xref: /titanic_50/usr/src/uts/sun4u/cpu/us3_cheetahplus.c (revision d51e90740114c60620c0febffd4d3ce6e280a107)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/ddi.h>
31 #include <sys/sysmacros.h>
32 #include <sys/archsystm.h>
33 #include <sys/vmsystm.h>
34 #include <sys/machparam.h>
35 #include <sys/machsystm.h>
36 #include <sys/machthread.h>
37 #include <sys/cpu.h>
38 #include <sys/cmp.h>
39 #include <sys/elf_SPARC.h>
40 #include <vm/hat_sfmmu.h>
41 #include <vm/seg_kmem.h>
42 #include <sys/cpuvar.h>
43 #include <sys/cheetahregs.h>
44 #include <sys/us3_module.h>
45 #include <sys/async.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/dditypes.h>
49 #include <sys/prom_debug.h>
50 #include <sys/prom_plat.h>
51 #include <sys/cpu_module.h>
52 #include <sys/sysmacros.h>
53 #include <sys/intreg.h>
54 #include <sys/clock.h>
55 #include <sys/platform_module.h>
56 #include <sys/machtrap.h>
57 #include <sys/ontrap.h>
58 #include <sys/panic.h>
59 #include <sys/memlist.h>
60 #include <sys/bootconf.h>
61 #include <sys/ivintr.h>
62 #include <sys/atomic.h>
63 #include <sys/fm/protocol.h>
64 #include <sys/fm/cpu/UltraSPARC-III.h>
65 #include <sys/fm/util.h>
66 
67 #ifdef	CHEETAHPLUS_ERRATUM_25
68 #include <sys/cyclic.h>
69 #endif	/* CHEETAHPLUS_ERRATUM_25 */
70 
71 /*
72  * See comment above cpu_scrub_cpu_setup() for description
73  */
74 #define	SCRUBBER_NEITHER_CORE_ONLINE	0x0
75 #define	SCRUBBER_CORE_0_ONLINE		0x1
76 #define	SCRUBBER_CORE_1_ONLINE		0x2
77 #define	SCRUBBER_BOTH_CORES_ONLINE	(SCRUBBER_CORE_0_ONLINE | \
78 					SCRUBBER_CORE_1_ONLINE)
79 
80 static int pn_matching_valid_l2_line(uint64_t faddr, ch_ec_data_t *clo_l2_data);
81 static void cpu_async_log_tlb_parity_err(void *flt);
82 static cpu_t *cpu_get_sibling_core(cpu_t *cpup);
83 
84 
85 /*
86  * Setup trap handlers.
87  */
88 void
89 cpu_init_trap(void)
90 {
91 	CH_SET_TRAP(tt_pil15, ch_pil15_interrupt_instr);
92 
93 	CH_SET_TRAP(tt0_fecc, fecc_err_instr);
94 	CH_SET_TRAP(tt1_fecc, fecc_err_tl1_instr);
95 	CH_SET_TRAP(tt1_swtrap0, fecc_err_tl1_cont_instr);
96 
97 	CH_SET_TRAP(tt0_dperr, dcache_parity_instr);
98 	CH_SET_TRAP(tt1_dperr, dcache_parity_tl1_instr);
99 	CH_SET_TRAP(tt1_swtrap1, dcache_parity_tl1_cont_instr);
100 
101 	CH_SET_TRAP(tt0_iperr, icache_parity_instr);
102 	CH_SET_TRAP(tt1_iperr, icache_parity_tl1_instr);
103 	CH_SET_TRAP(tt1_swtrap2, icache_parity_tl1_cont_instr);
104 }
105 
106 /*
107  * Set the magic constants of the implementation.
108  */
109 /*ARGSUSED*/
110 void
111 cpu_fiximp(pnode_t dnode)
112 {
113 	int i, a;
114 	extern int vac_size, vac_shift;
115 	extern uint_t vac_mask;
116 
117 	dcache_size = CH_DCACHE_SIZE;
118 	dcache_linesize = CH_DCACHE_LSIZE;
119 
120 	icache_size = CHP_ICACHE_MAX_SIZE;
121 	icache_linesize = CHP_ICACHE_MIN_LSIZE;
122 
123 	ecache_size = CH_ECACHE_MAX_SIZE;
124 	ecache_alignsize = CH_ECACHE_MAX_LSIZE;
125 	ecache_associativity = CHP_ECACHE_MIN_NWAY;
126 
127 	/*
128 	 * ecache_setsize needs to maximum of all cpu ecache setsizes
129 	 */
130 	ecache_setsize = CHP_ECACHE_MAX_SETSIZE;
131 	ASSERT(ecache_setsize >= (ecache_size / ecache_associativity));
132 
133 	vac_size = CH_VAC_SIZE;
134 	vac_mask = MMU_PAGEMASK & (vac_size - 1);
135 	i = 0; a = vac_size;
136 	while (a >>= 1)
137 		++i;
138 	vac_shift = i;
139 	shm_alignment = vac_size;
140 	vac = 1;
141 }
142 
143 /*
144  * Use Panther values for Panther-only domains.
145  * See Panther PRM, 1.5.4 Cache Hierarchy
146  */
147 void
148 cpu_fix_allpanther(void)
149 {
150 	/* dcache same as Ch+ */
151 	icache_size = PN_ICACHE_SIZE;
152 	icache_linesize = PN_ICACHE_LSIZE;
153 	ecache_size = PN_L3_SIZE;
154 	ecache_alignsize = PN_L3_LINESIZE;
155 	ecache_associativity = PN_L3_NWAYS;
156 	ecache_setsize = PN_L3_SET_SIZE;
157 	ASSERT(ecache_setsize >= (ecache_size / ecache_associativity));
158 	/* vac same as Ch+ */
159 	/* fix hwcaps for USIV+-only domains */
160 	cpu_hwcap_flags |= AV_SPARC_POPC;
161 }
162 
163 void
164 send_mondo_set(cpuset_t set)
165 {
166 	int lo, busy, nack, shipped = 0;
167 	uint16_t i, cpuids[IDSR_BN_SETS];
168 	uint64_t idsr, nackmask = 0, busymask, curnack, curbusy;
169 	uint64_t starttick, endtick, tick, lasttick;
170 #if (NCPU > IDSR_BN_SETS)
171 	int index = 0;
172 	int ncpuids = 0;
173 #endif
174 #ifdef	CHEETAHPLUS_ERRATUM_25
175 	int recovered = 0;
176 	int cpuid;
177 #endif
178 
179 	ASSERT(!CPUSET_ISNULL(set));
180 	starttick = lasttick = gettick();
181 
182 #if (NCPU <= IDSR_BN_SETS)
183 	for (i = 0; i < NCPU; i++)
184 		if (CPU_IN_SET(set, i)) {
185 			shipit(i, shipped);
186 			nackmask |= IDSR_NACK_BIT(shipped);
187 			cpuids[shipped++] = i;
188 			CPUSET_DEL(set, i);
189 			if (CPUSET_ISNULL(set))
190 				break;
191 		}
192 	CPU_STATS_ADDQ(CPU, sys, xcalls, shipped);
193 #else
194 	for (i = 0; i < NCPU; i++)
195 		if (CPU_IN_SET(set, i)) {
196 			ncpuids++;
197 
198 			/*
199 			 * Ship only to the first (IDSR_BN_SETS) CPUs.  If we
200 			 * find we have shipped to more than (IDSR_BN_SETS)
201 			 * CPUs, set "index" to the highest numbered CPU in
202 			 * the set so we can ship to other CPUs a bit later on.
203 			 */
204 			if (shipped < IDSR_BN_SETS) {
205 				shipit(i, shipped);
206 				nackmask |= IDSR_NACK_BIT(shipped);
207 				cpuids[shipped++] = i;
208 				CPUSET_DEL(set, i);
209 				if (CPUSET_ISNULL(set))
210 					break;
211 			} else
212 				index = (int)i;
213 		}
214 
215 	CPU_STATS_ADDQ(CPU, sys, xcalls, ncpuids);
216 #endif
217 
218 	busymask = IDSR_NACK_TO_BUSY(nackmask);
219 	busy = nack = 0;
220 	endtick = starttick + xc_tick_limit;
221 	for (;;) {
222 		idsr = getidsr();
223 #if (NCPU <= IDSR_BN_SETS)
224 		if (idsr == 0)
225 			break;
226 #else
227 		if (idsr == 0 && shipped == ncpuids)
228 			break;
229 #endif
230 		tick = gettick();
231 		/*
232 		 * If there is a big jump between the current tick
233 		 * count and lasttick, we have probably hit a break
234 		 * point.  Adjust endtick accordingly to avoid panic.
235 		 */
236 		if (tick > (lasttick + xc_tick_jump_limit))
237 			endtick += (tick - lasttick);
238 		lasttick = tick;
239 		if (tick > endtick) {
240 			if (panic_quiesce)
241 				return;
242 #ifdef	CHEETAHPLUS_ERRATUM_25
243 			cpuid = -1;
244 			for (i = 0; i < IDSR_BN_SETS; i++) {
245 				if (idsr & (IDSR_NACK_BIT(i) |
246 				    IDSR_BUSY_BIT(i))) {
247 					cpuid = cpuids[i];
248 					break;
249 				}
250 			}
251 			if (cheetah_sendmondo_recover && cpuid != -1 &&
252 			    recovered == 0) {
253 				if (mondo_recover(cpuid, i)) {
254 					/*
255 					 * We claimed the whole memory or
256 					 * full scan is disabled.
257 					 */
258 					recovered++;
259 				}
260 				tick = gettick();
261 				endtick = tick + xc_tick_limit;
262 				lasttick = tick;
263 				/*
264 				 * Recheck idsr
265 				 */
266 				continue;
267 			} else
268 #endif	/* CHEETAHPLUS_ERRATUM_25 */
269 			{
270 				cmn_err(CE_CONT, "send mondo timeout "
271 				    "[%d NACK %d BUSY]\nIDSR 0x%"
272 				    "" PRIx64 "  cpuids:", nack, busy, idsr);
273 				for (i = 0; i < IDSR_BN_SETS; i++) {
274 					if (idsr & (IDSR_NACK_BIT(i) |
275 					    IDSR_BUSY_BIT(i))) {
276 						cmn_err(CE_CONT, " 0x%x",
277 						    cpuids[i]);
278 					}
279 				}
280 				cmn_err(CE_CONT, "\n");
281 				cmn_err(CE_PANIC, "send_mondo_set: timeout");
282 			}
283 		}
284 		curnack = idsr & nackmask;
285 		curbusy = idsr & busymask;
286 #if (NCPU > IDSR_BN_SETS)
287 		if (shipped < ncpuids) {
288 			uint64_t cpus_left;
289 			uint16_t next = (uint16_t)index;
290 
291 			cpus_left = ~(IDSR_NACK_TO_BUSY(curnack) | curbusy) &
292 				busymask;
293 
294 			if (cpus_left) {
295 				do {
296 					/*
297 					 * Sequence through and ship to the
298 					 * remainder of the CPUs in the system
299 					 * (e.g. other than the first
300 					 * (IDSR_BN_SETS)) in reverse order.
301 					 */
302 					lo = lowbit(cpus_left) - 1;
303 					i = IDSR_BUSY_IDX(lo);
304 					shipit(next, i);
305 					shipped++;
306 					cpuids[i] = next;
307 
308 					/*
309 					 * If we've processed all the CPUs,
310 					 * exit the loop now and save
311 					 * instructions.
312 					 */
313 					if (shipped == ncpuids)
314 						break;
315 
316 					for ((index = ((int)next - 1));
317 					    index >= 0; index--)
318 						if (CPU_IN_SET(set, index)) {
319 							next = (uint16_t)index;
320 							break;
321 						}
322 
323 					cpus_left &= ~(1ull << lo);
324 				} while (cpus_left);
325 #ifdef	CHEETAHPLUS_ERRATUM_25
326 				/*
327 				 * Clear recovered because we are sending to
328 				 * a new set of targets.
329 				 */
330 				recovered = 0;
331 #endif
332 				continue;
333 			}
334 		}
335 #endif
336 		if (curbusy) {
337 			busy++;
338 			continue;
339 		}
340 
341 #ifdef SEND_MONDO_STATS
342 		{
343 			int n = gettick() - starttick;
344 			if (n < 8192)
345 				x_nack_stimes[n >> 7]++;
346 		}
347 #endif
348 		while (gettick() < (tick + sys_clock_mhz))
349 			;
350 		do {
351 			lo = lowbit(curnack) - 1;
352 			i = IDSR_NACK_IDX(lo);
353 			shipit(cpuids[i], i);
354 			curnack &= ~(1ull << lo);
355 		} while (curnack);
356 		nack++;
357 		busy = 0;
358 	}
359 #ifdef SEND_MONDO_STATS
360 	{
361 		int n = gettick() - starttick;
362 		if (n < 8192)
363 			x_set_stimes[n >> 7]++;
364 		else
365 			x_set_ltimes[(n >> 13) & 0xf]++;
366 	}
367 	x_set_cpus[shipped]++;
368 #endif
369 }
370 
371 /*
372  * Handles error logging for implementation specific error types
373  */
374 /*ARGSUSED1*/
375 int
376 cpu_impl_async_log_err(void *flt, errorq_elem_t *eqep)
377 {
378 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)flt;
379 	struct async_flt *aflt = (struct async_flt *)flt;
380 
381 	switch (ch_flt->flt_type) {
382 
383 	case CPU_IC_PARITY:
384 		cpu_async_log_ic_parity_err(flt);
385 		return (CH_ASYNC_LOG_DONE);
386 
387 	case CPU_DC_PARITY:
388 		cpu_async_log_dc_parity_err(flt);
389 		return (CH_ASYNC_LOG_DONE);
390 
391 	case CPU_DUE:
392 		cpu_log_err(aflt);
393 		cpu_page_retire(ch_flt);
394 		return (CH_ASYNC_LOG_DONE);
395 
396 	case CPU_ITLB_PARITY:
397 	case CPU_DTLB_PARITY:
398 		cpu_async_log_tlb_parity_err(flt);
399 		return (CH_ASYNC_LOG_DONE);
400 
401 	/* report the error and continue */
402 	case CPU_L3_ADDR_PE:
403 		cpu_log_err(aflt);
404 		return (CH_ASYNC_LOG_DONE);
405 
406 	default:
407 		return (CH_ASYNC_LOG_UNKNOWN);
408 	}
409 }
410 
411 /*
412  * Figure out if Ecache is direct-mapped (Cheetah or Cheetah+ with Ecache
413  * control ECCR_ASSOC bit off or 2-way (Cheetah+ with ECCR_ASSOC on).
414  * We need to do this on the fly because we may have mixed Cheetah+'s with
415  * both direct and 2-way Ecaches. Panther only supports 4-way L3$.
416  */
417 int
418 cpu_ecache_nway(void)
419 {
420 	if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation))
421 		return (PN_L3_NWAYS);
422 	return ((get_ecache_ctrl() & ECCR_ASSOC) ? 2 : 1);
423 }
424 
425 /*
426  * Note that these are entered into the table: Fatal Errors (PERR, IERR, ISAP,
427  * EMU, IMU) first, orphaned UCU/UCC, AFAR Overwrite policy, finally IVU, IVC.
428  * Afar overwrite policy is:
429  *   Class 4:
430  *      AFSR     -- UCC, UCU, TUE, TSCE, TUE_SH
431  *      AFSR_EXT -- L3_UCC, L3_UCU, L3_TUE, L3_TUE_SH
432  *   Class 3:
433  *      AFSR     -- UE, DUE, EDU, WDU, CPU
434  *      AFSR_EXT -- L3_EDU, L3_WDU, L3_CPU
435  *   Class 2:
436  *      AFSR     -- CE, EDC, EMC, WDC, CPC, THCE
437  *      AFSR_EXT -- L3_EDC, L3_WDC, L3_CPC, L3_THCE
438  *   Class 1:
439  *      AFSR     -- TO, DTO, BERR, DBERR
440  */
441 ecc_type_to_info_t ecc_type_to_info[] = {
442 
443 	/* Fatal Errors */
444 	C_AFSR_PERR,		"PERR ",	ECC_ALL_TRAPS,
445 		CPU_FATAL,	"PERR Fatal",
446 		FM_EREPORT_PAYLOAD_SYSTEM2,
447 		FM_EREPORT_CPU_USIII_PERR,
448 	C_AFSR_IERR,		"IERR ", 	ECC_ALL_TRAPS,
449 		CPU_FATAL,	"IERR Fatal",
450 		FM_EREPORT_PAYLOAD_SYSTEM2,
451 		FM_EREPORT_CPU_USIII_IERR,
452 	C_AFSR_ISAP,		"ISAP ",	ECC_ALL_TRAPS,
453 		CPU_FATAL,	"ISAP Fatal",
454 		FM_EREPORT_PAYLOAD_SYSTEM1,
455 		FM_EREPORT_CPU_USIII_ISAP,
456 	C_AFSR_L3_TUE_SH,	"L3_TUE_SH ", 	ECC_C_TRAP,
457 		CPU_FATAL,	"L3_TUE_SH Fatal",
458 		FM_EREPORT_PAYLOAD_L3_TAG_ECC,
459 		FM_EREPORT_CPU_USIII_L3_TUE_SH,
460 	C_AFSR_L3_TUE,		"L3_TUE ", 	ECC_C_TRAP,
461 		CPU_FATAL,	"L3_TUE Fatal",
462 		FM_EREPORT_PAYLOAD_L3_TAG_ECC,
463 		FM_EREPORT_CPU_USIII_L3_TUE,
464 	C_AFSR_TUE_SH,		"TUE_SH ", 	ECC_C_TRAP,
465 		CPU_FATAL,	"TUE_SH Fatal",
466 		FM_EREPORT_PAYLOAD_L2_TAG_ECC,
467 		FM_EREPORT_CPU_USIII_TUE_SH,
468 	C_AFSR_TUE,		"TUE ", 	ECC_ALL_TRAPS,
469 		CPU_FATAL,	"TUE Fatal",
470 		FM_EREPORT_PAYLOAD_L2_TAG_ECC,
471 		FM_EREPORT_CPU_USIII_TUE,
472 	C_AFSR_EMU,		"EMU ",		ECC_ASYNC_TRAPS,
473 		CPU_FATAL,	"EMU Fatal",
474 		FM_EREPORT_PAYLOAD_MEMORY,
475 		FM_EREPORT_CPU_USIII_EMU,
476 	C_AFSR_IMU,		"IMU ",		ECC_C_TRAP,
477 		CPU_FATAL,	"IMU Fatal",
478 		FM_EREPORT_PAYLOAD_SYSTEM1,
479 		FM_EREPORT_CPU_USIII_IMU,
480 
481 	/* L3$ Address parity errors are reported via the MECC bit */
482 	C_AFSR_L3_MECC,		"L3_MECC ",	ECC_MECC_TRAPS,
483 		CPU_L3_ADDR_PE,	"L3 Address Parity",
484 		FM_EREPORT_PAYLOAD_L3_DATA,
485 		FM_EREPORT_CPU_USIII_L3_MECC,
486 
487 	/* Orphaned UCC/UCU Errors */
488 	C_AFSR_L3_UCU,		"L3_OUCU ",	ECC_ORPH_TRAPS,
489 		CPU_ORPH,	"Orphaned L3_UCU",
490 		FM_EREPORT_PAYLOAD_L3_DATA,
491 		FM_EREPORT_CPU_USIII_L3_UCU,
492 	C_AFSR_L3_UCC,		"L3_OUCC ",	ECC_ORPH_TRAPS,
493 		CPU_ORPH,	"Orphaned L3_UCC",
494 		FM_EREPORT_PAYLOAD_L3_DATA,
495 		FM_EREPORT_CPU_USIII_L3_UCC,
496 	C_AFSR_UCU,		"OUCU ",	ECC_ORPH_TRAPS,
497 		CPU_ORPH,	"Orphaned UCU",
498 		FM_EREPORT_PAYLOAD_L2_DATA,
499 		FM_EREPORT_CPU_USIII_UCU,
500 	C_AFSR_UCC,		"OUCC ",	ECC_ORPH_TRAPS,
501 		CPU_ORPH,	"Orphaned UCC",
502 		FM_EREPORT_PAYLOAD_L2_DATA,
503 		FM_EREPORT_CPU_USIII_UCC,
504 
505 	/* UCU, UCC */
506 	C_AFSR_L3_UCU,		"L3_UCU ",	ECC_F_TRAP,
507 		CPU_UE_ECACHE,	"L3_UCU",
508 		FM_EREPORT_PAYLOAD_L3_DATA,
509 		FM_EREPORT_CPU_USIII_L3_UCU,
510 	C_AFSR_L3_UCC,		"L3_UCC ",	ECC_F_TRAP,
511 		CPU_CE_ECACHE,	"L3_UCC",
512 		FM_EREPORT_PAYLOAD_L3_DATA,
513 		FM_EREPORT_CPU_USIII_L3_UCC,
514 	C_AFSR_UCU,		"UCU ",		ECC_F_TRAP,
515 		CPU_UE_ECACHE,	"UCU",
516 		FM_EREPORT_PAYLOAD_L2_DATA,
517 		FM_EREPORT_CPU_USIII_UCU,
518 	C_AFSR_UCC,		"UCC ",		ECC_F_TRAP,
519 		CPU_CE_ECACHE,	"UCC",
520 		FM_EREPORT_PAYLOAD_L2_DATA,
521 		FM_EREPORT_CPU_USIII_UCC,
522 	C_AFSR_TSCE,		"TSCE ",	ECC_F_TRAP,
523 		CPU_CE_ECACHE,	"TSCE",
524 		FM_EREPORT_PAYLOAD_L2_TAG_ECC,
525 		FM_EREPORT_CPU_USIII_TSCE,
526 
527 	/* UE, EDU:ST, EDU:BLD, WDU, CPU */
528 	C_AFSR_UE,		"UE ",		ECC_ASYNC_TRAPS,
529 		CPU_UE,		"Uncorrectable system bus (UE)",
530 		FM_EREPORT_PAYLOAD_MEMORY,
531 		FM_EREPORT_CPU_USIII_UE,
532 	C_AFSR_L3_EDU,		"L3_EDU ",	ECC_C_TRAP,
533 		CPU_UE_ECACHE_RETIRE,	"L3_EDU:ST",
534 		FM_EREPORT_PAYLOAD_L3_DATA,
535 		FM_EREPORT_CPU_USIII_L3_EDUST,
536 	C_AFSR_L3_EDU,		"L3_EDU ",	ECC_D_TRAP,
537 		CPU_UE_ECACHE_RETIRE,	"L3_EDU:BLD",
538 		FM_EREPORT_PAYLOAD_L3_DATA,
539 		FM_EREPORT_CPU_USIII_L3_EDUBL,
540 	C_AFSR_L3_WDU,		"L3_WDU ",	ECC_C_TRAP,
541 		CPU_UE_ECACHE_RETIRE,	"L3_WDU",
542 		FM_EREPORT_PAYLOAD_L3_DATA,
543 		FM_EREPORT_CPU_USIII_L3_WDU,
544 	C_AFSR_L3_CPU,		"L3_CPU ",	ECC_C_TRAP,
545 		CPU_UE_ECACHE,	"L3_CPU",
546 		FM_EREPORT_PAYLOAD_L3_DATA,
547 		FM_EREPORT_CPU_USIII_L3_CPU,
548 	C_AFSR_EDU,		"EDU ",		ECC_C_TRAP,
549 		CPU_UE_ECACHE_RETIRE,	"EDU:ST",
550 		FM_EREPORT_PAYLOAD_L2_DATA,
551 		FM_EREPORT_CPU_USIII_EDUST,
552 	C_AFSR_EDU,		"EDU ",		ECC_D_TRAP,
553 		CPU_UE_ECACHE_RETIRE,	"EDU:BLD",
554 		FM_EREPORT_PAYLOAD_L2_DATA,
555 		FM_EREPORT_CPU_USIII_EDUBL,
556 	C_AFSR_WDU,		"WDU ",		ECC_C_TRAP,
557 		CPU_UE_ECACHE_RETIRE,	"WDU",
558 		FM_EREPORT_PAYLOAD_L2_DATA,
559 		FM_EREPORT_CPU_USIII_WDU,
560 	C_AFSR_CPU,		"CPU ",		ECC_C_TRAP,
561 		CPU_UE_ECACHE,	"CPU",
562 		FM_EREPORT_PAYLOAD_L2_DATA,
563 		FM_EREPORT_CPU_USIII_CPU,
564 	C_AFSR_DUE,		"DUE ",		ECC_C_TRAP,
565 		CPU_DUE,	"DUE",
566 		FM_EREPORT_PAYLOAD_MEMORY,
567 		FM_EREPORT_CPU_USIII_DUE,
568 
569 	/* CE, EDC, EMC, WDC, CPC */
570 	C_AFSR_CE,		"CE ",		ECC_C_TRAP,
571 		CPU_CE,		"Corrected system bus (CE)",
572 		FM_EREPORT_PAYLOAD_MEMORY,
573 		FM_EREPORT_CPU_USIII_CE,
574 	C_AFSR_L3_EDC,		"L3_EDC ",	ECC_C_TRAP,
575 		CPU_CE_ECACHE,	"L3_EDC",
576 		FM_EREPORT_PAYLOAD_L3_DATA,
577 		FM_EREPORT_CPU_USIII_L3_EDC,
578 	C_AFSR_EDC,		"EDC ",		ECC_C_TRAP,
579 		CPU_CE_ECACHE,	"EDC",
580 		FM_EREPORT_PAYLOAD_L2_DATA,
581 		FM_EREPORT_CPU_USIII_EDC,
582 	C_AFSR_EMC,		"EMC ",		ECC_C_TRAP,
583 		CPU_EMC,	"EMC",
584 		FM_EREPORT_PAYLOAD_MEMORY,
585 		FM_EREPORT_CPU_USIII_EMC,
586 	C_AFSR_L3_WDC,		"L3_WDC ",	ECC_C_TRAP,
587 		CPU_CE_ECACHE,	"L3_WDC",
588 		FM_EREPORT_PAYLOAD_L3_DATA,
589 		FM_EREPORT_CPU_USIII_L3_WDC,
590 	C_AFSR_L3_CPC,		"L3_CPC ",	ECC_C_TRAP,
591 		CPU_CE_ECACHE,	"L3_CPC",
592 		FM_EREPORT_PAYLOAD_L3_DATA,
593 		FM_EREPORT_CPU_USIII_L3_CPC,
594 	C_AFSR_L3_THCE,		"L3_THCE ",	ECC_C_TRAP,
595 		CPU_CE_ECACHE,	"L3_THCE",
596 		FM_EREPORT_PAYLOAD_L3_TAG_ECC,
597 		FM_EREPORT_CPU_USIII_L3_THCE,
598 	C_AFSR_WDC,		"WDC ",		ECC_C_TRAP,
599 		CPU_CE_ECACHE,	"WDC",
600 		FM_EREPORT_PAYLOAD_L2_DATA,
601 		FM_EREPORT_CPU_USIII_WDC,
602 	C_AFSR_CPC,		"CPC ",		ECC_C_TRAP,
603 		CPU_CE_ECACHE,	"CPC",
604 		FM_EREPORT_PAYLOAD_L2_DATA,
605 		FM_EREPORT_CPU_USIII_CPC,
606 	C_AFSR_THCE,		"THCE ",	ECC_C_TRAP,
607 		CPU_CE_ECACHE,	"THCE",
608 		FM_EREPORT_PAYLOAD_L2_TAG_ECC,
609 		FM_EREPORT_CPU_USIII_THCE,
610 
611 	/* TO, BERR */
612 	C_AFSR_TO,		"TO ",		ECC_ASYNC_TRAPS,
613 		CPU_TO,		"Timeout (TO)",
614 		FM_EREPORT_PAYLOAD_IO,
615 		FM_EREPORT_CPU_USIII_TO,
616 	C_AFSR_BERR,		"BERR ",	ECC_ASYNC_TRAPS,
617 		CPU_BERR,	"Bus Error (BERR)",
618 		FM_EREPORT_PAYLOAD_IO,
619 		FM_EREPORT_CPU_USIII_BERR,
620 	C_AFSR_DTO,		"DTO ",		ECC_C_TRAP,
621 		CPU_TO,		"Disrupting Timeout (DTO)",
622 		FM_EREPORT_PAYLOAD_IO,
623 		FM_EREPORT_CPU_USIII_DTO,
624 	C_AFSR_DBERR,		"DBERR ",	ECC_C_TRAP,
625 		CPU_BERR,	"Disrupting Bus Error (DBERR)",
626 		FM_EREPORT_PAYLOAD_IO,
627 		FM_EREPORT_CPU_USIII_DBERR,
628 
629 	/* IVU, IVC, IMC */
630 	C_AFSR_IVU,		"IVU ",		ECC_C_TRAP,
631 		CPU_IV,		"IVU",
632 		FM_EREPORT_PAYLOAD_SYSTEM1,
633 		FM_EREPORT_CPU_USIII_IVU,
634 	C_AFSR_IVC,		"IVC ",		ECC_C_TRAP,
635 		CPU_IV,		"IVC",
636 		FM_EREPORT_PAYLOAD_SYSTEM1,
637 		FM_EREPORT_CPU_USIII_IVC,
638 	C_AFSR_IMC,		"IMC ",		ECC_C_TRAP,
639 		CPU_IV,		"IMC",
640 		FM_EREPORT_PAYLOAD_SYSTEM1,
641 		FM_EREPORT_CPU_USIII_IMC,
642 
643 	0,			NULL,		0,
644 		0,		NULL,
645 		FM_EREPORT_PAYLOAD_UNKNOWN,
646 		FM_EREPORT_CPU_USIII_UNKNOWN,
647 };
648 
649 /*
650  * See Cheetah+ Delta PRM 10.9 and section P.6.1 of the Panther PRM
651  *   Class 4:
652  *      AFSR     -- UCC, UCU, TUE, TSCE, TUE_SH
653  *      AFSR_EXT -- L3_UCC, L3_UCU, L3_TUE, L3_TUE_SH
654  *   Class 3:
655  *      AFSR     -- UE, DUE, EDU, EMU, WDU, CPU
656  *      AFSR_EXT -- L3_EDU, L3_WDU, L3_CPU
657  *   Class 2:
658  *      AFSR     -- CE, EDC, EMC, WDC, CPC, THCE
659  *      AFSR_EXT -- L3_EDC, L3_WDC, L3_CPC, L3_THCE
660  *   Class 1:
661  *      AFSR     -- TO, DTO, BERR, DBERR
662  *      AFSR_EXT --
663  */
664 uint64_t afar_overwrite[] = {
665 	/* class 4: */
666 	C_AFSR_UCC | C_AFSR_UCU | C_AFSR_TUE | C_AFSR_TSCE | C_AFSR_TUE_SH |
667 	C_AFSR_L3_UCC | C_AFSR_L3_UCU | C_AFSR_L3_TUE | C_AFSR_L3_TUE_SH,
668 	/* class 3: */
669 	C_AFSR_UE | C_AFSR_DUE | C_AFSR_EDU | C_AFSR_EMU | C_AFSR_WDU |
670 	C_AFSR_CPU | C_AFSR_L3_EDU | C_AFSR_L3_WDU | C_AFSR_L3_CPU,
671 	/* class 2: */
672 	C_AFSR_CE | C_AFSR_EDC | C_AFSR_EMC | C_AFSR_WDC | C_AFSR_CPC |
673 	C_AFSR_THCE | C_AFSR_L3_EDC | C_AFSR_L3_WDC | C_AFSR_L3_CPC |
674 	C_AFSR_L3_THCE,
675 	/* class 1: */
676 	C_AFSR_TO | C_AFSR_DTO | C_AFSR_BERR | C_AFSR_DBERR,
677 
678 	0
679 };
680 
681 /*
682  * For Cheetah+, the E_SYND and M_SYND overwrite priorities are combined.
683  * See Cheetah+ Delta PRM 10.9 and Cheetah+ PRM 11.6.2
684  *   Class 2:  UE, DUE, IVU, EDU, EMU, WDU, UCU, CPU
685  *   Class 1:  CE, IVC, EDC, EMC, WDC, UCC, CPC
686  */
687 uint64_t esynd_overwrite[] = {
688 	/* class 2: */
689 	C_AFSR_UE | C_AFSR_DUE | C_AFSR_IVU | C_AFSR_EDU | C_AFSR_EMU |
690 	    C_AFSR_WDU | C_AFSR_UCU | C_AFSR_CPU,
691 	/* class 1: */
692 	C_AFSR_CE | C_AFSR_IVC | C_AFSR_EDC | C_AFSR_EMC | C_AFSR_WDC |
693 	    C_AFSR_UCC | C_AFSR_CPC,
694 	0
695 };
696 
697 /*
698  * In panther, the E_SYND overwrite policy changed a little bit
699  * by adding one more level.
700  * See Panther PRM P.6.2
701  *   class 3:
702  *      AFSR     -- UCU, UCC
703  *      AFSR_EXT -- L3_UCU, L3_UCC
704  *   Class 2:
705  *      AFSR     -- UE, DUE, IVU, EDU, WDU, CPU
706  *      AFSR_EXT -- L3_EDU, L3_WDU, L3_CPU
707  *   Class 1:
708  *      AFSR     -- CE, IVC, EDC, WDC, CPC
709  *      AFSR_EXT -- L3_EDC, L3_WDC, L3_CPC
710  */
711 uint64_t pn_esynd_overwrite[] = {
712 	/* class 3: */
713 	C_AFSR_UCU | C_AFSR_UCC |
714 	C_AFSR_L3_UCU | C_AFSR_L3_UCC,
715 	/* class 2: */
716 	C_AFSR_UE | C_AFSR_DUE | C_AFSR_IVU | C_AFSR_EDU | C_AFSR_WDU |
717 	    C_AFSR_CPU |
718 	C_AFSR_L3_EDU | C_AFSR_L3_WDU | C_AFSR_L3_CPU,
719 	/* class 1: */
720 	C_AFSR_CE | C_AFSR_IVC | C_AFSR_EDC | C_AFSR_WDC | C_AFSR_CPC |
721 	C_AFSR_L3_EDC | C_AFSR_L3_WDC | C_AFSR_L3_CPC,
722 
723 	0
724 };
725 
726 int
727 afsr_to_pn_esynd_status(uint64_t afsr, uint64_t afsr_bit)
728 {
729 	return (afsr_to_overw_status(afsr, afsr_bit, pn_esynd_overwrite));
730 }
731 
732 /*
733  * Prioritized list of Error bits for MSYND overwrite.
734  * See Panther PRM P.6.2 (For Cheetah+, see esynd_overwrite classes)
735  *   Class 2:  EMU, IMU
736  *   Class 1:  EMC, IMC
737  *
738  * Panther adds IMU and IMC.
739  */
740 uint64_t msynd_overwrite[] = {
741 	/* class 2: */
742 	C_AFSR_EMU | C_AFSR_IMU,
743 	/* class 1: */
744 	C_AFSR_EMC | C_AFSR_IMC,
745 
746 	0
747 };
748 
749 /*
750  * change cpu speed bits -- new speed will be normal-speed/divisor.
751  *
752  * The Jalapeno memory controllers are required to drain outstanding
753  * memory transactions within 32 JBus clocks in order to be ready
754  * to enter Estar mode.  In some corner cases however, that time
755  * fell short.
756  *
757  * A safe software solution is to force MCU to act like in Estar mode,
758  * then delay 1us (in ppm code) prior to assert J_CHNG_L signal.
759  * To reverse the effect, upon exiting Estar, software restores the
760  * MCU to its original state.
761  */
762 /* ARGSUSED1 */
763 void
764 cpu_change_speed(uint64_t divisor, uint64_t arg2)
765 {
766 	bus_config_eclk_t *bceclk;
767 	uint64_t		reg;
768 
769 	for (bceclk = bus_config_eclk; bceclk->divisor; bceclk++) {
770 		if (bceclk->divisor != divisor)
771 			continue;
772 		reg = get_safari_config();
773 		reg &= ~SAFARI_CONFIG_ECLK_MASK;
774 		reg |= bceclk->mask;
775 		set_safari_config(reg);
776 		CPU->cpu_m.divisor = (uchar_t)divisor;
777 		return;
778 	}
779 	/*
780 	 * We will reach here only if OBP and kernel don't agree on
781 	 * the speeds supported by the CPU.
782 	 */
783 	cmn_err(CE_WARN, "cpu_change_speed: bad divisor %" PRIu64, divisor);
784 }
785 
786 /*
787  * Cpu private initialization.  This includes allocating the cpu_private
788  * data structure, initializing it, and initializing the scrubber for this
789  * cpu.  This function calls cpu_init_ecache_scrub_dr to init the scrubber.
790  * We use kmem_cache_create for the cheetah private data structure because
791  * it needs to be allocated on a PAGESIZE (8192) byte boundary.
792  */
793 void
794 cpu_init_private(struct cpu *cp)
795 {
796 	cheetah_private_t *chprp;
797 	int i;
798 
799 	ASSERT(CPU_PRIVATE(cp) == NULL);
800 
801 	/* LINTED: E_TRUE_LOGICAL_EXPR */
802 	ASSERT((offsetof(cheetah_private_t, chpr_tl1_err_data) +
803 	    sizeof (ch_err_tl1_data_t) * CH_ERR_TL1_TLMAX) <= PAGESIZE);
804 
805 	/*
806 	 * Running with Cheetah CPUs in a Cheetah+, Jaguar, Panther or
807 	 * mixed Cheetah+/Jaguar/Panther machine is not a supported
808 	 * configuration. Attempting to do so may result in unpredictable
809 	 * failures (e.g. running Cheetah+ CPUs with Cheetah E$ disp flush)
810 	 * so don't allow it.
811 	 *
812 	 * This is just defensive code since this configuration mismatch
813 	 * should have been caught prior to OS execution.
814 	 */
815 	if (!(IS_CHEETAH_PLUS(cpunodes[cp->cpu_id].implementation) ||
816 	    IS_JAGUAR(cpunodes[cp->cpu_id].implementation) ||
817 	    IS_PANTHER(cpunodes[cp->cpu_id].implementation))) {
818 		cmn_err(CE_PANIC, "CPU%d: UltraSPARC-III not supported"
819 		    " on UltraSPARC-III+/IV/IV+ code\n", cp->cpu_id);
820 	}
821 
822 	/*
823 	 * If the ch_private_cache has not been created, create it.
824 	 */
825 	if (ch_private_cache == NULL) {
826 		ch_private_cache = kmem_cache_create("ch_private_cache",
827 		    sizeof (cheetah_private_t), PAGESIZE, NULL, NULL,
828 		    NULL, NULL, static_arena, 0);
829 	}
830 
831 	chprp = CPU_PRIVATE(cp) = kmem_cache_alloc(ch_private_cache, KM_SLEEP);
832 
833 	bzero(chprp, sizeof (cheetah_private_t));
834 	chprp->chpr_fecctl0_logout.clo_data.chd_afar = LOGOUT_INVALID;
835 	chprp->chpr_cecc_logout.clo_data.chd_afar = LOGOUT_INVALID;
836 	chprp->chpr_async_logout.clo_data.chd_afar = LOGOUT_INVALID;
837 	chprp->chpr_tlb_logout.tlo_addr = LOGOUT_INVALID;
838 	for (i = 0; i < CH_ERR_TL1_TLMAX; i++)
839 		chprp->chpr_tl1_err_data[i].ch_err_tl1_logout.clo_data.chd_afar
840 		    = LOGOUT_INVALID;
841 
842 	/* Panther has a larger Icache compared to cheetahplus or Jaguar */
843 	if (IS_PANTHER(cpunodes[cp->cpu_id].implementation)) {
844 		chprp->chpr_icache_size = PN_ICACHE_SIZE;
845 		chprp->chpr_icache_linesize = PN_ICACHE_LSIZE;
846 	} else {
847 		chprp->chpr_icache_size = CH_ICACHE_SIZE;
848 		chprp->chpr_icache_linesize = CH_ICACHE_LSIZE;
849 	}
850 
851 	cpu_init_ecache_scrub_dr(cp);
852 
853 	/*
854 	 * Panther's L2$ and E$ are shared between cores, so the scrubber is
855 	 * only needed on one of the cores.  At this point, we assume all cores
856 	 * are online, and we only enable the scrubber on core 0.
857 	 */
858 	if (IS_PANTHER(cpunodes[cp->cpu_id].implementation)) {
859 		chprp->chpr_scrub_misc.chsm_core_state =
860 		    SCRUBBER_BOTH_CORES_ONLINE;
861 		if (cp->cpu_id != (processorid_t)cmp_cpu_to_chip(cp->cpu_id)) {
862 			chprp->chpr_scrub_misc.chsm_enable[
863 			    CACHE_SCRUBBER_INFO_E] = 0;
864 		}
865 	}
866 
867 	chprp->chpr_ec_set_size = cpunodes[cp->cpu_id].ecache_size /
868 	    cpu_ecache_nway();
869 
870 	adjust_hw_copy_limits(cpunodes[cp->cpu_id].ecache_size);
871 	ch_err_tl1_paddrs[cp->cpu_id] = va_to_pa(chprp);
872 	ASSERT(ch_err_tl1_paddrs[cp->cpu_id] != -1);
873 }
874 
875 /*
876  * Clear the error state registers for this CPU.
877  * For Cheetah+/Jaguar, just clear the AFSR but
878  * for Panther we also have to clear the AFSR_EXT.
879  */
880 void
881 set_cpu_error_state(ch_cpu_errors_t *cpu_error_regs)
882 {
883 	set_asyncflt(cpu_error_regs->afsr & ~C_AFSR_FATAL_ERRS);
884 	if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation)) {
885 		set_afsr_ext(cpu_error_regs->afsr_ext & ~C_AFSR_EXT_FATAL_ERRS);
886 	}
887 }
888 
889 void
890 pn_cpu_log_diag_l2_info(ch_async_flt_t *ch_flt) {
891 	struct async_flt *aflt = (struct async_flt *)ch_flt;
892 	ch_ec_data_t *l2_data = &ch_flt->flt_diag_data.chd_l2_data[0];
893 	uint64_t faddr = aflt->flt_addr;
894 	uint8_t log_way_mask = 0;
895 	int i;
896 
897 	/*
898 	 * Only Panther CPUs have the additional L2$ data that needs
899 	 * to be logged here
900 	 */
901 	if (!IS_PANTHER(cpunodes[aflt->flt_inst].implementation))
902 		return;
903 
904 	/*
905 	 * We'll use a simple bit mask to keep track of which way(s)
906 	 * of the stored cache line we want to log. The idea is to
907 	 * log the entry if it is a valid line and it matches our
908 	 * fault AFAR. If no match is found, we will simply log all
909 	 * the ways.
910 	 */
911 	for (i = 0; i < PN_L2_NWAYS; i++)
912 		if (pn_matching_valid_l2_line(faddr, &l2_data[i]))
913 			log_way_mask |= (1 << i);
914 
915 	/* If no matching valid lines were found, we log all ways */
916 	if (log_way_mask == 0)
917 		log_way_mask = (1 << PN_L2_NWAYS) - 1;
918 
919 	/* Log the cache lines */
920 	for (i = 0; i < PN_L2_NWAYS; i++)
921 		if (log_way_mask & (1 << i))
922 			l2_data[i].ec_logflag = EC_LOGFLAG_MAGIC;
923 }
924 
925 /*
926  * For this routine to return true, the L2 tag in question must be valid
927  * and the tag PA must match the fault address (faddr) assuming the correct
928  * index is being used.
929  */
930 static int
931 pn_matching_valid_l2_line(uint64_t faddr, ch_ec_data_t *clo_l2_data) {
932 	if ((!PN_L2_LINE_INVALID(clo_l2_data->ec_tag)) &&
933 	((faddr & P2ALIGN(C_AFAR_PA, PN_L2_SET_SIZE)) ==
934 	    PN_L2TAG_TO_PA(clo_l2_data->ec_tag)))
935 		return (1);
936 	return (0);
937 }
938 
939 /*
940  * This array is used to convert the 3 digit PgSz encoding (as used in
941  * various MMU registers such as MMU_TAG_ACCESS_EXT) into the corresponding
942  * page size.
943  */
944 static uint64_t tlb_pgsz_to_size[] = {
945 	/* 000 = 8KB: */
946 	0x2000,
947 	/* 001 = 64KB: */
948 	0x10000,
949 	/* 010 = 512KB: */
950 	0x80000,
951 	/* 011 = 4MB: */
952 	0x400000,
953 	/* 100 = 32MB: */
954 	0x2000000,
955 	/* 101 = 256MB: */
956 	0x10000000,
957 	/* undefined for encodings 110 and 111: */
958 	0, 0
959 };
960 
961 /*
962  * The itlb_parity_trap and dtlb_parity_trap handlers transfer control here
963  * after collecting logout information related to the TLB parity error and
964  * flushing the offending TTE entries from the ITLB or DTLB.
965  *
966  * DTLB traps which occur at TL>0 are not recoverable because we will most
967  * likely be corrupting some other trap handler's alternate globals. As
968  * such, we simply panic here when that happens. ITLB parity errors are
969  * not expected to happen at TL>0.
970  */
971 void
972 cpu_tlb_parity_error(struct regs *rp, ulong_t trap_va, ulong_t tlb_info) {
973 	ch_async_flt_t ch_flt;
974 	struct async_flt *aflt;
975 	pn_tlb_logout_t *tlop = NULL;
976 	int immu_parity = (tlb_info & PN_TLO_INFO_IMMU) != 0;
977 	int tl1_trap = (tlb_info & PN_TLO_INFO_TL1) != 0;
978 	char *error_class;
979 
980 	bzero(&ch_flt, sizeof (ch_async_flt_t));
981 
982 	/*
983 	 * Get the CPU log out info. If we can't find our CPU private
984 	 * pointer, or if the logout information does not correspond to
985 	 * this error, then we will have to make due without detailed
986 	 * logout information.
987 	 */
988 	if (CPU_PRIVATE(CPU)) {
989 		tlop = CPU_PRIVATE_PTR(CPU, chpr_tlb_logout);
990 		if ((tlop->tlo_addr != trap_va) ||
991 		    (tlop->tlo_info != tlb_info))
992 			tlop = NULL;
993 	}
994 
995 	if (tlop) {
996 		ch_flt.tlb_diag_data = *tlop;
997 
998 		/* Zero out + invalidate TLB logout. */
999 		bzero(tlop, sizeof (pn_tlb_logout_t));
1000 		tlop->tlo_addr = LOGOUT_INVALID;
1001 	} else {
1002 		/*
1003 		 * Copy what logout information we have and mark
1004 		 * it incomplete.
1005 		 */
1006 		ch_flt.flt_data_incomplete = 1;
1007 		ch_flt.tlb_diag_data.tlo_info = tlb_info;
1008 		ch_flt.tlb_diag_data.tlo_addr = trap_va;
1009 	}
1010 
1011 	/*
1012 	 * Log the error.
1013 	 */
1014 	aflt = (struct async_flt *)&ch_flt;
1015 	aflt->flt_id = gethrtime_waitfree();
1016 	aflt->flt_bus_id = getprocessorid();
1017 	aflt->flt_inst = CPU->cpu_id;
1018 	aflt->flt_pc = (caddr_t)rp->r_pc;
1019 	aflt->flt_addr = trap_va;
1020 	aflt->flt_prot = AFLT_PROT_NONE;
1021 	aflt->flt_class = CPU_FAULT;
1022 	aflt->flt_priv = (rp->r_tstate & TSTATE_PRIV) ?  1 : 0;
1023 	aflt->flt_tl = tl1_trap ? 1 : 0;
1024 	aflt->flt_panic = tl1_trap ? 1 : 0;
1025 
1026 	if (immu_parity) {
1027 		aflt->flt_status = ECC_ITLB_TRAP;
1028 		ch_flt.flt_type = CPU_ITLB_PARITY;
1029 		error_class = FM_EREPORT_CPU_USIII_ITLBPE;
1030 		aflt->flt_payload = FM_EREPORT_PAYLOAD_ITLB_PE;
1031 	} else {
1032 		aflt->flt_status = ECC_DTLB_TRAP;
1033 		ch_flt.flt_type = CPU_DTLB_PARITY;
1034 		error_class = FM_EREPORT_CPU_USIII_DTLBPE;
1035 		aflt->flt_payload = FM_EREPORT_PAYLOAD_DTLB_PE;
1036 	}
1037 
1038 	/*
1039 	 * The TLB entries have already been flushed by the TL1 trap
1040 	 * handler so at this point the only thing left to do is log
1041 	 * the error message.
1042 	 */
1043 	if (aflt->flt_panic) {
1044 		cpu_errorq_dispatch(error_class, (void *)&ch_flt,
1045 		    sizeof (ch_async_flt_t), ue_queue, aflt->flt_panic);
1046 		/*
1047 		 * Panic here if aflt->flt_panic has been set.  Enqueued
1048 		 * errors will be logged as part of the panic flow.
1049 		 */
1050 		fm_panic("%sError(s)", immu_parity ? "ITLBPE " : "DTLBPE ");
1051 	} else {
1052 		cpu_errorq_dispatch(error_class, (void *)&ch_flt,
1053 		    sizeof (ch_async_flt_t), ce_queue, aflt->flt_panic);
1054 	}
1055 }
1056 
1057 /*
1058  * This routine is called when a TLB parity error event is 'ue_drain'ed
1059  * or 'ce_drain'ed from the errorq.
1060  */
1061 void
1062 cpu_async_log_tlb_parity_err(void *flt) {
1063 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)flt;
1064 	struct async_flt *aflt = (struct async_flt *)flt;
1065 #ifdef lint
1066 	aflt = aflt;
1067 #endif
1068 
1069 	/*
1070 	 * We only capture TLB information if we encountered
1071 	 * a TLB parity error and Panther is the only CPU which
1072 	 * can detect a TLB parity error.
1073 	 */
1074 	ASSERT(IS_PANTHER(cpunodes[aflt->flt_inst].implementation));
1075 	ASSERT((ch_flt->flt_type == CPU_ITLB_PARITY) ||
1076 	    (ch_flt->flt_type == CPU_DTLB_PARITY));
1077 
1078 	if (ch_flt->flt_data_incomplete == 0) {
1079 		if (ch_flt->flt_type == CPU_ITLB_PARITY)
1080 			ch_flt->tlb_diag_data.tlo_logflag = IT_LOGFLAG_MAGIC;
1081 		else /* parity error is in DTLB */
1082 			ch_flt->tlb_diag_data.tlo_logflag = DT_LOGFLAG_MAGIC;
1083 	}
1084 }
1085 
1086 /*
1087  * Add L1 Prefetch cache data to the ereport payload.
1088  */
1089 void
1090 cpu_payload_add_pcache(struct async_flt *aflt, nvlist_t *nvl)
1091 {
1092 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
1093 	ch_pc_data_t *pcp;
1094 	ch_pc_data_t pcdata[CH_PCACHE_NWAY];
1095 	uint_t nelem;
1096 	int i, ways_logged = 0;
1097 
1098 	/*
1099 	 * We only capture P$ information if we encountered
1100 	 * a P$ parity error and Panther is the only CPU which
1101 	 * can detect a P$ parity error.
1102 	 */
1103 	ASSERT(IS_PANTHER(cpunodes[aflt->flt_inst].implementation));
1104 	for (i = 0; i < CH_PCACHE_NWAY; i++) {
1105 		pcp = &ch_flt->parity_data.dpe.cpl_pc[i];
1106 		if (pcp->pc_logflag == PC_LOGFLAG_MAGIC) {
1107 			bcopy(pcp, &pcdata[ways_logged],
1108 				sizeof (ch_pc_data_t));
1109 			ways_logged++;
1110 		}
1111 	}
1112 
1113 	/*
1114 	 * Add the pcache data to the payload.
1115 	 */
1116 	fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L1P_WAYS,
1117 	    DATA_TYPE_UINT8, (uint8_t)ways_logged, NULL);
1118 	if (ways_logged != 0) {
1119 		nelem = sizeof (ch_pc_data_t) / sizeof (uint64_t) * ways_logged;
1120 		fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L1P_DATA,
1121 		    DATA_TYPE_UINT64_ARRAY, nelem, (uint64_t *)pcdata, NULL);
1122 	}
1123 }
1124 
1125 /*
1126  * Add TLB diagnostic data to the ereport payload.
1127  */
1128 void
1129 cpu_payload_add_tlb(struct async_flt *aflt, nvlist_t *nvl)
1130 {
1131 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
1132 	uint8_t num_entries, tlb_data_words;
1133 
1134 	/*
1135 	 * We only capture TLB information if we encountered
1136 	 * a TLB parity error and Panther is the only CPU which
1137 	 * can detect a TLB parity error.
1138 	 */
1139 	ASSERT(IS_PANTHER(cpunodes[aflt->flt_inst].implementation));
1140 	ASSERT((ch_flt->flt_type == CPU_ITLB_PARITY) ||
1141 	    (ch_flt->flt_type == CPU_DTLB_PARITY));
1142 
1143 	if (ch_flt->flt_type == CPU_ITLB_PARITY) {
1144 		num_entries = (uint8_t)(PN_ITLB_NWAYS * PN_NUM_512_ITLBS);
1145 		tlb_data_words = sizeof (ch_tte_entry_t) / sizeof (uint64_t) *
1146 		    num_entries;
1147 
1148 		/*
1149 		 * Add the TLB diagnostic data to the payload
1150 		 * if it was collected.
1151 		 */
1152 		if (ch_flt->tlb_diag_data.tlo_logflag == IT_LOGFLAG_MAGIC) {
1153 			fm_payload_set(nvl,
1154 			    FM_EREPORT_PAYLOAD_NAME_ITLB_ENTRIES,
1155 			    DATA_TYPE_UINT8, num_entries, NULL);
1156 			fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_ITLB_DATA,
1157 			    DATA_TYPE_UINT64_ARRAY, tlb_data_words,
1158 			    (uint64_t *)ch_flt->tlb_diag_data.tlo_itlb_tte,
1159 			    NULL);
1160 		}
1161 	} else {
1162 		num_entries = (uint8_t)(PN_DTLB_NWAYS * PN_NUM_512_DTLBS);
1163 		tlb_data_words = sizeof (ch_tte_entry_t) / sizeof (uint64_t) *
1164 		    num_entries;
1165 
1166 		fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_VA,
1167 		    DATA_TYPE_UINT64, ch_flt->tlb_diag_data.tlo_addr, NULL);
1168 
1169 		/*
1170 		 * Add the TLB diagnostic data to the payload
1171 		 * if it was collected.
1172 		 */
1173 		if (ch_flt->tlb_diag_data.tlo_logflag == DT_LOGFLAG_MAGIC) {
1174 			fm_payload_set(nvl,
1175 			    FM_EREPORT_PAYLOAD_NAME_DTLB_ENTRIES,
1176 			    DATA_TYPE_UINT8, num_entries, NULL);
1177 			fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_DTLB_DATA,
1178 			    DATA_TYPE_UINT64_ARRAY, tlb_data_words,
1179 			    (uint64_t *)ch_flt->tlb_diag_data.tlo_dtlb_tte,
1180 			    NULL);
1181 		}
1182 	}
1183 }
1184 
1185 /*
1186  * Panther Cache Scrubbing:
1187  *
1188  * In Jaguar, the E$ was split between cores, so the scrubber must run on both
1189  * cores.  For Panther, however, the L2$ and L3$ are shared across cores.
1190  * Therefore, the E$ scrubber only needs to run on one of the two cores.
1191  *
1192  * There are four possible states for the E$ scrubber:
1193  *
1194  * 0. If both cores are offline, add core 0 to cpu_offline_set so that
1195  *    the offline scrubber will run on it.
1196  * 1. If core 0 is online and core 1 off, we run the scrubber on core 0.
1197  * 2. If core 1 is online and core 0 off, we move the scrubber to run
1198  *    on core 1.
1199  * 3. If both cores are online, only run the scrubber on core 0.
1200  *
1201  * These states are enumerated by the SCRUBBER_[BOTH|CORE|NEITHER]_* defines
1202  * above.  One of those values is stored in
1203  * chpr_scrub_misc->chsm_core_state on each core.
1204  *
1205  * Also note that, for Panther, ecache_flush_line() will flush out the L2$
1206  * before the E$, so the L2$ will be scrubbed by the E$ scrubber.  No
1207  * additional code is necessary to scrub the L2$.
1208  *
1209  * For all cpu types, whenever a cpu or core is offlined, add it to
1210  * cpu_offline_set so the necessary scrubbers can still run.  This is still
1211  * necessary on Panther so the D$ scrubber can still run.
1212  */
1213 /*ARGSUSED*/
1214 int
1215 cpu_scrub_cpu_setup(cpu_setup_t what, int cpuid, void *arg)
1216 {
1217 	processorid_t core_0_id;
1218 	cpu_t *core_cpus[2];
1219 	ch_scrub_misc_t *core_scrub[2];
1220 	int old_state, i;
1221 	int new_state = SCRUBBER_NEITHER_CORE_ONLINE;
1222 
1223 	switch (what) {
1224 	case CPU_ON:
1225 	case CPU_INIT:
1226 		CPUSET_DEL(cpu_offline_set, cpuid);
1227 		break;
1228 	case CPU_OFF:
1229 		CPUSET_ADD(cpu_offline_set, cpuid);
1230 		break;
1231 	default:
1232 		return (0);
1233 	}
1234 
1235 	if (!IS_PANTHER(cpunodes[cpuid].implementation)) {
1236 		return (0);
1237 	}
1238 
1239 	/*
1240 	 * Update the chsm_enable[CACHE_SCRUBBER_INFO_E] value
1241 	 * if necessary
1242 	 */
1243 	core_0_id = cmp_cpu_to_chip(cpuid);
1244 	core_cpus[0] = cpu_get(core_0_id);
1245 	core_cpus[1] = cpu_get_sibling_core(core_cpus[0]);
1246 
1247 	for (i = 0; i < 2; i++) {
1248 		if (core_cpus[i] == NULL) {
1249 			/*
1250 			 * This may happen during DR - one core is offlined
1251 			 * and completely unconfigured before the second
1252 			 * core is offlined.  Give up and return quietly,
1253 			 * since the second core should quickly be removed
1254 			 * anyways.
1255 			 */
1256 			return (0);
1257 		}
1258 		core_scrub[i] = CPU_PRIVATE_PTR(core_cpus[i], chpr_scrub_misc);
1259 	}
1260 
1261 	if (cpuid == (processorid_t)cmp_cpu_to_chip(cpuid)) {
1262 		/* cpuid is core 0 */
1263 		if (cpu_is_active(core_cpus[1])) {
1264 			new_state |= SCRUBBER_CORE_1_ONLINE;
1265 		}
1266 		if (what != CPU_OFF) {
1267 			new_state |= SCRUBBER_CORE_0_ONLINE;
1268 		}
1269 	} else {
1270 		/* cpuid is core 1 */
1271 		if (cpu_is_active(core_cpus[0])) {
1272 			new_state |= SCRUBBER_CORE_0_ONLINE;
1273 		}
1274 		if (what != CPU_OFF) {
1275 			new_state |= SCRUBBER_CORE_1_ONLINE;
1276 		}
1277 	}
1278 
1279 	old_state = core_scrub[0]->chsm_core_state;
1280 
1281 	if (old_state == new_state) {
1282 		return (0);
1283 	}
1284 
1285 	if (old_state == SCRUBBER_CORE_1_ONLINE) {
1286 		/*
1287 		 * We need to move the scrubber state from core 1
1288 		 * back to core 0.  This data is not protected by
1289 		 * locks, but the worst that can happen is some
1290 		 * lines are scrubbed multiple times.  chsm_oustanding is
1291 		 * set to 0 to make sure an interrupt is scheduled the
1292 		 * first time through do_scrub().
1293 		 */
1294 		core_scrub[0]->chsm_flush_index[CACHE_SCRUBBER_INFO_E] =
1295 		    core_scrub[1]->chsm_flush_index[CACHE_SCRUBBER_INFO_E];
1296 		core_scrub[0]->chsm_outstanding[CACHE_SCRUBBER_INFO_E] = 0;
1297 	}
1298 
1299 	switch (new_state) {
1300 	case SCRUBBER_NEITHER_CORE_ONLINE:
1301 	case SCRUBBER_BOTH_CORES_ONLINE:
1302 	case SCRUBBER_CORE_0_ONLINE:
1303 		core_scrub[1]->chsm_enable[CACHE_SCRUBBER_INFO_E] = 0;
1304 		core_scrub[0]->chsm_enable[CACHE_SCRUBBER_INFO_E] = 1;
1305 		break;
1306 
1307 	case SCRUBBER_CORE_1_ONLINE:
1308 	default:
1309 		/*
1310 		 * We need to move the scrubber state from core 0
1311 		 * to core 1.
1312 		 */
1313 		core_scrub[1]->chsm_flush_index[CACHE_SCRUBBER_INFO_E] =
1314 		    core_scrub[0]->chsm_flush_index[CACHE_SCRUBBER_INFO_E];
1315 		core_scrub[1]->chsm_outstanding[CACHE_SCRUBBER_INFO_E] = 0;
1316 
1317 		core_scrub[0]->chsm_enable[CACHE_SCRUBBER_INFO_E] = 0;
1318 		core_scrub[1]->chsm_enable[CACHE_SCRUBBER_INFO_E] = 1;
1319 		break;
1320 	}
1321 
1322 	core_scrub[0]->chsm_core_state = new_state;
1323 	core_scrub[1]->chsm_core_state = new_state;
1324 	return (0);
1325 }
1326 
1327 /*
1328  * Returns a pointer to the cpu structure of the argument's sibling core.
1329  * If no sibling core can be found, return NULL.
1330  */
1331 static cpu_t *
1332 cpu_get_sibling_core(cpu_t *cpup)
1333 {
1334 	cpu_t *nextp;
1335 
1336 	if ((cpup == NULL) || (!cmp_cpu_is_cmp(cpup->cpu_id)))
1337 		return (NULL);
1338 
1339 	nextp = cpup->cpu_next_chip;
1340 	if ((nextp == NULL) || (nextp == cpup))
1341 		return (NULL);
1342 
1343 	return (nextp);
1344 }
1345