xref: /titanic_50/usr/src/uts/sun4u/cpu/opl_olympus_asm.s (revision 6185db853e024a486ff8837e6784dd290d866112)
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 *
25 * Assembly code support for the Olympus-C module
26 */
27
28#pragma ident	"%Z%%M%	%I%	%E% SMI"
29
30#if !defined(lint)
31#include "assym.h"
32#endif	/* lint */
33
34#include <sys/asm_linkage.h>
35#include <sys/mmu.h>
36#include <vm/hat_sfmmu.h>
37#include <sys/machparam.h>
38#include <sys/machcpuvar.h>
39#include <sys/machthread.h>
40#include <sys/machtrap.h>
41#include <sys/privregs.h>
42#include <sys/asm_linkage.h>
43#include <sys/trap.h>
44#include <sys/opl_olympus_regs.h>
45#include <sys/opl_module.h>
46#include <sys/xc_impl.h>
47#include <sys/intreg.h>
48#include <sys/async.h>
49#include <sys/clock.h>
50#include <sys/cmpregs.h>
51
52#ifdef TRAPTRACE
53#include <sys/traptrace.h>
54#endif /* TRAPTRACE */
55
56/*
57 * Macro that flushes the entire Ecache.
58 *
59 * arg1 = ecache size
60 * arg2 = ecache linesize
61 * arg3 = ecache flush address - Not used for olympus-C
62 */
63#define	ECACHE_FLUSHALL(arg1, arg2, arg3, tmp1)				\
64	mov	ASI_L2_CTRL_U2_FLUSH, arg1;				\
65	mov	ASI_L2_CTRL_RW_ADDR, arg2;				\
66	stxa	arg1, [arg2]ASI_L2_CTRL
67
68/*
69 * SPARC64-VI MMU and Cache operations.
70 */
71
72#if defined(lint)
73
74/* ARGSUSED */
75void
76vtag_flushpage(caddr_t vaddr, uint64_t sfmmup)
77{}
78
79#else	/* lint */
80
81	ENTRY_NP(vtag_flushpage)
82	/*
83	 * flush page from the tlb
84	 *
85	 * %o0 = vaddr
86	 * %o1 = sfmmup
87	 */
88	rdpr	%pstate, %o5
89#ifdef DEBUG
90	PANIC_IF_INTR_DISABLED_PSTR(%o5, opl_di_l3, %g1)
91#endif /* DEBUG */
92	/*
93	 * disable ints
94	 */
95	andn	%o5, PSTATE_IE, %o4
96	wrpr	%o4, 0, %pstate
97
98	/*
99	 * Then, blow out the tlb
100	 * Interrupts are disabled to prevent the primary ctx register
101	 * from changing underneath us.
102	 */
103	sethi   %hi(ksfmmup), %o3
104        ldx     [%o3 + %lo(ksfmmup)], %o3
105        cmp     %o3, %o1
106        bne,pt   %xcc, 1f			! if not kernel as, go to 1
107	  sethi	%hi(FLUSH_ADDR), %o3
108	/*
109	 * For Kernel demaps use primary. type = page implicitly
110	 */
111	stxa	%g0, [%o0]ASI_DTLB_DEMAP	/* dmmu flush for KCONTEXT */
112	stxa	%g0, [%o0]ASI_ITLB_DEMAP	/* immu flush for KCONTEXT */
113	flush	%o3
114	retl
115	  wrpr	%g0, %o5, %pstate		/* enable interrupts */
1161:
117	/*
118	 * User demap.  We need to set the primary context properly.
119	 * Secondary context cannot be used for SPARC64-VI IMMU.
120	 * %o0 = vaddr
121	 * %o1 = sfmmup
122	 * %o3 = FLUSH_ADDR
123	 */
124	SFMMU_CPU_CNUM(%o1, %g1, %g2)		! %g1 = sfmmu cnum on this CPU
125
126	ldub	[%o1 + SFMMU_CEXT], %o4		! %o4 = sfmmup->sfmmu_cext
127	sll	%o4, CTXREG_EXT_SHIFT, %o4
128	or	%g1, %o4, %g1			! %g1 = pgsz | cnum
129
130	wrpr	%g0, 1, %tl
131	set	MMU_PCONTEXT, %o4
132	or	DEMAP_PRIMARY | DEMAP_PAGE_TYPE, %o0, %o0
133	ldxa	[%o4]ASI_DMMU, %o2		! %o2 = save old ctxnum
134	stxa	%g1, [%o4]ASI_DMMU		! wr new ctxum
135
136	stxa	%g0, [%o0]ASI_DTLB_DEMAP
137	stxa	%g0, [%o0]ASI_ITLB_DEMAP
138	stxa	%o2, [%o4]ASI_DMMU		/* restore old ctxnum */
139	flush	%o3
140	wrpr	%g0, 0, %tl
141
142	retl
143	wrpr	%g0, %o5, %pstate		/* enable interrupts */
144	SET_SIZE(vtag_flushpage)
145
146#endif	/* lint */
147
148
149#if defined(lint)
150
151void
152vtag_flushall(void)
153{}
154
155#else	/* lint */
156
157	ENTRY_NP2(vtag_flushall, demap_all)
158	/*
159	 * flush the tlb
160	 */
161	sethi	%hi(FLUSH_ADDR), %o3
162	set	DEMAP_ALL_TYPE, %g1
163	stxa	%g0, [%g1]ASI_DTLB_DEMAP
164	stxa	%g0, [%g1]ASI_ITLB_DEMAP
165	flush	%o3
166	retl
167	nop
168	SET_SIZE(demap_all)
169	SET_SIZE(vtag_flushall)
170
171#endif	/* lint */
172
173
174#if defined(lint)
175
176/* ARGSUSED */
177void
178vtag_flushpage_tl1(uint64_t vaddr, uint64_t sfmmup)
179{}
180
181#else	/* lint */
182
183	ENTRY_NP(vtag_flushpage_tl1)
184	/*
185	 * x-trap to flush page from tlb and tsb
186	 *
187	 * %g1 = vaddr, zero-extended on 32-bit kernel
188	 * %g2 = sfmmup
189	 *
190	 * assumes TSBE_TAG = 0
191	 */
192	srln	%g1, MMU_PAGESHIFT, %g1
193
194	sethi   %hi(ksfmmup), %g3
195        ldx     [%g3 + %lo(ksfmmup)], %g3
196        cmp     %g3, %g2
197        bne,pt	%xcc, 1f                        ! if not kernel as, go to 1
198	  slln	%g1, MMU_PAGESHIFT, %g1		/* g1 = vaddr */
199
200	/* We need to demap in the kernel context */
201	or	DEMAP_NUCLEUS | DEMAP_PAGE_TYPE, %g1, %g1
202	stxa	%g0, [%g1]ASI_DTLB_DEMAP
203	stxa	%g0, [%g1]ASI_ITLB_DEMAP
204	retry
2051:
206	/* We need to demap in a user context */
207	or	DEMAP_PRIMARY | DEMAP_PAGE_TYPE, %g1, %g1
208
209	SFMMU_CPU_CNUM(%g2, %g6, %g3)	! %g6 = sfmmu cnum on this CPU
210
211	ldub	[%g2 + SFMMU_CEXT], %g4		! %g4 = sfmmup->cext
212	sll	%g4, CTXREG_EXT_SHIFT, %g4
213	or	%g6, %g4, %g6			! %g6 = pgsz | cnum
214
215	set	MMU_PCONTEXT, %g4
216	ldxa	[%g4]ASI_DMMU, %g5		/* rd old ctxnum */
217	stxa	%g6, [%g4]ASI_DMMU		/* wr new ctxum */
218	stxa	%g0, [%g1]ASI_DTLB_DEMAP
219	stxa	%g0, [%g1]ASI_ITLB_DEMAP
220	stxa	%g5, [%g4]ASI_DMMU		/* restore old ctxnum */
221	retry
222	SET_SIZE(vtag_flushpage_tl1)
223
224#endif	/* lint */
225
226
227#if defined(lint)
228
229/* ARGSUSED */
230void
231vtag_flush_pgcnt_tl1(uint64_t vaddr, uint64_t sfmmup_pgcnt)
232{}
233
234#else	/* lint */
235
236	ENTRY_NP(vtag_flush_pgcnt_tl1)
237	/*
238	 * x-trap to flush pgcnt MMU_PAGESIZE pages from tlb
239	 *
240	 * %g1 = vaddr, zero-extended on 32-bit kernel
241	 * %g2 = <sfmmup58|pgcnt6>
242	 *
243	 * NOTE: this handler relies on the fact that no
244	 *	interrupts or traps can occur during the loop
245	 *	issuing the TLB_DEMAP operations. It is assumed
246	 *	that interrupts are disabled and this code is
247	 *	fetching from the kernel locked text address.
248	 *
249	 * assumes TSBE_TAG = 0
250	 */
251	set	SFMMU_PGCNT_MASK, %g4
252	and	%g4, %g2, %g3			/* g3 = pgcnt - 1 */
253	add	%g3, 1, %g3			/* g3 = pgcnt */
254
255	andn	%g2, SFMMU_PGCNT_MASK, %g2	/* g2 = sfmmup */
256	srln	%g1, MMU_PAGESHIFT, %g1
257
258	sethi   %hi(ksfmmup), %g4
259        ldx     [%g4 + %lo(ksfmmup)], %g4
260        cmp     %g4, %g2
261        bne,pn   %xcc, 1f			/* if not kernel as, go to 1 */
262	  slln	%g1, MMU_PAGESHIFT, %g1		/* g1 = vaddr */
263
264	/* We need to demap in the kernel context */
265	or	DEMAP_NUCLEUS | DEMAP_PAGE_TYPE, %g1, %g1
266	set	MMU_PAGESIZE, %g2		/* g2 = pgsize */
267	sethi   %hi(FLUSH_ADDR), %g5
2684:
269	stxa	%g0, [%g1]ASI_DTLB_DEMAP
270	stxa	%g0, [%g1]ASI_ITLB_DEMAP
271	flush	%g5				! flush required by immu
272
273	deccc	%g3				/* decr pgcnt */
274	bnz,pt	%icc,4b
275	  add	%g1, %g2, %g1			/* next page */
276	retry
2771:
278	/*
279	 * We need to demap in a user context
280	 *
281	 * g2 = sfmmup
282	 * g3 = pgcnt
283	 */
284	SFMMU_CPU_CNUM(%g2, %g5, %g6)		! %g5 = sfmmu cnum on this CPU
285
286	or	DEMAP_PRIMARY | DEMAP_PAGE_TYPE, %g1, %g1
287
288	ldub	[%g2 + SFMMU_CEXT], %g4		! %g4 = sfmmup->cext
289	sll	%g4, CTXREG_EXT_SHIFT, %g4
290	or	%g5, %g4, %g5
291
292	set	MMU_PCONTEXT, %g4
293	ldxa	[%g4]ASI_DMMU, %g6		/* rd old ctxnum */
294	stxa	%g5, [%g4]ASI_DMMU		/* wr new ctxum */
295
296	set	MMU_PAGESIZE, %g2		/* g2 = pgsize */
297	sethi   %hi(FLUSH_ADDR), %g5
2983:
299	stxa	%g0, [%g1]ASI_DTLB_DEMAP
300	stxa	%g0, [%g1]ASI_ITLB_DEMAP
301	flush	%g5				! flush required by immu
302
303	deccc	%g3				/* decr pgcnt */
304	bnz,pt	%icc,3b
305	  add	%g1, %g2, %g1			/* next page */
306
307	stxa	%g6, [%g4]ASI_DMMU		/* restore old ctxnum */
308	retry
309	SET_SIZE(vtag_flush_pgcnt_tl1)
310
311#endif	/* lint */
312
313
314#if defined(lint)
315
316/*ARGSUSED*/
317void
318vtag_flushall_tl1(uint64_t dummy1, uint64_t dummy2)
319{}
320
321#else	/* lint */
322
323	ENTRY_NP(vtag_flushall_tl1)
324	/*
325	 * x-trap to flush tlb
326	 */
327	set	DEMAP_ALL_TYPE, %g4
328	stxa	%g0, [%g4]ASI_DTLB_DEMAP
329	stxa	%g0, [%g4]ASI_ITLB_DEMAP
330	retry
331	SET_SIZE(vtag_flushall_tl1)
332
333#endif	/* lint */
334
335
336/*
337 * VAC (virtual address conflict) does not apply to OPL.
338 * VAC resolution is managed by the Olympus processor hardware.
339 * As a result, all OPL VAC flushing routines are no-ops.
340 */
341
342#if defined(lint)
343
344/* ARGSUSED */
345void
346vac_flushpage(pfn_t pfnum, int vcolor)
347{}
348
349#else	/* lint */
350
351	ENTRY(vac_flushpage)
352	retl
353	  nop
354	SET_SIZE(vac_flushpage)
355
356#endif	/* lint */
357
358#if defined(lint)
359
360/* ARGSUSED */
361void
362vac_flushpage_tl1(uint64_t pfnum, uint64_t vcolor)
363{}
364
365#else	/* lint */
366
367	ENTRY_NP(vac_flushpage_tl1)
368	retry
369	SET_SIZE(vac_flushpage_tl1)
370
371#endif	/* lint */
372
373
374#if defined(lint)
375
376/* ARGSUSED */
377void
378vac_flushcolor(int vcolor, pfn_t pfnum)
379{}
380
381#else	/* lint */
382
383	ENTRY(vac_flushcolor)
384	retl
385	 nop
386	SET_SIZE(vac_flushcolor)
387
388#endif  /* lint */
389
390
391
392#if defined(lint)
393
394/* ARGSUSED */
395void
396vac_flushcolor_tl1(uint64_t vcolor, uint64_t pfnum)
397{}
398
399#else	/* lint */
400
401	ENTRY(vac_flushcolor_tl1)
402	retry
403	SET_SIZE(vac_flushcolor_tl1)
404
405#endif	/* lint */
406
407#if defined(lint)
408
409int
410idsr_busy(void)
411{
412	return (0);
413}
414
415#else	/* lint */
416
417/*
418 * Determine whether or not the IDSR is busy.
419 * Entry: no arguments
420 * Returns: 1 if busy, 0 otherwise
421 */
422	ENTRY(idsr_busy)
423	ldxa	[%g0]ASI_INTR_DISPATCH_STATUS, %g1
424	clr	%o0
425	btst	IDSR_BUSY, %g1
426	bz,a,pt	%xcc, 1f
427	mov	1, %o0
4281:
429	retl
430	nop
431	SET_SIZE(idsr_busy)
432
433#endif	/* lint */
434
435#if defined(lint)
436
437/* ARGSUSED */
438void
439init_mondo(xcfunc_t *func, uint64_t arg1, uint64_t arg2)
440{}
441
442/* ARGSUSED */
443void
444init_mondo_nocheck(xcfunc_t *func, uint64_t arg1, uint64_t arg2)
445{}
446
447#else	/* lint */
448
449	.global _dispatch_status_busy
450_dispatch_status_busy:
451	.asciz	"ASI_INTR_DISPATCH_STATUS error: busy"
452	.align	4
453
454/*
455 * Setup interrupt dispatch data registers
456 * Entry:
457 *	%o0 - function or inumber to call
458 *	%o1, %o2 - arguments (2 uint64_t's)
459 */
460	.seg "text"
461
462	ENTRY(init_mondo)
463#ifdef DEBUG
464	!
465	! IDSR should not be busy at the moment
466	!
467	ldxa	[%g0]ASI_INTR_DISPATCH_STATUS, %g1
468	btst	IDSR_BUSY, %g1
469	bz,pt	%xcc, 1f
470	nop
471	sethi	%hi(_dispatch_status_busy), %o0
472	call	panic
473	or	%o0, %lo(_dispatch_status_busy), %o0
474#endif /* DEBUG */
475
476	ALTENTRY(init_mondo_nocheck)
477	!
478	! interrupt vector dispatch data reg 0
479	!
4801:
481	mov	IDDR_0, %g1
482	mov	IDDR_1, %g2
483	mov	IDDR_2, %g3
484	stxa	%o0, [%g1]ASI_INTR_DISPATCH
485
486	!
487	! interrupt vector dispatch data reg 1
488	!
489	stxa	%o1, [%g2]ASI_INTR_DISPATCH
490
491	!
492	! interrupt vector dispatch data reg 2
493	!
494	stxa	%o2, [%g3]ASI_INTR_DISPATCH
495
496	membar	#Sync
497	retl
498	nop
499	SET_SIZE(init_mondo_nocheck)
500	SET_SIZE(init_mondo)
501
502#endif	/* lint */
503
504
505#if defined(lint)
506
507/* ARGSUSED */
508void
509shipit(int upaid, int bn)
510{ return; }
511
512#else	/* lint */
513
514/*
515 * Ship mondo to aid using busy/nack pair bn
516 */
517	ENTRY_NP(shipit)
518	sll	%o0, IDCR_PID_SHIFT, %g1	! IDCR<23:14> = agent id
519	sll	%o1, IDCR_BN_SHIFT, %g2		! IDCR<28:24> = b/n pair
520	or	%g1, IDCR_OFFSET, %g1		! IDCR<13:0> = 0x70
521	or	%g1, %g2, %g1
522	stxa	%g0, [%g1]ASI_INTR_DISPATCH	! interrupt vector dispatch
523	membar	#Sync
524	retl
525	nop
526	SET_SIZE(shipit)
527
528#endif	/* lint */
529
530
531#if defined(lint)
532
533/* ARGSUSED */
534void
535flush_instr_mem(caddr_t vaddr, size_t len)
536{}
537
538#else	/* lint */
539
540/*
541 * flush_instr_mem:
542 *	Flush 1 page of the I-$ starting at vaddr
543 * 	%o0 vaddr
544 *	%o1 bytes to be flushed
545 *
546 * SPARC64-VI maintains consistency of the on-chip Instruction Cache with
547 * the stores from all processors so that a FLUSH instruction is only needed
548 * to ensure pipeline is consistent. This means a single flush is sufficient at
549 * the end of a sequence of stores that updates the instruction stream to
550 * ensure correct operation.
551 */
552
553	ENTRY(flush_instr_mem)
554	flush	%o0			! address irrelevent
555	retl
556	nop
557	SET_SIZE(flush_instr_mem)
558
559#endif	/* lint */
560
561
562/*
563 * flush_ecache:
564 *	%o0 - 64 bit physical address
565 *	%o1 - ecache size
566 *	%o2 - ecache linesize
567 */
568#if defined(lint)
569
570/*ARGSUSED*/
571void
572flush_ecache(uint64_t physaddr, size_t ecache_size, size_t ecache_linesize)
573{}
574
575#else /* !lint */
576
577	ENTRY(flush_ecache)
578
579	/*
580	 * Flush the entire Ecache.
581	 */
582	ECACHE_FLUSHALL(%o1, %o2, %o0, %o4)
583	retl
584	nop
585	SET_SIZE(flush_ecache)
586
587#endif /* lint */
588
589#if defined(lint)
590
591/*ARGSUSED*/
592void
593kdi_flush_idcache(int dcache_size, int dcache_lsize, int icache_size,
594    int icache_lsize)
595{
596}
597
598#else	/* lint */
599
600	/*
601	 * I/D cache flushing is not needed for OPL processors
602	 */
603	ENTRY(kdi_flush_idcache)
604	retl
605	nop
606	SET_SIZE(kdi_flush_idcache)
607
608#endif	/* lint */
609
610#ifdef	TRAPTRACE
611/*
612 * Simplified trap trace macro for OPL. Adapted from us3.
613 */
614#define	OPL_TRAPTRACE(ptr, scr1, scr2, label)			\
615	CPU_INDEX(scr1, ptr);					\
616	sll	scr1, TRAPTR_SIZE_SHIFT, scr1;			\
617	set	trap_trace_ctl, ptr;				\
618	add	ptr, scr1, scr1;				\
619	ld	[scr1 + TRAPTR_LIMIT], ptr;			\
620	tst	ptr;						\
621	be,pn	%icc, label/**/1;				\
622	 ldx	[scr1 + TRAPTR_PBASE], ptr;			\
623	ld	[scr1 + TRAPTR_OFFSET], scr1;			\
624	add	ptr, scr1, ptr;					\
625	rd	%asi, scr2;					\
626	wr	%g0, TRAPTR_ASI, %asi;				\
627	rd	STICK, scr1;					\
628	stxa    scr1, [ptr + TRAP_ENT_TICK]%asi;		\
629	rdpr	%tl, scr1;					\
630	stha    scr1, [ptr + TRAP_ENT_TL]%asi;			\
631	rdpr	%tt, scr1;					\
632	stha	scr1, [ptr + TRAP_ENT_TT]%asi;			\
633	rdpr	%tpc, scr1;					\
634	stna    scr1, [ptr + TRAP_ENT_TPC]%asi;			\
635	rdpr	%tstate, scr1;					\
636	stxa	scr1, [ptr + TRAP_ENT_TSTATE]%asi;		\
637	stna    %sp, [ptr + TRAP_ENT_SP]%asi;			\
638	stna    %g0, [ptr + TRAP_ENT_TR]%asi;			\
639	stna    %g0, [ptr + TRAP_ENT_F1]%asi;			\
640	stna    %g0, [ptr + TRAP_ENT_F2]%asi;			\
641	stna    %g0, [ptr + TRAP_ENT_F3]%asi;			\
642	stna    %g0, [ptr + TRAP_ENT_F4]%asi;			\
643	wr	%g0, scr2, %asi;				\
644	CPU_INDEX(ptr, scr1);					\
645	sll	ptr, TRAPTR_SIZE_SHIFT, ptr;			\
646	set	trap_trace_ctl, scr1;				\
647	add	scr1, ptr, ptr;					\
648	ld	[ptr + TRAPTR_OFFSET], scr1;			\
649	ld	[ptr + TRAPTR_LIMIT], scr2;			\
650	st	scr1, [ptr + TRAPTR_LAST_OFFSET];		\
651	add	scr1, TRAP_ENT_SIZE, scr1;			\
652	sub	scr2, TRAP_ENT_SIZE, scr2;			\
653	cmp	scr1, scr2;					\
654	movge	%icc, 0, scr1;					\
655	st	scr1, [ptr + TRAPTR_OFFSET];			\
656label/**/1:
657#endif	/* TRAPTRACE */
658
659
660
661/*
662 * Macros facilitating error handling.
663 */
664
665/*
666 * Save alternative global registers reg1, reg2, reg3
667 * to scratchpad registers 1, 2, 3 respectively.
668 */
669#define	OPL_SAVE_GLOBAL(reg1, reg2, reg3)	\
670	stxa	reg1, [%g0]ASI_SCRATCHPAD		;\
671	mov	OPL_SCRATCHPAD_SAVE_AG2, reg1	;\
672	stxa	reg2, [reg1]ASI_SCRATCHPAD		;\
673	mov	OPL_SCRATCHPAD_SAVE_AG3, reg1	;\
674	stxa	reg3, [reg1]ASI_SCRATCHPAD
675
676/*
677 * Restore alternative global registers reg1, reg2, reg3
678 * from scratchpad registers 1, 2, 3 respectively.
679 */
680#define	OPL_RESTORE_GLOBAL(reg1, reg2, reg3)			\
681	mov	OPL_SCRATCHPAD_SAVE_AG3, reg1			;\
682	ldxa	[reg1]ASI_SCRATCHPAD, reg3				;\
683	mov	OPL_SCRATCHPAD_SAVE_AG2, reg1			;\
684	ldxa	[reg1]ASI_SCRATCHPAD, reg2				;\
685	ldxa	[%g0]ASI_SCRATCHPAD, reg1
686
687/*
688 * Logs value `val' into the member `offset' of a structure
689 * at physical address `pa'
690 */
691#define	LOG_REG(pa, offset, val)				\
692	add	pa, offset, pa					;\
693	stxa	val, [pa]ASI_MEM
694
695#define	FLUSH_ALL_TLB(tmp1)					\
696	set	DEMAP_ALL_TYPE, tmp1				;\
697	stxa	%g0, [tmp1]ASI_ITLB_DEMAP			;\
698	stxa	%g0, [tmp1]ASI_DTLB_DEMAP			;\
699	sethi	%hi(FLUSH_ADDR), tmp1				;\
700	flush	tmp1
701
702/*
703 * Extracts the Physaddr to Logging Buffer field of the OPL_SCRATCHPAD_ERRLOG
704 * scratch register by zeroing all other fields. Result is in pa.
705 */
706#define	LOG_ADDR(pa)							\
707	mov	OPL_SCRATCHPAD_ERRLOG, pa				;\
708	ldxa	[pa]ASI_SCRATCHPAD, pa					;\
709	sllx	pa, 64-ERRLOG_REG_EIDR_SHIFT, pa			;\
710	srlx	pa, 64-ERRLOG_REG_EIDR_SHIFT+ERRLOG_REG_ERR_SHIFT, pa	;\
711	sllx	pa, ERRLOG_REG_ERR_SHIFT, pa
712
713/*
714 * Advance the per-cpu error log buffer pointer to the next
715 * ERRLOG_SZ entry, making sure that it will modulo (wraparound)
716 * ERRLOG_BUFSIZ boundary. The args logpa, bufmask, tmp are
717 * unused input registers for this macro.
718 *
719 * Algorithm:
720 * 1. logpa = contents of errorlog scratchpad register
721 * 2. bufmask = ERRLOG_BUFSIZ - 1
722 * 3. tmp = logpa & ~(bufmask)     (tmp is now logbase)
723 * 4. logpa += ERRLOG_SZ
724 * 5. logpa = logpa & bufmask      (get new offset to logbase)
725 * 4. logpa = tmp | logpa
726 * 7. write logpa back into errorlog scratchpad register
727 *
728 * new logpa = (logpa & ~bufmask) | ((logpa + ERRLOG_SZ) & bufmask)
729 *
730 */
731#define	UPDATE_LOGADD(logpa, bufmask, tmp)			\
732	set	OPL_SCRATCHPAD_ERRLOG, tmp			;\
733	ldxa	[tmp]ASI_SCRATCHPAD, logpa				;\
734	set	(ERRLOG_BUFSZ-1), bufmask			;\
735	andn	logpa, bufmask, tmp				;\
736	add	logpa, ERRLOG_SZ, logpa				;\
737	and	logpa, bufmask, logpa				;\
738	or	tmp, logpa, logpa				;\
739	set	OPL_SCRATCHPAD_ERRLOG, tmp			;\
740	stxa	logpa, [tmp]ASI_SCRATCHPAD
741
742/* Log error status registers into the log buffer */
743#define	LOG_SYNC_REG(sfsr, sfar, tmp)				\
744	LOG_ADDR(tmp)						;\
745	LOG_REG(tmp, LOG_SFSR_OFF, sfsr)			;\
746	LOG_ADDR(tmp)						;\
747	mov	tmp, sfsr					;\
748	LOG_REG(tmp, LOG_SFAR_OFF, sfar)			;\
749	rd	STICK, sfar					;\
750	mov	sfsr, tmp					;\
751	LOG_REG(tmp, LOG_STICK_OFF, sfar)			;\
752	rdpr	%tl, tmp					;\
753	sllx	tmp, 32, sfar					;\
754	rdpr	%tt, tmp					;\
755	or	sfar, tmp, sfar					;\
756	mov	sfsr, tmp					;\
757	LOG_REG(tmp, LOG_TL_OFF, sfar)				;\
758	set	OPL_SCRATCHPAD_ERRLOG, tmp			;\
759	ldxa	[tmp]ASI_SCRATCHPAD, sfar				;\
760	mov	sfsr, tmp					;\
761	LOG_REG(tmp, LOG_ASI3_OFF, sfar)			;\
762	rdpr	%tpc, sfar					;\
763	mov	sfsr, tmp					;\
764	LOG_REG(tmp, LOG_TPC_OFF, sfar)				;\
765	UPDATE_LOGADD(sfsr, sfar, tmp)
766
767#define	LOG_UGER_REG(uger, tmp, tmp2)				\
768	LOG_ADDR(tmp)						;\
769	mov	tmp, tmp2					;\
770	LOG_REG(tmp2, LOG_UGER_OFF, uger)			;\
771	mov	tmp, uger					;\
772	rd	STICK, tmp2					;\
773	LOG_REG(tmp, LOG_STICK_OFF, tmp2)			;\
774	rdpr	%tl, tmp					;\
775	sllx	tmp, 32, tmp2					;\
776	rdpr	%tt, tmp					;\
777	or	tmp2, tmp, tmp2					;\
778	mov	uger, tmp					;\
779	LOG_REG(tmp, LOG_TL_OFF, tmp2)				;\
780	set	OPL_SCRATCHPAD_ERRLOG, tmp2			;\
781	ldxa	[tmp2]ASI_SCRATCHPAD, tmp2				;\
782	mov	uger, tmp					;\
783	LOG_REG(tmp, LOG_ASI3_OFF, tmp2)			;\
784	rdpr	%tstate, tmp2					;\
785	mov	uger, tmp					;\
786	LOG_REG(tmp, LOG_TSTATE_OFF, tmp2)			;\
787	rdpr	%tpc, tmp2					;\
788	mov	uger, tmp					;\
789	LOG_REG(tmp, LOG_TPC_OFF, tmp2)				;\
790	UPDATE_LOGADD(uger, tmp, tmp2)
791
792/*
793 * Scrub the STICK_COMPARE register to clear error by updating
794 * it to a reasonable value for interrupt generation.
795 * Ensure that we observe the CPU_ENABLE flag so that we
796 * don't accidentally enable TICK interrupt in STICK_COMPARE
797 * i.e. no clock interrupt will be generated if CPU_ENABLE flag
798 * is off.
799 */
800#define	UPDATE_STICK_COMPARE(tmp1, tmp2)			\
801	CPU_ADDR(tmp1, tmp2)					;\
802	lduh	[tmp1 + CPU_FLAGS], tmp2			;\
803	andcc	tmp2, CPU_ENABLE, %g0 				;\
804	set	OPL_UGER_STICK_DIFF, tmp2			;\
805	rd	STICK, tmp1					;\
806	add	tmp1, tmp2, tmp1				;\
807	mov	1, tmp2						;\
808	sllx	tmp2, TICKINT_DIS_SHFT, tmp2			;\
809	or	tmp1, tmp2, tmp2				;\
810	movnz	%xcc, tmp1, tmp2				;\
811	wr	tmp2, %g0, STICK_COMPARE
812
813/*
814 * Reset registers that may be corrupted by IAUG_CRE error.
815 * To update interrupt handling related registers force the
816 * clock interrupt.
817 */
818#define	IAG_CRE(tmp1, tmp2)					\
819	set	OPL_SCRATCHPAD_ERRLOG, tmp1			;\
820	ldxa	[tmp1]ASI_SCRATCHPAD, tmp1				;\
821	srlx	tmp1, ERRLOG_REG_EIDR_SHIFT, tmp1		;\
822	set	ERRLOG_REG_EIDR_MASK, tmp2			;\
823	and	tmp1, tmp2, tmp1				;\
824	stxa	tmp1, [%g0]ASI_EIDR				;\
825	wr	%g0, 0, SOFTINT					;\
826	sethi	%hi(hres_last_tick), tmp1			;\
827	ldx	[tmp1 + %lo(hres_last_tick)], tmp1		;\
828	set	OPL_UGER_STICK_DIFF, tmp2			;\
829	add	tmp1, tmp2, tmp1				;\
830	wr	tmp1, %g0, STICK				;\
831	UPDATE_STICK_COMPARE(tmp1, tmp2)
832
833
834#define	CLEAR_FPREGS(tmp)					\
835	wr	%g0, FPRS_FEF, %fprs				;\
836	wr	%g0, %g0, %gsr					;\
837	sethi	%hi(opl_clr_freg), tmp				;\
838	or	tmp, %lo(opl_clr_freg), tmp			;\
839	ldx	[tmp], %fsr					;\
840	fzero	 %d0						;\
841	fzero	 %d2						;\
842	fzero	 %d4						;\
843	fzero	 %d6						;\
844	fzero	 %d8						;\
845	fzero	 %d10						;\
846	fzero	 %d12						;\
847	fzero	 %d14						;\
848	fzero	 %d16						;\
849	fzero	 %d18						;\
850	fzero	 %d20						;\
851	fzero	 %d22						;\
852	fzero	 %d24						;\
853	fzero	 %d26						;\
854	fzero	 %d28						;\
855	fzero	 %d30						;\
856	fzero	 %d32						;\
857	fzero	 %d34						;\
858	fzero	 %d36						;\
859	fzero	 %d38						;\
860	fzero	 %d40						;\
861	fzero	 %d42						;\
862	fzero	 %d44						;\
863	fzero	 %d46						;\
864	fzero	 %d48						;\
865	fzero	 %d50						;\
866	fzero	 %d52						;\
867	fzero	 %d54						;\
868	fzero	 %d56						;\
869	fzero	 %d58						;\
870	fzero	 %d60						;\
871	fzero	 %d62						;\
872	wr	%g0, %g0, %fprs
873
874#define	CLEAR_GLOBALS()						\
875	mov	%g0, %g1					;\
876	mov	%g0, %g2					;\
877	mov	%g0, %g3					;\
878	mov	%g0, %g4					;\
879	mov	%g0, %g5					;\
880	mov	%g0, %g6					;\
881	mov	%g0, %g7
882
883/*
884 * We do not clear the alternative globals here because they
885 * are scratch registers, i.e. there is no code that reads from
886 * them without write to them firstly. In other words every
887 * read always follows write that makes extra write to the
888 * alternative globals unnecessary.
889 */
890#define	CLEAR_GEN_REGS(tmp1, label)				\
891	set	TSTATE_KERN, tmp1				;\
892	wrpr	%g0, tmp1, %tstate				;\
893	mov	%g0, %y						;\
894	mov	%g0, %asi					;\
895	mov	%g0, %ccr					;\
896	mov	%g0, %l0					;\
897	mov	%g0, %l1					;\
898	mov	%g0, %l2					;\
899	mov	%g0, %l3					;\
900	mov	%g0, %l4					;\
901	mov	%g0, %l5					;\
902	mov	%g0, %l6					;\
903	mov	%g0, %l7					;\
904	mov	%g0, %i0					;\
905	mov	%g0, %i1					;\
906	mov	%g0, %i2					;\
907	mov	%g0, %i3					;\
908	mov	%g0, %i4					;\
909	mov	%g0, %i5					;\
910	mov	%g0, %i6					;\
911	mov	%g0, %i7					;\
912	mov	%g0, %o1					;\
913	mov	%g0, %o2					;\
914	mov	%g0, %o3					;\
915	mov	%g0, %o4					;\
916	mov	%g0, %o5					;\
917	mov	%g0, %o6					;\
918	mov	%g0, %o7					;\
919	mov	%g0, %o0					;\
920	mov	%g0, %g4					;\
921	mov	%g0, %g5					;\
922	mov	%g0, %g6					;\
923	mov	%g0, %g7					;\
924	rdpr	%tl, tmp1					;\
925	cmp	tmp1, 1						;\
926	be,pt	%xcc, label/**/1				;\
927	 rdpr	%pstate, tmp1					;\
928	wrpr	tmp1, PSTATE_AG|PSTATE_IG, %pstate		;\
929	CLEAR_GLOBALS()						;\
930	rdpr	%pstate, tmp1					;\
931	wrpr	tmp1, PSTATE_IG|PSTATE_MG, %pstate		;\
932	CLEAR_GLOBALS()						;\
933	rdpr	%pstate, tmp1					;\
934	wrpr	tmp1, PSTATE_MG|PSTATE_AG, %pstate		;\
935	ba,pt	%xcc, label/**/2				;\
936	 nop							;\
937label/**/1:							;\
938	wrpr	tmp1, PSTATE_AG, %pstate			;\
939	CLEAR_GLOBALS()						;\
940	rdpr	%pstate, tmp1					;\
941	wrpr	tmp1, PSTATE_AG, %pstate			;\
942label/**/2:
943
944
945/*
946 * Reset all window related registers
947 */
948#define	RESET_WINREG(tmp)					\
949	sethi	%hi(nwin_minus_one), tmp			;\
950	ld	[tmp + %lo(nwin_minus_one)], tmp		;\
951	wrpr	%g0, tmp, %cwp					;\
952	wrpr	%g0, tmp, %cleanwin				;\
953	sub	tmp, 1, tmp					;\
954	wrpr	%g0, tmp, %cansave				;\
955	wrpr	%g0, %g0, %canrestore				;\
956	wrpr	%g0, %g0, %otherwin				;\
957	wrpr	%g0, PIL_MAX, %pil				;\
958	wrpr	%g0, WSTATE_KERN, %wstate
959
960
961#define	RESET_PREV_TSTATE(tmp1, tmp2, label)			\
962	rdpr	%tl, tmp1					;\
963	subcc	tmp1, 1, tmp1					;\
964	bz,pt	%xcc, label/**/1				;\
965	 nop							;\
966	wrpr	tmp1, %g0, %tl					;\
967	set	TSTATE_KERN, tmp2				;\
968	wrpr	tmp2, %g0, %tstate				;\
969	wrpr	%g0, %g0, %tpc					;\
970	wrpr	%g0, %g0, %tnpc					;\
971	add	tmp1, 1, tmp1					;\
972	wrpr	tmp1, %g0, %tl					;\
973label/**/1:
974
975
976/*
977 * %pstate, %pc, %npc are propagated to %tstate, %tpc, %tnpc,
978 * and we reset these regiseter here.
979 */
980#define	RESET_CUR_TSTATE(tmp)					\
981	set	TSTATE_KERN, tmp				;\
982	wrpr	%g0, tmp, %tstate				;\
983	wrpr	%g0, 0, %tpc					;\
984	wrpr	%g0, 0, %tnpc					;\
985	RESET_WINREG(tmp)
986
987/*
988 * In case of urgent errors some MMU registers may be
989 * corrupted, so we set here some reasonable values for
990 * them.
991 */
992
993#if !defined(lint)
994#define	RESET_MMU_REGS(tmp1, tmp2, tmp3)			\
995	set	MMU_PCONTEXT, tmp1				;\
996	stxa	%g0, [tmp1]ASI_DMMU				;\
997	set	MMU_SCONTEXT, tmp1				;\
998	stxa	%g0, [tmp1]ASI_DMMU				;\
999	sethi	%hi(ktsb_base), tmp1				;\
1000	ldx	[tmp1 + %lo(ktsb_base)], tmp2			;\
1001	mov	MMU_TSB, tmp3					;\
1002	stxa	tmp2, [tmp3]ASI_IMMU				;\
1003	stxa	tmp2, [tmp3]ASI_DMMU				;\
1004	membar	#Sync
1005
1006#define	RESET_TSB_TAGPTR(tmp)					\
1007	set	MMU_TAG_ACCESS, tmp				;\
1008	stxa	%g0, [tmp]ASI_IMMU				;\
1009	stxa	%g0, [tmp]ASI_DMMU				;\
1010	membar	#Sync
1011#endif /* lint */
1012
1013/*
1014 * RESET_TO_PRIV()
1015 *
1016 * In many cases, we need to force the thread into privilege mode because
1017 * privilege mode is only thing in which the system continue to work
1018 * due to undeterminable user mode information that come from register
1019 * corruption.
1020 *
1021 *  - opl_uger_ctxt
1022 *    If the error is secondary TSB related register parity, we have no idea
1023 *    what value is supposed to be for it.
1024 *
1025 *  The below three cases %tstate is not accessible until it is overwritten
1026 *  with some value, so we have no clue if the thread was running on user mode
1027 *  or not
1028 *   - opl_uger_pstate
1029 *     If the error is %pstate parity, it propagates to %tstate.
1030 *   - opl_uger_tstate
1031 *     No need to say the reason
1032 *   - opl_uger_r
1033 *     If the error is %ccr or %asi parity, it propagates to %tstate
1034 *
1035 * For the above four cases, user mode info may not be available for
1036 * sys_trap() and user_trap() to work consistently. So we have to force
1037 * the thread into privilege mode.
1038 *
1039 * Forcing the thread to privilege mode requires forcing
1040 * regular %g7 to be CPU_THREAD. Because if it was running on user mode,
1041 * %g7 will be set in user_trap(). Also since the %sp may be in
1042 * an inconsistent state, we need to do a stack reset and switch to
1043 * something we know i.e. current thread's kernel stack.
1044 * We also reset the window registers and MMU registers just to
1045 * make sure.
1046 *
1047 * To set regular %g7, we need to clear PSTATE_AG bit and need to
1048 * use one local register. Note that we are panicking and will never
1049 * unwind back so it is ok to clobber a local.
1050 *
1051 * If the thread was running in user mode, the %tpc value itself might be
1052 * within the range of OBP addresses. %tpc must be forced to be zero to prevent
1053 * sys_trap() from going to prom_trap()
1054 *
1055 */
1056#define	RESET_TO_PRIV(tmp, tmp1, tmp2, local)			\
1057	RESET_WINREG(tmp)					;\
1058	RESET_MMU_REGS(tmp, tmp1, tmp2)				;\
1059	CPU_ADDR(tmp, tmp1)					;\
1060	ldx	[tmp + CPU_THREAD], local			;\
1061	ldx	[local + T_STACK], tmp				;\
1062	sub	tmp, STACK_BIAS, %sp				;\
1063	rdpr	%pstate, tmp					;\
1064	wrpr	tmp, PSTATE_AG, %pstate				;\
1065	mov	local, %g7					;\
1066	rdpr	%pstate, local					;\
1067	wrpr	local, PSTATE_AG, %pstate			;\
1068	wrpr	%g0, 1, %tl					;\
1069	set	TSTATE_KERN, tmp				;\
1070	rdpr	%cwp, tmp1					;\
1071	or	tmp, tmp1, tmp					;\
1072	wrpr	tmp, %g0, %tstate				;\
1073	wrpr	%g0, %tpc
1074
1075
1076#if defined(lint)
1077
1078void
1079ce_err(void)
1080{}
1081
1082#else	/* lint */
1083
1084/*
1085 * We normally don't expect CE traps since we disable the
1086 * 0x63 trap reporting at the start of day. There is a
1087 * small window before we disable them, so let check for
1088 * it. Otherwise, panic.
1089 */
1090
1091	.align	128
1092	ENTRY_NP(ce_err)
1093	mov	AFSR_ECR, %g1
1094	ldxa	[%g1]ASI_ECR, %g1
1095	andcc	%g1, ASI_ECR_RTE_UE | ASI_ECR_RTE_CEDG, %g0
1096	bz,pn	%xcc, 1f
1097	 nop
1098	retry
10991:
1100	/*
1101	 * We did disabled the 0x63 trap reporting.
1102	 * This shouldn't happen - panic.
1103	 */
1104	set	trap, %g1
1105	rdpr	%tt, %g3
1106	sethi	%hi(sys_trap), %g5
1107	jmp	%g5 + %lo(sys_trap)
1108	sub	%g0, 1, %g4
1109	SET_SIZE(ce_err)
1110
1111#endif	/* lint */
1112
1113
1114#if defined(lint)
1115
1116void
1117ce_err_tl1(void)
1118{}
1119
1120#else	/* lint */
1121
1122/*
1123 * We don't use trap for CE detection.
1124 */
1125	ENTRY_NP(ce_err_tl1)
1126	set	trap, %g1
1127	rdpr	%tt, %g3
1128	sethi	%hi(sys_trap), %g5
1129	jmp	%g5 + %lo(sys_trap)
1130	sub	%g0, 1, %g4
1131	SET_SIZE(ce_err_tl1)
1132
1133#endif	/* lint */
1134
1135
1136#if defined(lint)
1137
1138void
1139async_err(void)
1140{}
1141
1142#else	/* lint */
1143
1144/*
1145 * async_err is the default handler for IAE/DAE traps.
1146 * For OPL, we patch in the right handler at start of day.
1147 * But if a IAE/DAE trap get generated before the handler
1148 * is patched, panic.
1149 */
1150	ENTRY_NP(async_err)
1151	set	trap, %g1
1152	rdpr	%tt, %g3
1153	sethi	%hi(sys_trap), %g5
1154	jmp	%g5 + %lo(sys_trap)
1155	sub	%g0, 1, %g4
1156	SET_SIZE(async_err)
1157
1158#endif	/* lint */
1159
1160#if defined(lint)
1161void
1162opl_sync_trap(void)
1163{}
1164#else	/* lint */
1165
1166	.seg	".data"
1167	.global	opl_clr_freg
1168	.global opl_cpu0_err_log
1169
1170	.align	16
1171opl_clr_freg:
1172	.word	0
1173	.align	16
1174
1175	.align	MMU_PAGESIZE
1176opl_cpu0_err_log:
1177	.skip	MMU_PAGESIZE
1178
1179/*
1180 * Common synchronous error trap handler (tt=0xA, 0x32)
1181 * All TL=0 and TL>0 0xA and 0x32 traps vector to this handler.
1182 * The error handling can be best summarized as follows:
1183 * 0. Do TRAPTRACE if enabled.
1184 * 1. Save globals %g1, %g2 & %g3 onto the scratchpad regs.
1185 * 2. The SFSR register is read and verified as valid by checking
1186 *    SFSR.FV bit being set. If the SFSR.FV is not set, the
1187 *    error cases cannot be decoded/determined and the SFPAR
1188 *    register that contain the physical faultaddr is also
1189 *    not valid. Also the SPFAR is only valid for UE/TO/BERR error
1190 *    cases. Assuming the SFSR.FV is valid:
1191 *    - BERR(bus error)/TO(timeout)/UE case
1192 *      If any of these error cases are detected, read the SFPAR
1193 *      to get the faultaddress. Generate ereport.
1194 *    - TLB Parity case (only recoverable case)
1195 *      For DAE, read SFAR for the faultaddress. For IAE,
1196 *	use %tpc for faultaddress (SFAR is not valid in IAE)
1197 *	Flush all the tlbs.
1198 *	Subtract one from the recoverable error count stored in
1199 *	the error log scratch register. If the threshold limit
1200 *	is reached (zero) - generate ereport. Else
1201 *	restore globals and retry (no ereport is generated).
1202 *    - TLB Multiple hits
1203 *	For DAE, read SFAR for the faultaddress. For IAE,
1204 *	use %tpc for faultaddress (SFAR is not valid in IAE).
1205 *	Flush all tlbs and generate ereport.
1206 * 3. TL=0 and TL>0 considerations
1207 *    - Since both TL=0 & TL>1 traps are made to vector into
1208 *      the same handler, the underlying assumption/design here is
1209 *      that any nested error condition (if happens) occurs only
1210 *	in the handler and the system is assumed to eventually
1211 *      Red-mode. With this philosophy in mind, the recoverable
1212 *      TLB Parity error case never check the TL level before it
1213 *      retry. Note that this is ok for the TL>1 case (assuming we
1214 *	don't have a nested error) since we always save the globals
1215 *      %g1, %g2 & %g3 whenever we enter this trap handler.
1216 *    - Additional TL=0 vs TL>1 handling includes:
1217 *      - For UE error occuring under TL>1, special handling
1218 *        is added to prevent the unlikely chance of a cpu-lockup
1219 *        when a UE was originally detected in user stack and
1220 *        the spill trap handler taken from sys_trap() so happened
1221 *        to reference the same UE location. Under the above
1222 *        condition (TL>1 and UE error), paranoid code is added
1223 *        to reset window regs so that spill traps can't happen
1224 *        during the unwind back to TL=0 handling.
1225 *        Note that we can do that because we are not returning
1226 *	  back.
1227 * 4. Ereport generation.
1228 *    - Ereport generation is performed when we unwind to the TL=0
1229 *      handling code via sys_trap(). on_trap()/lofault protection
1230 *      will apply there.
1231 *
1232 */
1233	ENTRY_NP(opl_sync_trap)
1234#ifdef	TRAPTRACE
1235	OPL_TRAPTRACE(%g1, %g2, %g3, opl_sync_trap_lb)
1236	rdpr	%tt, %g1
1237#endif	/* TRAPTRACE */
1238	cmp	%g1, T_INSTR_ERROR
1239	bne,pt	%xcc, 0f
1240	 mov	MMU_SFSR, %g3
1241	ldxa	[%g3]ASI_IMMU, %g1	! IAE trap case tt = 0xa
1242	andcc	%g1, SFSR_FV, %g0
1243	bz,a,pn %xcc, 2f		! Branch if SFSR is invalid and
1244	 rdpr	%tpc, %g2		! use %tpc for faultaddr instead
1245
1246	sethi	%hi(SFSR_UE|SFSR_BERR|SFSR_TO), %g3
1247	andcc	%g1, %g3, %g0		! Check for UE/BERR/TO errors
1248	bz,a,pt %xcc, 1f		! Branch if not UE/BERR/TO and
1249	 rdpr	%tpc, %g2		! use %tpc as faultaddr
1250	set	OPL_MMU_SFPAR, %g3	! In the UE/BERR/TO cases, use
1251	ba,pt	%xcc, 2f		! SFPAR as faultaddr
1252	 ldxa	[%g3]ASI_IMMU, %g2
12530:
1254	ldxa	[%g3]ASI_DMMU, %g1	! DAE trap case tt = 0x32
1255	andcc	%g1, SFSR_FV, %g0
1256	bnz,pt  %xcc, 7f		! branch if SFSR.FV is valid
1257	 mov	MMU_SFAR, %g2		! set %g2 to use SFAR
1258	ba,pt	%xcc, 2f		! SFSR.FV is not valid, read SFAR
1259	 ldxa	[%g2]ASI_DMMU, %g2	! for faultaddr
12607:
1261	sethi  %hi(SFSR_UE|SFSR_BERR|SFSR_TO), %g3
1262	andcc	%g1, %g3, %g0		! Check UE/BERR/TO for valid SFPAR
1263	movnz	%xcc, OPL_MMU_SFPAR, %g2 ! Use SFPAR instead of SFAR for
1264	ldxa	[%g2]ASI_DMMU, %g2	! faultaddr
12651:
1266	sethi	%hi(SFSR_TLB_PRT), %g3
1267	andcc	%g1, %g3, %g0
1268	bz,pt	%xcc, 8f		! branch for TLB multi-hit check
1269	 nop
1270	/*
1271	 * This is the TLB parity error case and it is the
1272	 * only retryable error case.
1273	 * Only %g1, %g2 and %g3 are allowed
1274	 */
1275	FLUSH_ALL_TLB(%g3)
1276	set	OPL_SCRATCHPAD_ERRLOG, %g3
1277	ldxa	[%g3]ASI_SCRATCHPAD, %g3		! Read errlog scratchreg
1278	and	%g3, ERRLOG_REG_NUMERR_MASK, %g3! Extract the error count
1279	subcc	%g3, 1, %g0			! Subtract one from the count
1280	bz,pn	%xcc, 2f		! too many TLB parity errs in a certain
1281	 nop				! period, branch to generate ereport
1282	LOG_SYNC_REG(%g1, %g2, %g3)	! Record into the error log
1283	set	OPL_SCRATCHPAD_ERRLOG, %g3
1284	ldxa	[%g3]ASI_SCRATCHPAD, %g2
1285	sub	%g2, 1, %g2		! decrement error counter by 1
1286	stxa	%g2, [%g3]ASI_SCRATCHPAD	! update the errlog scratchreg
1287	OPL_RESTORE_GLOBAL(%g1, %g2, %g3)
1288	retry
12898:
1290	sethi	%hi(SFSR_TLB_MUL), %g3
1291	andcc	%g1, %g3, %g0
1292	bz,pt	%xcc, 2f		! check for the TLB multi-hit errors
1293	 nop
1294	FLUSH_ALL_TLB(%g3)
12952:
1296	/*
1297	 * non-retryable error handling
1298	 * now we can use other registers since
1299	 * we will not be returning back
1300	 */
1301	mov	%g1, %g5		! %g5 = SFSR
1302	mov	%g2, %g6		! %g6 = SFPAR or SFAR/tpc
1303	LOG_SYNC_REG(%g1, %g2, %g3)	! Record into the error log
1304
1305	/*
1306	 * Special case for UE on user stack.
1307	 * There is a possibility that the same error may come back here
1308	 * by touching the same UE in spill trap handler taken from
1309	 * sys_trap(). It ends up with an infinite loop causing a cpu lockup.
1310	 * Conditions for this handling this case are:
1311	 * - SFSR_FV is valid and SFSR_UE is set
1312	 * - we are at TL > 1
1313	 * If the above conditions are true,  we force %cansave to be a
1314	 * big number to prevent spill trap in sys_trap(). Note that
1315	 * we will not be returning back.
1316	 */
1317	rdpr	%tt, %g4		! %g4 == ttype
1318	rdpr	%tl, %g1		! %g1 == tl
1319	cmp	%g1, 1			! Check if TL == 1
1320	be,pt	%xcc, 3f		! branch if we came from TL=0
1321	 nop
1322	andcc	%g5, SFSR_FV, %g0	! see if SFSR.FV is valid
1323	bz,pn	%xcc, 4f		! branch, checking UE is meaningless
1324	sethi	%hi(SFSR_UE), %g2
1325	andcc	%g5, %g2, %g0		! check for UE
1326	bz,pt	%xcc, 4f		! branch if not UE
1327	 nop
1328	RESET_WINREG(%g1)		! reset windows to prevent spills
13294:
1330	mov	%g5, %g3		! pass SFSR to the 3rd arg
1331	mov	%g6, %g2		! pass SFAR to the 2nd arg
1332	set	opl_cpu_isync_tl1_error, %g1
1333	set	opl_cpu_dsync_tl1_error, %g6
1334	cmp	%g4, T_INSTR_ERROR
1335	movne	%icc, %g6, %g1
1336	ba,pt	%icc, 6f
1337	nop
13383:
1339	mov	%g5, %g3		! pass SFSR to the 3rd arg
1340	mov	%g6, %g2		! pass SFAR to the 2nd arg
1341	set	opl_cpu_isync_tl0_error, %g1
1342	set	opl_cpu_dsync_tl0_error, %g6
1343	cmp	%g4, T_INSTR_ERROR
1344	movne	%icc, %g6, %g1
13456:
1346	sethi	%hi(sys_trap), %g5
1347	jmp	%g5 + %lo(sys_trap)
1348	 mov	PIL_15, %g4
1349	SET_SIZE(opl_sync_trap)
1350#endif	/* lint */
1351
1352#if defined(lint)
1353void
1354opl_uger_trap(void)
1355{}
1356#else	/* lint */
1357/*
1358 * Common Urgent error trap handler (tt=0x40)
1359 * All TL=0 and TL>0 0x40 traps vector to this handler.
1360 * The error handling can be best summarized as follows:
1361 * 1. Read the Urgent error status register (UGERSR)
1362 *    Faultaddress is N/A here and it is not collected.
1363 * 2. Check to see if we have a multiple errors case
1364 *    If so, we enable WEAK_ED (weak error detection) bit
1365 *    to prevent any potential error storms and branch directly
1366 *    to generate ereport. (we don't decode/handle individual
1367 *    error cases when we get a multiple error situation)
1368 * 3. Now look for the recoverable error cases which include
1369 *    IUG_DTLB, IUG_ITLB or COREERR errors. If any of the
1370 *    recoverable errors are detected, do the following:
1371 *    - Flush all tlbs.
1372 *    - Verify that we came from TL=0, if not, generate
1373 *      ereport. Note that the reason we don't recover
1374 *      at TL>0 is because the AGs might be corrupted or
1375 *      inconsistent. We can't save/restore them into
1376 *      the scratchpad regs like we did for opl_sync_trap().
1377 *    - Check the INSTEND[5:4] bits in the UGERSR. If the
1378 *      value is 0x3 (11b), this error is not recoverable.
1379 *      Generate ereport.
1380 *    - Subtract one from the recoverable error count stored in
1381 *      the error log scratch register. If the threshold limit
1382 *      is reached (zero) - generate ereport.
1383 *    - If the count is within the limit, update the count
1384 *      in the error log register (subtract one). Log the error
1385 *      info in the log buffer. Capture traptrace if enabled.
1386 *      Retry (no ereport generated)
1387 * 4. The rest of the error cases are unrecoverable and will
1388 *    be handled according (flushing regs, etc as required).
1389 *    For details on these error cases (UGER_CRE, UGER_CTXT, etc..)
1390 *    consult the OPL cpu/mem philosophy doc.
1391 *    Ereport will be generated for these errors.
1392 * 5. Ereport generation.
1393 *    - Ereport generation for urgent error trap always
1394 *      result in a panic when we unwind to the TL=0 handling
1395 *      code via sys_trap(). on_trap()/lofault protection do
1396 *      not apply there.
1397 */
1398	ENTRY_NP(opl_uger_trap)
1399	set	ASI_UGERSR, %g2
1400	ldxa	[%g2]ASI_AFSR, %g1		! Read the UGERSR reg
1401
1402	set	UGESR_MULTI, %g2
1403	andcc	%g1, %g2, %g0			! Check for Multi-errs
1404	bz,pt	%xcc, opl_uger_is_recover	! branch if not Multi-errs
1405	 nop
1406	set	AFSR_ECR, %g2
1407	ldxa	[%g2]ASI_AFSR, %g3		! Enable Weak error
1408	or	%g3, ASI_ECR_WEAK_ED, %g3	! detect mode to prevent
1409	stxa	%g3, [%g2]ASI_AFSR		! potential error storms
1410	ba	%xcc, opl_uger_panic1
1411	 nop
1412
1413opl_uger_is_recover:
1414	set	UGESR_CAN_RECOVER, %g2		! Check for recoverable
1415	andcc	%g1, %g2, %g0			! errors i.e.IUG_DTLB,
1416	bz,pt	%xcc, opl_uger_cre		! IUG_ITLB or COREERR
1417	 nop
1418
1419	/*
1420	 * Fall thru to handle recoverable case
1421	 * Need to do the following additional checks to determine
1422	 * if this is indeed recoverable.
1423	 * 1. Error trap came from TL=0 and
1424	 * 2. INSTEND[5:4] bits in UGERSR is not 0x3
1425	 * 3. Recoverable error count limit not reached
1426	 *
1427	 */
1428	FLUSH_ALL_TLB(%g3)
1429	rdpr	%tl, %g3		! Read TL
1430	cmp	%g3, 1			! Check if we came from TL=0
1431	bne,pt	%xcc, opl_uger_panic	! branch if came from TL>0
1432	 nop
1433	srlx	%g1, 4, %g2		! shift INSTEND[5:4] -> [1:0]
1434	and	%g2, 3, %g2		! extract the shifted [1:0] bits
1435	cmp	%g2, 3			! check if INSTEND is recoverable
1436	be,pt   %xcc, opl_uger_panic	! panic if ([1:0] = 11b)
1437	 nop
1438	set	OPL_SCRATCHPAD_ERRLOG, %g3
1439	ldxa	[%g3]ASI_SCRATCHPAD, %g2		! Read errlog scratch reg
1440	and	%g2, ERRLOG_REG_NUMERR_MASK, %g3! Extract error count and
1441	subcc	%g3, 1, %g3			! subtract one from it
1442	bz,pt   %xcc, opl_uger_panic	! If count reached zero, too many
1443	 nop				! errors, branch to generate ereport
1444	sub	%g2, 1, %g2			! Subtract one from the count
1445	set	OPL_SCRATCHPAD_ERRLOG, %g3	! and write back the updated
1446	stxa	%g2, [%g3]ASI_SCRATCHPAD		! count into the errlog reg
1447	LOG_UGER_REG(%g1, %g2, %g3)		! Log the error info
1448#ifdef	TRAPTRACE
1449	OPL_TRAPTRACE(%g1, %g2, %g3, opl_uger_trap_lb)
1450#endif	/* TRAPTRACE */
1451	retry					! retry - no ereport
1452
1453	/*
1454	 * Process the rest of the unrecoverable error cases
1455	 * All error cases below ultimately branch to either
1456	 * opl_uger_panic or opl_uger_panic1.
1457	 * opl_uger_panic1 is the same as opl_uger_panic except
1458	 * for the additional execution of the RESET_TO_PRIV()
1459	 * macro that does a heavy handed reset. Read the
1460	 * comments for RESET_TO_PRIV() macro for more info.
1461	 */
1462opl_uger_cre:
1463	set	UGESR_IAUG_CRE, %g2
1464	andcc	%g1, %g2, %g0
1465	bz,pt	%xcc, opl_uger_ctxt
1466	 nop
1467	IAG_CRE(%g2, %g3)
1468	set	AFSR_ECR, %g2
1469	ldxa	[%g2]ASI_AFSR, %g3
1470	or	%g3, ASI_ECR_WEAK_ED, %g3
1471	stxa	%g3, [%g2]ASI_AFSR
1472	ba	%xcc, opl_uger_panic
1473	 nop
1474
1475opl_uger_ctxt:
1476	set	UGESR_IAUG_TSBCTXT, %g2
1477	andcc	%g1, %g2, %g0
1478	bz,pt	%xcc, opl_uger_tsbp
1479	 nop
1480	RESET_MMU_REGS(%g2, %g3, %g4)
1481	ba	%xcc, opl_uger_panic
1482	 nop
1483
1484opl_uger_tsbp:
1485	set	UGESR_IUG_TSBP, %g2
1486	andcc	%g1, %g2, %g0
1487	bz,pt	%xcc, opl_uger_pstate
1488	 nop
1489	RESET_TSB_TAGPTR(%g2)
1490	ba	%xcc, opl_uger_panic
1491	 nop
1492
1493opl_uger_pstate:
1494	set	UGESR_IUG_PSTATE, %g2
1495	andcc	%g1, %g2, %g0
1496	bz,pt	%xcc, opl_uger_tstate
1497	 nop
1498	RESET_CUR_TSTATE(%g2)
1499	ba	%xcc, opl_uger_panic1
1500	 nop
1501
1502opl_uger_tstate:
1503	set	UGESR_IUG_TSTATE, %g2
1504	andcc	%g1, %g2, %g0
1505	bz,pt	%xcc, opl_uger_f
1506	 nop
1507	RESET_PREV_TSTATE(%g2, %g3, opl_uger_tstate_1)
1508	ba	%xcc, opl_uger_panic1
1509	 nop
1510
1511opl_uger_f:
1512	set	UGESR_IUG_F, %g2
1513	andcc	%g1, %g2, %g0
1514	bz,pt	%xcc, opl_uger_r
1515	 nop
1516	CLEAR_FPREGS(%g2)
1517	ba	%xcc, opl_uger_panic
1518	 nop
1519
1520opl_uger_r:
1521	set	UGESR_IUG_R, %g2
1522	andcc	%g1, %g2, %g0
1523	bz,pt	%xcc, opl_uger_panic1
1524	 nop
1525	CLEAR_GEN_REGS(%g2, opl_uger_r_1)
1526	ba	%xcc, opl_uger_panic1
1527	 nop
1528
1529opl_uger_panic:
1530	mov	%g1, %g2			! %g2 = arg #1
1531	LOG_UGER_REG(%g1, %g3, %g4)
1532	ba	%xcc, opl_uger_panic_cmn
1533	 nop
1534
1535opl_uger_panic1:
1536	mov	%g1, %g2			! %g2 = arg #1
1537	LOG_UGER_REG(%g1, %g3, %g4)
1538	RESET_TO_PRIV(%g1, %g3, %g4, %l0)
1539
1540	/*
1541	 * Set up the argument for sys_trap.
1542	 * %g2 = arg #1 already set above
1543	 */
1544opl_uger_panic_cmn:
1545	rdpr	%tl, %g3			! arg #2
1546	set	opl_cpu_urgent_error, %g1	! pc
1547	sethi	%hi(sys_trap), %g5
1548	jmp	%g5 + %lo(sys_trap)
1549	 mov	PIL_15, %g4
1550	SET_SIZE(opl_uger_trap)
1551#endif	/* lint */
1552
1553#if defined(lint)
1554
1555void
1556opl_serr_instr(void)
1557{}
1558
1559#else	/* lint */
1560/*
1561 * The actual trap handler for tt=0x0a, and tt=0x32
1562 */
1563	ENTRY_NP(opl_serr_instr)
1564	OPL_SAVE_GLOBAL(%g1,%g2,%g3)
1565	sethi   %hi(opl_sync_trap), %g3
1566	jmp	%g3 + %lo(opl_sync_trap)
1567	 rdpr    %tt, %g1
1568	.align  32
1569	SET_SIZE(opl_serr_instr)
1570
1571#endif	/* lint */
1572
1573#if defined(lint)
1574
1575void
1576opl_ugerr_instr(void)
1577{}
1578
1579#else	/* lint */
1580/*
1581 * The actual trap handler for tt=0x40
1582 */
1583	ENTRY_NP(opl_ugerr_instr)
1584	sethi   %hi(opl_uger_trap), %g3
1585	jmp	%g3 + %lo(opl_uger_trap)
1586	 nop
1587	.align  32
1588	SET_SIZE(opl_ugerr_instr)
1589
1590#endif	/* lint */
1591
1592#if defined(lint)
1593/*
1594 *  Get timestamp (stick).
1595 */
1596/* ARGSUSED */
1597void
1598stick_timestamp(int64_t *ts)
1599{
1600}
1601
1602#else	/* lint */
1603
1604	ENTRY_NP(stick_timestamp)
1605	rd	STICK, %g1	! read stick reg
1606	sllx	%g1, 1, %g1
1607	srlx	%g1, 1, %g1	! clear npt bit
1608
1609	retl
1610	stx	%g1, [%o0]	! store the timestamp
1611	SET_SIZE(stick_timestamp)
1612
1613#endif	/* lint */
1614
1615
1616#if defined(lint)
1617/*
1618 * Set STICK adjusted by skew.
1619 */
1620/* ARGSUSED */
1621void
1622stick_adj(int64_t skew)
1623{
1624}
1625
1626#else	/* lint */
1627
1628	ENTRY_NP(stick_adj)
1629	rdpr	%pstate, %g1		! save processor state
1630	andn	%g1, PSTATE_IE, %g3
1631	ba	1f			! cache align stick adj
1632	wrpr	%g0, %g3, %pstate	! turn off interrupts
1633
1634	.align	16
16351:	nop
1636
1637	rd	STICK, %g4		! read stick reg
1638	add	%g4, %o0, %o1		! adjust stick with skew
1639	wr	%o1, %g0, STICK		! write stick reg
1640
1641	retl
1642	wrpr	%g1, %pstate		! restore processor state
1643	SET_SIZE(stick_adj)
1644
1645#endif	/* lint */
1646
1647#if defined(lint)
1648/*
1649 * Debugger-specific stick retrieval
1650 */
1651/*ARGSUSED*/
1652int
1653kdi_get_stick(uint64_t *stickp)
1654{
1655	return (0);
1656}
1657
1658#else	/* lint */
1659
1660	ENTRY_NP(kdi_get_stick)
1661	rd	STICK, %g1
1662	stx	%g1, [%o0]
1663	retl
1664	mov	%g0, %o0
1665	SET_SIZE(kdi_get_stick)
1666
1667#endif	/* lint */
1668
1669#if defined(lint)
1670
1671/*ARGSUSED*/
1672int
1673dtrace_blksuword32(uintptr_t addr, uint32_t *data, int tryagain)
1674{ return (0); }
1675
1676#else
1677
1678	ENTRY(dtrace_blksuword32)
1679	save	%sp, -SA(MINFRAME + 4), %sp
1680
1681	rdpr	%pstate, %l1
1682	andn	%l1, PSTATE_IE, %l2		! disable interrupts to
1683	wrpr	%g0, %l2, %pstate		! protect our FPU diddling
1684
1685	rd	%fprs, %l0
1686	andcc	%l0, FPRS_FEF, %g0
1687	bz,a,pt	%xcc, 1f			! if the fpu is disabled
1688	wr	%g0, FPRS_FEF, %fprs		! ... enable the fpu
1689
1690	st	%f0, [%fp + STACK_BIAS - 4]	! save %f0 to the stack
16911:
1692	set	0f, %l5
1693	/*
1694	 * We're about to write a block full or either total garbage
1695	 * (not kernel data, don't worry) or user floating-point data
1696	 * (so it only _looks_ like garbage).
1697	 */
1698	ld	[%i1], %f0			! modify the block
1699	membar	#Sync
1700	stn	%l5, [THREAD_REG + T_LOFAULT]	! set up the lofault handler
1701	stda	%d0, [%i0]ASI_BLK_COMMIT_S	! store the modified block
1702	membar	#Sync
1703	stn	%g0, [THREAD_REG + T_LOFAULT]	! remove the lofault handler
1704
1705	bz,a,pt	%xcc, 1f
1706	wr	%g0, %l0, %fprs			! restore %fprs
1707
1708	ld	[%fp + STACK_BIAS - 4], %f0	! restore %f0
17091:
1710
1711	wrpr	%g0, %l1, %pstate		! restore interrupts
1712
1713	ret
1714	restore	%g0, %g0, %o0
1715
17160:
1717	membar	#Sync
1718	stn	%g0, [THREAD_REG + T_LOFAULT]	! remove the lofault handler
1719
1720	bz,a,pt	%xcc, 1f
1721	wr	%g0, %l0, %fprs			! restore %fprs
1722
1723	ld	[%fp + STACK_BIAS - 4], %f0	! restore %f0
17241:
1725
1726	wrpr	%g0, %l1, %pstate		! restore interrupts
1727
1728	/*
1729	 * If tryagain is set (%i2) we tail-call dtrace_blksuword32_err()
1730	 * which deals with watchpoints. Otherwise, just return -1.
1731	 */
1732	brnz,pt	%i2, 1f
1733	nop
1734	ret
1735	restore	%g0, -1, %o0
17361:
1737	call	dtrace_blksuword32_err
1738	restore
1739
1740	SET_SIZE(dtrace_blksuword32)
1741#endif /* lint */
1742
1743#if defined(lint)
1744/*ARGSUSED*/
1745void
1746ras_cntr_reset(void *arg)
1747{
1748}
1749#else
1750	ENTRY_NP(ras_cntr_reset)
1751	set	OPL_SCRATCHPAD_ERRLOG, %o1
1752	ldxa	[%o1]ASI_SCRATCHPAD, %o0
1753	or	%o0, ERRLOG_REG_NUMERR_MASK, %o0
1754	retl
1755	 stxa	%o0, [%o1]ASI_SCRATCHPAD
1756	SET_SIZE(ras_cntr_reset)
1757#endif /* lint */
1758
1759#if defined(lint)
1760/* ARGSUSED */
1761void
1762opl_error_setup(uint64_t cpu_err_log_pa)
1763{
1764}
1765
1766#else	/* lint */
1767	ENTRY_NP(opl_error_setup)
1768	/*
1769	 * Initialize the error log scratchpad register
1770	 */
1771	ldxa	[%g0]ASI_EIDR, %o2
1772	sethi	%hi(ERRLOG_REG_EIDR_MASK), %o1
1773	or	%o1, %lo(ERRLOG_REG_EIDR_MASK), %o1
1774	and	%o2, %o1, %o3
1775	sllx	%o3, ERRLOG_REG_EIDR_SHIFT, %o2
1776	or	%o2, %o0, %o3
1777	or	%o3, ERRLOG_REG_NUMERR_MASK, %o0
1778	set	OPL_SCRATCHPAD_ERRLOG, %o1
1779	stxa	%o0, [%o1]ASI_SCRATCHPAD
1780	/*
1781	 * Disable all restrainable error traps
1782	 */
1783	mov	AFSR_ECR, %o1
1784	ldxa	[%o1]ASI_AFSR, %o0
1785	andn	%o0, ASI_ECR_RTE_UE|ASI_ECR_RTE_CEDG, %o0
1786	retl
1787	  stxa	%o0, [%o1]ASI_AFSR
1788	SET_SIZE(opl_error_setup)
1789#endif /* lint */
1790
1791#if defined(lint)
1792/* ARGSUSED */
1793void
1794opl_mpg_enable(void)
1795{
1796}
1797#else	/* lint */
1798	ENTRY_NP(opl_mpg_enable)
1799	/*
1800	 * Enable MMU translating multiple page sizes for
1801	 * sITLB and sDTLB.
1802	 */
1803        mov	LSU_MCNTL, %o0
1804        ldxa	[%o0] ASI_MCNTL, %o1
1805        or	%o1, MCNTL_MPG_SITLB | MCNTL_MPG_SDTLB, %o1
1806	retl
1807          stxa	%o1, [%o0] ASI_MCNTL
1808	SET_SIZE(opl_mpg_enable)
1809#endif /* lint */
1810
1811#if	defined(lint)
1812/*
1813 * This function is called for each (enabled) CPU. We use it to
1814 * initialize error handling related registers.
1815 */
1816/*ARGSUSED*/
1817void
1818cpu_feature_init(void)
1819{}
1820#else	/* lint */
1821	ENTRY(cpu_feature_init)
1822	!
1823	! get the device_id and store the device_id
1824	! in the appropriate cpunodes structure
1825	! given the cpus index
1826	!
1827	CPU_INDEX(%o0, %o1)
1828	mulx %o0, CPU_NODE_SIZE, %o0
1829	set  cpunodes + DEVICE_ID, %o1
1830	ldxa [%g0] ASI_DEVICE_SERIAL_ID, %o2
1831	stx  %o2, [%o0 + %o1]
1832	!
1833	! initialize CPU registers
1834	!
1835	ba	opl_cpu_reg_init
1836	nop
1837	SET_SIZE(cpu_feature_init)
1838#endif	/* lint */
1839
1840#if defined(lint)
1841
1842void
1843cpu_cleartickpnt(void)
1844{}
1845
1846#else	/* lint */
1847	/*
1848	 * Clear the NPT (non-privileged trap) bit in the %tick/%stick
1849	 * registers. In an effort to make the change in the
1850	 * tick/stick counter as consistent as possible, we disable
1851	 * all interrupts while we're changing the registers. We also
1852	 * ensure that the read and write instructions are in the same
1853	 * line in the instruction cache.
1854	 */
1855	ENTRY_NP(cpu_clearticknpt)
1856	rdpr	%pstate, %g1		/* save processor state */
1857	andn	%g1, PSTATE_IE, %g3	/* turn off */
1858	wrpr	%g0, %g3, %pstate	/*   interrupts */
1859	rdpr	%tick, %g2		/* get tick register */
1860	brgez,pn %g2, 1f		/* if NPT bit off, we're done */
1861	mov	1, %g3			/* create mask */
1862	sllx	%g3, 63, %g3		/*   for NPT bit */
1863	ba,a,pt	%xcc, 2f
1864	.align	8			/* Ensure rd/wr in same i$ line */
18652:
1866	rdpr	%tick, %g2		/* get tick register */
1867	wrpr	%g3, %g2, %tick		/* write tick register, */
1868					/*   clearing NPT bit   */
18691:
1870	rd	STICK, %g2		/* get stick register */
1871	brgez,pn %g2, 3f		/* if NPT bit off, we're done */
1872	mov	1, %g3			/* create mask */
1873	sllx	%g3, 63, %g3		/*   for NPT bit */
1874	ba,a,pt	%xcc, 4f
1875	.align	8			/* Ensure rd/wr in same i$ line */
18764:
1877	rd	STICK, %g2		/* get stick register */
1878	wr	%g3, %g2, STICK		/* write stick register, */
1879					/*   clearing NPT bit   */
18803:
1881	jmp	%g4 + 4
1882	wrpr	%g0, %g1, %pstate	/* restore processor state */
1883
1884	SET_SIZE(cpu_clearticknpt)
1885
1886#endif	/* lint */
1887
1888#if defined(lint)
1889
1890void
1891cpu_halt_cpu(void)
1892{}
1893
1894void
1895cpu_smt_pause(void)
1896{}
1897
1898#else	/* lint */
1899
1900	/*
1901	 * Halt the current strand with the suspend instruction.
1902	 * The compiler/asm currently does not support this suspend
1903	 * instruction mnemonic, use byte code for now.
1904	 */
1905	ENTRY_NP(cpu_halt_cpu)
1906	.word   0x81b01040
1907	retl
1908	nop
1909	SET_SIZE(cpu_halt_cpu)
1910
1911	/*
1912	 * Pause the current strand with the sleep instruction.
1913	 * The compiler/asm currently does not support this sleep
1914	 * instruction mnemonic, use byte code for now.
1915	 */
1916	ENTRY_NP(cpu_smt_pause)
1917	.word   0x81b01060
1918	retl
1919	nop
1920	SET_SIZE(cpu_smt_pause)
1921
1922#endif	/* lint */
1923