xref: /titanic_50/usr/src/uts/sun4u/cpu/opl_olympus_asm.s (revision fe33b55deef281a58b0152cd928c7df55c31369f)
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 *
25 * Assembly code support for the Olympus-C module
26 */
27
28#pragma ident	"%Z%%M%	%I%	%E% SMI"
29
30#if !defined(lint)
31#include "assym.h"
32#endif	/* lint */
33
34#include <sys/asm_linkage.h>
35#include <sys/mmu.h>
36#include <vm/hat_sfmmu.h>
37#include <sys/machparam.h>
38#include <sys/machcpuvar.h>
39#include <sys/machthread.h>
40#include <sys/machtrap.h>
41#include <sys/privregs.h>
42#include <sys/asm_linkage.h>
43#include <sys/trap.h>
44#include <sys/opl_olympus_regs.h>
45#include <sys/opl_module.h>
46#include <sys/xc_impl.h>
47#include <sys/intreg.h>
48#include <sys/async.h>
49#include <sys/clock.h>
50#include <sys/cmpregs.h>
51
52#ifdef TRAPTRACE
53#include <sys/traptrace.h>
54#endif /* TRAPTRACE */
55
56/*
57 * Macro that flushes the entire Ecache.
58 *
59 * arg1 = ecache size
60 * arg2 = ecache linesize
61 * arg3 = ecache flush address - Not used for olympus-C
62 */
63#define	ECACHE_FLUSHALL(arg1, arg2, arg3, tmp1)				\
64	mov	ASI_L2_CTRL_U2_FLUSH, arg1;				\
65	mov	ASI_L2_CTRL_RW_ADDR, arg2;				\
66	stxa	arg1, [arg2]ASI_L2_CTRL
67
68/*
69 * SPARC64-VI MMU and Cache operations.
70 */
71
72#if defined(lint)
73
74/* ARGSUSED */
75void
76vtag_flushpage(caddr_t vaddr, uint64_t sfmmup)
77{}
78
79#else	/* lint */
80
81	ENTRY_NP(vtag_flushpage)
82	/*
83	 * flush page from the tlb
84	 *
85	 * %o0 = vaddr
86	 * %o1 = sfmmup
87	 */
88	rdpr	%pstate, %o5
89#ifdef DEBUG
90	PANIC_IF_INTR_DISABLED_PSTR(%o5, opl_di_l3, %g1)
91#endif /* DEBUG */
92	/*
93	 * disable ints
94	 */
95	andn	%o5, PSTATE_IE, %o4
96	wrpr	%o4, 0, %pstate
97
98	/*
99	 * Then, blow out the tlb
100	 * Interrupts are disabled to prevent the primary ctx register
101	 * from changing underneath us.
102	 */
103	sethi   %hi(ksfmmup), %o3
104        ldx     [%o3 + %lo(ksfmmup)], %o3
105        cmp     %o3, %o1
106        bne,pt   %xcc, 1f			! if not kernel as, go to 1
107	  sethi	%hi(FLUSH_ADDR), %o3
108	/*
109	 * For Kernel demaps use primary. type = page implicitly
110	 */
111	stxa	%g0, [%o0]ASI_DTLB_DEMAP	/* dmmu flush for KCONTEXT */
112	stxa	%g0, [%o0]ASI_ITLB_DEMAP	/* immu flush for KCONTEXT */
113	flush	%o3
114	retl
115	  wrpr	%g0, %o5, %pstate		/* enable interrupts */
1161:
117	/*
118	 * User demap.  We need to set the primary context properly.
119	 * Secondary context cannot be used for SPARC64-VI IMMU.
120	 * %o0 = vaddr
121	 * %o1 = sfmmup
122	 * %o3 = FLUSH_ADDR
123	 */
124	SFMMU_CPU_CNUM(%o1, %g1, %g2)		! %g1 = sfmmu cnum on this CPU
125
126	ldub	[%o1 + SFMMU_CEXT], %o4		! %o4 = sfmmup->sfmmu_cext
127	sll	%o4, CTXREG_EXT_SHIFT, %o4
128	or	%g1, %o4, %g1			! %g1 = pgsz | cnum
129
130	wrpr	%g0, 1, %tl
131	set	MMU_PCONTEXT, %o4
132	or	DEMAP_PRIMARY | DEMAP_PAGE_TYPE, %o0, %o0
133	ldxa	[%o4]ASI_DMMU, %o2		! %o2 = save old ctxnum
134	stxa	%g1, [%o4]ASI_DMMU		! wr new ctxum
135
136	stxa	%g0, [%o0]ASI_DTLB_DEMAP
137	stxa	%g0, [%o0]ASI_ITLB_DEMAP
138	stxa	%o2, [%o4]ASI_DMMU		/* restore old ctxnum */
139	flush	%o3
140	wrpr	%g0, 0, %tl
141
142	retl
143	wrpr	%g0, %o5, %pstate		/* enable interrupts */
144	SET_SIZE(vtag_flushpage)
145
146#endif	/* lint */
147
148
149#if defined(lint)
150
151void
152vtag_flushall(void)
153{}
154
155#else	/* lint */
156
157	ENTRY_NP2(vtag_flushall, demap_all)
158	/*
159	 * flush the tlb
160	 */
161	sethi	%hi(FLUSH_ADDR), %o3
162	set	DEMAP_ALL_TYPE, %g1
163	stxa	%g0, [%g1]ASI_DTLB_DEMAP
164	stxa	%g0, [%g1]ASI_ITLB_DEMAP
165	flush	%o3
166	retl
167	nop
168	SET_SIZE(demap_all)
169	SET_SIZE(vtag_flushall)
170
171#endif	/* lint */
172
173
174#if defined(lint)
175
176/* ARGSUSED */
177void
178vtag_flushpage_tl1(uint64_t vaddr, uint64_t sfmmup)
179{}
180
181#else	/* lint */
182
183	ENTRY_NP(vtag_flushpage_tl1)
184	/*
185	 * x-trap to flush page from tlb and tsb
186	 *
187	 * %g1 = vaddr, zero-extended on 32-bit kernel
188	 * %g2 = sfmmup
189	 *
190	 * assumes TSBE_TAG = 0
191	 */
192	srln	%g1, MMU_PAGESHIFT, %g1
193
194	sethi   %hi(ksfmmup), %g3
195        ldx     [%g3 + %lo(ksfmmup)], %g3
196        cmp     %g3, %g2
197        bne,pt	%xcc, 1f                        ! if not kernel as, go to 1
198	  slln	%g1, MMU_PAGESHIFT, %g1		/* g1 = vaddr */
199
200	/* We need to demap in the kernel context */
201	or	DEMAP_NUCLEUS | DEMAP_PAGE_TYPE, %g1, %g1
202	stxa	%g0, [%g1]ASI_DTLB_DEMAP
203	stxa	%g0, [%g1]ASI_ITLB_DEMAP
204	retry
2051:
206	/* We need to demap in a user context */
207	or	DEMAP_PRIMARY | DEMAP_PAGE_TYPE, %g1, %g1
208
209	SFMMU_CPU_CNUM(%g2, %g6, %g3)	! %g6 = sfmmu cnum on this CPU
210
211	ldub	[%g2 + SFMMU_CEXT], %g4		! %g4 = sfmmup->cext
212	sll	%g4, CTXREG_EXT_SHIFT, %g4
213	or	%g6, %g4, %g6			! %g6 = pgsz | cnum
214
215	set	MMU_PCONTEXT, %g4
216	ldxa	[%g4]ASI_DMMU, %g5		/* rd old ctxnum */
217	stxa	%g6, [%g4]ASI_DMMU		/* wr new ctxum */
218	stxa	%g0, [%g1]ASI_DTLB_DEMAP
219	stxa	%g0, [%g1]ASI_ITLB_DEMAP
220	stxa	%g5, [%g4]ASI_DMMU		/* restore old ctxnum */
221	retry
222	SET_SIZE(vtag_flushpage_tl1)
223
224#endif	/* lint */
225
226
227#if defined(lint)
228
229/* ARGSUSED */
230void
231vtag_flush_pgcnt_tl1(uint64_t vaddr, uint64_t sfmmup_pgcnt)
232{}
233
234#else	/* lint */
235
236	ENTRY_NP(vtag_flush_pgcnt_tl1)
237	/*
238	 * x-trap to flush pgcnt MMU_PAGESIZE pages from tlb
239	 *
240	 * %g1 = vaddr, zero-extended on 32-bit kernel
241	 * %g2 = <sfmmup58|pgcnt6>
242	 *
243	 * NOTE: this handler relies on the fact that no
244	 *	interrupts or traps can occur during the loop
245	 *	issuing the TLB_DEMAP operations. It is assumed
246	 *	that interrupts are disabled and this code is
247	 *	fetching from the kernel locked text address.
248	 *
249	 * assumes TSBE_TAG = 0
250	 */
251	set	SFMMU_PGCNT_MASK, %g4
252	and	%g4, %g2, %g3			/* g3 = pgcnt - 1 */
253	add	%g3, 1, %g3			/* g3 = pgcnt */
254
255	andn	%g2, SFMMU_PGCNT_MASK, %g2	/* g2 = sfmmup */
256	srln	%g1, MMU_PAGESHIFT, %g1
257
258	sethi   %hi(ksfmmup), %g4
259        ldx     [%g4 + %lo(ksfmmup)], %g4
260        cmp     %g4, %g2
261        bne,pn   %xcc, 1f			/* if not kernel as, go to 1 */
262	  slln	%g1, MMU_PAGESHIFT, %g1		/* g1 = vaddr */
263
264	/* We need to demap in the kernel context */
265	or	DEMAP_NUCLEUS | DEMAP_PAGE_TYPE, %g1, %g1
266	set	MMU_PAGESIZE, %g2		/* g2 = pgsize */
267	sethi   %hi(FLUSH_ADDR), %g5
2684:
269	stxa	%g0, [%g1]ASI_DTLB_DEMAP
270	stxa	%g0, [%g1]ASI_ITLB_DEMAP
271	flush	%g5				! flush required by immu
272
273	deccc	%g3				/* decr pgcnt */
274	bnz,pt	%icc,4b
275	  add	%g1, %g2, %g1			/* next page */
276	retry
2771:
278	/*
279	 * We need to demap in a user context
280	 *
281	 * g2 = sfmmup
282	 * g3 = pgcnt
283	 */
284	SFMMU_CPU_CNUM(%g2, %g5, %g6)		! %g5 = sfmmu cnum on this CPU
285
286	or	DEMAP_PRIMARY | DEMAP_PAGE_TYPE, %g1, %g1
287
288	ldub	[%g2 + SFMMU_CEXT], %g4		! %g4 = sfmmup->cext
289	sll	%g4, CTXREG_EXT_SHIFT, %g4
290	or	%g5, %g4, %g5
291
292	set	MMU_PCONTEXT, %g4
293	ldxa	[%g4]ASI_DMMU, %g6		/* rd old ctxnum */
294	stxa	%g5, [%g4]ASI_DMMU		/* wr new ctxum */
295
296	set	MMU_PAGESIZE, %g2		/* g2 = pgsize */
297	sethi   %hi(FLUSH_ADDR), %g5
2983:
299	stxa	%g0, [%g1]ASI_DTLB_DEMAP
300	stxa	%g0, [%g1]ASI_ITLB_DEMAP
301	flush	%g5				! flush required by immu
302
303	deccc	%g3				/* decr pgcnt */
304	bnz,pt	%icc,3b
305	  add	%g1, %g2, %g1			/* next page */
306
307	stxa	%g6, [%g4]ASI_DMMU		/* restore old ctxnum */
308	retry
309	SET_SIZE(vtag_flush_pgcnt_tl1)
310
311#endif	/* lint */
312
313
314#if defined(lint)
315
316/*ARGSUSED*/
317void
318vtag_flushall_tl1(uint64_t dummy1, uint64_t dummy2)
319{}
320
321#else	/* lint */
322
323	ENTRY_NP(vtag_flushall_tl1)
324	/*
325	 * x-trap to flush tlb
326	 */
327	set	DEMAP_ALL_TYPE, %g4
328	stxa	%g0, [%g4]ASI_DTLB_DEMAP
329	stxa	%g0, [%g4]ASI_ITLB_DEMAP
330	retry
331	SET_SIZE(vtag_flushall_tl1)
332
333#endif	/* lint */
334
335
336/*
337 * VAC (virtual address conflict) does not apply to OPL.
338 * VAC resolution is managed by the Olympus processor hardware.
339 * As a result, all OPL VAC flushing routines are no-ops.
340 */
341
342#if defined(lint)
343
344/* ARGSUSED */
345void
346vac_flushpage(pfn_t pfnum, int vcolor)
347{}
348
349#else	/* lint */
350
351	ENTRY(vac_flushpage)
352	retl
353	  nop
354	SET_SIZE(vac_flushpage)
355
356#endif	/* lint */
357
358#if defined(lint)
359
360/* ARGSUSED */
361void
362vac_flushpage_tl1(uint64_t pfnum, uint64_t vcolor)
363{}
364
365#else	/* lint */
366
367	ENTRY_NP(vac_flushpage_tl1)
368	retry
369	SET_SIZE(vac_flushpage_tl1)
370
371#endif	/* lint */
372
373
374#if defined(lint)
375
376/* ARGSUSED */
377void
378vac_flushcolor(int vcolor, pfn_t pfnum)
379{}
380
381#else	/* lint */
382
383	ENTRY(vac_flushcolor)
384	retl
385	 nop
386	SET_SIZE(vac_flushcolor)
387
388#endif  /* lint */
389
390
391
392#if defined(lint)
393
394/* ARGSUSED */
395void
396vac_flushcolor_tl1(uint64_t vcolor, uint64_t pfnum)
397{}
398
399#else	/* lint */
400
401	ENTRY(vac_flushcolor_tl1)
402	retry
403	SET_SIZE(vac_flushcolor_tl1)
404
405#endif	/* lint */
406
407#if defined(lint)
408
409int
410idsr_busy(void)
411{
412	return (0);
413}
414
415#else	/* lint */
416
417/*
418 * Determine whether or not the IDSR is busy.
419 * Entry: no arguments
420 * Returns: 1 if busy, 0 otherwise
421 */
422	ENTRY(idsr_busy)
423	ldxa	[%g0]ASI_INTR_DISPATCH_STATUS, %g1
424	clr	%o0
425	btst	IDSR_BUSY, %g1
426	bz,a,pt	%xcc, 1f
427	mov	1, %o0
4281:
429	retl
430	nop
431	SET_SIZE(idsr_busy)
432
433#endif	/* lint */
434
435#if defined(lint)
436
437/* ARGSUSED */
438void
439init_mondo(xcfunc_t *func, uint64_t arg1, uint64_t arg2)
440{}
441
442/* ARGSUSED */
443void
444init_mondo_nocheck(xcfunc_t *func, uint64_t arg1, uint64_t arg2)
445{}
446
447#else	/* lint */
448
449	.global _dispatch_status_busy
450_dispatch_status_busy:
451	.asciz	"ASI_INTR_DISPATCH_STATUS error: busy"
452	.align	4
453
454/*
455 * Setup interrupt dispatch data registers
456 * Entry:
457 *	%o0 - function or inumber to call
458 *	%o1, %o2 - arguments (2 uint64_t's)
459 */
460	.seg "text"
461
462	ENTRY(init_mondo)
463#ifdef DEBUG
464	!
465	! IDSR should not be busy at the moment
466	!
467	ldxa	[%g0]ASI_INTR_DISPATCH_STATUS, %g1
468	btst	IDSR_BUSY, %g1
469	bz,pt	%xcc, 1f
470	nop
471	sethi	%hi(_dispatch_status_busy), %o0
472	call	panic
473	or	%o0, %lo(_dispatch_status_busy), %o0
474#endif /* DEBUG */
475
476	ALTENTRY(init_mondo_nocheck)
477	!
478	! interrupt vector dispatch data reg 0
479	!
4801:
481	mov	IDDR_0, %g1
482	mov	IDDR_1, %g2
483	mov	IDDR_2, %g3
484	stxa	%o0, [%g1]ASI_INTR_DISPATCH
485
486	!
487	! interrupt vector dispatch data reg 1
488	!
489	stxa	%o1, [%g2]ASI_INTR_DISPATCH
490
491	!
492	! interrupt vector dispatch data reg 2
493	!
494	stxa	%o2, [%g3]ASI_INTR_DISPATCH
495
496	membar	#Sync
497	retl
498	nop
499	SET_SIZE(init_mondo_nocheck)
500	SET_SIZE(init_mondo)
501
502#endif	/* lint */
503
504
505#if defined(lint)
506
507/* ARGSUSED */
508void
509shipit(int upaid, int bn)
510{ return; }
511
512#else	/* lint */
513
514/*
515 * Ship mondo to aid using busy/nack pair bn
516 */
517	ENTRY_NP(shipit)
518	sll	%o0, IDCR_PID_SHIFT, %g1	! IDCR<23:14> = agent id
519	sll	%o1, IDCR_BN_SHIFT, %g2		! IDCR<28:24> = b/n pair
520	or	%g1, IDCR_OFFSET, %g1		! IDCR<13:0> = 0x70
521	or	%g1, %g2, %g1
522	stxa	%g0, [%g1]ASI_INTR_DISPATCH	! interrupt vector dispatch
523	membar	#Sync
524	retl
525	nop
526	SET_SIZE(shipit)
527
528#endif	/* lint */
529
530
531#if defined(lint)
532
533/* ARGSUSED */
534void
535flush_instr_mem(caddr_t vaddr, size_t len)
536{}
537
538#else	/* lint */
539
540/*
541 * flush_instr_mem:
542 *	Flush 1 page of the I-$ starting at vaddr
543 * 	%o0 vaddr
544 *	%o1 bytes to be flushed
545 *
546 * SPARC64-VI maintains consistency of the on-chip Instruction Cache with
547 * the stores from all processors so that a FLUSH instruction is only needed
548 * to ensure pipeline is consistent. This means a single flush is sufficient at
549 * the end of a sequence of stores that updates the instruction stream to
550 * ensure correct operation.
551 */
552
553	ENTRY(flush_instr_mem)
554	flush	%o0			! address irrelevant
555	retl
556	nop
557	SET_SIZE(flush_instr_mem)
558
559#endif	/* lint */
560
561
562/*
563 * flush_ecache:
564 *	%o0 - 64 bit physical address
565 *	%o1 - ecache size
566 *	%o2 - ecache linesize
567 */
568#if defined(lint)
569
570/*ARGSUSED*/
571void
572flush_ecache(uint64_t physaddr, size_t ecache_size, size_t ecache_linesize)
573{}
574
575#else /* !lint */
576
577	ENTRY(flush_ecache)
578
579	/*
580	 * Flush the entire Ecache.
581	 */
582	ECACHE_FLUSHALL(%o1, %o2, %o0, %o4)
583	retl
584	nop
585	SET_SIZE(flush_ecache)
586
587#endif /* lint */
588
589#if defined(lint)
590
591/*ARGSUSED*/
592void
593kdi_flush_idcache(int dcache_size, int dcache_lsize, int icache_size,
594    int icache_lsize)
595{
596}
597
598#else	/* lint */
599
600	/*
601	 * I/D cache flushing is not needed for OPL processors
602	 */
603	ENTRY(kdi_flush_idcache)
604	retl
605	nop
606	SET_SIZE(kdi_flush_idcache)
607
608#endif	/* lint */
609
610#ifdef	TRAPTRACE
611/*
612 * Simplified trap trace macro for OPL. Adapted from us3.
613 */
614#define	OPL_TRAPTRACE(ptr, scr1, scr2, label)			\
615	CPU_INDEX(scr1, ptr);					\
616	sll	scr1, TRAPTR_SIZE_SHIFT, scr1;			\
617	set	trap_trace_ctl, ptr;				\
618	add	ptr, scr1, scr1;				\
619	ld	[scr1 + TRAPTR_LIMIT], ptr;			\
620	tst	ptr;						\
621	be,pn	%icc, label/**/1;				\
622	 ldx	[scr1 + TRAPTR_PBASE], ptr;			\
623	ld	[scr1 + TRAPTR_OFFSET], scr1;			\
624	add	ptr, scr1, ptr;					\
625	rd	%asi, scr2;					\
626	wr	%g0, TRAPTR_ASI, %asi;				\
627	rd	STICK, scr1;					\
628	stxa    scr1, [ptr + TRAP_ENT_TICK]%asi;		\
629	rdpr	%tl, scr1;					\
630	stha    scr1, [ptr + TRAP_ENT_TL]%asi;			\
631	rdpr	%tt, scr1;					\
632	stha	scr1, [ptr + TRAP_ENT_TT]%asi;			\
633	rdpr	%tpc, scr1;					\
634	stna    scr1, [ptr + TRAP_ENT_TPC]%asi;			\
635	rdpr	%tstate, scr1;					\
636	stxa	scr1, [ptr + TRAP_ENT_TSTATE]%asi;		\
637	stna    %sp, [ptr + TRAP_ENT_SP]%asi;			\
638	stna    %g0, [ptr + TRAP_ENT_TR]%asi;			\
639	stna    %g0, [ptr + TRAP_ENT_F1]%asi;			\
640	stna    %g0, [ptr + TRAP_ENT_F2]%asi;			\
641	stna    %g0, [ptr + TRAP_ENT_F3]%asi;			\
642	stna    %g0, [ptr + TRAP_ENT_F4]%asi;			\
643	wr	%g0, scr2, %asi;				\
644	CPU_INDEX(ptr, scr1);					\
645	sll	ptr, TRAPTR_SIZE_SHIFT, ptr;			\
646	set	trap_trace_ctl, scr1;				\
647	add	scr1, ptr, ptr;					\
648	ld	[ptr + TRAPTR_OFFSET], scr1;			\
649	ld	[ptr + TRAPTR_LIMIT], scr2;			\
650	st	scr1, [ptr + TRAPTR_LAST_OFFSET];		\
651	add	scr1, TRAP_ENT_SIZE, scr1;			\
652	sub	scr2, TRAP_ENT_SIZE, scr2;			\
653	cmp	scr1, scr2;					\
654	movge	%icc, 0, scr1;					\
655	st	scr1, [ptr + TRAPTR_OFFSET];			\
656label/**/1:
657#endif	/* TRAPTRACE */
658
659
660
661/*
662 * Macros facilitating error handling.
663 */
664
665/*
666 * Save alternative global registers reg1, reg2, reg3
667 * to scratchpad registers 1, 2, 3 respectively.
668 */
669#define	OPL_SAVE_GLOBAL(reg1, reg2, reg3)	\
670	stxa	reg1, [%g0]ASI_SCRATCHPAD		;\
671	mov	OPL_SCRATCHPAD_SAVE_AG2, reg1	;\
672	stxa	reg2, [reg1]ASI_SCRATCHPAD		;\
673	mov	OPL_SCRATCHPAD_SAVE_AG3, reg1	;\
674	stxa	reg3, [reg1]ASI_SCRATCHPAD
675
676/*
677 * Restore alternative global registers reg1, reg2, reg3
678 * from scratchpad registers 1, 2, 3 respectively.
679 */
680#define	OPL_RESTORE_GLOBAL(reg1, reg2, reg3)			\
681	mov	OPL_SCRATCHPAD_SAVE_AG3, reg1			;\
682	ldxa	[reg1]ASI_SCRATCHPAD, reg3				;\
683	mov	OPL_SCRATCHPAD_SAVE_AG2, reg1			;\
684	ldxa	[reg1]ASI_SCRATCHPAD, reg2				;\
685	ldxa	[%g0]ASI_SCRATCHPAD, reg1
686
687/*
688 * Logs value `val' into the member `offset' of a structure
689 * at physical address `pa'
690 */
691#define	LOG_REG(pa, offset, val)				\
692	add	pa, offset, pa					;\
693	stxa	val, [pa]ASI_MEM
694
695#define	FLUSH_ALL_TLB(tmp1)					\
696	set	DEMAP_ALL_TYPE, tmp1				;\
697	stxa	%g0, [tmp1]ASI_ITLB_DEMAP			;\
698	stxa	%g0, [tmp1]ASI_DTLB_DEMAP			;\
699	sethi	%hi(FLUSH_ADDR), tmp1				;\
700	flush	tmp1
701
702/*
703 * Extracts the Physaddr to Logging Buffer field of the OPL_SCRATCHPAD_ERRLOG
704 * scratch register by zeroing all other fields. Result is in pa.
705 */
706#define	LOG_ADDR(pa)							\
707	mov	OPL_SCRATCHPAD_ERRLOG, pa				;\
708	ldxa	[pa]ASI_SCRATCHPAD, pa					;\
709	sllx	pa, 64-ERRLOG_REG_EIDR_SHIFT, pa			;\
710	srlx	pa, 64-ERRLOG_REG_EIDR_SHIFT+ERRLOG_REG_ERR_SHIFT, pa	;\
711	sllx	pa, ERRLOG_REG_ERR_SHIFT, pa
712
713/*
714 * Advance the per-cpu error log buffer pointer to the next
715 * ERRLOG_SZ entry, making sure that it will modulo (wraparound)
716 * ERRLOG_BUFSIZ boundary. The args logpa, bufmask, tmp are
717 * unused input registers for this macro.
718 *
719 * Algorithm:
720 * 1. logpa = contents of errorlog scratchpad register
721 * 2. bufmask = ERRLOG_BUFSIZ - 1
722 * 3. tmp = logpa & ~(bufmask)     (tmp is now logbase)
723 * 4. logpa += ERRLOG_SZ
724 * 5. logpa = logpa & bufmask      (get new offset to logbase)
725 * 4. logpa = tmp | logpa
726 * 7. write logpa back into errorlog scratchpad register
727 *
728 * new logpa = (logpa & ~bufmask) | ((logpa + ERRLOG_SZ) & bufmask)
729 *
730 */
731#define	UPDATE_LOGADD(logpa, bufmask, tmp)			\
732	set	OPL_SCRATCHPAD_ERRLOG, tmp			;\
733	ldxa	[tmp]ASI_SCRATCHPAD, logpa				;\
734	set	(ERRLOG_BUFSZ-1), bufmask			;\
735	andn	logpa, bufmask, tmp				;\
736	add	logpa, ERRLOG_SZ, logpa				;\
737	and	logpa, bufmask, logpa				;\
738	or	tmp, logpa, logpa				;\
739	set	OPL_SCRATCHPAD_ERRLOG, tmp			;\
740	stxa	logpa, [tmp]ASI_SCRATCHPAD
741
742/* Log error status registers into the log buffer */
743#define	LOG_SYNC_REG(sfsr, sfar, tmp)				\
744	LOG_ADDR(tmp)						;\
745	LOG_REG(tmp, LOG_SFSR_OFF, sfsr)			;\
746	LOG_ADDR(tmp)						;\
747	mov	tmp, sfsr					;\
748	LOG_REG(tmp, LOG_SFAR_OFF, sfar)			;\
749	rd	STICK, sfar					;\
750	mov	sfsr, tmp					;\
751	LOG_REG(tmp, LOG_STICK_OFF, sfar)			;\
752	rdpr	%tl, tmp					;\
753	sllx	tmp, 32, sfar					;\
754	rdpr	%tt, tmp					;\
755	or	sfar, tmp, sfar					;\
756	mov	sfsr, tmp					;\
757	LOG_REG(tmp, LOG_TL_OFF, sfar)				;\
758	set	OPL_SCRATCHPAD_ERRLOG, tmp			;\
759	ldxa	[tmp]ASI_SCRATCHPAD, sfar				;\
760	mov	sfsr, tmp					;\
761	LOG_REG(tmp, LOG_ASI3_OFF, sfar)			;\
762	rdpr	%tpc, sfar					;\
763	mov	sfsr, tmp					;\
764	LOG_REG(tmp, LOG_TPC_OFF, sfar)				;\
765	UPDATE_LOGADD(sfsr, sfar, tmp)
766
767#define	LOG_UGER_REG(uger, tmp, tmp2)				\
768	LOG_ADDR(tmp)						;\
769	mov	tmp, tmp2					;\
770	LOG_REG(tmp2, LOG_UGER_OFF, uger)			;\
771	mov	tmp, uger					;\
772	rd	STICK, tmp2					;\
773	LOG_REG(tmp, LOG_STICK_OFF, tmp2)			;\
774	rdpr	%tl, tmp					;\
775	sllx	tmp, 32, tmp2					;\
776	rdpr	%tt, tmp					;\
777	or	tmp2, tmp, tmp2					;\
778	mov	uger, tmp					;\
779	LOG_REG(tmp, LOG_TL_OFF, tmp2)				;\
780	set	OPL_SCRATCHPAD_ERRLOG, tmp2			;\
781	ldxa	[tmp2]ASI_SCRATCHPAD, tmp2				;\
782	mov	uger, tmp					;\
783	LOG_REG(tmp, LOG_ASI3_OFF, tmp2)			;\
784	rdpr	%tstate, tmp2					;\
785	mov	uger, tmp					;\
786	LOG_REG(tmp, LOG_TSTATE_OFF, tmp2)			;\
787	rdpr	%tpc, tmp2					;\
788	mov	uger, tmp					;\
789	LOG_REG(tmp, LOG_TPC_OFF, tmp2)				;\
790	UPDATE_LOGADD(uger, tmp, tmp2)
791
792/*
793 * Scrub the STICK_COMPARE register to clear error by updating
794 * it to a reasonable value for interrupt generation.
795 * Ensure that we observe the CPU_ENABLE flag so that we
796 * don't accidentally enable TICK interrupt in STICK_COMPARE
797 * i.e. no clock interrupt will be generated if CPU_ENABLE flag
798 * is off.
799 */
800#define	UPDATE_STICK_COMPARE(tmp1, tmp2)			\
801	CPU_ADDR(tmp1, tmp2)					;\
802	lduh	[tmp1 + CPU_FLAGS], tmp2			;\
803	andcc	tmp2, CPU_ENABLE, %g0 				;\
804	set	OPL_UGER_STICK_DIFF, tmp2			;\
805	rd	STICK, tmp1					;\
806	add	tmp1, tmp2, tmp1				;\
807	mov	1, tmp2						;\
808	sllx	tmp2, TICKINT_DIS_SHFT, tmp2			;\
809	or	tmp1, tmp2, tmp2				;\
810	movnz	%xcc, tmp1, tmp2				;\
811	wr	tmp2, %g0, STICK_COMPARE
812
813/*
814 * Reset registers that may be corrupted by IAUG_CRE error.
815 * To update interrupt handling related registers force the
816 * clock interrupt.
817 */
818#define	IAG_CRE(tmp1, tmp2)					\
819	set	OPL_SCRATCHPAD_ERRLOG, tmp1			;\
820	ldxa	[tmp1]ASI_SCRATCHPAD, tmp1				;\
821	srlx	tmp1, ERRLOG_REG_EIDR_SHIFT, tmp1		;\
822	set	ERRLOG_REG_EIDR_MASK, tmp2			;\
823	and	tmp1, tmp2, tmp1				;\
824	stxa	tmp1, [%g0]ASI_EIDR				;\
825	wr	%g0, 0, SOFTINT					;\
826	sethi	%hi(hres_last_tick), tmp1			;\
827	ldx	[tmp1 + %lo(hres_last_tick)], tmp1		;\
828	set	OPL_UGER_STICK_DIFF, tmp2			;\
829	add	tmp1, tmp2, tmp1				;\
830	wr	tmp1, %g0, STICK				;\
831	UPDATE_STICK_COMPARE(tmp1, tmp2)
832
833
834#define	CLEAR_FPREGS(tmp)					\
835	wr	%g0, FPRS_FEF, %fprs				;\
836	wr	%g0, %g0, %gsr					;\
837	sethi	%hi(opl_clr_freg), tmp				;\
838	or	tmp, %lo(opl_clr_freg), tmp			;\
839	ldx	[tmp], %fsr					;\
840	fzero	 %d0						;\
841	fzero	 %d2						;\
842	fzero	 %d4						;\
843	fzero	 %d6						;\
844	fzero	 %d8						;\
845	fzero	 %d10						;\
846	fzero	 %d12						;\
847	fzero	 %d14						;\
848	fzero	 %d16						;\
849	fzero	 %d18						;\
850	fzero	 %d20						;\
851	fzero	 %d22						;\
852	fzero	 %d24						;\
853	fzero	 %d26						;\
854	fzero	 %d28						;\
855	fzero	 %d30						;\
856	fzero	 %d32						;\
857	fzero	 %d34						;\
858	fzero	 %d36						;\
859	fzero	 %d38						;\
860	fzero	 %d40						;\
861	fzero	 %d42						;\
862	fzero	 %d44						;\
863	fzero	 %d46						;\
864	fzero	 %d48						;\
865	fzero	 %d50						;\
866	fzero	 %d52						;\
867	fzero	 %d54						;\
868	fzero	 %d56						;\
869	fzero	 %d58						;\
870	fzero	 %d60						;\
871	fzero	 %d62						;\
872	wr	%g0, %g0, %fprs
873
874#define	CLEAR_GLOBALS()						\
875	mov	%g0, %g1					;\
876	mov	%g0, %g2					;\
877	mov	%g0, %g3					;\
878	mov	%g0, %g4					;\
879	mov	%g0, %g5					;\
880	mov	%g0, %g6					;\
881	mov	%g0, %g7
882
883/*
884 * We do not clear the alternative globals here because they
885 * are scratch registers, i.e. there is no code that reads from
886 * them without write to them firstly. In other words every
887 * read always follows write that makes extra write to the
888 * alternative globals unnecessary.
889 */
890#define	CLEAR_GEN_REGS(tmp1, label)				\
891	set	TSTATE_KERN, tmp1				;\
892	wrpr	%g0, tmp1, %tstate				;\
893	mov	%g0, %y						;\
894	mov	%g0, %asi					;\
895	mov	%g0, %ccr					;\
896	mov	%g0, %l0					;\
897	mov	%g0, %l1					;\
898	mov	%g0, %l2					;\
899	mov	%g0, %l3					;\
900	mov	%g0, %l4					;\
901	mov	%g0, %l5					;\
902	mov	%g0, %l6					;\
903	mov	%g0, %l7					;\
904	mov	%g0, %i0					;\
905	mov	%g0, %i1					;\
906	mov	%g0, %i2					;\
907	mov	%g0, %i3					;\
908	mov	%g0, %i4					;\
909	mov	%g0, %i5					;\
910	mov	%g0, %i6					;\
911	mov	%g0, %i7					;\
912	mov	%g0, %o1					;\
913	mov	%g0, %o2					;\
914	mov	%g0, %o3					;\
915	mov	%g0, %o4					;\
916	mov	%g0, %o5					;\
917	mov	%g0, %o6					;\
918	mov	%g0, %o7					;\
919	mov	%g0, %o0					;\
920	mov	%g0, %g4					;\
921	mov	%g0, %g5					;\
922	mov	%g0, %g6					;\
923	mov	%g0, %g7					;\
924	rdpr	%tl, tmp1					;\
925	cmp	tmp1, 1						;\
926	be,pt	%xcc, label/**/1				;\
927	 rdpr	%pstate, tmp1					;\
928	wrpr	tmp1, PSTATE_AG|PSTATE_IG, %pstate		;\
929	CLEAR_GLOBALS()						;\
930	rdpr	%pstate, tmp1					;\
931	wrpr	tmp1, PSTATE_IG|PSTATE_MG, %pstate		;\
932	CLEAR_GLOBALS()						;\
933	rdpr	%pstate, tmp1					;\
934	wrpr	tmp1, PSTATE_MG|PSTATE_AG, %pstate		;\
935	ba,pt	%xcc, label/**/2				;\
936	 nop							;\
937label/**/1:							;\
938	wrpr	tmp1, PSTATE_AG, %pstate			;\
939	CLEAR_GLOBALS()						;\
940	rdpr	%pstate, tmp1					;\
941	wrpr	tmp1, PSTATE_AG, %pstate			;\
942label/**/2:
943
944
945/*
946 * Reset all window related registers
947 */
948#define	RESET_WINREG(tmp)					\
949	sethi	%hi(nwin_minus_one), tmp			;\
950	ld	[tmp + %lo(nwin_minus_one)], tmp		;\
951	wrpr	%g0, tmp, %cwp					;\
952	wrpr	%g0, tmp, %cleanwin				;\
953	sub	tmp, 1, tmp					;\
954	wrpr	%g0, tmp, %cansave				;\
955	wrpr	%g0, %g0, %canrestore				;\
956	wrpr	%g0, %g0, %otherwin				;\
957	wrpr	%g0, PIL_MAX, %pil				;\
958	wrpr	%g0, WSTATE_KERN, %wstate
959
960
961#define	RESET_PREV_TSTATE(tmp1, tmp2, label)			\
962	rdpr	%tl, tmp1					;\
963	subcc	tmp1, 1, tmp1					;\
964	bz,pt	%xcc, label/**/1				;\
965	 nop							;\
966	wrpr	tmp1, %g0, %tl					;\
967	set	TSTATE_KERN, tmp2				;\
968	wrpr	tmp2, %g0, %tstate				;\
969	wrpr	%g0, %g0, %tpc					;\
970	wrpr	%g0, %g0, %tnpc					;\
971	add	tmp1, 1, tmp1					;\
972	wrpr	tmp1, %g0, %tl					;\
973label/**/1:
974
975
976/*
977 * %pstate, %pc, %npc are propagated to %tstate, %tpc, %tnpc,
978 * and we reset these regiseter here.
979 */
980#define	RESET_CUR_TSTATE(tmp)					\
981	set	TSTATE_KERN, tmp				;\
982	wrpr	%g0, tmp, %tstate				;\
983	wrpr	%g0, 0, %tpc					;\
984	wrpr	%g0, 0, %tnpc					;\
985	RESET_WINREG(tmp)
986
987/*
988 * In case of urgent errors some MMU registers may be
989 * corrupted, so we set here some reasonable values for
990 * them. Note that resetting MMU registers also reset the context
991 * info, we will need to reset the window registers to prevent
992 * spill/fill that depends on context info for correct behaviour.
993 * Note that the TLBs must be flushed before programming the context
994 * registers.
995 */
996
997#if !defined(lint)
998#define	RESET_MMU_REGS(tmp1, tmp2, tmp3)			\
999	FLUSH_ALL_TLB(tmp1)					;\
1000	set	MMU_PCONTEXT, tmp1				;\
1001	sethi	%hi(kcontextreg), tmp2				;\
1002	ldx	[tmp2 + %lo(kcontextreg)], tmp2			;\
1003	stxa	tmp2, [tmp1]ASI_DMMU				;\
1004	set	MMU_SCONTEXT, tmp1				;\
1005	stxa	tmp2, [tmp1]ASI_DMMU				;\
1006	sethi	%hi(ktsb_base), tmp1				;\
1007	ldx	[tmp1 + %lo(ktsb_base)], tmp2			;\
1008	mov	MMU_TSB, tmp3					;\
1009	stxa	tmp2, [tmp3]ASI_IMMU				;\
1010	stxa	tmp2, [tmp3]ASI_DMMU				;\
1011	membar	#Sync						;\
1012	RESET_WINREG(tmp1)
1013
1014#define	RESET_TSB_TAGPTR(tmp)					\
1015	set	MMU_TAG_ACCESS, tmp				;\
1016	stxa	%g0, [tmp]ASI_IMMU				;\
1017	stxa	%g0, [tmp]ASI_DMMU				;\
1018	membar	#Sync
1019#endif /* lint */
1020
1021/*
1022 * RESET_TO_PRIV()
1023 *
1024 * In many cases, we need to force the thread into privilege mode because
1025 * privilege mode is only thing in which the system continue to work
1026 * due to undeterminable user mode information that come from register
1027 * corruption.
1028 *
1029 *  - opl_uger_ctxt
1030 *    If the error is secondary TSB related register parity, we have no idea
1031 *    what value is supposed to be for it.
1032 *
1033 *  The below three cases %tstate is not accessible until it is overwritten
1034 *  with some value, so we have no clue if the thread was running on user mode
1035 *  or not
1036 *   - opl_uger_pstate
1037 *     If the error is %pstate parity, it propagates to %tstate.
1038 *   - opl_uger_tstate
1039 *     No need to say the reason
1040 *   - opl_uger_r
1041 *     If the error is %ccr or %asi parity, it propagates to %tstate
1042 *
1043 * For the above four cases, user mode info may not be available for
1044 * sys_trap() and user_trap() to work consistently. So we have to force
1045 * the thread into privilege mode.
1046 *
1047 * Forcing the thread to privilege mode requires forcing
1048 * regular %g7 to be CPU_THREAD. Because if it was running on user mode,
1049 * %g7 will be set in user_trap(). Also since the %sp may be in
1050 * an inconsistent state, we need to do a stack reset and switch to
1051 * something we know i.e. current thread's kernel stack.
1052 * We also reset the window registers and MMU registers just to
1053 * make sure.
1054 *
1055 * To set regular %g7, we need to clear PSTATE_AG bit and need to
1056 * use one local register. Note that we are panicking and will never
1057 * unwind back so it is ok to clobber a local.
1058 *
1059 * If the thread was running in user mode, the %tpc value itself might be
1060 * within the range of OBP addresses. %tpc must be forced to be zero to prevent
1061 * sys_trap() from going to prom_trap()
1062 *
1063 */
1064#define	RESET_TO_PRIV(tmp, tmp1, tmp2, local)			\
1065	RESET_MMU_REGS(tmp, tmp1, tmp2)				;\
1066	CPU_ADDR(tmp, tmp1)					;\
1067	ldx	[tmp + CPU_THREAD], local			;\
1068	ldx	[local + T_STACK], tmp				;\
1069	sub	tmp, STACK_BIAS, %sp				;\
1070	rdpr	%pstate, tmp					;\
1071	wrpr	tmp, PSTATE_AG, %pstate				;\
1072	mov	local, %g7					;\
1073	rdpr	%pstate, local					;\
1074	wrpr	local, PSTATE_AG, %pstate			;\
1075	wrpr	%g0, 1, %tl					;\
1076	set	TSTATE_KERN, tmp				;\
1077	rdpr	%cwp, tmp1					;\
1078	or	tmp, tmp1, tmp					;\
1079	wrpr	tmp, %g0, %tstate				;\
1080	wrpr	%g0, %tpc
1081
1082
1083#if defined(lint)
1084
1085void
1086ce_err(void)
1087{}
1088
1089#else	/* lint */
1090
1091/*
1092 * We normally don't expect CE traps since we disable the
1093 * 0x63 trap reporting at the start of day. There is a
1094 * small window before we disable them, so let check for
1095 * it. Otherwise, panic.
1096 */
1097
1098	.align	128
1099	ENTRY_NP(ce_err)
1100	mov	AFSR_ECR, %g1
1101	ldxa	[%g1]ASI_ECR, %g1
1102	andcc	%g1, ASI_ECR_RTE_UE | ASI_ECR_RTE_CEDG, %g0
1103	bz,pn	%xcc, 1f
1104	 nop
1105	retry
11061:
1107	/*
1108	 * We did disabled the 0x63 trap reporting.
1109	 * This shouldn't happen - panic.
1110	 */
1111	set	trap, %g1
1112	rdpr	%tt, %g3
1113	sethi	%hi(sys_trap), %g5
1114	jmp	%g5 + %lo(sys_trap)
1115	sub	%g0, 1, %g4
1116	SET_SIZE(ce_err)
1117
1118#endif	/* lint */
1119
1120
1121#if defined(lint)
1122
1123void
1124ce_err_tl1(void)
1125{}
1126
1127#else	/* lint */
1128
1129/*
1130 * We don't use trap for CE detection.
1131 */
1132	ENTRY_NP(ce_err_tl1)
1133	set	trap, %g1
1134	rdpr	%tt, %g3
1135	sethi	%hi(sys_trap), %g5
1136	jmp	%g5 + %lo(sys_trap)
1137	sub	%g0, 1, %g4
1138	SET_SIZE(ce_err_tl1)
1139
1140#endif	/* lint */
1141
1142
1143#if defined(lint)
1144
1145void
1146async_err(void)
1147{}
1148
1149#else	/* lint */
1150
1151/*
1152 * async_err is the default handler for IAE/DAE traps.
1153 * For OPL, we patch in the right handler at start of day.
1154 * But if a IAE/DAE trap get generated before the handler
1155 * is patched, panic.
1156 */
1157	ENTRY_NP(async_err)
1158	set	trap, %g1
1159	rdpr	%tt, %g3
1160	sethi	%hi(sys_trap), %g5
1161	jmp	%g5 + %lo(sys_trap)
1162	sub	%g0, 1, %g4
1163	SET_SIZE(async_err)
1164
1165#endif	/* lint */
1166
1167#if defined(lint)
1168void
1169opl_sync_trap(void)
1170{}
1171#else	/* lint */
1172
1173	.seg	".data"
1174	.global	opl_clr_freg
1175	.global opl_cpu0_err_log
1176
1177	.align	16
1178opl_clr_freg:
1179	.word	0
1180	.align	16
1181
1182	.align	MMU_PAGESIZE
1183opl_cpu0_err_log:
1184	.skip	MMU_PAGESIZE
1185
1186/*
1187 * Common synchronous error trap handler (tt=0xA, 0x32)
1188 * All TL=0 and TL>0 0xA and 0x32 traps vector to this handler.
1189 * The error handling can be best summarized as follows:
1190 * 0. Do TRAPTRACE if enabled.
1191 * 1. Save globals %g1, %g2 & %g3 onto the scratchpad regs.
1192 * 2. The SFSR register is read and verified as valid by checking
1193 *    SFSR.FV bit being set. If the SFSR.FV is not set, the
1194 *    error cases cannot be decoded/determined and the SFPAR
1195 *    register that contain the physical faultaddr is also
1196 *    not valid. Also the SPFAR is only valid for UE/TO/BERR error
1197 *    cases. Assuming the SFSR.FV is valid:
1198 *    - BERR(bus error)/TO(timeout)/UE case
1199 *      If any of these error cases are detected, read the SFPAR
1200 *      to get the faultaddress. Generate ereport.
1201 *    - TLB Parity case (only recoverable case)
1202 *      For DAE, read SFAR for the faultaddress. For IAE,
1203 *	use %tpc for faultaddress (SFAR is not valid in IAE)
1204 *	Flush all the tlbs.
1205 *	Subtract one from the recoverable error count stored in
1206 *	the error log scratch register. If the threshold limit
1207 *	is reached (zero) - generate ereport. Else
1208 *	restore globals and retry (no ereport is generated).
1209 *    - TLB Multiple hits
1210 *	For DAE, read SFAR for the faultaddress. For IAE,
1211 *	use %tpc for faultaddress (SFAR is not valid in IAE).
1212 *	Flush all tlbs and generate ereport.
1213 * 3. TL=0 and TL>0 considerations
1214 *    - Since both TL=0 & TL>1 traps are made to vector into
1215 *      the same handler, the underlying assumption/design here is
1216 *      that any nested error condition (if happens) occurs only
1217 *	in the handler and the system is assumed to eventually
1218 *      Red-mode. With this philosophy in mind, the recoverable
1219 *      TLB Parity error case never check the TL level before it
1220 *      retry. Note that this is ok for the TL>1 case (assuming we
1221 *	don't have a nested error) since we always save the globals
1222 *      %g1, %g2 & %g3 whenever we enter this trap handler.
1223 *    - Additional TL=0 vs TL>1 handling includes:
1224 *      - For UE error occuring under TL>1, special handling
1225 *        is added to prevent the unlikely chance of a cpu-lockup
1226 *        when a UE was originally detected in user stack and
1227 *        the spill trap handler taken from sys_trap() so happened
1228 *        to reference the same UE location. Under the above
1229 *        condition (TL>1 and UE error), paranoid code is added
1230 *        to reset window regs so that spill traps can't happen
1231 *        during the unwind back to TL=0 handling.
1232 *        Note that we can do that because we are not returning
1233 *	  back.
1234 * 4. Ereport generation.
1235 *    - Ereport generation is performed when we unwind to the TL=0
1236 *      handling code via sys_trap(). on_trap()/lofault protection
1237 *      will apply there.
1238 *
1239 */
1240	ENTRY_NP(opl_sync_trap)
1241#ifdef	TRAPTRACE
1242	OPL_TRAPTRACE(%g1, %g2, %g3, opl_sync_trap_lb)
1243	rdpr	%tt, %g1
1244#endif	/* TRAPTRACE */
1245	cmp	%g1, T_INSTR_ERROR
1246	bne,pt	%xcc, 0f
1247	 mov	MMU_SFSR, %g3
1248	ldxa	[%g3]ASI_IMMU, %g1	! IAE trap case tt = 0xa
1249	andcc	%g1, SFSR_FV, %g0
1250	bz,a,pn %xcc, 2f		! Branch if SFSR is invalid and
1251	 rdpr	%tpc, %g2		! use %tpc for faultaddr instead
1252
1253	sethi	%hi(SFSR_UE|SFSR_BERR|SFSR_TO), %g3
1254	andcc	%g1, %g3, %g0		! Check for UE/BERR/TO errors
1255	bz,a,pt %xcc, 1f		! Branch if not UE/BERR/TO and
1256	 rdpr	%tpc, %g2		! use %tpc as faultaddr
1257	set	OPL_MMU_SFPAR, %g3	! In the UE/BERR/TO cases, use
1258	ba,pt	%xcc, 2f		! SFPAR as faultaddr
1259	 ldxa	[%g3]ASI_IMMU, %g2
12600:
1261	ldxa	[%g3]ASI_DMMU, %g1	! DAE trap case tt = 0x32
1262	andcc	%g1, SFSR_FV, %g0
1263	bnz,pt  %xcc, 7f		! branch if SFSR.FV is valid
1264	 mov	MMU_SFAR, %g2		! set %g2 to use SFAR
1265	ba,pt	%xcc, 2f		! SFSR.FV is not valid, read SFAR
1266	 ldxa	[%g2]ASI_DMMU, %g2	! for faultaddr
12677:
1268	sethi  %hi(SFSR_UE|SFSR_BERR|SFSR_TO), %g3
1269	andcc	%g1, %g3, %g0		! Check UE/BERR/TO for valid SFPAR
1270	movnz	%xcc, OPL_MMU_SFPAR, %g2 ! Use SFPAR instead of SFAR for
1271	ldxa	[%g2]ASI_DMMU, %g2	! faultaddr
12721:
1273	sethi	%hi(SFSR_TLB_PRT), %g3
1274	andcc	%g1, %g3, %g0
1275	bz,pt	%xcc, 8f		! branch for TLB multi-hit check
1276	 nop
1277	/*
1278	 * This is the TLB parity error case and it is the
1279	 * only retryable error case.
1280	 * Only %g1, %g2 and %g3 are allowed
1281	 */
1282	FLUSH_ALL_TLB(%g3)
1283	set	OPL_SCRATCHPAD_ERRLOG, %g3
1284	ldxa	[%g3]ASI_SCRATCHPAD, %g3		! Read errlog scratchreg
1285	and	%g3, ERRLOG_REG_NUMERR_MASK, %g3! Extract the error count
1286	subcc	%g3, 1, %g0			! Subtract one from the count
1287	bz,pn	%xcc, 2f		! too many TLB parity errs in a certain
1288	 nop				! period, branch to generate ereport
1289	LOG_SYNC_REG(%g1, %g2, %g3)	! Record into the error log
1290	set	OPL_SCRATCHPAD_ERRLOG, %g3
1291	ldxa	[%g3]ASI_SCRATCHPAD, %g2
1292	sub	%g2, 1, %g2		! decrement error counter by 1
1293	stxa	%g2, [%g3]ASI_SCRATCHPAD	! update the errlog scratchreg
1294	OPL_RESTORE_GLOBAL(%g1, %g2, %g3)
1295	retry
12968:
1297	sethi	%hi(SFSR_TLB_MUL), %g3
1298	andcc	%g1, %g3, %g0
1299	bz,pt	%xcc, 2f		! check for the TLB multi-hit errors
1300	 nop
1301	FLUSH_ALL_TLB(%g3)
13022:
1303	/*
1304	 * non-retryable error handling
1305	 * now we can use other registers since
1306	 * we will not be returning back
1307	 */
1308	mov	%g1, %g5		! %g5 = SFSR
1309	mov	%g2, %g6		! %g6 = SFPAR or SFAR/tpc
1310	LOG_SYNC_REG(%g1, %g2, %g3)	! Record into the error log
1311
1312	/*
1313	 * Special case for UE on user stack.
1314	 * There is a possibility that the same error may come back here
1315	 * by touching the same UE in spill trap handler taken from
1316	 * sys_trap(). It ends up with an infinite loop causing a cpu lockup.
1317	 * Conditions for this handling this case are:
1318	 * - SFSR_FV is valid and SFSR_UE is set
1319	 * - we are at TL > 1
1320	 * If the above conditions are true,  we force %cansave to be a
1321	 * big number to prevent spill trap in sys_trap(). Note that
1322	 * we will not be returning back.
1323	 */
1324	rdpr	%tt, %g4		! %g4 == ttype
1325	rdpr	%tl, %g1		! %g1 == tl
1326	cmp	%g1, 1			! Check if TL == 1
1327	be,pt	%xcc, 3f		! branch if we came from TL=0
1328	 nop
1329	andcc	%g5, SFSR_FV, %g0	! see if SFSR.FV is valid
1330	bz,pn	%xcc, 4f		! branch, checking UE is meaningless
1331	sethi	%hi(SFSR_UE), %g2
1332	andcc	%g5, %g2, %g0		! check for UE
1333	bz,pt	%xcc, 4f		! branch if not UE
1334	 nop
1335	RESET_WINREG(%g1)		! reset windows to prevent spills
13364:
1337	RESET_USER_RTT_REGS(%g2, %g3, 5f)
13385:
1339	mov	%g5, %g3		! pass SFSR to the 3rd arg
1340	mov	%g6, %g2		! pass SFAR to the 2nd arg
1341	set	opl_cpu_isync_tl1_error, %g1
1342	set	opl_cpu_dsync_tl1_error, %g6
1343	cmp	%g4, T_INSTR_ERROR
1344	movne	%icc, %g6, %g1
1345	ba,pt	%icc, 6f
1346	nop
13473:
1348	mov	%g5, %g3		! pass SFSR to the 3rd arg
1349	mov	%g6, %g2		! pass SFAR to the 2nd arg
1350	set	opl_cpu_isync_tl0_error, %g1
1351	set	opl_cpu_dsync_tl0_error, %g6
1352	cmp	%g4, T_INSTR_ERROR
1353	movne	%icc, %g6, %g1
13546:
1355	sethi	%hi(sys_trap), %g5
1356	jmp	%g5 + %lo(sys_trap)
1357	 mov	PIL_15, %g4
1358	SET_SIZE(opl_sync_trap)
1359#endif	/* lint */
1360
1361#if defined(lint)
1362void
1363opl_uger_trap(void)
1364{}
1365#else	/* lint */
1366/*
1367 * Common Urgent error trap handler (tt=0x40)
1368 * All TL=0 and TL>0 0x40 traps vector to this handler.
1369 * The error handling can be best summarized as follows:
1370 * 1. Read the Urgent error status register (UGERSR)
1371 *    Faultaddress is N/A here and it is not collected.
1372 * 2. Check to see if we have a multiple errors case
1373 *    If so, we enable WEAK_ED (weak error detection) bit
1374 *    to prevent any potential error storms and branch directly
1375 *    to generate ereport. (we don't decode/handle individual
1376 *    error cases when we get a multiple error situation)
1377 * 3. Now look for the recoverable error cases which include
1378 *    IUG_DTLB, IUG_ITLB or COREERR errors. If any of the
1379 *    recoverable errors are detected, do the following:
1380 *    - Flush all tlbs.
1381 *    - Verify that we came from TL=0, if not, generate
1382 *      ereport. Note that the reason we don't recover
1383 *      at TL>0 is because the AGs might be corrupted or
1384 *      inconsistent. We can't save/restore them into
1385 *      the scratchpad regs like we did for opl_sync_trap().
1386 *    - Check the INSTEND[5:4] bits in the UGERSR. If the
1387 *      value is 0x3 (11b), this error is not recoverable.
1388 *      Generate ereport.
1389 *    - Subtract one from the recoverable error count stored in
1390 *      the error log scratch register. If the threshold limit
1391 *      is reached (zero) - generate ereport.
1392 *    - If the count is within the limit, update the count
1393 *      in the error log register (subtract one). Log the error
1394 *      info in the log buffer. Capture traptrace if enabled.
1395 *      Retry (no ereport generated)
1396 * 4. The rest of the error cases are unrecoverable and will
1397 *    be handled according (flushing regs, etc as required).
1398 *    For details on these error cases (UGER_CRE, UGER_CTXT, etc..)
1399 *    consult the OPL cpu/mem philosophy doc.
1400 *    Ereport will be generated for these errors.
1401 * 5. Ereport generation.
1402 *    - Ereport generation for urgent error trap always
1403 *      result in a panic when we unwind to the TL=0 handling
1404 *      code via sys_trap(). on_trap()/lofault protection do
1405 *      not apply there.
1406 */
1407	ENTRY_NP(opl_uger_trap)
1408	set	ASI_UGERSR, %g2
1409	ldxa	[%g2]ASI_AFSR, %g1		! Read the UGERSR reg
1410
1411	set	UGESR_MULTI, %g2
1412	andcc	%g1, %g2, %g0			! Check for Multi-errs
1413	bz,pt	%xcc, opl_uger_is_recover	! branch if not Multi-errs
1414	 nop
1415	set	AFSR_ECR, %g2
1416	ldxa	[%g2]ASI_AFSR, %g3		! Enable Weak error
1417	or	%g3, ASI_ECR_WEAK_ED, %g3	! detect mode to prevent
1418	stxa	%g3, [%g2]ASI_AFSR		! potential error storms
1419	ba	%xcc, opl_uger_panic1
1420	 nop
1421
1422opl_uger_is_recover:
1423	set	UGESR_CAN_RECOVER, %g2		! Check for recoverable
1424	andcc	%g1, %g2, %g0			! errors i.e.IUG_DTLB,
1425	bz,pt	%xcc, opl_uger_cre		! IUG_ITLB or COREERR
1426	 nop
1427
1428	/*
1429	 * Fall thru to handle recoverable case
1430	 * Need to do the following additional checks to determine
1431	 * if this is indeed recoverable.
1432	 * 1. Error trap came from TL=0 and
1433	 * 2. INSTEND[5:4] bits in UGERSR is not 0x3
1434	 * 3. Recoverable error count limit not reached
1435	 *
1436	 */
1437	FLUSH_ALL_TLB(%g3)
1438	rdpr	%tl, %g3		! Read TL
1439	cmp	%g3, 1			! Check if we came from TL=0
1440	bne,pt	%xcc, opl_uger_panic	! branch if came from TL>0
1441	 nop
1442	srlx	%g1, 4, %g2		! shift INSTEND[5:4] -> [1:0]
1443	and	%g2, 3, %g2		! extract the shifted [1:0] bits
1444	cmp	%g2, 3			! check if INSTEND is recoverable
1445	be,pt   %xcc, opl_uger_panic	! panic if ([1:0] = 11b)
1446	 nop
1447	set	OPL_SCRATCHPAD_ERRLOG, %g3
1448	ldxa	[%g3]ASI_SCRATCHPAD, %g2		! Read errlog scratch reg
1449	and	%g2, ERRLOG_REG_NUMERR_MASK, %g3! Extract error count and
1450	subcc	%g3, 1, %g3			! subtract one from it
1451	bz,pt   %xcc, opl_uger_panic	! If count reached zero, too many
1452	 nop				! errors, branch to generate ereport
1453	sub	%g2, 1, %g2			! Subtract one from the count
1454	set	OPL_SCRATCHPAD_ERRLOG, %g3	! and write back the updated
1455	stxa	%g2, [%g3]ASI_SCRATCHPAD		! count into the errlog reg
1456	LOG_UGER_REG(%g1, %g2, %g3)		! Log the error info
1457#ifdef	TRAPTRACE
1458	OPL_TRAPTRACE(%g1, %g2, %g3, opl_uger_trap_lb)
1459#endif	/* TRAPTRACE */
1460	retry					! retry - no ereport
1461
1462	/*
1463	 * Process the rest of the unrecoverable error cases
1464	 * All error cases below ultimately branch to either
1465	 * opl_uger_panic or opl_uger_panic1.
1466	 * opl_uger_panic1 is the same as opl_uger_panic except
1467	 * for the additional execution of the RESET_TO_PRIV()
1468	 * macro that does a heavy handed reset. Read the
1469	 * comments for RESET_TO_PRIV() macro for more info.
1470	 */
1471opl_uger_cre:
1472	set	UGESR_IAUG_CRE, %g2
1473	andcc	%g1, %g2, %g0
1474	bz,pt	%xcc, opl_uger_ctxt
1475	 nop
1476	IAG_CRE(%g2, %g3)
1477	set	AFSR_ECR, %g2
1478	ldxa	[%g2]ASI_AFSR, %g3
1479	or	%g3, ASI_ECR_WEAK_ED, %g3
1480	stxa	%g3, [%g2]ASI_AFSR
1481	ba	%xcc, opl_uger_panic
1482	 nop
1483
1484opl_uger_ctxt:
1485	set	UGESR_IAUG_TSBCTXT, %g2
1486	andcc	%g1, %g2, %g0
1487	bz,pt	%xcc, opl_uger_tsbp
1488	 nop
1489	RESET_MMU_REGS(%g2, %g3, %g4)
1490	ba	%xcc, opl_uger_panic
1491	 nop
1492
1493opl_uger_tsbp:
1494	set	UGESR_IUG_TSBP, %g2
1495	andcc	%g1, %g2, %g0
1496	bz,pt	%xcc, opl_uger_pstate
1497	 nop
1498	RESET_TSB_TAGPTR(%g2)
1499
1500	/*
1501	 * IUG_TSBP error may corrupt MMU registers
1502	 * Reset them here.
1503	 */
1504	RESET_MMU_REGS(%g2, %g3, %g4)
1505	ba	%xcc, opl_uger_panic
1506	 nop
1507
1508opl_uger_pstate:
1509	set	UGESR_IUG_PSTATE, %g2
1510	andcc	%g1, %g2, %g0
1511	bz,pt	%xcc, opl_uger_tstate
1512	 nop
1513	RESET_CUR_TSTATE(%g2)
1514	ba	%xcc, opl_uger_panic1
1515	 nop
1516
1517opl_uger_tstate:
1518	set	UGESR_IUG_TSTATE, %g2
1519	andcc	%g1, %g2, %g0
1520	bz,pt	%xcc, opl_uger_f
1521	 nop
1522	RESET_PREV_TSTATE(%g2, %g3, opl_uger_tstate_1)
1523	ba	%xcc, opl_uger_panic1
1524	 nop
1525
1526opl_uger_f:
1527	set	UGESR_IUG_F, %g2
1528	andcc	%g1, %g2, %g0
1529	bz,pt	%xcc, opl_uger_r
1530	 nop
1531	CLEAR_FPREGS(%g2)
1532	ba	%xcc, opl_uger_panic
1533	 nop
1534
1535opl_uger_r:
1536	set	UGESR_IUG_R, %g2
1537	andcc	%g1, %g2, %g0
1538	bz,pt	%xcc, opl_uger_panic1
1539	 nop
1540	CLEAR_GEN_REGS(%g2, opl_uger_r_1)
1541	ba	%xcc, opl_uger_panic1
1542	 nop
1543
1544opl_uger_panic:
1545	mov	%g1, %g2			! %g2 = arg #1
1546	LOG_UGER_REG(%g1, %g3, %g4)
1547	ba	%xcc, opl_uger_panic_cmn
1548	 nop
1549
1550opl_uger_panic1:
1551	mov	%g1, %g2			! %g2 = arg #1
1552	LOG_UGER_REG(%g1, %g3, %g4)
1553	RESET_TO_PRIV(%g1, %g3, %g4, %l0)
1554
1555	/*
1556	 * Set up the argument for sys_trap.
1557	 * %g2 = arg #1 already set above
1558	 */
1559opl_uger_panic_cmn:
1560	RESET_USER_RTT_REGS(%g4, %g5, 1f)
15611:
1562	rdpr	%tl, %g3			! arg #2
1563	set	opl_cpu_urgent_error, %g1	! pc
1564	sethi	%hi(sys_trap), %g5
1565	jmp	%g5 + %lo(sys_trap)
1566	 mov	PIL_15, %g4
1567	SET_SIZE(opl_uger_trap)
1568#endif	/* lint */
1569
1570#if defined(lint)
1571
1572void
1573opl_serr_instr(void)
1574{}
1575
1576#else	/* lint */
1577/*
1578 * The actual trap handler for tt=0x0a, and tt=0x32
1579 */
1580	ENTRY_NP(opl_serr_instr)
1581	OPL_SAVE_GLOBAL(%g1,%g2,%g3)
1582	sethi   %hi(opl_sync_trap), %g3
1583	jmp	%g3 + %lo(opl_sync_trap)
1584	 rdpr    %tt, %g1
1585	.align  32
1586	SET_SIZE(opl_serr_instr)
1587
1588#endif	/* lint */
1589
1590#if defined(lint)
1591
1592void
1593opl_ugerr_instr(void)
1594{}
1595
1596#else	/* lint */
1597/*
1598 * The actual trap handler for tt=0x40
1599 */
1600	ENTRY_NP(opl_ugerr_instr)
1601	sethi   %hi(opl_uger_trap), %g3
1602	jmp	%g3 + %lo(opl_uger_trap)
1603	 nop
1604	.align  32
1605	SET_SIZE(opl_ugerr_instr)
1606
1607#endif	/* lint */
1608
1609#if defined(lint)
1610/*
1611 *  Get timestamp (stick).
1612 */
1613/* ARGSUSED */
1614void
1615stick_timestamp(int64_t *ts)
1616{
1617}
1618
1619#else	/* lint */
1620
1621	ENTRY_NP(stick_timestamp)
1622	rd	STICK, %g1	! read stick reg
1623	sllx	%g1, 1, %g1
1624	srlx	%g1, 1, %g1	! clear npt bit
1625
1626	retl
1627	stx	%g1, [%o0]	! store the timestamp
1628	SET_SIZE(stick_timestamp)
1629
1630#endif	/* lint */
1631
1632
1633#if defined(lint)
1634/*
1635 * Set STICK adjusted by skew.
1636 */
1637/* ARGSUSED */
1638void
1639stick_adj(int64_t skew)
1640{
1641}
1642
1643#else	/* lint */
1644
1645	ENTRY_NP(stick_adj)
1646	rdpr	%pstate, %g1		! save processor state
1647	andn	%g1, PSTATE_IE, %g3
1648	ba	1f			! cache align stick adj
1649	wrpr	%g0, %g3, %pstate	! turn off interrupts
1650
1651	.align	16
16521:	nop
1653
1654	rd	STICK, %g4		! read stick reg
1655	add	%g4, %o0, %o1		! adjust stick with skew
1656	wr	%o1, %g0, STICK		! write stick reg
1657
1658	retl
1659	wrpr	%g1, %pstate		! restore processor state
1660	SET_SIZE(stick_adj)
1661
1662#endif	/* lint */
1663
1664#if defined(lint)
1665/*
1666 * Debugger-specific stick retrieval
1667 */
1668/*ARGSUSED*/
1669int
1670kdi_get_stick(uint64_t *stickp)
1671{
1672	return (0);
1673}
1674
1675#else	/* lint */
1676
1677	ENTRY_NP(kdi_get_stick)
1678	rd	STICK, %g1
1679	stx	%g1, [%o0]
1680	retl
1681	mov	%g0, %o0
1682	SET_SIZE(kdi_get_stick)
1683
1684#endif	/* lint */
1685
1686#if defined(lint)
1687
1688/*ARGSUSED*/
1689int
1690dtrace_blksuword32(uintptr_t addr, uint32_t *data, int tryagain)
1691{ return (0); }
1692
1693#else
1694
1695	ENTRY(dtrace_blksuword32)
1696	save	%sp, -SA(MINFRAME + 4), %sp
1697
1698	rdpr	%pstate, %l1
1699	andn	%l1, PSTATE_IE, %l2		! disable interrupts to
1700	wrpr	%g0, %l2, %pstate		! protect our FPU diddling
1701
1702	rd	%fprs, %l0
1703	andcc	%l0, FPRS_FEF, %g0
1704	bz,a,pt	%xcc, 1f			! if the fpu is disabled
1705	wr	%g0, FPRS_FEF, %fprs		! ... enable the fpu
1706
1707	st	%f0, [%fp + STACK_BIAS - 4]	! save %f0 to the stack
17081:
1709	set	0f, %l5
1710	/*
1711	 * We're about to write a block full or either total garbage
1712	 * (not kernel data, don't worry) or user floating-point data
1713	 * (so it only _looks_ like garbage).
1714	 */
1715	ld	[%i1], %f0			! modify the block
1716	membar	#Sync
1717	stn	%l5, [THREAD_REG + T_LOFAULT]	! set up the lofault handler
1718	stda	%d0, [%i0]ASI_BLK_COMMIT_S	! store the modified block
1719	membar	#Sync
1720	flush	%i0				! flush instruction pipeline
1721	stn	%g0, [THREAD_REG + T_LOFAULT]	! remove the lofault handler
1722
1723	bz,a,pt	%xcc, 1f
1724	wr	%g0, %l0, %fprs			! restore %fprs
1725
1726	ld	[%fp + STACK_BIAS - 4], %f0	! restore %f0
17271:
1728
1729	wrpr	%g0, %l1, %pstate		! restore interrupts
1730
1731	ret
1732	restore	%g0, %g0, %o0
1733
17340:
1735	membar	#Sync
1736	stn	%g0, [THREAD_REG + T_LOFAULT]	! remove the lofault handler
1737
1738	bz,a,pt	%xcc, 1f
1739	wr	%g0, %l0, %fprs			! restore %fprs
1740
1741	ld	[%fp + STACK_BIAS - 4], %f0	! restore %f0
17421:
1743
1744	wrpr	%g0, %l1, %pstate		! restore interrupts
1745
1746	/*
1747	 * If tryagain is set (%i2) we tail-call dtrace_blksuword32_err()
1748	 * which deals with watchpoints. Otherwise, just return -1.
1749	 */
1750	brnz,pt	%i2, 1f
1751	nop
1752	ret
1753	restore	%g0, -1, %o0
17541:
1755	call	dtrace_blksuword32_err
1756	restore
1757
1758	SET_SIZE(dtrace_blksuword32)
1759#endif /* lint */
1760
1761#if defined(lint)
1762/*ARGSUSED*/
1763void
1764ras_cntr_reset(void *arg)
1765{
1766}
1767#else
1768	ENTRY_NP(ras_cntr_reset)
1769	set	OPL_SCRATCHPAD_ERRLOG, %o1
1770	ldxa	[%o1]ASI_SCRATCHPAD, %o0
1771	or	%o0, ERRLOG_REG_NUMERR_MASK, %o0
1772	retl
1773	 stxa	%o0, [%o1]ASI_SCRATCHPAD
1774	SET_SIZE(ras_cntr_reset)
1775#endif /* lint */
1776
1777#if defined(lint)
1778/* ARGSUSED */
1779void
1780opl_error_setup(uint64_t cpu_err_log_pa)
1781{
1782}
1783
1784#else	/* lint */
1785	ENTRY_NP(opl_error_setup)
1786	/*
1787	 * Initialize the error log scratchpad register
1788	 */
1789	ldxa	[%g0]ASI_EIDR, %o2
1790	sethi	%hi(ERRLOG_REG_EIDR_MASK), %o1
1791	or	%o1, %lo(ERRLOG_REG_EIDR_MASK), %o1
1792	and	%o2, %o1, %o3
1793	sllx	%o3, ERRLOG_REG_EIDR_SHIFT, %o2
1794	or	%o2, %o0, %o3
1795	or	%o3, ERRLOG_REG_NUMERR_MASK, %o0
1796	set	OPL_SCRATCHPAD_ERRLOG, %o1
1797	stxa	%o0, [%o1]ASI_SCRATCHPAD
1798	/*
1799	 * Disable all restrainable error traps
1800	 */
1801	mov	AFSR_ECR, %o1
1802	ldxa	[%o1]ASI_AFSR, %o0
1803	andn	%o0, ASI_ECR_RTE_UE|ASI_ECR_RTE_CEDG, %o0
1804	retl
1805	  stxa	%o0, [%o1]ASI_AFSR
1806	SET_SIZE(opl_error_setup)
1807#endif /* lint */
1808
1809#if defined(lint)
1810/* ARGSUSED */
1811void
1812opl_mpg_enable(void)
1813{
1814}
1815#else	/* lint */
1816	ENTRY_NP(opl_mpg_enable)
1817	/*
1818	 * Enable MMU translating multiple page sizes for
1819	 * sITLB and sDTLB.
1820	 */
1821        mov	LSU_MCNTL, %o0
1822        ldxa	[%o0] ASI_MCNTL, %o1
1823        or	%o1, MCNTL_MPG_SITLB | MCNTL_MPG_SDTLB, %o1
1824	retl
1825          stxa	%o1, [%o0] ASI_MCNTL
1826	SET_SIZE(opl_mpg_enable)
1827#endif /* lint */
1828
1829#if	defined(lint)
1830/*
1831 * This function is called for each (enabled) CPU. We use it to
1832 * initialize error handling related registers.
1833 */
1834/*ARGSUSED*/
1835void
1836cpu_feature_init(void)
1837{}
1838#else	/* lint */
1839	ENTRY(cpu_feature_init)
1840	!
1841	! get the device_id and store the device_id
1842	! in the appropriate cpunodes structure
1843	! given the cpus index
1844	!
1845	CPU_INDEX(%o0, %o1)
1846	mulx %o0, CPU_NODE_SIZE, %o0
1847	set  cpunodes + DEVICE_ID, %o1
1848	ldxa [%g0] ASI_DEVICE_SERIAL_ID, %o2
1849	stx  %o2, [%o0 + %o1]
1850	!
1851	! initialize CPU registers
1852	!
1853	ba	opl_cpu_reg_init
1854	nop
1855	SET_SIZE(cpu_feature_init)
1856#endif	/* lint */
1857
1858#if defined(lint)
1859
1860void
1861cpu_cleartickpnt(void)
1862{}
1863
1864#else	/* lint */
1865	/*
1866	 * Clear the NPT (non-privileged trap) bit in the %tick/%stick
1867	 * registers. In an effort to make the change in the
1868	 * tick/stick counter as consistent as possible, we disable
1869	 * all interrupts while we're changing the registers. We also
1870	 * ensure that the read and write instructions are in the same
1871	 * line in the instruction cache.
1872	 */
1873	ENTRY_NP(cpu_clearticknpt)
1874	rdpr	%pstate, %g1		/* save processor state */
1875	andn	%g1, PSTATE_IE, %g3	/* turn off */
1876	wrpr	%g0, %g3, %pstate	/*   interrupts */
1877	rdpr	%tick, %g2		/* get tick register */
1878	brgez,pn %g2, 1f		/* if NPT bit off, we're done */
1879	mov	1, %g3			/* create mask */
1880	sllx	%g3, 63, %g3		/*   for NPT bit */
1881	ba,a,pt	%xcc, 2f
1882	.align	8			/* Ensure rd/wr in same i$ line */
18832:
1884	rdpr	%tick, %g2		/* get tick register */
1885	wrpr	%g3, %g2, %tick		/* write tick register, */
1886					/*   clearing NPT bit   */
18871:
1888	rd	STICK, %g2		/* get stick register */
1889	brgez,pn %g2, 3f		/* if NPT bit off, we're done */
1890	mov	1, %g3			/* create mask */
1891	sllx	%g3, 63, %g3		/*   for NPT bit */
1892	ba,a,pt	%xcc, 4f
1893	.align	8			/* Ensure rd/wr in same i$ line */
18944:
1895	rd	STICK, %g2		/* get stick register */
1896	wr	%g3, %g2, STICK		/* write stick register, */
1897					/*   clearing NPT bit   */
18983:
1899	jmp	%g4 + 4
1900	wrpr	%g0, %g1, %pstate	/* restore processor state */
1901
1902	SET_SIZE(cpu_clearticknpt)
1903
1904#endif	/* lint */
1905
1906#if defined(lint)
1907
1908void
1909cpu_halt_cpu(void)
1910{}
1911
1912void
1913cpu_smt_pause(void)
1914{}
1915
1916#else	/* lint */
1917
1918	/*
1919	 * Halt the current strand with the suspend instruction.
1920	 * The compiler/asm currently does not support this suspend
1921	 * instruction mnemonic, use byte code for now.
1922	 */
1923	ENTRY_NP(cpu_halt_cpu)
1924	.word   0x81b01040
1925	retl
1926	nop
1927	SET_SIZE(cpu_halt_cpu)
1928
1929	/*
1930	 * Pause the current strand with the sleep instruction.
1931	 * The compiler/asm currently does not support this sleep
1932	 * instruction mnemonic, use byte code for now.
1933	 */
1934	ENTRY_NP(cpu_smt_pause)
1935	.word   0x81b01060
1936	retl
1937	nop
1938	SET_SIZE(cpu_smt_pause)
1939
1940#endif	/* lint */
1941