xref: /titanic_50/usr/src/uts/sun4u/cpu/spitfire.c (revision 088e9d477eee66081e407fbc5a33c4da25f66f6a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/systm.h>
31 #include <sys/archsystm.h>
32 #include <sys/machparam.h>
33 #include <sys/machsystm.h>
34 #include <sys/cpu.h>
35 #include <sys/elf_SPARC.h>
36 #include <vm/hat_sfmmu.h>
37 #include <vm/page.h>
38 #include <sys/cpuvar.h>
39 #include <sys/spitregs.h>
40 #include <sys/async.h>
41 #include <sys/cmn_err.h>
42 #include <sys/debug.h>
43 #include <sys/dditypes.h>
44 #include <sys/sunddi.h>
45 #include <sys/cpu_module.h>
46 #include <sys/prom_debug.h>
47 #include <sys/vmsystm.h>
48 #include <sys/prom_plat.h>
49 #include <sys/sysmacros.h>
50 #include <sys/intreg.h>
51 #include <sys/machtrap.h>
52 #include <sys/ontrap.h>
53 #include <sys/ivintr.h>
54 #include <sys/atomic.h>
55 #include <sys/panic.h>
56 #include <sys/ndifm.h>
57 #include <sys/fm/protocol.h>
58 #include <sys/fm/util.h>
59 #include <sys/fm/cpu/UltraSPARC-II.h>
60 #include <sys/ddi.h>
61 #include <sys/ecc_kstat.h>
62 #include <sys/watchpoint.h>
63 #include <sys/dtrace.h>
64 #include <sys/errclassify.h>
65 
66 uchar_t	*ctx_pgsz_array = NULL;
67 
68 /*
69  * Structure for the 8 byte ecache data dump and the associated AFSR state.
70  * There will be 8 of these structures used to dump an ecache line (64 bytes).
71  */
72 typedef struct sf_ec_data_elm {
73 	uint64_t ec_d8;
74 	uint64_t ec_afsr;
75 } ec_data_t;
76 
77 /*
78  * Define spitfire (Ultra I/II) specific asynchronous error structure
79  */
80 typedef struct spitfire_async_flt {
81 	struct async_flt cmn_asyncflt;	/* common - see sun4u/sys/async.h */
82 	ushort_t flt_type;		/* types of faults - cpu specific */
83 	ec_data_t flt_ec_data[8];	/* for E$ or mem dump/state */
84 	uint64_t flt_ec_tag;		/* E$ tag info */
85 	int flt_ec_lcnt;		/* number of bad E$ lines */
86 	ushort_t flt_sdbh;		/* UDBH reg */
87 	ushort_t flt_sdbl;		/* UDBL reg */
88 } spitf_async_flt;
89 
90 /*
91  * Prototypes for support routines in spitfire_asm.s:
92  */
93 extern void flush_ecache(uint64_t physaddr, size_t size, size_t linesize);
94 extern uint64_t get_lsu(void);
95 extern void set_lsu(uint64_t ncc);
96 extern void get_ecache_dtag(uint32_t ecache_idx, uint64_t *data, uint64_t *tag,
97 				uint64_t *oafsr, uint64_t *acc_afsr);
98 extern uint64_t check_ecache_line(uint32_t id, uint64_t *acc_afsr);
99 extern uint64_t get_ecache_tag(uint32_t id, uint64_t *nafsr,
100 				uint64_t *acc_afsr);
101 extern uint64_t read_and_clear_afsr();
102 extern void write_ec_tag_parity(uint32_t id);
103 extern void write_hb_ec_tag_parity(uint32_t id);
104 
105 /*
106  * Spitfire module routines:
107  */
108 static void cpu_async_log_err(void *flt);
109 /*PRINTFLIKE6*/
110 static void cpu_aflt_log(int ce_code, int tagnum, spitf_async_flt *spflt,
111     uint_t logflags, const char *endstr, const char *fmt, ...);
112 
113 static void cpu_read_paddr(struct async_flt *aflt, short verbose, short ce_err);
114 static void cpu_ce_log_status(spitf_async_flt *spf_flt, char *unum);
115 static void cpu_log_ecmem_info(spitf_async_flt *spf_flt);
116 
117 static void log_ce_err(struct async_flt *aflt, char *unum);
118 static void log_ue_err(struct async_flt *aflt, char *unum);
119 static void check_misc_err(spitf_async_flt *spf_flt);
120 static ushort_t ecc_gen(uint_t high_bytes, uint_t low_bytes);
121 static int check_ecc(struct async_flt *aflt);
122 static uint_t get_cpu_status(uint64_t arg);
123 static uint64_t clear_errors(spitf_async_flt *spf_flt, uint64_t *acc_afsr);
124 static void scan_ecache(uint64_t *afar, ec_data_t *data, uint64_t *tag,
125 		int *m, uint64_t *afsr);
126 static void ecache_kstat_init(struct cpu *cp);
127 static void ecache_scrub_log(ec_data_t *ec_data, uint64_t ec_tag,
128 		uint64_t paddr, int mpb, uint64_t);
129 static uint64_t ecache_scrub_misc_err(int, uint64_t);
130 static void ecache_scrub_tag_err(uint64_t, uchar_t, uint32_t);
131 static void ecache_page_retire(void *);
132 static int ecc_kstat_update(kstat_t *ksp, int rw);
133 static int ce_count_unum(int status, int len, char *unum);
134 static void add_leaky_bucket_timeout(void);
135 static int synd_to_synd_code(int synd_status, ushort_t synd);
136 
137 extern uint_t read_all_memscrub;
138 extern void memscrub_run(void);
139 
140 static uchar_t	isus2i;			/* set if sabre */
141 static uchar_t	isus2e;			/* set if hummingbird */
142 
143 /*
144  * Default ecache mask and shift settings for Spitfire.  If we detect a
145  * different CPU implementation, we will modify these values at boot time.
146  */
147 static uint64_t cpu_ec_tag_mask		= S_ECTAG_MASK;
148 static uint64_t cpu_ec_state_mask	= S_ECSTATE_MASK;
149 static uint64_t cpu_ec_par_mask		= S_ECPAR_MASK;
150 static int cpu_ec_par_shift		= S_ECPAR_SHIFT;
151 static int cpu_ec_tag_shift		= S_ECTAG_SHIFT;
152 static int cpu_ec_state_shift		= S_ECSTATE_SHIFT;
153 static uchar_t cpu_ec_state_exl		= S_ECSTATE_EXL;
154 static uchar_t cpu_ec_state_mod		= S_ECSTATE_MOD;
155 static uchar_t cpu_ec_state_shr		= S_ECSTATE_SHR;
156 static uchar_t cpu_ec_state_own		= S_ECSTATE_OWN;
157 
158 /*
159  * Default ecache state bits for Spitfire.  These individual bits indicate if
160  * the given line is in any of the valid or modified states, respectively.
161  * Again, we modify these at boot if we detect a different CPU.
162  */
163 static uchar_t cpu_ec_state_valid	= S_ECSTATE_VALID;
164 static uchar_t cpu_ec_state_dirty	= S_ECSTATE_DIRTY;
165 static uchar_t cpu_ec_parity		= S_EC_PARITY;
166 static uchar_t cpu_ec_state_parity	= S_ECSTATE_PARITY;
167 
168 /*
169  * This table is used to determine which bit(s) is(are) bad when an ECC
170  * error occurrs.  The array is indexed an 8-bit syndrome.  The entries
171  * of this array have the following semantics:
172  *
173  *      00-63   The number of the bad bit, when only one bit is bad.
174  *      64      ECC bit C0 is bad.
175  *      65      ECC bit C1 is bad.
176  *      66      ECC bit C2 is bad.
177  *      67      ECC bit C3 is bad.
178  *      68      ECC bit C4 is bad.
179  *      69      ECC bit C5 is bad.
180  *      70      ECC bit C6 is bad.
181  *      71      ECC bit C7 is bad.
182  *      72      Two bits are bad.
183  *      73      Three bits are bad.
184  *      74      Four bits are bad.
185  *      75      More than Four bits are bad.
186  *      76      NO bits are bad.
187  * Based on "Galaxy Memory Subsystem SPECIFICATION" rev 0.6, pg. 28.
188  */
189 
190 #define	C0	64
191 #define	C1	65
192 #define	C2	66
193 #define	C3	67
194 #define	C4	68
195 #define	C5	69
196 #define	C6	70
197 #define	C7	71
198 #define	M2	72
199 #define	M3	73
200 #define	M4	74
201 #define	MX	75
202 #define	NA	76
203 
204 #define	SYND_IS_SINGLE_BIT_DATA(synd_code)	((synd_code >= 0) && \
205 						    (synd_code < C0))
206 #define	SYND_IS_SINGLE_BIT_CHK(synd_code)	((synd_code >= C0) && \
207 						    (synd_code <= C7))
208 
209 static char ecc_syndrome_tab[] =
210 {
211 	NA, C0, C1, M2, C2, M2, M2, M3, C3, M2, M2, M3, M2, M3, M3, M4,
212 	C4, M2, M2, 32, M2, 57, MX, M2, M2, 37, 49, M2, 40, M2, M2, 44,
213 	C5, M2, M2, 33, M2, 61,  4, M2, M2, MX, 53, M2, 45, M2, M2, 41,
214 	M2,  0,  1, M2, 10, M2, M2, MX, 15, M2, M2, MX, M2, M3, M3, M2,
215 	C6, M2, M2, 42, M2, 59, 39, M2, M2, MX, 51, M2, 34, M2, M2, 46,
216 	M2, 25, 29, M2, 27, M4, M2, MX, 31, M2, M4, MX, M2, MX, MX, M2,
217 	M2, MX, 36, M2,  7, M2, M2, 54, MX, M2, M2, 62, M2, 48, 56, M2,
218 	M3, M2, M2, MX, M2, MX, 22, M2, M2, 18, MX, M2, M3, M2, M2, MX,
219 	C7, M2, M2, 47, M2, 63, MX, M2, M2,  6, 55, M2, 35, M2, M2, 43,
220 	M2,  5, MX, M2, MX, M2, M2, 50, 38, M2, M2, 58, M2, 52, 60, M2,
221 	M2, 17, 21, M2, 19, M4, M2, MX, 23, M2, M4, MX, M2, MX, MX, M2,
222 	M3, M2, M2, MX, M2, MX, 30, M2, M2, 26, MX, M2, M3, M2, M2, MX,
223 	M2,  8, 13, M2,  2, M2, M2, M3,  3, M2, M2, M3, M2, MX, MX, M2,
224 	M3, M2, M2, M3, M2, MX, 16, M2, M2, 20, MX, M2, MX, M2, M2, MX,
225 	M3, M2, M2, M3, M2, MX, 24, M2, M2, 28, MX, M2, MX, M2, M2, MX,
226 	M4, 12,  9, M2, 14, M2, M2, MX, 11, M2, M2, MX, M2, MX, MX, M4
227 };
228 
229 #define	SYND_TBL_SIZE 256
230 
231 /*
232  * Hack for determining UDBH/UDBL, for later cpu-specific error reporting.
233  * Cannot use bit 3 in afar, because it is a valid bit on a Sabre/Hummingbird.
234  */
235 #define	UDBL_REG	0x8000
236 #define	UDBL(synd)	((synd & UDBL_REG) >> 15)
237 #define	SYND(synd)	(synd & 0x7FFF)
238 
239 /*
240  * These error types are specific to Spitfire and are used internally for the
241  * spitfire fault structure flt_type field.
242  */
243 #define	CPU_UE_ERR		0	/* uncorrectable errors - UEs */
244 #define	CPU_EDP_LDP_ERR		1	/* LDP or EDP parity error */
245 #define	CPU_WP_ERR		2	/* WP parity error */
246 #define	CPU_BTO_BERR_ERR	3	/* bus timeout errors */
247 #define	CPU_PANIC_CP_ERR	4	/* cp error from panic polling */
248 #define	CPU_TRAPPING_CP_ERR	5	/* for sabre/hbird only, cp error */
249 #define	CPU_BADLINE_CI_ERR	6	/* E$ clean_bad line when idle */
250 #define	CPU_BADLINE_CB_ERR	7	/* E$ clean_bad line when busy */
251 #define	CPU_BADLINE_DI_ERR	8	/* E$ dirty_bad line when idle */
252 #define	CPU_BADLINE_DB_ERR	9	/* E$ dirty_bad line when busy */
253 #define	CPU_ORPHAN_CP_ERR	10	/* Orphan CP error */
254 #define	CPU_ECACHE_ADDR_PAR_ERR	11	/* Ecache Address parity error */
255 #define	CPU_ECACHE_STATE_ERR	12	/* Ecache state error */
256 #define	CPU_ECACHE_ETP_ETS_ERR	13	/* ETP set but ETS is zero */
257 #define	CPU_ECACHE_TAG_ERR	14	/* Scrub the E$ tag, if state clean */
258 #define	CPU_ADDITIONAL_ERR	15	/* Additional errors occurred */
259 
260 /*
261  * Macro to access the "Spitfire cpu private" data structure.
262  */
263 #define	CPU_PRIVATE_PTR(cp, x)	(&(((spitfire_private_t *)CPU_PRIVATE(cp))->x))
264 
265 /*
266  * set to 0 to disable automatic retiring of pages on
267  * DIMMs that have excessive soft errors
268  */
269 int automatic_page_removal = 1;
270 
271 /*
272  * Heuristic for figuring out which module to replace.
273  * Relative likelihood that this P_SYND indicates that this module is bad.
274  * We call it a "score", though, not a relative likelihood.
275  *
276  * Step 1.
277  * Assign a score to each byte of P_SYND according to the following rules:
278  * If no bits on (0x00) or all bits on (0xFF), then give it a 5.
279  * If one bit on, give it a 95.
280  * If seven bits on, give it a 10.
281  * If two bits on:
282  *   in different nybbles, a 90
283  *   in same nybble, but unaligned, 85
284  *   in same nybble and as an aligned pair, 80
285  * If six bits on, look at the bits that are off:
286  *   in same nybble and as an aligned pair, 15
287  *   in same nybble, but unaligned, 20
288  *   in different nybbles, a 25
289  * If three bits on:
290  *   in diferent nybbles, no aligned pairs, 75
291  *   in diferent nybbles, one aligned pair, 70
292  *   in the same nybble, 65
293  * If five bits on, look at the bits that are off:
294  *   in the same nybble, 30
295  *   in diferent nybbles, one aligned pair, 35
296  *   in diferent nybbles, no aligned pairs, 40
297  * If four bits on:
298  *   all in one nybble, 45
299  *   as two aligned pairs, 50
300  *   one aligned pair, 55
301  *   no aligned pairs, 60
302  *
303  * Step 2:
304  * Take the higher of the two scores (one for each byte) as the score
305  * for the module.
306  *
307  * Print the score for each module, and field service should replace the
308  * module with the highest score.
309  */
310 
311 /*
312  * In the table below, the first row/column comment indicates the
313  * number of bits on in that nybble; the second row/column comment is
314  * the hex digit.
315  */
316 
317 static int
318 p_synd_score_table[256] = {
319 	/* 0   1   1   2   1   2   2   3   1   2   2   3   2   3   3   4 */
320 	/* 0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  A,  B,  C,  D,  E,  F */
321 /* 0 0 */  5, 95, 95, 80, 95, 85, 85, 65, 95, 85, 85, 65, 80, 65, 65, 45,
322 /* 1 1 */ 95, 90, 90, 70, 90, 75, 75, 55, 90, 75, 75, 55, 70, 55, 55, 30,
323 /* 1 2 */ 95, 90, 90, 70, 90, 75, 75, 55, 90, 75, 75, 55, 70, 55, 55, 30,
324 /* 2 3 */ 80, 70, 70, 50, 70, 55, 55, 35, 70, 55, 55, 35, 50, 35, 35, 15,
325 /* 1 4 */ 95, 90, 90, 70, 90, 75, 75, 55, 90, 75, 75, 55, 70, 55, 55, 30,
326 /* 2 5 */ 85, 75, 75, 55, 75, 60, 60, 40, 75, 60, 60, 40, 55, 40, 40, 20,
327 /* 2 6 */ 85, 75, 75, 55, 75, 60, 60, 40, 75, 60, 60, 40, 55, 40, 40, 20,
328 /* 3 7 */ 65, 55, 55, 35, 55, 40, 40, 25, 55, 40, 40, 25, 35, 25, 25, 10,
329 /* 1 8 */ 95, 90, 90, 70, 90, 75, 75, 55, 90, 75, 75, 55, 70, 55, 55, 30,
330 /* 2 9 */ 85, 75, 75, 55, 75, 60, 60, 40, 75, 60, 60, 40, 55, 40, 40, 20,
331 /* 2 A */ 85, 75, 75, 55, 75, 60, 60, 40, 75, 60, 60, 40, 55, 40, 40, 20,
332 /* 3 B */ 65, 55, 55, 35, 55, 40, 40, 25, 55, 40, 40, 25, 35, 25, 25, 10,
333 /* 2 C */ 80, 70, 70, 50, 70, 55, 55, 35, 70, 55, 55, 35, 50, 35, 35, 15,
334 /* 3 D */ 65, 55, 55, 35, 55, 40, 40, 25, 55, 40, 40, 25, 35, 25, 25, 10,
335 /* 3 E */ 65, 55, 55, 35, 55, 40, 40, 25, 55, 40, 40, 25, 35, 25, 25, 10,
336 /* 4 F */ 45, 30, 30, 15, 30, 20, 20, 10, 30, 20, 20, 10, 15, 10, 10,  5,
337 };
338 
339 int
340 ecc_psynd_score(ushort_t p_synd)
341 {
342 	int i, j, a, b;
343 
344 	i = p_synd & 0xFF;
345 	j = (p_synd >> 8) & 0xFF;
346 
347 	a = p_synd_score_table[i];
348 	b = p_synd_score_table[j];
349 
350 	return (a > b ? a : b);
351 }
352 
353 /*
354  * Async Fault Logging
355  *
356  * To ease identifying, reading, and filtering async fault log messages, the
357  * label [AFT#] is now prepended to each async fault message.  These messages
358  * and the logging rules are implemented by cpu_aflt_log(), below.
359  *
360  * [AFT0] - Tag for log messages that are associated with corrected ECC errors.
361  *          This includes both corrected ECC memory and ecache faults.
362  *
363  * [AFT1] - Tag for log messages that are not ECC corrected (i.e. everything
364  *          else except CE errors) with a priority of 1 (highest).  This tag
365  *          is also used for panic messages that result from an async fault.
366  *
367  * [AFT2] - These are lower priority diagnostic messages for uncorrected ECC
368  * [AFT3]   or parity errors.  For example, AFT2 is used for the actual dump
369  *          of the E-$ data and tags.
370  *
371  * In a non-DEBUG kernel, AFT > 1 logs will be sent to the system log but not
372  * printed on the console.  To send all AFT logs to both the log and the
373  * console, set aft_verbose = 1.
374  */
375 
376 #define	CPU_FLTCPU		0x0001	/* print flt_inst as a CPU id */
377 #define	CPU_SPACE		0x0002	/* print flt_status (data or instr) */
378 #define	CPU_ERRID		0x0004	/* print flt_id */
379 #define	CPU_TL			0x0008	/* print flt_tl */
380 #define	CPU_ERRID_FIRST 	0x0010	/* print flt_id first in message */
381 #define	CPU_AFSR		0x0020	/* print flt_stat as decoded %afsr */
382 #define	CPU_AFAR		0x0040	/* print flt_addr as %afar */
383 #define	CPU_AF_PSYND		0x0080	/* print flt_stat %afsr.PSYND */
384 #define	CPU_AF_ETS		0x0100	/* print flt_stat %afsr.ETS */
385 #define	CPU_UDBH		0x0200	/* print flt_sdbh and syndrome */
386 #define	CPU_UDBL		0x0400	/* print flt_sdbl and syndrome */
387 #define	CPU_FAULTPC		0x0800	/* print flt_pc */
388 #define	CPU_SYND		0x1000	/* print flt_synd and unum */
389 
390 #define	CMN_LFLAGS	(CPU_FLTCPU | CPU_SPACE | CPU_ERRID | CPU_TL |	\
391 				CPU_AFSR | CPU_AFAR | CPU_AF_PSYND |	\
392 				CPU_AF_ETS | CPU_UDBH | CPU_UDBL |	\
393 				CPU_FAULTPC)
394 #define	UE_LFLAGS	(CMN_LFLAGS | CPU_SYND)
395 #define	CE_LFLAGS	(UE_LFLAGS & ~CPU_UDBH & ~CPU_UDBL & ~CPU_TL &	\
396 				~CPU_SPACE)
397 #define	PARERR_LFLAGS	(CMN_LFLAGS)
398 #define	WP_LFLAGS	(CMN_LFLAGS & ~CPU_SPACE & ~CPU_TL)
399 #define	CP_LFLAGS	(CMN_LFLAGS & ~CPU_SPACE & ~CPU_TL &		\
400 				~CPU_FLTCPU & ~CPU_FAULTPC)
401 #define	BERRTO_LFLAGS	(CMN_LFLAGS)
402 #define	NO_LFLAGS	(0)
403 
404 #define	AFSR_FMTSTR0	"\020\1ME"
405 #define	AFSR_FMTSTR1	"\020\040PRIV\037ISAP\036ETP\035IVUE\034TO"	\
406 			"\033BERR\032LDP\031CP\030WP\027EDP\026UE\025CE"
407 #define	UDB_FMTSTR	"\020\012UE\011CE"
408 
409 /*
410  * Maximum number of contexts for Spitfire.
411  */
412 #define	MAX_NCTXS	(1 << 13)
413 
414 /*
415  * Save the cache bootup state for use when internal
416  * caches are to be re-enabled after an error occurs.
417  */
418 uint64_t	cache_boot_state = 0;
419 
420 /*
421  * PA[31:0] represent Displacement in UPA configuration space.
422  */
423 uint_t	root_phys_addr_lo_mask = 0xffffffff;
424 
425 /*
426  * Spitfire legacy globals
427  */
428 int	itlb_entries;
429 int	dtlb_entries;
430 
431 void
432 cpu_setup(void)
433 {
434 	extern int page_retire_messages;
435 	extern int page_retire_first_ue;
436 	extern int at_flags;
437 #if defined(SF_ERRATA_57)
438 	extern caddr_t errata57_limit;
439 #endif
440 	extern int disable_text_largepages;
441 	extern int disable_initdata_largepages;
442 
443 	cache |= (CACHE_VAC | CACHE_PTAG | CACHE_IOCOHERENT);
444 
445 	at_flags = EF_SPARC_32PLUS | EF_SPARC_SUN_US1;
446 
447 	/*
448 	 * Spitfire isn't currently FMA-aware, so we have to enable the
449 	 * page retirement messages. We also change the default policy
450 	 * for UE retirement to allow clearing of transient errors.
451 	 */
452 	page_retire_messages = 1;
453 	page_retire_first_ue = 0;
454 
455 	/*
456 	 * save the cache bootup state.
457 	 */
458 	cache_boot_state = get_lsu() & (LSU_IC | LSU_DC);
459 
460 	/*
461 	 * Use the maximum number of contexts available for Spitfire unless
462 	 * it has been tuned for debugging.
463 	 * We are checking against 0 here since this value can be patched
464 	 * while booting.  It can not be patched via /etc/system since it
465 	 * will be patched too late and thus cause the system to panic.
466 	 */
467 	if (nctxs == 0)
468 		nctxs = MAX_NCTXS;
469 
470 	if (use_page_coloring) {
471 		do_pg_coloring = 1;
472 		if (use_virtual_coloring)
473 			do_virtual_coloring = 1;
474 	}
475 
476 	/*
477 	 * Tune pp_slots to use up to 1/8th of the tlb entries.
478 	 */
479 	pp_slots = MIN(8, MAXPP_SLOTS);
480 
481 	/*
482 	 * Block stores invalidate all pages of the d$ so pagecopy
483 	 * et. al. do not need virtual translations with virtual
484 	 * coloring taken into consideration.
485 	 */
486 	pp_consistent_coloring = 0;
487 
488 	isa_list =
489 	    "sparcv9+vis sparcv9 "
490 	    "sparcv8plus+vis sparcv8plus "
491 	    "sparcv8 sparcv8-fsmuld sparcv7 sparc";
492 
493 	cpu_hwcap_flags = AV_SPARC_VIS;
494 
495 	/*
496 	 * On Spitfire, there's a hole in the address space
497 	 * that we must never map (the hardware only support 44-bits of
498 	 * virtual address).  Later CPUs are expected to have wider
499 	 * supported address ranges.
500 	 *
501 	 * See address map on p23 of the UltraSPARC 1 user's manual.
502 	 */
503 	hole_start = (caddr_t)0x80000000000ull;
504 	hole_end = (caddr_t)0xfffff80000000000ull;
505 
506 	/*
507 	 * A spitfire call bug requires us to be a further 4Gbytes of
508 	 * firewall from the spec.
509 	 *
510 	 * See Spitfire Errata #21
511 	 */
512 	hole_start = (caddr_t)((uintptr_t)hole_start - (1ul << 32));
513 	hole_end = (caddr_t)((uintptr_t)hole_end + (1ul << 32));
514 
515 	/*
516 	 * The kpm mapping window.
517 	 * kpm_size:
518 	 *	The size of a single kpm range.
519 	 *	The overall size will be: kpm_size * vac_colors.
520 	 * kpm_vbase:
521 	 *	The virtual start address of the kpm range within the kernel
522 	 *	virtual address space. kpm_vbase has to be kpm_size aligned.
523 	 */
524 	kpm_size = (size_t)(2ull * 1024 * 1024 * 1024 * 1024); /* 2TB */
525 	kpm_size_shift = 41;
526 	kpm_vbase = (caddr_t)0xfffffa0000000000ull; /* 16EB - 6TB */
527 
528 #if defined(SF_ERRATA_57)
529 	errata57_limit = (caddr_t)0x80000000ul;
530 #endif
531 
532 	/*
533 	 * Allow only 8K, 64K and 4M pages for text by default.
534 	 * Allow only 8K and 64K page for initialized data segments by
535 	 * default.
536 	 */
537 	disable_text_largepages = (1 << TTE512K) | (1 << TTE32M) |
538 	    (1 << TTE256M);
539 	disable_initdata_largepages = (1 << TTE512K) | (1 << TTE4M) |
540 	    (1 << TTE32M) | (1 << TTE256M);
541 }
542 
543 static int
544 getintprop(pnode_t node, char *name, int deflt)
545 {
546 	int	value;
547 
548 	switch (prom_getproplen(node, name)) {
549 	case 0:
550 		value = 1;	/* boolean properties */
551 		break;
552 
553 	case sizeof (int):
554 		(void) prom_getprop(node, name, (caddr_t)&value);
555 		break;
556 
557 	default:
558 		value = deflt;
559 		break;
560 	}
561 
562 	return (value);
563 }
564 
565 /*
566  * Set the magic constants of the implementation.
567  */
568 void
569 cpu_fiximp(pnode_t dnode)
570 {
571 	extern int vac_size, vac_shift;
572 	extern uint_t vac_mask;
573 	extern int dcache_line_mask;
574 	int i, a;
575 	static struct {
576 		char	*name;
577 		int	*var;
578 	} prop[] = {
579 		"dcache-size",		&dcache_size,
580 		"dcache-line-size",	&dcache_linesize,
581 		"icache-size",		&icache_size,
582 		"icache-line-size",	&icache_linesize,
583 		"ecache-size",		&ecache_size,
584 		"ecache-line-size",	&ecache_alignsize,
585 		"ecache-associativity", &ecache_associativity,
586 		"#itlb-entries",	&itlb_entries,
587 		"#dtlb-entries",	&dtlb_entries,
588 		};
589 
590 	for (i = 0; i < sizeof (prop) / sizeof (prop[0]); i++) {
591 		if ((a = getintprop(dnode, prop[i].name, -1)) != -1) {
592 			*prop[i].var = a;
593 		}
594 	}
595 
596 	ecache_setsize = ecache_size / ecache_associativity;
597 
598 	vac_size = S_VAC_SIZE;
599 	vac_mask = MMU_PAGEMASK & (vac_size - 1);
600 	i = 0; a = vac_size;
601 	while (a >>= 1)
602 		++i;
603 	vac_shift = i;
604 	shm_alignment = vac_size;
605 	vac = 1;
606 
607 	dcache_line_mask = (dcache_size - 1) & ~(dcache_linesize - 1);
608 
609 	/*
610 	 * UltraSPARC I & II have ecache sizes running
611 	 * as follows: .25 MB, .5 MB, 1 MB, 2 MB, 4 MB
612 	 * and 8 MB. Adjust the copyin/copyout limits
613 	 * according to the cache size. The magic number
614 	 * of VIS_COPY_THRESHOLD comes from the copyin/copyout code
615 	 * and its floor of VIS_COPY_THRESHOLD bytes before it will use
616 	 * VIS instructions.
617 	 *
618 	 * We assume that all CPUs on the system have the same size
619 	 * ecache. We're also called very early in the game.
620 	 * /etc/system will be parsed *after* we're called so
621 	 * these values can be overwritten.
622 	 */
623 
624 	hw_copy_limit_1 = VIS_COPY_THRESHOLD;
625 	if (ecache_size <= 524288) {
626 		hw_copy_limit_2 = VIS_COPY_THRESHOLD;
627 		hw_copy_limit_4 = VIS_COPY_THRESHOLD;
628 		hw_copy_limit_8 = VIS_COPY_THRESHOLD;
629 	} else if (ecache_size == 1048576) {
630 		hw_copy_limit_2 = 1024;
631 		hw_copy_limit_4 = 1280;
632 		hw_copy_limit_8 = 1536;
633 	} else if (ecache_size == 2097152) {
634 		hw_copy_limit_2 = 1536;
635 		hw_copy_limit_4 = 2048;
636 		hw_copy_limit_8 = 2560;
637 	} else if (ecache_size == 4194304) {
638 		hw_copy_limit_2 = 2048;
639 		hw_copy_limit_4 = 2560;
640 		hw_copy_limit_8 = 3072;
641 	} else {
642 		hw_copy_limit_2 = 2560;
643 		hw_copy_limit_4 = 3072;
644 		hw_copy_limit_8 = 3584;
645 	}
646 }
647 
648 /*
649  * Called by setcpudelay
650  */
651 void
652 cpu_init_tick_freq(void)
653 {
654 	/*
655 	 * Determine the cpu frequency by calling
656 	 * tod_get_cpufrequency. Use an approximate freqency
657 	 * value computed by the prom if the tod module
658 	 * is not initialized and loaded yet.
659 	 */
660 	if (tod_ops.tod_get_cpufrequency != NULL) {
661 		mutex_enter(&tod_lock);
662 		sys_tick_freq = tod_ops.tod_get_cpufrequency();
663 		mutex_exit(&tod_lock);
664 	} else {
665 #if defined(HUMMINGBIRD)
666 		/*
667 		 * the hummingbird version of %stick is used as the basis for
668 		 * low level timing; this provides an independent constant-rate
669 		 * clock for general system use, and frees power mgmt to set
670 		 * various cpu clock speeds.
671 		 */
672 		if (system_clock_freq == 0)
673 			cmn_err(CE_PANIC, "invalid system_clock_freq 0x%lx",
674 			    system_clock_freq);
675 		sys_tick_freq = system_clock_freq;
676 #else /* SPITFIRE */
677 		sys_tick_freq = cpunodes[CPU->cpu_id].clock_freq;
678 #endif
679 	}
680 }
681 
682 
683 void shipit(int upaid);
684 extern uint64_t xc_tick_limit;
685 extern uint64_t xc_tick_jump_limit;
686 
687 #ifdef SEND_MONDO_STATS
688 uint64_t x_early[NCPU][64];
689 #endif
690 
691 /*
692  * Note: A version of this function is used by the debugger via the KDI,
693  * and must be kept in sync with this version.  Any changes made to this
694  * function to support new chips or to accomodate errata must also be included
695  * in the KDI-specific version.  See spitfire_kdi.c.
696  */
697 void
698 send_one_mondo(int cpuid)
699 {
700 	uint64_t idsr, starttick, endtick;
701 	int upaid, busy, nack;
702 	uint64_t tick, tick_prev;
703 	ulong_t ticks;
704 
705 	CPU_STATS_ADDQ(CPU, sys, xcalls, 1);
706 	upaid = CPUID_TO_UPAID(cpuid);
707 	tick = starttick = gettick();
708 	shipit(upaid);
709 	endtick = starttick + xc_tick_limit;
710 	busy = nack = 0;
711 	for (;;) {
712 		idsr = getidsr();
713 		if (idsr == 0)
714 			break;
715 		/*
716 		 * When we detect an irregular tick jump, we adjust
717 		 * the timer window to the current tick value.
718 		 */
719 		tick_prev = tick;
720 		tick = gettick();
721 		ticks = tick - tick_prev;
722 		if (ticks > xc_tick_jump_limit) {
723 			endtick = tick + xc_tick_limit;
724 		} else if (tick > endtick) {
725 			if (panic_quiesce)
726 				return;
727 			cmn_err(CE_PANIC,
728 			"send mondo timeout (target 0x%x) [%d NACK %d BUSY]",
729 			upaid, nack, busy);
730 		}
731 		if (idsr & IDSR_BUSY) {
732 			busy++;
733 			continue;
734 		}
735 		drv_usecwait(1);
736 		shipit(upaid);
737 		nack++;
738 		busy = 0;
739 	}
740 #ifdef SEND_MONDO_STATS
741 	x_early[getprocessorid()][highbit(gettick() - starttick) - 1]++;
742 #endif
743 }
744 
745 void
746 send_mondo_set(cpuset_t set)
747 {
748 	int i;
749 
750 	for (i = 0; i < NCPU; i++)
751 		if (CPU_IN_SET(set, i)) {
752 			send_one_mondo(i);
753 			CPUSET_DEL(set, i);
754 			if (CPUSET_ISNULL(set))
755 				break;
756 		}
757 }
758 
759 void
760 syncfpu(void)
761 {
762 }
763 
764 /*
765  * Determine the size of the CPU module's error structure in bytes.  This is
766  * called once during boot to initialize the error queues.
767  */
768 int
769 cpu_aflt_size(void)
770 {
771 	/*
772 	 * We need to determine whether this is a sabre, Hummingbird or a
773 	 * Spitfire/Blackbird impl and set the appropriate state variables for
774 	 * ecache tag manipulation.  We can't do this in cpu_setup() as it is
775 	 * too early in the boot flow and the cpunodes are not initialized.
776 	 * This routine will be called once after cpunodes[] is ready, so do
777 	 * it here.
778 	 */
779 	if (cpunodes[CPU->cpu_id].implementation == SABRE_IMPL) {
780 		isus2i = 1;
781 		cpu_ec_tag_mask = SB_ECTAG_MASK;
782 		cpu_ec_state_mask = SB_ECSTATE_MASK;
783 		cpu_ec_par_mask = SB_ECPAR_MASK;
784 		cpu_ec_par_shift = SB_ECPAR_SHIFT;
785 		cpu_ec_tag_shift = SB_ECTAG_SHIFT;
786 		cpu_ec_state_shift = SB_ECSTATE_SHIFT;
787 		cpu_ec_state_exl = SB_ECSTATE_EXL;
788 		cpu_ec_state_mod = SB_ECSTATE_MOD;
789 
790 		/* These states do not exist in sabre - set to 0xFF */
791 		cpu_ec_state_shr = 0xFF;
792 		cpu_ec_state_own = 0xFF;
793 
794 		cpu_ec_state_valid = SB_ECSTATE_VALID;
795 		cpu_ec_state_dirty = SB_ECSTATE_DIRTY;
796 		cpu_ec_state_parity = SB_ECSTATE_PARITY;
797 		cpu_ec_parity = SB_EC_PARITY;
798 	} else if (cpunodes[CPU->cpu_id].implementation == HUMMBRD_IMPL) {
799 		isus2e = 1;
800 		cpu_ec_tag_mask = HB_ECTAG_MASK;
801 		cpu_ec_state_mask = HB_ECSTATE_MASK;
802 		cpu_ec_par_mask = HB_ECPAR_MASK;
803 		cpu_ec_par_shift = HB_ECPAR_SHIFT;
804 		cpu_ec_tag_shift = HB_ECTAG_SHIFT;
805 		cpu_ec_state_shift = HB_ECSTATE_SHIFT;
806 		cpu_ec_state_exl = HB_ECSTATE_EXL;
807 		cpu_ec_state_mod = HB_ECSTATE_MOD;
808 
809 		/* These states do not exist in hummingbird - set to 0xFF */
810 		cpu_ec_state_shr = 0xFF;
811 		cpu_ec_state_own = 0xFF;
812 
813 		cpu_ec_state_valid = HB_ECSTATE_VALID;
814 		cpu_ec_state_dirty = HB_ECSTATE_DIRTY;
815 		cpu_ec_state_parity = HB_ECSTATE_PARITY;
816 		cpu_ec_parity = HB_EC_PARITY;
817 	}
818 
819 	return (sizeof (spitf_async_flt));
820 }
821 
822 
823 /*
824  * Correctable ecc error trap handler
825  */
826 /*ARGSUSED*/
827 void
828 cpu_ce_error(struct regs *rp, ulong_t p_afar, ulong_t p_afsr,
829 	uint_t p_afsr_high, uint_t p_afar_high)
830 {
831 	ushort_t sdbh, sdbl;
832 	ushort_t e_syndh, e_syndl;
833 	spitf_async_flt spf_flt;
834 	struct async_flt *ecc;
835 	int queue = 1;
836 
837 	uint64_t t_afar = p_afar;
838 	uint64_t t_afsr = p_afsr;
839 
840 	/*
841 	 * Note: the Spitfire data buffer error registers
842 	 * (upper and lower halves) are or'ed into the upper
843 	 * word of the afsr by ce_err().
844 	 */
845 	sdbh = (ushort_t)((t_afsr >> 33) & 0x3FF);
846 	sdbl = (ushort_t)((t_afsr >> 43) & 0x3FF);
847 
848 	e_syndh = (uchar_t)(sdbh & (uint_t)P_DER_E_SYND);
849 	e_syndl = (uchar_t)(sdbl & (uint_t)P_DER_E_SYND);
850 
851 	t_afsr &= S_AFSR_MASK;
852 	t_afar &= SABRE_AFAR_PA;	/* must use Sabre AFAR mask */
853 
854 	/* Setup the async fault structure */
855 	bzero(&spf_flt, sizeof (spitf_async_flt));
856 	ecc = (struct async_flt *)&spf_flt;
857 	ecc->flt_id = gethrtime_waitfree();
858 	ecc->flt_stat = t_afsr;
859 	ecc->flt_addr = t_afar;
860 	ecc->flt_status = ECC_C_TRAP;
861 	ecc->flt_bus_id = getprocessorid();
862 	ecc->flt_inst = CPU->cpu_id;
863 	ecc->flt_pc = (caddr_t)rp->r_pc;
864 	ecc->flt_func = log_ce_err;
865 	ecc->flt_in_memory =
866 		(pf_is_memory(ecc->flt_addr >> MMU_PAGESHIFT)) ? 1: 0;
867 	spf_flt.flt_sdbh = sdbh;
868 	spf_flt.flt_sdbl = sdbl;
869 
870 	/*
871 	 * Check for fatal conditions.
872 	 */
873 	check_misc_err(&spf_flt);
874 
875 	/*
876 	 * Pananoid checks for valid AFSR and UDBs
877 	 */
878 	if ((t_afsr & P_AFSR_CE) == 0) {
879 		cpu_aflt_log(CE_PANIC, 1, &spf_flt, CMN_LFLAGS,
880 			"** Panic due to CE bit not set in the AFSR",
881 			"  Corrected Memory Error on");
882 	}
883 
884 	/*
885 	 * We want to skip logging only if ALL the following
886 	 * conditions are true:
887 	 *
888 	 *	1. There is only one error
889 	 *	2. That error is a correctable memory error
890 	 *	3. The error is caused by the memory scrubber (in which case
891 	 *	    the error will have occurred under on_trap protection)
892 	 *	4. The error is on a retired page
893 	 *
894 	 * Note: OT_DATA_EC is used places other than the memory scrubber.
895 	 * However, none of those errors should occur on a retired page.
896 	 */
897 	if ((ecc->flt_stat & (S_AFSR_ALL_ERRS & ~P_AFSR_ME)) == P_AFSR_CE &&
898 	    curthread->t_ontrap != NULL) {
899 
900 		if (curthread->t_ontrap->ot_prot & OT_DATA_EC) {
901 			if (page_retire_check(ecc->flt_addr, NULL) == 0) {
902 				queue = 0;
903 			}
904 		}
905 	}
906 
907 	if (((sdbh & P_DER_CE) == 0) && ((sdbl & P_DER_CE) == 0)) {
908 		cpu_aflt_log(CE_PANIC, 1, &spf_flt, CMN_LFLAGS,
909 			"** Panic due to CE bits not set in the UDBs",
910 			" Corrected Memory Error on");
911 	}
912 
913 	if ((sdbh >> 8) & 1) {
914 		ecc->flt_synd = e_syndh;
915 		ce_scrub(ecc);
916 		if (queue) {
917 			cpu_errorq_dispatch(FM_EREPORT_CPU_USII_CE, ecc,
918 			    sizeof (*ecc), ce_queue, ERRORQ_ASYNC);
919 		}
920 	}
921 
922 	if ((sdbl >> 8) & 1) {
923 		ecc->flt_addr = t_afar | 0x8;	/* Sabres do not have a UDBL */
924 		ecc->flt_synd = e_syndl | UDBL_REG;
925 		ce_scrub(ecc);
926 		if (queue) {
927 			cpu_errorq_dispatch(FM_EREPORT_CPU_USII_CE, ecc,
928 			    sizeof (*ecc), ce_queue, ERRORQ_ASYNC);
929 		}
930 	}
931 
932 	/*
933 	 * Re-enable all error trapping (CEEN currently cleared).
934 	 */
935 	clr_datapath();
936 	set_asyncflt(P_AFSR_CE);
937 	set_error_enable(EER_ENABLE);
938 }
939 
940 /*
941  * Cpu specific CE logging routine
942  */
943 static void
944 log_ce_err(struct async_flt *aflt, char *unum)
945 {
946 	spitf_async_flt spf_flt;
947 
948 	if ((aflt->flt_stat & P_AFSR_CE) && (ce_verbose_memory == 0)) {
949 		return;
950 	}
951 
952 	spf_flt.cmn_asyncflt = *aflt;
953 	cpu_aflt_log(CE_CONT, 0, &spf_flt, CE_LFLAGS, unum,
954 	    " Corrected Memory Error detected by");
955 }
956 
957 /*
958  * Spitfire does not perform any further CE classification refinement
959  */
960 /*ARGSUSED*/
961 int
962 ce_scrub_xdiag_recirc(struct async_flt *ecc, errorq_t *eqp, errorq_elem_t *eqep,
963     size_t afltoffset)
964 {
965 	return (0);
966 }
967 
968 char *
969 flt_to_error_type(struct async_flt *aflt)
970 {
971 	if (aflt->flt_status & ECC_INTERMITTENT)
972 		return (ERR_TYPE_DESC_INTERMITTENT);
973 	if (aflt->flt_status & ECC_PERSISTENT)
974 		return (ERR_TYPE_DESC_PERSISTENT);
975 	if (aflt->flt_status & ECC_STICKY)
976 		return (ERR_TYPE_DESC_STICKY);
977 	return (ERR_TYPE_DESC_UNKNOWN);
978 }
979 
980 /*
981  * Called by correctable ecc error logging code to print out
982  * the stick/persistent/intermittent status of the error.
983  */
984 static void
985 cpu_ce_log_status(spitf_async_flt *spf_flt, char *unum)
986 {
987 	ushort_t status;
988 	char *status1_str = "Memory";
989 	char *status2_str = "Intermittent";
990 	struct async_flt *aflt = (struct async_flt *)spf_flt;
991 
992 	status = aflt->flt_status;
993 
994 	if (status & ECC_ECACHE)
995 		status1_str = "Ecache";
996 
997 	if (status & ECC_STICKY)
998 		status2_str = "Sticky";
999 	else if (status & ECC_PERSISTENT)
1000 		status2_str = "Persistent";
1001 
1002 	cpu_aflt_log(CE_CONT, 0, spf_flt, CPU_ERRID_FIRST,
1003 		NULL, " Corrected %s Error on %s is %s",
1004 		status1_str, unum, status2_str);
1005 }
1006 
1007 /*
1008  * check for a valid ce syndrome, then call the
1009  * displacement flush scrubbing code, and then check the afsr to see if
1010  * the error was persistent or intermittent. Reread the afar/afsr to see
1011  * if the error was not scrubbed successfully, and is therefore sticky.
1012  */
1013 /*ARGSUSED1*/
1014 void
1015 cpu_ce_scrub_mem_err(struct async_flt *ecc, boolean_t triedcpulogout)
1016 {
1017 	uint64_t eer, afsr;
1018 	ushort_t status;
1019 
1020 	ASSERT(getpil() > LOCK_LEVEL);
1021 
1022 	/*
1023 	 * It is possible that the flt_addr is not a valid
1024 	 * physical address. To deal with this, we disable
1025 	 * NCEEN while we scrub that address. If this causes
1026 	 * a TIMEOUT/BERR, we know this is an invalid
1027 	 * memory location.
1028 	 */
1029 	kpreempt_disable();
1030 	eer = get_error_enable();
1031 	if (eer & (EER_CEEN | EER_NCEEN))
1032 	    set_error_enable(eer & ~(EER_CEEN | EER_NCEEN));
1033 
1034 	/*
1035 	 * To check if the error detected by IO is persistent, sticky or
1036 	 * intermittent.
1037 	 */
1038 	if (ecc->flt_status & ECC_IOBUS) {
1039 		ecc->flt_stat = P_AFSR_CE;
1040 	}
1041 
1042 	scrubphys(P2ALIGN(ecc->flt_addr, 64),
1043 	    cpunodes[CPU->cpu_id].ecache_size);
1044 
1045 	get_asyncflt(&afsr);
1046 	if (afsr & (P_AFSR_TO | P_AFSR_BERR)) {
1047 		/*
1048 		 * Must ensure that we don't get the TIMEOUT/BERR
1049 		 * when we reenable NCEEN, so we clear the AFSR.
1050 		 */
1051 		set_asyncflt(afsr & (P_AFSR_TO | P_AFSR_BERR));
1052 		if (eer & (EER_CEEN | EER_NCEEN))
1053 		    set_error_enable(eer);
1054 		kpreempt_enable();
1055 		return;
1056 	}
1057 
1058 	if (eer & EER_NCEEN)
1059 	    set_error_enable(eer & ~EER_CEEN);
1060 
1061 	/*
1062 	 * Check and clear any ECC errors from the scrub.  If the scrub did
1063 	 * not trip over the error, mark it intermittent.  If the scrub did
1064 	 * trip the error again and it did not scrub away, mark it sticky.
1065 	 * Otherwise mark it persistent.
1066 	 */
1067 	if (check_ecc(ecc) != 0) {
1068 		cpu_read_paddr(ecc, 0, 1);
1069 
1070 		if (check_ecc(ecc) != 0)
1071 			status = ECC_STICKY;
1072 		else
1073 			status = ECC_PERSISTENT;
1074 	} else
1075 		status = ECC_INTERMITTENT;
1076 
1077 	if (eer & (EER_CEEN | EER_NCEEN))
1078 	    set_error_enable(eer);
1079 	kpreempt_enable();
1080 
1081 	ecc->flt_status &= ~(ECC_INTERMITTENT | ECC_PERSISTENT | ECC_STICKY);
1082 	ecc->flt_status |= status;
1083 }
1084 
1085 /*
1086  * get the syndrome and unum, and then call the routines
1087  * to check the other cpus and iobuses, and then do the error logging.
1088  */
1089 /*ARGSUSED1*/
1090 void
1091 cpu_ce_log_err(struct async_flt *ecc, errorq_elem_t *eqep)
1092 {
1093 	char unum[UNUM_NAMLEN];
1094 	int len = 0;
1095 	int ce_verbose = 0;
1096 	int err;
1097 
1098 	ASSERT(ecc->flt_func != NULL);
1099 
1100 	/* Get the unum string for logging purposes */
1101 	(void) cpu_get_mem_unum_aflt(AFLT_STAT_VALID, ecc, unum,
1102 	    UNUM_NAMLEN, &len);
1103 
1104 	/* Call specific error logging routine */
1105 	(void) (*ecc->flt_func)(ecc, unum);
1106 
1107 	/*
1108 	 * Count errors per unum.
1109 	 * Non-memory errors are all counted via a special unum string.
1110 	 */
1111 	if ((err = ce_count_unum(ecc->flt_status, len, unum)) != PR_OK &&
1112 	    automatic_page_removal) {
1113 		(void) page_retire(ecc->flt_addr, err);
1114 	}
1115 
1116 	if (ecc->flt_panic) {
1117 		ce_verbose = 1;
1118 	} else if ((ecc->flt_class == BUS_FAULT) ||
1119 	    (ecc->flt_stat & P_AFSR_CE)) {
1120 		ce_verbose = (ce_verbose_memory > 0);
1121 	} else {
1122 		ce_verbose = 1;
1123 	}
1124 
1125 	if (ce_verbose) {
1126 		spitf_async_flt sflt;
1127 		int synd_code;
1128 
1129 		sflt.cmn_asyncflt = *ecc;	/* for cpu_aflt_log() */
1130 
1131 		cpu_ce_log_status(&sflt, unum);
1132 
1133 		synd_code = synd_to_synd_code(AFLT_STAT_VALID,
1134 				SYND(ecc->flt_synd));
1135 
1136 		if (SYND_IS_SINGLE_BIT_DATA(synd_code)) {
1137 			cpu_aflt_log(CE_CONT, 0, &sflt, CPU_ERRID_FIRST,
1138 			    NULL, " ECC Data Bit %2d was in error "
1139 			    "and corrected", synd_code);
1140 		} else if (SYND_IS_SINGLE_BIT_CHK(synd_code)) {
1141 			cpu_aflt_log(CE_CONT, 0, &sflt, CPU_ERRID_FIRST,
1142 			    NULL, " ECC Check Bit %2d was in error "
1143 			    "and corrected", synd_code - C0);
1144 		} else {
1145 			/*
1146 			 * These are UE errors - we shouldn't be getting CE
1147 			 * traps for these; handle them in case of bad h/w.
1148 			 */
1149 			switch (synd_code) {
1150 			case M2:
1151 				cpu_aflt_log(CE_CONT, 0, &sflt,
1152 				    CPU_ERRID_FIRST, NULL,
1153 				    " Two ECC Bits were in error");
1154 				break;
1155 			case M3:
1156 				cpu_aflt_log(CE_CONT, 0, &sflt,
1157 				    CPU_ERRID_FIRST, NULL,
1158 				    " Three ECC Bits were in error");
1159 				break;
1160 			case M4:
1161 				cpu_aflt_log(CE_CONT, 0, &sflt,
1162 				    CPU_ERRID_FIRST, NULL,
1163 				    " Four ECC Bits were in error");
1164 				break;
1165 			case MX:
1166 				cpu_aflt_log(CE_CONT, 0, &sflt,
1167 				    CPU_ERRID_FIRST, NULL,
1168 				    " More than Four ECC bits were "
1169 				    "in error");
1170 				break;
1171 			default:
1172 				cpu_aflt_log(CE_CONT, 0, &sflt,
1173 				    CPU_ERRID_FIRST, NULL,
1174 				    " Unknown fault syndrome %d",
1175 				    synd_code);
1176 				break;
1177 			}
1178 		}
1179 	}
1180 
1181 	/* Display entire cache line, if valid address */
1182 	if (ce_show_data && ecc->flt_addr != AFLT_INV_ADDR)
1183 		read_ecc_data(ecc, 1, 1);
1184 }
1185 
1186 /*
1187  * We route all errors through a single switch statement.
1188  */
1189 void
1190 cpu_ue_log_err(struct async_flt *aflt)
1191 {
1192 
1193 	switch (aflt->flt_class) {
1194 	case CPU_FAULT:
1195 		cpu_async_log_err(aflt);
1196 		break;
1197 
1198 	case BUS_FAULT:
1199 		bus_async_log_err(aflt);
1200 		break;
1201 
1202 	default:
1203 		cmn_err(CE_WARN, "discarding async error 0x%p with invalid "
1204 		    "fault class (0x%x)", (void *)aflt, aflt->flt_class);
1205 		break;
1206 	}
1207 }
1208 
1209 /* Values for action variable in cpu_async_error() */
1210 #define	ACTION_NONE		0
1211 #define	ACTION_TRAMPOLINE	1
1212 #define	ACTION_AST_FLAGS	2
1213 
1214 /*
1215  * Access error trap handler for asynchronous cpu errors.  This routine is
1216  * called to handle a data or instruction access error.  All fatal errors are
1217  * completely handled by this routine (by panicking).  Non fatal error logging
1218  * is queued for later processing either via AST or softint at a lower PIL.
1219  * In case of panic, the error log queue will also be processed as part of the
1220  * panic flow to ensure all errors are logged.  This routine is called with all
1221  * errors disabled at PIL15.  The AFSR bits are cleared and the UDBL and UDBH
1222  * error bits are also cleared.  The hardware has also disabled the I and
1223  * D-caches for us, so we must re-enable them before returning.
1224  *
1225  * A summary of the handling of tl=0 UE/LDP/EDP/TO/BERR/WP/CP:
1226  *
1227  *		_______________________________________________________________
1228  *		|        Privileged tl0		|         Unprivileged	      |
1229  *		| Protected	| Unprotected	| Protected	| Unprotected |
1230  *		|on_trap|lofault|		|		|	      |
1231  * -------------|-------|-------+---------------+---------------+-------------|
1232  *		|	|	|		|		|	      |
1233  * UE/LDP/EDP	| L,T,p	| L,R,p	| L,P		| n/a		| L,R,p	      |
1234  *		|	|	|		|		|	      |
1235  * TO/BERR	| T	| S	| L,P		| n/a		| S	      |
1236  *		|	|	|		|		|	      |
1237  * WP		| L,M,p | L,M,p	| L,M,p		| n/a		| L,M,p       |
1238  *		|	|	|		|		|	      |
1239  * CP (IIi/IIe)	| L,P	| L,P	| L,P		| n/a		| L,P	      |
1240  * ____________________________________________________________________________
1241  *
1242  *
1243  * Action codes:
1244  *
1245  * L - log
1246  * M - kick off memscrubber if flt_in_memory
1247  * P - panic
1248  * p - panic if US-IIi or US-IIe (Sabre); overrides R and M
1249  * R - i)  if aft_panic is set, panic
1250  *     ii) otherwise, send hwerr event to contract and SIGKILL to process
1251  * S - send SIGBUS to process
1252  * T - trampoline
1253  *
1254  * Special cases:
1255  *
1256  * 1) if aft_testfatal is set, all faults result in a panic regardless
1257  *    of type (even WP), protection (even on_trap), or privilege.
1258  */
1259 /*ARGSUSED*/
1260 void
1261 cpu_async_error(struct regs *rp, ulong_t p_afar, ulong_t p_afsr,
1262 	uint_t p_afsr_high, uint_t p_afar_high)
1263 {
1264 	ushort_t sdbh, sdbl, ttype, tl;
1265 	spitf_async_flt spf_flt;
1266 	struct async_flt *aflt;
1267 	char pr_reason[28];
1268 	uint64_t oafsr;
1269 	uint64_t acc_afsr = 0;			/* accumulated afsr */
1270 	int action = ACTION_NONE;
1271 	uint64_t t_afar = p_afar;
1272 	uint64_t t_afsr = p_afsr;
1273 	int expected = DDI_FM_ERR_UNEXPECTED;
1274 	ddi_acc_hdl_t *hp;
1275 
1276 	/*
1277 	 * We need to look at p_flag to determine if the thread detected an
1278 	 * error while dumping core.  We can't grab p_lock here, but it's ok
1279 	 * because we just need a consistent snapshot and we know that everyone
1280 	 * else will store a consistent set of bits while holding p_lock.  We
1281 	 * don't have to worry about a race because SDOCORE is set once prior
1282 	 * to doing i/o from the process's address space and is never cleared.
1283 	 */
1284 	uint_t pflag = ttoproc(curthread)->p_flag;
1285 
1286 	pr_reason[0] = '\0';
1287 
1288 	/*
1289 	 * Note: the Spitfire data buffer error registers
1290 	 * (upper and lower halves) are or'ed into the upper
1291 	 * word of the afsr by async_err() if P_AFSR_UE is set.
1292 	 */
1293 	sdbh = (ushort_t)((t_afsr >> 33) & 0x3FF);
1294 	sdbl = (ushort_t)((t_afsr >> 43) & 0x3FF);
1295 
1296 	/*
1297 	 * Grab the ttype encoded in <63:53> of the saved
1298 	 * afsr passed from async_err()
1299 	 */
1300 	ttype = (ushort_t)((t_afsr >> 53) & 0x1FF);
1301 	tl = (ushort_t)(t_afsr >> 62);
1302 
1303 	t_afsr &= S_AFSR_MASK;
1304 	t_afar &= SABRE_AFAR_PA;	/* must use Sabre AFAR mask */
1305 
1306 	/*
1307 	 * Initialize most of the common and CPU-specific structure.  We derive
1308 	 * aflt->flt_priv from %tstate, instead of from the AFSR.PRIV bit.  The
1309 	 * initial setting of aflt->flt_panic is based on TL: we must panic if
1310 	 * the error occurred at TL > 0.  We also set flt_panic if the test/demo
1311 	 * tuneable aft_testfatal is set (not the default).
1312 	 */
1313 	bzero(&spf_flt, sizeof (spitf_async_flt));
1314 	aflt = (struct async_flt *)&spf_flt;
1315 	aflt->flt_id = gethrtime_waitfree();
1316 	aflt->flt_stat = t_afsr;
1317 	aflt->flt_addr = t_afar;
1318 	aflt->flt_bus_id = getprocessorid();
1319 	aflt->flt_inst = CPU->cpu_id;
1320 	aflt->flt_pc = (caddr_t)rp->r_pc;
1321 	aflt->flt_prot = AFLT_PROT_NONE;
1322 	aflt->flt_class = CPU_FAULT;
1323 	aflt->flt_priv = (rp->r_tstate & TSTATE_PRIV) ? 1 : 0;
1324 	aflt->flt_tl = (uchar_t)tl;
1325 	aflt->flt_panic = (tl != 0 || aft_testfatal != 0);
1326 	aflt->flt_core = (pflag & SDOCORE) ? 1 : 0;
1327 
1328 	/*
1329 	 * Set flt_status based on the trap type.  If we end up here as the
1330 	 * result of a UE detected by the CE handling code, leave status 0.
1331 	 */
1332 	switch (ttype) {
1333 	case T_DATA_ERROR:
1334 		aflt->flt_status = ECC_D_TRAP;
1335 		break;
1336 	case T_INSTR_ERROR:
1337 		aflt->flt_status = ECC_I_TRAP;
1338 		break;
1339 	}
1340 
1341 	spf_flt.flt_sdbh = sdbh;
1342 	spf_flt.flt_sdbl = sdbl;
1343 
1344 	/*
1345 	 * Check for fatal async errors.
1346 	 */
1347 	check_misc_err(&spf_flt);
1348 
1349 	/*
1350 	 * If the trap occurred in privileged mode at TL=0, we need to check to
1351 	 * see if we were executing in the kernel under on_trap() or t_lofault
1352 	 * protection.  If so, modify the saved registers so that we return
1353 	 * from the trap to the appropriate trampoline routine.
1354 	 */
1355 	if (aflt->flt_priv && tl == 0) {
1356 		if (curthread->t_ontrap != NULL) {
1357 			on_trap_data_t *otp = curthread->t_ontrap;
1358 
1359 			if (otp->ot_prot & OT_DATA_EC) {
1360 				aflt->flt_prot = AFLT_PROT_EC;
1361 				otp->ot_trap |= OT_DATA_EC;
1362 				rp->r_pc = otp->ot_trampoline;
1363 				rp->r_npc = rp->r_pc + 4;
1364 				action = ACTION_TRAMPOLINE;
1365 			}
1366 
1367 			if ((t_afsr & (P_AFSR_TO | P_AFSR_BERR)) &&
1368 			    (otp->ot_prot & OT_DATA_ACCESS)) {
1369 				aflt->flt_prot = AFLT_PROT_ACCESS;
1370 				otp->ot_trap |= OT_DATA_ACCESS;
1371 				rp->r_pc = otp->ot_trampoline;
1372 				rp->r_npc = rp->r_pc + 4;
1373 				action = ACTION_TRAMPOLINE;
1374 				/*
1375 				 * for peeks and caut_gets errors are expected
1376 				 */
1377 				hp = (ddi_acc_hdl_t *)otp->ot_handle;
1378 				if (!hp)
1379 					expected = DDI_FM_ERR_PEEK;
1380 				else if (hp->ah_acc.devacc_attr_access ==
1381 				    DDI_CAUTIOUS_ACC)
1382 					expected = DDI_FM_ERR_EXPECTED;
1383 			}
1384 
1385 		} else if (curthread->t_lofault) {
1386 			aflt->flt_prot = AFLT_PROT_COPY;
1387 			rp->r_g1 = EFAULT;
1388 			rp->r_pc = curthread->t_lofault;
1389 			rp->r_npc = rp->r_pc + 4;
1390 			action = ACTION_TRAMPOLINE;
1391 		}
1392 	}
1393 
1394 	/*
1395 	 * Determine if this error needs to be treated as fatal.  Note that
1396 	 * multiple errors detected upon entry to this trap handler does not
1397 	 * necessarily warrant a panic.  We only want to panic if the trap
1398 	 * happened in privileged mode and not under t_ontrap or t_lofault
1399 	 * protection.  The exception is WP: if we *only* get WP, it is not
1400 	 * fatal even if the trap occurred in privileged mode, except on Sabre.
1401 	 *
1402 	 * aft_panic, if set, effectively makes us treat usermode
1403 	 * UE/EDP/LDP faults as if they were privileged - so we we will
1404 	 * panic instead of sending a contract event.  A lofault-protected
1405 	 * fault will normally follow the contract event; if aft_panic is
1406 	 * set this will be changed to a panic.
1407 	 *
1408 	 * For usermode BERR/BTO errors, eg from processes performing device
1409 	 * control through mapped device memory, we need only deliver
1410 	 * a SIGBUS to the offending process.
1411 	 *
1412 	 * Some additional flt_panic reasons (eg, WP on Sabre) will be
1413 	 * checked later; for now we implement the common reasons.
1414 	 */
1415 	if (aflt->flt_prot == AFLT_PROT_NONE) {
1416 		/*
1417 		 * Beware - multiple bits may be set in AFSR
1418 		 */
1419 		if (t_afsr & (P_AFSR_UE | P_AFSR_LDP | P_AFSR_EDP)) {
1420 			if (aflt->flt_priv || aft_panic)
1421 				aflt->flt_panic = 1;
1422 		}
1423 
1424 		if (t_afsr & (P_AFSR_TO | P_AFSR_BERR)) {
1425 			if (aflt->flt_priv)
1426 				aflt->flt_panic = 1;
1427 		}
1428 	} else if (aflt->flt_prot == AFLT_PROT_COPY && aft_panic) {
1429 		aflt->flt_panic = 1;
1430 	}
1431 
1432 	/*
1433 	 * UE/BERR/TO: Call our bus nexus friends to check for
1434 	 * IO errors that may have resulted in this trap.
1435 	 */
1436 	if (t_afsr & (P_AFSR_TO | P_AFSR_BERR | P_AFSR_UE)) {
1437 		cpu_run_bus_error_handlers(aflt, expected);
1438 	}
1439 
1440 	/*
1441 	 * Handle UE: If the UE is in memory, we need to flush the bad line from
1442 	 * the E-cache.  We also need to query the bus nexus for fatal errors.
1443 	 * For sabre, we will panic on UEs. Attempts to do diagnostic read on
1444 	 * caches may introduce more parity errors (especially when the module
1445 	 * is bad) and in sabre there is no guarantee that such errors
1446 	 * (if introduced) are written back as poisoned data.
1447 	 */
1448 	if (t_afsr & P_AFSR_UE) {
1449 		int i;
1450 
1451 		(void) strcat(pr_reason, "UE ");
1452 
1453 		spf_flt.flt_type = CPU_UE_ERR;
1454 		aflt->flt_in_memory = (pf_is_memory(aflt->flt_addr >>
1455 			MMU_PAGESHIFT)) ? 1: 0;
1456 
1457 		/*
1458 		 * With UE, we have the PA of the fault.
1459 		 * Let do a diagnostic read to get the ecache
1460 		 * data and tag info of the bad line for logging.
1461 		 */
1462 		if (aflt->flt_in_memory) {
1463 			uint32_t ec_set_size;
1464 			uchar_t state;
1465 			uint32_t ecache_idx;
1466 			uint64_t faultpa = P2ALIGN(aflt->flt_addr, 64);
1467 
1468 			/* touch the line to put it in ecache */
1469 			acc_afsr |= read_and_clear_afsr();
1470 			(void) lddphys(faultpa);
1471 			acc_afsr |= (read_and_clear_afsr() &
1472 				    ~(P_AFSR_EDP | P_AFSR_UE));
1473 
1474 			ec_set_size = cpunodes[CPU->cpu_id].ecache_size /
1475 			    ecache_associativity;
1476 
1477 			for (i = 0; i < ecache_associativity; i++) {
1478 				ecache_idx = i * ec_set_size +
1479 				    (aflt->flt_addr % ec_set_size);
1480 				get_ecache_dtag(P2ALIGN(ecache_idx, 64),
1481 					(uint64_t *)&spf_flt.flt_ec_data[0],
1482 					&spf_flt.flt_ec_tag, &oafsr, &acc_afsr);
1483 				acc_afsr |= oafsr;
1484 
1485 				state = (uchar_t)((spf_flt.flt_ec_tag &
1486 				    cpu_ec_state_mask) >> cpu_ec_state_shift);
1487 
1488 				if ((state & cpu_ec_state_valid) &&
1489 				    ((spf_flt.flt_ec_tag & cpu_ec_tag_mask) ==
1490 				    ((uint64_t)aflt->flt_addr >>
1491 				    cpu_ec_tag_shift)))
1492 					break;
1493 			}
1494 
1495 			/*
1496 			 * Check to see if the ecache tag is valid for the
1497 			 * fault PA. In the very unlikely event where the
1498 			 * line could be victimized, no ecache info will be
1499 			 * available. If this is the case, capture the line
1500 			 * from memory instead.
1501 			 */
1502 			if ((state & cpu_ec_state_valid) == 0 ||
1503 			    (spf_flt.flt_ec_tag & cpu_ec_tag_mask) !=
1504 			    ((uint64_t)aflt->flt_addr >> cpu_ec_tag_shift)) {
1505 				for (i = 0; i < 8; i++, faultpa += 8) {
1506 				    ec_data_t *ecdptr;
1507 
1508 					ecdptr = &spf_flt.flt_ec_data[i];
1509 					acc_afsr |= read_and_clear_afsr();
1510 					ecdptr->ec_d8 = lddphys(faultpa);
1511 					acc_afsr |= (read_and_clear_afsr() &
1512 						    ~(P_AFSR_EDP | P_AFSR_UE));
1513 					ecdptr->ec_afsr = 0;
1514 							/* null afsr value */
1515 				}
1516 
1517 				/*
1518 				 * Mark tag invalid to indicate mem dump
1519 				 * when we print out the info.
1520 				 */
1521 				spf_flt.flt_ec_tag = AFLT_INV_ADDR;
1522 			}
1523 			spf_flt.flt_ec_lcnt = 1;
1524 
1525 			/*
1526 			 * Flush out the bad line
1527 			 */
1528 			flushecacheline(P2ALIGN(aflt->flt_addr, 64),
1529 				cpunodes[CPU->cpu_id].ecache_size);
1530 
1531 			acc_afsr |= clear_errors(NULL, NULL);
1532 		}
1533 
1534 		/*
1535 		 * Ask our bus nexus friends if they have any fatal errors. If
1536 		 * so, they will log appropriate error messages and panic as a
1537 		 * result. We then queue an event for each UDB that reports a
1538 		 * UE. Each UE reported in a UDB will have its own log message.
1539 		 *
1540 		 * Note from kbn: In the case where there are multiple UEs
1541 		 * (ME bit is set) - the AFAR address is only accurate to
1542 		 * the 16-byte granularity. One cannot tell whether the AFAR
1543 		 * belongs to the UDBH or UDBL syndromes. In this case, we
1544 		 * always report the AFAR address to be 16-byte aligned.
1545 		 *
1546 		 * If we're on a Sabre, there is no SDBL, but it will always
1547 		 * read as zero, so the sdbl test below will safely fail.
1548 		 */
1549 		if (bus_func_invoke(BF_TYPE_UE) == BF_FATAL || isus2i || isus2e)
1550 			aflt->flt_panic = 1;
1551 
1552 		if (sdbh & P_DER_UE) {
1553 			aflt->flt_synd = sdbh & P_DER_E_SYND;
1554 			cpu_errorq_dispatch(FM_EREPORT_CPU_USII_UE,
1555 			    (void *)&spf_flt, sizeof (spf_flt), ue_queue,
1556 			    aflt->flt_panic);
1557 		}
1558 		if (sdbl & P_DER_UE) {
1559 			aflt->flt_synd = sdbl & P_DER_E_SYND;
1560 			aflt->flt_synd |= UDBL_REG;	/* indicates UDBL */
1561 			if (!(aflt->flt_stat & P_AFSR_ME))
1562 				aflt->flt_addr |= 0x8;
1563 			cpu_errorq_dispatch(FM_EREPORT_CPU_USII_UE,
1564 			    (void *)&spf_flt, sizeof (spf_flt), ue_queue,
1565 			    aflt->flt_panic);
1566 		}
1567 
1568 		/*
1569 		 * We got a UE and are panicking, save the fault PA in a known
1570 		 * location so that the platform specific panic code can check
1571 		 * for copyback errors.
1572 		 */
1573 		if (aflt->flt_panic && aflt->flt_in_memory) {
1574 			panic_aflt = *aflt;
1575 		}
1576 	}
1577 
1578 	/*
1579 	 * Handle EDP and LDP: Locate the line with bad parity and enqueue an
1580 	 * async error for logging. For Sabre, we panic on EDP or LDP.
1581 	 */
1582 	if (t_afsr & (P_AFSR_EDP | P_AFSR_LDP)) {
1583 		spf_flt.flt_type = CPU_EDP_LDP_ERR;
1584 
1585 		if (t_afsr & P_AFSR_EDP)
1586 			(void) strcat(pr_reason, "EDP ");
1587 
1588 		if (t_afsr & P_AFSR_LDP)
1589 			(void) strcat(pr_reason, "LDP ");
1590 
1591 		/*
1592 		 * Here we have no PA to work with.
1593 		 * Scan each line in the ecache to look for
1594 		 * the one with bad parity.
1595 		 */
1596 		aflt->flt_addr = AFLT_INV_ADDR;
1597 		scan_ecache(&aflt->flt_addr, &spf_flt.flt_ec_data[0],
1598 			&spf_flt.flt_ec_tag, &spf_flt.flt_ec_lcnt, &oafsr);
1599 		acc_afsr |= (oafsr & ~P_AFSR_WP);
1600 
1601 		/*
1602 		 * If we found a bad PA, update the state to indicate if it is
1603 		 * memory or I/O space.  This code will be important if we ever
1604 		 * support cacheable frame buffers.
1605 		 */
1606 		if (aflt->flt_addr != AFLT_INV_ADDR) {
1607 			aflt->flt_in_memory = (pf_is_memory(aflt->flt_addr >>
1608 				MMU_PAGESHIFT)) ? 1 : 0;
1609 		}
1610 
1611 		if (isus2i || isus2e)
1612 			aflt->flt_panic = 1;
1613 
1614 		cpu_errorq_dispatch((t_afsr & P_AFSR_EDP) ?
1615 		    FM_EREPORT_CPU_USII_EDP : FM_EREPORT_CPU_USII_LDP,
1616 		    (void *)&spf_flt, sizeof (spf_flt), ue_queue,
1617 		    aflt->flt_panic);
1618 	}
1619 
1620 	/*
1621 	 * Timeout and bus error handling.  There are two cases to consider:
1622 	 *
1623 	 * (1) If we are in the kernel protected by ddi_peek or ddi_poke,we
1624 	 * have already modified the saved registers so that we will return
1625 	 * from the trap to the appropriate trampoline routine; otherwise panic.
1626 	 *
1627 	 * (2) In user mode, we can simply use our AST mechanism to deliver
1628 	 * a SIGBUS.  We do not log the occurence - processes performing
1629 	 * device control would generate lots of uninteresting messages.
1630 	 */
1631 	if (t_afsr & (P_AFSR_TO | P_AFSR_BERR)) {
1632 		if (t_afsr & P_AFSR_TO)
1633 			(void) strcat(pr_reason, "BTO ");
1634 
1635 		if (t_afsr & P_AFSR_BERR)
1636 			(void) strcat(pr_reason, "BERR ");
1637 
1638 		spf_flt.flt_type = CPU_BTO_BERR_ERR;
1639 		if (aflt->flt_priv && aflt->flt_prot == AFLT_PROT_NONE) {
1640 			cpu_errorq_dispatch((t_afsr & P_AFSR_TO) ?
1641 			    FM_EREPORT_CPU_USII_TO : FM_EREPORT_CPU_USII_BERR,
1642 			    (void *)&spf_flt, sizeof (spf_flt), ue_queue,
1643 			    aflt->flt_panic);
1644 		}
1645 	}
1646 
1647 	/*
1648 	 * Handle WP: WP happens when the ecache is victimized and a parity
1649 	 * error was detected on a writeback.  The data in question will be
1650 	 * poisoned as a UE will be written back.  The PA is not logged and
1651 	 * it is possible that it doesn't belong to the trapped thread.  The
1652 	 * WP trap is not fatal, but it could be fatal to someone that
1653 	 * subsequently accesses the toxic page.  We set read_all_memscrub
1654 	 * to force the memscrubber to read all of memory when it awakens.
1655 	 * For Sabre/Hummingbird, WP is fatal because the HW doesn't write a
1656 	 * UE back to poison the data.
1657 	 */
1658 	if (t_afsr & P_AFSR_WP) {
1659 		(void) strcat(pr_reason, "WP ");
1660 		if (isus2i || isus2e) {
1661 			aflt->flt_panic = 1;
1662 		} else {
1663 			read_all_memscrub = 1;
1664 		}
1665 		spf_flt.flt_type = CPU_WP_ERR;
1666 		cpu_errorq_dispatch(FM_EREPORT_CPU_USII_WP,
1667 		    (void *)&spf_flt, sizeof (spf_flt), ue_queue,
1668 		    aflt->flt_panic);
1669 	}
1670 
1671 	/*
1672 	 * Handle trapping CP error: In Sabre/Hummingbird, parity error in
1673 	 * the ecache on a copyout due to a PCI DMA read is signaled as a CP.
1674 	 * This is fatal.
1675 	 */
1676 
1677 	if (t_afsr & P_AFSR_CP) {
1678 		if (isus2i || isus2e) {
1679 			(void) strcat(pr_reason, "CP ");
1680 			aflt->flt_panic = 1;
1681 			spf_flt.flt_type = CPU_TRAPPING_CP_ERR;
1682 			cpu_errorq_dispatch(FM_EREPORT_CPU_USII_CP,
1683 			    (void *)&spf_flt, sizeof (spf_flt), ue_queue,
1684 			    aflt->flt_panic);
1685 		} else {
1686 			/*
1687 			 * Orphan CP: Happens due to signal integrity problem
1688 			 * on a CPU, where a CP is reported, without reporting
1689 			 * its associated UE. This is handled by locating the
1690 			 * bad parity line and would kick off the memscrubber
1691 			 * to find the UE if in memory or in another's cache.
1692 			 */
1693 			spf_flt.flt_type = CPU_ORPHAN_CP_ERR;
1694 			(void) strcat(pr_reason, "ORPHAN_CP ");
1695 
1696 			/*
1697 			 * Here we have no PA to work with.
1698 			 * Scan each line in the ecache to look for
1699 			 * the one with bad parity.
1700 			 */
1701 			aflt->flt_addr = AFLT_INV_ADDR;
1702 			scan_ecache(&aflt->flt_addr, &spf_flt.flt_ec_data[0],
1703 				&spf_flt.flt_ec_tag, &spf_flt.flt_ec_lcnt,
1704 				&oafsr);
1705 			acc_afsr |= oafsr;
1706 
1707 			/*
1708 			 * If we found a bad PA, update the state to indicate
1709 			 * if it is memory or I/O space.
1710 			 */
1711 			if (aflt->flt_addr != AFLT_INV_ADDR) {
1712 				aflt->flt_in_memory =
1713 					(pf_is_memory(aflt->flt_addr >>
1714 						MMU_PAGESHIFT)) ? 1 : 0;
1715 			}
1716 			read_all_memscrub = 1;
1717 			cpu_errorq_dispatch(FM_EREPORT_CPU_USII_CP,
1718 			    (void *)&spf_flt, sizeof (spf_flt), ue_queue,
1719 			    aflt->flt_panic);
1720 
1721 		}
1722 	}
1723 
1724 	/*
1725 	 * If we queued an error other than WP or CP and we are going to return
1726 	 * from the trap and the error was in user mode or inside of a
1727 	 * copy routine, set AST flag so the queue will be drained before
1728 	 * returning to user mode.
1729 	 *
1730 	 * For UE/LDP/EDP, the AST processing will SIGKILL the process
1731 	 * and send an event to its process contract.
1732 	 *
1733 	 * For BERR/BTO, the AST processing will SIGBUS the process.  There
1734 	 * will have been no error queued in this case.
1735 	 */
1736 	if ((t_afsr &
1737 	    (P_AFSR_UE | P_AFSR_LDP | P_AFSR_EDP | P_AFSR_BERR | P_AFSR_TO)) &&
1738 	    (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY)) {
1739 			int pcb_flag = 0;
1740 
1741 			if (t_afsr & (P_AFSR_UE | P_AFSR_LDP | P_AFSR_EDP))
1742 				pcb_flag |= ASYNC_HWERR;
1743 
1744 			if (t_afsr & P_AFSR_BERR)
1745 				pcb_flag |= ASYNC_BERR;
1746 
1747 			if (t_afsr & P_AFSR_TO)
1748 				pcb_flag |= ASYNC_BTO;
1749 
1750 			ttolwp(curthread)->lwp_pcb.pcb_flags |= pcb_flag;
1751 			aston(curthread);
1752 			action = ACTION_AST_FLAGS;
1753 	}
1754 
1755 	/*
1756 	 * In response to a deferred error, we must do one of three things:
1757 	 * (1) set the AST flags, (2) trampoline, or (3) panic.  action is
1758 	 * set in cases (1) and (2) - check that either action is set or
1759 	 * (3) is true.
1760 	 *
1761 	 * On II, the WP writes poisoned data back to memory, which will
1762 	 * cause a UE and a panic or reboot when read.  In this case, we
1763 	 * don't need to panic at this time.  On IIi and IIe,
1764 	 * aflt->flt_panic is already set above.
1765 	 */
1766 	ASSERT((aflt->flt_panic != 0) || (action != ACTION_NONE) ||
1767 	    (t_afsr & P_AFSR_WP));
1768 
1769 	/*
1770 	 * Make a final sanity check to make sure we did not get any more async
1771 	 * errors and accumulate the afsr.
1772 	 */
1773 	flush_ecache(ecache_flushaddr, cpunodes[CPU->cpu_id].ecache_size * 2,
1774 	    cpunodes[CPU->cpu_id].ecache_linesize);
1775 	(void) clear_errors(&spf_flt, NULL);
1776 
1777 	/*
1778 	 * Take care of a special case: If there is a UE in the ecache flush
1779 	 * area, we'll see it in flush_ecache().  This will trigger the
1780 	 * CPU_ADDITIONAL_ERRORS case below.
1781 	 *
1782 	 * This could occur if the original error was a UE in the flush area,
1783 	 * or if the original error was an E$ error that was flushed out of
1784 	 * the E$ in scan_ecache().
1785 	 *
1786 	 * If it's at the same address that we're already logging, then it's
1787 	 * probably one of these cases.  Clear the bit so we don't trip over
1788 	 * it on the additional errors case, which could cause an unnecessary
1789 	 * panic.
1790 	 */
1791 	if ((aflt->flt_stat & P_AFSR_UE) && aflt->flt_addr == t_afar)
1792 		acc_afsr |= aflt->flt_stat & ~P_AFSR_UE;
1793 	else
1794 		acc_afsr |= aflt->flt_stat;
1795 
1796 	/*
1797 	 * Check the acumulated afsr for the important bits.
1798 	 * Make sure the spf_flt.flt_type value is set, and
1799 	 * enque an error.
1800 	 */
1801 	if (acc_afsr &
1802 	    (P_AFSR_LEVEL1 | P_AFSR_IVUE | P_AFSR_ETP | P_AFSR_ISAP)) {
1803 		if (acc_afsr & (P_AFSR_UE | P_AFSR_EDP | P_AFSR_LDP |
1804 		    P_AFSR_BERR | P_AFSR_TO | P_AFSR_IVUE | P_AFSR_ETP |
1805 		    P_AFSR_ISAP))
1806 			aflt->flt_panic = 1;
1807 
1808 		spf_flt.flt_type = CPU_ADDITIONAL_ERR;
1809 		aflt->flt_stat = acc_afsr;
1810 		cpu_errorq_dispatch(FM_EREPORT_CPU_USII_UNKNOWN,
1811 		    (void *)&spf_flt, sizeof (spf_flt), ue_queue,
1812 		    aflt->flt_panic);
1813 	}
1814 
1815 	/*
1816 	 * If aflt->flt_panic is set at this point, we need to panic as the
1817 	 * result of a trap at TL > 0, or an error we determined to be fatal.
1818 	 * We've already enqueued the error in one of the if-clauses above,
1819 	 * and it will be dequeued and logged as part of the panic flow.
1820 	 */
1821 	if (aflt->flt_panic) {
1822 		cpu_aflt_log(CE_PANIC, 1, &spf_flt, CPU_ERRID_FIRST,
1823 		    "See previous message(s) for details", " %sError(s)",
1824 		    pr_reason);
1825 	}
1826 
1827 	/*
1828 	 * Before returning, we must re-enable errors, and
1829 	 * reset the caches to their boot-up state.
1830 	 */
1831 	set_lsu(get_lsu() | cache_boot_state);
1832 	set_error_enable(EER_ENABLE);
1833 }
1834 
1835 /*
1836  * Check for miscellaneous fatal errors and call CE_PANIC if any are seen.
1837  * This routine is shared by the CE and UE handling code.
1838  */
1839 static void
1840 check_misc_err(spitf_async_flt *spf_flt)
1841 {
1842 	struct async_flt *aflt = (struct async_flt *)spf_flt;
1843 	char *fatal_str = NULL;
1844 
1845 	/*
1846 	 * The ISAP and ETP errors are supposed to cause a POR
1847 	 * from the system, so in theory we never, ever see these messages.
1848 	 * ISAP, ETP and IVUE are considered to be fatal.
1849 	 */
1850 	if (aflt->flt_stat & P_AFSR_ISAP)
1851 		fatal_str = " System Address Parity Error on";
1852 	else if (aflt->flt_stat & P_AFSR_ETP)
1853 		fatal_str = " Ecache Tag Parity Error on";
1854 	else if (aflt->flt_stat & P_AFSR_IVUE)
1855 		fatal_str = " Interrupt Vector Uncorrectable Error on";
1856 	if (fatal_str != NULL) {
1857 		cpu_aflt_log(CE_PANIC, 1, spf_flt, CMN_LFLAGS,
1858 			NULL, fatal_str);
1859 	}
1860 }
1861 
1862 /*
1863  * Routine to convert a syndrome into a syndrome code.
1864  */
1865 static int
1866 synd_to_synd_code(int synd_status, ushort_t synd)
1867 {
1868 	if (synd_status != AFLT_STAT_VALID)
1869 		return (-1);
1870 
1871 	/*
1872 	 * Use the 8-bit syndrome to index the ecc_syndrome_tab
1873 	 * to get the code indicating which bit(s) is(are) bad.
1874 	 */
1875 	if ((synd == 0) || (synd >= SYND_TBL_SIZE))
1876 		return (-1);
1877 	else
1878 		return (ecc_syndrome_tab[synd]);
1879 }
1880 
1881 /*
1882  * Routine to return a string identifying the physical name
1883  * associated with a memory/cache error.
1884  */
1885 /* ARGSUSED */
1886 int
1887 cpu_get_mem_unum(int synd_status, ushort_t synd, uint64_t afsr,
1888     uint64_t afar, int cpuid, int flt_in_memory, ushort_t flt_status,
1889     char *buf, int buflen, int *lenp)
1890 {
1891 	short synd_code;
1892 	int ret;
1893 
1894 	if (flt_in_memory) {
1895 		synd_code = synd_to_synd_code(synd_status, synd);
1896 		if (synd_code == -1) {
1897 			ret = EINVAL;
1898 		} else if (prom_get_unum(synd_code, P2ALIGN(afar, 8),
1899 		    buf, buflen, lenp) != 0) {
1900 			ret = EIO;
1901 		} else if (*lenp <= 1) {
1902 			ret = EINVAL;
1903 		} else {
1904 			ret = 0;
1905 		}
1906 	} else {
1907 		ret = ENOTSUP;
1908 	}
1909 
1910 	if (ret != 0) {
1911 		buf[0] = '\0';
1912 		*lenp = 0;
1913 	}
1914 
1915 	return (ret);
1916 }
1917 
1918 /*
1919  * Wrapper for cpu_get_mem_unum() routine that takes an
1920  * async_flt struct rather than explicit arguments.
1921  */
1922 int
1923 cpu_get_mem_unum_aflt(int synd_status, struct async_flt *aflt,
1924     char *buf, int buflen, int *lenp)
1925 {
1926 	return (cpu_get_mem_unum(synd_status, SYND(aflt->flt_synd),
1927 		aflt->flt_stat, aflt->flt_addr, aflt->flt_bus_id,
1928 		aflt->flt_in_memory, aflt->flt_status, buf, buflen, lenp));
1929 }
1930 
1931 /*
1932  * This routine is a more generic interface to cpu_get_mem_unum(),
1933  * that may be used by other modules (e.g. mm).
1934  */
1935 int
1936 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar,
1937 		char *buf, int buflen, int *lenp)
1938 {
1939 	int synd_status, flt_in_memory, ret;
1940 	char unum[UNUM_NAMLEN];
1941 
1942 	/*
1943 	 * Check for an invalid address.
1944 	 */
1945 	if (afar == (uint64_t)-1)
1946 		return (ENXIO);
1947 
1948 	if (synd == (uint64_t)-1)
1949 		synd_status = AFLT_STAT_INVALID;
1950 	else
1951 		synd_status = AFLT_STAT_VALID;
1952 
1953 	flt_in_memory = (pf_is_memory(afar >> MMU_PAGESHIFT)) ? 1 : 0;
1954 
1955 	if ((ret = cpu_get_mem_unum(synd_status, (ushort_t)synd, *afsr, afar,
1956 	    CPU->cpu_id, flt_in_memory, 0, unum, UNUM_NAMLEN, lenp))
1957 	    != 0)
1958 		return (ret);
1959 
1960 	if (*lenp >= buflen)
1961 		return (ENAMETOOLONG);
1962 
1963 	(void) strncpy(buf, unum, buflen);
1964 
1965 	return (0);
1966 }
1967 
1968 /*
1969  * Routine to return memory information associated
1970  * with a physical address and syndrome.
1971  */
1972 /* ARGSUSED */
1973 int
1974 cpu_get_mem_info(uint64_t synd, uint64_t afar,
1975     uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
1976     int *segsp, int *banksp, int *mcidp)
1977 {
1978 	return (ENOTSUP);
1979 }
1980 
1981 /*
1982  * Routine to return a string identifying the physical
1983  * name associated with a cpuid.
1984  */
1985 /* ARGSUSED */
1986 int
1987 cpu_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
1988 {
1989 	return (ENOTSUP);
1990 }
1991 
1992 /*
1993  * This routine returns the size of the kernel's FRU name buffer.
1994  */
1995 size_t
1996 cpu_get_name_bufsize()
1997 {
1998 	return (UNUM_NAMLEN);
1999 }
2000 
2001 /*
2002  * Cpu specific log func for UEs.
2003  */
2004 static void
2005 log_ue_err(struct async_flt *aflt, char *unum)
2006 {
2007 	spitf_async_flt *spf_flt = (spitf_async_flt *)aflt;
2008 	int len = 0;
2009 
2010 #ifdef DEBUG
2011 	int afsr_priv = (aflt->flt_stat & P_AFSR_PRIV) ? 1 : 0;
2012 
2013 	/*
2014 	 * Paranoid Check for priv mismatch
2015 	 * Only applicable for UEs
2016 	 */
2017 	if (afsr_priv != aflt->flt_priv) {
2018 		/*
2019 		 * The priv bits in %tstate and %afsr did not match; we expect
2020 		 * this to be very rare, so flag it with a message.
2021 		 */
2022 		cpu_aflt_log(CE_WARN, 2, spf_flt, CPU_ERRID_FIRST, NULL,
2023 		    ": PRIV bit in TSTATE and AFSR mismatched; "
2024 		    "TSTATE.PRIV=%d used", (aflt->flt_priv) ? 1 : 0);
2025 
2026 		/* update saved afsr to reflect the correct priv */
2027 		aflt->flt_stat &= ~P_AFSR_PRIV;
2028 		if (aflt->flt_priv)
2029 			aflt->flt_stat |= P_AFSR_PRIV;
2030 	}
2031 #endif /* DEBUG */
2032 
2033 	(void) cpu_get_mem_unum_aflt(AFLT_STAT_VALID, aflt, unum,
2034 	    UNUM_NAMLEN, &len);
2035 
2036 	cpu_aflt_log(CE_WARN, 1, spf_flt, UE_LFLAGS, unum,
2037 	    " Uncorrectable Memory Error on");
2038 
2039 	if (SYND(aflt->flt_synd) == 0x3) {
2040 		cpu_aflt_log(CE_WARN, 1, spf_flt, CPU_ERRID_FIRST, NULL,
2041 		    " Syndrome 0x3 indicates that this may not be a "
2042 		    "memory module problem");
2043 	}
2044 
2045 	if (aflt->flt_in_memory)
2046 		cpu_log_ecmem_info(spf_flt);
2047 }
2048 
2049 
2050 /*
2051  * The cpu_async_log_err() function is called via the ue_drain() function to
2052  * handle logging for CPU events that are dequeued.  As such, it can be invoked
2053  * from softint context, from AST processing in the trap() flow, or from the
2054  * panic flow.  We decode the CPU-specific data, and log appropriate messages.
2055  */
2056 static void
2057 cpu_async_log_err(void *flt)
2058 {
2059 	spitf_async_flt *spf_flt = (spitf_async_flt *)flt;
2060 	struct async_flt *aflt = (struct async_flt *)flt;
2061 	char unum[UNUM_NAMLEN];
2062 	char *space;
2063 	char *ecache_scrub_logstr = NULL;
2064 
2065 	switch (spf_flt->flt_type) {
2066 	    case CPU_UE_ERR:
2067 		/*
2068 		 * We want to skip logging only if ALL the following
2069 		 * conditions are true:
2070 		 *
2071 		 *	1. We are not panicking
2072 		 *	2. There is only one error
2073 		 *	3. That error is a memory error
2074 		 *	4. The error is caused by the memory scrubber (in
2075 		 *	   which case the error will have occurred under
2076 		 *	   on_trap protection)
2077 		 *	5. The error is on a retired page
2078 		 *
2079 		 * Note 1: AFLT_PROT_EC is used places other than the memory
2080 		 * scrubber.  However, none of those errors should occur
2081 		 * on a retired page.
2082 		 *
2083 		 * Note 2: In the CE case, these errors are discarded before
2084 		 * the errorq.  In the UE case, we must wait until now --
2085 		 * softcall() grabs a mutex, which we can't do at a high PIL.
2086 		 */
2087 		if (!panicstr &&
2088 		    (aflt->flt_stat & S_AFSR_ALL_ERRS) == P_AFSR_UE &&
2089 		    aflt->flt_prot == AFLT_PROT_EC) {
2090 			if (page_retire_check(aflt->flt_addr, NULL) == 0) {
2091 				/* Zero the address to clear the error */
2092 				softcall(ecc_page_zero, (void *)aflt->flt_addr);
2093 				return;
2094 			}
2095 		}
2096 
2097 		/*
2098 		 * Log the UE and check for causes of this UE error that
2099 		 * don't cause a trap (Copyback error).  cpu_async_error()
2100 		 * has already checked the i/o buses for us.
2101 		 */
2102 		log_ue_err(aflt, unum);
2103 		if (aflt->flt_in_memory)
2104 			cpu_check_allcpus(aflt);
2105 		break;
2106 
2107 	    case CPU_EDP_LDP_ERR:
2108 		if (aflt->flt_stat & P_AFSR_EDP)
2109 			cpu_aflt_log(CE_WARN, 1, spf_flt, PARERR_LFLAGS,
2110 			    NULL, " EDP event on");
2111 
2112 		if (aflt->flt_stat & P_AFSR_LDP)
2113 			cpu_aflt_log(CE_WARN, 1, spf_flt, PARERR_LFLAGS,
2114 			    NULL, " LDP event on");
2115 
2116 		/* Log ecache info if exist */
2117 		if (spf_flt->flt_ec_lcnt > 0) {
2118 			cpu_log_ecmem_info(spf_flt);
2119 
2120 			cpu_aflt_log(CE_CONT, 2, spf_flt, CPU_ERRID_FIRST,
2121 			    NULL, " AFAR was derived from E$Tag");
2122 		} else {
2123 			cpu_aflt_log(CE_CONT, 2, spf_flt, CPU_ERRID_FIRST,
2124 			    NULL, " No error found in ecache (No fault "
2125 			    "PA available)");
2126 		}
2127 		break;
2128 
2129 	    case CPU_WP_ERR:
2130 		/*
2131 		 * If the memscrub thread hasn't yet read
2132 		 * all of memory, as we requested in the
2133 		 * trap handler, then give it a kick to
2134 		 * make sure it does.
2135 		 */
2136 		if (!isus2i && !isus2e && read_all_memscrub)
2137 			memscrub_run();
2138 
2139 		cpu_aflt_log(CE_WARN, 1, spf_flt, WP_LFLAGS, NULL,
2140 		    " WP event on");
2141 		return;
2142 
2143 	    case CPU_BTO_BERR_ERR:
2144 		/*
2145 		 * A bus timeout or error occurred that was in user mode or not
2146 		 * in a protected kernel code region.
2147 		 */
2148 		if (aflt->flt_stat & P_AFSR_BERR) {
2149 			cpu_aflt_log(CE_WARN, aflt->flt_panic ? 1 : 2,
2150 			    spf_flt, BERRTO_LFLAGS, NULL,
2151 			    " Bus Error on System Bus in %s mode from",
2152 			    aflt->flt_priv ? "privileged" : "user");
2153 		}
2154 
2155 		if (aflt->flt_stat & P_AFSR_TO) {
2156 			cpu_aflt_log(CE_WARN, aflt->flt_panic ? 1 : 2,
2157 			    spf_flt, BERRTO_LFLAGS, NULL,
2158 			    " Timeout on System Bus in %s mode from",
2159 			    aflt->flt_priv ? "privileged" : "user");
2160 		}
2161 
2162 		return;
2163 
2164 	    case CPU_PANIC_CP_ERR:
2165 		/*
2166 		 * Process the Copyback (CP) error info (if any) obtained from
2167 		 * polling all the cpus in the panic flow. This case is only
2168 		 * entered if we are panicking.
2169 		 */
2170 		ASSERT(panicstr != NULL);
2171 		ASSERT(aflt->flt_id == panic_aflt.flt_id);
2172 
2173 		/* See which space - this info may not exist */
2174 		if (panic_aflt.flt_status & ECC_D_TRAP)
2175 			space = "Data ";
2176 		else if (panic_aflt.flt_status & ECC_I_TRAP)
2177 			space = "Instruction ";
2178 		else
2179 			space = "";
2180 
2181 		cpu_aflt_log(CE_WARN, 1, spf_flt, CP_LFLAGS, NULL,
2182 		    " AFAR was derived from UE report,"
2183 		    " CP event on CPU%d (caused %saccess error on %s%d)",
2184 		    aflt->flt_inst, space, (panic_aflt.flt_status & ECC_IOBUS) ?
2185 		    "IOBUS" : "CPU", panic_aflt.flt_bus_id);
2186 
2187 		if (spf_flt->flt_ec_lcnt > 0)
2188 			cpu_log_ecmem_info(spf_flt);
2189 		else
2190 			cpu_aflt_log(CE_WARN, 2, spf_flt, CPU_ERRID_FIRST,
2191 			    NULL, " No cache dump available");
2192 
2193 		return;
2194 
2195 	    case CPU_TRAPPING_CP_ERR:
2196 		/*
2197 		 * For sabre only.  This is a copyback ecache parity error due
2198 		 * to a PCI DMA read.  We should be panicking if we get here.
2199 		 */
2200 		ASSERT(panicstr != NULL);
2201 		cpu_aflt_log(CE_WARN, 1, spf_flt, CP_LFLAGS, NULL,
2202 		    " AFAR was derived from UE report,"
2203 		    " CP event on CPU%d (caused Data access error "
2204 		    "on PCIBus)", aflt->flt_inst);
2205 		return;
2206 
2207 		/*
2208 		 * We log the ecache lines of the following states,
2209 		 * clean_bad_idle, clean_bad_busy, dirty_bad_idle and
2210 		 * dirty_bad_busy if ecache_scrub_verbose is set and panic
2211 		 * in addition to logging if ecache_scrub_panic is set.
2212 		 */
2213 	    case CPU_BADLINE_CI_ERR:
2214 		ecache_scrub_logstr = "CBI";
2215 		/* FALLTHRU */
2216 
2217 	    case CPU_BADLINE_CB_ERR:
2218 		if (ecache_scrub_logstr == NULL)
2219 			ecache_scrub_logstr = "CBB";
2220 		/* FALLTHRU */
2221 
2222 	    case CPU_BADLINE_DI_ERR:
2223 		if (ecache_scrub_logstr == NULL)
2224 			ecache_scrub_logstr = "DBI";
2225 		/* FALLTHRU */
2226 
2227 	    case CPU_BADLINE_DB_ERR:
2228 		if (ecache_scrub_logstr == NULL)
2229 			ecache_scrub_logstr = "DBB";
2230 
2231 		cpu_aflt_log(CE_NOTE, 2, spf_flt,
2232 			(CPU_ERRID_FIRST | CPU_FLTCPU), NULL,
2233 			" %s event on", ecache_scrub_logstr);
2234 		cpu_log_ecmem_info(spf_flt);
2235 
2236 		return;
2237 
2238 	    case CPU_ORPHAN_CP_ERR:
2239 		/*
2240 		 * Orphan CPs, where the CP bit is set, but when a CPU
2241 		 * doesn't report a UE.
2242 		 */
2243 		if (read_all_memscrub)
2244 			memscrub_run();
2245 
2246 		cpu_aflt_log(CE_NOTE, 2, spf_flt, (CP_LFLAGS | CPU_FLTCPU),
2247 			NULL, " Orphan CP event on");
2248 
2249 		/* Log ecache info if exist */
2250 		if (spf_flt->flt_ec_lcnt > 0)
2251 			cpu_log_ecmem_info(spf_flt);
2252 		else
2253 			cpu_aflt_log(CE_NOTE, 2, spf_flt,
2254 				(CP_LFLAGS | CPU_FLTCPU), NULL,
2255 				" No error found in ecache (No fault "
2256 				"PA available");
2257 		return;
2258 
2259 	    case CPU_ECACHE_ADDR_PAR_ERR:
2260 		cpu_aflt_log(CE_WARN, 1, spf_flt, PARERR_LFLAGS, NULL,
2261 				" E$ Tag Address Parity error on");
2262 		cpu_log_ecmem_info(spf_flt);
2263 		return;
2264 
2265 	    case CPU_ECACHE_STATE_ERR:
2266 		cpu_aflt_log(CE_WARN, 1, spf_flt, PARERR_LFLAGS, NULL,
2267 				" E$ Tag State Parity error on");
2268 		cpu_log_ecmem_info(spf_flt);
2269 		return;
2270 
2271 	    case CPU_ECACHE_TAG_ERR:
2272 		cpu_aflt_log(CE_WARN, 1, spf_flt, PARERR_LFLAGS, NULL,
2273 				" E$ Tag scrub event on");
2274 		cpu_log_ecmem_info(spf_flt);
2275 		return;
2276 
2277 	    case CPU_ECACHE_ETP_ETS_ERR:
2278 		cpu_aflt_log(CE_WARN, 1, spf_flt, PARERR_LFLAGS, NULL,
2279 				" AFSR.ETP is set and AFSR.ETS is zero on");
2280 		cpu_log_ecmem_info(spf_flt);
2281 		return;
2282 
2283 
2284 	    case CPU_ADDITIONAL_ERR:
2285 		cpu_aflt_log(CE_WARN, 1, spf_flt, CMN_LFLAGS & ~CPU_SPACE, NULL,
2286 		    " Additional errors detected during error processing on");
2287 		return;
2288 
2289 	    default:
2290 		cmn_err(CE_WARN, "cpu_async_log_err: fault %p has unknown "
2291 		    "fault type %x", (void *)spf_flt, spf_flt->flt_type);
2292 		return;
2293 	}
2294 
2295 	/* ... fall through from the UE, EDP, or LDP cases */
2296 
2297 	if (aflt->flt_addr != AFLT_INV_ADDR && aflt->flt_in_memory) {
2298 		if (!panicstr) {
2299 			(void) page_retire(aflt->flt_addr, PR_UE);
2300 		} else {
2301 			/*
2302 			 * Clear UEs on panic so that we don't
2303 			 * get haunted by them during panic or
2304 			 * after reboot
2305 			 */
2306 			clearphys(P2ALIGN(aflt->flt_addr, 64),
2307 			    cpunodes[CPU->cpu_id].ecache_size,
2308 			    cpunodes[CPU->cpu_id].ecache_linesize);
2309 
2310 			(void) clear_errors(NULL, NULL);
2311 		}
2312 	}
2313 
2314 	/*
2315 	 * Log final recover message
2316 	 */
2317 	if (!panicstr) {
2318 		if (!aflt->flt_priv) {
2319 			cpu_aflt_log(CE_CONT, 3, spf_flt, CPU_ERRID_FIRST,
2320 			    NULL, " Above Error is in User Mode"
2321 			    "\n    and is fatal: "
2322 			    "will SIGKILL process and notify contract");
2323 		} else if (aflt->flt_prot == AFLT_PROT_COPY && aflt->flt_core) {
2324 			cpu_aflt_log(CE_CONT, 3, spf_flt, CPU_ERRID_FIRST,
2325 			    NULL, " Above Error detected while dumping core;"
2326 			    "\n    core file will be truncated");
2327 		} else if (aflt->flt_prot == AFLT_PROT_COPY) {
2328 			cpu_aflt_log(CE_CONT, 3, spf_flt, CPU_ERRID_FIRST,
2329 			    NULL, " Above Error is due to Kernel access"
2330 			    "\n    to User space and is fatal: "
2331 			    "will SIGKILL process and notify contract");
2332 		} else if (aflt->flt_prot == AFLT_PROT_EC) {
2333 			cpu_aflt_log(CE_CONT, 3, spf_flt, CPU_ERRID_FIRST, NULL,
2334 			    " Above Error detected by protected Kernel code"
2335 			    "\n    that will try to clear error from system");
2336 		}
2337 	}
2338 }
2339 
2340 
2341 /*
2342  * Check all cpus for non-trapping UE-causing errors
2343  * In Ultra I/II, we look for copyback errors (CPs)
2344  */
2345 void
2346 cpu_check_allcpus(struct async_flt *aflt)
2347 {
2348 	spitf_async_flt cp;
2349 	spitf_async_flt *spf_cpflt = &cp;
2350 	struct async_flt *cpflt = (struct async_flt *)&cp;
2351 	int pix;
2352 
2353 	cpflt->flt_id = aflt->flt_id;
2354 	cpflt->flt_addr = aflt->flt_addr;
2355 
2356 	for (pix = 0; pix < NCPU; pix++) {
2357 		if (CPU_XCALL_READY(pix)) {
2358 			xc_one(pix, (xcfunc_t *)get_cpu_status,
2359 			    (uint64_t)cpflt, 0);
2360 
2361 			if (cpflt->flt_stat & P_AFSR_CP) {
2362 				char *space;
2363 
2364 				/* See which space - this info may not exist */
2365 				if (aflt->flt_status & ECC_D_TRAP)
2366 					space = "Data ";
2367 				else if (aflt->flt_status & ECC_I_TRAP)
2368 					space = "Instruction ";
2369 				else
2370 					space = "";
2371 
2372 				cpu_aflt_log(CE_WARN, 1, spf_cpflt, CP_LFLAGS,
2373 				    NULL, " AFAR was derived from UE report,"
2374 				    " CP event on CPU%d (caused %saccess "
2375 				    "error on %s%d)", pix, space,
2376 				    (aflt->flt_status & ECC_IOBUS) ?
2377 				    "IOBUS" : "CPU", aflt->flt_bus_id);
2378 
2379 				if (spf_cpflt->flt_ec_lcnt > 0)
2380 					cpu_log_ecmem_info(spf_cpflt);
2381 				else
2382 					cpu_aflt_log(CE_WARN, 2, spf_cpflt,
2383 					    CPU_ERRID_FIRST, NULL,
2384 					    " No cache dump available");
2385 			}
2386 		}
2387 	}
2388 }
2389 
2390 #ifdef DEBUG
2391 int test_mp_cp = 0;
2392 #endif
2393 
2394 /*
2395  * Cross-call callback routine to tell a CPU to read its own %afsr to check
2396  * for copyback errors and capture relevant information.
2397  */
2398 static uint_t
2399 get_cpu_status(uint64_t arg)
2400 {
2401 	struct async_flt *aflt = (struct async_flt *)arg;
2402 	spitf_async_flt *spf_flt = (spitf_async_flt *)arg;
2403 	uint64_t afsr;
2404 	uint32_t ec_idx;
2405 	uint64_t sdbh, sdbl;
2406 	int i;
2407 	uint32_t ec_set_size;
2408 	uchar_t valid;
2409 	ec_data_t ec_data[8];
2410 	uint64_t ec_tag, flt_addr_tag, oafsr;
2411 	uint64_t *acc_afsr = NULL;
2412 
2413 	get_asyncflt(&afsr);
2414 	if (CPU_PRIVATE(CPU) != NULL) {
2415 		acc_afsr = CPU_PRIVATE_PTR(CPU, sfpr_scrub_afsr);
2416 		afsr |= *acc_afsr;
2417 		*acc_afsr = 0;
2418 	}
2419 
2420 #ifdef DEBUG
2421 	if (test_mp_cp)
2422 		afsr |= P_AFSR_CP;
2423 #endif
2424 	aflt->flt_stat = afsr;
2425 
2426 	if (afsr & P_AFSR_CP) {
2427 		/*
2428 		 * Capture the UDBs
2429 		 */
2430 		get_udb_errors(&sdbh, &sdbl);
2431 		spf_flt->flt_sdbh = (ushort_t)(sdbh & 0x3FF);
2432 		spf_flt->flt_sdbl = (ushort_t)(sdbl & 0x3FF);
2433 
2434 		/*
2435 		 * Clear CP bit before capturing ecache data
2436 		 * and AFSR info.
2437 		 */
2438 		set_asyncflt(P_AFSR_CP);
2439 
2440 		/*
2441 		 * See if we can capture the ecache line for the
2442 		 * fault PA.
2443 		 *
2444 		 * Return a valid matching ecache line, if any.
2445 		 * Otherwise, return the first matching ecache
2446 		 * line marked invalid.
2447 		 */
2448 		flt_addr_tag = aflt->flt_addr >> cpu_ec_tag_shift;
2449 		ec_set_size = cpunodes[CPU->cpu_id].ecache_size /
2450 		    ecache_associativity;
2451 		spf_flt->flt_ec_lcnt = 0;
2452 
2453 		for (i = 0, ec_idx = (aflt->flt_addr % ec_set_size);
2454 		    i < ecache_associativity; i++, ec_idx += ec_set_size) {
2455 			get_ecache_dtag(P2ALIGN(ec_idx, 64),
2456 				(uint64_t *)&ec_data[0], &ec_tag, &oafsr,
2457 				    acc_afsr);
2458 
2459 			if ((ec_tag & cpu_ec_tag_mask) != flt_addr_tag)
2460 				continue;
2461 
2462 			valid = cpu_ec_state_valid &
2463 			    (uchar_t)((ec_tag & cpu_ec_state_mask) >>
2464 			    cpu_ec_state_shift);
2465 
2466 			if (valid || spf_flt->flt_ec_lcnt == 0) {
2467 				spf_flt->flt_ec_tag = ec_tag;
2468 				bcopy(&ec_data, &spf_flt->flt_ec_data,
2469 				    sizeof (ec_data));
2470 				spf_flt->flt_ec_lcnt = 1;
2471 
2472 				if (valid)
2473 					break;
2474 			}
2475 		}
2476 	}
2477 	return (0);
2478 }
2479 
2480 /*
2481  * CPU-module callback for the non-panicking CPUs.  This routine is invoked
2482  * from panic_idle() as part of the other CPUs stopping themselves when a
2483  * panic occurs.  We need to be VERY careful what we do here, since panicstr
2484  * is NOT set yet and we cannot blow through locks.  If panic_aflt is set
2485  * (panic_aflt.flt_id is non-zero), we need to read our %afsr to look for
2486  * CP error information.
2487  */
2488 void
2489 cpu_async_panic_callb(void)
2490 {
2491 	spitf_async_flt cp;
2492 	struct async_flt *aflt = (struct async_flt *)&cp;
2493 	uint64_t *scrub_afsr;
2494 
2495 	if (panic_aflt.flt_id != 0) {
2496 		aflt->flt_addr = panic_aflt.flt_addr;
2497 		(void) get_cpu_status((uint64_t)aflt);
2498 
2499 		if (CPU_PRIVATE(CPU) != NULL) {
2500 			scrub_afsr = CPU_PRIVATE_PTR(CPU, sfpr_scrub_afsr);
2501 			if (*scrub_afsr & P_AFSR_CP) {
2502 				aflt->flt_stat |= *scrub_afsr;
2503 				*scrub_afsr = 0;
2504 			}
2505 		}
2506 		if (aflt->flt_stat & P_AFSR_CP) {
2507 			aflt->flt_id = panic_aflt.flt_id;
2508 			aflt->flt_panic = 1;
2509 			aflt->flt_inst = CPU->cpu_id;
2510 			aflt->flt_class = CPU_FAULT;
2511 			cp.flt_type = CPU_PANIC_CP_ERR;
2512 			cpu_errorq_dispatch(FM_EREPORT_CPU_USII_CP,
2513 			    (void *)&cp, sizeof (cp), ue_queue,
2514 			    aflt->flt_panic);
2515 		}
2516 	}
2517 }
2518 
2519 /*
2520  * Turn off all cpu error detection, normally only used for panics.
2521  */
2522 void
2523 cpu_disable_errors(void)
2524 {
2525 	xt_all(set_error_enable_tl1, EER_DISABLE, EER_SET_ABSOLUTE);
2526 }
2527 
2528 /*
2529  * Enable errors.
2530  */
2531 void
2532 cpu_enable_errors(void)
2533 {
2534 	xt_all(set_error_enable_tl1, EER_ENABLE, EER_SET_ABSOLUTE);
2535 }
2536 
2537 static void
2538 cpu_read_paddr(struct async_flt *ecc, short verbose, short ce_err)
2539 {
2540 	uint64_t aligned_addr = P2ALIGN(ecc->flt_addr, 8);
2541 	int i, loop = 1;
2542 	ushort_t ecc_0;
2543 	uint64_t paddr;
2544 	uint64_t data;
2545 
2546 	if (verbose)
2547 		loop = 8;
2548 	for (i = 0; i < loop; i++) {
2549 		paddr = aligned_addr + (i * 8);
2550 		data = lddphys(paddr);
2551 		if (verbose) {
2552 			if (ce_err) {
2553 			    ecc_0 = ecc_gen((uint32_t)(data>>32),
2554 			    (uint32_t)data);
2555 			    cpu_aflt_log(CE_CONT, 0, NULL, NO_LFLAGS,
2556 				NULL, "    Paddr 0x%" PRIx64 ", "
2557 				"Data 0x%08x.%08x, ECC 0x%x", paddr,
2558 				(uint32_t)(data>>32), (uint32_t)data, ecc_0);
2559 			} else {
2560 				cpu_aflt_log(CE_CONT, 0, NULL, NO_LFLAGS,
2561 				    NULL, "    Paddr 0x%" PRIx64 ", "
2562 				    "Data 0x%08x.%08x", paddr,
2563 				    (uint32_t)(data>>32), (uint32_t)data);
2564 			}
2565 		}
2566 	}
2567 }
2568 
2569 static struct {		/* sec-ded-s4ed ecc code */
2570 	uint_t hi, lo;
2571 } ecc_code[8] = {
2572 	{ 0xee55de23U, 0x16161161U },
2573 	{ 0x55eede93U, 0x61612212U },
2574 	{ 0xbb557b8cU, 0x49494494U },
2575 	{ 0x55bb7b6cU, 0x94948848U },
2576 	{ 0x16161161U, 0xee55de23U },
2577 	{ 0x61612212U, 0x55eede93U },
2578 	{ 0x49494494U, 0xbb557b8cU },
2579 	{ 0x94948848U, 0x55bb7b6cU }
2580 };
2581 
2582 static ushort_t
2583 ecc_gen(uint_t high_bytes, uint_t low_bytes)
2584 {
2585 	int i, j;
2586 	uchar_t checker, bit_mask;
2587 	struct {
2588 		uint_t hi, lo;
2589 	} hex_data, masked_data[8];
2590 
2591 	hex_data.hi = high_bytes;
2592 	hex_data.lo = low_bytes;
2593 
2594 	/* mask out bits according to sec-ded-s4ed ecc code */
2595 	for (i = 0; i < 8; i++) {
2596 		masked_data[i].hi = hex_data.hi & ecc_code[i].hi;
2597 		masked_data[i].lo = hex_data.lo & ecc_code[i].lo;
2598 	}
2599 
2600 	/*
2601 	 * xor all bits in masked_data[i] to get bit_i of checker,
2602 	 * where i = 0 to 7
2603 	 */
2604 	checker = 0;
2605 	for (i = 0; i < 8; i++) {
2606 		bit_mask = 1 << i;
2607 		for (j = 0; j < 32; j++) {
2608 			if (masked_data[i].lo & 1) checker ^= bit_mask;
2609 			if (masked_data[i].hi & 1) checker ^= bit_mask;
2610 			masked_data[i].hi >>= 1;
2611 			masked_data[i].lo >>= 1;
2612 		}
2613 	}
2614 	return (checker);
2615 }
2616 
2617 /*
2618  * Flush the entire ecache using displacement flush by reading through a
2619  * physical address range as large as the ecache.
2620  */
2621 void
2622 cpu_flush_ecache(void)
2623 {
2624 	flush_ecache(ecache_flushaddr, cpunodes[CPU->cpu_id].ecache_size * 2,
2625 	    cpunodes[CPU->cpu_id].ecache_linesize);
2626 }
2627 
2628 /*
2629  * read and display the data in the cache line where the
2630  * original ce error occurred.
2631  * This routine is mainly used for debugging new hardware.
2632  */
2633 void
2634 read_ecc_data(struct async_flt *ecc, short verbose, short ce_err)
2635 {
2636 	kpreempt_disable();
2637 	/* disable ECC error traps */
2638 	set_error_enable(EER_ECC_DISABLE);
2639 
2640 	/*
2641 	 * flush the ecache
2642 	 * read the data
2643 	 * check to see if an ECC error occured
2644 	 */
2645 	flush_ecache(ecache_flushaddr, cpunodes[CPU->cpu_id].ecache_size * 2,
2646 	    cpunodes[CPU->cpu_id].ecache_linesize);
2647 	set_lsu(get_lsu() | cache_boot_state);
2648 	cpu_read_paddr(ecc, verbose, ce_err);
2649 	(void) check_ecc(ecc);
2650 
2651 	/* enable ECC error traps */
2652 	set_error_enable(EER_ENABLE);
2653 	kpreempt_enable();
2654 }
2655 
2656 /*
2657  * Check the AFSR bits for UE/CE persistence.
2658  * If UE or CE errors are detected, the routine will
2659  * clears all the AFSR sticky bits (except CP for
2660  * spitfire/blackbird) and the UDBs.
2661  * if ce_debug or ue_debug is set, log any ue/ce errors detected.
2662  */
2663 static int
2664 check_ecc(struct async_flt *ecc)
2665 {
2666 	uint64_t t_afsr;
2667 	uint64_t t_afar;
2668 	uint64_t udbh;
2669 	uint64_t udbl;
2670 	ushort_t udb;
2671 	int persistent = 0;
2672 
2673 	/*
2674 	 * Capture the AFSR, AFAR and UDBs info
2675 	 */
2676 	get_asyncflt(&t_afsr);
2677 	get_asyncaddr(&t_afar);
2678 	t_afar &= SABRE_AFAR_PA;
2679 	get_udb_errors(&udbh, &udbl);
2680 
2681 	if ((t_afsr & P_AFSR_UE) || (t_afsr & P_AFSR_CE)) {
2682 		/*
2683 		 * Clear the errors
2684 		 */
2685 		clr_datapath();
2686 
2687 		if (isus2i || isus2e)
2688 			set_asyncflt(t_afsr);
2689 		else
2690 			set_asyncflt(t_afsr & ~P_AFSR_CP);
2691 
2692 		/*
2693 		 * determine whether to check UDBH or UDBL for persistence
2694 		 */
2695 		if (ecc->flt_synd & UDBL_REG) {
2696 			udb = (ushort_t)udbl;
2697 			t_afar |= 0x8;
2698 		} else {
2699 			udb = (ushort_t)udbh;
2700 		}
2701 
2702 		if (ce_debug || ue_debug) {
2703 			spitf_async_flt spf_flt; /* for logging */
2704 			struct async_flt *aflt =
2705 				(struct async_flt *)&spf_flt;
2706 
2707 			/* Package the info nicely in the spf_flt struct */
2708 			bzero(&spf_flt, sizeof (spitf_async_flt));
2709 			aflt->flt_stat = t_afsr;
2710 			aflt->flt_addr = t_afar;
2711 			spf_flt.flt_sdbh = (ushort_t)(udbh & 0x3FF);
2712 			spf_flt.flt_sdbl = (ushort_t)(udbl & 0x3FF);
2713 
2714 			cpu_aflt_log(CE_CONT, 0, &spf_flt, (CPU_AFSR |
2715 			    CPU_AFAR | CPU_UDBH | CPU_UDBL), NULL,
2716 			    " check_ecc: Dumping captured error states ...");
2717 		}
2718 
2719 		/*
2720 		 * if the fault addresses don't match, not persistent
2721 		 */
2722 		if (t_afar != ecc->flt_addr) {
2723 			return (persistent);
2724 		}
2725 
2726 		/*
2727 		 * check for UE persistence
2728 		 * since all DIMMs in the bank are identified for a UE,
2729 		 * there's no reason to check the syndrome
2730 		 */
2731 		if ((ecc->flt_stat & P_AFSR_UE) && (t_afsr & P_AFSR_UE)) {
2732 			persistent = 1;
2733 		}
2734 
2735 		/*
2736 		 * check for CE persistence
2737 		 */
2738 		if ((ecc->flt_stat & P_AFSR_CE) && (t_afsr & P_AFSR_CE)) {
2739 			if ((udb & P_DER_E_SYND) ==
2740 			    (ecc->flt_synd & P_DER_E_SYND)) {
2741 				persistent = 1;
2742 			}
2743 		}
2744 	}
2745 	return (persistent);
2746 }
2747 
2748 #ifdef HUMMINGBIRD
2749 #define	HB_FULL_DIV		1
2750 #define	HB_HALF_DIV		2
2751 #define	HB_LOWEST_DIV		8
2752 #define	HB_ECLK_INVALID		0xdeadbad
2753 static uint64_t hb_eclk[HB_LOWEST_DIV + 1] = {
2754 	HB_ECLK_INVALID, HB_ECLK_1, HB_ECLK_2, HB_ECLK_INVALID,
2755 	HB_ECLK_4, HB_ECLK_INVALID, HB_ECLK_6, HB_ECLK_INVALID,
2756 	HB_ECLK_8 };
2757 
2758 #define	HB_SLOW_DOWN		0
2759 #define	HB_SPEED_UP		1
2760 
2761 #define	SET_ESTAR_MODE(mode)					\
2762 	stdphysio(HB_ESTAR_MODE, (mode));			\
2763 	/*							\
2764 	 * PLL logic requires minimum of 16 clock		\
2765 	 * cycles to lock to the new clock speed.		\
2766 	 * Wait 1 usec to satisfy this requirement.		\
2767 	 */							\
2768 	drv_usecwait(1);
2769 
2770 #define	CHANGE_REFRESH_COUNT(direction, cur_div, new_div)	\
2771 {								\
2772 	volatile uint64_t data;					\
2773 	uint64_t count, new_count;				\
2774 	clock_t delay;						\
2775 	data = lddphysio(HB_MEM_CNTRL0);			\
2776 	count = (data & HB_REFRESH_COUNT_MASK) >> 		\
2777 	    HB_REFRESH_COUNT_SHIFT;				\
2778 	new_count = (HB_REFRESH_INTERVAL *			\
2779 	    cpunodes[CPU->cpu_id].clock_freq) /			\
2780 	    (HB_REFRESH_CLOCKS_PER_COUNT * (new_div) * NANOSEC);\
2781 	data = (data & ~HB_REFRESH_COUNT_MASK) |		\
2782 	    (new_count << HB_REFRESH_COUNT_SHIFT);		\
2783 	stdphysio(HB_MEM_CNTRL0, data);				\
2784 	data = lddphysio(HB_MEM_CNTRL0);        		\
2785 	/*							\
2786 	 * If we are slowing down the cpu and Memory		\
2787 	 * Self Refresh is not enabled, it is required		\
2788 	 * to wait for old refresh count to count-down and	\
2789 	 * new refresh count to go into effect (let new value	\
2790 	 * counts down once).					\
2791 	 */							\
2792 	if ((direction) == HB_SLOW_DOWN &&			\
2793 	    (data & HB_SELF_REFRESH_MASK) == 0) {		\
2794 		/*						\
2795 		 * Each count takes 64 cpu clock cycles		\
2796 		 * to decrement.  Wait for current refresh	\
2797 		 * count plus new refresh count at current	\
2798 		 * cpu speed to count down to zero.  Round	\
2799 		 * up the delay time.				\
2800 		 */						\
2801 		delay = ((HB_REFRESH_CLOCKS_PER_COUNT *		\
2802 		    (count + new_count) * MICROSEC * (cur_div)) /\
2803 		    cpunodes[CPU->cpu_id].clock_freq) + 1;	\
2804 		drv_usecwait(delay);				\
2805 	}							\
2806 }
2807 
2808 #define	SET_SELF_REFRESH(bit)					\
2809 {								\
2810 	volatile uint64_t data;					\
2811 	data = lddphysio(HB_MEM_CNTRL0);			\
2812 	data = (data & ~HB_SELF_REFRESH_MASK) |			\
2813 	    ((bit) << HB_SELF_REFRESH_SHIFT);			\
2814 	stdphysio(HB_MEM_CNTRL0, data);				\
2815 	data = lddphysio(HB_MEM_CNTRL0);			\
2816 }
2817 #endif	/* HUMMINGBIRD */
2818 
2819 /* ARGSUSED */
2820 void
2821 cpu_change_speed(uint64_t new_divisor, uint64_t arg2)
2822 {
2823 #ifdef HUMMINGBIRD
2824 	uint64_t cur_mask, cur_divisor = 0;
2825 	volatile uint64_t reg;
2826 	int index;
2827 
2828 	if ((new_divisor < HB_FULL_DIV || new_divisor > HB_LOWEST_DIV) ||
2829 	    (hb_eclk[new_divisor] == HB_ECLK_INVALID)) {
2830 		cmn_err(CE_WARN, "cpu_change_speed: bad divisor 0x%lx",
2831 		    new_divisor);
2832 		return;
2833 	}
2834 
2835 	reg = lddphysio(HB_ESTAR_MODE);
2836 	cur_mask = reg & HB_ECLK_MASK;
2837 	for (index = HB_FULL_DIV; index <= HB_LOWEST_DIV; index++) {
2838 		if (hb_eclk[index] == cur_mask) {
2839 			cur_divisor = index;
2840 			break;
2841 		}
2842 	}
2843 
2844 	if (cur_divisor == 0)
2845 		cmn_err(CE_PANIC, "cpu_change_speed: current divisor "
2846 		    "can't be determined!");
2847 
2848 	/*
2849 	 * If we are already at the requested divisor speed, just
2850 	 * return.
2851 	 */
2852 	if (cur_divisor == new_divisor)
2853 		return;
2854 
2855 	if (cur_divisor == HB_FULL_DIV && new_divisor == HB_HALF_DIV) {
2856 		CHANGE_REFRESH_COUNT(HB_SLOW_DOWN, cur_divisor, new_divisor);
2857 		SET_ESTAR_MODE(hb_eclk[new_divisor]);
2858 		SET_SELF_REFRESH(HB_SELF_REFRESH_ENABLE);
2859 
2860 	} else if (cur_divisor == HB_HALF_DIV && new_divisor == HB_FULL_DIV) {
2861 		SET_SELF_REFRESH(HB_SELF_REFRESH_DISABLE);
2862 		SET_ESTAR_MODE(hb_eclk[new_divisor]);
2863 		/* LINTED: E_FALSE_LOGICAL_EXPR */
2864 		CHANGE_REFRESH_COUNT(HB_SPEED_UP, cur_divisor, new_divisor);
2865 
2866 	} else if (cur_divisor == HB_FULL_DIV && new_divisor > HB_HALF_DIV) {
2867 		/*
2868 		 * Transition to 1/2 speed first, then to
2869 		 * lower speed.
2870 		 */
2871 		CHANGE_REFRESH_COUNT(HB_SLOW_DOWN, cur_divisor, HB_HALF_DIV);
2872 		SET_ESTAR_MODE(hb_eclk[HB_HALF_DIV]);
2873 		SET_SELF_REFRESH(HB_SELF_REFRESH_ENABLE);
2874 
2875 		CHANGE_REFRESH_COUNT(HB_SLOW_DOWN, HB_HALF_DIV, new_divisor);
2876 		SET_ESTAR_MODE(hb_eclk[new_divisor]);
2877 
2878 	} else if (cur_divisor > HB_HALF_DIV && new_divisor == HB_FULL_DIV) {
2879 		/*
2880 		 * Transition to 1/2 speed first, then to
2881 		 * full speed.
2882 		 */
2883 		SET_ESTAR_MODE(hb_eclk[HB_HALF_DIV]);
2884 		/* LINTED: E_FALSE_LOGICAL_EXPR */
2885 		CHANGE_REFRESH_COUNT(HB_SPEED_UP, cur_divisor, HB_HALF_DIV);
2886 
2887 		SET_SELF_REFRESH(HB_SELF_REFRESH_DISABLE);
2888 		SET_ESTAR_MODE(hb_eclk[new_divisor]);
2889 		/* LINTED: E_FALSE_LOGICAL_EXPR */
2890 		CHANGE_REFRESH_COUNT(HB_SPEED_UP, HB_HALF_DIV, new_divisor);
2891 
2892 	} else if (cur_divisor < new_divisor) {
2893 		CHANGE_REFRESH_COUNT(HB_SLOW_DOWN, cur_divisor, new_divisor);
2894 		SET_ESTAR_MODE(hb_eclk[new_divisor]);
2895 
2896 	} else if (cur_divisor > new_divisor) {
2897 		SET_ESTAR_MODE(hb_eclk[new_divisor]);
2898 		/* LINTED: E_FALSE_LOGICAL_EXPR */
2899 		CHANGE_REFRESH_COUNT(HB_SPEED_UP, cur_divisor, new_divisor);
2900 	}
2901 	CPU->cpu_m.divisor = (uchar_t)new_divisor;
2902 #endif
2903 }
2904 
2905 /*
2906  * Clear the AFSR sticky bits and the UDBs. For Sabre/Spitfire/Blackbird,
2907  * we clear all the sticky bits. If a non-null pointer to a async fault
2908  * structure argument is passed in, the captured error state (AFSR, AFAR, UDBs)
2909  * info will be returned in the structure.  If a non-null pointer to a
2910  * uint64_t is passed in, this will be updated if the CP bit is set in the
2911  * AFSR.  The afsr will be returned.
2912  */
2913 static uint64_t
2914 clear_errors(spitf_async_flt *spf_flt, uint64_t *acc_afsr)
2915 {
2916 	struct async_flt *aflt = (struct async_flt *)spf_flt;
2917 	uint64_t afsr;
2918 	uint64_t udbh, udbl;
2919 
2920 	get_asyncflt(&afsr);
2921 
2922 	if ((acc_afsr != NULL) && (afsr & P_AFSR_CP))
2923 		*acc_afsr |= afsr;
2924 
2925 	if (spf_flt != NULL) {
2926 		aflt->flt_stat = afsr;
2927 		get_asyncaddr(&aflt->flt_addr);
2928 		aflt->flt_addr &= SABRE_AFAR_PA;
2929 
2930 		get_udb_errors(&udbh, &udbl);
2931 		spf_flt->flt_sdbh = (ushort_t)(udbh & 0x3FF);
2932 		spf_flt->flt_sdbl = (ushort_t)(udbl & 0x3FF);
2933 	}
2934 
2935 	set_asyncflt(afsr);		/* clear afsr */
2936 	clr_datapath();			/* clear udbs */
2937 	return (afsr);
2938 }
2939 
2940 /*
2941  * Scan the ecache to look for bad lines.  If found, the afsr, afar, e$ data
2942  * tag of the first bad line will be returned. We also return the old-afsr
2943  * (before clearing the sticky bits). The linecnt data will be updated to
2944  * indicate the number of bad lines detected.
2945  */
2946 static void
2947 scan_ecache(uint64_t *t_afar, ec_data_t *ecache_data,
2948 	uint64_t *ecache_tag, int *linecnt, uint64_t *t_afsr)
2949 {
2950 	ec_data_t t_ecdata[8];
2951 	uint64_t t_etag, oafsr;
2952 	uint64_t pa = AFLT_INV_ADDR;
2953 	uint32_t i, j, ecache_sz;
2954 	uint64_t acc_afsr = 0;
2955 	uint64_t *cpu_afsr = NULL;
2956 
2957 	if (CPU_PRIVATE(CPU) != NULL)
2958 		cpu_afsr = CPU_PRIVATE_PTR(CPU, sfpr_scrub_afsr);
2959 
2960 	*linecnt = 0;
2961 	ecache_sz = cpunodes[CPU->cpu_id].ecache_size;
2962 
2963 	for (i = 0; i < ecache_sz; i += 64) {
2964 		get_ecache_dtag(i, (uint64_t *)&t_ecdata[0], &t_etag, &oafsr,
2965 		    cpu_afsr);
2966 		acc_afsr |= oafsr;
2967 
2968 		/*
2969 		 * Scan through the whole 64 bytes line in 8 8-byte chunks
2970 		 * looking for the first occurrence of an EDP error.  The AFSR
2971 		 * info is captured for each 8-byte chunk.  Note that for
2972 		 * Spitfire/Blackbird, the AFSR.PSYND is captured by h/w in
2973 		 * 16-byte chunk granularity (i.e. the AFSR will be the same
2974 		 * for the high and low 8-byte words within the 16-byte chunk).
2975 		 * For Sabre/Hummingbird, the AFSR.PSYND is captured in 8-byte
2976 		 * granularity and only PSYND bits [7:0] are used.
2977 		 */
2978 		for (j = 0; j < 8; j++) {
2979 			ec_data_t *ecdptr = &t_ecdata[j];
2980 
2981 			if (ecdptr->ec_afsr & P_AFSR_EDP) {
2982 				uint64_t errpa;
2983 				ushort_t psynd;
2984 				uint32_t ec_set_size = ecache_sz /
2985 				    ecache_associativity;
2986 
2987 				/*
2988 				 * For Spitfire/Blackbird, we need to look at
2989 				 * the PSYND to make sure that this 8-byte chunk
2990 				 * is the right one.  PSYND bits [15:8] belong
2991 				 * to the upper 8-byte (even) chunk.  Bits
2992 				 * [7:0] belong to the lower 8-byte chunk (odd).
2993 				 */
2994 				psynd = ecdptr->ec_afsr & P_AFSR_P_SYND;
2995 				if (!isus2i && !isus2e) {
2996 					if (j & 0x1)
2997 						psynd = psynd & 0xFF;
2998 					else
2999 						psynd = psynd >> 8;
3000 
3001 					if (!psynd)
3002 						continue; /* wrong chunk */
3003 				}
3004 
3005 				/* Construct the PA */
3006 				errpa = ((t_etag & cpu_ec_tag_mask) <<
3007 				    cpu_ec_tag_shift) | ((i | (j << 3)) %
3008 				    ec_set_size);
3009 
3010 				/* clean up the cache line */
3011 				flushecacheline(P2ALIGN(errpa, 64),
3012 					cpunodes[CPU->cpu_id].ecache_size);
3013 
3014 				oafsr = clear_errors(NULL, cpu_afsr);
3015 				acc_afsr |= oafsr;
3016 
3017 				(*linecnt)++;
3018 
3019 				/*
3020 				 * Capture the PA for the first bad line found.
3021 				 * Return the ecache dump and tag info.
3022 				 */
3023 				if (pa == AFLT_INV_ADDR) {
3024 					int k;
3025 
3026 					pa = errpa;
3027 					for (k = 0; k < 8; k++)
3028 						ecache_data[k] = t_ecdata[k];
3029 					*ecache_tag = t_etag;
3030 				}
3031 				break;
3032 			}
3033 		}
3034 	}
3035 	*t_afar = pa;
3036 	*t_afsr = acc_afsr;
3037 }
3038 
3039 static void
3040 cpu_log_ecmem_info(spitf_async_flt *spf_flt)
3041 {
3042 	struct async_flt *aflt = (struct async_flt *)spf_flt;
3043 	uint64_t ecache_tag = spf_flt->flt_ec_tag;
3044 	char linestr[30];
3045 	char *state_str;
3046 	int i;
3047 
3048 	/*
3049 	 * Check the ecache tag to make sure it
3050 	 * is valid. If invalid, a memory dump was
3051 	 * captured instead of a ecache dump.
3052 	 */
3053 	if (spf_flt->flt_ec_tag != AFLT_INV_ADDR) {
3054 		uchar_t eparity = (uchar_t)
3055 		    ((ecache_tag & cpu_ec_par_mask) >> cpu_ec_par_shift);
3056 
3057 		uchar_t estate = (uchar_t)
3058 		    ((ecache_tag & cpu_ec_state_mask) >> cpu_ec_state_shift);
3059 
3060 		if (estate == cpu_ec_state_shr)
3061 			state_str = "Shared";
3062 		else if (estate == cpu_ec_state_exl)
3063 			state_str = "Exclusive";
3064 		else if (estate == cpu_ec_state_own)
3065 			state_str = "Owner";
3066 		else if (estate == cpu_ec_state_mod)
3067 			state_str = "Modified";
3068 		else
3069 			state_str = "Invalid";
3070 
3071 		if (spf_flt->flt_ec_lcnt > 1) {
3072 			(void) snprintf(linestr, sizeof (linestr),
3073 			    "Badlines found=%d", spf_flt->flt_ec_lcnt);
3074 		} else {
3075 			linestr[0] = '\0';
3076 		}
3077 
3078 		cpu_aflt_log(CE_CONT, 2, spf_flt, CPU_ERRID_FIRST, NULL,
3079 		    " PA=0x%08x.%08x\n    E$tag 0x%08x.%08x E$State: %s "
3080 		    "E$parity 0x%02x %s", (uint32_t)(aflt->flt_addr >> 32),
3081 		    (uint32_t)aflt->flt_addr, (uint32_t)(ecache_tag >> 32),
3082 		    (uint32_t)ecache_tag, state_str,
3083 		    (uint32_t)eparity, linestr);
3084 	} else {
3085 		cpu_aflt_log(CE_CONT, 2, spf_flt, CPU_ERRID_FIRST, NULL,
3086 		    " E$tag != PA from AFAR; E$line was victimized"
3087 		    "\n    dumping memory from PA 0x%08x.%08x instead",
3088 		    (uint32_t)(P2ALIGN(aflt->flt_addr, 64) >> 32),
3089 		    (uint32_t)P2ALIGN(aflt->flt_addr, 64));
3090 	}
3091 
3092 	/*
3093 	 * Dump out all 8 8-byte ecache data captured
3094 	 * For each 8-byte data captured, we check the
3095 	 * captured afsr's parity syndrome to find out
3096 	 * which 8-byte chunk is bad. For memory dump, the
3097 	 * AFSR values were initialized to 0.
3098 	 */
3099 	for (i = 0; i < 8; i++) {
3100 		ec_data_t *ecdptr;
3101 		uint_t offset;
3102 		ushort_t psynd;
3103 		ushort_t bad;
3104 		uint64_t edp;
3105 
3106 		offset = i << 3;	/* multiply by 8 */
3107 		ecdptr = &spf_flt->flt_ec_data[i];
3108 		psynd = ecdptr->ec_afsr & P_AFSR_P_SYND;
3109 		edp = ecdptr->ec_afsr & P_AFSR_EDP;
3110 
3111 		/*
3112 		 * For Sabre/Hummingbird, parity synd is captured only
3113 		 * in [7:0] of AFSR.PSYND for each 8-byte chunk.
3114 		 * For spitfire/blackbird, AFSR.PSYND is captured
3115 		 * in 16-byte granularity. [15:8] represent
3116 		 * the upper 8 byte and [7:0] the lower 8 byte.
3117 		 */
3118 		if (isus2i || isus2e || (i & 0x1))
3119 			bad = (psynd & 0xFF);		/* check bits [7:0] */
3120 		else
3121 			bad = (psynd & 0xFF00);		/* check bits [15:8] */
3122 
3123 		if (bad && edp) {
3124 			cpu_aflt_log(CE_CONT, 2, spf_flt, NO_LFLAGS, NULL,
3125 			    " E$Data (0x%02x): 0x%08x.%08x "
3126 			    "*Bad* PSYND=0x%04x", offset,
3127 			    (uint32_t)(ecdptr->ec_d8 >> 32),
3128 			    (uint32_t)ecdptr->ec_d8, psynd);
3129 		} else {
3130 			cpu_aflt_log(CE_CONT, 2, spf_flt, NO_LFLAGS, NULL,
3131 			    " E$Data (0x%02x): 0x%08x.%08x", offset,
3132 			    (uint32_t)(ecdptr->ec_d8 >> 32),
3133 			    (uint32_t)ecdptr->ec_d8);
3134 		}
3135 	}
3136 }
3137 
3138 /*
3139  * Common logging function for all cpu async errors.  This function allows the
3140  * caller to generate a single cmn_err() call that logs the appropriate items
3141  * from the fault structure, and implements our rules for AFT logging levels.
3142  *
3143  *	ce_code: cmn_err() code (e.g. CE_PANIC, CE_WARN, CE_CONT)
3144  *	tagnum: 0, 1, 2, .. generate the [AFT#] tag
3145  *	spflt: pointer to spitfire async fault structure
3146  *	logflags: bitflags indicating what to output
3147  *	endstr: a end string to appear at the end of this log
3148  *	fmt: a format string to appear at the beginning of the log
3149  *
3150  * The logflags allows the construction of predetermined output from the spflt
3151  * structure.  The individual data items always appear in a consistent order.
3152  * Note that either or both of the spflt structure pointer and logflags may be
3153  * NULL or zero respectively, indicating that the predetermined output
3154  * substrings are not requested in this log.  The output looks like this:
3155  *
3156  *	[AFT#] <CPU_ERRID_FIRST><fmt string><CPU_FLTCPU>
3157  *	<CPU_SPACE><CPU_ERRID>
3158  *	newline+4spaces<CPU_AFSR><CPU_AFAR>
3159  *	newline+4spaces<CPU_AF_PSYND><CPU_AF_ETS><CPU_FAULTPC>
3160  *	newline+4spaces<CPU_UDBH><CPU_UDBL>
3161  *	newline+4spaces<CPU_SYND>
3162  *	newline+4spaces<endstr>
3163  *
3164  * Note that <endstr> may not start on a newline if we are logging <CPU_PSYND>;
3165  * it is assumed that <endstr> will be the unum string in this case.  The size
3166  * of our intermediate formatting buf[] is based on the worst case of all flags
3167  * being enabled.  We pass the caller's varargs directly to vcmn_err() for
3168  * formatting so we don't need additional stack space to format them here.
3169  */
3170 /*PRINTFLIKE6*/
3171 static void
3172 cpu_aflt_log(int ce_code, int tagnum, spitf_async_flt *spflt, uint_t logflags,
3173 	const char *endstr, const char *fmt, ...)
3174 {
3175 	struct async_flt *aflt = (struct async_flt *)spflt;
3176 	char buf[400], *p, *q; /* see comments about buf[] size above */
3177 	va_list ap;
3178 	int console_log_flag;
3179 
3180 	if ((aflt == NULL) || ((aflt->flt_class == CPU_FAULT) &&
3181 				(aflt->flt_stat & P_AFSR_LEVEL1)) ||
3182 	    (aflt->flt_panic)) {
3183 		console_log_flag = (tagnum < 2) || aft_verbose;
3184 	} else {
3185 		int verbose = ((aflt->flt_class == BUS_FAULT) ||
3186 		    (aflt->flt_stat & P_AFSR_CE)) ?
3187 		    ce_verbose_memory : ce_verbose_other;
3188 
3189 		if (!verbose)
3190 			return;
3191 
3192 		console_log_flag = (verbose > 1);
3193 	}
3194 
3195 	if (console_log_flag)
3196 		(void) sprintf(buf, "[AFT%d]", tagnum);
3197 	else
3198 		(void) sprintf(buf, "![AFT%d]", tagnum);
3199 
3200 	p = buf + strlen(buf);	/* current buffer position */
3201 	q = buf + sizeof (buf);	/* pointer past end of buffer */
3202 
3203 	if (spflt != NULL && (logflags & CPU_ERRID_FIRST)) {
3204 		(void) snprintf(p, (size_t)(q - p), " errID 0x%08x.%08x",
3205 		    (uint32_t)(aflt->flt_id >> 32), (uint32_t)aflt->flt_id);
3206 		p += strlen(p);
3207 	}
3208 
3209 	/*
3210 	 * Copy the caller's format string verbatim into buf[].  It will be
3211 	 * formatted by the call to vcmn_err() at the end of this function.
3212 	 */
3213 	if (fmt != NULL && p < q) {
3214 		(void) strncpy(p, fmt, (size_t)(q - p - 1));
3215 		buf[sizeof (buf) - 1] = '\0';
3216 		p += strlen(p);
3217 	}
3218 
3219 	if (spflt != NULL) {
3220 		if (logflags & CPU_FLTCPU) {
3221 			(void) snprintf(p, (size_t)(q - p), " CPU%d",
3222 			    aflt->flt_inst);
3223 			p += strlen(p);
3224 		}
3225 
3226 		if (logflags & CPU_SPACE) {
3227 			if (aflt->flt_status & ECC_D_TRAP)
3228 				(void) snprintf(p, (size_t)(q - p),
3229 				    " Data access");
3230 			else if (aflt->flt_status & ECC_I_TRAP)
3231 				(void) snprintf(p, (size_t)(q - p),
3232 				    " Instruction access");
3233 			p += strlen(p);
3234 		}
3235 
3236 		if (logflags & CPU_TL) {
3237 			(void) snprintf(p, (size_t)(q - p), " at TL%s",
3238 			    aflt->flt_tl ? ">0" : "=0");
3239 			p += strlen(p);
3240 		}
3241 
3242 		if (logflags & CPU_ERRID) {
3243 			(void) snprintf(p, (size_t)(q - p),
3244 			    ", errID 0x%08x.%08x",
3245 			    (uint32_t)(aflt->flt_id >> 32),
3246 			    (uint32_t)aflt->flt_id);
3247 			p += strlen(p);
3248 		}
3249 
3250 		if (logflags & CPU_AFSR) {
3251 			(void) snprintf(p, (size_t)(q - p),
3252 			    "\n    AFSR 0x%08b.%08b",
3253 			    (uint32_t)(aflt->flt_stat >> 32), AFSR_FMTSTR0,
3254 			    (uint32_t)aflt->flt_stat, AFSR_FMTSTR1);
3255 			p += strlen(p);
3256 		}
3257 
3258 		if (logflags & CPU_AFAR) {
3259 			(void) snprintf(p, (size_t)(q - p), " AFAR 0x%08x.%08x",
3260 			    (uint32_t)(aflt->flt_addr >> 32),
3261 			    (uint32_t)aflt->flt_addr);
3262 			p += strlen(p);
3263 		}
3264 
3265 		if (logflags & CPU_AF_PSYND) {
3266 			ushort_t psynd = (ushort_t)
3267 			    (aflt->flt_stat & P_AFSR_P_SYND);
3268 
3269 			(void) snprintf(p, (size_t)(q - p),
3270 			    "\n    AFSR.PSYND 0x%04x(Score %02d)",
3271 			    psynd, ecc_psynd_score(psynd));
3272 			p += strlen(p);
3273 		}
3274 
3275 		if (logflags & CPU_AF_ETS) {
3276 			(void) snprintf(p, (size_t)(q - p), " AFSR.ETS 0x%02x",
3277 			    (uchar_t)((aflt->flt_stat & P_AFSR_ETS) >> 16));
3278 			p += strlen(p);
3279 		}
3280 
3281 		if (logflags & CPU_FAULTPC) {
3282 			(void) snprintf(p, (size_t)(q - p), " Fault_PC 0x%p",
3283 			    (void *)aflt->flt_pc);
3284 			p += strlen(p);
3285 		}
3286 
3287 		if (logflags & CPU_UDBH) {
3288 			(void) snprintf(p, (size_t)(q - p),
3289 			    "\n    UDBH 0x%04b UDBH.ESYND 0x%02x",
3290 			    spflt->flt_sdbh, UDB_FMTSTR,
3291 			    spflt->flt_sdbh & 0xFF);
3292 			p += strlen(p);
3293 		}
3294 
3295 		if (logflags & CPU_UDBL) {
3296 			(void) snprintf(p, (size_t)(q - p),
3297 			    " UDBL 0x%04b UDBL.ESYND 0x%02x",
3298 			    spflt->flt_sdbl, UDB_FMTSTR,
3299 			    spflt->flt_sdbl & 0xFF);
3300 			p += strlen(p);
3301 		}
3302 
3303 		if (logflags & CPU_SYND) {
3304 			ushort_t synd = SYND(aflt->flt_synd);
3305 
3306 			(void) snprintf(p, (size_t)(q - p),
3307 			    "\n    %s Syndrome 0x%x Memory Module ",
3308 			    UDBL(aflt->flt_synd) ? "UDBL" : "UDBH", synd);
3309 			p += strlen(p);
3310 		}
3311 	}
3312 
3313 	if (endstr != NULL) {
3314 		if (!(logflags & CPU_SYND))
3315 			(void) snprintf(p, (size_t)(q - p), "\n    %s", endstr);
3316 		else
3317 			(void) snprintf(p, (size_t)(q - p), "%s", endstr);
3318 		p += strlen(p);
3319 	}
3320 
3321 	if (ce_code == CE_CONT && (p < q - 1))
3322 		(void) strcpy(p, "\n"); /* add final \n if needed */
3323 
3324 	va_start(ap, fmt);
3325 	vcmn_err(ce_code, buf, ap);
3326 	va_end(ap);
3327 }
3328 
3329 /*
3330  * Ecache Scrubbing
3331  *
3332  * The basic idea is to prevent lines from sitting in the ecache long enough
3333  * to build up soft errors which can lead to ecache parity errors.
3334  *
3335  * The following rules are observed when flushing the ecache:
3336  *
3337  * 1. When the system is busy, flush bad clean lines
3338  * 2. When the system is idle, flush all clean lines
3339  * 3. When the system is idle, flush good dirty lines
3340  * 4. Never flush bad dirty lines.
3341  *
3342  *	modify	parity	busy   idle
3343  *	----------------------------
3344  *	clean	good		X
3345  * 	clean	bad	X	X
3346  * 	dirty	good		X
3347  *	dirty	bad
3348  *
3349  * Bad or good refers to whether a line has an E$ parity error or not.
3350  * Clean or dirty refers to the state of the modified bit.  We currently
3351  * default the scan rate to 100 (scan 10% of the cache per second).
3352  *
3353  * The following are E$ states and actions.
3354  *
3355  * We encode our state as a 3-bit number, consisting of:
3356  *	ECACHE_STATE_MODIFIED	(0=clean, 1=dirty)
3357  *	ECACHE_STATE_PARITY	(0=good,  1=bad)
3358  *	ECACHE_STATE_BUSY	(0=idle,  1=busy)
3359  *
3360  * We associate a flushing and a logging action with each state.
3361  *
3362  * E$ actions are different for Spitfire and Sabre/Hummingbird modules.
3363  * MIRROR_FLUSH indicates that an E$ line will be flushed for the mirrored
3364  * E$ only, in addition to value being set by ec_flush.
3365  */
3366 
3367 #define	ALWAYS_FLUSH		0x1	/* flush E$ line on all E$ types */
3368 #define	NEVER_FLUSH		0x0	/* never the flush the E$ line */
3369 #define	MIRROR_FLUSH		0xF	/* flush E$ line on mirrored E$ only */
3370 
3371 struct {
3372 	char	ec_flush;		/* whether to flush or not */
3373 	char	ec_log;			/* ecache logging */
3374 	char	ec_log_type;		/* log type info */
3375 } ec_action[] = {	/* states of the E$ line in M P B */
3376 	{ ALWAYS_FLUSH, 0, 0 },			 /* 0 0 0 clean_good_idle */
3377 	{ MIRROR_FLUSH, 0, 0 },			 /* 0 0 1 clean_good_busy */
3378 	{ ALWAYS_FLUSH, 1, CPU_BADLINE_CI_ERR }, /* 0 1 0 clean_bad_idle */
3379 	{ ALWAYS_FLUSH, 1, CPU_BADLINE_CB_ERR }, /* 0 1 1 clean_bad_busy */
3380 	{ ALWAYS_FLUSH, 0, 0 },			 /* 1 0 0 dirty_good_idle */
3381 	{ MIRROR_FLUSH, 0, 0 },			 /* 1 0 1 dirty_good_busy */
3382 	{ NEVER_FLUSH, 1, CPU_BADLINE_DI_ERR },	 /* 1 1 0 dirty_bad_idle */
3383 	{ NEVER_FLUSH, 1, CPU_BADLINE_DB_ERR }	 /* 1 1 1 dirty_bad_busy */
3384 };
3385 
3386 /*
3387  * Offsets into the ec_action[] that determines clean_good_busy and
3388  * dirty_good_busy lines.
3389  */
3390 #define	ECACHE_CGB_LINE		1	/* E$ clean_good_busy line */
3391 #define	ECACHE_DGB_LINE		5	/* E$ dirty_good_busy line */
3392 
3393 /*
3394  * We are flushing lines which are Clean_Good_Busy and also the lines
3395  * Dirty_Good_Busy. And we only follow it for non-mirrored E$.
3396  */
3397 #define	CGB(x, m)	(((x) == ECACHE_CGB_LINE) && (m != ECACHE_CPU_MIRROR))
3398 #define	DGB(x, m)	(((x) == ECACHE_DGB_LINE) && (m != ECACHE_CPU_MIRROR))
3399 
3400 #define	ECACHE_STATE_MODIFIED	0x4
3401 #define	ECACHE_STATE_PARITY	0x2
3402 #define	ECACHE_STATE_BUSY	0x1
3403 
3404 /*
3405  * If ecache is mirrored ecache_calls_a_sec and ecache_scan_rate are reduced.
3406  */
3407 int ecache_calls_a_sec_mirrored = 1;
3408 int ecache_lines_per_call_mirrored = 1;
3409 
3410 int ecache_scrub_enable = 1;	/* ecache scrubbing is on by default */
3411 int ecache_scrub_verbose = 1;		/* prints clean and dirty lines */
3412 int ecache_scrub_panic = 0;		/* panics on a clean and dirty line */
3413 int ecache_calls_a_sec = 100;		/* scrubber calls per sec */
3414 int ecache_scan_rate = 100;		/* scan rate (in tenths of a percent) */
3415 int ecache_idle_factor = 1;		/* increase the scan rate when idle */
3416 int ecache_flush_clean_good_busy = 50;	/* flush rate (in percent) */
3417 int ecache_flush_dirty_good_busy = 100;	/* flush rate (in percent) */
3418 
3419 volatile int ec_timeout_calls = 1;	/* timeout calls */
3420 
3421 /*
3422  * Interrupt number and pil for ecache scrubber cross-trap calls.
3423  */
3424 static uint_t ecache_scrub_inum;
3425 uint_t ecache_scrub_pil = PIL_9;
3426 
3427 /*
3428  * Kstats for the E$ scrubber.
3429  */
3430 typedef struct ecache_kstat {
3431 	kstat_named_t clean_good_idle;		/* # of lines scrubbed */
3432 	kstat_named_t clean_good_busy;		/* # of lines skipped */
3433 	kstat_named_t clean_bad_idle;		/* # of lines scrubbed */
3434 	kstat_named_t clean_bad_busy;		/* # of lines scrubbed */
3435 	kstat_named_t dirty_good_idle;		/* # of lines scrubbed */
3436 	kstat_named_t dirty_good_busy;		/* # of lines skipped */
3437 	kstat_named_t dirty_bad_idle;		/* # of lines skipped */
3438 	kstat_named_t dirty_bad_busy;		/* # of lines skipped */
3439 	kstat_named_t invalid_lines;		/* # of invalid lines */
3440 	kstat_named_t clean_good_busy_flush;    /* # of lines scrubbed */
3441 	kstat_named_t dirty_good_busy_flush;    /* # of lines scrubbed */
3442 	kstat_named_t tags_cleared;		/* # of E$ tags cleared */
3443 } ecache_kstat_t;
3444 
3445 static ecache_kstat_t ec_kstat_template = {
3446 	{ "clean_good_idle", KSTAT_DATA_ULONG },
3447 	{ "clean_good_busy", KSTAT_DATA_ULONG },
3448 	{ "clean_bad_idle", KSTAT_DATA_ULONG },
3449 	{ "clean_bad_busy", KSTAT_DATA_ULONG },
3450 	{ "dirty_good_idle", KSTAT_DATA_ULONG },
3451 	{ "dirty_good_busy", KSTAT_DATA_ULONG },
3452 	{ "dirty_bad_idle", KSTAT_DATA_ULONG },
3453 	{ "dirty_bad_busy", KSTAT_DATA_ULONG },
3454 	{ "invalid_lines", KSTAT_DATA_ULONG },
3455 	{ "clean_good_busy_flush", KSTAT_DATA_ULONG },
3456 	{ "dirty_good_busy_flush", KSTAT_DATA_ULONG },
3457 	{ "ecache_tags_cleared", KSTAT_DATA_ULONG }
3458 };
3459 
3460 struct kmem_cache *sf_private_cache;
3461 
3462 /*
3463  * Called periodically on each CPU to scan the ecache once a sec.
3464  * adjusting the ecache line index appropriately
3465  */
3466 void
3467 scrub_ecache_line()
3468 {
3469 	spitfire_scrub_misc_t *ssmp = CPU_PRIVATE_PTR(CPU, sfpr_scrub_misc);
3470 	int cpuid = CPU->cpu_id;
3471 	uint32_t index = ssmp->ecache_flush_index;
3472 	uint64_t ec_size = cpunodes[cpuid].ecache_size;
3473 	size_t ec_linesize = cpunodes[cpuid].ecache_linesize;
3474 	int nlines = ssmp->ecache_nlines;
3475 	uint32_t ec_set_size = ec_size / ecache_associativity;
3476 	int ec_mirror = ssmp->ecache_mirror;
3477 	ecache_kstat_t *ec_ksp = (ecache_kstat_t *)ssmp->ecache_ksp->ks_data;
3478 
3479 	int line, scan_lines, flush_clean_busy = 0, flush_dirty_busy = 0;
3480 	int mpb;		/* encode Modified, Parity, Busy for action */
3481 	uchar_t state;
3482 	uint64_t ec_tag, paddr, oafsr, tafsr, nafsr;
3483 	uint64_t *acc_afsr = CPU_PRIVATE_PTR(CPU, sfpr_scrub_afsr);
3484 	ec_data_t ec_data[8];
3485 	kstat_named_t *ec_knp;
3486 
3487 	switch (ec_mirror) {
3488 		default:
3489 		case ECACHE_CPU_NON_MIRROR:
3490 			/*
3491 			 * The E$ scan rate is expressed in units of tenths of
3492 			 * a percent.  ecache_scan_rate = 1000 (100%) means the
3493 			 * whole cache is scanned every second.
3494 			 */
3495 			scan_lines = (nlines * ecache_scan_rate) /
3496 					(1000 * ecache_calls_a_sec);
3497 			if (!(ssmp->ecache_busy)) {
3498 				if (ecache_idle_factor > 0) {
3499 					scan_lines *= ecache_idle_factor;
3500 				}
3501 			} else {
3502 				flush_clean_busy = (scan_lines *
3503 					ecache_flush_clean_good_busy) / 100;
3504 				flush_dirty_busy = (scan_lines *
3505 					ecache_flush_dirty_good_busy) / 100;
3506 			}
3507 
3508 			ec_timeout_calls = (ecache_calls_a_sec ?
3509 						ecache_calls_a_sec : 1);
3510 			break;
3511 
3512 		case ECACHE_CPU_MIRROR:
3513 			scan_lines = ecache_lines_per_call_mirrored;
3514 			ec_timeout_calls = (ecache_calls_a_sec_mirrored ?
3515 					ecache_calls_a_sec_mirrored : 1);
3516 			break;
3517 	}
3518 
3519 	/*
3520 	 * The ecache scrubber algorithm operates by reading and
3521 	 * decoding the E$ tag to determine whether the corresponding E$ line
3522 	 * can be scrubbed. There is a implicit assumption in the scrubber
3523 	 * logic that the E$ tag is valid. Unfortunately, this assertion is
3524 	 * flawed since the E$ tag may also be corrupted and have parity errors
3525 	 * The scrubber logic is enhanced to check the validity of the E$ tag
3526 	 * before scrubbing. When a parity error is detected in the E$ tag,
3527 	 * it is possible to recover and scrub the tag under certain conditions
3528 	 * so that a ETP error condition can be avoided.
3529 	 */
3530 
3531 	for (mpb = line = 0; line < scan_lines; line++, mpb = 0) {
3532 		/*
3533 		 * We get the old-AFSR before clearing the AFSR sticky bits
3534 		 * in {get_ecache_tag, check_ecache_line, get_ecache_dtag}
3535 		 * If CP bit is set in the old-AFSR, we log an Orphan CP event.
3536 		 */
3537 		ec_tag = get_ecache_tag(index, &nafsr, acc_afsr);
3538 		state = (uchar_t)((ec_tag & cpu_ec_state_mask) >>
3539 				cpu_ec_state_shift);
3540 
3541 		/*
3542 		 * ETP is set try to scrub the ecache tag.
3543 		 */
3544 		if (nafsr & P_AFSR_ETP) {
3545 			ecache_scrub_tag_err(nafsr, state, index);
3546 		} else if (state & cpu_ec_state_valid) {
3547 			/*
3548 			 * ETP is not set, E$ tag is valid.
3549 			 * Proceed with the E$ scrubbing.
3550 			 */
3551 			if (state & cpu_ec_state_dirty)
3552 				mpb |= ECACHE_STATE_MODIFIED;
3553 
3554 			tafsr = check_ecache_line(index, acc_afsr);
3555 
3556 			if (tafsr & P_AFSR_EDP) {
3557 				mpb |= ECACHE_STATE_PARITY;
3558 
3559 				if (ecache_scrub_verbose ||
3560 							ecache_scrub_panic) {
3561 					get_ecache_dtag(P2ALIGN(index, 64),
3562 						(uint64_t *)&ec_data[0],
3563 						&ec_tag, &oafsr, acc_afsr);
3564 				}
3565 			}
3566 
3567 			if (ssmp->ecache_busy)
3568 				mpb |= ECACHE_STATE_BUSY;
3569 
3570 			ec_knp = (kstat_named_t *)ec_ksp + mpb;
3571 			ec_knp->value.ul++;
3572 
3573 			paddr = ((ec_tag & cpu_ec_tag_mask) <<
3574 				cpu_ec_tag_shift) | (index % ec_set_size);
3575 
3576 			/*
3577 			 * We flush the E$ lines depending on the ec_flush,
3578 			 * we additionally flush clean_good_busy and
3579 			 * dirty_good_busy lines for mirrored E$.
3580 			 */
3581 			if (ec_action[mpb].ec_flush == ALWAYS_FLUSH) {
3582 				flushecacheline(paddr, ec_size);
3583 			} else if ((ec_mirror == ECACHE_CPU_MIRROR) &&
3584 				(ec_action[mpb].ec_flush == MIRROR_FLUSH)) {
3585 					flushecacheline(paddr, ec_size);
3586 			} else if (ec_action[mpb].ec_flush == NEVER_FLUSH) {
3587 				softcall(ecache_page_retire, (void *)paddr);
3588 			}
3589 
3590 			/*
3591 			 * Conditionally flush both the clean_good and
3592 			 * dirty_good lines when busy.
3593 			 */
3594 			if (CGB(mpb, ec_mirror) && (flush_clean_busy > 0)) {
3595 				flush_clean_busy--;
3596 				flushecacheline(paddr, ec_size);
3597 				ec_ksp->clean_good_busy_flush.value.ul++;
3598 			} else if (DGB(mpb, ec_mirror) &&
3599 						(flush_dirty_busy > 0)) {
3600 				flush_dirty_busy--;
3601 				flushecacheline(paddr, ec_size);
3602 				ec_ksp->dirty_good_busy_flush.value.ul++;
3603 			}
3604 
3605 			if (ec_action[mpb].ec_log && (ecache_scrub_verbose ||
3606 						ecache_scrub_panic)) {
3607 				ecache_scrub_log(ec_data, ec_tag, paddr, mpb,
3608 						tafsr);
3609 			}
3610 
3611 		} else {
3612 			ec_ksp->invalid_lines.value.ul++;
3613 		}
3614 
3615 		if ((index += ec_linesize) >= ec_size)
3616 			index = 0;
3617 
3618 	}
3619 
3620 	/*
3621 	 * set the ecache scrub index for the next time around
3622 	 */
3623 	ssmp->ecache_flush_index = index;
3624 
3625 	if (*acc_afsr & P_AFSR_CP) {
3626 		uint64_t ret_afsr;
3627 
3628 		ret_afsr = ecache_scrub_misc_err(CPU_ORPHAN_CP_ERR, *acc_afsr);
3629 		if ((ret_afsr & P_AFSR_CP) == 0)
3630 			*acc_afsr = 0;
3631 	}
3632 }
3633 
3634 /*
3635  * Handler for ecache_scrub_inum softint.  Call scrub_ecache_line until
3636  * we decrement the outstanding request count to zero.
3637  */
3638 
3639 /*ARGSUSED*/
3640 uint_t
3641 scrub_ecache_line_intr(caddr_t arg1, caddr_t arg2)
3642 {
3643 	int i;
3644 	int outstanding;
3645 	spitfire_scrub_misc_t *ssmp = CPU_PRIVATE_PTR(CPU, sfpr_scrub_misc);
3646 	uint32_t *countp = &ssmp->ec_scrub_outstanding;
3647 
3648 	do {
3649 		outstanding = *countp;
3650 		ASSERT(outstanding > 0);
3651 		for (i = 0; i < outstanding; i++)
3652 			scrub_ecache_line();
3653 	} while (atomic_add_32_nv(countp, -outstanding));
3654 
3655 	return (DDI_INTR_CLAIMED);
3656 }
3657 
3658 /*
3659  * force each cpu to perform an ecache scrub, called from a timeout
3660  */
3661 extern xcfunc_t ecache_scrubreq_tl1;
3662 
3663 void
3664 do_scrub_ecache_line(void)
3665 {
3666 	long delta;
3667 
3668 	if (ecache_calls_a_sec > hz)
3669 		ecache_calls_a_sec = hz;
3670 	else if (ecache_calls_a_sec <= 0)
3671 	    ecache_calls_a_sec = 1;
3672 
3673 	if (ecache_calls_a_sec_mirrored > hz)
3674 		ecache_calls_a_sec_mirrored = hz;
3675 	else if (ecache_calls_a_sec_mirrored <= 0)
3676 	    ecache_calls_a_sec_mirrored = 1;
3677 
3678 	if (ecache_scrub_enable) {
3679 		xt_all(ecache_scrubreq_tl1, ecache_scrub_inum, 0);
3680 		delta = hz / ec_timeout_calls;
3681 	} else {
3682 		delta = hz;
3683 	}
3684 
3685 	(void) realtime_timeout((void(*)(void *))do_scrub_ecache_line, 0,
3686 		delta);
3687 }
3688 
3689 /*
3690  * initialization for ecache scrubbing
3691  * This routine is called AFTER all cpus have had cpu_init_private called
3692  * to initialize their private data areas.
3693  */
3694 void
3695 cpu_init_cache_scrub(void)
3696 {
3697 	if (ecache_calls_a_sec > hz) {
3698 		cmn_err(CE_NOTE, "ecache_calls_a_sec set too high (%d); "
3699 		    "resetting to hz (%d)", ecache_calls_a_sec, hz);
3700 		ecache_calls_a_sec = hz;
3701 	}
3702 
3703 	/*
3704 	 * Register softint for ecache scrubbing.
3705 	 */
3706 	ecache_scrub_inum = add_softintr(ecache_scrub_pil,
3707 	    scrub_ecache_line_intr, NULL);
3708 
3709 	/*
3710 	 * kick off the scrubbing using realtime timeout
3711 	 */
3712 	(void) realtime_timeout((void(*)(void *))do_scrub_ecache_line, 0,
3713 	    hz / ecache_calls_a_sec);
3714 }
3715 
3716 /*
3717  * Unset the busy flag for this cpu.
3718  */
3719 void
3720 cpu_idle_ecache_scrub(struct cpu *cp)
3721 {
3722 	if (CPU_PRIVATE(cp) != NULL) {
3723 		spitfire_scrub_misc_t *ssmp = CPU_PRIVATE_PTR(cp,
3724 							sfpr_scrub_misc);
3725 		ssmp->ecache_busy = ECACHE_CPU_IDLE;
3726 	}
3727 }
3728 
3729 /*
3730  * Set the busy flag for this cpu.
3731  */
3732 void
3733 cpu_busy_ecache_scrub(struct cpu *cp)
3734 {
3735 	if (CPU_PRIVATE(cp) != NULL) {
3736 		spitfire_scrub_misc_t *ssmp = CPU_PRIVATE_PTR(cp,
3737 							sfpr_scrub_misc);
3738 		ssmp->ecache_busy = ECACHE_CPU_BUSY;
3739 	}
3740 }
3741 
3742 /*
3743  * initialize the ecache scrubber data structures
3744  * The global entry point cpu_init_private replaces this entry point.
3745  *
3746  */
3747 static void
3748 cpu_init_ecache_scrub_dr(struct cpu *cp)
3749 {
3750 	spitfire_scrub_misc_t *ssmp = CPU_PRIVATE_PTR(cp, sfpr_scrub_misc);
3751 	int cpuid = cp->cpu_id;
3752 
3753 	/*
3754 	 * intialize bookkeeping for cache scrubbing
3755 	 */
3756 	bzero(ssmp, sizeof (spitfire_scrub_misc_t));
3757 
3758 	ssmp->ecache_flush_index = 0;
3759 
3760 	ssmp->ecache_nlines =
3761 		cpunodes[cpuid].ecache_size / cpunodes[cpuid].ecache_linesize;
3762 
3763 	/*
3764 	 * Determine whether we are running on mirrored SRAM
3765 	 */
3766 
3767 	if (cpunodes[cpuid].msram == ECACHE_CPU_MIRROR)
3768 		ssmp->ecache_mirror = ECACHE_CPU_MIRROR;
3769 	else
3770 		ssmp->ecache_mirror = ECACHE_CPU_NON_MIRROR;
3771 
3772 	cpu_busy_ecache_scrub(cp);
3773 
3774 	/*
3775 	 * initialize the kstats
3776 	 */
3777 	ecache_kstat_init(cp);
3778 }
3779 
3780 /*
3781  * uninitialize the ecache scrubber data structures
3782  * The global entry point cpu_uninit_private replaces this entry point.
3783  */
3784 static void
3785 cpu_uninit_ecache_scrub_dr(struct cpu *cp)
3786 {
3787 	spitfire_scrub_misc_t *ssmp = CPU_PRIVATE_PTR(cp, sfpr_scrub_misc);
3788 
3789 	if (ssmp->ecache_ksp != NULL) {
3790 		kstat_delete(ssmp->ecache_ksp);
3791 		ssmp->ecache_ksp = NULL;
3792 	}
3793 
3794 	/*
3795 	 * un-initialize bookkeeping for cache scrubbing
3796 	 */
3797 	bzero(ssmp, sizeof (spitfire_scrub_misc_t));
3798 
3799 	cpu_idle_ecache_scrub(cp);
3800 }
3801 
3802 struct kmem_cache *sf_private_cache;
3803 
3804 /*
3805  * Cpu private initialization.  This includes allocating the cpu_private
3806  * data structure, initializing it, and initializing the scrubber for this
3807  * cpu.  This is called once for EVERY cpu, including CPU 0. This function
3808  * calls cpu_init_ecache_scrub_dr to init the scrubber.
3809  * We use kmem_cache_create for the spitfire private data structure because it
3810  * needs to be allocated on a S_ECACHE_MAX_LSIZE (64) byte boundary.
3811  */
3812 void
3813 cpu_init_private(struct cpu *cp)
3814 {
3815 	spitfire_private_t *sfprp;
3816 
3817 	ASSERT(CPU_PRIVATE(cp) == NULL);
3818 
3819 	/*
3820 	 * If the sf_private_cache has not been created, create it.
3821 	 */
3822 	if (sf_private_cache == NULL) {
3823 		sf_private_cache = kmem_cache_create("sf_private_cache",
3824 			sizeof (spitfire_private_t), S_ECACHE_MAX_LSIZE, NULL,
3825 			NULL, NULL, NULL, NULL, 0);
3826 		ASSERT(sf_private_cache);
3827 	}
3828 
3829 	sfprp = CPU_PRIVATE(cp) = kmem_cache_alloc(sf_private_cache, KM_SLEEP);
3830 
3831 	bzero(sfprp, sizeof (spitfire_private_t));
3832 
3833 	cpu_init_ecache_scrub_dr(cp);
3834 }
3835 
3836 /*
3837  * Cpu private unitialization.  Uninitialize the Ecache scrubber and
3838  * deallocate the scrubber data structures and cpu_private data structure.
3839  * For now, this function just calls cpu_unint_ecache_scrub_dr to uninit
3840  * the scrubber for the specified cpu.
3841  */
3842 void
3843 cpu_uninit_private(struct cpu *cp)
3844 {
3845 	ASSERT(CPU_PRIVATE(cp));
3846 
3847 	cpu_uninit_ecache_scrub_dr(cp);
3848 	kmem_cache_free(sf_private_cache, CPU_PRIVATE(cp));
3849 	CPU_PRIVATE(cp) = NULL;
3850 }
3851 
3852 /*
3853  * initialize the ecache kstats for each cpu
3854  */
3855 static void
3856 ecache_kstat_init(struct cpu *cp)
3857 {
3858 	struct kstat *ksp;
3859 	spitfire_scrub_misc_t *ssmp = CPU_PRIVATE_PTR(cp, sfpr_scrub_misc);
3860 
3861 	ASSERT(ssmp != NULL);
3862 
3863 	if ((ksp = kstat_create("unix", cp->cpu_id, "ecache_kstat", "misc",
3864 	    KSTAT_TYPE_NAMED,
3865 	    sizeof (ecache_kstat_t) / sizeof (kstat_named_t),
3866 	    KSTAT_FLAG_WRITABLE)) == NULL) {
3867 		ssmp->ecache_ksp = NULL;
3868 		cmn_err(CE_NOTE, "!ecache_kstat_init(%d) failed\n", cp->cpu_id);
3869 		return;
3870 	}
3871 
3872 	ssmp->ecache_ksp = ksp;
3873 	bcopy(&ec_kstat_template, ksp->ks_data, sizeof (ecache_kstat_t));
3874 	kstat_install(ksp);
3875 }
3876 
3877 /*
3878  * log the bad ecache information
3879  */
3880 static void
3881 ecache_scrub_log(ec_data_t *ec_data, uint64_t ec_tag, uint64_t paddr, int mpb,
3882 		uint64_t afsr)
3883 {
3884 	spitf_async_flt spf_flt;
3885 	struct async_flt *aflt;
3886 	int i;
3887 	char *class;
3888 
3889 	bzero(&spf_flt, sizeof (spitf_async_flt));
3890 	aflt = &spf_flt.cmn_asyncflt;
3891 
3892 	for (i = 0; i < 8; i++) {
3893 		spf_flt.flt_ec_data[i] = ec_data[i];
3894 	}
3895 
3896 	spf_flt.flt_ec_tag = ec_tag;
3897 
3898 	if (mpb < (sizeof (ec_action) / sizeof (ec_action[0]))) {
3899 		spf_flt.flt_type = ec_action[mpb].ec_log_type;
3900 	} else spf_flt.flt_type = (ushort_t)mpb;
3901 
3902 	aflt->flt_inst = CPU->cpu_id;
3903 	aflt->flt_class = CPU_FAULT;
3904 	aflt->flt_id = gethrtime_waitfree();
3905 	aflt->flt_addr = paddr;
3906 	aflt->flt_stat = afsr;
3907 	aflt->flt_panic = (uchar_t)ecache_scrub_panic;
3908 
3909 	switch (mpb) {
3910 	case CPU_ECACHE_TAG_ERR:
3911 	case CPU_ECACHE_ADDR_PAR_ERR:
3912 	case CPU_ECACHE_ETP_ETS_ERR:
3913 	case CPU_ECACHE_STATE_ERR:
3914 		class = FM_EREPORT_CPU_USII_ESCRUB_TAG;
3915 		break;
3916 	default:
3917 		class = FM_EREPORT_CPU_USII_ESCRUB_DATA;
3918 		break;
3919 	}
3920 
3921 	cpu_errorq_dispatch(class, (void *)&spf_flt, sizeof (spf_flt),
3922 	    ue_queue, aflt->flt_panic);
3923 
3924 	if (aflt->flt_panic)
3925 		cmn_err(CE_PANIC, "ecache_scrub_panic set and bad E$"
3926 					"line detected");
3927 }
3928 
3929 /*
3930  * Process an ecache error that occured during the E$ scrubbing.
3931  * We do the ecache scan to find the bad line, flush the bad line
3932  * and start the memscrubber to find any UE (in memory or in another cache)
3933  */
3934 static uint64_t
3935 ecache_scrub_misc_err(int type, uint64_t afsr)
3936 {
3937 	spitf_async_flt spf_flt;
3938 	struct async_flt *aflt;
3939 	uint64_t oafsr;
3940 
3941 	bzero(&spf_flt, sizeof (spitf_async_flt));
3942 	aflt = &spf_flt.cmn_asyncflt;
3943 
3944 	/*
3945 	 * Scan each line in the cache to look for the one
3946 	 * with bad parity
3947 	 */
3948 	aflt->flt_addr = AFLT_INV_ADDR;
3949 	scan_ecache(&aflt->flt_addr, &spf_flt.flt_ec_data[0],
3950 		&spf_flt.flt_ec_tag, &spf_flt.flt_ec_lcnt, &oafsr);
3951 
3952 	if (oafsr & P_AFSR_CP) {
3953 		uint64_t *cp_afsr = CPU_PRIVATE_PTR(CPU, sfpr_scrub_afsr);
3954 		*cp_afsr |= oafsr;
3955 	}
3956 
3957 	/*
3958 	 * If we found a bad PA, update the state to indicate if it is
3959 	 * memory or I/O space.
3960 	 */
3961 	if (aflt->flt_addr != AFLT_INV_ADDR) {
3962 		aflt->flt_in_memory = (pf_is_memory(aflt->flt_addr >>
3963 			MMU_PAGESHIFT)) ? 1 : 0;
3964 	}
3965 
3966 	spf_flt.flt_type = (ushort_t)type;
3967 
3968 	aflt->flt_inst = CPU->cpu_id;
3969 	aflt->flt_class = CPU_FAULT;
3970 	aflt->flt_id = gethrtime_waitfree();
3971 	aflt->flt_status = afsr;
3972 	aflt->flt_panic = (uchar_t)ecache_scrub_panic;
3973 
3974 	/*
3975 	 * We have the bad line, flush that line and start
3976 	 * the memscrubber.
3977 	 */
3978 	if (spf_flt.flt_ec_lcnt > 0) {
3979 		flushecacheline(P2ALIGN(aflt->flt_addr, 64),
3980 			cpunodes[CPU->cpu_id].ecache_size);
3981 		read_all_memscrub = 1;
3982 		memscrub_run();
3983 	}
3984 
3985 	cpu_errorq_dispatch((type == CPU_ORPHAN_CP_ERR) ?
3986 	    FM_EREPORT_CPU_USII_CP : FM_EREPORT_CPU_USII_UNKNOWN,
3987 	    (void *)&spf_flt, sizeof (spf_flt), ue_queue, aflt->flt_panic);
3988 
3989 	return (oafsr);
3990 }
3991 
3992 static void
3993 ecache_scrub_tag_err(uint64_t afsr, uchar_t state, uint32_t index)
3994 {
3995 	ushort_t afsr_ets = (afsr & P_AFSR_ETS) >> P_AFSR_ETS_SHIFT;
3996 	spitfire_scrub_misc_t *ssmp = CPU_PRIVATE_PTR(CPU, sfpr_scrub_misc);
3997 	ecache_kstat_t *ec_ksp = (ecache_kstat_t *)ssmp->ecache_ksp->ks_data;
3998 	uint64_t ec_tag, paddr, oafsr;
3999 	ec_data_t ec_data[8];
4000 	int cpuid = CPU->cpu_id;
4001 	uint32_t ec_set_size = cpunodes[cpuid].ecache_size /
4002 						ecache_associativity;
4003 	uint64_t *cpu_afsr = CPU_PRIVATE_PTR(CPU, sfpr_scrub_afsr);
4004 
4005 	get_ecache_dtag(P2ALIGN(index, 64), (uint64_t *)&ec_data[0], &ec_tag,
4006 			&oafsr, cpu_afsr);
4007 	paddr = ((ec_tag & cpu_ec_tag_mask) << cpu_ec_tag_shift) |
4008 						(index % ec_set_size);
4009 
4010 	/*
4011 	 * E$ tag state has good parity
4012 	 */
4013 	if ((afsr_ets & cpu_ec_state_parity) == 0) {
4014 		if (afsr_ets & cpu_ec_parity) {
4015 			/*
4016 			 * E$ tag state bits indicate the line is clean,
4017 			 * invalidate the E$ tag and continue.
4018 			 */
4019 			if (!(state & cpu_ec_state_dirty)) {
4020 				/*
4021 				 * Zero the tag and mark the state invalid
4022 				 * with good parity for the tag.
4023 				 */
4024 				if (isus2i || isus2e)
4025 					write_hb_ec_tag_parity(index);
4026 				else
4027 					write_ec_tag_parity(index);
4028 
4029 				/* Sync with the dual tag */
4030 				flushecacheline(0,
4031 					cpunodes[CPU->cpu_id].ecache_size);
4032 				ec_ksp->tags_cleared.value.ul++;
4033 				ecache_scrub_log(ec_data, ec_tag, paddr,
4034 					CPU_ECACHE_TAG_ERR, afsr);
4035 				return;
4036 			} else {
4037 				ecache_scrub_log(ec_data, ec_tag, paddr,
4038 					CPU_ECACHE_ADDR_PAR_ERR, afsr);
4039 				cmn_err(CE_PANIC, " E$ tag address has bad"
4040 							" parity");
4041 			}
4042 		} else if ((afsr_ets & cpu_ec_parity) == 0) {
4043 			/*
4044 			 * ETS is zero but ETP is set
4045 			 */
4046 			ecache_scrub_log(ec_data, ec_tag, paddr,
4047 				CPU_ECACHE_ETP_ETS_ERR, afsr);
4048 			cmn_err(CE_PANIC, "AFSR.ETP is set and"
4049 				" AFSR.ETS is zero");
4050 		}
4051 	} else {
4052 		/*
4053 		 * E$ tag state bit has a bad parity
4054 		 */
4055 		ecache_scrub_log(ec_data, ec_tag, paddr,
4056 				CPU_ECACHE_STATE_ERR, afsr);
4057 		cmn_err(CE_PANIC, "E$ tag state has bad parity");
4058 	}
4059 }
4060 
4061 static void
4062 ecache_page_retire(void *arg)
4063 {
4064 	uint64_t paddr = (uint64_t)arg;
4065 	(void) page_retire(paddr, PR_UE);
4066 }
4067 
4068 void
4069 sticksync_slave(void)
4070 {}
4071 
4072 void
4073 sticksync_master(void)
4074 {}
4075 
4076 /*ARGSUSED*/
4077 void
4078 cpu_check_ce(int flag, uint64_t pa, caddr_t va, uint_t bpp)
4079 {}
4080 
4081 void
4082 cpu_run_bus_error_handlers(struct async_flt *aflt, int expected)
4083 {
4084 	int status;
4085 	ddi_fm_error_t de;
4086 
4087 	bzero(&de, sizeof (ddi_fm_error_t));
4088 
4089 	de.fme_ena = fm_ena_generate_cpu(aflt->flt_id, aflt->flt_inst,
4090 	    FM_ENA_FMT1);
4091 	de.fme_flag = expected;
4092 	de.fme_bus_specific = (void *)aflt->flt_addr;
4093 	status = ndi_fm_handler_dispatch(ddi_root_node(), NULL, &de);
4094 
4095 	if ((aflt->flt_prot == AFLT_PROT_NONE) && (status == DDI_FM_FATAL))
4096 		aflt->flt_panic = 1;
4097 }
4098 
4099 /*ARGSUSED*/
4100 void
4101 cpu_errorq_dispatch(char *error_class, void *payload, size_t payload_sz,
4102     errorq_t *eqp, uint_t flag)
4103 {
4104 	struct async_flt *aflt = (struct async_flt *)payload;
4105 
4106 	aflt->flt_erpt_class = error_class;
4107 	errorq_dispatch(eqp, payload, payload_sz, flag);
4108 }
4109 
4110 #define	MAX_SIMM	8
4111 
4112 struct ce_info {
4113 	char    name[UNUM_NAMLEN];
4114 	uint64_t intermittent_total;
4115 	uint64_t persistent_total;
4116 	uint64_t sticky_total;
4117 	unsigned short leaky_bucket_cnt;
4118 };
4119 
4120 /*
4121  * Separately-defined structure for use in reporting the ce_info
4122  * to SunVTS without exposing the internal layout and implementation
4123  * of struct ce_info.
4124  */
4125 static struct ecc_error_info ecc_error_info_data = {
4126 	{ "version", KSTAT_DATA_UINT32 },
4127 	{ "maxcount", KSTAT_DATA_UINT32 },
4128 	{ "count", KSTAT_DATA_UINT32 }
4129 };
4130 static const size_t ecc_error_info_ndata = sizeof (ecc_error_info_data) /
4131     sizeof (struct kstat_named);
4132 
4133 #if KSTAT_CE_UNUM_NAMLEN < UNUM_NAMLEN
4134 #error "Need to rev ecc_error_info version and update KSTAT_CE_UNUM_NAMLEN"
4135 #endif
4136 
4137 struct ce_info  *mem_ce_simm = NULL;
4138 size_t mem_ce_simm_size = 0;
4139 
4140 /*
4141  * Default values for the number of CE's allowed per interval.
4142  * Interval is defined in minutes
4143  * SOFTERR_MIN_TIMEOUT is defined in microseconds
4144  */
4145 #define	SOFTERR_LIMIT_DEFAULT		2
4146 #define	SOFTERR_INTERVAL_DEFAULT	1440		/* This is 24 hours */
4147 #define	SOFTERR_MIN_TIMEOUT		(60 * MICROSEC)	/* This is 1 minute */
4148 #define	TIMEOUT_NONE			((timeout_id_t)0)
4149 #define	TIMEOUT_SET			((timeout_id_t)1)
4150 
4151 /*
4152  * timeout identifer for leaky_bucket
4153  */
4154 static timeout_id_t leaky_bucket_timeout_id = TIMEOUT_NONE;
4155 
4156 /*
4157  * Tunables for maximum number of allowed CE's in a given time
4158  */
4159 int ecc_softerr_limit = SOFTERR_LIMIT_DEFAULT;
4160 int ecc_softerr_interval = SOFTERR_INTERVAL_DEFAULT;
4161 
4162 void
4163 cpu_mp_init(void)
4164 {
4165 	size_t size = cpu_aflt_size();
4166 	size_t i;
4167 	kstat_t *ksp;
4168 
4169 	/*
4170 	 * Initialize the CE error handling buffers.
4171 	 */
4172 	mem_ce_simm_size = MAX_SIMM * max_ncpus;
4173 	size = sizeof (struct ce_info) * mem_ce_simm_size;
4174 	mem_ce_simm = kmem_zalloc(size, KM_SLEEP);
4175 
4176 	ksp = kstat_create("unix", 0, "ecc-info", "misc",
4177 	    KSTAT_TYPE_NAMED, ecc_error_info_ndata, KSTAT_FLAG_VIRTUAL);
4178 	if (ksp != NULL) {
4179 		ksp->ks_data = (struct kstat_named *)&ecc_error_info_data;
4180 		ecc_error_info_data.version.value.ui32 = KSTAT_CE_INFO_VER;
4181 		ecc_error_info_data.maxcount.value.ui32 = mem_ce_simm_size;
4182 		ecc_error_info_data.count.value.ui32 = 0;
4183 		kstat_install(ksp);
4184 	}
4185 
4186 	for (i = 0; i < mem_ce_simm_size; i++) {
4187 		struct kstat_ecc_mm_info *kceip;
4188 
4189 		kceip = kmem_zalloc(sizeof (struct kstat_ecc_mm_info),
4190 		    KM_SLEEP);
4191 		ksp = kstat_create("mm", i, "ecc-info", "misc",
4192 		    KSTAT_TYPE_NAMED,
4193 		    sizeof (struct kstat_ecc_mm_info) / sizeof (kstat_named_t),
4194 		    KSTAT_FLAG_VIRTUAL);
4195 		if (ksp != NULL) {
4196 			/*
4197 			 * Re-declare ks_data_size to include room for the
4198 			 * UNUM name since we don't have KSTAT_FLAG_VAR_SIZE
4199 			 * set.
4200 			 */
4201 			ksp->ks_data_size = sizeof (struct kstat_ecc_mm_info) +
4202 			    KSTAT_CE_UNUM_NAMLEN;
4203 			ksp->ks_data = kceip;
4204 			kstat_named_init(&kceip->name,
4205 			    "name", KSTAT_DATA_STRING);
4206 			kstat_named_init(&kceip->intermittent_total,
4207 			    "intermittent_total", KSTAT_DATA_UINT64);
4208 			kstat_named_init(&kceip->persistent_total,
4209 			    "persistent_total", KSTAT_DATA_UINT64);
4210 			kstat_named_init(&kceip->sticky_total,
4211 			    "sticky_total", KSTAT_DATA_UINT64);
4212 			/*
4213 			 * Use the default snapshot routine as it knows how to
4214 			 * deal with named kstats with long strings.
4215 			 */
4216 			ksp->ks_update = ecc_kstat_update;
4217 			kstat_install(ksp);
4218 		} else {
4219 			kmem_free(kceip, sizeof (struct kstat_ecc_mm_info));
4220 		}
4221 	}
4222 }
4223 
4224 /*ARGSUSED*/
4225 static void
4226 leaky_bucket_timeout(void *arg)
4227 {
4228 	int i;
4229 	struct ce_info *psimm = mem_ce_simm;
4230 
4231 	for (i = 0; i < mem_ce_simm_size; i++) {
4232 		if (psimm[i].leaky_bucket_cnt > 0)
4233 			atomic_add_16(&psimm[i].leaky_bucket_cnt, -1);
4234 	}
4235 	add_leaky_bucket_timeout();
4236 }
4237 
4238 static void
4239 add_leaky_bucket_timeout(void)
4240 {
4241 	long timeout_in_microsecs;
4242 
4243 	/*
4244 	 * create timeout for next leak.
4245 	 *
4246 	 * The timeout interval is calculated as follows
4247 	 *
4248 	 * (ecc_softerr_interval * 60 * MICROSEC) / ecc_softerr_limit
4249 	 *
4250 	 * ecc_softerr_interval is in minutes, so multiply this by 60 (seconds
4251 	 * in a minute), then multiply this by MICROSEC to get the interval
4252 	 * in microseconds.  Divide this total by ecc_softerr_limit so that
4253 	 * the timeout interval is accurate to within a few microseconds.
4254 	 */
4255 
4256 	if (ecc_softerr_limit <= 0)
4257 		ecc_softerr_limit = SOFTERR_LIMIT_DEFAULT;
4258 	if (ecc_softerr_interval <= 0)
4259 		ecc_softerr_interval = SOFTERR_INTERVAL_DEFAULT;
4260 
4261 	timeout_in_microsecs = ((int64_t)ecc_softerr_interval * 60 * MICROSEC) /
4262 	    ecc_softerr_limit;
4263 
4264 	if (timeout_in_microsecs < SOFTERR_MIN_TIMEOUT)
4265 		timeout_in_microsecs = SOFTERR_MIN_TIMEOUT;
4266 
4267 	leaky_bucket_timeout_id = timeout(leaky_bucket_timeout,
4268 	    (void *)NULL, drv_usectohz((clock_t)timeout_in_microsecs));
4269 }
4270 
4271 /*
4272  * Legacy Correctable ECC Error Hash
4273  *
4274  * All of the code below this comment is used to implement a legacy array
4275  * which counted intermittent, persistent, and sticky CE errors by unum,
4276  * and then was later extended to publish the data as a kstat for SunVTS.
4277  * All of this code is replaced by FMA, and remains here until such time
4278  * that the UltraSPARC-I/II CPU code is converted to FMA, or is EOLed.
4279  *
4280  * Errors are saved in three buckets per-unum:
4281  * (1) sticky - scrub was unsuccessful, cannot be scrubbed
4282  *     This could represent a problem, and is immediately printed out.
4283  * (2) persistent - was successfully scrubbed
4284  *     These errors use the leaky bucket algorithm to determine
4285  *     if there is a serious problem.
4286  * (3) intermittent - may have originated from the cpu or upa/safari bus,
4287  *     and does not necessarily indicate any problem with the dimm itself,
4288  *     is critical information for debugging new hardware.
4289  *     Because we do not know if it came from the dimm, it would be
4290  *     inappropriate to include these in the leaky bucket counts.
4291  *
4292  * If the E$ line was modified before the scrub operation began, then the
4293  * displacement flush at the beginning of scrubphys() will cause the modified
4294  * line to be written out, which will clean up the CE.  Then, any subsequent
4295  * read will not cause an error, which will cause persistent errors to be
4296  * identified as intermittent.
4297  *
4298  * If a DIMM is going bad, it will produce true persistents as well as
4299  * false intermittents, so these intermittents can be safely ignored.
4300  *
4301  * If the error count is excessive for a DIMM, this function will return
4302  * PR_MCE, and the CPU module may then decide to remove that page from use.
4303  */
4304 static int
4305 ce_count_unum(int status, int len, char *unum)
4306 {
4307 	int i;
4308 	struct ce_info *psimm = mem_ce_simm;
4309 	int page_status = PR_OK;
4310 
4311 	ASSERT(psimm != NULL);
4312 
4313 	if (len <= 0 ||
4314 	    (status & (ECC_STICKY | ECC_PERSISTENT | ECC_INTERMITTENT)) == 0)
4315 		return (page_status);
4316 
4317 	/*
4318 	 * Initialize the leaky_bucket timeout
4319 	 */
4320 	if (casptr(&leaky_bucket_timeout_id,
4321 	    TIMEOUT_NONE, TIMEOUT_SET) == TIMEOUT_NONE)
4322 		add_leaky_bucket_timeout();
4323 
4324 	for (i = 0; i < mem_ce_simm_size; i++) {
4325 		if (psimm[i].name[0] == '\0') {
4326 			/*
4327 			 * Hit the end of the valid entries, add
4328 			 * a new one.
4329 			 */
4330 			(void) strncpy(psimm[i].name, unum, len);
4331 			if (status & ECC_STICKY) {
4332 				/*
4333 				 * Sticky - the leaky bucket is used to track
4334 				 * soft errors.  Since a sticky error is a
4335 				 * hard error and likely to be retired soon,
4336 				 * we do not count it in the leaky bucket.
4337 				 */
4338 				psimm[i].leaky_bucket_cnt = 0;
4339 				psimm[i].intermittent_total = 0;
4340 				psimm[i].persistent_total = 0;
4341 				psimm[i].sticky_total = 1;
4342 				cmn_err(CE_WARN,
4343 				    "[AFT0] Sticky Softerror encountered "
4344 				    "on Memory Module %s\n", unum);
4345 				page_status = PR_MCE;
4346 			} else if (status & ECC_PERSISTENT) {
4347 				psimm[i].leaky_bucket_cnt = 1;
4348 				psimm[i].intermittent_total = 0;
4349 				psimm[i].persistent_total = 1;
4350 				psimm[i].sticky_total = 0;
4351 			} else {
4352 				/*
4353 				 * Intermittent - Because the scrub operation
4354 				 * cannot find the error in the DIMM, we will
4355 				 * not count these in the leaky bucket
4356 				 */
4357 				psimm[i].leaky_bucket_cnt = 0;
4358 				psimm[i].intermittent_total = 1;
4359 				psimm[i].persistent_total = 0;
4360 				psimm[i].sticky_total = 0;
4361 			}
4362 			ecc_error_info_data.count.value.ui32++;
4363 			break;
4364 		} else if (strncmp(unum, psimm[i].name, len) == 0) {
4365 			/*
4366 			 * Found an existing entry for the current
4367 			 * memory module, adjust the counts.
4368 			 */
4369 			if (status & ECC_STICKY) {
4370 				psimm[i].sticky_total++;
4371 				cmn_err(CE_WARN,
4372 				    "[AFT0] Sticky Softerror encountered "
4373 				    "on Memory Module %s\n", unum);
4374 				page_status = PR_MCE;
4375 			} else if (status & ECC_PERSISTENT) {
4376 				int new_value;
4377 
4378 				new_value = atomic_add_16_nv(
4379 				    &psimm[i].leaky_bucket_cnt, 1);
4380 				psimm[i].persistent_total++;
4381 				if (new_value > ecc_softerr_limit) {
4382 					cmn_err(CE_WARN, "[AFT0] Most recent %d"
4383 					    " soft errors from Memory Module"
4384 					    " %s exceed threshold (N=%d,"
4385 					    " T=%dh:%02dm) triggering page"
4386 					    " retire", new_value, unum,
4387 					    ecc_softerr_limit,
4388 					    ecc_softerr_interval / 60,
4389 					    ecc_softerr_interval % 60);
4390 					atomic_add_16(
4391 					    &psimm[i].leaky_bucket_cnt, -1);
4392 					page_status = PR_MCE;
4393 				}
4394 			} else { /* Intermittent */
4395 				psimm[i].intermittent_total++;
4396 			}
4397 			break;
4398 		}
4399 	}
4400 
4401 	if (i >= mem_ce_simm_size)
4402 		cmn_err(CE_CONT, "[AFT0] Softerror: mem_ce_simm[] out of "
4403 		    "space.\n");
4404 
4405 	return (page_status);
4406 }
4407 
4408 /*
4409  * Function to support counting of IO detected CEs.
4410  */
4411 void
4412 cpu_ce_count_unum(struct async_flt *ecc, int len, char *unum)
4413 {
4414 	int err;
4415 
4416 	err = ce_count_unum(ecc->flt_status, len, unum);
4417 	if (err != PR_OK && automatic_page_removal) {
4418 		(void) page_retire(ecc->flt_addr, err);
4419 	}
4420 }
4421 
4422 static int
4423 ecc_kstat_update(kstat_t *ksp, int rw)
4424 {
4425 	struct kstat_ecc_mm_info *kceip = ksp->ks_data;
4426 	struct ce_info *ceip = mem_ce_simm;
4427 	int i = ksp->ks_instance;
4428 
4429 	if (rw == KSTAT_WRITE)
4430 		return (EACCES);
4431 
4432 	ASSERT(ksp->ks_data != NULL);
4433 	ASSERT(i < mem_ce_simm_size && i >= 0);
4434 
4435 	/*
4436 	 * Since we're not using locks, make sure that we don't get partial
4437 	 * data. The name is always copied before the counters are incremented
4438 	 * so only do this update routine if at least one of the counters is
4439 	 * non-zero, which ensures that ce_count_unum() is done, and the
4440 	 * string is fully copied.
4441 	 */
4442 	if (ceip[i].intermittent_total == 0 &&
4443 	    ceip[i].persistent_total == 0 &&
4444 	    ceip[i].sticky_total == 0) {
4445 		/*
4446 		 * Uninitialized or partially initialized. Ignore.
4447 		 * The ks_data buffer was allocated via kmem_zalloc,
4448 		 * so no need to bzero it.
4449 		 */
4450 		return (0);
4451 	}
4452 
4453 	kstat_named_setstr(&kceip->name, ceip[i].name);
4454 	kceip->intermittent_total.value.ui64 = ceip[i].intermittent_total;
4455 	kceip->persistent_total.value.ui64 = ceip[i].persistent_total;
4456 	kceip->sticky_total.value.ui64 = ceip[i].sticky_total;
4457 
4458 	return (0);
4459 }
4460 
4461 #define	VIS_BLOCKSIZE		64
4462 
4463 int
4464 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data)
4465 {
4466 	int ret, watched;
4467 
4468 	watched = watch_disable_addr((void *)addr, VIS_BLOCKSIZE, S_WRITE);
4469 	ret = dtrace_blksuword32(addr, data, 0);
4470 	if (watched)
4471 		watch_enable_addr((void *)addr, VIS_BLOCKSIZE, S_WRITE);
4472 
4473 	return (ret);
4474 }
4475 
4476 /*ARGSUSED*/
4477 void
4478 cpu_faulted_enter(struct cpu *cp)
4479 {
4480 }
4481 
4482 /*ARGSUSED*/
4483 void
4484 cpu_faulted_exit(struct cpu *cp)
4485 {
4486 }
4487 
4488 static int mmu_disable_ism_large_pages = ((1 << TTE512K) |
4489 	(1 << TTE32M) | (1 << TTE256M));
4490 static int mmu_disable_large_pages = ((1 << TTE32M) | (1 << TTE256M));
4491 
4492 /*
4493  * The function returns the US_II mmu-specific values for the
4494  * hat's disable_large_pages and disable_ism_large_pages variables.
4495  */
4496 int
4497 mmu_large_pages_disabled(uint_t flag)
4498 {
4499 	int pages_disable = 0;
4500 
4501 	if (flag == HAT_LOAD) {
4502 		pages_disable = mmu_disable_large_pages;
4503 	} else if (flag == HAT_LOAD_SHARE) {
4504 		pages_disable = mmu_disable_ism_large_pages;
4505 	}
4506 	return (pages_disable);
4507 }
4508 
4509 /*ARGSUSED*/
4510 void
4511 mmu_init_kernel_pgsz(struct hat *hat)
4512 {
4513 }
4514 
4515 size_t
4516 mmu_get_kernel_lpsize(size_t lpsize)
4517 {
4518 	uint_t tte;
4519 
4520 	if (lpsize == 0) {
4521 		/* no setting for segkmem_lpsize in /etc/system: use default */
4522 		return (MMU_PAGESIZE4M);
4523 	}
4524 
4525 	for (tte = TTE8K; tte <= TTE4M; tte++) {
4526 		if (lpsize == TTEBYTES(tte))
4527 			return (lpsize);
4528 	}
4529 
4530 	return (TTEBYTES(TTE8K));
4531 }
4532