xref: /titanic_50/usr/src/uts/sun4u/cpu/us3_common_asm.s (revision 8461248208fabd3a8230615f8615e5bf1b4dcdcb)
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License").  You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22/*
23 * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 *
26 * Assembly code support for Cheetah/Cheetah+ modules
27 */
28
29#pragma ident	"%Z%%M%	%I%	%E% SMI"
30
31#if !defined(lint)
32#include "assym.h"
33#endif	/* !lint */
34
35#include <sys/asm_linkage.h>
36#include <sys/mmu.h>
37#include <vm/hat_sfmmu.h>
38#include <sys/machparam.h>
39#include <sys/machcpuvar.h>
40#include <sys/machthread.h>
41#include <sys/machtrap.h>
42#include <sys/privregs.h>
43#include <sys/trap.h>
44#include <sys/cheetahregs.h>
45#include <sys/us3_module.h>
46#include <sys/xc_impl.h>
47#include <sys/intreg.h>
48#include <sys/async.h>
49#include <sys/clock.h>
50#include <sys/cheetahasm.h>
51#include <sys/cmpregs.h>
52
53#ifdef TRAPTRACE
54#include <sys/traptrace.h>
55#endif /* TRAPTRACE */
56
57#if !defined(lint)
58
59/* BEGIN CSTYLED */
60
61#define	DCACHE_FLUSHPAGE(arg1, arg2, tmp1, tmp2, tmp3)			\
62	ldxa	[%g0]ASI_DCU, tmp1					;\
63	btst	DCU_DC, tmp1		/* is dcache enabled? */	;\
64	bz,pn	%icc, 1f						;\
65	ASM_LD(tmp1, dcache_linesize)					;\
66	ASM_LD(tmp2, dflush_type)					;\
67	cmp	tmp2, FLUSHPAGE_TYPE					;\
68	be,pt	%icc, 2f						;\
69	nop								;\
70	sllx	arg1, CHEETAH_DC_VBIT_SHIFT, arg1/* tag to compare */	;\
71	ASM_LD(tmp3, dcache_size)					;\
72	cmp	tmp2, FLUSHMATCH_TYPE					;\
73	be,pt	%icc, 3f						;\
74	nop								;\
75	/*								\
76	 * flushtype = FLUSHALL_TYPE, flush the whole thing		\
77	 * tmp3 = cache size						\
78	 * tmp1 = cache line size					\
79	 */								\
80	sub	tmp3, tmp1, tmp2					;\
814:									\
82	stxa	%g0, [tmp2]ASI_DC_TAG					;\
83	membar	#Sync							;\
84	cmp	%g0, tmp2						;\
85	bne,pt	%icc, 4b						;\
86	sub	tmp2, tmp1, tmp2					;\
87	ba,pt	%icc, 1f						;\
88	nop								;\
89	/*								\
90	 * flushtype = FLUSHPAGE_TYPE					\
91	 * arg1 = pfn							\
92	 * arg2 = virtual color						\
93	 * tmp1 = cache line size					\
94	 * tmp2 = tag from cache					\
95	 * tmp3 = counter						\
96	 */								\
972:									\
98	set	MMU_PAGESIZE, tmp3					;\
99        sllx    arg1, MMU_PAGESHIFT, arg1  /* pfn to 43 bit PA	   */   ;\
100	sub	tmp3, tmp1, tmp3					;\
1014:									\
102	stxa	%g0, [arg1 + tmp3]ASI_DC_INVAL				;\
103	membar	#Sync							;\
1045:									\
105	cmp	%g0, tmp3						;\
106	bnz,pt	%icc, 4b		/* branch if not done */	;\
107	sub	tmp3, tmp1, tmp3					;\
108	ba,pt	%icc, 1f						;\
109	nop								;\
110	/*								\
111	 * flushtype = FLUSHMATCH_TYPE					\
112	 * arg1 = tag to compare against				\
113	 * tmp1 = cache line size					\
114	 * tmp3 = cache size						\
115	 * arg2 = counter						\
116	 * tmp2 = cache tag						\
117	 */								\
1183:									\
119	sub	tmp3, tmp1, arg2					;\
1204:									\
121	ldxa	[arg2]ASI_DC_TAG, tmp2		/* read tag */		;\
122	btst	CHEETAH_DC_VBIT_MASK, tmp2				;\
123	bz,pn	%icc, 5f		/* br if no valid sub-blocks */	;\
124	andn	tmp2, CHEETAH_DC_VBIT_MASK, tmp2 /* clear out v bits */	;\
125	cmp	tmp2, arg1						;\
126	bne,pn	%icc, 5f		/* branch if tag miss */	;\
127	nop								;\
128	stxa	%g0, [arg2]ASI_DC_TAG					;\
129	membar	#Sync							;\
1305:									\
131	cmp	%g0, arg2						;\
132	bne,pt	%icc, 4b		/* branch if not done */	;\
133	sub	arg2, tmp1, arg2					;\
1341:
135
136
137/* END CSTYLED */
138
139#endif	/* !lint */
140
141/*
142 * Cheetah MMU and Cache operations.
143 */
144
145#if defined(lint)
146
147/* ARGSUSED */
148void
149vtag_flushpage(caddr_t vaddr, u_int ctxnum)
150{}
151
152#else	/* lint */
153
154	ENTRY_NP(vtag_flushpage)
155	/*
156	 * flush page from the tlb
157	 *
158	 * %o0 = vaddr
159	 * %o1 = ctxnum
160	 */
161	rdpr	%pstate, %o5
162#ifdef DEBUG
163	andcc	%o5, PSTATE_IE, %g0		/* if interrupts already */
164	bnz,a,pt %icc, 3f			/* disabled, panic	 */
165	  nop
166	save	%sp, -SA(MINFRAME), %sp
167	sethi	%hi(sfmmu_panic1), %o0
168	call	panic
169	  or	%o0, %lo(sfmmu_panic1), %o0
170	ret
171	restore
1723:
173#endif /* DEBUG */
174	/*
175	 * disable ints
176	 */
177	andn	%o5, PSTATE_IE, %o4
178	wrpr	%o4, 0, %pstate
179
180	/*
181	 * Then, blow out the tlb
182	 * Interrupts are disabled to prevent the primary ctx register
183	 * from changing underneath us.
184	 */
185	brnz,pt	%o1, 1f			/* KCONTEXT */
186	sethi	%hi(FLUSH_ADDR), %o3
187	/*
188	 * For KCONTEXT demaps use primary. type = page implicitly
189	 */
190	stxa	%g0, [%o0]ASI_DTLB_DEMAP	/* dmmu flush for KCONTEXT */
191	stxa	%g0, [%o0]ASI_ITLB_DEMAP	/* immu flush for KCONTEXT */
192	flush	%o3
193	b	5f
194	nop
1951:
196	/*
197	 * User demap.  We need to set the primary context properly.
198	 * Secondary context cannot be used for Cheetah IMMU.
199	 * %o0 = vaddr
200	 * %o1 = ctxnum
201	 * %o3 = FLUSH_ADDR
202	 */
203	sethi	%hi(ctx_pgsz_array), %o4
204	ldn     [%o4 + %lo(ctx_pgsz_array)], %o4
205	brz	%o4, 2f
206	nop
207	ldub	[%o4 + %o1], %o4
208	sll	%o4, CTXREG_EXT_SHIFT, %o4
209	or	%o1, %o4, %o1
2102:
211	wrpr	%g0, 1, %tl
212	set	MMU_PCONTEXT, %o4
213	or	DEMAP_PRIMARY | DEMAP_PAGE_TYPE, %o0, %o0
214	ldxa	[%o4]ASI_DMMU, %o2		/* rd old ctxnum */
215	stxa	%o1, [%o4]ASI_DMMU		/* wr new ctxum */
2164:
217	stxa	%g0, [%o0]ASI_DTLB_DEMAP
218	stxa	%g0, [%o0]ASI_ITLB_DEMAP
219	stxa	%o2, [%o4]ASI_DMMU		/* restore old ctxnum */
220	flush	%o3
221	wrpr	%g0, 0, %tl
2225:
223	retl
224	wrpr	%g0, %o5, %pstate		/* enable interrupts */
225	SET_SIZE(vtag_flushpage)
226
227#endif	/* lint */
228
229
230#if defined(lint)
231
232/* ARGSUSED */
233void
234vtag_flushctx(u_int ctxnum)
235{}
236
237#else	/* lint */
238
239	ENTRY_NP(vtag_flushctx)
240	/*
241	 * flush context from the tlb
242	 *
243	 * %o0 = ctxnum
244	 * We disable interrupts to prevent the primary ctx register changing
245	 * underneath us.
246	 */
247	sethi	%hi(FLUSH_ADDR), %o3
248	rdpr	%pstate, %o2
249
250#ifdef DEBUG
251	andcc	%o2, PSTATE_IE, %g0		/* if interrupts already */
252	bnz,a,pt %icc, 1f			/* disabled, panic	 */
253	  nop
254	sethi	%hi(sfmmu_panic1), %o0
255	call	panic
256	  or	%o0, %lo(sfmmu_panic1), %o0
2571:
258#endif /* DEBUG */
259
260	sethi	%hi(ctx_pgsz_array), %o4
261	ldn     [%o4 + %lo(ctx_pgsz_array)], %o4
262	brz	%o4, 2f
263	nop
264	ldub	[%o4 + %o0], %o4
265	sll	%o4, CTXREG_EXT_SHIFT, %o4
266	or	%o0, %o4, %o0
2672:
268	wrpr	%o2, PSTATE_IE, %pstate		/* disable interrupts */
269	set	MMU_PCONTEXT, %o4
270	set	DEMAP_CTX_TYPE | DEMAP_PRIMARY, %g1
271	wrpr	%g0, 1, %tl
272	ldxa	[%o4]ASI_DMMU, %o5		/* rd old ctxnum */
273	stxa	%o0, [%o4]ASI_DMMU		/* wr new ctxum */
2744:
275	stxa	%g0, [%g1]ASI_DTLB_DEMAP
276	stxa	%g0, [%g1]ASI_ITLB_DEMAP
277	stxa	%o5, [%o4]ASI_DMMU		/* restore old ctxnum */
278	flush	%o3
279	wrpr	%g0, 0, %tl
2805:
281	retl
282	wrpr	%g0, %o2, %pstate		/* enable interrupts */
283	SET_SIZE(vtag_flushctx)
284
285#endif	/* lint */
286
287
288#if defined(lint)
289
290void
291vtag_flushall(void)
292{}
293
294#else	/* lint */
295
296	ENTRY_NP2(vtag_flushall, demap_all)
297	/*
298	 * flush the tlb
299	 */
300	sethi	%hi(FLUSH_ADDR), %o3
301	set	DEMAP_ALL_TYPE, %g1
302	stxa	%g0, [%g1]ASI_DTLB_DEMAP
303	stxa	%g0, [%g1]ASI_ITLB_DEMAP
304	flush	%o3
305	retl
306	nop
307	SET_SIZE(demap_all)
308	SET_SIZE(vtag_flushall)
309
310#endif	/* lint */
311
312
313#if defined(lint)
314
315/* ARGSUSED */
316void
317vtag_flushpage_tl1(uint64_t vaddr, uint64_t ctxnum)
318{}
319
320#else	/* lint */
321
322	ENTRY_NP(vtag_flushpage_tl1)
323	/*
324	 * x-trap to flush page from tlb and tsb
325	 *
326	 * %g1 = vaddr, zero-extended on 32-bit kernel
327	 * %g2 = ctxnum
328	 *
329	 * assumes TSBE_TAG = 0
330	 */
331	srln	%g1, MMU_PAGESHIFT, %g1
332	brnz,pt	%g2, 1f				/* KCONTEXT */
333	  slln	%g1, MMU_PAGESHIFT, %g1		/* g1 = vaddr */
334
335	/* We need to demap in the kernel context */
336	or	DEMAP_NUCLEUS | DEMAP_PAGE_TYPE, %g1, %g1
337	stxa	%g0, [%g1]ASI_DTLB_DEMAP
338	stxa	%g0, [%g1]ASI_ITLB_DEMAP
339	retry
3401:
341	/* We need to demap in a user context */
342	or	DEMAP_PRIMARY | DEMAP_PAGE_TYPE, %g1, %g1
343	sethi	%hi(ctx_pgsz_array), %g4
344	ldn     [%g4 + %lo(ctx_pgsz_array)], %g4
345	brz	%g4, 2f
346	nop
347	ldub	[%g4 + %g2], %g4
348	sll	%g4, CTXREG_EXT_SHIFT, %g4
349	or	%g2, %g4, %g2
3502:
351	set	MMU_PCONTEXT, %g4
352	ldxa	[%g4]ASI_DMMU, %g5		/* rd old ctxnum */
353	stxa	%g2, [%g4]ASI_DMMU		/* wr new ctxum */
354	stxa	%g0, [%g1]ASI_DTLB_DEMAP
355	stxa	%g0, [%g1]ASI_ITLB_DEMAP
356	stxa	%g5, [%g4]ASI_DMMU		/* restore old ctxnum */
357	retry
358	SET_SIZE(vtag_flushpage_tl1)
359
360#endif	/* lint */
361
362
363#if defined(lint)
364
365/* ARGSUSED */
366void
367vtag_flush_pgcnt_tl1(uint64_t vaddr, uint64_t ctx_pgcnt)
368{}
369
370#else	/* lint */
371
372	ENTRY_NP(vtag_flush_pgcnt_tl1)
373	/*
374	 * x-trap to flush pgcnt MMU_PAGESIZE pages from tlb
375	 *
376	 * %g1 = vaddr, zero-extended on 32-bit kernel
377	 * %g2 = <zero32|ctx16|pgcnt16>
378	 *
379	 * NOTE: this handler relies on the fact that no
380	 *	interrupts or traps can occur during the loop
381	 *	issuing the TLB_DEMAP operations. It is assumed
382	 *	that interrupts are disabled and this code is
383	 *	fetching from the kernel locked text address.
384	 *
385	 * assumes TSBE_TAG = 0
386	 */
387	set	0xffff, %g4
388	and	%g4, %g2, %g3			/* g3 = pgcnt */
389	srln	%g2, 16, %g2			/* g2 = ctxnum */
390	srln	%g1, MMU_PAGESHIFT, %g1
391	brnz,pt	%g2, 1f				/* KCONTEXT? */
392	  slln	%g1, MMU_PAGESHIFT, %g1		/* g1 = vaddr */
393
394	/* We need to demap in the kernel context */
395	or	DEMAP_NUCLEUS | DEMAP_PAGE_TYPE, %g1, %g1
396	set	MMU_PAGESIZE, %g2		/* g2 = pgsize */
3974:
398	stxa	%g0, [%g1]ASI_DTLB_DEMAP
399	stxa	%g0, [%g1]ASI_ITLB_DEMAP
400	deccc	%g3				/* decr pgcnt */
401	bnz,pt	%icc,4b
402	  add	%g1, %g2, %g1			/* next page */
403	retry
4041:
405	/* We need to demap in a user context */
406	sethi	%hi(ctx_pgsz_array), %g4
407	ldn     [%g4 + %lo(ctx_pgsz_array)], %g4
408	brz	%g4, 2f
409	  or	DEMAP_PRIMARY | DEMAP_PAGE_TYPE, %g1, %g1
410	ldub	[%g4 + %g2], %g4
411	sll	%g4, CTXREG_EXT_SHIFT, %g4
412	or	%g2, %g4, %g2
4132:
414	set	MMU_PCONTEXT, %g4
415	ldxa	[%g4]ASI_DMMU, %g5		/* rd old ctxnum */
416	stxa	%g2, [%g4]ASI_DMMU		/* wr new ctxum */
417
418	set	MMU_PAGESIZE, %g2		/* g2 = pgsize */
4193:
420	stxa	%g0, [%g1]ASI_DTLB_DEMAP
421	stxa	%g0, [%g1]ASI_ITLB_DEMAP
422	deccc	%g3				/* decr pgcnt */
423	bnz,pt	%icc,3b
424	  add	%g1, %g2, %g1			/* next page */
425
426	stxa	%g5, [%g4]ASI_DMMU		/* restore old ctxnum */
427	retry
428	SET_SIZE(vtag_flush_pgcnt_tl1)
429
430#endif	/* lint */
431
432
433#if defined(lint)
434
435/* ARGSUSED */
436void
437vtag_flushctx_tl1(uint64_t ctxnum, uint64_t dummy)
438{}
439
440#else	/* lint */
441
442	ENTRY_NP(vtag_flushctx_tl1)
443	/*
444	 * x-trap to flush context from tlb
445	 *
446	 * %g1 = ctxnum
447	 */
448	sethi	%hi(ctx_pgsz_array), %g4
449	ldn     [%g4 + %lo(ctx_pgsz_array)], %g4
450	brz	%g4, 2f
451	nop
452	ldub	[%g4 + %g1], %g4
453	sll	%g4, CTXREG_EXT_SHIFT, %g4
454	or	%g1, %g4, %g1
4552:
456	set	DEMAP_CTX_TYPE | DEMAP_PRIMARY, %g4
457	set	MMU_PCONTEXT, %g3
458	ldxa	[%g3]ASI_DMMU, %g5		/* rd old ctxnum */
459	stxa	%g1, [%g3]ASI_DMMU		/* wr new ctxum */
460	stxa	%g0, [%g4]ASI_DTLB_DEMAP
461	stxa	%g0, [%g4]ASI_ITLB_DEMAP
462	stxa	%g5, [%g3]ASI_DMMU		/* restore old ctxnum */
463	retry
464	SET_SIZE(vtag_flushctx_tl1)
465
466#endif	/* lint */
467
468
469#if defined(lint)
470
471/*ARGSUSED*/
472void
473vtag_flushall_tl1(uint64_t dummy1, uint64_t dummy2)
474{}
475
476#else	/* lint */
477
478	ENTRY_NP(vtag_flushall_tl1)
479	/*
480	 * x-trap to flush tlb
481	 */
482	set	DEMAP_ALL_TYPE, %g4
483	stxa	%g0, [%g4]ASI_DTLB_DEMAP
484	stxa	%g0, [%g4]ASI_ITLB_DEMAP
485	retry
486	SET_SIZE(vtag_flushall_tl1)
487
488#endif	/* lint */
489
490
491#if defined(lint)
492
493/* ARGSUSED */
494void
495vac_flushpage(pfn_t pfnum, int vcolor)
496{}
497
498#else	/* lint */
499
500/*
501 * vac_flushpage(pfnum, color)
502 *	Flush 1 8k page of the D-$ with physical page = pfnum
503 *	Algorithm:
504 *		The cheetah dcache is a 64k psuedo 4 way accaociative cache.
505 *		It is virtual indexed, physically tagged cache.
506 */
507	.seg	".data"
508	.align	8
509	.global	dflush_type
510dflush_type:
511	.word	FLUSHPAGE_TYPE
512
513	ENTRY(vac_flushpage)
514	/*
515	 * flush page from the d$
516	 *
517	 * %o0 = pfnum, %o1 = color
518	 */
519	DCACHE_FLUSHPAGE(%o0, %o1, %o2, %o3, %o4)
520	retl
521	  nop
522	SET_SIZE(vac_flushpage)
523
524#endif	/* lint */
525
526
527#if defined(lint)
528
529/* ARGSUSED */
530void
531vac_flushpage_tl1(uint64_t pfnum, uint64_t vcolor)
532{}
533
534#else	/* lint */
535
536	ENTRY_NP(vac_flushpage_tl1)
537	/*
538	 * x-trap to flush page from the d$
539	 *
540	 * %g1 = pfnum, %g2 = color
541	 */
542	DCACHE_FLUSHPAGE(%g1, %g2, %g3, %g4, %g5)
543	retry
544	SET_SIZE(vac_flushpage_tl1)
545
546#endif	/* lint */
547
548
549#if defined(lint)
550
551/* ARGSUSED */
552void
553vac_flushcolor(int vcolor, pfn_t pfnum)
554{}
555
556#else	/* lint */
557	/*
558	 * In UltraSPARC III flushcolor is same as as flushpage.
559	 * This is because we have an ASI to flush dcache using physical
560	 * address.
561	 * Flushing dcache using physical address is faster because we
562	 * don't have to deal with associativity of dcache.
563	 * The arguments to vac_flushpage() and vac_flushcolor() are same but
564	 * the order is reversed. this is because we maintain compatibility
565	 * with spitfire, in which vac_flushcolor has only one argument, namely
566	 * vcolor.
567	 */
568
569	ENTRY(vac_flushcolor)
570	/*
571	 * %o0 = vcolor, %o1 = pfnum
572	 */
573	DCACHE_FLUSHPAGE(%o1, %o0, %o2, %o3, %o4)
574	retl
575	  nop
576	SET_SIZE(vac_flushcolor)
577
578#endif	/* lint */
579
580
581#if defined(lint)
582
583/* ARGSUSED */
584void
585vac_flushcolor_tl1(uint64_t vcolor, uint64_t pfnum)
586{}
587
588#else	/* lint */
589
590	ENTRY(vac_flushcolor_tl1)
591	/*
592	 * %g1 = vcolor
593	 * %g2 = pfnum
594	 */
595	DCACHE_FLUSHPAGE(%g2, %g1, %g3, %g4, %g5)
596	retry
597	SET_SIZE(vac_flushcolor_tl1)
598
599#endif	/* lint */
600
601#if defined(lint)
602
603int
604idsr_busy(void)
605{
606	return (0);
607}
608
609#else	/* lint */
610
611/*
612 * Determine whether or not the IDSR is busy.
613 * Entry: no arguments
614 * Returns: 1 if busy, 0 otherwise
615 */
616	ENTRY(idsr_busy)
617	ldxa	[%g0]ASI_INTR_DISPATCH_STATUS, %g1
618	clr	%o0
619	btst	IDSR_BUSY, %g1
620	bz,a,pt	%xcc, 1f
621	mov	1, %o0
6221:
623	retl
624	nop
625	SET_SIZE(idsr_busy)
626
627#endif	/* lint */
628
629#if defined(lint)
630
631/* ARGSUSED */
632void
633init_mondo(xcfunc_t *func, uint64_t arg1, uint64_t arg2)
634{}
635
636/* ARGSUSED */
637void
638init_mondo_nocheck(xcfunc_t *func, uint64_t arg1, uint64_t arg2)
639{}
640
641#else	/* lint */
642
643	.global _dispatch_status_busy
644_dispatch_status_busy:
645	.asciz	"ASI_INTR_DISPATCH_STATUS error: busy"
646	.align	4
647
648/*
649 * Setup interrupt dispatch data registers
650 * Entry:
651 *	%o0 - function or inumber to call
652 *	%o1, %o2 - arguments (2 uint64_t's)
653 */
654	.seg "text"
655
656	ENTRY(init_mondo)
657#ifdef DEBUG
658	!
659	! IDSR should not be busy at the moment
660	!
661	ldxa	[%g0]ASI_INTR_DISPATCH_STATUS, %g1
662	btst	IDSR_BUSY, %g1
663	bz,pt	%xcc, 1f
664	nop
665	sethi	%hi(_dispatch_status_busy), %o0
666	call	panic
667	or	%o0, %lo(_dispatch_status_busy), %o0
668#endif /* DEBUG */
669
670	ALTENTRY(init_mondo_nocheck)
671	!
672	! interrupt vector dispatch data reg 0
673	!
6741:
675	mov	IDDR_0, %g1
676	mov	IDDR_1, %g2
677	mov	IDDR_2, %g3
678	stxa	%o0, [%g1]ASI_INTR_DISPATCH
679
680	!
681	! interrupt vector dispatch data reg 1
682	!
683	stxa	%o1, [%g2]ASI_INTR_DISPATCH
684
685	!
686	! interrupt vector dispatch data reg 2
687	!
688	stxa	%o2, [%g3]ASI_INTR_DISPATCH
689
690	membar	#Sync
691	retl
692	nop
693	SET_SIZE(init_mondo_nocheck)
694	SET_SIZE(init_mondo)
695
696#endif	/* lint */
697
698
699#if !(defined(JALAPENO) || defined(SERRANO))
700
701#if defined(lint)
702
703/* ARGSUSED */
704void
705shipit(int upaid, int bn)
706{ return; }
707
708#else	/* lint */
709
710/*
711 * Ship mondo to aid using busy/nack pair bn
712 */
713	ENTRY_NP(shipit)
714	sll	%o0, IDCR_PID_SHIFT, %g1	! IDCR<18:14> = agent id
715	sll	%o1, IDCR_BN_SHIFT, %g2		! IDCR<28:24> = b/n pair
716	or	%g1, IDCR_OFFSET, %g1		! IDCR<13:0> = 0x70
717	or	%g1, %g2, %g1
718	stxa	%g0, [%g1]ASI_INTR_DISPATCH	! interrupt vector dispatch
719	membar	#Sync
720	retl
721	nop
722	SET_SIZE(shipit)
723
724#endif	/* lint */
725
726#endif	/* !(JALAPENO || SERRANO) */
727
728
729#if defined(lint)
730
731/* ARGSUSED */
732void
733flush_instr_mem(caddr_t vaddr, size_t len)
734{}
735
736#else	/* lint */
737
738/*
739 * flush_instr_mem:
740 *	Flush 1 page of the I-$ starting at vaddr
741 * 	%o0 vaddr
742 *	%o1 bytes to be flushed
743 * UltraSPARC-III maintains consistency of the on-chip Instruction Cache with
744 * the stores from all processors so that a FLUSH instruction is only needed
745 * to ensure pipeline is consistent. This means a single flush is sufficient at
746 * the end of a sequence of stores that updates the instruction stream to
747 * ensure correct operation.
748 */
749
750	ENTRY(flush_instr_mem)
751	flush	%o0			! address irrelevent
752	retl
753	nop
754	SET_SIZE(flush_instr_mem)
755
756#endif	/* lint */
757
758
759#if defined(CPU_IMP_ECACHE_ASSOC)
760
761#if defined(lint)
762
763/* ARGSUSED */
764uint64_t
765get_ecache_ctrl(void)
766{ return (0); }
767
768#else	/* lint */
769
770	ENTRY(get_ecache_ctrl)
771	GET_CPU_IMPL(%o0)
772	cmp	%o0, JAGUAR_IMPL
773	!
774	! Putting an ASI access in the delay slot may
775	! cause it to be accessed, even when annulled.
776	!
777	bne	1f
778	  nop
779	ldxa	[%g0]ASI_EC_CFG_TIMING, %o0	! read Jaguar shared E$ ctrl reg
780	b	2f
781	  nop
7821:
783	ldxa	[%g0]ASI_EC_CTRL, %o0		! read Ch/Ch+ E$ control reg
7842:
785	retl
786	  nop
787	SET_SIZE(get_ecache_ctrl)
788
789#endif	/* lint */
790
791#endif	/* CPU_IMP_ECACHE_ASSOC */
792
793
794#if !(defined(JALAPENO) || defined(SERRANO))
795
796/*
797 * flush_ecache:
798 *	%o0 - 64 bit physical address
799 *	%o1 - ecache size
800 *	%o2 - ecache linesize
801 */
802#if defined(lint)
803
804/*ARGSUSED*/
805void
806flush_ecache(uint64_t physaddr, size_t ecache_size, size_t ecache_linesize)
807{}
808
809#else /* !lint */
810
811	ENTRY(flush_ecache)
812
813	/*
814	 * For certain CPU implementations, we have to flush the L2 cache
815	 * before flushing the ecache.
816	 */
817	PN_L2_FLUSHALL(%g3, %g4, %g5)
818
819	/*
820	 * Flush the entire Ecache using displacement flush.
821	 */
822	ECACHE_FLUSHALL(%o1, %o2, %o0, %o4)
823
824	retl
825	nop
826	SET_SIZE(flush_ecache)
827
828#endif /* lint */
829
830#endif	/* !(JALAPENO || SERRANO) */
831
832
833#if defined(lint)
834
835void
836flush_dcache(void)
837{}
838
839#else	/* lint */
840
841	ENTRY(flush_dcache)
842	ASM_LD(%o0, dcache_size)
843	ASM_LD(%o1, dcache_linesize)
844	CH_DCACHE_FLUSHALL(%o0, %o1, %o2)
845	retl
846	nop
847	SET_SIZE(flush_dcache)
848
849#endif	/* lint */
850
851
852#if defined(lint)
853
854void
855flush_icache(void)
856{}
857
858#else	/* lint */
859
860	ENTRY(flush_icache)
861	GET_CPU_PRIVATE_PTR(%g0, %o0, %o2, flush_icache_1);
862	ld	[%o0 + CHPR_ICACHE_LINESIZE], %o1
863	ba,pt	%icc, 2f
864	  ld	[%o0 + CHPR_ICACHE_SIZE], %o0
865flush_icache_1:
866	ASM_LD(%o0, icache_size)
867	ASM_LD(%o1, icache_linesize)
8682:
869	CH_ICACHE_FLUSHALL(%o0, %o1, %o2, %o4)
870	retl
871	nop
872	SET_SIZE(flush_icache)
873
874#endif	/* lint */
875
876#if defined(lint)
877
878/*ARGSUSED*/
879void
880kdi_flush_idcache(int dcache_size, int dcache_lsize, int icache_size,
881    int icache_lsize)
882{
883}
884
885#else	/* lint */
886
887	ENTRY(kdi_flush_idcache)
888	CH_DCACHE_FLUSHALL(%o0, %o1, %g1)
889	CH_ICACHE_FLUSHALL(%o2, %o3, %g1, %g2)
890	membar	#Sync
891	retl
892	nop
893	SET_SIZE(kdi_flush_idcache)
894
895#endif	/* lint */
896
897#if defined(lint)
898
899void
900flush_pcache(void)
901{}
902
903#else	/* lint */
904
905	ENTRY(flush_pcache)
906	PCACHE_FLUSHALL(%o0, %o1, %o2)
907	retl
908	nop
909	SET_SIZE(flush_pcache)
910
911#endif	/* lint */
912
913
914#if defined(CPU_IMP_L1_CACHE_PARITY)
915
916#if defined(lint)
917
918/* ARGSUSED */
919void
920get_dcache_dtag(uint32_t dcache_idx, uint64_t *data)
921{}
922
923#else	/* lint */
924
925/*
926 * Get dcache data and tag.  The Dcache data is a pointer to a ch_dc_data_t
927 * structure (see cheetahregs.h):
928 * The Dcache *should* be turned off when this code is executed.
929 */
930	.align	128
931	ENTRY(get_dcache_dtag)
932	rdpr	%pstate, %o5
933	andn    %o5, PSTATE_IE | PSTATE_AM, %o3
934	wrpr	%g0, %o3, %pstate
935	b	1f
936	  stx	%o0, [%o1 + CH_DC_IDX]
937
938	.align	128
9391:
940	ldxa	[%o0]ASI_DC_TAG, %o2
941	stx	%o2, [%o1 + CH_DC_TAG]
942	membar	#Sync
943	ldxa	[%o0]ASI_DC_UTAG, %o2
944	membar	#Sync
945	stx	%o2, [%o1 + CH_DC_UTAG]
946	ldxa	[%o0]ASI_DC_SNP_TAG, %o2
947	stx	%o2, [%o1 + CH_DC_SNTAG]
948	add	%o1, CH_DC_DATA, %o1
949	clr	%o3
9502:
951	membar	#Sync				! required before ASI_DC_DATA
952	ldxa	[%o0 + %o3]ASI_DC_DATA, %o2
953	membar	#Sync				! required after ASI_DC_DATA
954	stx	%o2, [%o1 + %o3]
955	cmp	%o3, CH_DC_DATA_REG_SIZE - 8
956	blt	2b
957	  add	%o3, 8, %o3
958
959	/*
960	 * Unlike other CPUs in the family, D$ data parity bits for Panther
961	 * do not reside in the microtag. Instead, we have to read them
962	 * using the DC_data_parity bit of ASI_DCACHE_DATA. Also, instead
963	 * of just having 8 parity bits to protect all 32 bytes of data
964	 * per line, we now have 32 bits of parity.
965	 */
966	GET_CPU_IMPL(%o3)
967	cmp	%o3, PANTHER_IMPL
968	bne	4f
969	  clr	%o3
970
971	/*
972	 * move our pointer to the next field where we store parity bits
973	 * and add the offset of the last parity byte since we will be
974	 * storing all 4 parity bytes within one 64 bit field like this:
975	 *
976	 * +------+------------+------------+------------+------------+
977	 * |  -   | DC_parity  | DC_parity  | DC_parity  | DC_parity  |
978	 * |  -   | for word 3 | for word 2 | for word 1 | for word 0 |
979	 * +------+------------+------------+------------+------------+
980	 *  63:32     31:24        23:16         15:8          7:0
981	 */
982	add	%o1, CH_DC_PN_DATA_PARITY - CH_DC_DATA + 7, %o1
983
984	/* add the DC_data_parity bit into our working index */
985	mov	1, %o2
986	sll	%o2, PN_DC_DATA_PARITY_BIT_SHIFT, %o2
987	or	%o0, %o2, %o0
9883:
989	membar	#Sync				! required before ASI_DC_DATA
990	ldxa	[%o0 + %o3]ASI_DC_DATA, %o2
991	membar	#Sync				! required after ASI_DC_DATA
992	stb	%o2, [%o1]
993	dec	%o1
994	cmp	%o3, CH_DC_DATA_REG_SIZE - 8
995	blt	3b
996	  add	%o3, 8, %o3
9974:
998	retl
999	  wrpr	%g0, %o5, %pstate
1000	SET_SIZE(get_dcache_dtag)
1001
1002#endif	/* lint */
1003
1004
1005#if defined(lint)
1006
1007/* ARGSUSED */
1008void
1009get_icache_dtag(uint32_t ecache_idx, uint64_t *data)
1010{}
1011
1012#else	/* lint */
1013
1014/*
1015 * Get icache data and tag.  The data argument is a pointer to a ch_ic_data_t
1016 * structure (see cheetahregs.h):
1017 * The Icache *Must* be turned off when this function is called.
1018 * This is because diagnostic accesses to the Icache interfere with cache
1019 * consistency.
1020 */
1021	.align	128
1022	ENTRY(get_icache_dtag)
1023	rdpr	%pstate, %o5
1024	andn    %o5, PSTATE_IE | PSTATE_AM, %o3
1025	wrpr	%g0, %o3, %pstate
1026
1027	stx	%o0, [%o1 + CH_IC_IDX]
1028	ldxa	[%o0]ASI_IC_TAG, %o2
1029	stx	%o2, [%o1 + CH_IC_PATAG]
1030	add	%o0, CH_ICTAG_UTAG, %o0
1031	ldxa	[%o0]ASI_IC_TAG, %o2
1032	add	%o0, (CH_ICTAG_UPPER - CH_ICTAG_UTAG), %o0
1033	stx	%o2, [%o1 + CH_IC_UTAG]
1034	ldxa	[%o0]ASI_IC_TAG, %o2
1035	add	%o0, (CH_ICTAG_LOWER - CH_ICTAG_UPPER), %o0
1036	stx	%o2, [%o1 + CH_IC_UPPER]
1037	ldxa	[%o0]ASI_IC_TAG, %o2
1038	andn	%o0, CH_ICTAG_TMASK, %o0
1039	stx	%o2, [%o1 + CH_IC_LOWER]
1040	ldxa	[%o0]ASI_IC_SNP_TAG, %o2
1041	stx	%o2, [%o1 + CH_IC_SNTAG]
1042	add	%o1, CH_IC_DATA, %o1
1043	clr	%o3
10442:
1045	ldxa	[%o0 + %o3]ASI_IC_DATA, %o2
1046	stx	%o2, [%o1 + %o3]
1047	cmp	%o3, PN_IC_DATA_REG_SIZE - 8
1048	blt	2b
1049	  add	%o3, 8, %o3
1050
1051	retl
1052	  wrpr	%g0, %o5, %pstate
1053	SET_SIZE(get_icache_dtag)
1054
1055#endif	/* lint */
1056
1057#if defined(lint)
1058
1059/* ARGSUSED */
1060void
1061get_pcache_dtag(uint32_t pcache_idx, uint64_t *data)
1062{}
1063
1064#else	/* lint */
1065
1066/*
1067 * Get pcache data and tags.
1068 * inputs:
1069 *   pcache_idx	- fully constructed VA for for accessing P$ diagnostic
1070 *		  registers. Contains PC_way and PC_addr shifted into
1071 *		  the correct bit positions. See the PRM for more details.
1072 *   data	- pointer to a ch_pc_data_t
1073 * structure (see cheetahregs.h):
1074 */
1075	.align	128
1076	ENTRY(get_pcache_dtag)
1077	rdpr	%pstate, %o5
1078	andn    %o5, PSTATE_IE | PSTATE_AM, %o3
1079	wrpr	%g0, %o3, %pstate
1080
1081	stx	%o0, [%o1 + CH_PC_IDX]
1082	ldxa	[%o0]ASI_PC_STATUS_DATA, %o2
1083	stx	%o2, [%o1 + CH_PC_STATUS]
1084	ldxa	[%o0]ASI_PC_TAG, %o2
1085	stx	%o2, [%o1 + CH_PC_TAG]
1086	ldxa	[%o0]ASI_PC_SNP_TAG, %o2
1087	stx	%o2, [%o1 + CH_PC_SNTAG]
1088	add	%o1, CH_PC_DATA, %o1
1089	clr	%o3
10902:
1091	ldxa	[%o0 + %o3]ASI_PC_DATA, %o2
1092	stx	%o2, [%o1 + %o3]
1093	cmp	%o3, CH_PC_DATA_REG_SIZE - 8
1094	blt	2b
1095	  add	%o3, 8, %o3
1096
1097	retl
1098	  wrpr	%g0, %o5, %pstate
1099	SET_SIZE(get_pcache_dtag)
1100
1101#endif	/* lint */
1102
1103#endif	/* CPU_IMP_L1_CACHE_PARITY */
1104
1105#if defined(lint)
1106
1107/* ARGSUSED */
1108void
1109set_dcu(uint64_t dcu)
1110{}
1111
1112#else	/* lint */
1113
1114/*
1115 * re-enable the i$, d$, w$, and p$ according to bootup cache state.
1116 * Turn on WE, HPE, SPE, PE, IC, and DC bits defined as DCU_CACHE.
1117 *   %o0 - 64 bit constant
1118 */
1119	ENTRY(set_dcu)
1120	stxa	%o0, [%g0]ASI_DCU	! Store to DCU
1121	flush	%g0	/* flush required after changing the IC bit */
1122	retl
1123	nop
1124	SET_SIZE(set_dcu)
1125
1126#endif	/* lint */
1127
1128
1129#if defined(lint)
1130
1131uint64_t
1132get_dcu(void)
1133{
1134	return ((uint64_t)0);
1135}
1136
1137#else	/* lint */
1138
1139/*
1140 * Return DCU register.
1141 */
1142	ENTRY(get_dcu)
1143	ldxa	[%g0]ASI_DCU, %o0		/* DCU control register */
1144	retl
1145	nop
1146	SET_SIZE(get_dcu)
1147
1148#endif	/* lint */
1149
1150/*
1151 * Cheetah/Cheetah+ level 15 interrupt handler trap table entry.
1152 *
1153 * This handler is used to check for softints generated by error trap
1154 * handlers to report errors.  On Cheetah, this mechanism is used by the
1155 * Fast ECC at TL>0 error trap handler and, on Cheetah+, by both the Fast
1156 * ECC at TL>0 error and the I$/D$ parity error at TL>0 trap handlers.
1157 * NB: Must be 8 instructions or less to fit in trap table and code must
1158 *     be relocatable.
1159 */
1160#if defined(lint)
1161
1162void
1163ch_pil15_interrupt_instr(void)
1164{}
1165
1166#else	/* lint */
1167
1168	ENTRY_NP(ch_pil15_interrupt_instr)
1169	ASM_JMP(%g1, ch_pil15_interrupt)
1170	SET_SIZE(ch_pil15_interrupt_instr)
1171
1172#endif
1173
1174
1175#if defined(lint)
1176
1177void
1178ch_pil15_interrupt(void)
1179{}
1180
1181#else	/* lint */
1182
1183	ENTRY_NP(ch_pil15_interrupt)
1184
1185	/*
1186	 * Since pil_interrupt is hacked to assume that every level 15
1187	 * interrupt is generated by the CPU to indicate a performance
1188	 * counter overflow this gets ugly.  Before calling pil_interrupt
1189	 * the Error at TL>0 pending status is inspected.  If it is
1190	 * non-zero, then an error has occurred and it is handled.
1191	 * Otherwise control is transfered to pil_interrupt.  Note that if
1192	 * an error is detected pil_interrupt will not be called and
1193	 * overflow interrupts may be lost causing erroneous performance
1194	 * measurements.  However, error-recovery will have a detrimental
1195	 * effect on performance anyway.
1196	 */
1197	CPU_INDEX(%g1, %g4)
1198	set	ch_err_tl1_pending, %g4
1199	ldub	[%g1 + %g4], %g2
1200	brz	%g2, 1f
1201	  nop
1202
1203	/*
1204	 * We have a pending TL>0 error, clear the TL>0 pending status.
1205	 */
1206	stb	%g0, [%g1 + %g4]
1207
1208	/*
1209	 * Clear the softint.
1210	 */
1211	mov	1, %g5
1212	sll	%g5, PIL_15, %g5
1213	wr	%g5, CLEAR_SOFTINT
1214
1215	/*
1216	 * For Cheetah*, call cpu_tl1_error via systrap at PIL 15
1217	 * to process the Fast ECC/Cache Parity at TL>0 error.  Clear
1218	 * panic flag (%g2).
1219	 */
1220	set	cpu_tl1_error, %g1
1221	clr	%g2
1222	ba	sys_trap
1223	  mov	PIL_15, %g4
1224
12251:
1226	/*
1227	 * The logout is invalid.
1228	 *
1229	 * Call the default interrupt handler.
1230	 */
1231	sethi	%hi(pil_interrupt), %g1
1232	jmp	%g1 + %lo(pil_interrupt)
1233	  mov	PIL_15, %g4
1234
1235	SET_SIZE(ch_pil15_interrupt)
1236#endif
1237
1238
1239/*
1240 * Error Handling
1241 *
1242 * Cheetah provides error checking for all memory access paths between
1243 * the CPU, External Cache, Cheetah Data Switch and system bus. Error
1244 * information is logged in the AFSR, (also AFSR_EXT for Panther) and
1245 * AFAR and one of the following traps is generated (provided that it
1246 * is enabled in External Cache Error Enable Register) to handle that
1247 * error:
1248 * 1. trap 0x70: Precise trap
1249 *    tt0_fecc for errors at trap level(TL)>=0
1250 * 2. trap 0x0A and 0x32: Deferred trap
1251 *    async_err for errors at TL>=0
1252 * 3. trap 0x63: Disrupting trap
1253 *    ce_err for errors at TL=0
1254 *    (Note that trap 0x63 cannot happen at trap level > 0)
1255 *
1256 * Trap level one handlers panic the system except for the fast ecc
1257 * error handler which tries to recover from certain errors.
1258 */
1259
1260/*
1261 * FAST ECC TRAP STRATEGY:
1262 *
1263 * Software must handle single and multi bit errors which occur due to data
1264 * or instruction cache reads from the external cache. A single or multi bit
1265 * error occuring in one of these situations results in a precise trap.
1266 *
1267 * The basic flow of this trap handler is as follows:
1268 *
1269 * 1) Record the state and then turn off the Dcache and Icache.  The Dcache
1270 *    is disabled because bad data could have been installed.  The Icache is
1271 *    turned off because we want to capture the Icache line related to the
1272 *    AFAR.
1273 * 2) Disable trapping on CEEN/NCCEN errors during TL=0 processing.
1274 * 3) Park sibling core if caches are shared (to avoid race condition while
1275 *    accessing shared resources such as L3 data staging register during
1276 *    CPU logout.
1277 * 4) Read the AFAR and AFSR.
1278 * 5) If CPU logout structure is not being used, then:
1279 *    6) Clear all errors from the AFSR.
1280 *    7) Capture Ecache, Dcache and Icache lines in "CPU log out" structure.
1281 *    8) Flush Ecache then Flush Dcache and Icache and restore to previous
1282 *       state.
1283 *    9) Unpark sibling core if we parked it earlier.
1284 *    10) call cpu_fast_ecc_error via systrap at PIL 14 unless we're already
1285 *        running at PIL 15.
1286 * 6) Otherwise, if CPU logout structure is being used:
1287 *    7) Incriment the "logout busy count".
1288 *    8) Flush Ecache then Flush Dcache and Icache and restore to previous
1289 *       state.
1290 *    9) Unpark sibling core if we parked it earlier.
1291 *    10) Issue a retry since the other CPU error logging code will end up
1292 *       finding this error bit and logging information about it later.
1293 * 7) Alternatively (to 5 and 6 above), if the cpu_private struct is not
1294 *    yet initialized such that we can't even check the logout struct, then
1295 *    we place the clo_flags data into %g2 (sys_trap->have_win arg #1) and
1296 *    call cpu_fast_ecc_error via systrap. The clo_flags parameter is used
1297 *    to determine information such as TL, TT, CEEN settings, etc in the
1298 *    high level trap handler since we don't have access to detailed logout
1299 *    information in cases where the cpu_private struct is not yet
1300 *    initialized.
1301 *
1302 * We flush the E$ and D$ here on TL=1 code to prevent getting nested
1303 * Fast ECC traps in the TL=0 code.  If we get a Fast ECC event here in
1304 * the TL=1 code, we will go to the Fast ECC at TL>0 handler which,
1305 * since it is uses different code/data from this handler, has a better
1306 * chance of fixing things up than simply recursing through this code
1307 * again (this would probably cause an eventual kernel stack overflow).
1308 * If the Fast ECC at TL>0 handler encounters a Fast ECC error before it
1309 * can flush the E$ (or the error is a stuck-at bit), we will recurse in
1310 * the Fast ECC at TL>0 handler and eventually Red Mode.
1311 *
1312 * Note that for Cheetah (and only Cheetah), we use alias addresses for
1313 * flushing rather than ASI accesses (which don't exist on Cheetah).
1314 * Should we encounter a Fast ECC error within this handler on Cheetah,
1315 * there's a good chance it's within the ecache_flushaddr buffer (since
1316 * it's the largest piece of memory we touch in the handler and it is
1317 * usually kernel text/data).  For that reason the Fast ECC at TL>0
1318 * handler for Cheetah uses an alternate buffer: ecache_tl1_flushaddr.
1319 */
1320
1321/*
1322 * Cheetah ecc-protected E$ trap (Trap 70) at TL=0
1323 * tt0_fecc is replaced by fecc_err_instr in cpu_init_trap of the various
1324 * architecture-specific files.
1325 * NB: Must be 8 instructions or less to fit in trap table and code must
1326 *     be relocatable.
1327 */
1328
1329#if defined(lint)
1330
1331void
1332fecc_err_instr(void)
1333{}
1334
1335#else	/* lint */
1336
1337	ENTRY_NP(fecc_err_instr)
1338	membar	#Sync			! Cheetah requires membar #Sync
1339
1340	/*
1341	 * Save current DCU state.  Turn off the Dcache and Icache.
1342	 */
1343	ldxa	[%g0]ASI_DCU, %g1	! save DCU in %g1
1344	andn	%g1, DCU_DC + DCU_IC, %g4
1345	stxa	%g4, [%g0]ASI_DCU
1346	flush	%g0	/* flush required after changing the IC bit */
1347
1348	ASM_JMP(%g4, fast_ecc_err)
1349	SET_SIZE(fecc_err_instr)
1350
1351#endif	/* lint */
1352
1353
1354#if !(defined(JALAPENO) || defined(SERRANO))
1355
1356#if defined(lint)
1357
1358void
1359fast_ecc_err(void)
1360{}
1361
1362#else	/* lint */
1363
1364	.section ".text"
1365	.align	64
1366	ENTRY_NP(fast_ecc_err)
1367
1368	/*
1369	 * Turn off CEEN and NCEEN.
1370	 */
1371	ldxa	[%g0]ASI_ESTATE_ERR, %g3
1372	andn	%g3, EN_REG_NCEEN + EN_REG_CEEN, %g4
1373	stxa	%g4, [%g0]ASI_ESTATE_ERR
1374	membar	#Sync			! membar sync required
1375
1376	/*
1377	 * Check to see whether we need to park our sibling core
1378	 * before recording diagnostic information from caches
1379	 * which may be shared by both cores.
1380	 * We use %g1 to store information about whether or not
1381	 * we had to park the core (%g1 holds our DCUCR value and
1382	 * we only use bits from that register which are "reserved"
1383	 * to keep track of core parking) so that we know whether
1384	 * or not to unpark later. %g5 and %g4 are scratch registers.
1385	 */
1386	PARK_SIBLING_CORE(%g1, %g5, %g4)
1387
1388	/*
1389	 * Do the CPU log out capture.
1390	 *   %g3 = "failed?" return value.
1391	 *   %g2 = Input = AFAR. Output the clo_flags info which is passed
1392	 *         into this macro via %g4. Output only valid if cpu_private
1393	 *         struct has not been initialized.
1394	 *   CHPR_FECCTL0_LOGOUT = cpu logout structure offset input
1395	 *   %g4 = Trap information stored in the cpu logout flags field
1396	 *   %g5 = scr1
1397	 *   %g6 = scr2
1398	 *   %g3 = scr3
1399	 *   %g4 = scr4
1400	 */
1401	and	%g3, EN_REG_CEEN, %g4		! store the CEEN value, TL=0
1402	set	CHPR_FECCTL0_LOGOUT, %g6
1403	DO_CPU_LOGOUT(%g3, %g2, %g6, %g4, %g5, %g6, %g3, %g4)
1404
1405	/*
1406	 * Flush the Ecache (and L2 cache for Panther) to get the error out
1407	 * of the Ecache.  If the UCC or UCU is on a dirty line, then the
1408	 * following flush will turn that into a WDC or WDU, respectively.
1409	 */
1410	PN_L2_FLUSHALL(%g4, %g5, %g6)
1411
1412	CPU_INDEX(%g4, %g5)
1413	mulx	%g4, CPU_NODE_SIZE, %g4
1414	set	cpunodes, %g5
1415	add	%g4, %g5, %g4
1416	ld	[%g4 + ECACHE_LINESIZE], %g5
1417	ld	[%g4 + ECACHE_SIZE], %g4
1418
1419	ASM_LDX(%g6, ecache_flushaddr)
1420	ECACHE_FLUSHALL(%g4, %g5, %g6, %g7)
1421
1422	/*
1423	 * Flush the Dcache.  Since bad data could have been installed in
1424	 * the Dcache we must flush it before re-enabling it.
1425	 */
1426	ASM_LD(%g5, dcache_size)
1427	ASM_LD(%g6, dcache_linesize)
1428	CH_DCACHE_FLUSHALL(%g5, %g6, %g7)
1429
1430	/*
1431	 * Flush the Icache.  Since we turned off the Icache to capture the
1432	 * Icache line it is now stale or corrupted and we must flush it
1433	 * before re-enabling it.
1434	 */
1435	GET_CPU_PRIVATE_PTR(%g0, %g5, %g7, fast_ecc_err_5);
1436	ld	[%g5 + CHPR_ICACHE_LINESIZE], %g6
1437	ba,pt	%icc, 6f
1438	  ld	[%g5 + CHPR_ICACHE_SIZE], %g5
1439fast_ecc_err_5:
1440	ASM_LD(%g5, icache_size)
1441	ASM_LD(%g6, icache_linesize)
14426:
1443	CH_ICACHE_FLUSHALL(%g5, %g6, %g7, %g4)
1444
1445	/*
1446	 * check to see whether we parked our sibling core at the start
1447	 * of this handler. If so, we need to unpark it here.
1448	 * We use DCUCR reserved bits (stored in %g1) to keep track of
1449	 * whether or not we need to unpark. %g5 and %g4 are scratch registers.
1450	 */
1451	UNPARK_SIBLING_CORE(%g1, %g5, %g4)
1452
1453	/*
1454	 * Restore the Dcache and Icache to the previous state.
1455	 */
1456	stxa	%g1, [%g0]ASI_DCU
1457	flush	%g0	/* flush required after changing the IC bit */
1458
1459	/*
1460	 * Make sure our CPU logout operation was successful.
1461	 */
1462	cmp	%g3, %g0
1463	be	8f
1464	  nop
1465
1466	/*
1467	 * If the logout structure had been busy, how many times have
1468	 * we tried to use it and failed (nesting count)? If we have
1469	 * already recursed a substantial number of times, then we can
1470	 * assume things are not going to get better by themselves and
1471	 * so it would be best to panic.
1472	 */
1473	cmp	%g3, CLO_NESTING_MAX
1474	blt	7f
1475	  nop
1476
1477        call ptl1_panic
1478          mov   PTL1_BAD_ECC, %g1
1479
14807:
1481	/*
1482	 * Otherwise, if the logout structure was busy but we have not
1483	 * nested more times than our maximum value, then we simply
1484	 * issue a retry. Our TL=0 trap handler code will check and
1485	 * clear the AFSR after it is done logging what is currently
1486	 * in the logout struct and handle this event at that time.
1487	 */
1488	retry
14898:
1490	/*
1491	 * Call cpu_fast_ecc_error via systrap at PIL 14 unless we're
1492	 * already at PIL 15.
1493	 */
1494	set	cpu_fast_ecc_error, %g1
1495	rdpr	%pil, %g4
1496	cmp	%g4, PIL_14
1497	ba	sys_trap
1498	  movl	%icc, PIL_14, %g4
1499
1500	SET_SIZE(fast_ecc_err)
1501
1502#endif	/* lint */
1503
1504#endif	/* !(JALAPENO || SERRANO) */
1505
1506
1507/*
1508 * Cheetah/Cheetah+ Fast ECC at TL>0 trap strategy:
1509 *
1510 * The basic flow of this trap handler is as follows:
1511 *
1512 * 1) In the "trap 70" trap table code (fecc_err_tl1_instr), generate a
1513 *    software trap 0 ("ta 0") to buy an extra set of %tpc, etc. which we
1514 *    will use to save %g1 and %g2.
1515 * 2) At the software trap 0 at TL>0 trap table code (fecc_err_tl1_cont_instr),
1516 *    we save %g1+%g2 using %tpc, %tnpc + %tstate and jump to the fast ecc
1517 *    handler (using the just saved %g1).
1518 * 3) Turn off the Dcache if it was on and save the state of the Dcache
1519 *    (whether on or off) in Bit2 (CH_ERR_TSTATE_DC_ON) of %tstate.
1520 *    NB: we don't turn off the Icache because bad data is not installed nor
1521 *        will we be doing any diagnostic accesses.
1522 * 4) compute physical address of the per-cpu/per-tl save area using %g1+%g2
1523 * 5) Save %g1-%g7 into the per-cpu/per-tl save area (%g1 + %g2 from the
1524 *    %tpc, %tnpc, %tstate values previously saved).
1525 * 6) set %tl to %tl - 1.
1526 * 7) Save the appropriate flags and TPC in the ch_err_tl1_data structure.
1527 * 8) Save the value of CH_ERR_TSTATE_DC_ON in the ch_err_tl1_tmp field.
1528 * 9) For Cheetah and Jalapeno, read the AFAR and AFSR and clear.  For
1529 *    Cheetah+ (and later), read the shadow AFAR and AFSR but don't clear.
1530 *    Save the values in ch_err_tl1_data.  For Panther, read the shadow
1531 *    AFSR_EXT and save the value in ch_err_tl1_data.
1532 * 10) Disable CEEN/NCEEN to prevent any disrupting/deferred errors from
1533 *    being queued.  We'll report them via the AFSR/AFAR capture in step 13.
1534 * 11) Flush the Ecache.
1535 *    NB: the Ecache is flushed assuming the largest possible size with
1536 *        the smallest possible line size since access to the cpu_nodes may
1537 *        cause an unrecoverable DTLB miss.
1538 * 12) Reenable CEEN/NCEEN with the value saved from step 10.
1539 * 13) For Cheetah and Jalapeno, read the AFAR and AFSR and clear again.
1540 *    For Cheetah+ (and later), read the primary AFAR and AFSR and now clear.
1541 *    Save the read AFSR/AFAR values in ch_err_tl1_data.  For Panther,
1542 *    read and clear the primary AFSR_EXT and save it in ch_err_tl1_data.
1543 * 14) Flush and re-enable the Dcache if it was on at step 3.
1544 * 15) Do TRAPTRACE if enabled.
1545 * 16) Check if a UCU->WDU (or L3_UCU->WDU for Panther) happened, panic if so.
1546 * 17) Set the event pending flag in ch_err_tl1_pending[CPU]
1547 * 18) Cause a softint 15.  The pil15_interrupt handler will inspect the
1548 *    event pending flag and call cpu_tl1_error via systrap if set.
1549 * 19) Restore the registers from step 5 and issue retry.
1550 */
1551
1552/*
1553 * Cheetah ecc-protected E$ trap (Trap 70) at TL>0
1554 * tt1_fecc is replaced by fecc_err_tl1_instr in cpu_init_trap of the various
1555 * architecture-specific files.  This generates a "Software Trap 0" at TL>0,
1556 * which goes to fecc_err_tl1_cont_instr, and we continue the handling there.
1557 * NB: Must be 8 instructions or less to fit in trap table and code must
1558 *     be relocatable.
1559 */
1560
1561#if defined(lint)
1562
1563void
1564fecc_err_tl1_instr(void)
1565{}
1566
1567#else	/* lint */
1568
1569	ENTRY_NP(fecc_err_tl1_instr)
1570	CH_ERR_TL1_TRAPENTRY(SWTRAP_0);
1571	SET_SIZE(fecc_err_tl1_instr)
1572
1573#endif	/* lint */
1574
1575/*
1576 * Software trap 0 at TL>0.
1577 * tt1_swtrap0 is replaced by fecc_err_tl1_cont_instr in cpu_init_trap of
1578 * the various architecture-specific files.  This is used as a continuation
1579 * of the fast ecc handling where we've bought an extra TL level, so we can
1580 * use %tpc, %tnpc, %tstate to temporarily save the value of registers %g1
1581 * and %g2.  Note that %tstate has bits 0-2 and then bits 8-19 as r/w,
1582 * there's a reserved hole from 3-7.  We only use bits 0-1 and 8-9 (the low
1583 * order two bits from %g1 and %g2 respectively).
1584 * NB: Must be 8 instructions or less to fit in trap table and code must
1585 *     be relocatable.
1586 */
1587#if defined(lint)
1588
1589void
1590fecc_err_tl1_cont_instr(void)
1591{}
1592
1593#else	/* lint */
1594
1595	ENTRY_NP(fecc_err_tl1_cont_instr)
1596	CH_ERR_TL1_SWTRAPENTRY(fast_ecc_tl1_err)
1597	SET_SIZE(fecc_err_tl1_cont_instr)
1598
1599#endif	/* lint */
1600
1601
1602#if defined(lint)
1603
1604void
1605ce_err(void)
1606{}
1607
1608#else	/* lint */
1609
1610/*
1611 * The ce_err function handles disrupting trap type 0x63 at TL=0.
1612 *
1613 * AFSR errors bits which cause this trap are:
1614 *	CE, EMC, EDU:ST, EDC, WDU, WDC, CPU, CPC, IVU, IVC
1615 *
1616 * NCEEN Bit of Cheetah External Cache Error Enable Register enables
1617 * the following AFSR disrupting traps: EDU:ST, WDU, CPU, IVU
1618 *
1619 * CEEN Bit of Cheetah External Cache Error Enable Register enables
1620 * the following AFSR disrupting traps: CE, EMC, EDC, WDC, CPC, IVC
1621 *
1622 * Cheetah+ also handles (No additional processing required):
1623 *    DUE, DTO, DBERR	(NCEEN controlled)
1624 *    THCE		(CEEN and ET_ECC_en controlled)
1625 *    TUE		(ET_ECC_en controlled)
1626 *
1627 * Panther further adds:
1628 *    IMU, L3_EDU, L3_WDU, L3_CPU		(NCEEN controlled)
1629 *    IMC, L3_EDC, L3_WDC, L3_CPC, L3_THCE	(CEEN controlled)
1630 *    TUE_SH, TUE		(NCEEN and L2_tag_ECC_en controlled)
1631 *    L3_TUE, L3_TUE_SH		(NCEEN and ET_ECC_en controlled)
1632 *    THCE			(CEEN and L2_tag_ECC_en controlled)
1633 *    L3_THCE			(CEEN and ET_ECC_en controlled)
1634 *
1635 * Steps:
1636 *	1. Disable hardware corrected disrupting errors only (CEEN)
1637 *	2. Park sibling core if caches are shared (to avoid race
1638 *	   condition while accessing shared resources such as L3
1639 *	   data staging register during CPU logout.
1640 *	3. If the CPU logout structure is not currently being used:
1641 *		4. Clear AFSR error bits
1642 *		5. Capture Ecache, Dcache and Icache lines associated
1643 *		   with AFAR.
1644 *		6. Unpark sibling core if we parked it earlier.
1645 *		7. call cpu_disrupting_error via sys_trap at PIL 14
1646 *		   unless we're already running at PIL 15.
1647 *	4. Otherwise, if the CPU logout structure is busy:
1648 *		5. Incriment "logout busy count" and place into %g3
1649 *		6. Unpark sibling core if we parked it earlier.
1650 *		7. Issue a retry since the other CPU error logging
1651 *		   code will end up finding this error bit and logging
1652 *		   information about it later.
1653 *	5. Alternatively (to 3 and 4 above), if the cpu_private struct is
1654 *         not yet initialized such that we can't even check the logout
1655 *         struct, then we place the clo_flags data into %g2
1656 *         (sys_trap->have_win arg #1) and call cpu_disrupting_error via
1657 *         systrap. The clo_flags parameter is used to determine information
1658 *         such as TL, TT, CEEN settings, etc in the high level trap
1659 *         handler since we don't have access to detailed logout information
1660 *         in cases where the cpu_private struct is not yet initialized.
1661 *
1662 * %g3: [ logout busy count ] - arg #2
1663 * %g2: [ clo_flags if cpu_private unavailable ] - sys_trap->have_win: arg #1
1664 */
1665
1666	.align	128
1667	ENTRY_NP(ce_err)
1668	membar	#Sync			! Cheetah requires membar #Sync
1669
1670	/*
1671	 * Disable trap on hardware corrected errors (CEEN) while at TL=0
1672	 * to prevent recursion.
1673	 */
1674	ldxa	[%g0]ASI_ESTATE_ERR, %g1
1675	bclr	EN_REG_CEEN, %g1
1676	stxa	%g1, [%g0]ASI_ESTATE_ERR
1677	membar	#Sync			! membar sync required
1678
1679	/*
1680	 * Save current DCU state.  Turn off Icache to allow capture of
1681	 * Icache data by DO_CPU_LOGOUT.
1682	 */
1683	ldxa	[%g0]ASI_DCU, %g1	! save DCU in %g1
1684	andn	%g1, DCU_IC, %g4
1685	stxa	%g4, [%g0]ASI_DCU
1686	flush	%g0	/* flush required after changing the IC bit */
1687
1688	/*
1689	 * Check to see whether we need to park our sibling core
1690	 * before recording diagnostic information from caches
1691	 * which may be shared by both cores.
1692	 * We use %g1 to store information about whether or not
1693	 * we had to park the core (%g1 holds our DCUCR value and
1694	 * we only use bits from that register which are "reserved"
1695	 * to keep track of core parking) so that we know whether
1696	 * or not to unpark later. %g5 and %g4 are scratch registers.
1697	 */
1698	PARK_SIBLING_CORE(%g1, %g5, %g4)
1699
1700	/*
1701	 * Do the CPU log out capture.
1702	 *   %g3 = "failed?" return value.
1703	 *   %g2 = Input = AFAR. Output the clo_flags info which is passed
1704	 *         into this macro via %g4. Output only valid if cpu_private
1705	 *         struct has not been initialized.
1706	 *   CHPR_CECC_LOGOUT = cpu logout structure offset input
1707	 *   %g4 = Trap information stored in the cpu logout flags field
1708	 *   %g5 = scr1
1709	 *   %g6 = scr2
1710	 *   %g3 = scr3
1711	 *   %g4 = scr4
1712	 */
1713	clr	%g4			! TL=0 bit in afsr
1714	set	CHPR_CECC_LOGOUT, %g6
1715	DO_CPU_LOGOUT(%g3, %g2, %g6, %g4, %g5, %g6, %g3, %g4)
1716
1717	/*
1718	 * Flush the Icache.  Since we turned off the Icache to capture the
1719	 * Icache line it is now stale or corrupted and we must flush it
1720	 * before re-enabling it.
1721	 */
1722	GET_CPU_PRIVATE_PTR(%g0, %g5, %g7, ce_err_1);
1723	ld	[%g5 + CHPR_ICACHE_LINESIZE], %g6
1724	ba,pt	%icc, 2f
1725	  ld	[%g5 + CHPR_ICACHE_SIZE], %g5
1726ce_err_1:
1727	ASM_LD(%g5, icache_size)
1728	ASM_LD(%g6, icache_linesize)
17292:
1730	CH_ICACHE_FLUSHALL(%g5, %g6, %g7, %g4)
1731
1732	/*
1733	 * check to see whether we parked our sibling core at the start
1734	 * of this handler. If so, we need to unpark it here.
1735	 * We use DCUCR reserved bits (stored in %g1) to keep track of
1736	 * whether or not we need to unpark. %g5 and %g4 are scratch registers.
1737	 */
1738	UNPARK_SIBLING_CORE(%g1, %g5, %g4)
1739
1740	/*
1741	 * Restore Icache to previous state.
1742	 */
1743	stxa	%g1, [%g0]ASI_DCU
1744	flush	%g0	/* flush required after changing the IC bit */
1745
1746	/*
1747	 * Make sure our CPU logout operation was successful.
1748	 */
1749	cmp	%g3, %g0
1750	be	4f
1751	  nop
1752
1753	/*
1754	 * If the logout structure had been busy, how many times have
1755	 * we tried to use it and failed (nesting count)? If we have
1756	 * already recursed a substantial number of times, then we can
1757	 * assume things are not going to get better by themselves and
1758	 * so it would be best to panic.
1759	 */
1760	cmp	%g3, CLO_NESTING_MAX
1761	blt	3f
1762	  nop
1763
1764        call ptl1_panic
1765          mov   PTL1_BAD_ECC, %g1
1766
17673:
1768	/*
1769	 * Otherwise, if the logout structure was busy but we have not
1770	 * nested more times than our maximum value, then we simply
1771	 * issue a retry. Our TL=0 trap handler code will check and
1772	 * clear the AFSR after it is done logging what is currently
1773	 * in the logout struct and handle this event at that time.
1774	 */
1775	retry
17764:
1777	/*
1778	 * Call cpu_disrupting_error via systrap at PIL 14 unless we're
1779	 * already at PIL 15.
1780	 */
1781	set	cpu_disrupting_error, %g1
1782	rdpr	%pil, %g4
1783	cmp	%g4, PIL_14
1784	ba	sys_trap
1785	  movl	%icc, PIL_14, %g4
1786	SET_SIZE(ce_err)
1787
1788#endif	/* lint */
1789
1790
1791#if defined(lint)
1792
1793/*
1794 * This trap cannot happen at TL>0 which means this routine will never
1795 * actually be called and so we treat this like a BAD TRAP panic.
1796 */
1797void
1798ce_err_tl1(void)
1799{}
1800
1801#else	/* lint */
1802
1803	.align	64
1804	ENTRY_NP(ce_err_tl1)
1805
1806        call ptl1_panic
1807          mov   PTL1_BAD_TRAP, %g1
1808
1809	SET_SIZE(ce_err_tl1)
1810
1811#endif	/* lint */
1812
1813
1814#if defined(lint)
1815
1816void
1817async_err(void)
1818{}
1819
1820#else	/* lint */
1821
1822/*
1823 * The async_err function handles deferred trap types 0xA
1824 * (instruction_access_error) and 0x32 (data_access_error) at TL>=0.
1825 *
1826 * AFSR errors bits which cause this trap are:
1827 *	UE, EMU, EDU:BLD, L3_EDU:BLD, TO, BERR
1828 * On some platforms, EMU may causes cheetah to pull the error pin
1829 * never giving Solaris a chance to take a trap.
1830 *
1831 * NCEEN Bit of Cheetah External Cache Error Enable Register enables
1832 * the following AFSR deferred traps: UE, EMU, EDU:BLD, TO, BERR
1833 *
1834 * Steps:
1835 *	1. Disable CEEN and NCEEN errors to prevent recursive errors.
1836 *	2. Turn D$ off per Cheetah PRM P.5 Note 6, turn I$ off to capture
1837 *         I$ line in DO_CPU_LOGOUT.
1838 *	3. Park sibling core if caches are shared (to avoid race
1839 *	   condition while accessing shared resources such as L3
1840 *	   data staging register during CPU logout.
1841 *	4. If the CPU logout structure is not currently being used:
1842 *		5. Clear AFSR error bits
1843 *		6. Capture Ecache, Dcache and Icache lines associated
1844 *		   with AFAR.
1845 *		7. Unpark sibling core if we parked it earlier.
1846 *		8. call cpu_deferred_error via sys_trap.
1847 *	5. Otherwise, if the CPU logout structure is busy:
1848 *		6. Incriment "logout busy count"
1849 *		7. Unpark sibling core if we parked it earlier.
1850 *		8) Issue a retry since the other CPU error logging
1851 *		   code will end up finding this error bit and logging
1852 *		   information about it later.
1853 *      6. Alternatively (to 4 and 5 above), if the cpu_private struct is
1854 *         not yet initialized such that we can't even check the logout
1855 *         struct, then we place the clo_flags data into %g2
1856 *         (sys_trap->have_win arg #1) and call cpu_deferred_error via
1857 *         systrap. The clo_flags parameter is used to determine information
1858 *         such as TL, TT, CEEN settings, etc in the high level trap handler
1859 *         since we don't have access to detailed logout information in cases
1860 *         where the cpu_private struct is not yet initialized.
1861 *
1862 * %g2: [ clo_flags if cpu_private unavailable ] - sys_trap->have_win: arg #1
1863 * %g3: [ logout busy count ] - arg #2
1864 */
1865
1866	ENTRY_NP(async_err)
1867	membar	#Sync			! Cheetah requires membar #Sync
1868
1869	/*
1870	 * Disable CEEN and NCEEN.
1871	 */
1872	ldxa	[%g0]ASI_ESTATE_ERR, %g3
1873	andn	%g3, EN_REG_NCEEN + EN_REG_CEEN, %g4
1874	stxa	%g4, [%g0]ASI_ESTATE_ERR
1875	membar	#Sync			! membar sync required
1876
1877	/*
1878	 * Save current DCU state.
1879	 * Disable Icache to allow capture of Icache data by DO_CPU_LOGOUT.
1880	 * Do this regardless of whether this is a Data Access Error or
1881	 * Instruction Access Error Trap.
1882	 * Disable Dcache for both Data Access Error and Instruction Access
1883	 * Error per Cheetah PRM P.5 Note 6.
1884	 */
1885	ldxa	[%g0]ASI_DCU, %g1	! save DCU in %g1
1886	andn	%g1, DCU_IC + DCU_DC, %g4
1887	stxa	%g4, [%g0]ASI_DCU
1888	flush	%g0	/* flush required after changing the IC bit */
1889
1890	/*
1891	 * Check to see whether we need to park our sibling core
1892	 * before recording diagnostic information from caches
1893	 * which may be shared by both cores.
1894	 * We use %g1 to store information about whether or not
1895	 * we had to park the core (%g1 holds our DCUCR value and
1896	 * we only use bits from that register which are "reserved"
1897	 * to keep track of core parking) so that we know whether
1898	 * or not to unpark later. %g6 and %g4 are scratch registers.
1899	 */
1900	PARK_SIBLING_CORE(%g1, %g6, %g4)
1901
1902	/*
1903	 * Do the CPU logout capture.
1904	 *
1905	 *   %g3 = "failed?" return value.
1906	 *   %g2 = Input = AFAR. Output the clo_flags info which is passed
1907	 *         into this macro via %g4. Output only valid if cpu_private
1908	 *         struct has not been initialized.
1909	 *   CHPR_ASYNC_LOGOUT = cpu logout structure offset input
1910	 *   %g4 = Trap information stored in the cpu logout flags field
1911	 *   %g5 = scr1
1912	 *   %g6 = scr2
1913	 *   %g3 = scr3
1914	 *   %g4 = scr4
1915	 */
1916	andcc	%g5, T_TL1, %g0
1917	clr	%g6
1918	movnz	%xcc, 1, %g6			! set %g6 if T_TL1 set
1919	sllx	%g6, CLO_FLAGS_TL_SHIFT, %g6
1920	sllx	%g5, CLO_FLAGS_TT_SHIFT, %g4
1921	set	CLO_FLAGS_TT_MASK, %g2
1922	and	%g4, %g2, %g4			! ttype
1923	or	%g6, %g4, %g4			! TT and TL
1924	and	%g3, EN_REG_CEEN, %g3		! CEEN value
1925	or	%g3, %g4, %g4			! TT and TL and CEEN
1926	set	CHPR_ASYNC_LOGOUT, %g6
1927	DO_CPU_LOGOUT(%g3, %g2, %g6, %g4, %g5, %g6, %g3, %g4)
1928
1929	/*
1930	 * If the logout struct was busy, we may need to pass the
1931	 * TT, TL, and CEEN information to the TL=0 handler via
1932	 * systrap parameter so save it off here.
1933	 */
1934	cmp	%g3, %g0
1935	be	1f
1936	  nop
1937	sllx	%g4, 32, %g4
1938	or	%g4, %g3, %g3
19391:
1940	/*
1941	 * Flush the Icache.  Since we turned off the Icache to capture the
1942	 * Icache line it is now stale or corrupted and we must flush it
1943	 * before re-enabling it.
1944	 */
1945	GET_CPU_PRIVATE_PTR(%g0, %g5, %g7, async_err_1);
1946	ld	[%g5 + CHPR_ICACHE_LINESIZE], %g6
1947	ba,pt	%icc, 2f
1948	  ld	[%g5 + CHPR_ICACHE_SIZE], %g5
1949async_err_1:
1950	ASM_LD(%g5, icache_size)
1951	ASM_LD(%g6, icache_linesize)
19522:
1953	CH_ICACHE_FLUSHALL(%g5, %g6, %g7, %g4)
1954
1955	/*
1956	 * XXX - Don't we need to flush the Dcache before turning it back
1957	 *       on to avoid stale or corrupt data? Was this broken?
1958	 */
1959	/*
1960	 * Flush the Dcache before turning it back on since it may now
1961	 * contain stale or corrupt data.
1962	 */
1963	ASM_LD(%g5, dcache_size)
1964	ASM_LD(%g6, dcache_linesize)
1965	CH_DCACHE_FLUSHALL(%g5, %g6, %g7)
1966
1967	/*
1968	 * check to see whether we parked our sibling core at the start
1969	 * of this handler. If so, we need to unpark it here.
1970	 * We use DCUCR reserved bits (stored in %g1) to keep track of
1971	 * whether or not we need to unpark. %g5 and %g7 are scratch registers.
1972	 */
1973	UNPARK_SIBLING_CORE(%g1, %g5, %g7)
1974
1975	/*
1976	 * Restore Icache and Dcache to previous state.
1977	 */
1978	stxa	%g1, [%g0]ASI_DCU
1979	flush	%g0	/* flush required after changing the IC bit */
1980
1981	/*
1982	 * Make sure our CPU logout operation was successful.
1983	 */
1984	cmp	%g3, %g0
1985	be	4f
1986	  nop
1987
1988	/*
1989	 * If the logout structure had been busy, how many times have
1990	 * we tried to use it and failed (nesting count)? If we have
1991	 * already recursed a substantial number of times, then we can
1992	 * assume things are not going to get better by themselves and
1993	 * so it would be best to panic.
1994	 */
1995	cmp	%g3, CLO_NESTING_MAX
1996	blt	3f
1997	  nop
1998
1999        call ptl1_panic
2000          mov   PTL1_BAD_ECC, %g1
2001
20023:
2003	/*
2004	 * Otherwise, if the logout structure was busy but we have not
2005	 * nested more times than our maximum value, then we simply
2006	 * issue a retry. Our TL=0 trap handler code will check and
2007	 * clear the AFSR after it is done logging what is currently
2008	 * in the logout struct and handle this event at that time.
2009	 */
2010	retry
20114:
2012	set	cpu_deferred_error, %g1
2013	ba	sys_trap
2014	  mov	PIL_15, %g4		! run at pil 15
2015	SET_SIZE(async_err)
2016
2017#endif	/* lint */
2018
2019#if defined(CPU_IMP_L1_CACHE_PARITY)
2020
2021/*
2022 * D$ parity error trap (trap 71) at TL=0.
2023 * tt0_dperr is replaced by dcache_parity_instr in cpu_init_trap of
2024 * the various architecture-specific files.  This merely sets up the
2025 * arguments for cpu_parity_error and calls it via sys_trap.
2026 * NB: Must be 8 instructions or less to fit in trap table and code must
2027 *     be relocatable.
2028 */
2029#if defined(lint)
2030
2031void
2032dcache_parity_instr(void)
2033{}
2034
2035#else	/* lint */
2036	ENTRY_NP(dcache_parity_instr)
2037	membar	#Sync			! Cheetah+ requires membar #Sync
2038	set	cpu_parity_error, %g1
2039	or	%g0, CH_ERR_DPE, %g2
2040	rdpr	%tpc, %g3
2041	sethi	%hi(sys_trap), %g7
2042	jmp	%g7 + %lo(sys_trap)
2043	  mov	PIL_15, %g4		! run at pil 15
2044	SET_SIZE(dcache_parity_instr)
2045
2046#endif	/* lint */
2047
2048
2049/*
2050 * D$ parity error trap (trap 71) at TL>0.
2051 * tt1_dperr is replaced by dcache_parity_tl1_instr in cpu_init_trap of
2052 * the various architecture-specific files.  This generates a "Software
2053 * Trap 1" at TL>0, which goes to dcache_parity_tl1_cont_instr, and we
2054 * continue the handling there.
2055 * NB: Must be 8 instructions or less to fit in trap table and code must
2056 *     be relocatable.
2057 */
2058#if defined(lint)
2059
2060void
2061dcache_parity_tl1_instr(void)
2062{}
2063
2064#else	/* lint */
2065	ENTRY_NP(dcache_parity_tl1_instr)
2066	CH_ERR_TL1_TRAPENTRY(SWTRAP_1);
2067	SET_SIZE(dcache_parity_tl1_instr)
2068
2069#endif	/* lint */
2070
2071
2072/*
2073 * Software trap 1 at TL>0.
2074 * tt1_swtrap1 is replaced by dcache_parity_tl1_cont_instr in cpu_init_trap
2075 * of the various architecture-specific files.  This is used as a continuation
2076 * of the dcache parity handling where we've bought an extra TL level, so we
2077 * can use %tpc, %tnpc, %tstate to temporarily save the value of registers %g1
2078 * and %g2.  Note that %tstate has bits 0-2 and then bits 8-19 as r/w,
2079 * there's a reserved hole from 3-7.  We only use bits 0-1 and 8-9 (the low
2080 * order two bits from %g1 and %g2 respectively).
2081 * NB: Must be 8 instructions or less to fit in trap table and code must
2082 *     be relocatable.
2083 */
2084#if defined(lint)
2085
2086void
2087dcache_parity_tl1_cont_instr(void)
2088{}
2089
2090#else	/* lint */
2091	ENTRY_NP(dcache_parity_tl1_cont_instr)
2092	CH_ERR_TL1_SWTRAPENTRY(dcache_parity_tl1_err);
2093	SET_SIZE(dcache_parity_tl1_cont_instr)
2094
2095#endif	/* lint */
2096
2097/*
2098 * D$ parity error at TL>0 handler
2099 * We get here via trap 71 at TL>0->Software trap 1 at TL>0.  We enter
2100 * this routine with %g1 and %g2 already saved in %tpc, %tnpc and %tstate.
2101 */
2102#if defined(lint)
2103
2104void
2105dcache_parity_tl1_err(void)
2106{}
2107
2108#else	/* lint */
2109
2110	ENTRY_NP(dcache_parity_tl1_err)
2111
2112	/*
2113	 * This macro saves all the %g registers in the ch_err_tl1_data
2114	 * structure, updates the ch_err_tl1_flags and saves the %tpc in
2115	 * ch_err_tl1_tpc.  At the end of this macro, %g1 will point to
2116	 * the ch_err_tl1_data structure and %g2 will have the original
2117	 * flags in the ch_err_tl1_data structure.  All %g registers
2118	 * except for %g1 and %g2 will be available.
2119	 */
2120	CH_ERR_TL1_ENTER(CH_ERR_DPE);
2121
2122#ifdef TRAPTRACE
2123	/*
2124	 * Get current trap trace entry physical pointer.
2125	 */
2126	CPU_INDEX(%g6, %g5)
2127	sll	%g6, TRAPTR_SIZE_SHIFT, %g6
2128	set	trap_trace_ctl, %g5
2129	add	%g6, %g5, %g6
2130	ld	[%g6 + TRAPTR_LIMIT], %g5
2131	tst	%g5
2132	be	%icc, dpe_tl1_skip_tt
2133	  nop
2134	ldx	[%g6 + TRAPTR_PBASE], %g5
2135	ld	[%g6 + TRAPTR_OFFSET], %g4
2136	add	%g5, %g4, %g5
2137
2138	/*
2139	 * Create trap trace entry.
2140	 */
2141	rd	%asi, %g7
2142	wr	%g0, TRAPTR_ASI, %asi
2143	rd	STICK, %g4
2144	stxa	%g4, [%g5 + TRAP_ENT_TICK]%asi
2145	rdpr	%tl, %g4
2146	stha	%g4, [%g5 + TRAP_ENT_TL]%asi
2147	rdpr	%tt, %g4
2148	stha	%g4, [%g5 + TRAP_ENT_TT]%asi
2149	rdpr	%tpc, %g4
2150	stna	%g4, [%g5 + TRAP_ENT_TPC]%asi
2151	rdpr	%tstate, %g4
2152	stxa	%g4, [%g5 + TRAP_ENT_TSTATE]%asi
2153	stna	%sp, [%g5 + TRAP_ENT_SP]%asi
2154	stna	%g0, [%g5 + TRAP_ENT_TR]%asi
2155	stna	%g0, [%g5 + TRAP_ENT_F1]%asi
2156	stna	%g0, [%g5 + TRAP_ENT_F2]%asi
2157	stna	%g0, [%g5 + TRAP_ENT_F3]%asi
2158	stna	%g0, [%g5 + TRAP_ENT_F4]%asi
2159	wr	%g0, %g7, %asi
2160
2161	/*
2162	 * Advance trap trace pointer.
2163	 */
2164	ld	[%g6 + TRAPTR_OFFSET], %g5
2165	ld	[%g6 + TRAPTR_LIMIT], %g4
2166	st	%g5, [%g6 + TRAPTR_LAST_OFFSET]
2167	add	%g5, TRAP_ENT_SIZE, %g5
2168	sub	%g4, TRAP_ENT_SIZE, %g4
2169	cmp	%g5, %g4
2170	movge	%icc, 0, %g5
2171	st	%g5, [%g6 + TRAPTR_OFFSET]
2172dpe_tl1_skip_tt:
2173#endif	/* TRAPTRACE */
2174
2175	/*
2176	 * I$ and D$ are automatically turned off by HW when the CPU hits
2177	 * a dcache or icache parity error so we will just leave those two
2178	 * off for now to avoid repeating this trap.
2179	 * For Panther, however, since we trap on P$ data parity errors
2180	 * and HW does not automatically disable P$, we need to disable it
2181	 * here so that we don't encounter any recursive traps when we
2182	 * issue the retry.
2183	 */
2184	ldxa	[%g0]ASI_DCU, %g3
2185	mov	1, %g4
2186	sllx	%g4, DCU_PE_SHIFT, %g4
2187	andn	%g3, %g4, %g3
2188	stxa	%g3, [%g0]ASI_DCU
2189	membar	#Sync
2190
2191	/*
2192	 * We fall into this macro if we've successfully logged the error in
2193	 * the ch_err_tl1_data structure and want the PIL15 softint to pick
2194	 * it up and log it.  %g1 must point to the ch_err_tl1_data structure.
2195	 * Restores the %g registers and issues retry.
2196	 */
2197	CH_ERR_TL1_EXIT;
2198	SET_SIZE(dcache_parity_tl1_err)
2199
2200#endif	/* lint */
2201
2202/*
2203 * I$ parity error trap (trap 72) at TL=0.
2204 * tt0_iperr is replaced by icache_parity_instr in cpu_init_trap of
2205 * the various architecture-specific files.  This merely sets up the
2206 * arguments for cpu_parity_error and calls it via sys_trap.
2207 * NB: Must be 8 instructions or less to fit in trap table and code must
2208 *     be relocatable.
2209 */
2210#if defined(lint)
2211
2212void
2213icache_parity_instr(void)
2214{}
2215
2216#else	/* lint */
2217
2218	ENTRY_NP(icache_parity_instr)
2219	membar	#Sync			! Cheetah+ requires membar #Sync
2220	set	cpu_parity_error, %g1
2221	or	%g0, CH_ERR_IPE, %g2
2222	rdpr	%tpc, %g3
2223	sethi	%hi(sys_trap), %g7
2224	jmp	%g7 + %lo(sys_trap)
2225	  mov	PIL_15, %g4		! run at pil 15
2226	SET_SIZE(icache_parity_instr)
2227
2228#endif	/* lint */
2229
2230/*
2231 * I$ parity error trap (trap 72) at TL>0.
2232 * tt1_iperr is replaced by icache_parity_tl1_instr in cpu_init_trap of
2233 * the various architecture-specific files.  This generates a "Software
2234 * Trap 2" at TL>0, which goes to icache_parity_tl1_cont_instr, and we
2235 * continue the handling there.
2236 * NB: Must be 8 instructions or less to fit in trap table and code must
2237 *     be relocatable.
2238 */
2239#if defined(lint)
2240
2241void
2242icache_parity_tl1_instr(void)
2243{}
2244
2245#else	/* lint */
2246	ENTRY_NP(icache_parity_tl1_instr)
2247	CH_ERR_TL1_TRAPENTRY(SWTRAP_2);
2248	SET_SIZE(icache_parity_tl1_instr)
2249
2250#endif	/* lint */
2251
2252/*
2253 * Software trap 2 at TL>0.
2254 * tt1_swtrap2 is replaced by icache_parity_tl1_cont_instr in cpu_init_trap
2255 * of the various architecture-specific files.  This is used as a continuation
2256 * of the icache parity handling where we've bought an extra TL level, so we
2257 * can use %tpc, %tnpc, %tstate to temporarily save the value of registers %g1
2258 * and %g2.  Note that %tstate has bits 0-2 and then bits 8-19 as r/w,
2259 * there's a reserved hole from 3-7.  We only use bits 0-1 and 8-9 (the low
2260 * order two bits from %g1 and %g2 respectively).
2261 * NB: Must be 8 instructions or less to fit in trap table and code must
2262 *     be relocatable.
2263 */
2264#if defined(lint)
2265
2266void
2267icache_parity_tl1_cont_instr(void)
2268{}
2269
2270#else	/* lint */
2271	ENTRY_NP(icache_parity_tl1_cont_instr)
2272	CH_ERR_TL1_SWTRAPENTRY(icache_parity_tl1_err);
2273	SET_SIZE(icache_parity_tl1_cont_instr)
2274
2275#endif	/* lint */
2276
2277
2278/*
2279 * I$ parity error at TL>0 handler
2280 * We get here via trap 72 at TL>0->Software trap 2 at TL>0.  We enter
2281 * this routine with %g1 and %g2 already saved in %tpc, %tnpc and %tstate.
2282 */
2283#if defined(lint)
2284
2285void
2286icache_parity_tl1_err(void)
2287{}
2288
2289#else	/* lint */
2290
2291	ENTRY_NP(icache_parity_tl1_err)
2292
2293	/*
2294	 * This macro saves all the %g registers in the ch_err_tl1_data
2295	 * structure, updates the ch_err_tl1_flags and saves the %tpc in
2296	 * ch_err_tl1_tpc.  At the end of this macro, %g1 will point to
2297	 * the ch_err_tl1_data structure and %g2 will have the original
2298	 * flags in the ch_err_tl1_data structure.  All %g registers
2299	 * except for %g1 and %g2 will be available.
2300	 */
2301	CH_ERR_TL1_ENTER(CH_ERR_IPE);
2302
2303#ifdef TRAPTRACE
2304	/*
2305	 * Get current trap trace entry physical pointer.
2306	 */
2307	CPU_INDEX(%g6, %g5)
2308	sll	%g6, TRAPTR_SIZE_SHIFT, %g6
2309	set	trap_trace_ctl, %g5
2310	add	%g6, %g5, %g6
2311	ld	[%g6 + TRAPTR_LIMIT], %g5
2312	tst	%g5
2313	be	%icc, ipe_tl1_skip_tt
2314	  nop
2315	ldx	[%g6 + TRAPTR_PBASE], %g5
2316	ld	[%g6 + TRAPTR_OFFSET], %g4
2317	add	%g5, %g4, %g5
2318
2319	/*
2320	 * Create trap trace entry.
2321	 */
2322	rd	%asi, %g7
2323	wr	%g0, TRAPTR_ASI, %asi
2324	rd	STICK, %g4
2325	stxa	%g4, [%g5 + TRAP_ENT_TICK]%asi
2326	rdpr	%tl, %g4
2327	stha	%g4, [%g5 + TRAP_ENT_TL]%asi
2328	rdpr	%tt, %g4
2329	stha	%g4, [%g5 + TRAP_ENT_TT]%asi
2330	rdpr	%tpc, %g4
2331	stna	%g4, [%g5 + TRAP_ENT_TPC]%asi
2332	rdpr	%tstate, %g4
2333	stxa	%g4, [%g5 + TRAP_ENT_TSTATE]%asi
2334	stna	%sp, [%g5 + TRAP_ENT_SP]%asi
2335	stna	%g0, [%g5 + TRAP_ENT_TR]%asi
2336	stna	%g0, [%g5 + TRAP_ENT_F1]%asi
2337	stna	%g0, [%g5 + TRAP_ENT_F2]%asi
2338	stna	%g0, [%g5 + TRAP_ENT_F3]%asi
2339	stna	%g0, [%g5 + TRAP_ENT_F4]%asi
2340	wr	%g0, %g7, %asi
2341
2342	/*
2343	 * Advance trap trace pointer.
2344	 */
2345	ld	[%g6 + TRAPTR_OFFSET], %g5
2346	ld	[%g6 + TRAPTR_LIMIT], %g4
2347	st	%g5, [%g6 + TRAPTR_LAST_OFFSET]
2348	add	%g5, TRAP_ENT_SIZE, %g5
2349	sub	%g4, TRAP_ENT_SIZE, %g4
2350	cmp	%g5, %g4
2351	movge	%icc, 0, %g5
2352	st	%g5, [%g6 + TRAPTR_OFFSET]
2353ipe_tl1_skip_tt:
2354#endif	/* TRAPTRACE */
2355
2356	/*
2357	 * We fall into this macro if we've successfully logged the error in
2358	 * the ch_err_tl1_data structure and want the PIL15 softint to pick
2359	 * it up and log it.  %g1 must point to the ch_err_tl1_data structure.
2360	 * Restores the %g registers and issues retry.
2361	 */
2362	CH_ERR_TL1_EXIT;
2363
2364	SET_SIZE(icache_parity_tl1_err)
2365
2366#endif	/* lint */
2367
2368#endif	/* CPU_IMP_L1_CACHE_PARITY */
2369
2370
2371/*
2372 * The itlb_rd_entry and dtlb_rd_entry functions return the tag portion of the
2373 * tte, the virtual address, and the ctxnum of the specified tlb entry.  They
2374 * should only be used in places where you have no choice but to look at the
2375 * tlb itself.
2376 *
2377 * Note: These two routines are required by the Estar "cpr" loadable module.
2378 */
2379
2380#if defined(lint)
2381
2382/* ARGSUSED */
2383void
2384itlb_rd_entry(uint_t entry, tte_t *tte, uint64_t *va_tag)
2385{}
2386
2387#else	/* lint */
2388
2389	ENTRY_NP(itlb_rd_entry)
2390	sllx	%o0, 3, %o0
2391	ldxa	[%o0]ASI_ITLB_ACCESS, %g1
2392	stx	%g1, [%o1]
2393	ldxa	[%o0]ASI_ITLB_TAGREAD, %g2
2394	set	TAGREAD_CTX_MASK, %o4
2395	andn	%g2, %o4, %o5
2396	retl
2397	  stx	%o5, [%o2]
2398	SET_SIZE(itlb_rd_entry)
2399
2400#endif	/* lint */
2401
2402
2403#if defined(lint)
2404
2405/* ARGSUSED */
2406void
2407dtlb_rd_entry(uint_t entry, tte_t *tte, uint64_t *va_tag)
2408{}
2409
2410#else	/* lint */
2411
2412	ENTRY_NP(dtlb_rd_entry)
2413	sllx	%o0, 3, %o0
2414	ldxa	[%o0]ASI_DTLB_ACCESS, %g1
2415	stx	%g1, [%o1]
2416	ldxa	[%o0]ASI_DTLB_TAGREAD, %g2
2417	set	TAGREAD_CTX_MASK, %o4
2418	andn	%g2, %o4, %o5
2419	retl
2420	  stx	%o5, [%o2]
2421	SET_SIZE(dtlb_rd_entry)
2422#endif	/* lint */
2423
2424
2425#if !(defined(JALAPENO) || defined(SERRANO))
2426
2427#if defined(lint)
2428
2429uint64_t
2430get_safari_config(void)
2431{ return (0); }
2432
2433#else	/* lint */
2434
2435	ENTRY(get_safari_config)
2436	ldxa	[%g0]ASI_SAFARI_CONFIG, %o0
2437	retl
2438	nop
2439	SET_SIZE(get_safari_config)
2440
2441#endif	/* lint */
2442
2443
2444#if defined(lint)
2445
2446/* ARGSUSED */
2447void
2448set_safari_config(uint64_t safari_config)
2449{}
2450
2451#else	/* lint */
2452
2453	ENTRY(set_safari_config)
2454	stxa	%o0, [%g0]ASI_SAFARI_CONFIG
2455	membar	#Sync
2456	retl
2457	nop
2458	SET_SIZE(set_safari_config)
2459
2460#endif	/* lint */
2461
2462#endif	/* !(JALAPENO || SERRANO) */
2463
2464
2465#if defined(lint)
2466
2467void
2468cpu_cleartickpnt(void)
2469{}
2470
2471#else	/* lint */
2472	/*
2473	 * Clear the NPT (non-privileged trap) bit in the %tick/%stick
2474	 * registers. In an effort to make the change in the
2475	 * tick/stick counter as consistent as possible, we disable
2476	 * all interrupts while we're changing the registers. We also
2477	 * ensure that the read and write instructions are in the same
2478	 * line in the instruction cache.
2479	 */
2480	ENTRY_NP(cpu_clearticknpt)
2481	rdpr	%pstate, %g1		/* save processor state */
2482	andn	%g1, PSTATE_IE, %g3	/* turn off */
2483	wrpr	%g0, %g3, %pstate	/*   interrupts */
2484	rdpr	%tick, %g2		/* get tick register */
2485	brgez,pn %g2, 1f		/* if NPT bit off, we're done */
2486	mov	1, %g3			/* create mask */
2487	sllx	%g3, 63, %g3		/*   for NPT bit */
2488	ba,a,pt	%xcc, 2f
2489	.align	8			/* Ensure rd/wr in same i$ line */
24902:
2491	rdpr	%tick, %g2		/* get tick register */
2492	wrpr	%g3, %g2, %tick		/* write tick register, */
2493					/*   clearing NPT bit   */
24941:
2495	rd	STICK, %g2		/* get stick register */
2496	brgez,pn %g2, 3f		/* if NPT bit off, we're done */
2497	mov	1, %g3			/* create mask */
2498	sllx	%g3, 63, %g3		/*   for NPT bit */
2499	ba,a,pt	%xcc, 4f
2500	.align	8			/* Ensure rd/wr in same i$ line */
25014:
2502	rd	STICK, %g2		/* get stick register */
2503	wr	%g3, %g2, STICK		/* write stick register, */
2504					/*   clearing NPT bit   */
25053:
2506	jmp	%g4 + 4
2507	wrpr	%g0, %g1, %pstate	/* restore processor state */
2508
2509	SET_SIZE(cpu_clearticknpt)
2510
2511#endif	/* lint */
2512
2513
2514#if defined(CPU_IMP_L1_CACHE_PARITY)
2515
2516#if defined(lint)
2517/*
2518 * correct_dcache_parity(size_t size, size_t linesize)
2519 *
2520 * Correct D$ data parity by zeroing the data and initializing microtag
2521 * for all indexes and all ways of the D$.
2522 *
2523 */
2524/* ARGSUSED */
2525void
2526correct_dcache_parity(size_t size, size_t linesize)
2527{}
2528
2529#else	/* lint */
2530
2531	ENTRY(correct_dcache_parity)
2532	/*
2533	 * Register Usage:
2534	 *
2535	 * %o0 = input D$ size
2536	 * %o1 = input D$ line size
2537	 * %o2 = scratch
2538	 * %o3 = scratch
2539	 * %o4 = scratch
2540	 */
2541
2542	sub	%o0, %o1, %o0			! init cache line address
2543
2544	/*
2545	 * For Panther CPUs, we also need to clear the data parity bits
2546	 * using DC_data_parity bit of the ASI_DCACHE_DATA register.
2547	 */
2548	GET_CPU_IMPL(%o3)
2549	cmp	%o3, PANTHER_IMPL
2550	bne	1f
2551	  clr	%o3				! zero for non-Panther
2552	mov	1, %o3
2553	sll	%o3, PN_DC_DATA_PARITY_BIT_SHIFT, %o3
2554
25551:
2556	/*
2557	 * Set utag = way since it must be unique within an index.
2558	 */
2559	srl	%o0, 14, %o2			! get cache way (DC_way)
2560	membar	#Sync				! required before ASI_DC_UTAG
2561	stxa	%o2, [%o0]ASI_DC_UTAG		! set D$ utag = cache way
2562	membar	#Sync				! required after ASI_DC_UTAG
2563
2564	/*
2565	 * Zero line of D$ data (and data parity bits for Panther)
2566	 */
2567	sub	%o1, 8, %o2
2568	or	%o0, %o3, %o4			! same address + DC_data_parity
25692:
2570	membar	#Sync				! required before ASI_DC_DATA
2571	stxa	%g0, [%o0 + %o2]ASI_DC_DATA	! zero 8 bytes of D$ data
2572	membar	#Sync				! required after ASI_DC_DATA
2573	/*
2574	 * We also clear the parity bits if this is a panther. For non-Panther
2575	 * CPUs, we simply end up clearing the $data register twice.
2576	 */
2577	stxa	%g0, [%o4 + %o2]ASI_DC_DATA
2578	membar	#Sync
2579
2580	subcc	%o2, 8, %o2
2581	bge	2b
2582	nop
2583
2584	subcc	%o0, %o1, %o0
2585	bge	1b
2586	nop
2587
2588	retl
2589	  nop
2590	SET_SIZE(correct_dcache_parity)
2591
2592#endif	/* lint */
2593
2594#endif	/* CPU_IMP_L1_CACHE_PARITY */
2595
2596
2597#if defined(lint)
2598/*
2599 *  Get timestamp (stick).
2600 */
2601/* ARGSUSED */
2602void
2603stick_timestamp(int64_t *ts)
2604{
2605}
2606
2607#else	/* lint */
2608
2609	ENTRY_NP(stick_timestamp)
2610	rd	STICK, %g1	! read stick reg
2611	sllx	%g1, 1, %g1
2612	srlx	%g1, 1, %g1	! clear npt bit
2613
2614	retl
2615	stx     %g1, [%o0]	! store the timestamp
2616	SET_SIZE(stick_timestamp)
2617
2618#endif	/* lint */
2619
2620
2621#if defined(lint)
2622/*
2623 * Set STICK adjusted by skew.
2624 */
2625/* ARGSUSED */
2626void
2627stick_adj(int64_t skew)
2628{
2629}
2630
2631#else	/* lint */
2632
2633	ENTRY_NP(stick_adj)
2634	rdpr	%pstate, %g1		! save processor state
2635	andn	%g1, PSTATE_IE, %g3
2636	ba	1f			! cache align stick adj
2637	wrpr	%g0, %g3, %pstate	! turn off interrupts
2638
2639	.align	16
26401:	nop
2641
2642	rd	STICK, %g4		! read stick reg
2643	add	%g4, %o0, %o1		! adjust stick with skew
2644	wr	%o1, %g0, STICK		! write stick reg
2645
2646	retl
2647	wrpr	%g1, %pstate		! restore processor state
2648	SET_SIZE(stick_adj)
2649
2650#endif	/* lint */
2651
2652#if defined(lint)
2653/*
2654 * Debugger-specific stick retrieval
2655 */
2656/*ARGSUSED*/
2657int
2658kdi_get_stick(uint64_t *stickp)
2659{
2660	return (0);
2661}
2662
2663#else	/* lint */
2664
2665	ENTRY_NP(kdi_get_stick)
2666	rd	STICK, %g1
2667	stx	%g1, [%o0]
2668	retl
2669	mov	%g0, %o0
2670	SET_SIZE(kdi_get_stick)
2671
2672#endif	/* lint */
2673
2674#if defined(lint)
2675/*
2676 * Invalidate the specified line from the D$.
2677 *
2678 * Register usage:
2679 *	%o0 - index for the invalidation, specifies DC_way and DC_addr
2680 *
2681 * ASI_DC_TAG, 0x47, is used in the following manner. A 64-bit value is
2682 * stored to a particular DC_way and DC_addr in ASI_DC_TAG.
2683 *
2684 * The format of the stored 64-bit value is:
2685 *
2686 *	+----------+--------+----------+
2687 *	| Reserved | DC_tag | DC_valid |
2688 *	+----------+--------+----------+
2689 *       63      31 30     1	      0
2690 *
2691 * DC_tag is the 30-bit physical tag of the associated line.
2692 * DC_valid is the 1-bit valid field for both the physical and snoop tags.
2693 *
2694 * The format of the 64-bit DC_way and DC_addr into ASI_DC_TAG is:
2695 *
2696 *	+----------+--------+----------+----------+
2697 *	| Reserved | DC_way | DC_addr  | Reserved |
2698 *	+----------+--------+----------+----------+
2699 *       63      16 15    14 13       5 4        0
2700 *
2701 * DC_way is a 2-bit index that selects one of the 4 ways.
2702 * DC_addr is a 9-bit index that selects one of 512 tag/valid fields.
2703 *
2704 * Setting the DC_valid bit to zero for the specified DC_way and
2705 * DC_addr index into the D$ results in an invalidation of a D$ line.
2706 */
2707/*ARGSUSED*/
2708void
2709dcache_inval_line(int index)
2710{
2711}
2712#else	/* lint */
2713	ENTRY(dcache_inval_line)
2714	sll	%o0, 5, %o0		! shift index into DC_way and DC_addr
2715	stxa	%g0, [%o0]ASI_DC_TAG	! zero the DC_valid and DC_tag bits
2716	membar	#Sync
2717	retl
2718	nop
2719	SET_SIZE(dcache_inval_line)
2720#endif	/* lint */
2721
2722#if defined(lint)
2723/*
2724 * Invalidate the entire I$
2725 *
2726 * Register usage:
2727 *	%o0 - specifies IC_way, IC_addr, IC_tag
2728 *	%o1 - scratch
2729 *	%o2 - used to save and restore DCU value
2730 *	%o3 - scratch
2731 *	%o5 - used to save and restore PSTATE
2732 *
2733 * Due to the behavior of the I$ control logic when accessing ASI_IC_TAG,
2734 * the I$ should be turned off. Accesses to ASI_IC_TAG may collide and
2735 * block out snoops and invalidates to the I$, causing I$ consistency
2736 * to be broken. Before turning on the I$, all I$ lines must be invalidated.
2737 *
2738 * ASI_IC_TAG, 0x67, is used in the following manner. A 64-bit value is
2739 * stored to a particular IC_way, IC_addr, IC_tag in ASI_IC_TAG. The
2740 * info below describes store (write) use of ASI_IC_TAG. Note that read
2741 * use of ASI_IC_TAG behaves differently.
2742 *
2743 * The format of the stored 64-bit value is:
2744 *
2745 *	+----------+--------+---------------+-----------+
2746 *	| Reserved | Valid  | IC_vpred<7:0> | Undefined |
2747 *	+----------+--------+---------------+-----------+
2748 *       63      55    54    53           46 45        0
2749 *
2750 * Valid is the 1-bit valid field for both the physical and snoop tags.
2751 * IC_vpred is the 8-bit LPB bits for 8 instructions starting at
2752 *	the 32-byte boundary aligned address specified by IC_addr.
2753 *
2754 * The format of the 64-bit IC_way, IC_addr, IC_tag into ASI_IC_TAG is:
2755 *
2756 *	+----------+--------+---------+--------+---------+
2757 *	| Reserved | IC_way | IC_addr | IC_tag |Reserved |
2758 *	+----------+--------+---------+--------+---------+
2759 *       63      16 15    14 13      5 4      3 2       0
2760 *
2761 * IC_way is a 2-bit index that selects one of the 4 ways.
2762 * IC_addr[13:6] is an 8-bit index that selects one of 256 valid fields.
2763 * IC_addr[5] is a "don't care" for a store.
2764 * IC_tag set to 2 specifies that the stored value is to be interpreted
2765 *	as containing Valid and IC_vpred as described above.
2766 *
2767 * Setting the Valid bit to zero for the specified IC_way and
2768 * IC_addr index into the I$ results in an invalidation of an I$ line.
2769 */
2770/*ARGSUSED*/
2771void
2772icache_inval_all(void)
2773{
2774}
2775#else	/* lint */
2776	ENTRY(icache_inval_all)
2777	rdpr	%pstate, %o5
2778	andn	%o5, PSTATE_IE, %o3
2779	wrpr	%g0, %o3, %pstate	! clear IE bit
2780
2781	GET_CPU_PRIVATE_PTR(%g0, %o0, %o2, icache_inval_all_1);
2782	ld	[%o0 + CHPR_ICACHE_LINESIZE], %o1
2783	ba,pt	%icc, 2f
2784	  ld	[%o0 + CHPR_ICACHE_SIZE], %o0
2785icache_inval_all_1:
2786	ASM_LD(%o0, icache_size)
2787	ASM_LD(%o1, icache_linesize)
27882:
2789	CH_ICACHE_FLUSHALL(%o0, %o1, %o2, %o4)
2790
2791	retl
2792	wrpr	%g0, %o5, %pstate	! restore earlier pstate
2793	SET_SIZE(icache_inval_all)
2794#endif	/* lint */
2795
2796
2797#if defined(lint)
2798/* ARGSUSED */
2799void
2800cache_scrubreq_tl1(uint64_t inum, uint64_t index)
2801{
2802}
2803
2804#else	/* lint */
2805/*
2806 * cache_scrubreq_tl1 is the crosstrap handler called on offlined cpus via a
2807 * crosstrap.  It atomically increments the outstanding request counter and,
2808 * if there was not already an outstanding request, branches to setsoftint_tl1
2809 * to enqueue an intr_req for the given inum.
2810 */
2811
2812	! Register usage:
2813	!
2814	! Arguments:
2815	! %g1 - inum
2816	! %g2 - index into chsm_outstanding array
2817	!
2818	! Internal:
2819	! %g2, %g3, %g5 - scratch
2820	! %g4 - ptr. to scrub_misc chsm_outstanding[index].
2821	! %g6 - setsoftint_tl1 address
2822
2823	ENTRY_NP(cache_scrubreq_tl1)
2824	mulx	%g2, CHSM_OUTSTANDING_INCR, %g2
2825	set	CHPR_SCRUB_MISC + CHSM_OUTSTANDING, %g3
2826	add	%g2, %g3, %g2
2827	GET_CPU_PRIVATE_PTR(%g2, %g4, %g5, 1f);
2828	ld	[%g4], %g2		! cpu's chsm_outstanding[index]
2829	!
2830	! no need to use atomic instructions for the following
2831	! increment - we're at tl1
2832	!
2833	add	%g2, 0x1, %g3
2834	brnz,pn	%g2, 1f			! no need to enqueue more intr_req
2835	  st	%g3, [%g4]		! delay - store incremented counter
2836	ASM_JMP(%g6, setsoftint_tl1)
2837	! not reached
28381:
2839	retry
2840	SET_SIZE(cache_scrubreq_tl1)
2841
2842#endif	/* lint */
2843
2844
2845#if defined(lint)
2846
2847/* ARGSUSED */
2848void
2849get_cpu_error_state(ch_cpu_errors_t *cpu_error_regs)
2850{}
2851
2852#else	/* lint */
2853
2854/*
2855 * Get the error state for the processor.
2856 * Note that this must not be used at TL>0
2857 */
2858	ENTRY(get_cpu_error_state)
2859#if defined(CHEETAH_PLUS)
2860	set	ASI_SHADOW_REG_VA, %o2
2861	ldxa	[%o2]ASI_AFSR, %o1		! shadow afsr reg
2862	stx	%o1, [%o0 + CH_CPU_ERRORS_SHADOW_AFSR]
2863	ldxa	[%o2]ASI_AFAR, %o1		! shadow afar reg
2864	stx	%o1, [%o0 + CH_CPU_ERRORS_SHADOW_AFAR]
2865	GET_CPU_IMPL(%o3)	! Only panther has AFSR_EXT registers
2866	cmp	%o3, PANTHER_IMPL
2867	bne,a	1f
2868	  stx	%g0, [%o0 + CH_CPU_ERRORS_AFSR_EXT]	! zero for non-PN
2869	set	ASI_AFSR_EXT_VA, %o2
2870	ldxa	[%o2]ASI_AFSR, %o1		! afsr_ext reg
2871	stx	%o1, [%o0 + CH_CPU_ERRORS_AFSR_EXT]
2872	set	ASI_SHADOW_AFSR_EXT_VA, %o2
2873	ldxa	[%o2]ASI_AFSR, %o1		! shadow afsr_ext reg
2874	stx	%o1, [%o0 + CH_CPU_ERRORS_SHADOW_AFSR_EXT]
2875	b	2f
2876	  nop
28771:
2878	stx	%g0, [%o0 + CH_CPU_ERRORS_SHADOW_AFSR_EXT] ! zero for non-PN
28792:
2880#else	/* CHEETAH_PLUS */
2881	stx	%g0, [%o0 + CH_CPU_ERRORS_SHADOW_AFSR]
2882	stx	%g0, [%o0 + CH_CPU_ERRORS_SHADOW_AFAR]
2883	stx	%g0, [%o0 + CH_CPU_ERRORS_AFSR_EXT]
2884	stx	%g0, [%o0 + CH_CPU_ERRORS_SHADOW_AFSR_EXT]
2885#endif	/* CHEETAH_PLUS */
2886#if defined(SERRANO)
2887	/*
2888	 * Serrano has an afar2 which captures the address on FRC/FRU errors.
2889	 * We save this in the afar2 of the register save area.
2890	 */
2891	set	ASI_MCU_AFAR2_VA, %o2
2892	ldxa	[%o2]ASI_MCU_CTRL, %o1
2893	stx	%o1, [%o0 + CH_CPU_ERRORS_AFAR2]
2894#endif	/* SERRANO */
2895	ldxa	[%g0]ASI_AFSR, %o1		! primary afsr reg
2896	stx	%o1, [%o0 + CH_CPU_ERRORS_AFSR]
2897	ldxa	[%g0]ASI_AFAR, %o1		! primary afar reg
2898	retl
2899	stx	%o1, [%o0 + CH_CPU_ERRORS_AFAR]
2900	SET_SIZE(get_cpu_error_state)
2901#endif	/* lint */
2902
2903#if defined(lint)
2904
2905/*
2906 * Check a page of memory for errors.
2907 *
2908 * Load each 64 byte block from physical memory.
2909 * Check AFSR after each load to see if an error
2910 * was caused. If so, log/scrub that error.
2911 *
2912 * Used to determine if a page contains
2913 * CEs when CEEN is disabled.
2914 */
2915/*ARGSUSED*/
2916void
2917cpu_check_block(caddr_t va, uint_t psz)
2918{}
2919
2920#else	/* lint */
2921
2922	ENTRY(cpu_check_block)
2923	!
2924	! get a new window with room for the error regs
2925	!
2926	save	%sp, -SA(MINFRAME + CH_CPU_ERROR_SIZE), %sp
2927	srl	%i1, 6, %l4		! clear top bits of psz
2928					! and divide by 64
2929	rd	%fprs, %l2		! store FP
2930	wr	%g0, FPRS_FEF, %fprs	! enable FP
29311:
2932	ldda	[%i0]ASI_BLK_P, %d0	! load a block
2933	membar	#Sync
2934	ldxa    [%g0]ASI_AFSR, %l3	! read afsr reg
2935	brz,a,pt %l3, 2f		! check for error
2936	nop
2937
2938	!
2939	! if error, read the error regs and log it
2940	!
2941	call	get_cpu_error_state
2942	add	%fp, STACK_BIAS - CH_CPU_ERROR_SIZE, %o0
2943
2944	!
2945	! cpu_ce_detected(ch_cpu_errors_t *, flag)
2946	!
2947	call	cpu_ce_detected		! log the error
2948	mov	CE_CEEN_TIMEOUT, %o1
29492:
2950	dec	%l4			! next 64-byte block
2951	brnz,a,pt  %l4, 1b
2952	add	%i0, 64, %i0		! increment block addr
2953
2954	wr	%l2, %g0, %fprs		! restore FP
2955	ret
2956	restore
2957
2958	SET_SIZE(cpu_check_block)
2959
2960#endif	/* lint */
2961
2962#if defined(lint)
2963
2964/*
2965 * Perform a cpu logout called from C.  This is used where we did not trap
2966 * for the error but still want to gather "what we can".  Caller must make
2967 * sure cpu private area exists and that the indicated logout area is free
2968 * for use, and that we are unable to migrate cpus.
2969 */
2970/*ARGSUSED*/
2971void
2972cpu_delayed_logout(uint64_t afar, ch_cpu_logout_t *clop)
2973{ }
2974
2975#else
2976	ENTRY(cpu_delayed_logout)
2977	rdpr	%pstate, %o2
2978	andn	%o2, PSTATE_IE, %o2
2979	wrpr	%g0, %o2, %pstate		! disable interrupts
2980	PARK_SIBLING_CORE(%o2, %o3, %o4)	! %o2 has DCU value
2981	add	%o1, CH_CLO_DATA + CH_CHD_EC_DATA, %o1
2982	rd	%asi, %g1
2983	wr	%g0, ASI_P, %asi
2984	GET_ECACHE_DTAGS(%o0, %o1, %o3, %o4, %o5)
2985	wr	%g1, %asi
2986	UNPARK_SIBLING_CORE(%o2, %o3, %o4)	! can use %o2 again
2987	rdpr	%pstate, %o2
2988	or	%o2, PSTATE_IE, %o2
2989	wrpr	%g0, %o2, %pstate
2990	retl
2991	  nop
2992	SET_SIZE(cpu_delayed_logout)
2993
2994#endif	/* lint */
2995
2996#if defined(lint)
2997
2998/*ARGSUSED*/
2999int
3000dtrace_blksuword32(uintptr_t addr, uint32_t *data, int tryagain)
3001{ return (0); }
3002
3003#else
3004
3005	ENTRY(dtrace_blksuword32)
3006	save	%sp, -SA(MINFRAME + 4), %sp
3007
3008	rdpr	%pstate, %l1
3009	andn	%l1, PSTATE_IE, %l2		! disable interrupts to
3010	wrpr	%g0, %l2, %pstate		! protect our FPU diddling
3011
3012	rd	%fprs, %l0
3013	andcc	%l0, FPRS_FEF, %g0
3014	bz,a,pt	%xcc, 1f			! if the fpu is disabled
3015	wr	%g0, FPRS_FEF, %fprs		! ... enable the fpu
3016
3017	st	%f0, [%fp + STACK_BIAS - 4]	! save %f0 to the stack
30181:
3019	set	0f, %l5
3020        /*
3021         * We're about to write a block full or either total garbage
3022         * (not kernel data, don't worry) or user floating-point data
3023         * (so it only _looks_ like garbage).
3024         */
3025	ld	[%i1], %f0			! modify the block
3026	membar	#Sync
3027	stn	%l5, [THREAD_REG + T_LOFAULT]	! set up the lofault handler
3028	stda	%d0, [%i0]ASI_BLK_COMMIT_S	! store the modified block
3029	membar	#Sync
3030	stn	%g0, [THREAD_REG + T_LOFAULT]	! remove the lofault handler
3031
3032	bz,a,pt	%xcc, 1f
3033	wr	%g0, %l0, %fprs			! restore %fprs
3034
3035	ld	[%fp + STACK_BIAS - 4], %f0	! restore %f0
30361:
3037
3038	wrpr	%g0, %l1, %pstate		! restore interrupts
3039
3040	ret
3041	restore	%g0, %g0, %o0
3042
30430:
3044	membar	#Sync
3045	stn	%g0, [THREAD_REG + T_LOFAULT]	! remove the lofault handler
3046
3047	bz,a,pt	%xcc, 1f
3048	wr	%g0, %l0, %fprs			! restore %fprs
3049
3050	ld	[%fp + STACK_BIAS - 4], %f0	! restore %f0
30511:
3052
3053	wrpr	%g0, %l1, %pstate		! restore interrupts
3054
3055	/*
3056	 * If tryagain is set (%i2) we tail-call dtrace_blksuword32_err()
3057	 * which deals with watchpoints. Otherwise, just return -1.
3058	 */
3059	brnz,pt	%i2, 1f
3060	nop
3061	ret
3062	restore	%g0, -1, %o0
30631:
3064	call	dtrace_blksuword32_err
3065	restore
3066
3067	SET_SIZE(dtrace_blksuword32)
3068
3069#endif /* lint */
3070
3071#ifdef	CHEETAHPLUS_ERRATUM_25
3072
3073#if	defined(lint)
3074/*
3075 * Claim a chunk of physical address space.
3076 */
3077/*ARGSUSED*/
3078void
3079claimlines(uint64_t pa, size_t sz, int stride)
3080{}
3081#else	/* lint */
3082	ENTRY(claimlines)
30831:
3084	subcc	%o1, %o2, %o1
3085	add	%o0, %o1, %o3
3086	bgeu,a,pt	%xcc, 1b
3087	casxa	[%o3]ASI_MEM, %g0, %g0
3088	membar  #Sync
3089	retl
3090	nop
3091	SET_SIZE(claimlines)
3092#endif	/* lint */
3093
3094#if	defined(lint)
3095/*
3096 * CPU feature initialization,
3097 * turn BPE off,
3098 * get device id.
3099 */
3100/*ARGSUSED*/
3101void
3102cpu_feature_init(void)
3103{}
3104#else	/* lint */
3105	ENTRY(cpu_feature_init)
3106	save	%sp, -SA(MINFRAME), %sp
3107	sethi	%hi(cheetah_bpe_off), %o0
3108	ld	[%o0 + %lo(cheetah_bpe_off)], %o0
3109	brz	%o0, 1f
3110	nop
3111	rd	ASR_DISPATCH_CONTROL, %o0
3112	andn	%o0, ASR_DISPATCH_CONTROL_BPE, %o0
3113	wr	%o0, 0, ASR_DISPATCH_CONTROL
31141:
3115	!
3116	! get the device_id and store the device_id
3117	! in the appropriate cpunodes structure
3118	! given the cpus index
3119	!
3120	CPU_INDEX(%o0, %o1)
3121	mulx %o0, CPU_NODE_SIZE, %o0
3122	set  cpunodes + DEVICE_ID, %o1
3123	ldxa [%g0] ASI_DEVICE_SERIAL_ID, %o2
3124	stx  %o2, [%o0 + %o1]
3125#ifdef	CHEETAHPLUS_ERRATUM_34
3126	!
3127	! apply Cheetah+ erratum 34 workaround
3128	!
3129	call itlb_erratum34_fixup
3130	  nop
3131#endif	/* CHEETAHPLUS_ERRATUM_34 */
3132	ret
3133	  restore
3134	SET_SIZE(cpu_feature_init)
3135#endif	/* lint */
3136
3137#if	defined(lint)
3138/*
3139 * Copy a tsb entry atomically, from src to dest.
3140 * src must be 128 bit aligned.
3141 */
3142/*ARGSUSED*/
3143void
3144copy_tsb_entry(uintptr_t src, uintptr_t dest)
3145{}
3146#else	/* lint */
3147	ENTRY(copy_tsb_entry)
3148	ldda	[%o0]ASI_NQUAD_LD, %o2		! %o2 = tag, %o3 = data
3149	stx	%o2, [%o1]
3150	stx	%o3, [%o1 + 8 ]
3151	retl
3152	nop
3153	SET_SIZE(copy_tsb_entry)
3154#endif	/* lint */
3155
3156#endif	/* CHEETAHPLUS_ERRATUM_25 */
3157
3158#ifdef	CHEETAHPLUS_ERRATUM_34
3159
3160#if	defined(lint)
3161
3162/*ARGSUSED*/
3163void
3164itlb_erratum34_fixup(void)
3165{}
3166
3167#else	/* lint */
3168
3169	!
3170	! In Cheetah+ erratum 34, under certain conditions an ITLB locked
3171	! index 0 TTE will erroneously be displaced when a new TTE is
3172	! loaded via ASI_ITLB_IN.  In order to avoid cheetah+ erratum 34,
3173	! locked index 0 TTEs must be relocated.
3174	!
3175	! NOTE: Care must be taken to avoid an ITLB miss in this routine.
3176	!
3177	ENTRY_NP(itlb_erratum34_fixup)
3178	rdpr	%pstate, %o3
3179#ifdef DEBUG
3180	andcc	%o3, PSTATE_IE, %g0		! If interrupts already
3181	bnz,pt %icc, 0f				!   disabled, panic
3182	  nop
3183	sethi	%hi(sfmmu_panic1), %o0
3184	call	panic
3185	 or	%o0, %lo(sfmmu_panic1), %o0
31860:
3187#endif /* DEBUG */
3188	wrpr	%o3, PSTATE_IE, %pstate		! Disable interrupts
3189	ldxa	[%g0]ASI_ITLB_ACCESS, %o1	! %o1 = entry 0 data
3190	ldxa	[%g0]ASI_ITLB_TAGREAD, %o2	! %o2 = entry 0 tag
3191
3192	cmp	%o1, %g0			! Is this entry valid?
3193	bge	%xcc, 1f
3194	  andcc	%o1, TTE_LCK_INT, %g0		! Is this entry locked?
3195	bnz	%icc, 2f
3196	  nop
31971:
3198	retl					! Nope, outta here...
3199	  wrpr	%g0, %o3, %pstate		! Enable interrupts
32002:
3201	sethi	%hi(FLUSH_ADDR), %o4
3202	stxa	%g0, [%o2]ASI_ITLB_DEMAP	! Flush this mapping
3203	flush	%o4				! Flush required for I-MMU
3204	!
3205	! Start search from index 1 up.  This is because the kernel force
3206	! loads its text page at index 15 in sfmmu_kernel_remap() and we
3207	! don't want our relocated entry evicted later.
3208	!
3209	! NOTE: We assume that we'll be successful in finding an unlocked
3210	! or invalid entry.  If that isn't the case there are bound to
3211	! bigger problems.
3212	!
3213	set	(1 << 3), %g3
32143:
3215	ldxa	[%g3]ASI_ITLB_ACCESS, %o4	! Load TTE from t16
3216	!
3217	! If this entry isn't valid, we'll choose to displace it (regardless
3218	! of the lock bit).
3219	!
3220	cmp	%o4, %g0			! TTE is > 0 iff not valid
3221	bge	%xcc, 4f			! If invalid, go displace
3222	  andcc	%o4, TTE_LCK_INT, %g0		! Check for lock bit
3223	bnz,a	%icc, 3b			! If locked, look at next
3224	  add	%g3, (1 << 3), %g3		!  entry
32254:
3226	!
3227	! We found an unlocked or invalid entry; we'll explicitly load
3228	! the former index 0 entry here.
3229	!
3230	sethi	%hi(FLUSH_ADDR), %o4
3231	set	MMU_TAG_ACCESS, %g4
3232	stxa	%o2, [%g4]ASI_IMMU
3233	stxa	%o1, [%g3]ASI_ITLB_ACCESS
3234	flush	%o4				! Flush required for I-MMU
3235	retl
3236	  wrpr	%g0, %o3, %pstate		! Enable interrupts
3237	SET_SIZE(itlb_erratum34_fixup)
3238
3239#endif	/* lint */
3240
3241#endif	/* CHEETAHPLUS_ERRATUM_34 */
3242
3243