_CHIP_FIRE},
87 	{LPU_REPLAY_BUFFER_MAX_ADDRESS, PX_CHIP_FIRE},
88 	{LPU_TXLINK_RETRY_FIFO_POINTER, PX_CHIP_FIRE},
89 	{LPU_LTSSM_CONFIG2, PX_CHIP_FIRE},
90 	{LPU_LTSSM_CONFIG3, PX_CHIP_FIRE},
91 	{LPU_LTSSM_CONFIG4, PX_CHIP_FIRE},
92 	{LPU_LTSSM_CONFIG5, PX_CHIP_FIRE},
93 	{DMC_CORE_AND_BLOCK_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
94 	{DMC_DEBUG_SELECT_FOR_PORT_A, PX_CHIP_UNIDENTIFIED},
95 	{DMC_DEBUG_SELECT_FOR_PORT_B, PX_CHIP_UNIDENTIFIED}
96 };
97 
98 #define	PEC_KEYS	\
99 	((sizeof (pec_config_state_regs))/sizeof (struct px_pec_regs))
100 
101 #define	PEC_SIZE	(PEC_KEYS * sizeof (uint64_t))
102 
103 /*
104  * Registers for the MMU module.
105  * MMU_TTE_CACHE_INVALIDATE needs to be cleared. (-1ull)
106  */
107 static uint64_t mmu_config_state_regs[] = {
108 	MMU_TSB_CONTROL,
109 	MMU_CONTROL_AND_STATUS,
110 	MMU_ERROR_LOG_ENABLE,
111 	MMU_INTERRUPT_ENABLE
112 };
113 #define	MMU_SIZE (sizeof (mmu_config_state_regs))
114 #define	MMU_KEYS (MMU_SIZE / sizeof (uint64_t))
115 
116 /*
117  * Registers for the IB Module
118  */
119 static uint64_t ib_config_state_regs[] = {
120 	IMU_ERROR_LOG_ENABLE,
121 	IMU_INTERRUPT_ENABLE
122 };
123 #define	IB_SIZE (sizeof (ib_config_state_regs))
124 #define	IB_KEYS (IB_SIZE / sizeof (uint64_t))
125 #define	IB_MAP_SIZE (INTERRUPT_MAPPING_ENTRIES * sizeof (uint64_t))
126 
127 /*
128  * Registers for the JBC module.
129  * JBC_ERROR_STATUS_CLEAR needs to be cleared. (-1ull)
130  */
131 static uint64_t	jbc_config_state_regs[] = {
132 	JBUS_PARITY_CONTROL,
133 	JBC_FATAL_RESET_ENABLE,
134 	JBC_CORE_AND_BLOCK_INTERRUPT_ENABLE,
135 	JBC_ERROR_LOG_ENABLE,
136 	JBC_INTERRUPT_ENABLE
137 };
138 #define	JBC_SIZE (sizeof (jbc_config_state_regs))
139 #define	JBC_KEYS (JBC_SIZE / sizeof (uint64_t))
140 
141 /*
142  * Registers for the UBC module.
143  * UBC_ERROR_STATUS_CLEAR needs to be cleared. (-1ull)
144  */
145 static uint64_t	ubc_config_state_regs[] = {
146 	UBC_ERROR_LOG_ENABLE,
147 	UBC_INTERRUPT_ENABLE
148 };
149 #define	UBC_SIZE (sizeof (ubc_config_state_regs))
150 #define	UBC_KEYS (UBC_SIZE / sizeof (uint64_t))
151 
152 static uint64_t	msiq_config_other_regs[] = {
153 	ERR_COR_MAPPING,
154 	ERR_NONFATAL_MAPPING,
155 	ERR_FATAL_MAPPING,
156 	PM_PME_MAPPING,
157 	PME_TO_ACK_MAPPING,
158 	MSI_32_BIT_ADDRESS,
159 	MSI_64_BIT_ADDRESS
160 };
161 #define	MSIQ_OTHER_SIZE	(sizeof (msiq_config_other_regs))
162 #define	MSIQ_OTHER_KEYS	(MSIQ_OTHER_SIZE / sizeof (uint64_t))
163 
164 #define	MSIQ_STATE_SIZE		(EVENT_QUEUE_STATE_ENTRIES * sizeof (uint64_t))
165 #define	MSIQ_MAPPING_SIZE	(MSI_MAPPING_ENTRIES * sizeof (uint64_t))
166 
167 /* OPL tuning variables for link unstable issue */
168 int wait_perst = 500000; 	/* step 9, default: 500ms */
169 int wait_enable_port = 45000;	/* step 11, default: 45ms */
170 int link_retry_count = 2; 	/* step 11, default: 2 */
171 
172 static uint64_t msiq_suspend(devhandle_t dev_hdl, pxu_t *pxu_p);
173 static void msiq_resume(devhandle_t dev_hdl, pxu_t *pxu_p);
174 static void jbc_init(caddr_t xbc_csr_base, pxu_t *pxu_p);
175 static void ubc_init(caddr_t xbc_csr_base, pxu_t *pxu_p);
176 
177 /*
178  * Initialize the bus, but do not enable interrupts.
179  */
180 /* ARGSUSED */
181 void
182 hvio_cb_init(caddr_t xbc_csr_base, pxu_t *pxu_p)
183 {
184 	switch (PX_CHIP_TYPE(pxu_p)) {
185 	case PX_CHIP_OBERON:
186 		ubc_init(xbc_csr_base, pxu_p);
187 		break;
188 	case PX_CHIP_FIRE:
189 		jbc_init(xbc_csr_base, pxu_p);
190 		break;
191 	default:
192 		DBG(DBG_CB, NULL, "hvio_cb_init - unknown chip type: 0x%x\n",
193 		    PX_CHIP_TYPE(pxu_p));
194 		break;
195 	}
196 }
197 
198 /*
199  * Initialize the JBC module, but do not enable interrupts.
200  */
201 /* ARGSUSED */
202 static void
203 jbc_init(caddr_t xbc_csr_base, pxu_t *pxu_p)
204 {
205 	uint64_t val;
206 
207 	/* Check if we need to enable inverted parity */
208 	val = (1ULL << JBUS_PARITY_CONTROL_P_EN);
209 	CSR_XS(xbc_csr_base, JBUS_PARITY_CONTROL, val);
210 	DBG(DBG_CB, NULL, "jbc_init, JBUS_PARITY_CONTROL: 0x%llx\n",
211 	    CSR_XR(xbc_csr_base, JBUS_PARITY_CONTROL));
212 
213 	val = (1 << JBC_FATAL_RESET_ENABLE_SPARE_P_INT_EN) |
214 	    (1 << JBC_FATAL_RESET_ENABLE_MB_PEA_P_INT_EN) |
215 	    (1 << JBC_FATAL_RESET_ENABLE_CPE_P_INT_EN) |
216 	    (1 << JBC_FATAL_RESET_ENABLE_APE_P_INT_EN) |
217 	    (1 << JBC_FATAL_RESET_ENABLE_PIO_CPE_INT_EN) |
218 	    (1 << JBC_FATAL_RESET_ENABLE_JTCEEW_P_INT_EN) |
219 	    (1 << JBC_FATAL_RESET_ENABLE_JTCEEI_P_INT_EN) |
220 	    (1 << JBC_FATAL_RESET_ENABLE_JTCEER_P_INT_EN);
221 	CSR_XS(xbc_csr_base, JBC_FATAL_RESET_ENABLE, val);
222 	DBG(DBG_CB, NULL, "jbc_init, JBC_FATAL_RESET_ENABLE: 0x%llx\n",
223 		CSR_XR(xbc_csr_base, JBC_FATAL_RESET_ENABLE));
224 
225 	/*
226 	 * Enable merge, jbc and dmc interrupts.
227 	 */
228 	CSR_XS(xbc_csr_base, JBC_CORE_AND_BLOCK_INTERRUPT_ENABLE, -1ull);
229 	DBG(DBG_CB, NULL,
230 	    "jbc_init, JBC_CORE_AND_BLOCK_INTERRUPT_ENABLE: 0x%llx\n",
231 	    CSR_XR(xbc_csr_base, JBC_CORE_AND_BLOCK_INTERRUPT_ENABLE));
232 
233 	/*
234 	 * CSR_V JBC's interrupt regs (log, enable, status, clear)
235 	 */
236 	DBG(DBG_CB, NULL, "jbc_init, JBC_ERROR_LOG_ENABLE: 0x%llx\n",
237 	    CSR_XR(xbc_csr_base, JBC_ERROR_LOG_ENABLE));
238 
239 	DBG(DBG_CB, NULL, "jbc_init, JBC_INTERRUPT_ENABLE: 0x%llx\n",
240 	    CSR_XR(xbc_csr_base, JBC_INTERRUPT_ENABLE));
241 
242 	DBG(DBG_CB, NULL, "jbc_init, JBC_INTERRUPT_STATUS: 0x%llx\n",
243 	    CSR_XR(xbc_csr_base, JBC_INTERRUPT_STATUS));
244 
245 	DBG(DBG_CB, NULL, "jbc_init, JBC_ERROR_STATUS_CLEAR: 0x%llx\n",
246 	    CSR_XR(xbc_csr_base, JBC_ERROR_STATUS_CLEAR));
247 }
248 
249 /*
250  * Initialize the UBC module, but do not enable interrupts.
251  */
252 /* ARGSUSED */
253 static void
254 ubc_init(caddr_t xbc_csr_base, pxu_t *pxu_p)
255 {
256 	/*
257 	 * Enable Uranus bus error log bits.
258 	 */
259 	CSR_XS(xbc_csr_base, UBC_ERROR_LOG_ENABLE, -1ull);
260 	DBG(DBG_CB, NULL, "ubc_init, UBC_ERROR_LOG_ENABLE: 0x%llx\n",
261 	    CSR_XR(xbc_csr_base, UBC_ERROR_LOG_ENABLE));
262 
263 	/*
264 	 * Clear Uranus bus errors.
265 	 */
266 	CSR_XS(xbc_csr_base, UBC_ERROR_STATUS_CLEAR, -1ull);
267 	DBG(DBG_CB, NULL, "ubc_init, UBC_ERROR_STATUS_CLEAR: 0x%llx\n",
268 	    CSR_XR(xbc_csr_base, UBC_ERROR_STATUS_CLEAR));
269 
270 	/*
271 	 * CSR_V UBC's interrupt regs (log, enable, status, clear)
272 	 */
273 	DBG(DBG_CB, NULL, "ubc_init, UBC_ERROR_LOG_ENABLE: 0x%llx\n",
274 	    CSR_XR(xbc_csr_base, UBC_ERROR_LOG_ENABLE));
275 
276 	DBG(DBG_CB, NULL, "ubc_init, UBC_INTERRUPT_ENABLE: 0x%llx\n",
277 	    CSR_XR(xbc_csr_base, UBC_INTERRUPT_ENABLE));
278 
279 	DBG(DBG_CB, NULL, "ubc_init, UBC_INTERRUPT_STATUS: 0x%llx\n",
280 	    CSR_XR(xbc_csr_base, UBC_INTERRUPT_STATUS));
281 
282 	DBG(DBG_CB, NULL, "ubc_init, UBC_ERROR_STATUS_CLEAR: 0x%llx\n",
283 	    CSR_XR(xbc_csr_base, UBC_ERROR_STATUS_CLEAR));
284 }
285 
286 /*
287  * Initialize the module, but do not enable interrupts.
288  */
289 /* ARGSUSED */
290 void
291 hvio_ib_init(caddr_t csr_base, pxu_t *pxu_p)
292 {
293 	/*
294 	 * CSR_V IB's interrupt regs (log, enable, status, clear)
295 	 */
296 	DBG(DBG_IB, NULL, "hvio_ib_init - IMU_ERROR_LOG_ENABLE: 0x%llx\n",
297 	    CSR_XR(csr_base, IMU_ERROR_LOG_ENABLE));
298 
299 	DBG(DBG_IB, NULL, "hvio_ib_init - IMU_INTERRUPT_ENABLE: 0x%llx\n",
300 	    CSR_XR(csr_base, IMU_INTERRUPT_ENABLE));
301 
302 	DBG(DBG_IB, NULL, "hvio_ib_init - IMU_INTERRUPT_STATUS: 0x%llx\n",
303 	    CSR_XR(csr_base, IMU_INTERRUPT_STATUS));
304 
305 	DBG(DBG_IB, NULL, "hvio_ib_init - IMU_ERROR_STATUS_CLEAR: 0x%llx\n",
306 	    CSR_XR(csr_base, IMU_ERROR_STATUS_CLEAR));
307 }
308 
309 /*
310  * Initialize the module, but do not enable interrupts.
311  */
312 /* ARGSUSED */
313 static void
314 ilu_init(caddr_t csr_base, pxu_t *pxu_p)
315 {
316 	/*
317 	 * CSR_V ILU's interrupt regs (log, enable, status, clear)
318 	 */
319 	DBG(DBG_ILU, NULL, "ilu_init - ILU_ERROR_LOG_ENABLE: 0x%llx\n",
320 	    CSR_XR(csr_base, ILU_ERROR_LOG_ENABLE));
321 
322 	DBG(DBG_ILU, NULL, "ilu_init - ILU_INTERRUPT_ENABLE: 0x%llx\n",
323 	    CSR_XR(csr_base, ILU_INTERRUPT_ENABLE));
324 
325 	DBG(DBG_ILU, NULL, "ilu_init - ILU_INTERRUPT_STATUS: 0x%llx\n",
326 	    CSR_XR(csr_base, ILU_INTERRUPT_STATUS));
327 
328 	DBG(DBG_ILU, NULL, "ilu_init - ILU_ERROR_STATUS_CLEAR: 0x%llx\n",
329 	    CSR_XR(csr_base, ILU_ERROR_STATUS_CLEAR));
330 }
331 
332 /*
333  * Initialize the module, but do not enable interrupts.
334  */
335 /* ARGSUSED */
336 static void
337 tlu_init(caddr_t csr_base, pxu_t *pxu_p)
338 {
339 	uint64_t val;
340 
341 	/*
342 	 * CSR_V TLU_CONTROL Expect OBP ???
343 	 */
344 
345 	/*
346 	 * L0s entry default timer value - 7.0 us
347 	 * Completion timeout select default value - 67.1 ms and
348 	 * OBP will set this value.
349 	 *
350 	 * Configuration - Bit 0 should always be 0 for upstream port.
351 	 * Bit 1 is clock - how is this related to the clock bit in TLU
352 	 * Link Control register?  Both are hardware dependent and likely
353 	 * set by OBP.
354 	 *
355 	 * NOTE: Do not set the NPWR_EN bit.  The desired value of this bit
356 	 * will be set by OBP.
357 	 */
358 	val = CSR_XR(csr_base, TLU_CONTROL);
359 	val |= (TLU_CONTROL_L0S_TIM_DEFAULT << TLU_CONTROL_L0S_TIM) |
360 	    TLU_CONTROL_CONFIG_DEFAULT;
361 
362 	/*
363 	 * For Oberon, NPWR_EN is set to 0 to prevent PIO reads from blocking
364 	 * behind non-posted PIO writes. This blocking could cause a master or
365 	 * slave timeout on the host bus if multiple serialized PIOs were to
366 	 * suffer Completion Timeouts because the CTO delays for each PIO ahead
367 	 * of the read would accumulate. Since the Olympus processor can have
368 	 * only 1 PIO outstanding, there is no possibility of PIO accesses from
369 	 * a given CPU to a given device being re-ordered by the PCIe fabric;
370 	 * therefore turning off serialization should be safe from a PCIe
371 	 * ordering perspective.
372 	 */
373 	if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON)
374 		val &= ~(1ull << TLU_CONTROL_NPWR_EN);
375 
376 	/*
377 	 * Set Detect.Quiet. This will disable automatic link
378 	 * re-training, if the link goes down e.g. power management
379 	 * turns off power to the downstream device. This will enable
380 	 * Fire to go to Drain state, after link down. The drain state
381 	 * forces a reset to the FC state machine, which is required for
382 	 * proper link re-training.
383 	 */
384 	val |= (1ull << TLU_REMAIN_DETECT_QUIET);
385 	CSR_XS(csr_base, TLU_CONTROL, val);
386 	DBG(DBG_TLU, NULL, "tlu_init - TLU_CONTROL: 0x%llx\n",
387 	    CSR_XR(csr_base, TLU_CONTROL));
388 
389 	/*
390 	 * CSR_V TLU_STATUS Expect HW 0x4
391 	 */
392 
393 	/*
394 	 * Only bit [7:0] are currently defined.  Bits [2:0]
395 	 * are the state, which should likely be in state active,
396 	 * 100b.  Bit three is 'recovery', which is not understood.
397 	 * All other bits are reserved.
398 	 */
399 	DBG(DBG_TLU, NULL, "tlu_init - TLU_STATUS: 0x%llx\n",
400 	    CSR_XR(csr_base, TLU_STATUS));
401 
402 	/*
403 	 * CSR_V TLU_PME_TURN_OFF_GENERATE Expect HW 0x0
404 	 */
405 	DBG(DBG_TLU, NULL, "tlu_init - TLU_PME_TURN_OFF_GENERATE: 0x%llx\n",
406 	    CSR_XR(csr_base, TLU_PME_TURN_OFF_GENERATE));
407 
408 	/*
409 	 * CSR_V TLU_INGRESS_CREDITS_INITIAL Expect HW 0x10000200C0
410 	 */
411 
412 	/*
413 	 * Ingress credits initial register.  Bits [39:32] should be
414 	 * 0x10, bits [19:12] should be 0x20, and bits [11:0] should
415 	 * be 0xC0.  These are the reset values, and should be set by
416 	 * HW.
417 	 */
418 	DBG(DBG_TLU, NULL, "tlu_init - TLU_INGRESS_CREDITS_INITIAL: 0x%llx\n",
419 	    CSR_XR(csr_base, TLU_INGRESS_CREDITS_INITIAL));
420 
421 	/*
422 	 * CSR_V TLU_DIAGNOSTIC Expect HW 0x0
423 	 */
424 
425 	/*
426 	 * Diagnostic register - always zero unless we are debugging.
427 	 */
428 	DBG(DBG_TLU, NULL, "tlu_init - TLU_DIAGNOSTIC: 0x%llx\n",
429 	    CSR_XR(csr_base, TLU_DIAGNOSTIC));
430 
431 	/*
432 	 * CSR_V TLU_EGRESS_CREDITS_CONSUMED Expect HW 0x0
433 	 */
434 	DBG(DBG_TLU, NULL, "tlu_init - TLU_EGRESS_CREDITS_CONSUMED: 0x%llx\n",
435 	    CSR_XR(csr_base, TLU_EGRESS_CREDITS_CONSUMED));
436 
437 	/*
438 	 * CSR_V TLU_EGRESS_CREDIT_LIMIT Expect HW 0x0
439 	 */
440 	DBG(DBG_TLU, NULL, "tlu_init - TLU_EGRESS_CREDIT_LIMIT: 0x%llx\n",
441 	    CSR_XR(csr_base, TLU_EGRESS_CREDIT_LIMIT));
442 
443 	/*
444 	 * CSR_V TLU_EGRESS_RETRY_BUFFER Expect HW 0x0
445 	 */
446 	DBG(DBG_TLU, NULL, "tlu_init - TLU_EGRESS_RETRY_BUFFER: 0x%llx\n",
447 	    CSR_XR(csr_base, TLU_EGRESS_RETRY_BUFFER));
448 
449 	/*
450 	 * CSR_V TLU_INGRESS_CREDITS_ALLOCATED Expected HW 0x0
451 	 */
452 	DBG(DBG_TLU, NULL,
453 	    "tlu_init - TLU_INGRESS_CREDITS_ALLOCATED: 0x%llx\n",
454 	    CSR_XR(csr_base, TLU_INGRESS_CREDITS_ALLOCATED));
455 
456 	/*
457 	 * CSR_V TLU_INGRESS_CREDITS_RECEIVED Expected HW 0x0
458 	 */
459 	DBG(DBG_TLU, NULL,
460 	    "tlu_init - TLU_INGRESS_CREDITS_RECEIVED: 0x%llx\n",
461 	    CSR_XR(csr_base, TLU_INGRESS_CREDITS_RECEIVED));
462 
463 	/*
464 	 * CSR_V TLU's interrupt regs (log, enable, status, clear)
465 	 */
466 	DBG(DBG_TLU, NULL,
467 	    "tlu_init - TLU_OTHER_EVENT_LOG_ENABLE: 0x%llx\n",
468 	    CSR_XR(csr_base, TLU_OTHER_EVENT_LOG_ENABLE));
469 
470 	DBG(DBG_TLU, NULL,
471 	    "tlu_init - TLU_OTHER_EVENT_INTERRUPT_ENABLE: 0x%llx\n",
472 	    CSR_XR(csr_base, TLU_OTHER_EVENT_INTERRUPT_ENABLE));
473 
474 	DBG(DBG_TLU, NULL,
475 	    "tlu_init - TLU_OTHER_EVENT_INTERRUPT_STATUS: 0x%llx\n",
476 	    CSR_XR(csr_base, TLU_OTHER_EVENT_INTERRUPT_STATUS));
477 
478 	DBG(DBG_TLU, NULL,
479 	    "tlu_init - TLU_OTHER_EVENT_STATUS_CLEAR: 0x%llx\n",
480 	    CSR_XR(csr_base, TLU_OTHER_EVENT_STATUS_CLEAR));
481 
482 	/*
483 	 * CSR_V TLU_RECEIVE_OTHER_EVENT_HEADER1_LOG Expect HW 0x0
484 	 */
485 	DBG(DBG_TLU, NULL,
486 	    "tlu_init - TLU_RECEIVE_OTHER_EVENT_HEADER1_LOG: 0x%llx\n",
487 	    CSR_XR(csr_base, TLU_RECEIVE_OTHER_EVENT_HEADER1_LOG));
488 
489 	/*
490 	 * CSR_V TLU_RECEIVE_OTHER_EVENT_HEADER2_LOG Expect HW 0x0
491 	 */
492 	DBG(DBG_TLU, NULL,
493 	    "tlu_init - TLU_RECEIVE_OTHER_EVENT_HEADER2_LOG: 0x%llx\n",
494 	    CSR_XR(csr_base, TLU_RECEIVE_OTHER_EVENT_HEADER2_LOG));
495 
496 	/*
497 	 * CSR_V TLU_TRANSMIT_OTHER_EVENT_HEADER1_LOG Expect HW 0x0
498 	 */
499 	DBG(DBG_TLU, NULL,
500 	    "tlu_init - TLU_TRANSMIT_OTHER_EVENT_HEADER1_LOG: 0x%llx\n",
501 	    CSR_XR(csr_base, TLU_TRANSMIT_OTHER_EVENT_HEADER1_LOG));
502 
503 	/*
504 	 * CSR_V TLU_TRANSMIT_OTHER_EVENT_HEADER2_LOG Expect HW 0x0
505 	 */
506 	DBG(DBG_TLU, NULL,
507 	    "tlu_init - TLU_TRANSMIT_OTHER_EVENT_HEADER2_LOG: 0x%llx\n",
508 	    CSR_XR(csr_base, TLU_TRANSMIT_OTHER_EVENT_HEADER2_LOG));
509 
510 	/*
511 	 * CSR_V TLU_PERFORMANCE_COUNTER_SELECT Expect HW 0x0
512 	 */
513 	DBG(DBG_TLU, NULL,
514 	    "tlu_init - TLU_PERFORMANCE_COUNTER_SELECT: 0x%llx\n",
515 	    CSR_XR(csr_base, TLU_PERFORMANCE_COUNTER_SELECT));
516 
517 	/*
518 	 * CSR_V TLU_PERFORMANCE_COUNTER_ZERO Expect HW 0x0
519 	 */
520 	DBG(DBG_TLU, NULL,
521 	    "tlu_init - TLU_PERFORMANCE_COUNTER_ZERO: 0x%llx\n",
522 	    CSR_XR(csr_base, TLU_PERFORMANCE_COUNTER_ZERO));
523 
524 	/*
525 	 * CSR_V TLU_PERFORMANCE_COUNTER_ONE Expect HW 0x0
526 	 */
527 	DBG(DBG_TLU, NULL, "tlu_init - TLU_PERFORMANCE_COUNTER_ONE: 0x%llx\n",
528 	    CSR_XR(csr_base, TLU_PERFORMANCE_COUNTER_ONE));
529 
530 	/*
531 	 * CSR_V TLU_PERFORMANCE_COUNTER_TWO Expect HW 0x0
532 	 */
533 	DBG(DBG_TLU, NULL, "tlu_init - TLU_PERFORMANCE_COUNTER_TWO: 0x%llx\n",
534 	    CSR_XR(csr_base, TLU_PERFORMANCE_COUNTER_TWO));
535 
536 	/*
537 	 * CSR_V TLU_DEBUG_SELECT_A Expect HW 0x0
538 	 */
539 
540 	DBG(DBG_TLU, NULL, "tlu_init - TLU_DEBUG_SELECT_A: 0x%llx\n",
541 	    CSR_XR(csr_base, TLU_DEBUG_SELECT_A));
542 
543 	/*
544 	 * CSR_V TLU_DEBUG_SELECT_B Expect HW 0x0
545 	 */
546 	DBG(DBG_TLU, NULL, "tlu_init - TLU_DEBUG_SELECT_B: 0x%llx\n",
547 	    CSR_XR(csr_base, TLU_DEBUG_SELECT_B));
548 
549 	/*
550 	 * CSR_V TLU_DEVICE_CAPABILITIES Expect HW 0xFC2
551 	 */
552 	DBG(DBG_TLU, NULL, "tlu_init - TLU_DEVICE_CAPABILITIES: 0x%llx\n",
553 	    CSR_XR(csr_base, TLU_DEVICE_CAPABILITIES));
554 
555 	/*
556 	 * CSR_V TLU_DEVICE_CONTROL Expect HW 0x0
557 	 */
558 
559 	/*
560 	 * Bits [14:12] are the Max Read Request Size, which is always 64
561 	 * bytes which is 000b.  Bits [7:5] are Max Payload Size, which
562 	 * start at 128 bytes which is 000b.  This may be revisited if
563 	 * init_child finds greater values.
564 	 */
565 	val = 0x0ull;
566 	CSR_XS(csr_base, TLU_DEVICE_CONTROL, val);
567 	DBG(DBG_TLU, NULL, "tlu_init - TLU_DEVICE_CONTROL: 0x%llx\n",
568 	    CSR_XR(csr_base, TLU_DEVICE_CONTROL));
569 
570 	/*
571 	 * CSR_V TLU_DEVICE_STATUS Expect HW 0x0
572 	 */
573 	DBG(DBG_TLU, NULL, "tlu_init - TLU_DEVICE_STATUS: 0x%llx\n",
574 	    CSR_XR(csr_base, TLU_DEVICE_STATUS));
575 
576 	/*
577 	 * CSR_V TLU_LINK_CAPABILITIES Expect HW 0x15C81
578 	 */
579 	DBG(DBG_TLU, NULL, "tlu_init - TLU_LINK_CAPABILITIES: 0x%llx\n",
580 	    CSR_XR(csr_base, TLU_LINK_CAPABILITIES));
581 
582 	/*
583 	 * CSR_V TLU_LINK_CONTROL Expect OBP 0x40
584 	 */
585 
586 	/*
587 	 * The CLOCK bit should be set by OBP if the hardware dictates,
588 	 * and if it is set then ASPM should be used since then L0s exit
589 	 * latency should be lower than L1 exit latency.
590 	 *
591 	 * Note that we will not enable power management during bringup
592 	 * since it has not been test and is creating some problems in
593 	 * simulation.
594 	 */
595 	val = (1ull << TLU_LINK_CONTROL_CLOCK);
596 
597 	CSR_XS(csr_base, TLU_LINK_CONTROL, val);
598 	DBG(DBG_TLU, NULL, "tlu_init - TLU_LINK_CONTROL: 0x%llx\n",
599 	    CSR_XR(csr_base, TLU_LINK_CONTROL));
600 
601 	/*
602 	 * CSR_V TLU_LINK_STATUS Expect OBP 0x1011
603 	 */
604 
605 	/*
606 	 * Not sure if HW or OBP will be setting this read only
607 	 * register.  Bit 12 is Clock, and it should always be 1
608 	 * signifying that the component uses the same physical
609 	 * clock as the platform.  Bits [9:4] are for the width,
610 	 * with the expected value above signifying a x1 width.
611 	 * Bits [3:0] are the speed, with 1b signifying 2.5 Gb/s,
612 	 * the only speed as yet supported by the PCI-E spec.
613 	 */
614 	DBG(DBG_TLU, NULL, "tlu_init - TLU_LINK_STATUS: 0x%llx\n",
615 	    CSR_XR(csr_base, TLU_LINK_STATUS));
616 
617 	/*
618 	 * CSR_V TLU_SLOT_CAPABILITIES Expect OBP ???
619 	 */
620 
621 	/*
622 	 * Power Limits for the slots.  Will be platform
623 	 * dependent, and OBP will need to set after consulting
624 	 * with the HW guys.
625 	 *
626 	 * Bits [16:15] are power limit scale, which most likely
627 	 * will be 0b signifying 1x.  Bits [14:7] are the Set
628 	 * Power Limit Value, which is a number which is multiplied
629 	 * by the power limit scale to get the actual power limit.
630 	 */
631 	DBG(DBG_TLU, NULL, "tlu_init - TLU_SLOT_CAPABILITIES: 0x%llx\n",
632 	    CSR_XR(csr_base, TLU_SLOT_CAPABILITIES));
633 
634 	/*
635 	 * CSR_V TLU_UNCORRECTABLE_ERROR_LOG_ENABLE Expect Kernel 0x17F011
636 	 */
637 	DBG(DBG_TLU, NULL,
638 	    "tlu_init - TLU_UNCORRECTABLE_ERROR_LOG_ENABLE: 0x%llx\n",
639 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_LOG_ENABLE));
640 
641 	/*
642 	 * CSR_V TLU_UNCORRECTABLE_ERROR_INTERRUPT_ENABLE Expect
643 	 * Kernel 0x17F0110017F011
644 	 */
645 	DBG(DBG_TLU, NULL,
646 	    "tlu_init - TLU_UNCORRECTABLE_ERROR_INTERRUPT_ENABLE: 0x%llx\n",
647 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_INTERRUPT_ENABLE));
648 
649 	/*
650 	 * CSR_V TLU_UNCORRECTABLE_ERROR_INTERRUPT_STATUS Expect HW 0x0
651 	 */
652 	DBG(DBG_TLU, NULL,
653 	    "tlu_init - TLU_UNCORRECTABLE_ERROR_INTERRUPT_STATUS: 0x%llx\n",
654 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_INTERRUPT_STATUS));
655 
656 	/*
657 	 * CSR_V TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR Expect HW 0x0
658 	 */
659 	DBG(DBG_TLU, NULL,
660 	    "tlu_init - TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR: 0x%llx\n",
661 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR));
662 
663 	/*
664 	 * CSR_V TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER1_LOG HW 0x0
665 	 */
666 	DBG(DBG_TLU, NULL,
667 	    "tlu_init - TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER1_LOG: 0x%llx\n",
668 	    CSR_XR(csr_base, TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER1_LOG));
669 
670 	/*
671 	 * CSR_V TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER2_LOG HW 0x0
672 	 */
673 	DBG(DBG_TLU, NULL,
674 	    "tlu_init - TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER2_LOG: 0x%llx\n",
675 	    CSR_XR(csr_base, TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER2_LOG));
676 
677 	/*
678 	 * CSR_V TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER1_LOG HW 0x0
679 	 */
680 	DBG(DBG_TLU, NULL,
681 	    "tlu_init - TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER1_LOG: 0x%llx\n",
682 	    CSR_XR(csr_base, TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER1_LOG));
683 
684 	/*
685 	 * CSR_V TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER2_LOG HW 0x0
686 	 */
687 	DBG(DBG_TLU, NULL,
688 	    "tlu_init - TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER2_LOG: 0x%llx\n",
689 	    CSR_XR(csr_base, TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER2_LOG));
690 
691 
692 	/*
693 	 * CSR_V TLU's CE interrupt regs (log, enable, status, clear)
694 	 * Plus header logs
695 	 */
696 
697 	/*
698 	 * CSR_V TLU_CORRECTABLE_ERROR_LOG_ENABLE Expect Kernel 0x11C1
699 	 */
700 	DBG(DBG_TLU, NULL,
701 	    "tlu_init - TLU_CORRECTABLE_ERROR_LOG_ENABLE: 0x%llx\n",
702 	    CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_LOG_ENABLE));
703 
704 	/*
705 	 * CSR_V TLU_CORRECTABLE_ERROR_INTERRUPT_ENABLE Kernel 0x11C1000011C1
706 	 */
707 	DBG(DBG_TLU, NULL,
708 	    "tlu_init - TLU_CORRECTABLE_ERROR_INTERRUPT_ENABLE: 0x%llx\n",
709 	    CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_INTERRUPT_ENABLE));
710 
711 	/*
712 	 * CSR_V TLU_CORRECTABLE_ERROR_INTERRUPT_STATUS Expect HW 0x0
713 	 */
714 	DBG(DBG_TLU, NULL,
715 	    "tlu_init - TLU_CORRECTABLE_ERROR_INTERRUPT_STATUS: 0x%llx\n",
716 	    CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_INTERRUPT_STATUS));
717 
718 	/*
719 	 * CSR_V TLU_CORRECTABLE_ERROR_STATUS_CLEAR Expect HW 0x0
720 	 */
721 	DBG(DBG_TLU, NULL,
722 	    "tlu_init - TLU_CORRECTABLE_ERROR_STATUS_CLEAR: 0x%llx\n",
723 	    CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_STATUS_CLEAR));
724 }
725 
726 /* ARGSUSED */
727 static void
728 lpu_init(caddr_t csr_base, pxu_t *pxu_p)
729 {
730 	/* Variables used to set the ACKNAK Latency Timer and Replay Timer */
731 	int link_width, max_payload;
732 
733 	uint64_t val;
734 
735 	/*
736 	 * ACKNAK Latency Threshold Table.
737 	 * See Fire PRM 2.0 section 1.2.12.2, table 1-17.
738 	 */
739 	int acknak_timer_table[LINK_MAX_PKT_ARR_SIZE][LINK_WIDTH_ARR_SIZE] = {
740 		{0xED,   0x49,  0x43,  0x30},
741 		{0x1A0,  0x76,  0x6B,  0x48},
742 		{0x22F,  0x9A,  0x56,  0x56},
743 		{0x42F,  0x11A, 0x96,  0x96},
744 		{0x82F,  0x21A, 0x116, 0x116},
745 		{0x102F, 0x41A, 0x216, 0x216}
746 	};
747 
748 	/*
749 	 * TxLink Replay Timer Latency Table
750 	 * See Fire PRM 2.0 sections 1.2.12.3, table 1-18.
751 	 */
752 	int replay_timer_table[LINK_MAX_PKT_ARR_SIZE][LINK_WIDTH_ARR_SIZE] = {
753 		{0x379,  0x112, 0xFC,  0xB4},
754 		{0x618,  0x1BA, 0x192, 0x10E},
755 		{0x831,  0x242, 0x143, 0x143},
756 		{0xFB1,  0x422, 0x233, 0x233},
757 		{0x1EB0, 0x7E1, 0x412, 0x412},
758 		{0x3CB0, 0xF61, 0x7D2, 0x7D2}
759 	};
760 
761 	/*
762 	 * Get the Link Width.  See table above LINK_WIDTH_ARR_SIZE #define
763 	 * Only Link Widths of x1, x4, and x8 are supported.
764 	 * If any width is reported other than x8, set default to x8.
765 	 */
766 	link_width = CSR_FR(csr_base, TLU_LINK_STATUS, WIDTH);
767 	DBG(DBG_LPU, NULL, "lpu_init - Link Width: x%d\n", link_width);
768 
769 	/*
770 	 * Convert link_width to match timer array configuration.
771 	 */
772 	switch (link_width) {
773 	case 1:
774 		link_width = 0;
775 		break;
776 	case 4:
777 		link_width = 1;
778 		break;
779 	case 8:
780 		link_width = 2;
781 		break;
782 	case 16:
783 		link_width = 3;
784 		break;
785 	default:
786 		link_width = 0;
787 	}
788 
789 	/*
790 	 * Get the Max Payload Size.
791 	 * See table above LINK_MAX_PKT_ARR_SIZE #define
792 	 */
793 	max_payload = ((CSR_FR(csr_base, TLU_CONTROL, CONFIG) &
794 	    TLU_CONTROL_MPS_MASK) >> TLU_CONTROL_MPS_SHIFT);
795 
796 	DBG(DBG_LPU, NULL, "lpu_init - May Payload: %d\n",
797 	    (0x80 << max_payload));
798 
799 	/* Make sure the packet size is not greater than 4096 */
800 	max_payload = (max_payload >= LINK_MAX_PKT_ARR_SIZE) ?
801 	    (LINK_MAX_PKT_ARR_SIZE - 1) : max_payload;
802 
803 	/*
804 	 * CSR_V LPU_ID Expect HW 0x0
805 	 */
806 
807 	/*
808 	 * This register has link id, phy id and gigablaze id.
809 	 * Should be set by HW.
810 	 */
811 	DBG(DBG_LPU, NULL, "lpu_init - LPU_ID: 0x%llx\n",
812 	    CSR_XR(csr_base, LPU_ID));
813 
814 	/*
815 	 * CSR_V LPU_RESET Expect Kernel 0x0
816 	 */
817 
818 	/*
819 	 * No reason to have any reset bits high until an error is
820 	 * detected on the link.
821 	 */
822 	val = 0ull;
823 	CSR_XS(csr_base, LPU_RESET, val);
824 	DBG(DBG_LPU, NULL, "lpu_init - LPU_RESET: 0x%llx\n",
825 	    CSR_XR(csr_base, LPU_RESET));
826 
827 	/*
828 	 * CSR_V LPU_DEBUG_STATUS Expect HW 0x0
829 	 */
830 
831 	/*
832 	 * Bits [15:8] are Debug B, and bit [7:0] are Debug A.
833 	 * They are read-only.  What do the 8 bits mean, and
834 	 * how do they get set if they are read only?
835 	 */
836 	DBG(DBG_LPU, NULL, "lpu_init - LPU_DEBUG_STATUS: 0x%llx\n",
837 	    CSR_XR(csr_base, LPU_DEBUG_STATUS));
838 
839 	/*
840 	 * CSR_V LPU_DEBUG_CONFIG Expect Kernel 0x0
841 	 */
842 	DBG(DBG_LPU, NULL, "lpu_init - LPU_DEBUG_CONFIG: 0x%llx\n",
843 	    CSR_XR(csr_base, LPU_DEBUG_CONFIG));
844 
845 	/*
846 	 * CSR_V LPU_LTSSM_CONTROL Expect HW 0x0
847 	 */
848 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONTROL: 0x%llx\n",
849 	    CSR_XR(csr_base, LPU_LTSSM_CONTROL));
850 
851 	/*
852 	 * CSR_V LPU_LINK_STATUS Expect HW 0x101
853 	 */
854 
855 	/*
856 	 * This register has bits [9:4] for link width, and the
857 	 * default 0x10, means a width of x16.  The problem is
858 	 * this width is not supported according to the TLU
859 	 * link status register.
860 	 */
861 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LINK_STATUS: 0x%llx\n",
862 	    CSR_XR(csr_base, LPU_LINK_STATUS));
863 
864 	/*
865 	 * CSR_V LPU_INTERRUPT_STATUS Expect HW 0x0
866 	 */
867 	DBG(DBG_LPU, NULL, "lpu_init - LPU_INTERRUPT_STATUS: 0x%llx\n",
868 	    CSR_XR(csr_base, LPU_INTERRUPT_STATUS));
869 
870 	/*
871 	 * CSR_V LPU_INTERRUPT_MASK Expect HW 0x0
872 	 */
873 	DBG(DBG_LPU, NULL, "lpu_init - LPU_INTERRUPT_MASK: 0x%llx\n",
874 	    CSR_XR(csr_base, LPU_INTERRUPT_MASK));
875 
876 	/*
877 	 * CSR_V LPU_LINK_PERFORMANCE_COUNTER_SELECT Expect HW 0x0
878 	 */
879 	DBG(DBG_LPU, NULL,
880 	    "lpu_init - LPU_LINK_PERFORMANCE_COUNTER_SELECT: 0x%llx\n",
881 	    CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER_SELECT));
882 
883 	/*
884 	 * CSR_V LPU_LINK_PERFORMANCE_COUNTER_CONTROL Expect HW 0x0
885 	 */
886 	DBG(DBG_LPU, NULL,
887 	    "lpu_init - LPU_LINK_PERFORMANCE_COUNTER_CONTROL: 0x%llx\n",
888 	    CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER_CONTROL));
889 
890 	/*
891 	 * CSR_V LPU_LINK_PERFORMANCE_COUNTER1 Expect HW 0x0
892 	 */
893 	DBG(DBG_LPU, NULL,
894 	    "lpu_init - LPU_LINK_PERFORMANCE_COUNTER1: 0x%llx\n",
895 	    CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER1));
896 
897 	/*
898 	 * CSR_V LPU_LINK_PERFORMANCE_COUNTER1_TEST Expect HW 0x0
899 	 */
900 	DBG(DBG_LPU, NULL,
901 	    "lpu_init - LPU_LINK_PERFORMANCE_COUNTER1_TEST: 0x%llx\n",
902 	    CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER1_TEST));
903 
904 	/*
905 	 * CSR_V LPU_LINK_PERFORMANCE_COUNTER2 Expect HW 0x0
906 	 */
907 	DBG(DBG_LPU, NULL,
908 	    "lpu_init - LPU_LINK_PERFORMANCE_COUNTER2: 0x%llx\n",
909 	    CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER2));
910 
911 	/*
912 	 * CSR_V LPU_LINK_PERFORMANCE_COUNTER2_TEST Expect HW 0x0
913 	 */
914 	DBG(DBG_LPU, NULL,
915 	    "lpu_init - LPU_LINK_PERFORMANCE_COUNTER2_TEST: 0x%llx\n",
916 	    CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER2_TEST));
917 
918 	/*
919 	 * CSR_V LPU_LINK_LAYER_CONFIG Expect HW 0x100
920 	 */
921 
922 	/*
923 	 * This is another place where Max Payload can be set,
924 	 * this time for the link layer.  It will be set to
925 	 * 128B, which is the default, but this will need to
926 	 * be revisited.
927 	 */
928 	val = (1ull << LPU_LINK_LAYER_CONFIG_VC0_EN);
929 	CSR_XS(csr_base, LPU_LINK_LAYER_CONFIG, val);
930 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LINK_LAYER_CONFIG: 0x%llx\n",
931 	    CSR_XR(csr_base, LPU_LINK_LAYER_CONFIG));
932 
933 	/*
934 	 * CSR_V LPU_LINK_LAYER_STATUS Expect OBP 0x5
935 	 */
936 
937 	/*
938 	 * Another R/W status register.  Bit 3, DL up Status, will
939 	 * be set high.  The link state machine status bits [2:0]
940 	 * are set to 0x1, but the status bits are not defined in the
941 	 * PRM.  What does 0x1 mean, what others values are possible
942 	 * and what are thier meanings?
943 	 *
944 	 * This register has been giving us problems in simulation.
945 	 * It has been mentioned that software should not program
946 	 * any registers with WE bits except during debug.  So
947 	 * this register will no longer be programmed.
948 	 */
949 
950 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LINK_LAYER_STATUS: 0x%llx\n",
951 	    CSR_XR(csr_base, LPU_LINK_LAYER_STATUS));
952 
953 	/*
954 	 * CSR_V LPU_LINK_LAYER_INTERRUPT_AND_STATUS_TEST Expect HW 0x0
955 	 */
956 	DBG(DBG_LPU, NULL,
957 	    "lpu_init - LPU_LINK_LAYER_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
958 	    CSR_XR(csr_base, LPU_LINK_LAYER_INTERRUPT_AND_STATUS_TEST));
959 
960 	/*
961 	 * CSR_V LPU Link Layer interrupt regs (mask, status)
962 	 */
963 	DBG(DBG_LPU, NULL,
964 	    "lpu_init - LPU_LINK_LAYER_INTERRUPT_MASK: 0x%llx\n",
965 	    CSR_XR(csr_base, LPU_LINK_LAYER_INTERRUPT_MASK));
966 
967 	DBG(DBG_LPU, NULL,
968 	    "lpu_init - LPU_LINK_LAYER_INTERRUPT_AND_STATUS: 0x%llx\n",
969 	    CSR_XR(csr_base, LPU_LINK_LAYER_INTERRUPT_AND_STATUS));
970 
971 	/*
972 	 * CSR_V LPU_FLOW_CONTROL_UPDATE_CONTROL Expect OBP 0x7
973 	 */
974 
975 	/*
976 	 * The PRM says that only the first two bits will be set
977 	 * high by default, which will enable flow control for
978 	 * posted and non-posted updates, but NOT completetion
979 	 * updates.
980 	 */
981 	val = (1ull << LPU_FLOW_CONTROL_UPDATE_CONTROL_FC0_U_NP_EN) |
982 	    (1ull << LPU_FLOW_CONTROL_UPDATE_CONTROL_FC0_U_P_EN);
983 	CSR_XS(csr_base, LPU_FLOW_CONTROL_UPDATE_CONTROL, val);
984 	DBG(DBG_LPU, NULL,
985 	    "lpu_init - LPU_FLOW_CONTROL_UPDATE_CONTROL: 0x%llx\n",
986 	    CSR_XR(csr_base, LPU_FLOW_CONTROL_UPDATE_CONTROL));
987 
988 	/*
989 	 * CSR_V LPU_LINK_LAYER_FLOW_CONTROL_UPDATE_TIMEOUT_VALUE
990 	 * Expect OBP 0x1D4C
991 	 */
992 
993 	/*
994 	 * This should be set by OBP.  We'll check to make sure.
995 	 */
996 	DBG(DBG_LPU, NULL, "lpu_init - "
997 	    "LPU_LINK_LAYER_FLOW_CONTROL_UPDATE_TIMEOUT_VALUE: 0x%llx\n",
998 	    CSR_XR(csr_base,
999 	    LPU_LINK_LAYER_FLOW_CONTROL_UPDATE_TIMEOUT_VALUE));
1000 
1001 	/*
1002 	 * CSR_V LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER0 Expect OBP ???
1003 	 */
1004 
1005 	/*
1006 	 * This register has Flow Control Update Timer values for
1007 	 * non-posted and posted requests, bits [30:16] and bits
1008 	 * [14:0], respectively.  These are read-only to SW so
1009 	 * either HW or OBP needs to set them.
1010 	 */
1011 	DBG(DBG_LPU, NULL, "lpu_init - "
1012 	    "LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER0: 0x%llx\n",
1013 	    CSR_XR(csr_base,
1014 	    LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER0));
1015 
1016 	/*
1017 	 * CSR_V LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER1 Expect OBP ???
1018 	 */
1019 
1020 	/*
1021 	 * Same as timer0 register above, except for bits [14:0]
1022 	 * have the timer values for completetions.  Read-only to
1023 	 * SW; OBP or HW need to set it.
1024 	 */
1025 	DBG(DBG_LPU, NULL, "lpu_init - "
1026 	    "LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER1: 0x%llx\n",
1027 	    CSR_XR(csr_base,
1028 	    LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER1));
1029 
1030 	/*
1031 	 * CSR_V LPU_TXLINK_FREQUENT_NAK_LATENCY_TIMER_THRESHOLD
1032 	 */
1033 	val = acknak_timer_table[max_payload][link_width];
1034 	CSR_XS(csr_base, LPU_TXLINK_FREQUENT_NAK_LATENCY_TIMER_THRESHOLD, val);
1035 
1036 	DBG(DBG_LPU, NULL, "lpu_init - "
1037 	    "LPU_TXLINK_FREQUENT_NAK_LATENCY_TIMER_THRESHOLD: 0x%llx\n",
1038 	    CSR_XR(csr_base, LPU_TXLINK_FREQUENT_NAK_LATENCY_TIMER_THRESHOLD));
1039 
1040 	/*
1041 	 * CSR_V LPU_TXLINK_ACKNAK_LATENCY_TIMER Expect HW 0x0
1042 	 */
1043 	DBG(DBG_LPU, NULL,
1044 	    "lpu_init - LPU_TXLINK_ACKNAK_LATENCY_TIMER: 0x%llx\n",
1045 	    CSR_XR(csr_base, LPU_TXLINK_ACKNAK_LATENCY_TIMER));
1046 
1047 	/*
1048 	 * CSR_V LPU_TXLINK_REPLAY_TIMER_THRESHOLD
1049 	 */
1050 	val = replay_timer_table[max_payload][link_width];
1051 	CSR_XS(csr_base, LPU_TXLINK_REPLAY_TIMER_THRESHOLD, val);
1052 
1053 	DBG(DBG_LPU, NULL,
1054 	    "lpu_init - LPU_TXLINK_REPLAY_TIMER_THRESHOLD: 0x%llx\n",
1055 	    CSR_XR(csr_base, LPU_TXLINK_REPLAY_TIMER_THRESHOLD));
1056 
1057 	/*
1058 	 * CSR_V LPU_TXLINK_REPLAY_TIMER Expect HW 0x0
1059 	 */
1060 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TXLINK_REPLAY_TIMER: 0x%llx\n",
1061 	    CSR_XR(csr_base, LPU_TXLINK_REPLAY_TIMER));
1062 
1063 	/*
1064 	 * CSR_V LPU_TXLINK_REPLAY_NUMBER_STATUS Expect OBP 0x3
1065 	 */
1066 	DBG(DBG_LPU, NULL,
1067 	    "lpu_init - LPU_TXLINK_REPLAY_NUMBER_STATUS: 0x%llx\n",
1068 	    CSR_XR(csr_base, LPU_TXLINK_REPLAY_NUMBER_STATUS));
1069 
1070 	/*
1071 	 * CSR_V LPU_REPLAY_BUFFER_MAX_ADDRESS Expect OBP 0xB3F
1072 	 */
1073 	DBG(DBG_LPU, NULL,
1074 	    "lpu_init - LPU_REPLAY_BUFFER_MAX_ADDRESS: 0x%llx\n",
1075 	    CSR_XR(csr_base, LPU_REPLAY_BUFFER_MAX_ADDRESS));
1076 
1077 	/*
1078 	 * CSR_V LPU_TXLINK_RETRY_FIFO_POINTER Expect OBP 0xFFFF0000
1079 	 */
1080 	val = ((LPU_TXLINK_RETRY_FIFO_POINTER_RTRY_FIFO_TLPTR_DEFAULT <<
1081 	    LPU_TXLINK_RETRY_FIFO_POINTER_RTRY_FIFO_TLPTR) |
1082 	    (LPU_TXLINK_RETRY_FIFO_POINTER_RTRY_FIFO_HDPTR_DEFAULT <<
1083 	    LPU_TXLINK_RETRY_FIFO_POINTER_RTRY_FIFO_HDPTR));
1084 
1085 	CSR_XS(csr_base, LPU_TXLINK_RETRY_FIFO_POINTER, val);
1086 	DBG(DBG_LPU, NULL,
1087 	    "lpu_init - LPU_TXLINK_RETRY_FIFO_POINTER: 0x%llx\n",
1088 	    CSR_XR(csr_base, LPU_TXLINK_RETRY_FIFO_POINTER));
1089 
1090 	/*
1091 	 * CSR_V LPU_TXLINK_RETRY_FIFO_R_W_POINTER Expect OBP 0x0
1092 	 */
1093 	DBG(DBG_LPU, NULL,
1094 	    "lpu_init - LPU_TXLINK_RETRY_FIFO_R_W_POINTER: 0x%llx\n",
1095 	    CSR_XR(csr_base, LPU_TXLINK_RETRY_FIFO_R_W_POINTER));
1096 
1097 	/*
1098 	 * CSR_V LPU_TXLINK_RETRY_FIFO_CREDIT Expect HW 0x1580
1099 	 */
1100 	DBG(DBG_LPU, NULL,
1101 	    "lpu_init - LPU_TXLINK_RETRY_FIFO_CREDIT: 0x%llx\n",
1102 	    CSR_XR(csr_base, LPU_TXLINK_RETRY_FIFO_CREDIT));
1103 
1104 	/*
1105 	 * CSR_V LPU_TXLINK_SEQUENCE_COUNTER Expect OBP 0xFFF0000
1106 	 */
1107 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TXLINK_SEQUENCE_COUNTER: 0x%llx\n",
1108 	    CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_COUNTER));
1109 
1110 	/*
1111 	 * CSR_V LPU_TXLINK_ACK_SENT_SEQUENCE_NUMBER Expect HW 0xFFF
1112 	 */
1113 	DBG(DBG_LPU, NULL,
1114 	    "lpu_init - LPU_TXLINK_ACK_SENT_SEQUENCE_NUMBER: 0x%llx\n",
1115 	    CSR_XR(csr_base, LPU_TXLINK_ACK_SENT_SEQUENCE_NUMBER));
1116 
1117 	/*
1118 	 * CSR_V LPU_TXLINK_SEQUENCE_COUNT_FIFO_MAX_ADDR Expect OBP 0x157
1119 	 */
1120 
1121 	/*
1122 	 * Test only register.  Will not be programmed.
1123 	 */
1124 	DBG(DBG_LPU, NULL,
1125 	    "lpu_init - LPU_TXLINK_SEQUENCE_COUNT_FIFO_MAX_ADDR: 0x%llx\n",
1126 	    CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_COUNT_FIFO_MAX_ADDR));
1127 
1128 	/*
1129 	 * CSR_V LPU_TXLINK_SEQUENCE_COUNT_FIFO_POINTERS Expect HW 0xFFF0000
1130 	 */
1131 
1132 	/*
1133 	 * Test only register.  Will not be programmed.
1134 	 */
1135 	DBG(DBG_LPU, NULL,
1136 	    "lpu_init - LPU_TXLINK_SEQUENCE_COUNT_FIFO_POINTERS: 0x%llx\n",
1137 	    CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_COUNT_FIFO_POINTERS));
1138 
1139 	/*
1140 	 * CSR_V LPU_TXLINK_SEQUENCE_COUNT_R_W_POINTERS Expect HW 0x0
1141 	 */
1142 	DBG(DBG_LPU, NULL,
1143 	    "lpu_init - LPU_TXLINK_SEQUENCE_COUNT_R_W_POINTERS: 0x%llx\n",
1144 	    CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_COUNT_R_W_POINTERS));
1145 
1146 	/*
1147 	 * CSR_V LPU_TXLINK_TEST_CONTROL Expect HW 0x0
1148 	 */
1149 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TXLINK_TEST_CONTROL: 0x%llx\n",
1150 	    CSR_XR(csr_base, LPU_TXLINK_TEST_CONTROL));
1151 
1152 	/*
1153 	 * CSR_V LPU_TXLINK_MEMORY_ADDRESS_CONTROL Expect HW 0x0
1154 	 */
1155 
1156 	/*
1157 	 * Test only register.  Will not be programmed.
1158 	 */
1159 	DBG(DBG_LPU, NULL,
1160 	    "lpu_init - LPU_TXLINK_MEMORY_ADDRESS_CONTROL: 0x%llx\n",
1161 	    CSR_XR(csr_base, LPU_TXLINK_MEMORY_ADDRESS_CONTROL));
1162 
1163 	/*
1164 	 * CSR_V LPU_TXLINK_MEMORY_DATA_LOAD0 Expect HW 0x0
1165 	 */
1166 	DBG(DBG_LPU, NULL,
1167 	    "lpu_init - LPU_TXLINK_MEMORY_DATA_LOAD0: 0x%llx\n",
1168 	    CSR_XR(csr_base, LPU_TXLINK_MEMORY_DATA_LOAD0));
1169 
1170 	/*
1171 	 * CSR_V LPU_TXLINK_MEMORY_DATA_LOAD1 Expect HW 0x0
1172 	 */
1173 	DBG(DBG_LPU, NULL,
1174 	    "lpu_init - LPU_TXLINK_MEMORY_DATA_LOAD1: 0x%llx\n",
1175 	    CSR_XR(csr_base, LPU_TXLINK_MEMORY_DATA_LOAD1));
1176 
1177 	/*
1178 	 * CSR_V LPU_TXLINK_MEMORY_DATA_LOAD2 Expect HW 0x0
1179 	 */
1180 	DBG(DBG_LPU, NULL,
1181 	    "lpu_init - LPU_TXLINK_MEMORY_DATA_LOAD2: 0x%llx\n",
1182 	    CSR_XR(csr_base, LPU_TXLINK_MEMORY_DATA_LOAD2));
1183 
1184 	/*
1185 	 * CSR_V LPU_TXLINK_MEMORY_DATA_LOAD3 Expect HW 0x0
1186 	 */
1187 	DBG(DBG_LPU, NULL,
1188 	    "lpu_init - LPU_TXLINK_MEMORY_DATA_LOAD3: 0x%llx\n",
1189 	    CSR_XR(csr_base, LPU_TXLINK_MEMORY_DATA_LOAD3));
1190 
1191 	/*
1192 	 * CSR_V LPU_TXLINK_MEMORY_DATA_LOAD4 Expect HW 0x0
1193 	 */
1194 	DBG(DBG_LPU, NULL,
1195 	    "lpu_init - LPU_TXLINK_MEMORY_DATA_LOAD4: 0x%llx\n",
1196 	    CSR_XR(csr_base, LPU_TXLINK_MEMORY_DATA_LOAD4));
1197 
1198 	/*
1199 	 * CSR_V LPU_TXLINK_RETRY_DATA_COUNT Expect HW 0x0
1200 	 */
1201 
1202 	/*
1203 	 * Test only register.  Will not be programmed.
1204 	 */
1205 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TXLINK_RETRY_DATA_COUNT: 0x%llx\n",
1206 	    CSR_XR(csr_base, LPU_TXLINK_RETRY_DATA_COUNT));
1207 
1208 	/*
1209 	 * CSR_V LPU_TXLINK_SEQUENCE_BUFFER_COUNT Expect HW 0x0
1210 	 */
1211 
1212 	/*
1213 	 * Test only register.  Will not be programmed.
1214 	 */
1215 	DBG(DBG_LPU, NULL,
1216 	    "lpu_init - LPU_TXLINK_SEQUENCE_BUFFER_COUNT: 0x%llx\n",
1217 	    CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_BUFFER_COUNT));
1218 
1219 	/*
1220 	 * CSR_V LPU_TXLINK_SEQUENCE_BUFFER_BOTTOM_DATA Expect HW 0x0
1221 	 */
1222 
1223 	/*
1224 	 * Test only register.
1225 	 */
1226 	DBG(DBG_LPU, NULL,
1227 	    "lpu_init - LPU_TXLINK_SEQUENCE_BUFFER_BOTTOM_DATA: 0x%llx\n",
1228 	    CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_BUFFER_BOTTOM_DATA));
1229 
1230 	/*
1231 	 * CSR_V LPU_RXLINK_NEXT_RECEIVE_SEQUENCE_1_COUNTER Expect HW 0x0
1232 	 */
1233 	DBG(DBG_LPU, NULL, "lpu_init - "
1234 	    "LPU_RXLINK_NEXT_RECEIVE_SEQUENCE_1_COUNTER: 0x%llx\n",
1235 	    CSR_XR(csr_base, LPU_RXLINK_NEXT_RECEIVE_SEQUENCE_1_COUNTER));
1236 
1237 	/*
1238 	 * CSR_V LPU_RXLINK_UNSUPPORTED_DLLP_RECEIVED Expect HW 0x0
1239 	 */
1240 
1241 	/*
1242 	 * test only register.
1243 	 */
1244 	DBG(DBG_LPU, NULL,
1245 	    "lpu_init - LPU_RXLINK_UNSUPPORTED_DLLP_RECEIVED: 0x%llx\n",
1246 	    CSR_XR(csr_base, LPU_RXLINK_UNSUPPORTED_DLLP_RECEIVED));
1247 
1248 	/*
1249 	 * CSR_V LPU_RXLINK_TEST_CONTROL Expect HW 0x0
1250 	 */
1251 
1252 	/*
1253 	 * test only register.
1254 	 */
1255 	DBG(DBG_LPU, NULL, "lpu_init - LPU_RXLINK_TEST_CONTROL: 0x%llx\n",
1256 	    CSR_XR(csr_base, LPU_RXLINK_TEST_CONTROL));
1257 
1258 	/*
1259 	 * CSR_V LPU_PHYSICAL_LAYER_CONFIGURATION Expect HW 0x10
1260 	 */
1261 	DBG(DBG_LPU, NULL,
1262 	    "lpu_init - LPU_PHYSICAL_LAYER_CONFIGURATION: 0x%llx\n",
1263 	    CSR_XR(csr_base, LPU_PHYSICAL_LAYER_CONFIGURATION));
1264 
1265 	/*
1266 	 * CSR_V LPU_PHY_LAYER_STATUS Expect HW 0x0
1267 	 */
1268 	DBG(DBG_LPU, NULL, "lpu_init - LPU_PHY_LAYER_STATUS: 0x%llx\n",
1269 	    CSR_XR(csr_base, LPU_PHY_LAYER_STATUS));
1270 
1271 	/*
1272 	 * CSR_V LPU_PHY_INTERRUPT_AND_STATUS_TEST Expect HW 0x0
1273 	 */
1274 	DBG(DBG_LPU, NULL,
1275 	    "lpu_init - LPU_PHY_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
1276 	    CSR_XR(csr_base, LPU_PHY_INTERRUPT_AND_STATUS_TEST));
1277 
1278 	/*
1279 	 * CSR_V LPU PHY LAYER interrupt regs (mask, status)
1280 	 */
1281 	DBG(DBG_LPU, NULL, "lpu_init - LPU_PHY_INTERRUPT_MASK: 0x%llx\n",
1282 	    CSR_XR(csr_base, LPU_PHY_INTERRUPT_MASK));
1283 
1284 	DBG(DBG_LPU, NULL,
1285 	    "lpu_init - LPU_PHY_LAYER_INTERRUPT_AND_STATUS: 0x%llx\n",
1286 	    CSR_XR(csr_base, LPU_PHY_LAYER_INTERRUPT_AND_STATUS));
1287 
1288 	/*
1289 	 * CSR_V LPU_RECEIVE_PHY_CONFIG Expect HW 0x0
1290 	 */
1291 
1292 	/*
1293 	 * This also needs some explanation.  What is the best value
1294 	 * for the water mark?  Test mode enables which test mode?
1295 	 * Programming model needed for the Receiver Reset Lane N
1296 	 * bits.
1297 	 */
1298 	DBG(DBG_LPU, NULL, "lpu_init - LPU_RECEIVE_PHY_CONFIG: 0x%llx\n",
1299 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_CONFIG));
1300 
1301 	/*
1302 	 * CSR_V LPU_RECEIVE_PHY_STATUS1 Expect HW 0x0
1303 	 */
1304 	DBG(DBG_LPU, NULL, "lpu_init - LPU_RECEIVE_PHY_STATUS1: 0x%llx\n",
1305 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_STATUS1));
1306 
1307 	/*
1308 	 * CSR_V LPU_RECEIVE_PHY_STATUS2 Expect HW 0x0
1309 	 */
1310 	DBG(DBG_LPU, NULL, "lpu_init - LPU_RECEIVE_PHY_STATUS2: 0x%llx\n",
1311 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_STATUS2));
1312 
1313 	/*
1314 	 * CSR_V LPU_RECEIVE_PHY_STATUS3 Expect HW 0x0
1315 	 */
1316 	DBG(DBG_LPU, NULL, "lpu_init - LPU_RECEIVE_PHY_STATUS3: 0x%llx\n",
1317 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_STATUS3));
1318 
1319 	/*
1320 	 * CSR_V LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS_TEST Expect HW 0x0
1321 	 */
1322 	DBG(DBG_LPU, NULL,
1323 	    "lpu_init - LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
1324 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS_TEST));
1325 
1326 	/*
1327 	 * CSR_V LPU RX LAYER interrupt regs (mask, status)
1328 	 */
1329 	DBG(DBG_LPU, NULL,
1330 	    "lpu_init - LPU_RECEIVE_PHY_INTERRUPT_MASK: 0x%llx\n",
1331 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_INTERRUPT_MASK));
1332 
1333 	DBG(DBG_LPU, NULL,
1334 	    "lpu_init - LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS: 0x%llx\n",
1335 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS));
1336 
1337 	/*
1338 	 * CSR_V LPU_TRANSMIT_PHY_CONFIG Expect HW 0x0
1339 	 */
1340 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TRANSMIT_PHY_CONFIG: 0x%llx\n",
1341 	    CSR_XR(csr_base, LPU_TRANSMIT_PHY_CONFIG));
1342 
1343 	/*
1344 	 * CSR_V LPU_TRANSMIT_PHY_STATUS Expect HW 0x0
1345 	 */
1346 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TRANSMIT_PHY_STATUS: 0x%llx\n",
1347 		CSR_XR(csr_base, LPU_TRANSMIT_PHY_STATUS));
1348 
1349 	/*
1350 	 * CSR_V LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS_TEST Expect HW 0x0
1351 	 */
1352 	DBG(DBG_LPU, NULL,
1353 	    "lpu_init - LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
1354 	    CSR_XR(csr_base,
1355 	    LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS_TEST));
1356 
1357 	/*
1358 	 * CSR_V LPU TX LAYER interrupt regs (mask, status)
1359 	 */
1360 	DBG(DBG_LPU, NULL,
1361 	    "lpu_init - LPU_TRANSMIT_PHY_INTERRUPT_MASK: 0x%llx\n",
1362 	    CSR_XR(csr_base, LPU_TRANSMIT_PHY_INTERRUPT_MASK));
1363 
1364 	DBG(DBG_LPU, NULL,
1365 	    "lpu_init - LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS: 0x%llx\n",
1366 	    CSR_XR(csr_base, LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS));
1367 
1368 	/*
1369 	 * CSR_V LPU_TRANSMIT_PHY_STATUS_2 Expect HW 0x0
1370 	 */
1371 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TRANSMIT_PHY_STATUS_2: 0x%llx\n",
1372 	    CSR_XR(csr_base, LPU_TRANSMIT_PHY_STATUS_2));
1373 
1374 	/*
1375 	 * CSR_V LPU_LTSSM_CONFIG1 Expect OBP 0x205
1376 	 */
1377 
1378 	/*
1379 	 * The new PRM has values for LTSSM 8 ns timeout value and
1380 	 * LTSSM 20 ns timeout value.  But what do these values mean?
1381 	 * Most of the other bits are questions as well.
1382 	 *
1383 	 * As such we will use the reset value.
1384 	 */
1385 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONFIG1: 0x%llx\n",
1386 	    CSR_XR(csr_base, LPU_LTSSM_CONFIG1));
1387 
1388 	/*
1389 	 * CSR_V LPU_LTSSM_CONFIG2 Expect OBP 0x2DC6C0
1390 	 */
1391 
1392 	/*
1393 	 * Again, what does '12 ms timeout value mean'?
1394 	 */
1395 	val = (LPU_LTSSM_CONFIG2_LTSSM_12_TO_DEFAULT <<
1396 	    LPU_LTSSM_CONFIG2_LTSSM_12_TO);
1397 	CSR_XS(csr_base, LPU_LTSSM_CONFIG2, val);
1398 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONFIG2: 0x%llx\n",
1399 	    CSR_XR(csr_base, LPU_LTSSM_CONFIG2));
1400 
1401 	/*
1402 	 * CSR_V LPU_LTSSM_CONFIG3 Expect OBP 0x7A120
1403 	 */
1404 	val = (LPU_LTSSM_CONFIG3_LTSSM_2_TO_DEFAULT <<
1405 	    LPU_LTSSM_CONFIG3_LTSSM_2_TO);
1406 	CSR_XS(csr_base, LPU_LTSSM_CONFIG3, val);
1407 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONFIG3: 0x%llx\n",
1408 	    CSR_XR(csr_base, LPU_LTSSM_CONFIG3));
1409 
1410 	/*
1411 	 * CSR_V LPU_LTSSM_CONFIG4 Expect OBP 0x21300
1412 	 */
1413 	val = ((LPU_LTSSM_CONFIG4_DATA_RATE_DEFAULT <<
1414 	    LPU_LTSSM_CONFIG4_DATA_RATE) |
1415 		(LPU_LTSSM_CONFIG4_N_FTS_DEFAULT <<
1416 		LPU_LTSSM_CONFIG4_N_FTS));
1417 	CSR_XS(csr_base, LPU_LTSSM_CONFIG4, val);
1418 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONFIG4: 0x%llx\n",
1419 	    CSR_XR(csr_base, LPU_LTSSM_CONFIG4));
1420 
1421 	/*
1422 	 * CSR_V LPU_LTSSM_CONFIG5 Expect OBP 0x0
1423 	 */
1424 	val = 0ull;
1425 	CSR_XS(csr_base, LPU_LTSSM_CONFIG5, val);
1426 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONFIG5: 0x%llx\n",
1427 	    CSR_XR(csr_base, LPU_LTSSM_CONFIG5));
1428 
1429 	/*
1430 	 * CSR_V LPU_LTSSM_STATUS1 Expect OBP 0x0
1431 	 */
1432 
1433 	/*
1434 	 * LTSSM Status registers are test only.
1435 	 */
1436 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_STATUS1: 0x%llx\n",
1437 	    CSR_XR(csr_base, LPU_LTSSM_STATUS1));
1438 
1439 	/*
1440 	 * CSR_V LPU_LTSSM_STATUS2 Expect OBP 0x0
1441 	 */
1442 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_STATUS2: 0x%llx\n",
1443 	    CSR_XR(csr_base, LPU_LTSSM_STATUS2));
1444 
1445 	/*
1446 	 * CSR_V LPU_LTSSM_INTERRUPT_AND_STATUS_TEST Expect HW 0x0
1447 	 */
1448 	DBG(DBG_LPU, NULL,
1449 	    "lpu_init - LPU_LTSSM_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
1450 	    CSR_XR(csr_base, LPU_LTSSM_INTERRUPT_AND_STATUS_TEST));
1451 
1452 	/*
1453 	 * CSR_V LPU LTSSM  LAYER interrupt regs (mask, status)
1454 	 */
1455 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_INTERRUPT_MASK: 0x%llx\n",
1456 	    CSR_XR(csr_base, LPU_LTSSM_INTERRUPT_MASK));
1457 
1458 	DBG(DBG_LPU, NULL,
1459 	    "lpu_init - LPU_LTSSM_INTERRUPT_AND_STATUS: 0x%llx\n",
1460 	    CSR_XR(csr_base, LPU_LTSSM_INTERRUPT_AND_STATUS));
1461 
1462 	/*
1463 	 * CSR_V LPU_LTSSM_STATUS_WRITE_ENABLE Expect OBP 0x0
1464 	 */
1465 	DBG(DBG_LPU, NULL,
1466 	    "lpu_init - LPU_LTSSM_STATUS_WRITE_ENABLE: 0x%llx\n",
1467 	    CSR_XR(csr_base, LPU_LTSSM_STATUS_WRITE_ENABLE));
1468 
1469 	/*
1470 	 * CSR_V LPU_GIGABLAZE_GLUE_CONFIG1 Expect OBP 0x88407
1471 	 */
1472 	DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_CONFIG1: 0x%llx\n",
1473 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_CONFIG1));
1474 
1475 	/*
1476 	 * CSR_V LPU_GIGABLAZE_GLUE_CONFIG2 Expect OBP 0x35
1477 	 */
1478 	DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_CONFIG2: 0x%llx\n",
1479 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_CONFIG2));
1480 
1481 	/*
1482 	 * CSR_V LPU_GIGABLAZE_GLUE_CONFIG3 Expect OBP 0x4400FA
1483 	 */
1484 	DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_CONFIG3: 0x%llx\n",
1485 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_CONFIG3));
1486 
1487 	/*
1488 	 * CSR_V LPU_GIGABLAZE_GLUE_CONFIG4 Expect OBP 0x1E848
1489 	 */
1490 	DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_CONFIG4: 0x%llx\n",
1491 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_CONFIG4));
1492 
1493 	/*
1494 	 * CSR_V LPU_GIGABLAZE_GLUE_STATUS Expect OBP 0x0
1495 	 */
1496 	DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_STATUS: 0x%llx\n",
1497 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_STATUS));
1498 
1499 	/*
1500 	 * CSR_V LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS_TEST Expect OBP 0x0
1501 	 */
1502 	DBG(DBG_LPU, NULL, "lpu_init - "
1503 	    "LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
1504 	    CSR_XR(csr_base,
1505 	    LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS_TEST));
1506 
1507 	/*
1508 	 * CSR_V LPU GIGABLASE LAYER interrupt regs (mask, status)
1509 	 */
1510 	DBG(DBG_LPU, NULL,
1511 	    "lpu_init - LPU_GIGABLAZE_GLUE_INTERRUPT_MASK: 0x%llx\n",
1512 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_INTERRUPT_MASK));
1513 
1514 	DBG(DBG_LPU, NULL,
1515 	    "lpu_init - LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS: 0x%llx\n",
1516 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS));
1517 
1518 	/*
1519 	 * CSR_V LPU_GIGABLAZE_GLUE_POWER_DOWN1 Expect HW 0x0
1520 	 */
1521 	DBG(DBG_LPU, NULL,
1522 	    "lpu_init - LPU_GIGABLAZE_GLUE_POWER_DOWN1: 0x%llx\n",
1523 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_POWER_DOWN1));
1524 
1525 	/*
1526 	 * CSR_V LPU_GIGABLAZE_GLUE_POWER_DOWN2 Expect HW 0x0
1527 	 */
1528 	DBG(DBG_LPU, NULL,
1529 	    "lpu_init - LPU_GIGABLAZE_GLUE_POWER_DOWN2: 0x%llx\n",
1530 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_POWER_DOWN2));
1531 
1532 	/*
1533 	 * CSR_V LPU_GIGABLAZE_GLUE_CONFIG5 Expect OBP 0x0
1534 	 */
1535 	DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_CONFIG5: 0x%llx\n",
1536 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_CONFIG5));
1537 }
1538 
1539 /* ARGSUSED */
1540 static void
1541 dlu_init(caddr_t csr_base, pxu_t *pxu_p)
1542 {
1543 uint64_t val;
1544 
1545 	CSR_XS(csr_base, DLU_INTERRUPT_MASK, 0ull);
1546 	DBG(DBG_TLU, NULL, "dlu_init - DLU_INTERRUPT_MASK: 0x%llx\n",
1547 	    CSR_XR(csr_base, DLU_INTERRUPT_MASK));
1548 
1549 	val = (1ull << DLU_LINK_LAYER_CONFIG_VC0_EN);
1550 	CSR_XS(csr_base, DLU_LINK_LAYER_CONFIG, val);
1551 	DBG(DBG_TLU, NULL, "dlu_init - DLU_LINK_LAYER_CONFIG: 0x%llx\n",
1552 	    CSR_XR(csr_base, DLU_LINK_LAYER_CONFIG));
1553 
1554 	val = (1ull << DLU_FLOW_CONTROL_UPDATE_CONTROL_FC0_U_NP_EN) |
1555 	    (1ull << DLU_FLOW_CONTROL_UPDATE_CONTROL_FC0_U_P_EN);
1556 
1557 	CSR_XS(csr_base, DLU_FLOW_CONTROL_UPDATE_CONTROL, val);
1558 	DBG(DBG_TLU, NULL, "dlu_init - DLU_FLOW_CONTROL_UPDATE_CONTROL: "
1559 	    "0x%llx\n", CSR_XR(csr_base, DLU_FLOW_CONTROL_UPDATE_CONTROL));
1560 
1561 	val = (DLU_TXLINK_REPLAY_TIMER_THRESHOLD_DEFAULT <<
1562 	    DLU_TXLINK_REPLAY_TIMER_THRESHOLD_RPLAY_TMR_THR);
1563 
1564 	CSR_XS(csr_base, DLU_TXLINK_REPLAY_TIMER_THRESHOLD, val);
1565 
1566 	DBG(DBG_TLU, NULL, "dlu_init - DLU_TXLINK_REPLAY_TIMER_THRESHOLD: "
1567 	    "0x%llx\n", CSR_XR(csr_base, DLU_TXLINK_REPLAY_TIMER_THRESHOLD));
1568 }
1569 
1570 /* ARGSUSED */
1571 static void
1572 dmc_init(caddr_t csr_base, pxu_t *pxu_p)
1573 {
1574 	uint64_t val;
1575 
1576 /*
1577  * CSR_V DMC_CORE_AND_BLOCK_INTERRUPT_ENABLE Expect OBP 0x8000000000000003
1578  */
1579 
1580 	val = -1ull;
1581 	CSR_XS(csr_base, DMC_CORE_AND_BLOCK_INTERRUPT_ENABLE, val);
1582 	DBG(DBG_DMC, NULL,
1583 	    "dmc_init - DMC_CORE_AND_BLOCK_INTERRUPT_ENABLE: 0x%llx\n",
1584 	    CSR_XR(csr_base, DMC_CORE_AND_BLOCK_INTERRUPT_ENABLE));
1585 
1586 	/*
1587 	 * CSR_V DMC_CORE_AND_BLOCK_ERROR_STATUS Expect HW 0x0
1588 	 */
1589 	DBG(DBG_DMC, NULL,
1590 	    "dmc_init - DMC_CORE_AND_BLOCK_ERROR_STATUS: 0x%llx\n",
1591 	    CSR_XR(csr_base, DMC_CORE_AND_BLOCK_ERROR_STATUS));
1592 
1593 	/*
1594 	 * CSR_V DMC_DEBUG_SELECT_FOR_PORT_A Expect HW 0x0
1595 	 */
1596 	val = 0x0ull;
1597 	CSR_XS(csr_base, DMC_DEBUG_SELECT_FOR_PORT_A, val);
1598 	DBG(DBG_DMC, NULL, "dmc_init - DMC_DEBUG_SELECT_FOR_PORT_A: 0x%llx\n",
1599 	    CSR_XR(csr_base, DMC_DEBUG_SELECT_FOR_PORT_A));
1600 
1601 	/*
1602 	 * CSR_V DMC_DEBUG_SELECT_FOR_PORT_B Expect HW 0x0
1603 	 */
1604 	val = 0x0ull;
1605 	CSR_XS(csr_base, DMC_DEBUG_SELECT_FOR_PORT_B, val);
1606 	DBG(DBG_DMC, NULL, "dmc_init - DMC_DEBUG_SELECT_FOR_PORT_B: 0x%llx\n",
1607 	    CSR_XR(csr_base, DMC_DEBUG_SELECT_FOR_PORT_B));
1608 }
1609 
1610 void
1611 hvio_pec_init(caddr_t csr_base, pxu_t *pxu_p)
1612 {
1613 	uint64_t val;
1614 
1615 	ilu_init(csr_base, pxu_p);
1616 	tlu_init(csr_base, pxu_p);
1617 
1618 	switch (PX_CHIP_TYPE(pxu_p)) {
1619 	case PX_CHIP_OBERON:
1620 		dlu_init(csr_base, pxu_p);
1621 		break;
1622 	case PX_CHIP_FIRE:
1623 		lpu_init(csr_base, pxu_p);
1624 		break;
1625 	default:
1626 		DBG(DBG_PEC, NULL, "hvio_pec_init - unknown chip type: 0x%x\n",
1627 		    PX_CHIP_TYPE(pxu_p));
1628 		break;
1629 	}
1630 
1631 	dmc_init(csr_base, pxu_p);
1632 
1633 /*
1634  * CSR_V PEC_CORE_AND_BLOCK_INTERRUPT_ENABLE Expect Kernel 0x800000000000000F
1635  */
1636 
1637 	val = -1ull;
1638 	CSR_XS(csr_base, PEC_CORE_AND_BLOCK_INTERRUPT_ENABLE, val);
1639 	DBG(DBG_PEC, NULL,
1640 	    "hvio_pec_init - PEC_CORE_AND_BLOCK_INTERRUPT_ENABLE: 0x%llx\n",
1641 	    CSR_XR(csr_base, PEC_CORE_AND_BLOCK_INTERRUPT_ENABLE));
1642 
1643 	/*
1644 	 * CSR_V PEC_CORE_AND_BLOCK_INTERRUPT_STATUS Expect HW 0x0
1645 	 */
1646 	DBG(DBG_PEC, NULL,
1647 	    "hvio_pec_init - PEC_CORE_AND_BLOCK_INTERRUPT_STATUS: 0x%llx\n",
1648 	    CSR_XR(csr_base, PEC_CORE_AND_BLOCK_INTERRUPT_STATUS));
1649 }
1650 
1651 /*
1652  * Convert a TTE to physical address
1653  */
1654 static r_addr_t
1655 mmu_tte_to_pa(uint64_t tte, pxu_t *pxu_p)
1656 {
1657 	uint64_t pa_mask;
1658 
1659 	switch (PX_CHIP_TYPE(pxu_p)) {
1660 	case PX_CHIP_OBERON:
1661 		pa_mask = MMU_OBERON_PADDR_MASK;
1662 		break;
1663 	case PX_CHIP_FIRE:
1664 		pa_mask = MMU_FIRE_PADDR_MASK;
1665 		break;
1666 	default:
1667 		DBG(DBG_MMU, NULL, "mmu_tte_to_pa - unknown chip type: 0x%x\n",
1668 		    PX_CHIP_TYPE(pxu_p));
1669 		pa_mask = 0;
1670 		break;
1671 	}
1672 	return ((tte & pa_mask) >> MMU_PAGE_SHIFT);
1673 }
1674 
1675 /*
1676  * Return MMU bypass noncache bit for chip
1677  */
1678 static r_addr_t
1679 mmu_bypass_noncache(pxu_t *pxu_p)
1680 {
1681 	r_addr_t bypass_noncache_bit;
1682 
1683 	switch (PX_CHIP_TYPE(pxu_p)) {
1684 	case PX_CHIP_OBERON:
1685 		bypass_noncache_bit = MMU_OBERON_BYPASS_NONCACHE;
1686 		break;
1687 	case PX_CHIP_FIRE:
1688 		bypass_noncache_bit = MMU_FIRE_BYPASS_NONCACHE;
1689 		break;
1690 	default:
1691 		DBG(DBG_MMU, NULL,
1692 		    "mmu_bypass_nocache - unknown chip type: 0x%x\n",
1693 		    PX_CHIP_TYPE(pxu_p));
1694 		bypass_noncache_bit = 0;
1695 		break;
1696 	}
1697 	return (bypass_noncache_bit);
1698 }
1699 
1700 /*
1701  * Calculate number of TSB entries for the chip.
1702  */
1703 /* ARGSUSED */
1704 static uint_t
1705 mmu_tsb_entries(caddr_t csr_base, pxu_t *pxu_p)
1706 {
1707 	uint64_t tsb_ctrl;
1708 	uint_t obp_tsb_entries, obp_tsb_size;
1709 
1710 	tsb_ctrl = CSR_XR(csr_base, MMU_TSB_CONTROL);
1711 
1712 	obp_tsb_size = tsb_ctrl & 0xF;
1713 
1714 	obp_tsb_entries = MMU_TSBSIZE_TO_TSBENTRIES(obp_tsb_size);
1715 
1716 	return (obp_tsb_entries);
1717 }
1718 
1719 /*
1720  * Initialize the module, but do not enable interrupts.
1721  */
1722 void
1723 hvio_mmu_init(caddr_t csr_base, pxu_t *pxu_p)
1724 {
1725 	uint64_t	val, i, obp_tsb_pa, *base_tte_addr;
1726 	uint_t obp_tsb_entries;
1727 
1728 	bzero(pxu_p->tsb_vaddr, pxu_p->tsb_size);
1729 
1730 	/*
1731 	 * Preserve OBP's TSB
1732 	 */
1733 	obp_tsb_pa = CSR_XR(csr_base, MMU_TSB_CONTROL) & MMU_TSB_PA_MASK;
1734 
1735 	obp_tsb_entries = mmu_tsb_entries(csr_base, pxu_p);
1736 
1737 	base_tte_addr = pxu_p->tsb_vaddr +
1738 		((pxu_p->tsb_size >> 3) - obp_tsb_entries);
1739 
1740 	for (i = 0; i < obp_tsb_entries; i++) {
1741 		uint64_t tte = lddphys(obp_tsb_pa + i * 8);
1742 
1743 		if (!MMU_TTE_VALID(tte))
1744 			continue;
1745 
1746 		base_tte_addr[i] = tte;
1747 	}
1748 
1749 	/*
1750 	 * Invalidate the TLB through the diagnostic register.
1751 	 */
1752 
1753 	CSR_XS(csr_base, MMU_TTE_CACHE_INVALIDATE, -1ull);
1754 
1755 	/*
1756 	 * Configure the Fire MMU TSB Control Register.  Determine
1757 	 * the encoding for either 8KB pages (0) or 64KB pages (1).
1758 	 *
1759 	 * Write the most significant 30 bits of the TSB physical address
1760 	 * and the encoded TSB table size.
1761 	 */
1762 	for (i = 8; i && (pxu_p->tsb_size < (0x2000 << i)); i--);
1763 
1764 	val = (((((va_to_pa(pxu_p->tsb_vaddr)) >> 13) << 13) |
1765 	    ((MMU_PAGE_SHIFT == 13) ? 0 : 1) << 8) | i);
1766 
1767 	CSR_XS(csr_base, MMU_TSB_CONTROL, val);
1768 
1769 	/*
1770 	 * Enable the MMU, set the "TSB Cache Snoop Enable",
1771 	 * the "Cache Mode", the "Bypass Enable" and
1772 	 * the "Translation Enable" bits.
1773 	 */
1774 	val = CSR_XR(csr_base, MMU_CONTROL_AND_STATUS);
1775 	val |= ((1ull << MMU_CONTROL_AND_STATUS_SE)
1776 	    | (MMU_CONTROL_AND_STATUS_CM_MASK << MMU_CONTROL_AND_STATUS_CM)
1777 	    | (1ull << MMU_CONTROL_AND_STATUS_BE)
1778 	    | (1ull << MMU_CONTROL_AND_STATUS_TE));
1779 
1780 	CSR_XS(csr_base, MMU_CONTROL_AND_STATUS, val);
1781 
1782 	/*
1783 	 * Read the register here to ensure that the previous writes to
1784 	 * the Fire MMU registers have been flushed.  (Technically, this
1785 	 * is not entirely necessary here as we will likely do later reads
1786 	 * during Fire initialization, but it is a small price to pay for
1787 	 * more modular code.)
1788 	 */
1789 	(void) CSR_XR(csr_base, MMU_CONTROL_AND_STATUS);
1790 
1791 	/*
1792 	 * CSR_V TLU's UE interrupt regs (log, enable, status, clear)
1793 	 * Plus header logs
1794 	 */
1795 	DBG(DBG_MMU, NULL, "mmu_init - MMU_ERROR_LOG_ENABLE: 0x%llx\n",
1796 	    CSR_XR(csr_base, MMU_ERROR_LOG_ENABLE));
1797 
1798 	DBG(DBG_MMU, NULL, "mmu_init - MMU_INTERRUPT_ENABLE: 0x%llx\n",
1799 	    CSR_XR(csr_base, MMU_INTERRUPT_ENABLE));
1800 
1801 	DBG(DBG_MMU, NULL, "mmu_init - MMU_INTERRUPT_STATUS: 0x%llx\n",
1802 	    CSR_XR(csr_base, MMU_INTERRUPT_STATUS));
1803 
1804 	DBG(DBG_MMU, NULL, "mmu_init - MMU_ERROR_STATUS_CLEAR: 0x%llx\n",
1805 	    CSR_XR(csr_base, MMU_ERROR_STATUS_CLEAR));
1806 }
1807 
1808 /*
1809  * Generic IOMMU Servies
1810  */
1811 
1812 /* ARGSUSED */
1813 uint64_t
1814 hvio_iommu_map(devhandle_t dev_hdl, pxu_t *pxu_p, tsbid_t tsbid, pages_t pages,
1815     io_attributes_t io_attr, void *addr, size_t pfn_index, int flags)
1816 {
1817 	tsbindex_t	tsb_index = PCI_TSBID_TO_TSBINDEX(tsbid);
1818 	uint64_t	attr = MMU_TTE_V;
1819 	int		i;
1820 
1821 	if (io_attr & PCI_MAP_ATTR_WRITE)
1822 		attr |= MMU_TTE_W;
1823 
1824 	if ((PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) &&
1825 	    (io_attr & PCI_MAP_ATTR_RO))
1826 		attr |= MMU_TTE_RO;
1827 
1828 	if (attr & MMU_TTE_RO) {
1829 		DBG(DBG_MMU, NULL, "hvio_iommu_map: pfn_index=0x%x "
1830 		    "pages=0x%x attr = 0x%lx\n", pfn_index, pages, attr);
1831 	}
1832 
1833 	if (flags & MMU_MAP_PFN) {
1834 		ddi_dma_impl_t	*mp = (ddi_dma_impl_t *)addr;
1835 		for (i = 0; i < pages; i++, pfn_index++, tsb_index++) {
1836 			px_iopfn_t pfn = PX_GET_MP_PFN(mp, pfn_index);
1837 			pxu_p->tsb_vaddr[tsb_index] = MMU_PTOB(pfn) | attr;
1838 
1839 			/*
1840 			 * Oberon will need to flush the corresponding TTEs in
1841 			 * Cache. We only need to flush every cache line.
1842 			 * Extra PIO's are expensive.
1843 			 */
1844 			if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) {
1845 				if ((i == (pages-1))||!((tsb_index+1) & 0x7)) {
1846 					CSR_XS(dev_hdl,
1847 					    MMU_TTE_CACHE_FLUSH_ADDRESS,
1848 					    (pxu_p->tsb_paddr+
1849 					    (tsb_index*MMU_TTE_SIZE)));
1850 				}
1851 			}
1852 		}
1853 	} else {
1854 		caddr_t	a = (caddr_t)addr;
1855 		for (i = 0; i < pages; i++, a += MMU_PAGE_SIZE, tsb_index++) {
1856 			px_iopfn_t pfn = hat_getpfnum(kas.a_hat, a);
1857 			pxu_p->tsb_vaddr[tsb_index] = MMU_PTOB(pfn) | attr;
1858 
1859 			/*
1860 			 * Oberon will need to flush the corresponding TTEs in
1861 			 * Cache. We only need to flush every cache line.
1862 			 * Extra PIO's are expensive.
1863 			 */
1864 			if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) {
1865 				if ((i == (pages-1))||!((tsb_index+1) & 0x7)) {
1866 					CSR_XS(dev_hdl,
1867 					    MMU_TTE_CACHE_FLUSH_ADDRESS,
1868 					    (pxu_p->tsb_paddr+
1869 					    (tsb_index*MMU_TTE_SIZE)));
1870 				}
1871 			}
1872 		}
1873 	}
1874 
1875 	return (H_EOK);
1876 }
1877 
1878 /* ARGSUSED */
1879 uint64_t
1880 hvio_iommu_demap(devhandle_t dev_hdl, pxu_t *pxu_p, tsbid_t tsbid,
1881     pages_t pages)
1882 {
1883 	tsbindex_t	tsb_index = PCI_TSBID_TO_TSBINDEX(tsbid);
1884 	int		i;
1885 
1886 	for (i = 0; i < pages; i++, tsb_index++) {
1887 		pxu_p->tsb_vaddr[tsb_index] = MMU_INVALID_TTE;
1888 
1889 			/*
1890 			 * Oberon will need to flush the corresponding TTEs in
1891 			 * Cache. We only need to flush every cache line.
1892 			 * Extra PIO's are expensive.
1893 			 */
1894 			if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) {
1895 				if ((i == (pages-1))||!((tsb_index+1) & 0x7)) {
1896 					CSR_XS(dev_hdl,
1897 					    MMU_TTE_CACHE_FLUSH_ADDRESS,
1898 					    (pxu_p->tsb_paddr+
1899 					    (tsb_index*MMU_TTE_SIZE)));
1900 				}
1901 			}
1902 	}
1903 
1904 	return (H_EOK);
1905 }
1906 
1907 /* ARGSUSED */
1908 uint64_t
1909 hvio_iommu_getmap(devhandle_t dev_hdl, pxu_t *pxu_p, tsbid_t tsbid,
1910     io_attributes_t *attr_p, r_addr_t *r_addr_p)
1911 {
1912 	tsbindex_t	tsb_index = PCI_TSBID_TO_TSBINDEX(tsbid);
1913 	uint64_t	*tte_addr;
1914 	uint64_t	ret = H_EOK;
1915 
1916 	tte_addr = (uint64_t *)(pxu_p->tsb_vaddr) + tsb_index;
1917 
1918 	if (*tte_addr & MMU_TTE_V) {
1919 		*r_addr_p = mmu_tte_to_pa(*tte_addr, pxu_p);
1920 		*attr_p = (*tte_addr & MMU_TTE_W) ?
1921 		    PCI_MAP_ATTR_WRITE:PCI_MAP_ATTR_READ;
1922 	} else {
1923 		*r_addr_p = 0;
1924 		*attr_p = 0;
1925 		ret = H_ENOMAP;
1926 	}
1927 
1928 	return (ret);
1929 }
1930 
1931 /* ARGSUSED */
1932 uint64_t
1933 hvio_get_bypass_base(pxu_t *pxu_p)
1934 {
1935 	uint64_t base;
1936 
1937 	switch (PX_CHIP_TYPE(pxu_p)) {
1938 	case PX_CHIP_OBERON:
1939 		base = MMU_OBERON_BYPASS_BASE;
1940 		break;
1941 	case PX_CHIP_FIRE:
1942 		base = MMU_FIRE_BYPASS_BASE;
1943 		break;
1944 	default:
1945 		DBG(DBG_MMU, NULL,
1946 		    "hvio_get_bypass_base - unknown chip type: 0x%x\n",
1947 		    PX_CHIP_TYPE(pxu_p));
1948 		base = 0;
1949 		break;
1950 	}
1951 	return (base);
1952 }
1953 
1954 /* ARGSUSED */
1955 uint64_t
1956 hvio_get_bypass_end(pxu_t *pxu_p)
1957 {
1958 	uint64_t end;
1959 
1960 	switch (PX_CHIP_TYPE(pxu_p)) {
1961 	case PX_CHIP_OBERON:
1962 		end = MMU_OBERON_BYPASS_END;
1963 		break;
1964 	case PX_CHIP_FIRE:
1965 		end = MMU_FIRE_BYPASS_END;
1966 		break;
1967 	default:
1968 		DBG(DBG_MMU, NULL,
1969 		    "hvio_get_bypass_end - unknown chip type: 0x%x\n",
1970 		    PX_CHIP_TYPE(pxu_p));
1971 		end = 0;
1972 		break;
1973 	}
1974 	return (end);
1975 }
1976 
1977 /* ARGSUSED */
1978 uint64_t
1979 hvio_iommu_getbypass(devhandle_t dev_hdl, pxu_t *pxu_p, r_addr_t ra,
1980     io_attributes_t attr, io_addr_t *io_addr_p)
1981 {
1982 	uint64_t	pfn = MMU_BTOP(ra);
1983 
1984 	*io_addr_p = hvio_get_bypass_base(pxu_p) | ra |
1985 	    (pf_is_memory(pfn) ? 0 : mmu_bypass_noncache(pxu_p));
1986 
1987 	return (H_EOK);
1988 }
1989 
1990 /*
1991  * Generic IO Interrupt Servies
1992  */
1993 
1994 /*
1995  * Converts a device specific interrupt number given by the
1996  * arguments devhandle and devino into a system specific ino.
1997  */
1998 /* ARGSUSED */
1999 uint64_t
2000 hvio_intr_devino_to_sysino(devhandle_t dev_hdl, pxu_t *pxu_p, devino_t devino,
2001     sysino_t *sysino)
2002 {
2003 	if (devino > INTERRUPT_MAPPING_ENTRIES) {
2004 		DBG(DBG_IB, NULL, "ino %x is invalid\n", devino);
2005 		return (H_ENOINTR);
2006 	}
2007 
2008 	*sysino = DEVINO_TO_SYSINO(pxu_p->portid, devino);
2009 
2010 	return (H_EOK);
2011 }
2012 
2013 /*
2014  * Returns state in intr_valid_state if the interrupt defined by sysino
2015  * is valid (enabled) or not-valid (disabled).
2016  */
2017 uint64_t
2018 hvio_intr_getvalid(devhandle_t dev_hdl, sysino_t sysino,
2019     intr_valid_state_t *intr_valid_state)
2020 {
2021 	if (CSRA_BR((caddr_t)dev_hdl, INTERRUPT_MAPPING,
2022 	    SYSINO_TO_DEVINO(sysino), ENTRIES_V)) {
2023 		*intr_valid_state = INTR_VALID;
2024 	} else {
2025 		*intr_valid_state = INTR_NOTVALID;
2026 	}
2027 
2028 	return (H_EOK);
2029 }
2030 
2031 /*
2032  * Sets the 'valid' state of the interrupt defined by
2033  * the argument sysino to the state defined by the
2034  * argument intr_valid_state.
2035  */
2036 uint64_t
2037 hvio_intr_setvalid(devhandle_t dev_hdl, sysino_t sysino,
2038     intr_valid_state_t intr_valid_state)
2039 {
2040 	switch (intr_valid_state) {
2041 	case INTR_VALID:
2042 		CSRA_BS((caddr_t)dev_hdl, INTERRUPT_MAPPING,
2043 		    SYSINO_TO_DEVINO(sysino), ENTRIES_V);
2044 		break;
2045 	case INTR_NOTVALID:
2046 		CSRA_BC((caddr_t)dev_hdl, INTERRUPT_MAPPING,
2047 		    SYSINO_TO_DEVINO(sysino), ENTRIES_V);
2048 		break;
2049 	default:
2050 		return (EINVAL);
2051 	}
2052 
2053 	return (H_EOK);
2054 }
2055 
2056 /*
2057  * Returns the current state of the interrupt given by the sysino
2058  * argument.
2059  */
2060 uint64_t
2061 hvio_intr_getstate(devhandle_t dev_hdl, sysino_t sysino,
2062     intr_state_t *intr_state)
2063 {
2064 	intr_state_t state;
2065 
2066 	state = CSRA_FR((caddr_t)dev_hdl, INTERRUPT_CLEAR,
2067 	    SYSINO_TO_DEVINO(sysino), ENTRIES_INT_STATE);
2068 
2069 	switch (state) {
2070 	case INTERRUPT_IDLE_STATE:
2071 		*intr_state = INTR_IDLE_STATE;
2072 		break;
2073 	case INTERRUPT_RECEIVED_STATE:
2074 		*intr_state = INTR_RECEIVED_STATE;
2075 		break;
2076 	case INTERRUPT_PENDING_STATE:
2077 		*intr_state = INTR_DELIVERED_STATE;
2078 		break;
2079 	default:
2080 		return (EINVAL);
2081 	}
2082 
2083 	return (H_EOK);
2084 
2085 }
2086 
2087 /*
2088  * Sets the current state of the interrupt given by the sysino
2089  * argument to the value given in the argument intr_state.
2090  *
2091  * Note: Setting the state to INTR_IDLE clears any pending
2092  * interrupt for sysino.
2093  */
2094 uint64_t
2095 hvio_intr_setstate(devhandle_t dev_hdl, sysino_t sysino,
2096     intr_state_t intr_state)
2097 {
2098 	intr_state_t state;
2099 
2100 	switch (intr_state) {
2101 	case INTR_IDLE_STATE:
2102 		state = INTERRUPT_IDLE_STATE;
2103 		break;
2104 	case INTR_DELIVERED_STATE:
2105 		state = INTERRUPT_PENDING_STATE;
2106 		break;
2107 	default:
2108 		return (EINVAL);
2109 	}
2110 
2111 	CSRA_FS((caddr_t)dev_hdl, INTERRUPT_CLEAR,
2112 	    SYSINO_TO_DEVINO(sysino), ENTRIES_INT_STATE, state);
2113 
2114 	return (H_EOK);
2115 }
2116 
2117 /*
2118  * Returns the cpuid that is the current target of the
2119  * interrupt given by the sysino argument.
2120  *
2121  * The cpuid value returned is undefined if the target
2122  * has not been set via intr_settarget.
2123  */
2124 uint64_t
2125 hvio_intr_gettarget(devhandle_t dev_hdl, pxu_t *pxu_p, sysino_t sysino,
2126     cpuid_t *cpuid)
2127 {
2128 	switch (PX_CHIP_TYPE(pxu_p)) {
2129 	case PX_CHIP_OBERON:
2130 		*cpuid = CSRA_FR((caddr_t)dev_hdl, INTERRUPT_MAPPING,
2131 		    SYSINO_TO_DEVINO(sysino), ENTRIES_T_DESTID);
2132 		break;
2133 	case PX_CHIP_FIRE:
2134 		*cpuid = CSRA_FR((caddr_t)dev_hdl, INTERRUPT_MAPPING,
2135 		    SYSINO_TO_DEVINO(sysino), ENTRIES_T_JPID);
2136 		break;
2137 	default:
2138 		DBG(DBG_CB, NULL, "hvio_intr_gettarget - "
2139 		    "unknown chip type: 0x%x\n", PX_CHIP_TYPE(pxu_p));
2140 		return (EINVAL);
2141 	}
2142 
2143 	return (H_EOK);
2144 }
2145 
2146 /*
2147  * Set the target cpu for the interrupt defined by the argument
2148  * sysino to the target cpu value defined by the argument cpuid.
2149  */
2150 uint64_t
2151 hvio_intr_settarget(devhandle_t dev_hdl, pxu_t *pxu_p, sysino_t sysino,
2152     cpuid_t cpuid)
2153 {
2154 
2155 	uint64_t	val, intr_controller;
2156 	uint32_t	ino = SYSINO_TO_DEVINO(sysino);
2157 
2158 	/*
2159 	 * For now, we assign interrupt controller in a round
2160 	 * robin fashion.  Later, we may need to come up with
2161 	 * a more efficient assignment algorithm.
2162 	 */
2163 	intr_controller = 0x1ull << (cpuid % 4);
2164 
2165 	switch (PX_CHIP_TYPE(pxu_p)) {
2166 	case PX_CHIP_OBERON:
2167 		val = (((cpuid &
2168 		    INTERRUPT_MAPPING_ENTRIES_T_DESTID_MASK) <<
2169 		    INTERRUPT_MAPPING_ENTRIES_T_DESTID) |
2170 		    ((intr_controller &
2171 		    INTERRUPT_MAPPING_ENTRIES_INT_CNTRL_NUM_MASK)
2172 		    << INTERRUPT_MAPPING_ENTRIES_INT_CNTRL_NUM));
2173 		break;
2174 	case PX_CHIP_FIRE:
2175 		val = (((cpuid & INTERRUPT_MAPPING_ENTRIES_T_JPID_MASK) <<
2176 		    INTERRUPT_MAPPING_ENTRIES_T_JPID) |
2177 		    ((intr_controller &
2178 		    INTERRUPT_MAPPING_ENTRIES_INT_CNTRL_NUM_MASK)
2179 		    << INTERRUPT_MAPPING_ENTRIES_INT_CNTRL_NUM));
2180 		break;
2181 	default:
2182 		DBG(DBG_CB, NULL, "hvio_intr_settarget - "
2183 		    "unknown chip type: 0x%x\n", PX_CHIP_TYPE(pxu_p));
2184 		return (EINVAL);
2185 	}
2186 
2187 	/* For EQ interrupts, set DATA MONDO bit */
2188 	if ((ino >= PX_DEFAULT_MSIQ_1ST_DEVINO) &&
2189 	    (ino < (PX_DEFAULT_MSIQ_1ST_DEVINO + PX_DEFAULT_MSIQ_CNT)))
2190 		val |= (0x1ull << INTERRUPT_MAPPING_ENTRIES_MDO_MODE);
2191 
2192 	CSRA_XS((caddr_t)dev_hdl, INTERRUPT_MAPPING, ino, val);
2193 
2194 	return (H_EOK);
2195 }
2196 
2197 /*
2198  * MSIQ Functions:
2199  */
2200 uint64_t
2201 hvio_msiq_init(devhandle_t dev_hdl, pxu_t *pxu_p)
2202 {
2203 	CSRA_XS((caddr_t)dev_hdl, EVENT_QUEUE_BASE_ADDRESS, 0,
2204 	    (uint64_t)pxu_p->msiq_mapped_p);
2205 	DBG(DBG_IB, NULL,
2206 	    "hvio_msiq_init: EVENT_QUEUE_BASE_ADDRESS 0x%llx\n",
2207 	    CSR_XR((caddr_t)dev_hdl, EVENT_QUEUE_BASE_ADDRESS));
2208 
2209 	CSRA_XS((caddr_t)dev_hdl, INTERRUPT_MONDO_DATA_0, 0,
2210 	    (uint64_t)ID_TO_IGN(PX_CHIP_TYPE(pxu_p),
2211 	    pxu_p->portid) << INO_BITS);
2212 	DBG(DBG_IB, NULL, "hvio_msiq_init: "
2213 	    "INTERRUPT_MONDO_DATA_0: 0x%llx\n",
2214 	    CSR_XR((caddr_t)dev_hdl, INTERRUPT_MONDO_DATA_0));
2215 
2216 	return (H_EOK);
2217 }
2218 
2219 uint64_t
2220 hvio_msiq_getvalid(devhandle_t dev_hdl, msiqid_t msiq_id,
2221     pci_msiq_valid_state_t *msiq_valid_state)
2222 {
2223 	uint32_t	eq_state;
2224 	uint64_t	ret = H_EOK;
2225 
2226 	eq_state = CSRA_FR((caddr_t)dev_hdl, EVENT_QUEUE_STATE,
2227 	    msiq_id, ENTRIES_STATE);
2228 
2229 	switch (eq_state) {
2230 	case EQ_IDLE_STATE:
2231 		*msiq_valid_state = PCI_MSIQ_INVALID;
2232 		break;
2233 	case EQ_ACTIVE_STATE:
2234 	case EQ_ERROR_STATE:
2235 		*msiq_valid_state = PCI_MSIQ_VALID;
2236 		break;
2237 	default:
2238 		ret = H_EIO;
2239 		break;
2240 	}
2241 
2242 	return (ret);
2243 }
2244 
2245 uint64_t
2246 hvio_msiq_setvalid(devhandle_t dev_hdl, msiqid_t msiq_id,
2247     pci_msiq_valid_state_t msiq_valid_state)
2248 {
2249 	uint64_t	ret = H_EOK;
2250 
2251 	switch (msiq_valid_state) {
2252 	case PCI_MSIQ_INVALID:
2253 		CSRA_BS((caddr_t)dev_hdl, EVENT_QUEUE_CONTROL_CLEAR,
2254 		    msiq_id, ENTRIES_DIS);
2255 		break;
2256 	case PCI_MSIQ_VALID:
2257 		CSRA_BS((caddr_t)dev_hdl, EVENT_QUEUE_CONTROL_SET,
2258 		    msiq_id, ENTRIES_EN);
2259 		break;
2260 	default:
2261 		ret = H_EINVAL;
2262 		break;
2263 	}
2264 
2265 	return (ret);
2266 }
2267 
2268 uint64_t
2269 hvio_msiq_getstate(devhandle_t dev_hdl, msiqid_t msiq_id,
2270     pci_msiq_state_t *msiq_state)
2271 {
2272 	uint32_t	eq_state;
2273 	uint64_t	ret = H_EOK;
2274 
2275 	eq_state = CSRA_FR((caddr_t)dev_hdl, EVENT_QUEUE_STATE,
2276 	    msiq_id, ENTRIES_STATE);
2277 
2278 	switch (eq_state) {
2279 	case EQ_IDLE_STATE:
2280 	case EQ_ACTIVE_STATE:
2281 		*msiq_state = PCI_MSIQ_STATE_IDLE;
2282 		break;
2283 	case EQ_ERROR_STATE:
2284 		*msiq_state = PCI_MSIQ_STATE_ERROR;
2285 		break;
2286 	default:
2287 		ret = H_EIO;
2288 	}
2289 
2290 	return (ret);
2291 }
2292 
2293 uint64_t
2294 hvio_msiq_setstate(devhandle_t dev_hdl, msiqid_t msiq_id,
2295     pci_msiq_state_t msiq_state)
2296 {
2297 	uint32_t	eq_state;
2298 	uint64_t	ret = H_EOK;
2299 
2300 	eq_state = CSRA_FR((caddr_t)dev_hdl, EVENT_QUEUE_STATE,
2301 	    msiq_id, ENTRIES_STATE);
2302 
2303 	switch (eq_state) {
2304 	case EQ_IDLE_STATE:
2305 		if (msiq_state == PCI_MSIQ_STATE_ERROR)
2306 			ret = H_EIO;
2307 		break;
2308 	case EQ_ACTIVE_STATE:
2309 		if (msiq_state == PCI_MSIQ_STATE_ERROR)
2310 			CSRA_BS((caddr_t)dev_hdl, EVENT_QUEUE_CONTROL_SET,
2311 			    msiq_id, ENTRIES_ENOVERR);
2312 		else
2313 			ret = H_EIO;
2314 		break;
2315 	case EQ_ERROR_STATE:
2316 		if (msiq_state == PCI_MSIQ_STATE_IDLE)
2317 			CSRA_BS((caddr_t)dev_hdl, EVENT_QUEUE_CONTROL_CLEAR,
2318 			    msiq_id, ENTRIES_E2I);
2319 		else
2320 			ret = H_EIO;
2321 		break;
2322 	default:
2323 		ret = H_EIO;
2324 	}
2325 
2326 	return (ret);
2327 }
2328 
2329 uint64_t
2330 hvio_msiq_gethead(devhandle_t dev_hdl, msiqid_t msiq_id,
2331     msiqhead_t *msiq_head)
2332 {
2333 	*msiq_head = CSRA_FR((caddr_t)dev_hdl, EVENT_QUEUE_HEAD,
2334 	    msiq_id, ENTRIES_HEAD);
2335 
2336 	return (H_EOK);
2337 }
2338 
2339 uint64_t
2340 hvio_msiq_sethead(devhandle_t dev_hdl, msiqid_t msiq_id,
2341     msiqhead_t msiq_head)
2342 {
2343 	CSRA_FS((caddr_t)dev_hdl, EVENT_QUEUE_HEAD, msiq_id,
2344 	    ENTRIES_HEAD, msiq_head);
2345 
2346 	return (H_EOK);
2347 }
2348 
2349 uint64_t
2350 hvio_msiq_gettail(devhandle_t dev_hdl, msiqid_t msiq_id,
2351     msiqtail_t *msiq_tail)
2352 {
2353 	*msiq_tail = CSRA_FR((caddr_t)dev_hdl, EVENT_QUEUE_TAIL,
2354 	    msiq_id, ENTRIES_TAIL);
2355 
2356 	return (H_EOK);
2357 }
2358 
2359 /*
2360  * MSI Functions:
2361  */
2362 uint64_t
2363 hvio_msi_init(devhandle_t dev_hdl, uint64_t addr32, uint64_t addr64)
2364 {
2365 	/* PCI MEM 32 resources to perform 32 bit MSI transactions */
2366 	CSRA_FS((caddr_t)dev_hdl, MSI_32_BIT_ADDRESS, 0,
2367 	    ADDR, (uint64_t)addr32 >> MSI_32_BIT_ADDRESS_ADDR);
2368 	DBG(DBG_IB, NULL, "hvio_msiq_init: MSI_32_BIT_ADDRESS: 0x%llx\n",
2369 	    CSR_XR((caddr_t)dev_hdl, MSI_32_BIT_ADDRESS));
2370 
2371 	/* Reserve PCI MEM 64 resources to perform 64 bit MSI transactions */
2372 	CSRA_FS((caddr_t)dev_hdl, MSI_64_BIT_ADDRESS, 0,
2373 	    ADDR, (uint64_t)addr64 >> MSI_64_BIT_ADDRESS_ADDR);
2374 	DBG(DBG_IB, NULL, "hvio_msiq_init: MSI_64_BIT_ADDRESS: 0x%llx\n",
2375 	    CSR_XR((caddr_t)dev_hdl, MSI_64_BIT_ADDRESS));
2376 
2377 	return (H_EOK);
2378 }
2379 
2380 uint64_t
2381 hvio_msi_getmsiq(devhandle_t dev_hdl, msinum_t msi_num,
2382     msiqid_t *msiq_id)
2383 {
2384 	*msiq_id = CSRA_FR((caddr_t)dev_hdl, MSI_MAPPING,
2385 	    msi_num, ENTRIES_EQNUM);
2386 
2387 	return (H_EOK);
2388 }
2389 
2390 uint64_t
2391 hvio_msi_setmsiq(devhandle_t dev_hdl, msinum_t msi_num,
2392     msiqid_t msiq_id)
2393 {
2394 	CSRA_FS((caddr_t)dev_hdl, MSI_MAPPING, msi_num,
2395 	    ENTRIES_EQNUM, msiq_id);
2396 
2397 	return (H_EOK);
2398 }
2399 
2400 uint64_t
2401 hvio_msi_getvalid(devhandle_t dev_hdl, msinum_t msi_num,
2402     pci_msi_valid_state_t *msi_valid_state)
2403 {
2404 	*msi_valid_state = CSRA_BR((caddr_t)dev_hdl, MSI_MAPPING,
2405 	    msi_num, ENTRIES_V);
2406 
2407 	return (H_EOK);
2408 }
2409 
2410 uint64_t
2411 hvio_msi_setvalid(devhandle_t dev_hdl, msinum_t msi_num,
2412     pci_msi_valid_state_t msi_valid_state)
2413 {
2414 	uint64_t	ret = H_EOK;
2415 
2416 	switch (msi_valid_state) {
2417 	case PCI_MSI_VALID:
2418 		CSRA_BS((caddr_t)dev_hdl, MSI_MAPPING, msi_num,
2419 		    ENTRIES_V);
2420 		break;
2421 	case PCI_MSI_INVALID:
2422 		CSRA_BC((caddr_t)dev_hdl, MSI_MAPPING, msi_num,
2423 		    ENTRIES_V);
2424 		break;
2425 	default:
2426 		ret = H_EINVAL;
2427 	}
2428 
2429 	return (ret);
2430 }
2431 
2432 uint64_t
2433 hvio_msi_getstate(devhandle_t dev_hdl, msinum_t msi_num,
2434     pci_msi_state_t *msi_state)
2435 {
2436 	*msi_state = CSRA_BR((caddr_t)dev_hdl, MSI_MAPPING,
2437 	    msi_num, ENTRIES_EQWR_N);
2438 
2439 	return (H_EOK);
2440 }
2441 
2442 uint64_t
2443 hvio_msi_setstate(devhandle_t dev_hdl, msinum_t msi_num,
2444     pci_msi_state_t msi_state)
2445 {
2446 	uint64_t	ret = H_EOK;
2447 
2448 	switch (msi_state) {
2449 	case PCI_MSI_STATE_IDLE:
2450 		CSRA_BS((caddr_t)dev_hdl, MSI_CLEAR, msi_num,
2451 		    ENTRIES_EQWR_N);
2452 		break;
2453 	case PCI_MSI_STATE_DELIVERED:
2454 	default:
2455 		ret = H_EINVAL;
2456 		break;
2457 	}
2458 
2459 	return (ret);
2460 }
2461 
2462 /*
2463  * MSG Functions:
2464  */
2465 uint64_t
2466 hvio_msg_getmsiq(devhandle_t dev_hdl, pcie_msg_type_t msg_type,
2467     msiqid_t *msiq_id)
2468 {
2469 	uint64_t	ret = H_EOK;
2470 
2471 	switch (msg_type) {
2472 	case PCIE_PME_MSG:
2473 		*msiq_id = CSR_FR((caddr_t)dev_hdl, PM_PME_MAPPING, EQNUM);
2474 		break;
2475 	case PCIE_PME_ACK_MSG:
2476 		*msiq_id = CSR_FR((caddr_t)dev_hdl, PME_TO_ACK_MAPPING,
2477 		    EQNUM);
2478 		break;
2479 	case PCIE_CORR_MSG:
2480 		*msiq_id = CSR_FR((caddr_t)dev_hdl, ERR_COR_MAPPING, EQNUM);
2481 		break;
2482 	case PCIE_NONFATAL_MSG:
2483 		*msiq_id = CSR_FR((caddr_t)dev_hdl, ERR_NONFATAL_MAPPING,
2484 		    EQNUM);
2485 		break;
2486 	case PCIE_FATAL_MSG:
2487 		*msiq_id = CSR_FR((caddr_t)dev_hdl, ERR_FATAL_MAPPING, EQNUM);
2488 		break;
2489 	default:
2490 		ret = H_EINVAL;
2491 		break;
2492 	}
2493 
2494 	return (ret);
2495 }
2496 
2497 uint64_t
2498 hvio_msg_setmsiq(devhandle_t dev_hdl, pcie_msg_type_t msg_type,
2499     msiqid_t msiq_id)
2500 {
2501 	uint64_t	ret = H_EOK;
2502 
2503 	switch (msg_type) {
2504 	case PCIE_PME_MSG:
2505 		CSR_FS((caddr_t)dev_hdl, PM_PME_MAPPING, EQNUM, msiq_id);
2506 		break;
2507 	case PCIE_PME_ACK_MSG:
2508 		CSR_FS((caddr_t)dev_hdl, PME_TO_ACK_MAPPING, EQNUM, msiq_id);
2509 		break;
2510 	case PCIE_CORR_MSG:
2511 		CSR_FS((caddr_t)dev_hdl, ERR_COR_MAPPING, EQNUM, msiq_id);
2512 		break;
2513 	case PCIE_NONFATAL_MSG:
2514 		CSR_FS((caddr_t)dev_hdl, ERR_NONFATAL_MAPPING, EQNUM, msiq_id);
2515 		break;
2516 	case PCIE_FATAL_MSG:
2517 		CSR_FS((caddr_t)dev_hdl, ERR_FATAL_MAPPING, EQNUM, msiq_id);
2518 		break;
2519 	default:
2520 		ret = H_EINVAL;
2521 		break;
2522 	}
2523 
2524 	return (ret);
2525 }
2526 
2527 uint64_t
2528 hvio_msg_getvalid(devhandle_t dev_hdl, pcie_msg_type_t msg_type,
2529     pcie_msg_valid_state_t *msg_valid_state)
2530 {
2531 	uint64_t	ret = H_EOK;
2532 
2533 	switch (msg_type) {
2534 	case PCIE_PME_MSG:
2535 		*msg_valid_state = CSR_BR((caddr_t)dev_hdl, PM_PME_MAPPING, V);
2536 		break;
2537 	case PCIE_PME_ACK_MSG:
2538 		*msg_valid_state = CSR_BR((caddr_t)dev_hdl,
2539 		    PME_TO_ACK_MAPPING, V);
2540 		break;
2541 	case PCIE_CORR_MSG:
2542 		*msg_valid_state = CSR_BR((caddr_t)dev_hdl, ERR_COR_MAPPING, V);
2543 		break;
2544 	case PCIE_NONFATAL_MSG:
2545 		*msg_valid_state = CSR_BR((caddr_t)dev_hdl,
2546 		    ERR_NONFATAL_MAPPING, V);
2547 		break;
2548 	case PCIE_FATAL_MSG:
2549 		*msg_valid_state = CSR_BR((caddr_t)dev_hdl, ERR_FATAL_MAPPING,
2550 		    V);
2551 		break;
2552 	default:
2553 		ret = H_EINVAL;
2554 		break;
2555 	}
2556 
2557 	return (ret);
2558 }
2559 
2560 uint64_t
2561 hvio_msg_setvalid(devhandle_t dev_hdl, pcie_msg_type_t msg_type,
2562     pcie_msg_valid_state_t msg_valid_state)
2563 {
2564 	uint64_t	ret = H_EOK;
2565 
2566 	switch (msg_valid_state) {
2567 	case PCIE_MSG_VALID:
2568 		switch (msg_type) {
2569 		case PCIE_PME_MSG:
2570 			CSR_BS((caddr_t)dev_hdl, PM_PME_MAPPING, V);
2571 			break;
2572 		case PCIE_PME_ACK_MSG:
2573 			CSR_BS((caddr_t)dev_hdl, PME_TO_ACK_MAPPING, V);
2574 			break;
2575 		case PCIE_CORR_MSG:
2576 			CSR_BS((caddr_t)dev_hdl, ERR_COR_MAPPING, V);
2577 			break;
2578 		case PCIE_NONFATAL_MSG:
2579 			CSR_BS((caddr_t)dev_hdl, ERR_NONFATAL_MAPPING, V);
2580 			break;
2581 		case PCIE_FATAL_MSG:
2582 			CSR_BS((caddr_t)dev_hdl, ERR_FATAL_MAPPING, V);
2583 			break;
2584 		default:
2585 			ret = H_EINVAL;
2586 			break;
2587 		}
2588 
2589 		break;
2590 	case PCIE_MSG_INVALID:
2591 		switch (msg_type) {
2592 		case PCIE_PME_MSG:
2593 			CSR_BC((caddr_t)dev_hdl, PM_PME_MAPPING, V);
2594 			break;
2595 		case PCIE_PME_ACK_MSG:
2596 			CSR_BC((caddr_t)dev_hdl, PME_TO_ACK_MAPPING, V);
2597 			break;
2598 		case PCIE_CORR_MSG:
2599 			CSR_BC((caddr_t)dev_hdl, ERR_COR_MAPPING, V);
2600 			break;
2601 		case PCIE_NONFATAL_MSG:
2602 			CSR_BC((caddr_t)dev_hdl, ERR_NONFATAL_MAPPING, V);
2603 			break;
2604 		case PCIE_FATAL_MSG:
2605 			CSR_BC((caddr_t)dev_hdl, ERR_FATAL_MAPPING, V);
2606 			break;
2607 		default:
2608 			ret = H_EINVAL;
2609 			break;
2610 		}
2611 		break;
2612 	default:
2613 		ret = H_EINVAL;
2614 	}
2615 
2616 	return (ret);
2617 }
2618 
2619 /*
2620  * Suspend/Resume Functions:
2621  *	(pec, mmu, ib)
2622  *	cb
2623  * Registers saved have all been touched in the XXX_init functions.
2624  */
2625 uint64_t
2626 hvio_suspend(devhandle_t dev_hdl, pxu_t *pxu_p)
2627 {
2628 	uint64_t	*config_state;
2629 	int		total_size;
2630 	int		i;
2631 
2632 	if (msiq_suspend(dev_hdl, pxu_p) != H_EOK)
2633 		return (H_EIO);
2634 
2635 	total_size = PEC_SIZE + MMU_SIZE + IB_SIZE + IB_MAP_SIZE;
2636 	config_state = kmem_zalloc(total_size, KM_NOSLEEP);
2637 
2638 	if (config_state == NULL) {
2639 		return (H_EIO);
2640 	}
2641 
2642 	/*
2643 	 * Soft state for suspend/resume  from pxu_t
2644 	 * uint64_t	*pec_config_state;
2645 	 * uint64_t	*mmu_config_state;
2646 	 * uint64_t	*ib_intr_map;
2647 	 * uint64_t	*ib_config_state;
2648 	 * uint64_t	*xcb_config_state;
2649 	 */
2650 
2651 	/* Save the PEC configuration states */
2652 	pxu_p->pec_config_state = config_state;
2653 	for (i = 0; i < PEC_KEYS; i++) {
2654 		if ((pec_config_state_regs[i].chip == PX_CHIP_TYPE(pxu_p)) ||
2655 		    (pec_config_state_regs[i].chip == PX_CHIP_UNIDENTIFIED)) {
2656 			pxu_p->pec_config_state[i] =
2657 			    CSR_XR((caddr_t)dev_hdl,
2658 			    pec_config_state_regs[i].reg);
2659 		    }
2660 	}
2661 
2662 	/* Save the MMU configuration states */
2663 	pxu_p->mmu_config_state = pxu_p->pec_config_state + PEC_KEYS;
2664 	for (i = 0; i < MMU_KEYS; i++) {
2665 		pxu_p->mmu_config_state[i] =
2666 		    CSR_XR((caddr_t)dev_hdl, mmu_config_state_regs[i]);
2667 	}
2668 
2669 	/* Save the interrupt mapping registers */
2670 	pxu_p->ib_intr_map = pxu_p->mmu_config_state + MMU_KEYS;
2671 	for (i = 0; i < INTERRUPT_MAPPING_ENTRIES; i++) {
2672 		pxu_p->ib_intr_map[i] =
2673 		    CSRA_XR((caddr_t)dev_hdl, INTERRUPT_MAPPING, i);
2674 	}
2675 
2676 	/* Save the IB configuration states */
2677 	pxu_p->ib_config_state = pxu_p->ib_intr_map + INTERRUPT_MAPPING_ENTRIES;
2678 	for (i = 0; i < IB_KEYS; i++) {
2679 		pxu_p->ib_config_state[i] =
2680 		    CSR_XR((caddr_t)dev_hdl, ib_config_state_regs[i]);
2681 	}
2682 
2683 	return (H_EOK);
2684 }
2685 
2686 void
2687 hvio_resume(devhandle_t dev_hdl, devino_t devino, pxu_t *pxu_p)
2688 {
2689 	int		total_size;
2690 	sysino_t	sysino;
2691 	int		i;
2692 
2693 	/* Make sure that suspend actually did occur */
2694 	if (!pxu_p->pec_config_state) {
2695 		return;
2696 	}
2697 
2698 	/* Restore IB configuration states */
2699 	for (i = 0; i < IB_KEYS; i++) {
2700 		CSR_XS((caddr_t)dev_hdl, ib_config_state_regs[i],
2701 		    pxu_p->ib_config_state[i]);
2702 	}
2703 
2704 	/*
2705 	 * Restore the interrupt mapping registers
2706 	 * And make sure the intrs are idle.
2707 	 */
2708 	for (i = 0; i < INTERRUPT_MAPPING_ENTRIES; i++) {
2709 		CSRA_FS((caddr_t)dev_hdl, INTERRUPT_CLEAR, i,
2710 		    ENTRIES_INT_STATE, INTERRUPT_IDLE_STATE);
2711 		CSRA_XS((caddr_t)dev_hdl, INTERRUPT_MAPPING, i,
2712 		    pxu_p->ib_intr_map[i]);
2713 	}
2714 
2715 	/* Restore MMU configuration states */
2716 	/* Clear the cache. */
2717 	CSR_XS((caddr_t)dev_hdl, MMU_TTE_CACHE_INVALIDATE, -1ull);
2718 
2719 	for (i = 0; i < MMU_KEYS; i++) {
2720 		CSR_XS((caddr_t)dev_hdl, mmu_config_state_regs[i],
2721 		    pxu_p->mmu_config_state[i]);
2722 	}
2723 
2724 	/* Restore PEC configuration states */
2725 	/* Make sure all reset bits are low until error is detected */
2726 	CSR_XS((caddr_t)dev_hdl, LPU_RESET, 0ull);
2727 
2728 	for (i = 0; i < PEC_KEYS; i++) {
2729 		if ((pec_config_state_regs[i].chip == PX_CHIP_TYPE(pxu_p)) ||
2730 		    (pec_config_state_regs[i].chip == PX_CHIP_UNIDENTIFIED)) {
2731 			CSR_XS((caddr_t)dev_hdl, pec_config_state_regs[i].reg,
2732 			    pxu_p->pec_config_state[i]);
2733 		    }
2734 	}
2735 
2736 	/* Enable PCI-E interrupt */
2737 	(void) hvio_intr_devino_to_sysino(dev_hdl, pxu_p, devino, &sysino);
2738 
2739 	(void) hvio_intr_setstate(dev_hdl, sysino, INTR_IDLE_STATE);
2740 
2741 	total_size = PEC_SIZE + MMU_SIZE + IB_SIZE + IB_MAP_SIZE;
2742 	kmem_free(pxu_p->pec_config_state, total_size);
2743 
2744 	pxu_p->pec_config_state = NULL;
2745 	pxu_p->mmu_config_state = NULL;
2746 	pxu_p->ib_config_state = NULL;
2747 	pxu_p->ib_intr_map = NULL;
2748 
2749 	msiq_resume(dev_hdl, pxu_p);
2750 }
2751 
2752 uint64_t
2753 hvio_cb_suspend(devhandle_t dev_hdl, pxu_t *pxu_p)
2754 {
2755 	uint64_t *config_state, *cb_regs;
2756 	int i, cb_size, cb_keys;
2757 
2758 	switch (PX_CHIP_TYPE(pxu_p)) {
2759 	case PX_CHIP_OBERON:
2760 		cb_size = UBC_SIZE;
2761 		cb_keys = UBC_KEYS;
2762 		cb_regs = ubc_config_state_regs;
2763 		break;
2764 	case PX_CHIP_FIRE:
2765 		cb_size = JBC_SIZE;
2766 		cb_keys = JBC_KEYS;
2767 		cb_regs = jbc_config_state_regs;
2768 		break;
2769 	default:
2770 		DBG(DBG_CB, NULL, "hvio_cb_suspend - unknown chip type: 0x%x\n",
2771 		    PX_CHIP_TYPE(pxu_p));
2772 		break;
2773 	}
2774 
2775 	config_state = kmem_zalloc(cb_size, KM_NOSLEEP);
2776 
2777 	if (config_state == NULL) {
2778 		return (H_EIO);
2779 	}
2780 
2781 	/* Save the configuration states */
2782 	pxu_p->xcb_config_state = config_state;
2783 	for (i = 0; i < cb_keys; i++) {
2784 		pxu_p->xcb_config_state[i] =
2785 		    CSR_XR((caddr_t)dev_hdl, cb_regs[i]);
2786 	}
2787 
2788 	return (H_EOK);
2789 }
2790 
2791 void
2792 hvio_cb_resume(devhandle_t pci_dev_hdl, devhandle_t xbus_dev_hdl,
2793     devino_t devino, pxu_t *pxu_p)
2794 {
2795 	sysino_t sysino;
2796 	uint64_t *cb_regs;
2797 	int i, cb_size, cb_keys;
2798 
2799 	switch (PX_CHIP_TYPE(pxu_p)) {
2800 	case PX_CHIP_OBERON:
2801 		cb_size = UBC_SIZE;
2802 		cb_keys = UBC_KEYS;
2803 		cb_regs = ubc_config_state_regs;
2804 		/*
2805 		 * No reason to have any reset bits high until an error is
2806 		 * detected on the link.
2807 		 */
2808 		CSR_XS((caddr_t)xbus_dev_hdl, UBC_ERROR_STATUS_CLEAR, -1ull);
2809 		break;
2810 	case PX_CHIP_FIRE:
2811 		cb_size = JBC_SIZE;
2812 		cb_keys = JBC_KEYS;
2813 		cb_regs = jbc_config_state_regs;
2814 		/*
2815 		 * No reason to have any reset bits high until an error is
2816 		 * detected on the link.
2817 		 */
2818 		CSR_XS((caddr_t)xbus_dev_hdl, JBC_ERROR_STATUS_CLEAR, -1ull);
2819 		break;
2820 	default:
2821 		DBG(DBG_CB, NULL, "hvio_cb_resume - unknown chip type: 0x%x\n",
2822 		    PX_CHIP_TYPE(pxu_p));
2823 		break;
2824 	}
2825 
2826 	ASSERT(pxu_p->xcb_config_state);
2827 
2828 	/* Restore the configuration states */
2829 	for (i = 0; i < cb_keys; i++) {
2830 		CSR_XS((caddr_t)xbus_dev_hdl, cb_regs[i],
2831 		    pxu_p->xcb_config_state[i]);
2832 	}
2833 
2834 	/* Enable XBC interrupt */
2835 	(void) hvio_intr_devino_to_sysino(pci_dev_hdl, pxu_p, devino, &sysino);
2836 
2837 	(void) hvio_intr_setstate(pci_dev_hdl, sysino, INTR_IDLE_STATE);
2838 
2839 	kmem_free(pxu_p->xcb_config_state, cb_size);
2840 
2841 	pxu_p->xcb_config_state = NULL;
2842 }
2843 
2844 static uint64_t
2845 msiq_suspend(devhandle_t dev_hdl, pxu_t *pxu_p)
2846 {
2847 	size_t	bufsz;
2848 	volatile uint64_t *cur_p;
2849 	int i;
2850 
2851 	bufsz = MSIQ_STATE_SIZE + MSIQ_MAPPING_SIZE + MSIQ_OTHER_SIZE;
2852 	if ((pxu_p->msiq_config_state = kmem_zalloc(bufsz, KM_NOSLEEP)) ==
2853 	    NULL)
2854 		return (H_EIO);
2855 
2856 	cur_p = pxu_p->msiq_config_state;
2857 
2858 	/* Save each EQ state */
2859 	for (i = 0; i < EVENT_QUEUE_STATE_ENTRIES; i++, cur_p++)
2860 		*cur_p = CSRA_XR((caddr_t)dev_hdl, EVENT_QUEUE_STATE, i);
2861 
2862 	/* Save MSI mapping registers */
2863 	for (i = 0; i < MSI_MAPPING_ENTRIES; i++, cur_p++)
2864 		*cur_p = CSRA_XR((caddr_t)dev_hdl, MSI_MAPPING, i);
2865 
2866 	/* Save all other MSIQ registers */
2867 	for (i = 0; i < MSIQ_OTHER_KEYS; i++, cur_p++)
2868 		*cur_p = CSR_XR((caddr_t)dev_hdl, msiq_config_other_regs[i]);
2869 	return (H_EOK);
2870 }
2871 
2872 static void
2873 msiq_resume(devhandle_t dev_hdl, pxu_t *pxu_p)
2874 {
2875 	size_t	bufsz;
2876 	uint64_t *cur_p, state;
2877 	int i;
2878 
2879 	bufsz = MSIQ_STATE_SIZE + MSIQ_MAPPING_SIZE + MSIQ_OTHER_SIZE;
2880 	cur_p = pxu_p->msiq_config_state;
2881 	/*
2882 	 * Initialize EQ base address register and
2883 	 * Interrupt Mondo Data 0 register.
2884 	 */
2885 	(void) hvio_msiq_init(dev_hdl, pxu_p);
2886 
2887 	/* Restore EQ states */
2888 	for (i = 0; i < EVENT_QUEUE_STATE_ENTRIES; i++, cur_p++) {
2889 		state = (*cur_p) & EVENT_QUEUE_STATE_ENTRIES_STATE_MASK;
2890 		if ((state == EQ_ACTIVE_STATE) || (state == EQ_ERROR_STATE))
2891 			CSRA_BS((caddr_t)dev_hdl, EVENT_QUEUE_CONTROL_SET,
2892 			    i, ENTRIES_EN);
2893 	}
2894 
2895 	/* Restore MSI mapping */
2896 	for (i = 0; i < MSI_MAPPING_ENTRIES; i++, cur_p++)
2897 		CSRA_XS((caddr_t)dev_hdl, MSI_MAPPING, i, *cur_p);
2898 
2899 	/*
2900 	 * Restore all other registers. MSI 32 bit address and
2901 	 * MSI 64 bit address are restored as part of this.
2902 	 */
2903 	for (i = 0; i < MSIQ_OTHER_KEYS; i++, cur_p++)
2904 		CSR_XS((caddr_t)dev_hdl, msiq_config_other_regs[i], *cur_p);
2905 
2906 	kmem_free(pxu_p->msiq_config_state, bufsz);
2907 	pxu_p->msiq_config_state = NULL;
2908 }
2909 
2910 /*
2911  * sends PME_Turn_Off message to put the link in L2/L3 ready state.
2912  * called by px_goto_l23ready.
2913  * returns DDI_SUCCESS or DDI_FAILURE
2914  */
2915 int
2916 px_send_pme_turnoff(caddr_t csr_base)
2917 {
2918 	volatile uint64_t reg;
2919 
2920 	reg = CSR_XR(csr_base, TLU_PME_TURN_OFF_GENERATE);
2921 	/* If already pending, return failure */
2922 	if (reg & (1ull << TLU_PME_TURN_OFF_GENERATE_PTO)) {
2923 		DBG(DBG_PWR, NULL, "send_pme_turnoff: pending PTO bit "
2924 		    "tlu_pme_turn_off_generate = %x\n", reg);
2925 		return (DDI_FAILURE);
2926 	}
2927 
2928 	/* write to PME_Turn_off reg to boradcast */
2929 	reg |= (1ull << TLU_PME_TURN_OFF_GENERATE_PTO);
2930 	CSR_XS(csr_base,  TLU_PME_TURN_OFF_GENERATE, reg);
2931 
2932 	return (DDI_SUCCESS);
2933 }
2934 
2935 /*
2936  * Checks for link being in L1idle state.
2937  * Returns
2938  * DDI_SUCCESS - if the link is in L1idle
2939  * DDI_FAILURE - if the link is not in L1idle
2940  */
2941 int
2942 px_link_wait4l1idle(caddr_t csr_base)
2943 {
2944 	uint8_t ltssm_state;
2945 	int ntries = px_max_l1_tries;
2946 
2947 	while (ntries > 0) {
2948 		ltssm_state = CSR_FR(csr_base, LPU_LTSSM_STATUS1, LTSSM_STATE);
2949 		if (ltssm_state == LPU_LTSSM_L1_IDLE || (--ntries <= 0))
2950 			break;
2951 		delay(1);
2952 	}
2953 	DBG(DBG_PWR, NULL, "check_for_l1idle: ltssm_state %x\n", ltssm_state);
2954 	return ((ltssm_state == LPU_LTSSM_L1_IDLE) ? DDI_SUCCESS : DDI_FAILURE);
2955 }
2956 
2957 /*
2958  * Tranisition the link to L0, after it is down.
2959  */
2960 int
2961 px_link_retrain(caddr_t csr_base)
2962 {
2963 	volatile uint64_t reg;
2964 
2965 	reg = CSR_XR(csr_base, TLU_CONTROL);
2966 	if (!(reg & (1ull << TLU_REMAIN_DETECT_QUIET))) {
2967 		DBG(DBG_PWR, NULL, "retrain_link: detect.quiet bit not set\n");
2968 		return (DDI_FAILURE);
2969 	}
2970 
2971 	/* Clear link down bit in TLU Other Event Clear Status Register. */
2972 	CSR_BS(csr_base, TLU_OTHER_EVENT_STATUS_CLEAR, LDN_P);
2973 
2974 	/* Clear Drain bit in TLU Status Register */
2975 	CSR_BS(csr_base, TLU_STATUS, DRAIN);
2976 
2977 	/* Clear Remain in Detect.Quiet bit in TLU Control Register */
2978 	reg = CSR_XR(csr_base, TLU_CONTROL);
2979 	reg &= ~(1ull << TLU_REMAIN_DETECT_QUIET);
2980 	CSR_XS(csr_base, TLU_CONTROL, reg);
2981 
2982 	return (DDI_SUCCESS);
2983 }
2984 
2985 void
2986 px_enable_detect_quiet(caddr_t csr_base)
2987 {
2988 	volatile uint64_t tlu_ctrl;
2989 
2990 	tlu_ctrl = CSR_XR(csr_base, TLU_CONTROL);
2991 	tlu_ctrl |= (1ull << TLU_REMAIN_DETECT_QUIET);
2992 	CSR_XS(csr_base, TLU_CONTROL, tlu_ctrl);
2993 }
2994 
2995 static uint_t
2996 oberon_hp_pwron(caddr_t csr_base)
2997 {
2998 	volatile uint64_t reg;
2999 	boolean_t link_retry, link_up;
3000 	int loop, i;
3001 
3002 	DBG(DBG_HP, NULL, "oberon_hp_pwron the slot\n");
3003 
3004 	/* Check Leaf Reset status */
3005 	reg = CSR_XR(csr_base, ILU_ERROR_LOG_ENABLE);
3006 	if (!(reg & (1ull << ILU_ERROR_LOG_ENABLE_SPARE3))) {
3007 		DBG(DBG_HP, NULL, "oberon_hp_pwron fails: leaf not reset\n");
3008 		goto fail;
3009 	}
3010 
3011 	/* Check Slot status */
3012 	reg = CSR_XR(csr_base, TLU_SLOT_STATUS);
3013 	if (!(reg & (1ull << TLU_SLOT_STATUS_PSD)) ||
3014 	    (reg & (1ull << TLU_SLOT_STATUS_MRLS))) {
3015 		DBG(DBG_HP, NULL, "oberon_hp_pwron fails: slot status %lx\n",
3016 		    reg);
3017 		goto fail;
3018 	}
3019 
3020 	/* Blink power LED, this is done from pciehpc already */
3021 
3022 	/* Turn on slot power */
3023 	CSR_BS(csr_base, HOTPLUG_CONTROL, PWREN);
3024 
3025 	/* power fault detection */
3026 	delay(drv_usectohz(25000));
3027 	CSR_BS(csr_base, TLU_SLOT_STATUS, PWFD);
3028 	CSR_BC(csr_base, HOTPLUG_CONTROL, PWREN);
3029 
3030 	/* wait to check power state */
3031 	delay(drv_usectohz(25000));
3032 
3033 	if (!CSR_BR(csr_base, TLU_SLOT_STATUS, PWFD)) {
3034 		DBG(DBG_HP, NULL, "oberon_hp_pwron fails: power fault\n");
3035 		goto fail1;
3036 	}
3037 
3038 	/* power is good */
3039 	CSR_BS(csr_base, HOTPLUG_CONTROL, PWREN);
3040 
3041 	delay(drv_usectohz(25000));
3042 	CSR_BS(csr_base, TLU_SLOT_STATUS, PWFD);
3043 	CSR_BS(csr_base, TLU_SLOT_CONTROL, PWFDEN);
3044 
3045 	/* Turn on slot clock */
3046 	CSR_BS(csr_base, HOTPLUG_CONTROL, CLKEN);
3047 
3048 	link_up = B_FALSE;
3049 	link_retry = B_FALSE;
3050 
3051 	for (loop = 0; (loop < link_retry_count) && (link_up == B_FALSE);
3052 		loop++) {
3053 		if (link_retry == B_TRUE) {
3054 			DBG(DBG_HP, NULL, "oberon_hp_pwron : retry link loop "
3055 				"%d\n", loop);
3056 			CSR_BS(csr_base, TLU_CONTROL, DRN_TR_DIS);
3057 			CSR_XS(csr_base, FLP_PORT_CONTROL, 0x1);
3058 			delay(drv_usectohz(10000));
3059 			CSR_BC(csr_base, TLU_CONTROL, DRN_TR_DIS);
3060 			CSR_BS(csr_base, TLU_DIAGNOSTIC, IFC_DIS);
3061 			CSR_BC(csr_base, HOTPLUG_CONTROL, N_PERST);
3062 			delay(drv_usectohz(50000));
3063 		}
3064 
3065 		/* Release PCI-E Reset */
3066 		delay(drv_usectohz(wait_perst));
3067 		CSR_BS(csr_base, HOTPLUG_CONTROL, N_PERST);
3068 
3069 		/*
3070 		 * Open events' mask
3071 		 * This should be done from pciehpc already
3072 		 */
3073 
3074 		/* Enable PCIE port */
3075 		delay(drv_usectohz(wait_enable_port));
3076 		CSR_BS(csr_base, TLU_CONTROL, DRN_TR_DIS);
3077 		CSR_XS(csr_base, FLP_PORT_CONTROL, 0x20);
3078 
3079 		/* wait for the link up */
3080 		for (i = 0; (i < 2) && (link_up == B_FALSE); i++) {
3081 			delay(drv_usectohz(100000));
3082 			reg = CSR_XR(csr_base, DLU_LINK_LAYER_STATUS);
3083 
3084 		    if ((((reg >> DLU_LINK_LAYER_STATUS_INIT_FC_SM_STS) &
3085 			DLU_LINK_LAYER_STATUS_INIT_FC_SM_STS_MASK) ==
3086 			DLU_LINK_LAYER_STATUS_INIT_FC_SM_STS_FC_INIT_DONE) &&
3087 			(reg & (1ull << DLU_LINK_LAYER_STATUS_DLUP_STS)) &&
3088 			((reg & DLU_LINK_LAYER_STATUS_LNK_STATE_MACH_STS_MASK)
3089 			==
3090 			DLU_LINK_LAYER_STATUS_LNK_STATE_MACH_STS_DL_ACTIVE)) {
3091 			DBG(DBG_HP, NULL, "oberon_hp_pwron : link is up\n");
3092 				link_up = B_TRUE;
3093 		    } else
3094 			link_retry = B_TRUE;
3095 		}
3096 	}
3097 
3098 	if (link_up == B_FALSE) {
3099 		DBG(DBG_HP, NULL, "oberon_hp_pwron fails to enable "
3100 		    "PCI-E port\n");
3101 		goto fail2;
3102 	}
3103 
3104 	/* link is up */
3105 	CSR_BC(csr_base, TLU_DIAGNOSTIC, IFC_DIS);
3106 	CSR_BS(csr_base, FLP_PORT_ACTIVE_STATUS, TRAIN_ERROR);
3107 	CSR_BS(csr_base, TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR, TE_P);
3108 	CSR_BS(csr_base, TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR, TE_S);
3109 	CSR_BC(csr_base, TLU_CONTROL, DRN_TR_DIS);
3110 
3111 	/* Restore LUP/LDN */
3112 	reg = CSR_XR(csr_base, TLU_OTHER_EVENT_LOG_ENABLE);
3113 	if (px_tlu_oe_log_mask & (1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_P))
3114 		reg |= 1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_P;
3115 	if (px_tlu_oe_log_mask & (1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_P))
3116 		reg |= 1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_P;
3117 	if (px_tlu_oe_log_mask & (1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_S))
3118 		reg |= 1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_S;
3119 	if (px_tlu_oe_log_mask & (1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_S))
3120 		reg |= 1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_S;
3121 	CSR_XS(csr_base, TLU_OTHER_EVENT_LOG_ENABLE, reg);
3122 
3123 	/*
3124 	 * Initialize Leaf
3125 	 * SPLS = 00b, SPLV = 11001b, i.e. 25W
3126 	 */
3127 	reg = CSR_XR(csr_base, TLU_SLOT_CAPABILITIES);
3128 	reg &= ~(TLU_SLOT_CAPABILITIES_SPLS_MASK <<
3129 	    TLU_SLOT_CAPABILITIES_SPLS);
3130 	reg &= ~(TLU_SLOT_CAPABILITIES_SPLV_MASK <<
3131 	    TLU_SLOT_CAPABILITIES_SPLS);
3132 	reg |= (0x19 << TLU_SLOT_CAPABILITIES_SPLS);
3133 	CSR_XS(csr_base, TLU_SLOT_CAPABILITIES, reg);
3134 
3135 	/* Turn on Power LED */
3136 	reg = CSR_XR(csr_base, TLU_SLOT_CONTROL);
3137 	reg &= ~PCIE_SLOTCTL_PWR_INDICATOR_MASK;
3138 	reg = pcie_slotctl_pwr_indicator_set(reg,
3139 	    PCIE_SLOTCTL_INDICATOR_STATE_ON);
3140 	CSR_XS(csr_base, TLU_SLOT_CONTROL, reg);
3141 
3142 	/* Notify to SCF */
3143 	if (CSR_BR(csr_base, HOTPLUG_CONTROL, SLOTPON))
3144 		CSR_BC(csr_base, HOTPLUG_CONTROL, SLOTPON);
3145 	else
3146 		CSR_BS(csr_base, HOTPLUG_CONTROL, SLOTPON);
3147 
3148 	return (DDI_SUCCESS);
3149 
3150 fail2:
3151 	/* Link up is failed */
3152 	CSR_BS(csr_base, FLP_PORT_CONTROL, PORT_DIS);
3153 	CSR_BC(csr_base, HOTPLUG_CONTROL, N_PERST);
3154 	delay(drv_usectohz(150));
3155 
3156 	CSR_BC(csr_base, HOTPLUG_CONTROL, CLKEN);
3157 	delay(drv_usectohz(100));
3158 
3159 fail1:
3160 	CSR_BC(csr_base, TLU_SLOT_CONTROL, PWFDEN);
3161 
3162 	CSR_BC(csr_base, HOTPLUG_CONTROL, PWREN);
3163 
3164 	reg = CSR_XR(csr_base, TLU_SLOT_CONTROL);
3165 	reg &= ~PCIE_SLOTCTL_PWR_INDICATOR_MASK;
3166 	reg = pcie_slotctl_pwr_indicator_set(reg,
3167 	    PCIE_SLOTCTL_INDICATOR_STATE_OFF);
3168 	CSR_XS(csr_base, TLU_SLOT_CONTROL, reg);
3169 
3170 	CSR_BC(csr_base, TLU_SLOT_STATUS, PWFD);
3171 
3172 fail:
3173 	return ((uint_t)DDI_FAILURE);
3174 }
3175 
3176 static uint_t
3177 oberon_hp_pwroff(caddr_t csr_base)
3178 {
3179 	volatile uint64_t reg;
3180 	volatile uint64_t reg_tluue, reg_tluce;
3181 
3182 	DBG(DBG_HP, NULL, "oberon_hp_pwroff the slot\n");
3183 
3184 	/* Blink power LED, this is done from pciehpc already */
3185 
3186 	/* Clear Slot Event */
3187 	CSR_BS(csr_base, TLU_SLOT_STATUS, PSDC);
3188 	CSR_BS(csr_base, TLU_SLOT_STATUS, PWFD);
3189 
3190 	/* DRN_TR_DIS on */
3191 	CSR_BS(csr_base, TLU_CONTROL, DRN_TR_DIS);
3192 	delay(drv_usectohz(10000));
3193 
3194 	/* Disable LUP/LDN */
3195 	reg = CSR_XR(csr_base, TLU_OTHER_EVENT_LOG_ENABLE);
3196 	reg &= ~((1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_P) |
3197 	    (1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_P) |
3198 	    (1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_S) |
3199 	    (1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_S));
3200 	CSR_XS(csr_base, TLU_OTHER_EVENT_LOG_ENABLE, reg);
3201 
3202 	/* Save the TLU registers */
3203 	reg_tluue = CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_LOG_ENABLE);
3204 	reg_tluce = CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_LOG_ENABLE);
3205 	/* All clear */
3206 	CSR_XS(csr_base, TLU_UNCORRECTABLE_ERROR_LOG_ENABLE, 0);
3207 	CSR_XS(csr_base, TLU_CORRECTABLE_ERROR_LOG_ENABLE, 0);
3208 
3209 	/* Disable port */
3210 	CSR_BS(csr_base, FLP_PORT_CONTROL, PORT_DIS);
3211 
3212 	/* PCIE reset */
3213 	delay(drv_usectohz(10000));
3214 	CSR_BC(csr_base, HOTPLUG_CONTROL, N_PERST);
3215 
3216 	/* PCIE clock stop */
3217 	delay(drv_usectohz(150));
3218 	CSR_BC(csr_base, HOTPLUG_CONTROL, CLKEN);
3219 
3220 	/* Turn off slot power */
3221 	delay(drv_usectohz(100));
3222 	CSR_BC(csr_base, TLU_SLOT_CONTROL, PWFDEN);
3223 	CSR_BC(csr_base, HOTPLUG_CONTROL, PWREN);
3224 	delay(drv_usectohz(25000));
3225 	CSR_BS(csr_base, TLU_SLOT_STATUS, PWFD);
3226 
3227 	/* write 0 to bit 7 of ILU Error Log Enable Register */
3228 	CSR_BC(csr_base, ILU_ERROR_LOG_ENABLE, SPARE3);
3229 
3230 	/* Set back TLU registers */
3231 	CSR_XS(csr_base, TLU_UNCORRECTABLE_ERROR_LOG_ENABLE, reg_tluue);
3232 	CSR_XS(csr_base, TLU_CORRECTABLE_ERROR_LOG_ENABLE, reg_tluce);
3233 
3234 	/* Power LED off */
3235 	reg = CSR_XR(csr_base, TLU_SLOT_CONTROL);
3236 	reg &= ~PCIE_SLOTCTL_PWR_INDICATOR_MASK;
3237 	reg = pcie_slotctl_pwr_indicator_set(reg,
3238 	    PCIE_SLOTCTL_INDICATOR_STATE_OFF);
3239 	CSR_XS(csr_base, TLU_SLOT_CONTROL, reg);
3240 
3241 	/* Indicator LED blink */
3242 	reg = CSR_XR(csr_base, TLU_SLOT_CONTROL);
3243 	reg &= ~PCIE_SLOTCTL_ATTN_INDICATOR_MASK;
3244 	reg = pcie_slotctl_attn_indicator_set(reg,
3245 	    PCIE_SLOTCTL_INDICATOR_STATE_BLINK);
3246 	CSR_XS(csr_base, TLU_SLOT_CONTROL, reg);
3247 
3248 	/* Notify to SCF */
3249 	if (CSR_BR(csr_base, HOTPLUG_CONTROL, SLOTPON))
3250 		CSR_BC(csr_base, HOTPLUG_CONTROL, SLOTPON);
3251 	else
3252 		CSR_BC(csr_base, HOTPLUG_CONTROL, SLOTPON);
3253 
3254 	/* Indicator LED off */
3255 	reg = CSR_XR(csr_base, TLU_SLOT_CONTROL);
3256 	reg &= ~PCIE_SLOTCTL_ATTN_INDICATOR_MASK;
3257 	reg = pcie_slotctl_attn_indicator_set(reg,
3258 	    PCIE_SLOTCTL_INDICATOR_STATE_OFF);
3259 	CSR_XS(csr_base, TLU_SLOT_CONTROL, reg);
3260 
3261 	return (DDI_SUCCESS);
3262 }
3263 
3264 static uint_t
3265 oberon_hpreg_get(void *cookie, off_t off)
3266 {
3267 	caddr_t csr_base = *(caddr_t *)cookie;
3268 	volatile uint64_t val = -1ull;
3269 
3270 	switch (off) {
3271 	case PCIE_SLOTCAP:
3272 		val = CSR_XR(csr_base, TLU_SLOT_CAPABILITIES);
3273 		break;
3274 	case PCIE_SLOTCTL:
3275 		val = CSR_XR(csr_base, TLU_SLOT_CONTROL);
3276 
3277 		/* Get the power state */
3278 		val |= (CSR_XR(csr_base, HOTPLUG_CONTROL) &
3279 		    (1ull << HOTPLUG_CONTROL_PWREN)) ?
3280 		    0 : PCIE_SLOTCTL_PWR_CONTROL;
3281 		break;
3282 	case PCIE_SLOTSTS:
3283 		val = CSR_XR(csr_base, TLU_SLOT_STATUS);
3284 		break;
3285 	case PCIE_LINKCAP:
3286 		val = CSR_XR(csr_base, TLU_LINK_CAPABILITIES);
3287 		break;
3288 	case PCIE_LINKSTS:
3289 		val = CSR_XR(csr_base, TLU_LINK_STATUS);
3290 		break;
3291 	default:
3292 		DBG(DBG_HP, NULL, "oberon_hpreg_get(): "
3293 		    "unsupported offset 0x%lx\n", off);
3294 		break;
3295 	}
3296 
3297 	return ((uint_t)val);
3298 }
3299 
3300 static uint_t
3301 oberon_hpreg_put(void *cookie, off_t off, uint_t val)
3302 {
3303 	caddr_t csr_base = *(caddr_t *)cookie;
3304 	volatile uint64_t pwr_state_on, pwr_fault;
3305 	uint_t pwr_off, ret = DDI_SUCCESS;
3306 
3307 	DBG(DBG_HP, NULL, "oberon_hpreg_put 0x%lx: cur %x, new %x\n",
3308 	    off, oberon_hpreg_get(cookie, off), val);
3309 
3310 	switch (off) {
3311 	case PCIE_SLOTCTL:
3312 		/*
3313 		 * Depending on the current state, insertion or removal
3314 		 * will go through their respective sequences.
3315 		 */
3316 		pwr_state_on = CSR_BR(csr_base, HOTPLUG_CONTROL, PWREN);
3317 		pwr_off = val & PCIE_SLOTCTL_PWR_CONTROL;
3318 
3319 		if (!pwr_off && !pwr_state_on)
3320 			ret = oberon_hp_pwron(csr_base);
3321 		else if (pwr_off && pwr_state_on) {
3322 			pwr_fault = CSR_XR(csr_base, TLU_SLOT_STATUS) &
3323 			    (1ull << TLU_SLOT_STATUS_PWFD);
3324 
3325 			if (pwr_fault) {
3326 				DBG(DBG_HP, NULL, "oberon_hpreg_put: power "
3327 				    "off because of power fault\n");
3328 				CSR_BC(csr_base, HOTPLUG_CONTROL, PWREN);
3329 			}
3330 			else
3331 				ret = oberon_hp_pwroff(csr_base);
3332 		} else
3333 			CSR_XS(csr_base, TLU_SLOT_CONTROL, val);
3334 		break;
3335 	case PCIE_SLOTSTS:
3336 		CSR_XS(csr_base, TLU_SLOT_STATUS, val);
3337 		break;
3338 	default:
3339 		DBG(DBG_HP, NULL, "oberon_hpreg_put(): "
3340 		    "unsupported offset 0x%lx\n", off);
3341 		ret = (uint_t)DDI_FAILURE;
3342 		break;
3343 	}
3344 
3345 	return (ret);
3346 }
3347 
3348 int
3349 hvio_hotplug_init(dev_info_t *dip, void *arg)
3350 {
3351 	pciehpc_regops_t *regops = (pciehpc_regops_t *)arg;
3352 	px_t	*px_p = DIP_TO_STATE(dip);
3353 	pxu_t	*pxu_p = (pxu_t *)px_p->px_plat_p;
3354 	volatile uint64_t reg;
3355 
3356 	if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) {
3357 		if (!CSR_BR((caddr_t)pxu_p->px_address[PX_REG_CSR],
3358 		    TLU_SLOT_CAPABILITIES, HP)) {
3359 			DBG(DBG_HP, NULL, "%s%d: hotplug capabale not set\n",
3360 			    ddi_driver_name(dip), ddi_get_instance(dip));
3361 			return (DDI_FAILURE);
3362 		}
3363 
3364 		/* For empty or disconnected slot, disable LUP/LDN */
3365 		if (!CSR_BR((caddr_t)pxu_p->px_address[PX_REG_CSR],
3366 			TLU_SLOT_STATUS, PSD) ||
3367 		    !CSR_BR((caddr_t)pxu_p->px_address[PX_REG_CSR],
3368 			HOTPLUG_CONTROL, PWREN)) {
3369 
3370 			reg = CSR_XR((caddr_t)pxu_p->px_address[PX_REG_CSR],
3371 			    TLU_OTHER_EVENT_LOG_ENABLE);
3372 			reg &= ~((1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_P) |
3373 			    (1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_P) |
3374 			    (1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_S) |
3375 			    (1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_S));
3376 			CSR_XS((caddr_t)pxu_p->px_address[PX_REG_CSR],
3377 			    TLU_OTHER_EVENT_LOG_ENABLE, reg);
3378 		}
3379 
3380 		regops->get = oberon_hpreg_get;
3381 		regops->put = oberon_hpreg_put;
3382 
3383 		/* cookie is the csr_base */
3384 		regops->cookie = (void *)&pxu_p->px_address[PX_REG_CSR];
3385 
3386 		return (DDI_SUCCESS);
3387 	}
3388 
3389 	return (DDI_ENOTSUP);
3390 }
3391 
3392 int
3393 hvio_hotplug_uninit(dev_info_t *dip)
3394 {
3395 	px_t	*px_p = DIP_TO_STATE(dip);
3396 	pxu_t	*pxu_p = (pxu_t *)px_p->px_plat_p;
3397 
3398 	if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON)
3399 		return (DDI_SUCCESS);
3400 
3401 	return (DDI_FAILURE);
3402 }
3403