xref: /titanic_50/usr/src/uts/sun4u/io/mem_cache.c (revision 62a24de03df1f2399ceda704cb3874dabc98bbbd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 
27 /*
28  * Driver to retire/unretire L2/L3 cachelines on panther
29  */
30 #include <sys/types.h>
31 #include <sys/types32.h>
32 #include <sys/time.h>
33 #include <sys/errno.h>
34 #include <sys/cmn_err.h>
35 #include <sys/param.h>
36 #include <sys/modctl.h>
37 #include <sys/conf.h>
38 #include <sys/open.h>
39 #include <sys/stat.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/file.h>
43 #include <sys/cpuvar.h>
44 #include <sys/x_call.h>
45 #include <sys/cheetahregs.h>
46 #include <sys/mem_cache.h>
47 #include <sys/mem_cache_ioctl.h>
48 
49 extern int	retire_l2(uint64_t, uint64_t);
50 extern int	retire_l2_alternate(uint64_t, uint64_t);
51 extern int	unretire_l2(uint64_t, uint64_t);
52 extern int	unretire_l2_alternate(uint64_t, uint64_t);
53 extern int	retire_l3(uint64_t, uint64_t);
54 extern int	retire_l3_alternate(uint64_t, uint64_t);
55 extern int	unretire_l3(uint64_t, uint64_t);
56 extern int	unretire_l3_alternate(uint64_t, uint64_t);
57 
58 extern void	retire_l2_start(uint64_t, uint64_t);
59 extern void	retire_l2_end(uint64_t, uint64_t);
60 extern void	unretire_l2_start(uint64_t, uint64_t);
61 extern void	unretire_l2_end(uint64_t, uint64_t);
62 extern void	retire_l3_start(uint64_t, uint64_t);
63 extern void	retire_l3_end(uint64_t, uint64_t);
64 extern void	unretire_l3_start(uint64_t, uint64_t);
65 extern void	unretire_l3_end(uint64_t, uint64_t);
66 
67 extern void	get_ecache_dtags_tl1(uint64_t, ch_cpu_logout_t *);
68 extern void	get_l2_tag_tl1(uint64_t, uint64_t);
69 extern void	get_l3_tag_tl1(uint64_t, uint64_t);
70 
71 
72 /* Macro for putting 64-bit onto stack as two 32-bit ints */
73 #define	PRTF_64_TO_32(x)	(uint32_t)((x)>>32), (uint32_t)(x)
74 
75 
76 uint_t l2_flush_retries_done = 0;
77 int mem_cache_debug = 0x0;
78 uint64_t pattern = 0;
79 uint32_t retire_failures = 0;
80 uint32_t last_error_injected_way = 0;
81 uint8_t last_error_injected_bit = 0;
82 uint32_t last_l3tag_error_injected_way = 0;
83 uint8_t last_l3tag_error_injected_bit = 0;
84 uint32_t last_l2tag_error_injected_way = 0;
85 uint8_t last_l2tag_error_injected_bit = 0;
86 uint32_t last_l3data_error_injected_way = 0;
87 uint8_t last_l3data_error_injected_bit = 0;
88 uint32_t last_l2data_error_injected_way = 0;
89 uint8_t last_l2data_error_injected_bit = 0;
90 
91 /* dev_ops and cb_ops entry point function declarations */
92 static int	mem_cache_attach(dev_info_t *, ddi_attach_cmd_t);
93 static int	mem_cache_detach(dev_info_t *, ddi_detach_cmd_t);
94 static int	mem_cache_getinfo(dev_info_t *, ddi_info_cmd_t, void *,
95 				void **);
96 static int	mem_cache_open(dev_t *, int, int, cred_t *);
97 static int	mem_cache_close(dev_t, int, int, cred_t *);
98 static int	mem_cache_ioctl_ops(int, int, cache_info_t *);
99 static int	mem_cache_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
100 
101 struct cb_ops mem_cache_cb_ops = {
102 	mem_cache_open,
103 	mem_cache_close,
104 	nodev,
105 	nodev,
106 	nodev,			/* dump */
107 	nodev,
108 	nodev,
109 	mem_cache_ioctl,
110 	nodev,			/* devmap */
111 	nodev,
112 	ddi_segmap,		/* segmap */
113 	nochpoll,
114 	ddi_prop_op,
115 	NULL,			/* for STREAMS drivers */
116 	D_NEW | D_MP		/* driver compatibility flag */
117 };
118 
119 static struct dev_ops mem_cache_dev_ops = {
120 	DEVO_REV,		/* driver build version */
121 	0,			/* device reference count */
122 	mem_cache_getinfo,
123 	nulldev,
124 	nulldev,		/* probe */
125 	mem_cache_attach,
126 	mem_cache_detach,
127 	nulldev,		/* reset */
128 	&mem_cache_cb_ops,
129 	(struct bus_ops *)NULL,
130 	nulldev,		/* power */
131 	ddi_quiesce_not_needed,		/* quiesce */
132 };
133 
134 /*
135  * Soft state
136  */
137 struct mem_cache_softc {
138 	dev_info_t	*dip;
139 	kmutex_t	mutex;
140 };
141 #define	getsoftc(inst)	((struct mem_cache_softc *)ddi_get_soft_state(statep,\
142 			(inst)))
143 
144 /* module configuration stuff */
145 static void *statep;
146 extern struct mod_ops mod_driverops;
147 
148 static struct modldrv modldrv = {
149 	&mod_driverops,
150 	"mem_cache_driver (08/01/30) ",
151 	&mem_cache_dev_ops
152 };
153 
154 static struct modlinkage modlinkage = {
155 	MODREV_1,
156 	&modldrv,
157 	0
158 };
159 
160 int
161 _init(void)
162 {
163 	int e;
164 
165 	if (e = ddi_soft_state_init(&statep, sizeof (struct mem_cache_softc),
166 	    MAX_MEM_CACHE_INSTANCES)) {
167 		return (e);
168 	}
169 
170 	if ((e = mod_install(&modlinkage)) != 0)
171 		ddi_soft_state_fini(&statep);
172 
173 	return (e);
174 }
175 
176 int
177 _fini(void)
178 {
179 	int e;
180 
181 	if ((e = mod_remove(&modlinkage)) != 0)
182 		return (e);
183 
184 	ddi_soft_state_fini(&statep);
185 
186 	return (DDI_SUCCESS);
187 }
188 
189 int
190 _info(struct modinfo *modinfop)
191 {
192 	return (mod_info(&modlinkage, modinfop));
193 }
194 
195 /*ARGSUSED*/
196 static int
197 mem_cache_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **result)
198 {
199 	int	inst;
200 	int	retval = DDI_SUCCESS;
201 	struct mem_cache_softc *softc;
202 
203 	inst = getminor((dev_t)arg);
204 
205 	switch (cmd) {
206 	case DDI_INFO_DEVT2DEVINFO:
207 		if ((softc = getsoftc(inst)) == NULL) {
208 			*result = (void *)NULL;
209 			retval = DDI_FAILURE;
210 		} else
211 			*result = (void *)softc->dip;
212 		break;
213 
214 	case DDI_INFO_DEVT2INSTANCE:
215 		*result = (void *)((uintptr_t)inst);
216 		break;
217 
218 	default:
219 		retval = DDI_FAILURE;
220 	}
221 
222 	return (retval);
223 }
224 
225 static int
226 mem_cache_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
227 {
228 	int inst;
229 	struct mem_cache_softc *softc = NULL;
230 	char name[80];
231 
232 	switch (cmd) {
233 	case DDI_ATTACH:
234 		inst = ddi_get_instance(dip);
235 		if (inst >= MAX_MEM_CACHE_INSTANCES) {
236 			cmn_err(CE_WARN, "attach failed, too many instances\n");
237 			return (DDI_FAILURE);
238 		}
239 		(void) sprintf(name, MEM_CACHE_DRIVER_NAME"%d", inst);
240 		if (ddi_create_priv_minor_node(dip, name,
241 		    S_IFCHR,
242 		    inst,
243 		    DDI_PSEUDO,
244 		    0, NULL, "all", 0640) ==
245 		    DDI_FAILURE) {
246 			ddi_remove_minor_node(dip, NULL);
247 			return (DDI_FAILURE);
248 		}
249 
250 		/* Allocate a soft state structure for this instance */
251 		if (ddi_soft_state_zalloc(statep, inst) != DDI_SUCCESS) {
252 			cmn_err(CE_WARN, " ddi_soft_state_zalloc() failed "
253 			    "for inst %d\n", inst);
254 			goto attach_failed;
255 		}
256 
257 		/* Setup soft state */
258 		softc = getsoftc(inst);
259 		softc->dip = dip;
260 		mutex_init(&softc->mutex, NULL, MUTEX_DRIVER, NULL);
261 
262 		/* Create main environmental node */
263 		ddi_report_dev(dip);
264 
265 		return (DDI_SUCCESS);
266 
267 	case DDI_RESUME:
268 		return (DDI_SUCCESS);
269 
270 	default:
271 		return (DDI_FAILURE);
272 	}
273 
274 attach_failed:
275 
276 	/* Free soft state, if allocated. remove minor node if added earlier */
277 	if (softc)
278 		ddi_soft_state_free(statep, inst);
279 
280 	ddi_remove_minor_node(dip, NULL);
281 
282 	return (DDI_FAILURE);
283 }
284 
285 static int
286 mem_cache_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
287 {
288 	int inst;
289 	struct mem_cache_softc *softc;
290 
291 	switch (cmd) {
292 	case DDI_DETACH:
293 		inst = ddi_get_instance(dip);
294 		if ((softc = getsoftc(inst)) == NULL)
295 			return (ENXIO);
296 
297 		/* Free the soft state and remove minor node added earlier */
298 		mutex_destroy(&softc->mutex);
299 		ddi_soft_state_free(statep, inst);
300 		ddi_remove_minor_node(dip, NULL);
301 		return (DDI_SUCCESS);
302 
303 	case DDI_SUSPEND:
304 		return (DDI_SUCCESS);
305 
306 	default:
307 		return (DDI_FAILURE);
308 	}
309 }
310 
311 /*ARGSUSED*/
312 static int
313 mem_cache_open(dev_t *devp, int flag, int otyp, cred_t *credp)
314 {
315 	int	inst = getminor(*devp);
316 
317 	return (getsoftc(inst) == NULL ? ENXIO : 0);
318 }
319 
320 /*ARGSUSED*/
321 static int
322 mem_cache_close(dev_t dev, int flag, int otyp, cred_t *credp)
323 {
324 	int	inst = getminor(dev);
325 
326 	return (getsoftc(inst) == NULL ? ENXIO : 0);
327 }
328 
329 static char *tstate_to_desc[] = {
330 	"Invalid",			/* 0 */
331 	"Shared",			/* 1 */
332 	"Exclusive",			/* 2 */
333 	"Owner",			/* 3 */
334 	"Modified",			/* 4 */
335 	"NA",				/* 5 */
336 	"Owner/Shared",			/* 6 */
337 	"Reserved(7)",			/* 7 */
338 };
339 
340 static char *
341 tag_state_to_desc(uint8_t tagstate)
342 {
343 	return (tstate_to_desc[tagstate & CH_ECSTATE_MASK]);
344 }
345 
346 void
347 print_l2_tag(uint64_t tag_addr, uint64_t l2_tag)
348 {
349 	uint64_t l2_subaddr;
350 	uint8_t	l2_state;
351 
352 	l2_subaddr = PN_L2TAG_TO_PA(l2_tag);
353 	l2_subaddr |= (tag_addr & PN_L2_INDEX_MASK);
354 
355 	l2_state = (l2_tag & CH_ECSTATE_MASK);
356 	cmn_err(CE_CONT,
357 	    "PA=0x%08x.%08x E$tag 0x%08x.%08x E$state %s\n",
358 	    PRTF_64_TO_32(l2_subaddr),
359 	    PRTF_64_TO_32(l2_tag),
360 	    tag_state_to_desc(l2_state));
361 }
362 
363 void
364 print_l2cache_line(ch_cpu_logout_t *clop)
365 {
366 	uint64_t l2_subaddr;
367 	int i, offset;
368 	uint8_t	way, l2_state;
369 	ch_ec_data_t *ecp;
370 
371 
372 	for (way = 0; way < PN_CACHE_NWAYS; way++) {
373 		ecp = &clop->clo_data.chd_l2_data[way];
374 		l2_subaddr = PN_L2TAG_TO_PA(ecp->ec_tag);
375 		l2_subaddr |= (ecp->ec_idx & PN_L2_INDEX_MASK);
376 
377 		l2_state = (ecp->ec_tag & CH_ECSTATE_MASK);
378 		cmn_err(CE_CONT,
379 		    "\nWAY = %d index = 0x%08x PA=0x%08x.%08x\n"
380 		    "E$tag 0x%08x.%08x E$state %s",
381 		    way, (uint32_t)ecp->ec_idx, PRTF_64_TO_32(l2_subaddr),
382 		    PRTF_64_TO_32(ecp->ec_tag),
383 		    tag_state_to_desc(l2_state));
384 		/*
385 		 * Dump out Ecache subblock data captured.
386 		 * For Cheetah, we need to compute the ECC for each 16-byte
387 		 * chunk and compare it with the captured chunk ECC to figure
388 		 * out which chunk is bad.
389 		 */
390 		for (i = 0; i < (CH_ECACHE_SUBBLK_SIZE/16); i++) {
391 			ec_data_elm_t *ecdptr;
392 			uint64_t d_low, d_high;
393 			uint32_t ecc;
394 			int l2_data_idx = (i/2);
395 
396 			offset = i * 16;
397 			ecdptr = &clop->clo_data.chd_l2_data[way].ec_data
398 			    [l2_data_idx];
399 			if ((i & 1) == 0) {
400 				ecc = (ecdptr->ec_eccd >> 9) & 0x1ff;
401 				d_high = ecdptr->ec_d8[0];
402 				d_low  = ecdptr->ec_d8[1];
403 			} else {
404 				ecc = ecdptr->ec_eccd & 0x1ff;
405 				d_high = ecdptr->ec_d8[2];
406 				d_low  = ecdptr->ec_d8[3];
407 			}
408 
409 			cmn_err(CE_CONT,
410 			    "\nE$Data (0x%02x) 0x%08x.%08x 0x%08x.%08x"
411 			    " ECC 0x%03x",
412 			    offset, PRTF_64_TO_32(d_high),
413 			    PRTF_64_TO_32(d_low), ecc);
414 		}
415 	}	/* end of for way loop */
416 }
417 
418 void
419 print_ecache_line(ch_cpu_logout_t *clop)
420 {
421 	uint64_t ec_subaddr;
422 	int i, offset;
423 	uint8_t	way, ec_state;
424 	ch_ec_data_t *ecp;
425 
426 
427 	for (way = 0; way < PN_CACHE_NWAYS; way++) {
428 		ecp = &clop->clo_data.chd_ec_data[way];
429 		ec_subaddr = PN_L3TAG_TO_PA(ecp->ec_tag);
430 		ec_subaddr |= (ecp->ec_idx & PN_L3_TAG_RD_MASK);
431 
432 		ec_state = (ecp->ec_tag & CH_ECSTATE_MASK);
433 		cmn_err(CE_CONT,
434 		    "\nWAY = %d index = 0x%08x PA=0x%08x.%08x\n"
435 		    "E$tag 0x%08x.%08x E$state %s",
436 		    way, (uint32_t)ecp->ec_idx, PRTF_64_TO_32(ec_subaddr),
437 		    PRTF_64_TO_32(ecp->ec_tag),
438 		    tag_state_to_desc(ec_state));
439 		/*
440 		 * Dump out Ecache subblock data captured.
441 		 * For Cheetah, we need to compute the ECC for each 16-byte
442 		 * chunk and compare it with the captured chunk ECC to figure
443 		 * out which chunk is bad.
444 		 */
445 		for (i = 0; i < (CH_ECACHE_SUBBLK_SIZE/16); i++) {
446 			ec_data_elm_t *ecdptr;
447 			uint64_t d_low, d_high;
448 			uint32_t ecc;
449 			int ec_data_idx = (i/2);
450 
451 			offset = i * 16;
452 			ecdptr =
453 			    &clop->clo_data.chd_ec_data[way].ec_data
454 			    [ec_data_idx];
455 			if ((i & 1) == 0) {
456 				ecc = (ecdptr->ec_eccd >> 9) & 0x1ff;
457 				d_high = ecdptr->ec_d8[0];
458 				d_low  = ecdptr->ec_d8[1];
459 			} else {
460 				ecc = ecdptr->ec_eccd & 0x1ff;
461 				d_high = ecdptr->ec_d8[2];
462 				d_low  = ecdptr->ec_d8[3];
463 			}
464 
465 			cmn_err(CE_CONT,
466 			    "\nE$Data (0x%02x) 0x%08x.%08x 0x%08x.%08x"
467 			    " ECC 0x%03x",
468 			    offset, PRTF_64_TO_32(d_high),
469 			    PRTF_64_TO_32(d_low), ecc);
470 		}
471 	}
472 }
473 
474 static boolean_t
475 tag_addr_collides(uint64_t tag_addr, cache_id_t type,
476     retire_func_t start_of_func, retire_func_t end_of_func)
477 {
478 	uint64_t start_paddr, end_paddr;
479 	char *type_str;
480 
481 	start_paddr = va_to_pa((void *)start_of_func);
482 	end_paddr = va_to_pa((void *)end_of_func);
483 	switch (type) {
484 		case L2_CACHE_TAG:
485 		case L2_CACHE_DATA:
486 			tag_addr &= PN_L2_INDEX_MASK;
487 			start_paddr &= PN_L2_INDEX_MASK;
488 			end_paddr &= PN_L2_INDEX_MASK;
489 			type_str = "L2:";
490 			break;
491 		case L3_CACHE_TAG:
492 		case L3_CACHE_DATA:
493 			tag_addr &= PN_L3_TAG_RD_MASK;
494 			start_paddr &= PN_L3_TAG_RD_MASK;
495 			end_paddr &= PN_L3_TAG_RD_MASK;
496 			type_str = "L3:";
497 			break;
498 		default:
499 			/*
500 			 * Should never reach here.
501 			 */
502 			ASSERT(0);
503 			return (B_FALSE);
504 	}
505 	if ((tag_addr > (start_paddr - 0x100)) &&
506 	    (tag_addr < (end_paddr + 0x100))) {
507 		if (mem_cache_debug & 0x1)
508 			cmn_err(CE_CONT,
509 			    "%s collision detected tag_addr = 0x%08x"
510 			    " start_paddr = 0x%08x end_paddr = 0x%08x\n",
511 			    type_str, (uint32_t)tag_addr, (uint32_t)start_paddr,
512 			    (uint32_t)end_paddr);
513 		return (B_TRUE);
514 	}
515 	else
516 		return (B_FALSE);
517 }
518 
519 static uint64_t
520 get_tag_addr(cache_info_t *cache_info)
521 {
522 	uint64_t tag_addr, scratch;
523 
524 	switch (cache_info->cache) {
525 		case L2_CACHE_TAG:
526 		case L2_CACHE_DATA:
527 			tag_addr = (uint64_t)(cache_info->index <<
528 			    PN_CACHE_LINE_SHIFT);
529 			scratch = (uint64_t)(cache_info->way <<
530 			    PN_L2_WAY_SHIFT);
531 			tag_addr |= scratch;
532 			tag_addr |= PN_L2_IDX_HW_ECC_EN;
533 			break;
534 		case L3_CACHE_TAG:
535 		case L3_CACHE_DATA:
536 			tag_addr = (uint64_t)(cache_info->index <<
537 			    PN_CACHE_LINE_SHIFT);
538 			scratch = (uint64_t)(cache_info->way <<
539 			    PN_L3_WAY_SHIFT);
540 			tag_addr |= scratch;
541 			tag_addr |= PN_L3_IDX_HW_ECC_EN;
542 			break;
543 		default:
544 			/*
545 			 * Should never reach here.
546 			 */
547 			ASSERT(0);
548 			return (uint64_t)(0);
549 	}
550 	return (tag_addr);
551 }
552 
553 static int
554 mem_cache_ioctl_ops(int cmd, int mode, cache_info_t *cache_info)
555 {
556 	int	ret_val = 0;
557 	uint64_t afar, tag_addr;
558 	ch_cpu_logout_t clop;
559 	uint64_t Lxcache_tag_data[PN_CACHE_NWAYS];
560 	int	i, retire_retry_count;
561 	cpu_t	*cpu;
562 	uint64_t tag_data;
563 	uint8_t state;
564 
565 	switch (cache_info->cache) {
566 		case L2_CACHE_TAG:
567 		case L2_CACHE_DATA:
568 			if (cache_info->way >= PN_CACHE_NWAYS)
569 				return (EINVAL);
570 			if (cache_info->index >=
571 			    (PN_L2_SET_SIZE/PN_L2_LINESIZE))
572 				return (EINVAL);
573 			break;
574 		case L3_CACHE_TAG:
575 		case L3_CACHE_DATA:
576 			if (cache_info->way >= PN_CACHE_NWAYS)
577 				return (EINVAL);
578 			if (cache_info->index >=
579 			    (PN_L3_SET_SIZE/PN_L3_LINESIZE))
580 				return (EINVAL);
581 			break;
582 		default:
583 			return (ENOTSUP);
584 	}
585 	/*
586 	 * Check if we have a valid cpu ID and that
587 	 * CPU is ONLINE.
588 	 */
589 	mutex_enter(&cpu_lock);
590 	cpu = cpu_get(cache_info->cpu_id);
591 	if ((cpu == NULL) || (!cpu_is_online(cpu))) {
592 		mutex_exit(&cpu_lock);
593 		return (EINVAL);
594 	}
595 	mutex_exit(&cpu_lock);
596 	switch (cmd) {
597 		case MEM_CACHE_RETIRE:
598 			if ((cache_info->bit & MSB_BIT_MASK) ==
599 			    MSB_BIT_MASK) {
600 				pattern = ((uint64_t)1 <<
601 				    (cache_info->bit & TAG_BIT_MASK));
602 			} else {
603 				pattern = 0;
604 			}
605 			tag_addr = get_tag_addr(cache_info);
606 			pattern |= PN_ECSTATE_NA;
607 			retire_retry_count = 0;
608 			affinity_set(cache_info->cpu_id);
609 			switch (cache_info->cache) {
610 				case L2_CACHE_DATA:
611 				case L2_CACHE_TAG:
612 retry_l2_retire:
613 					if (tag_addr_collides(tag_addr,
614 					    cache_info->cache,
615 					    retire_l2_start, retire_l2_end))
616 						ret_val =
617 						    retire_l2_alternate(
618 						    tag_addr, pattern);
619 					else
620 						ret_val = retire_l2(tag_addr,
621 						    pattern);
622 					if (ret_val == 1) {
623 						/*
624 						 * cacheline was in retired
625 						 * STATE already.
626 						 * so return success.
627 						 */
628 						ret_val = 0;
629 					}
630 					if (ret_val < 0) {
631 						cmn_err(CE_WARN,
632 		"retire_l2() failed. index = 0x%x way %d. Retrying...\n",
633 						    cache_info->index,
634 						    cache_info->way);
635 						if (retire_retry_count >= 2) {
636 							retire_failures++;
637 							affinity_clear();
638 							return (EIO);
639 						}
640 						retire_retry_count++;
641 						goto retry_l2_retire;
642 					}
643 					if (ret_val == 2)
644 						l2_flush_retries_done++;
645 			/*
646 			 * We bind ourself to a CPU and send cross trap to
647 			 * ourself. On return from xt_one we can rely on the
648 			 * data in tag_data being filled in. Normally one would
649 			 * do a xt_sync to make sure that the CPU has completed
650 			 * the cross trap call xt_one.
651 			 */
652 					xt_one(cache_info->cpu_id,
653 					    (xcfunc_t *)(get_l2_tag_tl1),
654 					    tag_addr, (uint64_t)(&tag_data));
655 					state = tag_data & CH_ECSTATE_MASK;
656 					if (state != PN_ECSTATE_NA) {
657 						retire_failures++;
658 						print_l2_tag(tag_addr,
659 						    tag_data);
660 						cmn_err(CE_WARN,
661 		"L2 RETIRE:failed for index 0x%x way %d. Retrying...\n",
662 						    cache_info->index,
663 						    cache_info->way);
664 						if (retire_retry_count >= 2) {
665 							retire_failures++;
666 							affinity_clear();
667 							return (EIO);
668 						}
669 						retire_retry_count++;
670 						goto retry_l2_retire;
671 					}
672 					break;
673 				case L3_CACHE_TAG:
674 				case L3_CACHE_DATA:
675 					if (tag_addr_collides(tag_addr,
676 					    cache_info->cache,
677 					    retire_l3_start, retire_l3_end))
678 						ret_val =
679 						    retire_l3_alternate(
680 						    tag_addr, pattern);
681 					else
682 						ret_val = retire_l3(tag_addr,
683 						    pattern);
684 					if (ret_val == 1) {
685 						/*
686 						 * cacheline was in retired
687 						 * STATE already.
688 						 * so return success.
689 						 */
690 						ret_val = 0;
691 					}
692 					if (ret_val < 0) {
693 						cmn_err(CE_WARN,
694 			"retire_l3() failed. ret_val = %d index = 0x%x\n",
695 						    ret_val,
696 						    cache_info->index);
697 						retire_failures++;
698 						affinity_clear();
699 						return (EIO);
700 					}
701 			/*
702 			 * We bind ourself to a CPU and send cross trap to
703 			 * ourself. On return from xt_one we can rely on the
704 			 * data in tag_data being filled in. Normally one would
705 			 * do a xt_sync to make sure that the CPU has completed
706 			 * the cross trap call xt_one.
707 			 */
708 					xt_one(cache_info->cpu_id,
709 					    (xcfunc_t *)(get_l3_tag_tl1),
710 					    tag_addr, (uint64_t)(&tag_data));
711 					state = tag_data & CH_ECSTATE_MASK;
712 					if (state != PN_ECSTATE_NA) {
713 						cmn_err(CE_WARN,
714 					"L3 RETIRE failed for index 0x%x\n",
715 						    cache_info->index);
716 						retire_failures++;
717 						affinity_clear();
718 						return (EIO);
719 					}
720 
721 					break;
722 			}
723 			affinity_clear();
724 			break;
725 		case MEM_CACHE_UNRETIRE:
726 			tag_addr = get_tag_addr(cache_info);
727 			pattern = PN_ECSTATE_INV;
728 			affinity_set(cache_info->cpu_id);
729 			switch (cache_info->cache) {
730 				case L2_CACHE_DATA:
731 				case L2_CACHE_TAG:
732 					/*
733 					 * Check if the index/way is in NA state
734 					 */
735 			/*
736 			 * We bind ourself to a CPU and send cross trap to
737 			 * ourself. On return from xt_one we can rely on the
738 			 * data in tag_data being filled in. Normally one would
739 			 * do a xt_sync to make sure that the CPU has completed
740 			 * the cross trap call xt_one.
741 			 */
742 					xt_one(cache_info->cpu_id,
743 					    (xcfunc_t *)(get_l2_tag_tl1),
744 					    tag_addr, (uint64_t)(&tag_data));
745 					state = tag_data & CH_ECSTATE_MASK;
746 					if (state != PN_ECSTATE_NA) {
747 						affinity_clear();
748 						return (EINVAL);
749 					}
750 					if (tag_addr_collides(tag_addr,
751 					    cache_info->cache,
752 					    unretire_l2_start, unretire_l2_end))
753 						ret_val =
754 						    unretire_l2_alternate(
755 						    tag_addr, pattern);
756 					else
757 						ret_val =
758 						    unretire_l2(tag_addr,
759 						    pattern);
760 					if (ret_val != 0) {
761 						cmn_err(CE_WARN,
762 			"unretire_l2() failed. ret_val = %d index = 0x%x\n",
763 						    ret_val,
764 						    cache_info->index);
765 						retire_failures++;
766 						affinity_clear();
767 						return (EIO);
768 					}
769 					break;
770 				case L3_CACHE_TAG:
771 				case L3_CACHE_DATA:
772 					/*
773 					 * Check if the index/way is in NA state
774 					 */
775 			/*
776 			 * We bind ourself to a CPU and send cross trap to
777 			 * ourself. On return from xt_one we can rely on the
778 			 * data in tag_data being filled in. Normally one would
779 			 * do a xt_sync to make sure that the CPU has completed
780 			 * the cross trap call xt_one.
781 			 */
782 					xt_one(cache_info->cpu_id,
783 					    (xcfunc_t *)(get_l3_tag_tl1),
784 					    tag_addr, (uint64_t)(&tag_data));
785 					state = tag_data & CH_ECSTATE_MASK;
786 					if (state != PN_ECSTATE_NA) {
787 						affinity_clear();
788 						return (EINVAL);
789 					}
790 					if (tag_addr_collides(tag_addr,
791 					    cache_info->cache,
792 					    unretire_l3_start, unretire_l3_end))
793 						ret_val =
794 						    unretire_l3_alternate(
795 						    tag_addr, pattern);
796 					else
797 						ret_val =
798 						    unretire_l3(tag_addr,
799 						    pattern);
800 					if (ret_val != 0) {
801 						cmn_err(CE_WARN,
802 			"unretire_l3() failed. ret_val = %d index = 0x%x\n",
803 						    ret_val,
804 						    cache_info->index);
805 						affinity_clear();
806 						return (EIO);
807 					}
808 					break;
809 			}
810 			affinity_clear();
811 			break;
812 		case MEM_CACHE_ISRETIRED:
813 		case MEM_CACHE_STATE:
814 			return (ENOTSUP);
815 		case MEM_CACHE_READ_TAGS:
816 #ifdef DEBUG
817 		case MEM_CACHE_READ_ERROR_INJECTED_TAGS:
818 #endif
819 			/*
820 			 * Read tag and data for all the ways at a given afar
821 			 */
822 			afar = (uint64_t)(cache_info->index
823 			    << PN_CACHE_LINE_SHIFT);
824 			affinity_set(cache_info->cpu_id);
825 			/*
826 			 * We bind ourself to a CPU and send cross trap to
827 			 * ourself. On return from xt_one we can rely on the
828 			 * data in clop being filled in. Normally one would
829 			 * do a xt_sync to make sure that the CPU has completed
830 			 * the cross trap call xt_one.
831 			 */
832 			xt_one(cache_info->cpu_id,
833 			    (xcfunc_t *)(get_ecache_dtags_tl1),
834 			    afar, (uint64_t)(&clop));
835 			switch (cache_info->cache) {
836 				case L2_CACHE_TAG:
837 					for (i = 0; i < PN_CACHE_NWAYS; i++) {
838 						Lxcache_tag_data[i] =
839 						    clop.clo_data.chd_l2_data
840 						    [i].ec_tag;
841 					}
842 					last_error_injected_bit =
843 					    last_l2tag_error_injected_bit;
844 					last_error_injected_way =
845 					    last_l2tag_error_injected_way;
846 					break;
847 				case L3_CACHE_TAG:
848 					for (i = 0; i < PN_CACHE_NWAYS; i++) {
849 						Lxcache_tag_data[i] =
850 						    clop.clo_data.chd_ec_data
851 						    [i].ec_tag;
852 					}
853 					last_error_injected_bit =
854 					    last_l3tag_error_injected_bit;
855 					last_error_injected_way =
856 					    last_l3tag_error_injected_way;
857 					break;
858 				default:
859 					affinity_clear();
860 					return (ENOTSUP);
861 			}	/* end if switch(cache) */
862 #ifdef DEBUG
863 			if (cmd == MEM_CACHE_READ_ERROR_INJECTED_TAGS) {
864 				pattern = ((uint64_t)1 <<
865 				    last_error_injected_bit);
866 				/*
867 				 * If error bit is ECC we need to make sure
868 				 * ECC on all all WAYS are corrupted.
869 				 */
870 				if ((last_error_injected_bit >= 6) &&
871 				    (last_error_injected_bit <= 14)) {
872 					for (i = 0; i < PN_CACHE_NWAYS; i++)
873 						Lxcache_tag_data[i] ^=
874 						    pattern;
875 				} else
876 					Lxcache_tag_data
877 					    [last_error_injected_way] ^=
878 					    pattern;
879 			}
880 #endif
881 			if (ddi_copyout((caddr_t)Lxcache_tag_data,
882 			    (caddr_t)cache_info->datap,
883 			    sizeof (Lxcache_tag_data), mode)
884 			    != DDI_SUCCESS) {
885 				affinity_clear();
886 				return (EFAULT);
887 			}
888 			affinity_clear();
889 			break;	/* end of READ_TAGS */
890 		default:
891 			return (ENOTSUP);
892 	}	/* end if switch(cmd) */
893 	return (ret_val);
894 }
895 
896 /*ARGSUSED*/
897 static int
898 mem_cache_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
899 		int *rvalp)
900 {
901 	int	inst;
902 	struct mem_cache_softc *softc;
903 	cache_info_t	cache_info;
904 	cache_info32_t	cache_info32;
905 	int	ret_val;
906 	int	is_panther;
907 
908 	inst = getminor(dev);
909 	if ((softc = getsoftc(inst)) == NULL)
910 		return (ENXIO);
911 
912 	mutex_enter(&softc->mutex);
913 
914 #ifdef _MULTI_DATAMODEL
915 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
916 		if (ddi_copyin((cache_info32_t *)arg, &cache_info32,
917 		    sizeof (cache_info32), mode) != DDI_SUCCESS) {
918 			mutex_exit(&softc->mutex);
919 			return (EFAULT);
920 		}
921 		cache_info.cache = cache_info32.cache;
922 		cache_info.index = cache_info32.index;
923 		cache_info.way = cache_info32.way;
924 		cache_info.cpu_id = cache_info32.cpu_id;
925 		cache_info.bit = cache_info32.bit;
926 		cache_info.datap = (void *)((uint64_t)cache_info32.datap);
927 	} else
928 #endif
929 	if (ddi_copyin((cache_info_t *)arg, &cache_info,
930 	    sizeof (cache_info), mode) != DDI_SUCCESS) {
931 		mutex_exit(&softc->mutex);
932 		return (EFAULT);
933 	}
934 
935 	if ((cache_info.cpu_id < 0) || (cache_info.cpu_id >= NCPU)) {
936 		mutex_exit(&softc->mutex);
937 		return (EINVAL);
938 	}
939 
940 	is_panther = IS_PANTHER(cpunodes[cache_info.cpu_id].implementation);
941 	if (!is_panther) {
942 		mutex_exit(&softc->mutex);
943 		return (ENOTSUP);
944 	}
945 	switch (cmd) {
946 		case MEM_CACHE_RETIRE:
947 		case MEM_CACHE_UNRETIRE:
948 			if ((mode & FWRITE) == 0) {
949 				ret_val = EBADF;
950 				break;
951 			}
952 		/*FALLTHROUGH*/
953 		case MEM_CACHE_ISRETIRED:
954 		case MEM_CACHE_STATE:
955 		case MEM_CACHE_READ_TAGS:
956 #ifdef DEBUG
957 		case MEM_CACHE_READ_ERROR_INJECTED_TAGS:
958 #endif
959 			ret_val =  mem_cache_ioctl_ops(cmd, mode, &cache_info);
960 			break;
961 		default:
962 			ret_val = ENOTSUP;
963 			break;
964 	}
965 	mutex_exit(&softc->mutex);
966 	return (ret_val);
967 }
968