xref: /titanic_50/usr/src/uts/sun4u/cpu/opl_olympus.c (revision 6f5f1c638c7bce3a35e88526a88fc78bdfd58ffe)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Support for Olympus-C (SPARC64-VI) and Jupiter (SPARC64-VII).
28  */
29 
30 
31 #include <sys/types.h>
32 #include <sys/systm.h>
33 #include <sys/ddi.h>
34 #include <sys/sysmacros.h>
35 #include <sys/archsystm.h>
36 #include <sys/vmsystm.h>
37 #include <sys/machparam.h>
38 #include <sys/machsystm.h>
39 #include <sys/machthread.h>
40 #include <sys/cpu.h>
41 #include <sys/cmp.h>
42 #include <sys/elf_SPARC.h>
43 #include <vm/vm_dep.h>
44 #include <vm/hat_sfmmu.h>
45 #include <vm/seg_kpm.h>
46 #include <vm/seg_kmem.h>
47 #include <sys/cpuvar.h>
48 #include <sys/opl_olympus_regs.h>
49 #include <sys/opl_module.h>
50 #include <sys/async.h>
51 #include <sys/cmn_err.h>
52 #include <sys/debug.h>
53 #include <sys/dditypes.h>
54 #include <sys/cpu_module.h>
55 #include <sys/sysmacros.h>
56 #include <sys/intreg.h>
57 #include <sys/clock.h>
58 #include <sys/platform_module.h>
59 #include <sys/ontrap.h>
60 #include <sys/panic.h>
61 #include <sys/memlist.h>
62 #include <sys/ndifm.h>
63 #include <sys/ddifm.h>
64 #include <sys/fm/protocol.h>
65 #include <sys/fm/util.h>
66 #include <sys/fm/cpu/SPARC64-VI.h>
67 #include <sys/dtrace.h>
68 #include <sys/watchpoint.h>
69 #include <sys/promif.h>
70 
71 /*
72  * Internal functions.
73  */
74 static int cpu_sync_log_err(void *flt);
75 static void cpu_payload_add_aflt(struct async_flt *, nvlist_t *, nvlist_t *);
76 static void opl_cpu_sync_error(struct regs *, ulong_t, ulong_t, uint_t, uint_t);
77 static int  cpu_flt_in_memory(opl_async_flt_t *, uint64_t);
78 static int prom_SPARC64VII_support_enabled(void);
79 static void opl_ta3();
80 static int plat_prom_preserve_kctx_is_supported(void);
81 
82 /*
83  * Error counters resetting interval.
84  */
85 static int opl_async_check_interval = 60;		/* 1 min */
86 
87 uint_t cpu_impl_dual_pgsz = 1;
88 
89 /*
90  * PA[22:0] represent Displacement in Jupiter
91  * configuration space.
92  */
93 uint_t	root_phys_addr_lo_mask = 0x7fffffu;
94 
95 /*
96  * set in /etc/system to control logging of user BERR/TO's
97  */
98 int cpu_berr_to_verbose = 0;
99 
100 /*
101  * Set to 1 if booted with all Jupiter cpus (all-Jupiter features enabled).
102  */
103 int cpu_alljupiter = 0;
104 
105 /*
106  * The sfmmu_cext field to be used by processes in a shared context domain.
107  */
108 static uchar_t shctx_cext = TAGACCEXT_MKSZPAIR(DEFAULT_ISM_PAGESZC, TTE8K);
109 
110 static int min_ecache_size;
111 static uint_t priv_hcl_1;
112 static uint_t priv_hcl_2;
113 static uint_t priv_hcl_4;
114 static uint_t priv_hcl_8;
115 
116 /*
117  * Olympus error log
118  */
119 static opl_errlog_t	*opl_err_log;
120 static int		opl_cpu0_log_setup;
121 
122 /*
123  * OPL ta 3 save area.
124  */
125 char	*opl_ta3_save;
126 
127 /*
128  * UE is classified into four classes (MEM, CHANNEL, CPU, PATH).
129  * No any other ecc_type_info insertion is allowed in between the following
130  * four UE classess.
131  */
132 ecc_type_to_info_t ecc_type_to_info[] = {
133 	SFSR_UE,	"UE ",	(OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE,
134 	"Uncorrectable ECC",  FM_EREPORT_PAYLOAD_SYNC,
135 	FM_EREPORT_CPU_UE_MEM,
136 	SFSR_UE,	"UE ",	(OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE,
137 	"Uncorrectable ECC",  FM_EREPORT_PAYLOAD_SYNC,
138 	FM_EREPORT_CPU_UE_CHANNEL,
139 	SFSR_UE,	"UE ",	(OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE,
140 	"Uncorrectable ECC",  FM_EREPORT_PAYLOAD_SYNC,
141 	FM_EREPORT_CPU_UE_CPU,
142 	SFSR_UE,	"UE ",	(OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE,
143 	"Uncorrectable ECC",  FM_EREPORT_PAYLOAD_SYNC,
144 	FM_EREPORT_CPU_UE_PATH,
145 	SFSR_BERR, "BERR ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS,
146 	"Bus Error",  FM_EREPORT_PAYLOAD_SYNC,
147 	FM_EREPORT_CPU_BERR,
148 	SFSR_TO, "TO ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS,
149 	"Bus Timeout",  FM_EREPORT_PAYLOAD_SYNC,
150 	FM_EREPORT_CPU_BTO,
151 	SFSR_TLB_MUL, "TLB_MUL ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS,
152 	"TLB MultiHit",  FM_EREPORT_PAYLOAD_SYNC,
153 	FM_EREPORT_CPU_MTLB,
154 	SFSR_TLB_PRT, "TLB_PRT ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS,
155 	"TLB Parity",  FM_EREPORT_PAYLOAD_SYNC,
156 	FM_EREPORT_CPU_TLBP,
157 
158 	UGESR_IAUG_CRE, "IAUG_CRE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
159 	"IAUG CRE",  FM_EREPORT_PAYLOAD_URGENT,
160 	FM_EREPORT_CPU_CRE,
161 	UGESR_IAUG_TSBCTXT, "IAUG_TSBCTXT",
162 	OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
163 	"IAUG TSBCTXT",  FM_EREPORT_PAYLOAD_URGENT,
164 	FM_EREPORT_CPU_TSBCTX,
165 	UGESR_IUG_TSBP, "IUG_TSBP", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
166 	"IUG TSBP",  FM_EREPORT_PAYLOAD_URGENT,
167 	FM_EREPORT_CPU_TSBP,
168 	UGESR_IUG_PSTATE, "IUG_PSTATE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
169 	"IUG PSTATE",  FM_EREPORT_PAYLOAD_URGENT,
170 	FM_EREPORT_CPU_PSTATE,
171 	UGESR_IUG_TSTATE, "IUG_TSTATE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
172 	"IUG TSTATE",  FM_EREPORT_PAYLOAD_URGENT,
173 	FM_EREPORT_CPU_TSTATE,
174 	UGESR_IUG_F, "IUG_F", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
175 	"IUG FREG",  FM_EREPORT_PAYLOAD_URGENT,
176 	FM_EREPORT_CPU_IUG_F,
177 	UGESR_IUG_R, "IUG_R", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
178 	"IUG RREG",  FM_EREPORT_PAYLOAD_URGENT,
179 	FM_EREPORT_CPU_IUG_R,
180 	UGESR_AUG_SDC, "AUG_SDC", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
181 	"AUG SDC",  FM_EREPORT_PAYLOAD_URGENT,
182 	FM_EREPORT_CPU_SDC,
183 	UGESR_IUG_WDT, "IUG_WDT", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
184 	"IUG WDT",  FM_EREPORT_PAYLOAD_URGENT,
185 	FM_EREPORT_CPU_WDT,
186 	UGESR_IUG_DTLB, "IUG_DTLB", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
187 	"IUG DTLB",  FM_EREPORT_PAYLOAD_URGENT,
188 	FM_EREPORT_CPU_DTLB,
189 	UGESR_IUG_ITLB, "IUG_ITLB", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
190 	"IUG ITLB",  FM_EREPORT_PAYLOAD_URGENT,
191 	FM_EREPORT_CPU_ITLB,
192 	UGESR_IUG_COREERR, "IUG_COREERR",
193 	OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
194 	"IUG COREERR",  FM_EREPORT_PAYLOAD_URGENT,
195 	FM_EREPORT_CPU_CORE,
196 	UGESR_MULTI_DAE, "MULTI_DAE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
197 	"MULTI DAE",  FM_EREPORT_PAYLOAD_URGENT,
198 	FM_EREPORT_CPU_DAE,
199 	UGESR_MULTI_IAE, "MULTI_IAE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
200 	"MULTI IAE",  FM_EREPORT_PAYLOAD_URGENT,
201 	FM_EREPORT_CPU_IAE,
202 	UGESR_MULTI_UGE, "MULTI_UGE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
203 	"MULTI UGE",  FM_EREPORT_PAYLOAD_URGENT,
204 	FM_EREPORT_CPU_UGE,
205 	0,		NULL,		0,		0,
206 	NULL,  0,	   0,
207 };
208 
209 int (*p2get_mem_info)(int synd_code, uint64_t paddr,
210 		uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
211 		int *segsp, int *banksp, int *mcidp);
212 
213 
214 /*
215  * Setup trap handlers for 0xA, 0x32, 0x40 trap types
216  * and "ta 3" and "ta 4".
217  */
218 void
219 cpu_init_trap(void)
220 {
221 	OPL_SET_TRAP(tt0_iae, opl_serr_instr);
222 	OPL_SET_TRAP(tt1_iae, opl_serr_instr);
223 	OPL_SET_TRAP(tt0_dae, opl_serr_instr);
224 	OPL_SET_TRAP(tt1_dae, opl_serr_instr);
225 	OPL_SET_TRAP(tt0_asdat, opl_ugerr_instr);
226 	OPL_SET_TRAP(tt1_asdat, opl_ugerr_instr);
227 	OPL_SET_TRAP(tt0_flushw, opl_ta3_instr);
228 	OPL_PATCH_28(opl_cleanw_patch, opl_ta4_instr);
229 }
230 
231 static int
232 getintprop(pnode_t node, char *name, int deflt)
233 {
234 	int	value;
235 
236 	switch (prom_getproplen(node, name)) {
237 	case sizeof (int):
238 		(void) prom_getprop(node, name, (caddr_t)&value);
239 		break;
240 
241 	default:
242 		value = deflt;
243 		break;
244 	}
245 
246 	return (value);
247 }
248 
249 /*
250  * Set the magic constants of the implementation.
251  */
252 /*ARGSUSED*/
253 void
254 cpu_fiximp(pnode_t dnode)
255 {
256 	int i, a;
257 	extern int vac_size, vac_shift;
258 	extern uint_t vac_mask;
259 
260 	static struct {
261 		char	*name;
262 		int	*var;
263 		int	defval;
264 	} prop[] = {
265 		"l1-dcache-size", &dcache_size, OPL_DCACHE_SIZE,
266 		"l1-dcache-line-size", &dcache_linesize, OPL_DCACHE_LSIZE,
267 		"l1-icache-size", &icache_size, OPL_ICACHE_SIZE,
268 		"l1-icache-line-size", &icache_linesize, OPL_ICACHE_LSIZE,
269 		"l2-cache-size", &ecache_size, OPL_ECACHE_SIZE,
270 		"l2-cache-line-size", &ecache_alignsize, OPL_ECACHE_LSIZE,
271 		"l2-cache-associativity", &ecache_associativity, OPL_ECACHE_NWAY
272 	};
273 
274 	for (i = 0; i < sizeof (prop) / sizeof (prop[0]); i++)
275 		*prop[i].var = getintprop(dnode, prop[i].name, prop[i].defval);
276 
277 	ecache_setsize = ecache_size / ecache_associativity;
278 
279 	vac_size = OPL_VAC_SIZE;
280 	vac_mask = MMU_PAGEMASK & (vac_size - 1);
281 	i = 0; a = vac_size;
282 	while (a >>= 1)
283 		++i;
284 	vac_shift = i;
285 	shm_alignment = vac_size;
286 	vac = 1;
287 }
288 
289 /*
290  * Enable features for Jupiter-only domains.
291  */
292 void
293 cpu_fix_alljupiter(void)
294 {
295 	if (!prom_SPARC64VII_support_enabled()) {
296 		/*
297 		 * Do not enable all-Jupiter features and do not turn on
298 		 * the cpu_alljupiter flag.
299 		 */
300 		return;
301 	}
302 
303 	cpu_alljupiter = 1;
304 
305 	/*
306 	 * Enable ima hwcap for Jupiter-only domains.  DR will prevent
307 	 * addition of Olympus-C to all-Jupiter domains to preserve ima
308 	 * hwcap semantics.
309 	 */
310 	cpu_hwcap_flags |= AV_SPARC_IMA;
311 
312 	/*
313 	 * Enable shared context support.
314 	 */
315 	shctx_on = 1;
316 }
317 
318 #ifdef	OLYMPUS_C_REV_B_ERRATA_XCALL
319 /*
320  * Quick and dirty way to redefine locally in
321  * OPL the value of IDSR_BN_SETS to 31 instead
322  * of the standard 32 value. This is to workaround
323  * REV_B of Olympus_c processor's problem in handling
324  * more than 31 xcall broadcast.
325  */
326 #undef	IDSR_BN_SETS
327 #define	IDSR_BN_SETS    31
328 #endif	/* OLYMPUS_C_REV_B_ERRATA_XCALL */
329 
330 void
331 send_mondo_set(cpuset_t set)
332 {
333 	int lo, busy, nack, shipped = 0;
334 	uint16_t i, cpuids[IDSR_BN_SETS];
335 	uint64_t idsr, nackmask = 0, busymask, curnack, curbusy;
336 	uint64_t starttick, endtick, tick, lasttick;
337 #if (NCPU > IDSR_BN_SETS)
338 	int index = 0;
339 	int ncpuids = 0;
340 #endif
341 #ifdef	OLYMPUS_C_REV_A_ERRATA_XCALL
342 	int bn_sets = IDSR_BN_SETS;
343 	uint64_t ver;
344 
345 	ASSERT(NCPU > bn_sets);
346 #endif
347 
348 	ASSERT(!CPUSET_ISNULL(set));
349 	starttick = lasttick = gettick();
350 
351 #ifdef	OLYMPUS_C_REV_A_ERRATA_XCALL
352 	ver = ultra_getver();
353 	if (((ULTRA_VER_IMPL(ver)) == OLYMPUS_C_IMPL) &&
354 	    ((OLYMPUS_REV_MASK(ver)) == OLYMPUS_C_A))
355 		bn_sets = 1;
356 #endif
357 
358 #if (NCPU <= IDSR_BN_SETS)
359 	for (i = 0; i < NCPU; i++)
360 		if (CPU_IN_SET(set, i)) {
361 			shipit(i, shipped);
362 			nackmask |= IDSR_NACK_BIT(shipped);
363 			cpuids[shipped++] = i;
364 			CPUSET_DEL(set, i);
365 			if (CPUSET_ISNULL(set))
366 				break;
367 		}
368 	CPU_STATS_ADDQ(CPU, sys, xcalls, shipped);
369 #else
370 	for (i = 0; i < NCPU; i++)
371 		if (CPU_IN_SET(set, i)) {
372 			ncpuids++;
373 
374 			/*
375 			 * Ship only to the first (IDSR_BN_SETS) CPUs.  If we
376 			 * find we have shipped to more than (IDSR_BN_SETS)
377 			 * CPUs, set "index" to the highest numbered CPU in
378 			 * the set so we can ship to other CPUs a bit later on.
379 			 */
380 #ifdef	OLYMPUS_C_REV_A_ERRATA_XCALL
381 			if (shipped < bn_sets) {
382 #else
383 			if (shipped < IDSR_BN_SETS) {
384 #endif
385 				shipit(i, shipped);
386 				nackmask |= IDSR_NACK_BIT(shipped);
387 				cpuids[shipped++] = i;
388 				CPUSET_DEL(set, i);
389 				if (CPUSET_ISNULL(set))
390 					break;
391 			} else
392 				index = (int)i;
393 		}
394 
395 	CPU_STATS_ADDQ(CPU, sys, xcalls, ncpuids);
396 #endif
397 
398 	busymask = IDSR_NACK_TO_BUSY(nackmask);
399 	busy = nack = 0;
400 	endtick = starttick + xc_tick_limit;
401 	for (;;) {
402 		idsr = getidsr();
403 #if (NCPU <= IDSR_BN_SETS)
404 		if (idsr == 0)
405 			break;
406 #else
407 		if (idsr == 0 && shipped == ncpuids)
408 			break;
409 #endif
410 		tick = gettick();
411 		/*
412 		 * If there is a big jump between the current tick
413 		 * count and lasttick, we have probably hit a break
414 		 * point.  Adjust endtick accordingly to avoid panic.
415 		 */
416 		if (tick > (lasttick + xc_tick_jump_limit))
417 			endtick += (tick - lasttick);
418 		lasttick = tick;
419 		if (tick > endtick) {
420 			if (panic_quiesce)
421 				return;
422 			cmn_err(CE_CONT, "send mondo timeout [%d NACK %d "
423 			    "BUSY]\nIDSR 0x%" PRIx64 "  cpuids:",
424 			    nack, busy, idsr);
425 #ifdef	OLYMPUS_C_REV_A_ERRATA_XCALL
426 			for (i = 0; i < bn_sets; i++) {
427 #else
428 			for (i = 0; i < IDSR_BN_SETS; i++) {
429 #endif
430 				if (idsr & (IDSR_NACK_BIT(i) |
431 				    IDSR_BUSY_BIT(i))) {
432 					cmn_err(CE_CONT, " 0x%x", cpuids[i]);
433 				}
434 			}
435 			cmn_err(CE_CONT, "\n");
436 			cmn_err(CE_PANIC, "send_mondo_set: timeout");
437 		}
438 		curnack = idsr & nackmask;
439 		curbusy = idsr & busymask;
440 
441 #ifdef OLYMPUS_C_REV_B_ERRATA_XCALL
442 		/*
443 		 * Only proceed to send more xcalls if all the
444 		 * cpus in the previous IDSR_BN_SETS were completed.
445 		 */
446 		if (curbusy) {
447 			busy++;
448 			continue;
449 		}
450 #endif /* OLYMPUS_C_REV_B_ERRATA_XCALL */
451 
452 #if (NCPU > IDSR_BN_SETS)
453 		if (shipped < ncpuids) {
454 			uint64_t cpus_left;
455 			uint16_t next = (uint16_t)index;
456 
457 			cpus_left = ~(IDSR_NACK_TO_BUSY(curnack) | curbusy) &
458 			    busymask;
459 
460 			if (cpus_left) {
461 				do {
462 					/*
463 					 * Sequence through and ship to the
464 					 * remainder of the CPUs in the system
465 					 * (e.g. other than the first
466 					 * (IDSR_BN_SETS)) in reverse order.
467 					 */
468 					lo = lowbit(cpus_left) - 1;
469 					i = IDSR_BUSY_IDX(lo);
470 					shipit(next, i);
471 					shipped++;
472 					cpuids[i] = next;
473 
474 					/*
475 					 * If we've processed all the CPUs,
476 					 * exit the loop now and save
477 					 * instructions.
478 					 */
479 					if (shipped == ncpuids)
480 						break;
481 
482 					for ((index = ((int)next - 1));
483 					    index >= 0; index--)
484 						if (CPU_IN_SET(set, index)) {
485 							next = (uint16_t)index;
486 							break;
487 						}
488 
489 					cpus_left &= ~(1ull << lo);
490 				} while (cpus_left);
491 				continue;
492 			}
493 		}
494 #endif
495 #ifndef	OLYMPUS_C_REV_B_ERRATA_XCALL
496 		if (curbusy) {
497 			busy++;
498 			continue;
499 		}
500 #endif	/* OLYMPUS_C_REV_B_ERRATA_XCALL */
501 #ifdef SEND_MONDO_STATS
502 		{
503 			int n = gettick() - starttick;
504 			if (n < 8192)
505 				x_nack_stimes[n >> 7]++;
506 		}
507 #endif
508 		while (gettick() < (tick + sys_clock_mhz))
509 			;
510 		do {
511 			lo = lowbit(curnack) - 1;
512 			i = IDSR_NACK_IDX(lo);
513 			shipit(cpuids[i], i);
514 			curnack &= ~(1ull << lo);
515 		} while (curnack);
516 		nack++;
517 		busy = 0;
518 	}
519 #ifdef SEND_MONDO_STATS
520 	{
521 		int n = gettick() - starttick;
522 		if (n < 8192)
523 			x_set_stimes[n >> 7]++;
524 		else
525 			x_set_ltimes[(n >> 13) & 0xf]++;
526 	}
527 	x_set_cpus[shipped]++;
528 #endif
529 }
530 
531 /*
532  * Cpu private initialization.
533  */
534 void
535 cpu_init_private(struct cpu *cp)
536 {
537 	if (!((IS_OLYMPUS_C(cpunodes[cp->cpu_id].implementation)) ||
538 	    (IS_JUPITER(cpunodes[cp->cpu_id].implementation)))) {
539 		cmn_err(CE_PANIC, "CPU%d Impl %d: Only SPARC64-VI(I) is "
540 		    "supported", cp->cpu_id,
541 		    cpunodes[cp->cpu_id].implementation);
542 	}
543 
544 	adjust_hw_copy_limits(cpunodes[cp->cpu_id].ecache_size);
545 }
546 
547 void
548 cpu_setup(void)
549 {
550 	extern int at_flags;
551 	extern int cpc_has_overflow_intr;
552 	uint64_t cpu0_log;
553 	extern	 uint64_t opl_cpu0_err_log;
554 
555 	/*
556 	 * Initialize Error log Scratch register for error handling.
557 	 */
558 
559 	cpu0_log = va_to_pa(&opl_cpu0_err_log);
560 	opl_error_setup(cpu0_log);
561 	opl_cpu0_log_setup = 1;
562 
563 	/*
564 	 * Enable MMU translating multiple page sizes for
565 	 * sITLB and sDTLB.
566 	 */
567 	opl_mpg_enable();
568 
569 	/*
570 	 * Setup chip-specific trap handlers.
571 	 */
572 	cpu_init_trap();
573 
574 	cache |= (CACHE_VAC | CACHE_PTAG | CACHE_IOCOHERENT);
575 
576 	at_flags = EF_SPARC_32PLUS | EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3;
577 
578 	/*
579 	 * Due to the number of entries in the fully-associative tlb
580 	 * this may have to be tuned lower than in spitfire.
581 	 */
582 	pp_slots = MIN(8, MAXPP_SLOTS);
583 
584 	/*
585 	 * Block stores do not invalidate all pages of the d$, pagecopy
586 	 * et. al. need virtual translations with virtual coloring taken
587 	 * into consideration.  prefetch/ldd will pollute the d$ on the
588 	 * load side.
589 	 */
590 	pp_consistent_coloring = PPAGE_STORE_VCOLORING | PPAGE_LOADS_POLLUTE;
591 
592 	if (use_page_coloring) {
593 		do_pg_coloring = 1;
594 	}
595 
596 	isa_list =
597 	    "sparcv9+vis2 sparcv9+vis sparcv9 "
598 	    "sparcv8plus+vis2 sparcv8plus+vis sparcv8plus "
599 	    "sparcv8 sparcv8-fsmuld sparcv7 sparc";
600 
601 	cpu_hwcap_flags = AV_SPARC_VIS | AV_SPARC_VIS2 |
602 	    AV_SPARC_POPC | AV_SPARC_FMAF;
603 
604 	/*
605 	 * On SPARC64-VI, there's no hole in the virtual address space
606 	 */
607 	hole_start = hole_end = 0;
608 
609 	/*
610 	 * The kpm mapping window.
611 	 * kpm_size:
612 	 *	The size of a single kpm range.
613 	 *	The overall size will be: kpm_size * vac_colors.
614 	 * kpm_vbase:
615 	 *	The virtual start address of the kpm range within the kernel
616 	 *	virtual address space. kpm_vbase has to be kpm_size aligned.
617 	 */
618 	kpm_size = (size_t)(128ull * 1024 * 1024 * 1024 * 1024); /* 128TB */
619 	kpm_size_shift = 47;
620 	kpm_vbase = (caddr_t)0x8000000000000000ull; /* 8EB */
621 	kpm_smallpages = 1;
622 
623 	/*
624 	 * The traptrace code uses either %tick or %stick for
625 	 * timestamping.  We have %stick so we can use it.
626 	 */
627 	traptrace_use_stick = 1;
628 
629 	/*
630 	 * SPARC64-VI has a performance counter overflow interrupt
631 	 */
632 	cpc_has_overflow_intr = 1;
633 
634 	/*
635 	 * Declare that this architecture/cpu combination does not support
636 	 * fpRAS.
637 	 */
638 	fpras_implemented = 0;
639 }
640 
641 /*
642  * Called by setcpudelay
643  */
644 void
645 cpu_init_tick_freq(void)
646 {
647 	/*
648 	 * For SPARC64-VI we want to use the system clock rate as
649 	 * the basis for low level timing, due to support of mixed
650 	 * speed CPUs and power managment.
651 	 */
652 	if (system_clock_freq == 0)
653 		cmn_err(CE_PANIC, "setcpudelay: invalid system_clock_freq");
654 
655 	sys_tick_freq = system_clock_freq;
656 }
657 
658 #ifdef SEND_MONDO_STATS
659 uint32_t x_one_stimes[64];
660 uint32_t x_one_ltimes[16];
661 uint32_t x_set_stimes[64];
662 uint32_t x_set_ltimes[16];
663 uint32_t x_set_cpus[NCPU];
664 uint32_t x_nack_stimes[64];
665 #endif
666 
667 /*
668  * Note: A version of this function is used by the debugger via the KDI,
669  * and must be kept in sync with this version.  Any changes made to this
670  * function to support new chips or to accomodate errata must also be included
671  * in the KDI-specific version.  See us3_kdi.c.
672  */
673 void
674 send_one_mondo(int cpuid)
675 {
676 	int busy, nack;
677 	uint64_t idsr, starttick, endtick, tick, lasttick;
678 	uint64_t busymask;
679 
680 	CPU_STATS_ADDQ(CPU, sys, xcalls, 1);
681 	starttick = lasttick = gettick();
682 	shipit(cpuid, 0);
683 	endtick = starttick + xc_tick_limit;
684 	busy = nack = 0;
685 	busymask = IDSR_BUSY;
686 	for (;;) {
687 		idsr = getidsr();
688 		if (idsr == 0)
689 			break;
690 
691 		tick = gettick();
692 		/*
693 		 * If there is a big jump between the current tick
694 		 * count and lasttick, we have probably hit a break
695 		 * point.  Adjust endtick accordingly to avoid panic.
696 		 */
697 		if (tick > (lasttick + xc_tick_jump_limit))
698 			endtick += (tick - lasttick);
699 		lasttick = tick;
700 		if (tick > endtick) {
701 			if (panic_quiesce)
702 				return;
703 			cmn_err(CE_PANIC, "send mondo timeout (target 0x%x) "
704 			    "[%d NACK %d BUSY]", cpuid, nack, busy);
705 		}
706 
707 		if (idsr & busymask) {
708 			busy++;
709 			continue;
710 		}
711 		drv_usecwait(1);
712 		shipit(cpuid, 0);
713 		nack++;
714 		busy = 0;
715 	}
716 #ifdef SEND_MONDO_STATS
717 	{
718 		int n = gettick() - starttick;
719 		if (n < 8192)
720 			x_one_stimes[n >> 7]++;
721 		else
722 			x_one_ltimes[(n >> 13) & 0xf]++;
723 	}
724 #endif
725 }
726 
727 /*
728  * init_mmu_page_sizes is set to one after the bootup time initialization
729  * via mmu_init_mmu_page_sizes, to indicate that mmu_page_sizes has a
730  * valid value.
731  *
732  * mmu_disable_ism_large_pages and mmu_disable_large_pages are the mmu-specific
733  * versions of disable_ism_large_pages and disable_large_pages, and feed back
734  * into those two hat variables at hat initialization time.
735  *
736  */
737 int init_mmu_page_sizes = 0;
738 
739 static uint_t mmu_disable_large_pages = 0;
740 static uint_t mmu_disable_ism_large_pages = ((1 << TTE64K) |
741 	(1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M));
742 static uint_t mmu_disable_auto_data_large_pages = ((1 << TTE64K) |
743 	(1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M));
744 static uint_t mmu_disable_auto_text_large_pages = ((1 << TTE64K) |
745 	(1 << TTE512K));
746 
747 /*
748  * Re-initialize mmu_page_sizes and friends, for SPARC64-VI mmu support.
749  * Called during very early bootup from check_cpus_set().
750  * Can be called to verify that mmu_page_sizes are set up correctly.
751  *
752  * Set Olympus defaults. We do not use the function parameter.
753  */
754 /*ARGSUSED*/
755 void
756 mmu_init_scd(sf_scd_t *scdp)
757 {
758 	scdp->scd_sfmmup->sfmmu_cext = shctx_cext;
759 }
760 
761 /*ARGSUSED*/
762 int
763 mmu_init_mmu_page_sizes(int32_t not_used)
764 {
765 	if (!init_mmu_page_sizes) {
766 		mmu_page_sizes = MMU_PAGE_SIZES;
767 		mmu_hashcnt = MAX_HASHCNT;
768 		mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE;
769 		mmu_exported_pagesize_mask = (1 << TTE8K) |
770 		    (1 << TTE64K) | (1 << TTE512K) | (1 << TTE4M) |
771 		    (1 << TTE32M) | (1 << TTE256M);
772 		init_mmu_page_sizes = 1;
773 		return (0);
774 	}
775 	return (1);
776 }
777 
778 /* SPARC64-VI worst case DTLB parameters */
779 #ifndef	LOCKED_DTLB_ENTRIES
780 #define	LOCKED_DTLB_ENTRIES	5	/* 2 user TSBs, 2 nucleus, + OBP */
781 #endif
782 #define	TOTAL_DTLB_ENTRIES	32
783 #define	AVAIL_32M_ENTRIES	0
784 #define	AVAIL_256M_ENTRIES	0
785 #define	AVAIL_DTLB_ENTRIES	(TOTAL_DTLB_ENTRIES - LOCKED_DTLB_ENTRIES)
786 static uint64_t ttecnt_threshold[MMU_PAGE_SIZES] = {
787 	AVAIL_DTLB_ENTRIES, AVAIL_DTLB_ENTRIES,
788 	AVAIL_DTLB_ENTRIES, AVAIL_DTLB_ENTRIES,
789 	AVAIL_DTLB_ENTRIES, AVAIL_DTLB_ENTRIES};
790 
791 /*
792  * The function returns the mmu-specific values for the
793  * hat's disable_large_pages, disable_ism_large_pages, and
794  * disable_auto_data_large_pages and
795  * disable_text_data_large_pages variables.
796  */
797 uint_t
798 mmu_large_pages_disabled(uint_t flag)
799 {
800 	uint_t pages_disable = 0;
801 	extern int use_text_pgsz64K;
802 	extern int use_text_pgsz512K;
803 
804 	if (flag == HAT_LOAD) {
805 		pages_disable =  mmu_disable_large_pages;
806 	} else if (flag == HAT_LOAD_SHARE) {
807 		pages_disable = mmu_disable_ism_large_pages;
808 	} else if (flag == HAT_AUTO_DATA) {
809 		pages_disable = mmu_disable_auto_data_large_pages;
810 	} else if (flag == HAT_AUTO_TEXT) {
811 		pages_disable = mmu_disable_auto_text_large_pages;
812 		if (use_text_pgsz512K) {
813 			pages_disable &= ~(1 << TTE512K);
814 		}
815 		if (use_text_pgsz64K) {
816 			pages_disable &= ~(1 << TTE64K);
817 		}
818 	}
819 	return (pages_disable);
820 }
821 
822 /*
823  * mmu_init_large_pages is called with the desired ism_pagesize parameter.
824  * It may be called from set_platform_defaults, if some value other than 4M
825  * is desired.  mmu_ism_pagesize is the tunable.  If it has a bad value,
826  * then only warn, since it would be bad form to panic due to a user typo.
827  *
828  * The function re-initializes the mmu_disable_ism_large_pages variable.
829  */
830 void
831 mmu_init_large_pages(size_t ism_pagesize)
832 {
833 
834 	switch (ism_pagesize) {
835 	case MMU_PAGESIZE4M:
836 		mmu_disable_ism_large_pages = ((1 << TTE64K) |
837 		    (1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M));
838 		mmu_disable_auto_data_large_pages = ((1 << TTE64K) |
839 		    (1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M));
840 		shctx_cext = TAGACCEXT_MKSZPAIR(TTE4M, TTE8K);
841 		break;
842 	case MMU_PAGESIZE32M:
843 		mmu_disable_ism_large_pages = ((1 << TTE64K) |
844 		    (1 << TTE512K) | (1 << TTE256M));
845 		mmu_disable_auto_data_large_pages = ((1 << TTE64K) |
846 		    (1 << TTE512K) | (1 << TTE4M) | (1 << TTE256M));
847 		adjust_data_maxlpsize(ism_pagesize);
848 		shctx_cext = TAGACCEXT_MKSZPAIR(TTE32M, TTE8K);
849 		break;
850 	case MMU_PAGESIZE256M:
851 		mmu_disable_ism_large_pages = ((1 << TTE64K) |
852 		    (1 << TTE512K) | (1 << TTE32M));
853 		mmu_disable_auto_data_large_pages = ((1 << TTE64K) |
854 		    (1 << TTE512K) | (1 << TTE4M) | (1 << TTE32M));
855 		adjust_data_maxlpsize(ism_pagesize);
856 		shctx_cext = TAGACCEXT_MKSZPAIR(TTE256M, TTE8K);
857 		break;
858 	default:
859 		cmn_err(CE_WARN, "Unrecognized mmu_ism_pagesize value 0x%lx",
860 		    ism_pagesize);
861 		break;
862 	}
863 }
864 
865 /*
866  * Function to reprogram the TLBs when page sizes used
867  * by a process change significantly.
868  */
869 static void
870 mmu_setup_page_sizes(struct hat *hat, uint64_t *ttecnt, uint8_t *tmp_pgsz)
871 {
872 	uint8_t pgsz0, pgsz1;
873 
874 	/*
875 	 * Don't program 2nd dtlb for kernel and ism hat
876 	 */
877 	ASSERT(hat->sfmmu_ismhat == NULL);
878 	ASSERT(hat != ksfmmup);
879 
880 	/*
881 	 * hat->sfmmu_pgsz[] is an array whose elements
882 	 * contain a sorted order of page sizes.  Element
883 	 * 0 is the most commonly used page size, followed
884 	 * by element 1, and so on.
885 	 *
886 	 * ttecnt[] is an array of per-page-size page counts
887 	 * mapped into the process.
888 	 *
889 	 * If the HAT's choice for page sizes is unsuitable,
890 	 * we can override it here.  The new values written
891 	 * to the array will be handed back to us later to
892 	 * do the actual programming of the TLB hardware.
893 	 *
894 	 */
895 	pgsz0 = (uint8_t)MIN(tmp_pgsz[0], tmp_pgsz[1]);
896 	pgsz1 = (uint8_t)MAX(tmp_pgsz[0], tmp_pgsz[1]);
897 
898 	/*
899 	 * This implements PAGESIZE programming of the sTLB
900 	 * if large TTE counts don't exceed the thresholds.
901 	 */
902 	if (ttecnt[pgsz0] < ttecnt_threshold[pgsz0])
903 		pgsz0 = page_szc(MMU_PAGESIZE);
904 	if (ttecnt[pgsz1] < ttecnt_threshold[pgsz1])
905 		pgsz1 = page_szc(MMU_PAGESIZE);
906 	tmp_pgsz[0] = pgsz0;
907 	tmp_pgsz[1] = pgsz1;
908 	/* otherwise, accept what the HAT chose for us */
909 }
910 
911 /*
912  * The HAT calls this function when an MMU context is allocated so that we
913  * can reprogram the large TLBs appropriately for the new process using
914  * the context.
915  *
916  * The caller must hold the HAT lock.
917  */
918 void
919 mmu_set_ctx_page_sizes(struct hat *hat)
920 {
921 	uint8_t pgsz0, pgsz1;
922 	uint8_t new_cext;
923 
924 	ASSERT(sfmmu_hat_lock_held(hat));
925 	/*
926 	 * Don't program 2nd dtlb for kernel and ism hat
927 	 */
928 	if (hat->sfmmu_ismhat || hat == ksfmmup)
929 		return;
930 
931 	/*
932 	 * If supported, reprogram the TLBs to a larger pagesize.
933 	 */
934 	if (hat->sfmmu_scdp != NULL) {
935 		new_cext = hat->sfmmu_scdp->scd_sfmmup->sfmmu_cext;
936 		ASSERT(new_cext == shctx_cext);
937 	} else {
938 		pgsz0 = hat->sfmmu_pgsz[0];
939 		pgsz1 = hat->sfmmu_pgsz[1];
940 		ASSERT(pgsz0 < mmu_page_sizes);
941 		ASSERT(pgsz1 < mmu_page_sizes);
942 		new_cext = TAGACCEXT_MKSZPAIR(pgsz1, pgsz0);
943 	}
944 	if (hat->sfmmu_cext != new_cext) {
945 #ifdef DEBUG
946 		int i;
947 		/*
948 		 * assert cnum should be invalid, this is because pagesize
949 		 * can only be changed after a proc's ctxs are invalidated.
950 		 */
951 		for (i = 0; i < max_mmu_ctxdoms; i++) {
952 			ASSERT(hat->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
953 		}
954 #endif /* DEBUG */
955 		hat->sfmmu_cext = new_cext;
956 	}
957 	/*
958 	 * sfmmu_setctx_sec() will take care of the
959 	 * rest of the dirty work for us.
960 	 */
961 }
962 
963 /*
964  * This function assumes that there are either four or six supported page
965  * sizes and at most two programmable TLBs, so we need to decide which
966  * page sizes are most important and then adjust the TLB page sizes
967  * accordingly (if supported).
968  *
969  * If these assumptions change, this function will need to be
970  * updated to support whatever the new limits are.
971  */
972 void
973 mmu_check_page_sizes(sfmmu_t *sfmmup, uint64_t *ttecnt)
974 {
975 	uint64_t sortcnt[MMU_PAGE_SIZES];
976 	uint8_t tmp_pgsz[MMU_PAGE_SIZES];
977 	uint8_t i, j, max;
978 	uint16_t oldval, newval;
979 
980 	/*
981 	 * We only consider reprogramming the TLBs if one or more of
982 	 * the two most used page sizes changes and we're using
983 	 * large pages in this process.
984 	 */
985 	if (SFMMU_LGPGS_INUSE(sfmmup)) {
986 		/* Sort page sizes. */
987 		for (i = 0; i < mmu_page_sizes; i++) {
988 			sortcnt[i] = ttecnt[i];
989 		}
990 		for (j = 0; j < mmu_page_sizes; j++) {
991 			for (i = mmu_page_sizes - 1, max = 0; i > 0; i--) {
992 				if (sortcnt[i] > sortcnt[max])
993 					max = i;
994 			}
995 			tmp_pgsz[j] = max;
996 			sortcnt[max] = 0;
997 		}
998 
999 		oldval = sfmmup->sfmmu_pgsz[0] << 8 | sfmmup->sfmmu_pgsz[1];
1000 
1001 		mmu_setup_page_sizes(sfmmup, ttecnt, tmp_pgsz);
1002 
1003 		/* Check 2 largest values after the sort. */
1004 		newval = tmp_pgsz[0] << 8 | tmp_pgsz[1];
1005 		if (newval != oldval) {
1006 			sfmmu_reprog_pgsz_arr(sfmmup, tmp_pgsz);
1007 		}
1008 	}
1009 }
1010 
1011 /*
1012  * Return processor specific async error structure
1013  * size used.
1014  */
1015 int
1016 cpu_aflt_size(void)
1017 {
1018 	return (sizeof (opl_async_flt_t));
1019 }
1020 
1021 /*
1022  * The cpu_sync_log_err() function is called via the [uc]e_drain() function to
1023  * post-process CPU events that are dequeued.  As such, it can be invoked
1024  * from softint context, from AST processing in the trap() flow, or from the
1025  * panic flow.  We decode the CPU-specific data, and take appropriate actions.
1026  * Historically this entry point was used to log the actual cmn_err(9F) text;
1027  * now with FMA it is used to prepare 'flt' to be converted into an ereport.
1028  * With FMA this function now also returns a flag which indicates to the
1029  * caller whether the ereport should be posted (1) or suppressed (0).
1030  */
1031 /*ARGSUSED*/
1032 static int
1033 cpu_sync_log_err(void *flt)
1034 {
1035 	opl_async_flt_t *opl_flt = (opl_async_flt_t *)flt;
1036 	struct async_flt *aflt = (struct async_flt *)flt;
1037 
1038 	/*
1039 	 * No extra processing of urgent error events.
1040 	 * Always generate ereports for these events.
1041 	 */
1042 	if (aflt->flt_status == OPL_ECC_URGENT_TRAP)
1043 		return (1);
1044 
1045 	/*
1046 	 * Additional processing for synchronous errors.
1047 	 */
1048 	switch (opl_flt->flt_type) {
1049 	case OPL_CPU_INV_SFSR:
1050 		return (1);
1051 
1052 	case OPL_CPU_SYNC_UE:
1053 		/*
1054 		 * The validity: SFSR_MK_UE bit has been checked
1055 		 * in opl_cpu_sync_error()
1056 		 * No more check is required.
1057 		 *
1058 		 * opl_flt->flt_eid_mod and flt_eid_sid have been set by H/W,
1059 		 * and they have been retrieved in cpu_queue_events()
1060 		 */
1061 
1062 		if (opl_flt->flt_eid_mod == OPL_ERRID_MEM) {
1063 			ASSERT(aflt->flt_in_memory);
1064 			/*
1065 			 * We want to skip logging only if ALL the following
1066 			 * conditions are true:
1067 			 *
1068 			 *	1. We are not panicing already.
1069 			 *	2. The error is a memory error.
1070 			 *	3. There is only one error.
1071 			 *	4. The error is on a retired page.
1072 			 *	5. The error occurred under on_trap
1073 			 *	protection AFLT_PROT_EC
1074 			 */
1075 			if (!panicstr && aflt->flt_prot == AFLT_PROT_EC &&
1076 			    page_retire_check(aflt->flt_addr, NULL) == 0) {
1077 				/*
1078 				 * Do not log an error from
1079 				 * the retired page
1080 				 */
1081 				softcall(ecc_page_zero, (void *)aflt->flt_addr);
1082 				return (0);
1083 			}
1084 			if (!panicstr)
1085 				cpu_page_retire(opl_flt);
1086 		}
1087 		return (1);
1088 
1089 	case OPL_CPU_SYNC_OTHERS:
1090 		/*
1091 		 * For the following error cases, the processor HW does
1092 		 * not set the flt_eid_mod/flt_eid_sid. Instead, SW will attempt
1093 		 * to assign appropriate values here to reflect what we
1094 		 * think is the most likely cause of the problem w.r.t to
1095 		 * the particular error event.  For Buserr and timeout
1096 		 * error event, we will assign OPL_ERRID_CHANNEL as the
1097 		 * most likely reason.  For TLB parity or multiple hit
1098 		 * error events, we will assign the reason as
1099 		 * OPL_ERRID_CPU (cpu related problem) and set the
1100 		 * flt_eid_sid to point to the cpuid.
1101 		 */
1102 
1103 		if (opl_flt->flt_bit & (SFSR_BERR|SFSR_TO)) {
1104 			/*
1105 			 * flt_eid_sid will not be used for this case.
1106 			 */
1107 			opl_flt->flt_eid_mod = OPL_ERRID_CHANNEL;
1108 		}
1109 		if (opl_flt->flt_bit & (SFSR_TLB_MUL|SFSR_TLB_PRT)) {
1110 			opl_flt->flt_eid_mod = OPL_ERRID_CPU;
1111 			opl_flt->flt_eid_sid = aflt->flt_inst;
1112 		}
1113 
1114 		/*
1115 		 * In case of no effective error bit
1116 		 */
1117 		if ((opl_flt->flt_bit & SFSR_ERRS) == 0) {
1118 			opl_flt->flt_eid_mod = OPL_ERRID_CPU;
1119 			opl_flt->flt_eid_sid = aflt->flt_inst;
1120 		}
1121 		break;
1122 
1123 		default:
1124 			return (1);
1125 	}
1126 	return (1);
1127 }
1128 
1129 /*
1130  * Retire the bad page that may contain the flushed error.
1131  */
1132 void
1133 cpu_page_retire(opl_async_flt_t *opl_flt)
1134 {
1135 	struct async_flt *aflt = (struct async_flt *)opl_flt;
1136 	(void) page_retire(aflt->flt_addr, PR_UE);
1137 }
1138 
1139 /*
1140  * Invoked by error_init() early in startup and therefore before
1141  * startup_errorq() is called to drain any error Q -
1142  *
1143  * startup()
1144  *   startup_end()
1145  *     error_init()
1146  *       cpu_error_init()
1147  * errorq_init()
1148  *   errorq_drain()
1149  * start_other_cpus()
1150  *
1151  * The purpose of this routine is to create error-related taskqs.  Taskqs
1152  * are used for this purpose because cpu_lock can't be grabbed from interrupt
1153  * context.
1154  *
1155  */
1156 /*ARGSUSED*/
1157 void
1158 cpu_error_init(int items)
1159 {
1160 	opl_err_log = (opl_errlog_t *)
1161 	    kmem_alloc(ERRLOG_ALLOC_SZ, KM_SLEEP);
1162 	if ((uint64_t)opl_err_log & MMU_PAGEOFFSET)
1163 		cmn_err(CE_PANIC, "The base address of the error log "
1164 		    "is not page aligned");
1165 }
1166 
1167 /*
1168  * We route all errors through a single switch statement.
1169  */
1170 void
1171 cpu_ue_log_err(struct async_flt *aflt)
1172 {
1173 	switch (aflt->flt_class) {
1174 	case CPU_FAULT:
1175 		if (cpu_sync_log_err(aflt))
1176 			cpu_ereport_post(aflt);
1177 		break;
1178 
1179 	case BUS_FAULT:
1180 		bus_async_log_err(aflt);
1181 		break;
1182 
1183 	default:
1184 		cmn_err(CE_WARN, "discarding async error %p with invalid "
1185 		    "fault class (0x%x)", (void *)aflt, aflt->flt_class);
1186 		return;
1187 	}
1188 }
1189 
1190 /*
1191  * Routine for panic hook callback from panic_idle().
1192  *
1193  * Nothing to do here.
1194  */
1195 void
1196 cpu_async_panic_callb(void)
1197 {
1198 }
1199 
1200 /*
1201  * Routine to return a string identifying the physical name
1202  * associated with a memory/cache error.
1203  */
1204 /*ARGSUSED*/
1205 int
1206 cpu_get_mem_unum(int synd_status, ushort_t flt_synd, uint64_t flt_stat,
1207     uint64_t flt_addr, int flt_bus_id, int flt_in_memory,
1208     ushort_t flt_status, char *buf, int buflen, int *lenp)
1209 {
1210 	int synd_code;
1211 	int ret;
1212 
1213 	/*
1214 	 * An AFSR of -1 defaults to a memory syndrome.
1215 	 */
1216 	synd_code = (int)flt_synd;
1217 
1218 	if (&plat_get_mem_unum) {
1219 		if ((ret = plat_get_mem_unum(synd_code, flt_addr, flt_bus_id,
1220 		    flt_in_memory, flt_status, buf, buflen, lenp)) != 0) {
1221 			buf[0] = '\0';
1222 			*lenp = 0;
1223 		}
1224 		return (ret);
1225 	}
1226 	buf[0] = '\0';
1227 	*lenp = 0;
1228 	return (ENOTSUP);
1229 }
1230 
1231 /*
1232  * Wrapper for cpu_get_mem_unum() routine that takes an
1233  * async_flt struct rather than explicit arguments.
1234  */
1235 int
1236 cpu_get_mem_unum_aflt(int synd_status, struct async_flt *aflt,
1237     char *buf, int buflen, int *lenp)
1238 {
1239 	/*
1240 	 * We always pass -1 so that cpu_get_mem_unum will interpret this as a
1241 	 * memory error.
1242 	 */
1243 	return (cpu_get_mem_unum(synd_status, aflt->flt_synd,
1244 	    (uint64_t)-1,
1245 	    aflt->flt_addr, aflt->flt_bus_id, aflt->flt_in_memory,
1246 	    aflt->flt_status, buf, buflen, lenp));
1247 }
1248 
1249 /*
1250  * This routine is a more generic interface to cpu_get_mem_unum()
1251  * that may be used by other modules (e.g. mm).
1252  */
1253 /*ARGSUSED*/
1254 int
1255 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar,
1256     char *buf, int buflen, int *lenp)
1257 {
1258 	int synd_status, flt_in_memory, ret;
1259 	ushort_t flt_status = 0;
1260 	char unum[UNUM_NAMLEN];
1261 
1262 	/*
1263 	 * Check for an invalid address.
1264 	 */
1265 	if (afar == (uint64_t)-1)
1266 		return (ENXIO);
1267 
1268 	if (synd == (uint64_t)-1)
1269 		synd_status = AFLT_STAT_INVALID;
1270 	else
1271 		synd_status = AFLT_STAT_VALID;
1272 
1273 	flt_in_memory = (*afsr & SFSR_MEMORY) &&
1274 	    pf_is_memory(afar >> MMU_PAGESHIFT);
1275 
1276 	ret = cpu_get_mem_unum(synd_status, (ushort_t)synd, *afsr, afar,
1277 	    CPU->cpu_id, flt_in_memory, flt_status, unum, UNUM_NAMLEN, lenp);
1278 	if (ret != 0)
1279 		return (ret);
1280 
1281 	if (*lenp >= buflen)
1282 		return (ENAMETOOLONG);
1283 
1284 	(void) strncpy(buf, unum, buflen);
1285 
1286 	return (0);
1287 }
1288 
1289 /*
1290  * Routine to return memory information associated
1291  * with a physical address and syndrome.
1292  */
1293 /*ARGSUSED*/
1294 int
1295 cpu_get_mem_info(uint64_t synd, uint64_t afar,
1296     uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
1297     int *segsp, int *banksp, int *mcidp)
1298 {
1299 	int synd_code = (int)synd;
1300 
1301 	if (afar == (uint64_t)-1)
1302 		return (ENXIO);
1303 
1304 	if (p2get_mem_info != NULL)
1305 		return ((p2get_mem_info)(synd_code, afar, mem_sizep, seg_sizep,
1306 		    bank_sizep, segsp, banksp, mcidp));
1307 	else
1308 		return (ENOTSUP);
1309 }
1310 
1311 /*
1312  * Routine to return a string identifying the physical
1313  * name associated with a cpuid.
1314  */
1315 int
1316 cpu_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
1317 {
1318 	int ret;
1319 	char unum[UNUM_NAMLEN];
1320 
1321 	if (&plat_get_cpu_unum) {
1322 		if ((ret = plat_get_cpu_unum(cpuid, unum, UNUM_NAMLEN,
1323 		    lenp)) != 0)
1324 			return (ret);
1325 	} else {
1326 		return (ENOTSUP);
1327 	}
1328 
1329 	if (*lenp >= buflen)
1330 		return (ENAMETOOLONG);
1331 
1332 	(void) strncpy(buf, unum, *lenp);
1333 
1334 	return (0);
1335 }
1336 
1337 /*
1338  * This routine exports the name buffer size.
1339  */
1340 size_t
1341 cpu_get_name_bufsize()
1342 {
1343 	return (UNUM_NAMLEN);
1344 }
1345 
1346 /*
1347  * Flush the entire ecache by ASI_L2_CNTL.U2_FLUSH
1348  */
1349 void
1350 cpu_flush_ecache(void)
1351 {
1352 	flush_ecache(ecache_flushaddr, cpunodes[CPU->cpu_id].ecache_size,
1353 	    cpunodes[CPU->cpu_id].ecache_linesize);
1354 }
1355 
1356 static uint8_t
1357 flt_to_trap_type(struct async_flt *aflt)
1358 {
1359 	if (aflt->flt_status & OPL_ECC_ISYNC_TRAP)
1360 		return (TRAP_TYPE_ECC_I);
1361 	if (aflt->flt_status & OPL_ECC_DSYNC_TRAP)
1362 		return (TRAP_TYPE_ECC_D);
1363 	if (aflt->flt_status & OPL_ECC_URGENT_TRAP)
1364 		return (TRAP_TYPE_URGENT);
1365 	return (TRAP_TYPE_UNKNOWN);
1366 }
1367 
1368 /*
1369  * Encode the data saved in the opl_async_flt_t struct into
1370  * the FM ereport payload.
1371  */
1372 /* ARGSUSED */
1373 static void
1374 cpu_payload_add_aflt(struct async_flt *aflt, nvlist_t *payload,
1375 		nvlist_t *resource)
1376 {
1377 	opl_async_flt_t *opl_flt = (opl_async_flt_t *)aflt;
1378 	char unum[UNUM_NAMLEN];
1379 	char sbuf[21]; /* sizeof (UINT64_MAX) + '\0' */
1380 	int len;
1381 
1382 
1383 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_SFSR) {
1384 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_SFSR,
1385 		    DATA_TYPE_UINT64, aflt->flt_stat, NULL);
1386 	}
1387 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_SFAR) {
1388 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_SFAR,
1389 		    DATA_TYPE_UINT64, aflt->flt_addr, NULL);
1390 	}
1391 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_UGESR) {
1392 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_UGESR,
1393 		    DATA_TYPE_UINT64, aflt->flt_stat, NULL);
1394 	}
1395 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_PC) {
1396 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_PC,
1397 		    DATA_TYPE_UINT64, (uint64_t)aflt->flt_pc, NULL);
1398 	}
1399 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_TL) {
1400 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_TL,
1401 		    DATA_TYPE_UINT8, (uint8_t)aflt->flt_tl, NULL);
1402 	}
1403 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_TT) {
1404 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_TT,
1405 		    DATA_TYPE_UINT8, flt_to_trap_type(aflt), NULL);
1406 	}
1407 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_PRIV) {
1408 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_PRIV,
1409 		    DATA_TYPE_BOOLEAN_VALUE,
1410 		    (aflt->flt_priv ? B_TRUE : B_FALSE), NULL);
1411 	}
1412 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_FLT_STATUS) {
1413 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_FLT_STATUS,
1414 		    DATA_TYPE_UINT64, (uint64_t)aflt->flt_status, NULL);
1415 	}
1416 
1417 	switch (opl_flt->flt_eid_mod) {
1418 	case OPL_ERRID_CPU:
1419 		(void) snprintf(sbuf, sizeof (sbuf), "%llX",
1420 		    (u_longlong_t)cpunodes[opl_flt->flt_eid_sid].device_id);
1421 		(void) fm_fmri_cpu_set(resource, FM_CPU_SCHEME_VERSION,
1422 		    NULL, opl_flt->flt_eid_sid,
1423 		    (uint8_t *)&cpunodes[opl_flt->flt_eid_sid].version, sbuf);
1424 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_RESOURCE,
1425 		    DATA_TYPE_NVLIST, resource, NULL);
1426 		break;
1427 
1428 	case OPL_ERRID_CHANNEL:
1429 		/*
1430 		 * No resource is created but the cpumem DE will find
1431 		 * the defective path by retreiving EID from SFSR which is
1432 		 * included in the payload.
1433 		 */
1434 		break;
1435 
1436 	case OPL_ERRID_MEM:
1437 		(void) cpu_get_mem_unum_aflt(0, aflt, unum, UNUM_NAMLEN, &len);
1438 		(void) fm_fmri_mem_set(resource, FM_MEM_SCHEME_VERSION, NULL,
1439 		    unum, NULL, (uint64_t)-1);
1440 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_RESOURCE,
1441 		    DATA_TYPE_NVLIST, resource, NULL);
1442 		break;
1443 
1444 	case OPL_ERRID_PATH:
1445 		/*
1446 		 * No resource is created but the cpumem DE will find
1447 		 * the defective path by retreiving EID from SFSR which is
1448 		 * included in the payload.
1449 		 */
1450 		break;
1451 	}
1452 }
1453 
1454 /*
1455  * Returns whether fault address is valid for this error bit and
1456  * whether the address is "in memory" (i.e. pf_is_memory returns 1).
1457  */
1458 /*ARGSUSED*/
1459 static int
1460 cpu_flt_in_memory(opl_async_flt_t *opl_flt, uint64_t t_afsr_bit)
1461 {
1462 	struct async_flt *aflt = (struct async_flt *)opl_flt;
1463 
1464 	if (aflt->flt_status & (OPL_ECC_SYNC_TRAP)) {
1465 		return ((t_afsr_bit & SFSR_MEMORY) &&
1466 		    pf_is_memory(aflt->flt_addr >> MMU_PAGESHIFT));
1467 	}
1468 	return (0);
1469 }
1470 
1471 /*
1472  * In OPL SCF does the stick synchronization.
1473  */
1474 void
1475 sticksync_slave(void)
1476 {
1477 }
1478 
1479 /*
1480  * In OPL SCF does the stick synchronization.
1481  */
1482 void
1483 sticksync_master(void)
1484 {
1485 }
1486 
1487 /*
1488  * Cpu private unitialization.  OPL cpus do not use the private area.
1489  */
1490 void
1491 cpu_uninit_private(struct cpu *cp)
1492 {
1493 	cmp_delete_cpu(cp->cpu_id);
1494 }
1495 
1496 /*
1497  * Always flush an entire cache.
1498  */
1499 void
1500 cpu_error_ecache_flush(void)
1501 {
1502 	cpu_flush_ecache();
1503 }
1504 
1505 void
1506 cpu_ereport_post(struct async_flt *aflt)
1507 {
1508 	char *cpu_type, buf[FM_MAX_CLASS];
1509 	nv_alloc_t *nva = NULL;
1510 	nvlist_t *ereport, *detector, *resource;
1511 	errorq_elem_t *eqep;
1512 	char sbuf[21]; /* sizeof (UINT64_MAX) + '\0' */
1513 
1514 	if (aflt->flt_panic || panicstr) {
1515 		eqep = errorq_reserve(ereport_errorq);
1516 		if (eqep == NULL)
1517 			return;
1518 		ereport = errorq_elem_nvl(ereport_errorq, eqep);
1519 		nva = errorq_elem_nva(ereport_errorq, eqep);
1520 	} else {
1521 		ereport = fm_nvlist_create(nva);
1522 	}
1523 
1524 	/*
1525 	 * Create the scheme "cpu" FMRI.
1526 	 */
1527 	detector = fm_nvlist_create(nva);
1528 	resource = fm_nvlist_create(nva);
1529 	switch (cpunodes[aflt->flt_inst].implementation) {
1530 	case OLYMPUS_C_IMPL:
1531 		cpu_type = FM_EREPORT_CPU_SPARC64_VI;
1532 		break;
1533 	case JUPITER_IMPL:
1534 		cpu_type = FM_EREPORT_CPU_SPARC64_VII;
1535 		break;
1536 	default:
1537 		cpu_type = FM_EREPORT_CPU_UNSUPPORTED;
1538 		break;
1539 	}
1540 	(void) snprintf(sbuf, sizeof (sbuf), "%llX",
1541 	    (u_longlong_t)cpunodes[aflt->flt_inst].device_id);
1542 	(void) fm_fmri_cpu_set(detector, FM_CPU_SCHEME_VERSION, NULL,
1543 	    aflt->flt_inst, (uint8_t *)&cpunodes[aflt->flt_inst].version,
1544 	    sbuf);
1545 
1546 	/*
1547 	 * Encode all the common data into the ereport.
1548 	 */
1549 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s.%s",
1550 	    FM_ERROR_CPU, cpu_type, aflt->flt_erpt_class);
1551 
1552 	fm_ereport_set(ereport, FM_EREPORT_VERSION, buf,
1553 	    fm_ena_generate(aflt->flt_id, FM_ENA_FMT1), detector, NULL);
1554 
1555 	/*
1556 	 * Encode the error specific data that was saved in
1557 	 * the async_flt structure into the ereport.
1558 	 */
1559 	cpu_payload_add_aflt(aflt, ereport, resource);
1560 
1561 	if (aflt->flt_panic || panicstr) {
1562 		errorq_commit(ereport_errorq, eqep, ERRORQ_SYNC);
1563 	} else {
1564 		(void) fm_ereport_post(ereport, EVCH_TRYHARD);
1565 		fm_nvlist_destroy(ereport, FM_NVA_FREE);
1566 		fm_nvlist_destroy(detector, FM_NVA_FREE);
1567 		fm_nvlist_destroy(resource, FM_NVA_FREE);
1568 	}
1569 }
1570 
1571 void
1572 cpu_run_bus_error_handlers(struct async_flt *aflt, int expected)
1573 {
1574 	int status;
1575 	ddi_fm_error_t de;
1576 
1577 	bzero(&de, sizeof (ddi_fm_error_t));
1578 
1579 	de.fme_version = DDI_FME_VERSION;
1580 	de.fme_ena = fm_ena_generate(aflt->flt_id, FM_ENA_FMT1);
1581 	de.fme_flag = expected;
1582 	de.fme_bus_specific = (void *)aflt->flt_addr;
1583 	status = ndi_fm_handler_dispatch(ddi_root_node(), NULL, &de);
1584 	if ((aflt->flt_prot == AFLT_PROT_NONE) && (status == DDI_FM_FATAL))
1585 		aflt->flt_panic = 1;
1586 }
1587 
1588 void
1589 cpu_errorq_dispatch(char *error_class, void *payload, size_t payload_sz,
1590     errorq_t *eqp, uint_t flag)
1591 {
1592 	struct async_flt *aflt = (struct async_flt *)payload;
1593 
1594 	aflt->flt_erpt_class = error_class;
1595 	errorq_dispatch(eqp, payload, payload_sz, flag);
1596 }
1597 
1598 void
1599 adjust_hw_copy_limits(int ecache_size)
1600 {
1601 	/*
1602 	 * Set hw copy limits.
1603 	 *
1604 	 * /etc/system will be parsed later and can override one or more
1605 	 * of these settings.
1606 	 *
1607 	 * At this time, ecache size seems only mildly relevant.
1608 	 * We seem to run into issues with the d-cache and stalls
1609 	 * we see on misses.
1610 	 *
1611 	 * Cycle measurement indicates that 2 byte aligned copies fare
1612 	 * little better than doing things with VIS at around 512 bytes.
1613 	 * 4 byte aligned shows promise until around 1024 bytes. 8 Byte
1614 	 * aligned is faster whenever the source and destination data
1615 	 * in cache and the total size is less than 2 Kbytes.  The 2K
1616 	 * limit seems to be driven by the 2K write cache.
1617 	 * When more than 2K of copies are done in non-VIS mode, stores
1618 	 * backup in the write cache.  In VIS mode, the write cache is
1619 	 * bypassed, allowing faster cache-line writes aligned on cache
1620 	 * boundaries.
1621 	 *
1622 	 * In addition, in non-VIS mode, there is no prefetching, so
1623 	 * for larger copies, the advantage of prefetching to avoid even
1624 	 * occasional cache misses is enough to justify using the VIS code.
1625 	 *
1626 	 * During testing, it was discovered that netbench ran 3% slower
1627 	 * when hw_copy_limit_8 was 2K or larger.  Apparently for server
1628 	 * applications, data is only used once (copied to the output
1629 	 * buffer, then copied by the network device off the system).  Using
1630 	 * the VIS copy saves more L2 cache state.  Network copies are
1631 	 * around 1.3K to 1.5K in size for historical reasons.
1632 	 *
1633 	 * Therefore, a limit of 1K bytes will be used for the 8 byte
1634 	 * aligned copy even for large caches and 8 MB ecache.  The
1635 	 * infrastructure to allow different limits for different sized
1636 	 * caches is kept to allow further tuning in later releases.
1637 	 */
1638 
1639 	if (min_ecache_size == 0 && use_hw_bcopy) {
1640 		/*
1641 		 * First time through - should be before /etc/system
1642 		 * is read.
1643 		 * Could skip the checks for zero but this lets us
1644 		 * preserve any debugger rewrites.
1645 		 */
1646 		if (hw_copy_limit_1 == 0) {
1647 			hw_copy_limit_1 = VIS_COPY_THRESHOLD;
1648 			priv_hcl_1 = hw_copy_limit_1;
1649 		}
1650 		if (hw_copy_limit_2 == 0) {
1651 			hw_copy_limit_2 = 2 * VIS_COPY_THRESHOLD;
1652 			priv_hcl_2 = hw_copy_limit_2;
1653 		}
1654 		if (hw_copy_limit_4 == 0) {
1655 			hw_copy_limit_4 = 4 * VIS_COPY_THRESHOLD;
1656 			priv_hcl_4 = hw_copy_limit_4;
1657 		}
1658 		if (hw_copy_limit_8 == 0) {
1659 			hw_copy_limit_8 = 4 * VIS_COPY_THRESHOLD;
1660 			priv_hcl_8 = hw_copy_limit_8;
1661 		}
1662 		min_ecache_size = ecache_size;
1663 	} else {
1664 		/*
1665 		 * MP initialization. Called *after* /etc/system has
1666 		 * been parsed. One CPU has already been initialized.
1667 		 * Need to cater for /etc/system having scragged one
1668 		 * of our values.
1669 		 */
1670 		if (ecache_size == min_ecache_size) {
1671 			/*
1672 			 * Same size ecache. We do nothing unless we
1673 			 * have a pessimistic ecache setting. In that
1674 			 * case we become more optimistic (if the cache is
1675 			 * large enough).
1676 			 */
1677 			if (hw_copy_limit_8 == 4 * VIS_COPY_THRESHOLD) {
1678 				/*
1679 				 * Need to adjust hw_copy_limit* from our
1680 				 * pessimistic uniprocessor value to a more
1681 				 * optimistic UP value *iff* it hasn't been
1682 				 * reset.
1683 				 */
1684 				if ((ecache_size > 1048576) &&
1685 				    (priv_hcl_8 == hw_copy_limit_8)) {
1686 					if (ecache_size <= 2097152)
1687 						hw_copy_limit_8 = 4 *
1688 						    VIS_COPY_THRESHOLD;
1689 					else if (ecache_size <= 4194304)
1690 						hw_copy_limit_8 = 4 *
1691 						    VIS_COPY_THRESHOLD;
1692 					else
1693 						hw_copy_limit_8 = 4 *
1694 						    VIS_COPY_THRESHOLD;
1695 					priv_hcl_8 = hw_copy_limit_8;
1696 				}
1697 			}
1698 		} else if (ecache_size < min_ecache_size) {
1699 			/*
1700 			 * A different ecache size. Can this even happen?
1701 			 */
1702 			if (priv_hcl_8 == hw_copy_limit_8) {
1703 				/*
1704 				 * The previous value that we set
1705 				 * is unchanged (i.e., it hasn't been
1706 				 * scragged by /etc/system). Rewrite it.
1707 				 */
1708 				if (ecache_size <= 1048576)
1709 					hw_copy_limit_8 = 8 *
1710 					    VIS_COPY_THRESHOLD;
1711 				else if (ecache_size <= 2097152)
1712 					hw_copy_limit_8 = 8 *
1713 					    VIS_COPY_THRESHOLD;
1714 				else if (ecache_size <= 4194304)
1715 					hw_copy_limit_8 = 8 *
1716 					    VIS_COPY_THRESHOLD;
1717 				else
1718 					hw_copy_limit_8 = 10 *
1719 					    VIS_COPY_THRESHOLD;
1720 				priv_hcl_8 = hw_copy_limit_8;
1721 				min_ecache_size = ecache_size;
1722 			}
1723 		}
1724 	}
1725 }
1726 
1727 #define	VIS_BLOCKSIZE		64
1728 
1729 int
1730 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data)
1731 {
1732 	int ret, watched;
1733 
1734 	watched = watch_disable_addr((void *)addr, VIS_BLOCKSIZE, S_WRITE);
1735 	ret = dtrace_blksuword32(addr, data, 0);
1736 	if (watched)
1737 		watch_enable_addr((void *)addr, VIS_BLOCKSIZE, S_WRITE);
1738 
1739 	return (ret);
1740 }
1741 
1742 void
1743 opl_cpu_reg_init()
1744 {
1745 	uint64_t	this_cpu_log;
1746 
1747 	if (cpu[getprocessorid()] == &cpu0 && opl_cpu0_log_setup == 1) {
1748 		/*
1749 		 * Support for "ta 3"
1750 		 */
1751 		opl_ta3();
1752 
1753 		/*
1754 		 * If we are being called at boot time on cpu0 the error
1755 		 * log is already set up in cpu_setup. Clear the
1756 		 * opl_cpu0_log_setup flag so that a subsequent DR of cpu0 will
1757 		 * do the proper initialization.
1758 		 */
1759 		opl_cpu0_log_setup = 0;
1760 		return;
1761 	}
1762 
1763 	/*
1764 	 * Initialize Error log Scratch register for error handling.
1765 	 */
1766 
1767 	this_cpu_log = va_to_pa((void*)(((uint64_t)opl_err_log) +
1768 	    ERRLOG_BUFSZ * (getprocessorid())));
1769 	opl_error_setup(this_cpu_log);
1770 
1771 	/*
1772 	 * Enable MMU translating multiple page sizes for
1773 	 * sITLB and sDTLB.
1774 	 */
1775 	opl_mpg_enable();
1776 }
1777 
1778 /*
1779  * Queue one event in ue_queue based on ecc_type_to_info entry.
1780  */
1781 static void
1782 cpu_queue_one_event(opl_async_flt_t *opl_flt, char *reason,
1783     ecc_type_to_info_t *eccp)
1784 {
1785 	struct async_flt *aflt = (struct async_flt *)opl_flt;
1786 
1787 	if (reason &&
1788 	    strlen(reason) + strlen(eccp->ec_reason) < MAX_REASON_STRING) {
1789 		(void) strcat(reason, eccp->ec_reason);
1790 	}
1791 
1792 	opl_flt->flt_bit = eccp->ec_afsr_bit;
1793 	opl_flt->flt_type = eccp->ec_flt_type;
1794 	aflt->flt_in_memory = cpu_flt_in_memory(opl_flt, opl_flt->flt_bit);
1795 	aflt->flt_payload = eccp->ec_err_payload;
1796 
1797 	ASSERT(aflt->flt_status & (OPL_ECC_SYNC_TRAP|OPL_ECC_URGENT_TRAP));
1798 	cpu_errorq_dispatch(eccp->ec_err_class, (void *)opl_flt,
1799 	    sizeof (opl_async_flt_t), ue_queue, aflt->flt_panic);
1800 }
1801 
1802 /*
1803  * Queue events on async event queue one event per error bit.
1804  * Return number of events queued.
1805  */
1806 int
1807 cpu_queue_events(opl_async_flt_t *opl_flt, char *reason, uint64_t t_afsr_errs)
1808 {
1809 	struct async_flt *aflt = (struct async_flt *)opl_flt;
1810 	ecc_type_to_info_t *eccp;
1811 	int nevents = 0;
1812 
1813 	/*
1814 	 * Queue expected errors, error bit and fault type must must match
1815 	 * in the ecc_type_to_info table.
1816 	 */
1817 	for (eccp = ecc_type_to_info; t_afsr_errs != 0 && eccp->ec_desc != NULL;
1818 	    eccp++) {
1819 		if ((eccp->ec_afsr_bit & t_afsr_errs) != 0 &&
1820 		    (eccp->ec_flags & aflt->flt_status) != 0) {
1821 			/*
1822 			 * UE error event can be further
1823 			 * classified/breakdown into finer granularity
1824 			 * based on the flt_eid_mod value set by HW.  We do
1825 			 * special handling here so that we can report UE
1826 			 * error in finer granularity as ue_mem,
1827 			 * ue_channel, ue_cpu or ue_path.
1828 			 */
1829 			if (eccp->ec_flt_type == OPL_CPU_SYNC_UE) {
1830 				opl_flt->flt_eid_mod = (aflt->flt_stat &
1831 				    SFSR_EID_MOD) >> SFSR_EID_MOD_SHIFT;
1832 				opl_flt->flt_eid_sid = (aflt->flt_stat &
1833 				    SFSR_EID_SID) >> SFSR_EID_SID_SHIFT;
1834 				/*
1835 				 * Need to advance eccp pointer by flt_eid_mod
1836 				 * so that we get an appropriate ecc pointer
1837 				 *
1838 				 * EID			# of advances
1839 				 * ----------------------------------
1840 				 * OPL_ERRID_MEM	0
1841 				 * OPL_ERRID_CHANNEL	1
1842 				 * OPL_ERRID_CPU	2
1843 				 * OPL_ERRID_PATH	3
1844 				 */
1845 				eccp += opl_flt->flt_eid_mod;
1846 			}
1847 			cpu_queue_one_event(opl_flt, reason, eccp);
1848 			t_afsr_errs &= ~eccp->ec_afsr_bit;
1849 			nevents++;
1850 		}
1851 	}
1852 
1853 	return (nevents);
1854 }
1855 
1856 /*
1857  * Sync. error wrapper functions.
1858  * We use these functions in order to transfer here from the
1859  * nucleus trap handler information about trap type (data or
1860  * instruction) and trap level (0 or above 0). This way we
1861  * get rid of using SFSR's reserved bits.
1862  */
1863 
1864 #define	OPL_SYNC_TL0	0
1865 #define	OPL_SYNC_TL1	1
1866 #define	OPL_ISYNC_ERR	0
1867 #define	OPL_DSYNC_ERR	1
1868 
1869 void
1870 opl_cpu_isync_tl0_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr)
1871 {
1872 	uint64_t t_sfar = p_sfar;
1873 	uint64_t t_sfsr = p_sfsr;
1874 
1875 	opl_cpu_sync_error(rp, t_sfar, t_sfsr,
1876 	    OPL_SYNC_TL0, OPL_ISYNC_ERR);
1877 }
1878 
1879 void
1880 opl_cpu_isync_tl1_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr)
1881 {
1882 	uint64_t t_sfar = p_sfar;
1883 	uint64_t t_sfsr = p_sfsr;
1884 
1885 	opl_cpu_sync_error(rp, t_sfar, t_sfsr,
1886 	    OPL_SYNC_TL1, OPL_ISYNC_ERR);
1887 }
1888 
1889 void
1890 opl_cpu_dsync_tl0_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr)
1891 {
1892 	uint64_t t_sfar = p_sfar;
1893 	uint64_t t_sfsr = p_sfsr;
1894 
1895 	opl_cpu_sync_error(rp, t_sfar, t_sfsr,
1896 	    OPL_SYNC_TL0, OPL_DSYNC_ERR);
1897 }
1898 
1899 void
1900 opl_cpu_dsync_tl1_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr)
1901 {
1902 	uint64_t t_sfar = p_sfar;
1903 	uint64_t t_sfsr = p_sfsr;
1904 
1905 	opl_cpu_sync_error(rp, t_sfar, t_sfsr,
1906 	    OPL_SYNC_TL1, OPL_DSYNC_ERR);
1907 }
1908 
1909 /*
1910  * The fj sync err handler transfers control here for UE, BERR, TO, TLB_MUL
1911  * and TLB_PRT.
1912  * This function is designed based on cpu_deferred_error().
1913  */
1914 
1915 static void
1916 opl_cpu_sync_error(struct regs *rp, ulong_t t_sfar, ulong_t t_sfsr,
1917     uint_t tl, uint_t derr)
1918 {
1919 	opl_async_flt_t opl_flt;
1920 	struct async_flt *aflt;
1921 	int trampolined = 0;
1922 	char pr_reason[MAX_REASON_STRING];
1923 	uint64_t log_sfsr;
1924 	int expected = DDI_FM_ERR_UNEXPECTED;
1925 	ddi_acc_hdl_t *hp;
1926 
1927 	/*
1928 	 * We need to look at p_flag to determine if the thread detected an
1929 	 * error while dumping core.  We can't grab p_lock here, but it's ok
1930 	 * because we just need a consistent snapshot and we know that everyone
1931 	 * else will store a consistent set of bits while holding p_lock.  We
1932 	 * don't have to worry about a race because SDOCORE is set once prior
1933 	 * to doing i/o from the process's address space and is never cleared.
1934 	 */
1935 	uint_t pflag = ttoproc(curthread)->p_flag;
1936 
1937 	pr_reason[0] = '\0';
1938 
1939 	/*
1940 	 * handle the specific error
1941 	 */
1942 	bzero(&opl_flt, sizeof (opl_async_flt_t));
1943 	aflt = (struct async_flt *)&opl_flt;
1944 	aflt->flt_id = gethrtime_waitfree();
1945 	aflt->flt_bus_id = getprocessorid();
1946 	aflt->flt_inst = CPU->cpu_id;
1947 	aflt->flt_stat = t_sfsr;
1948 	aflt->flt_addr = t_sfar;
1949 	aflt->flt_pc = (caddr_t)rp->r_pc;
1950 	aflt->flt_prot = (uchar_t)AFLT_PROT_NONE;
1951 	aflt->flt_class = (uchar_t)CPU_FAULT;
1952 	aflt->flt_priv = (uchar_t)(tl == 1 ? 1 : ((rp->r_tstate &
1953 	    TSTATE_PRIV) ? 1 : 0));
1954 	aflt->flt_tl = (uchar_t)tl;
1955 	aflt->flt_panic = (uchar_t)(tl != 0 || aft_testfatal != 0 ||
1956 	    (t_sfsr & (SFSR_TLB_MUL|SFSR_TLB_PRT)) != 0);
1957 	aflt->flt_core = (pflag & SDOCORE) ? 1 : 0;
1958 	aflt->flt_status = (derr) ? OPL_ECC_DSYNC_TRAP : OPL_ECC_ISYNC_TRAP;
1959 
1960 	/*
1961 	 * If SFSR.FV is not set, both SFSR and SFAR/SFPAR values are uncertain.
1962 	 * So, clear all error bits to avoid mis-handling and force the system
1963 	 * panicked.
1964 	 * We skip all the procedures below down to the panic message call.
1965 	 */
1966 	if (!(t_sfsr & SFSR_FV)) {
1967 		opl_flt.flt_type = OPL_CPU_INV_SFSR;
1968 		aflt->flt_panic = 1;
1969 		aflt->flt_payload = FM_EREPORT_PAYLOAD_SYNC;
1970 		cpu_errorq_dispatch(FM_EREPORT_CPU_INV_SFSR, (void *)&opl_flt,
1971 		    sizeof (opl_async_flt_t), ue_queue, aflt->flt_panic);
1972 		fm_panic("%sErrors(s)", "invalid SFSR");
1973 	}
1974 
1975 	/*
1976 	 * If either UE and MK bit is off, this is not valid UE error.
1977 	 * If it is not valid UE error, clear UE & MK_UE bits to prevent
1978 	 * mis-handling below.
1979 	 * aflt->flt_stat keeps the original bits as a reference.
1980 	 */
1981 	if ((t_sfsr & (SFSR_MK_UE|SFSR_UE)) !=
1982 	    (SFSR_MK_UE|SFSR_UE)) {
1983 		t_sfsr &= ~(SFSR_MK_UE|SFSR_UE);
1984 	}
1985 
1986 	/*
1987 	 * If the trap occurred in privileged mode at TL=0, we need to check to
1988 	 * see if we were executing in the kernel under on_trap() or t_lofault
1989 	 * protection.  If so, modify the saved registers so that we return
1990 	 * from the trap to the appropriate trampoline routine.
1991 	 */
1992 	if (!aflt->flt_panic && aflt->flt_priv && tl == 0) {
1993 		if (curthread->t_ontrap != NULL) {
1994 			on_trap_data_t *otp = curthread->t_ontrap;
1995 
1996 			if (otp->ot_prot & OT_DATA_EC) {
1997 				aflt->flt_prot = (uchar_t)AFLT_PROT_EC;
1998 				otp->ot_trap |= (ushort_t)OT_DATA_EC;
1999 				rp->r_pc = otp->ot_trampoline;
2000 				rp->r_npc = rp->r_pc + 4;
2001 				trampolined = 1;
2002 			}
2003 
2004 			if ((t_sfsr & (SFSR_TO | SFSR_BERR)) &&
2005 			    (otp->ot_prot & OT_DATA_ACCESS)) {
2006 				aflt->flt_prot = (uchar_t)AFLT_PROT_ACCESS;
2007 				otp->ot_trap |= (ushort_t)OT_DATA_ACCESS;
2008 				rp->r_pc = otp->ot_trampoline;
2009 				rp->r_npc = rp->r_pc + 4;
2010 				trampolined = 1;
2011 				/*
2012 				 * for peeks and caut_gets errors are expected
2013 				 */
2014 				hp = (ddi_acc_hdl_t *)otp->ot_handle;
2015 				if (!hp)
2016 					expected = DDI_FM_ERR_PEEK;
2017 				else if (hp->ah_acc.devacc_attr_access ==
2018 				    DDI_CAUTIOUS_ACC)
2019 					expected = DDI_FM_ERR_EXPECTED;
2020 			}
2021 
2022 		} else if (curthread->t_lofault) {
2023 			aflt->flt_prot = AFLT_PROT_COPY;
2024 			rp->r_g1 = EFAULT;
2025 			rp->r_pc = curthread->t_lofault;
2026 			rp->r_npc = rp->r_pc + 4;
2027 			trampolined = 1;
2028 		}
2029 	}
2030 
2031 	/*
2032 	 * If we're in user mode or we're doing a protected copy, we either
2033 	 * want the ASTON code below to send a signal to the user process
2034 	 * or we want to panic if aft_panic is set.
2035 	 *
2036 	 * If we're in privileged mode and we're not doing a copy, then we
2037 	 * need to check if we've trampolined.  If we haven't trampolined,
2038 	 * we should panic.
2039 	 */
2040 	if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY) {
2041 		if (t_sfsr & (SFSR_ERRS & ~(SFSR_BERR | SFSR_TO)))
2042 			aflt->flt_panic |= aft_panic;
2043 	} else if (!trampolined) {
2044 		aflt->flt_panic = 1;
2045 	}
2046 
2047 	/*
2048 	 * If we've trampolined due to a privileged TO or BERR, or if an
2049 	 * unprivileged TO or BERR occurred, we don't want to enqueue an
2050 	 * event for that TO or BERR.  Queue all other events (if any) besides
2051 	 * the TO/BERR.
2052 	 */
2053 	log_sfsr = t_sfsr;
2054 	if (trampolined) {
2055 		log_sfsr &= ~(SFSR_TO | SFSR_BERR);
2056 	} else if (!aflt->flt_priv) {
2057 		/*
2058 		 * User mode, suppress messages if
2059 		 * cpu_berr_to_verbose is not set.
2060 		 */
2061 		if (!cpu_berr_to_verbose)
2062 			log_sfsr &= ~(SFSR_TO | SFSR_BERR);
2063 	}
2064 
2065 	if (((log_sfsr & SFSR_ERRS) && (cpu_queue_events(&opl_flt, pr_reason,
2066 	    t_sfsr) == 0)) || ((t_sfsr & SFSR_ERRS) == 0)) {
2067 		opl_flt.flt_type = OPL_CPU_INV_SFSR;
2068 		aflt->flt_payload = FM_EREPORT_PAYLOAD_SYNC;
2069 		cpu_errorq_dispatch(FM_EREPORT_CPU_INV_SFSR, (void *)&opl_flt,
2070 		    sizeof (opl_async_flt_t), ue_queue, aflt->flt_panic);
2071 	}
2072 
2073 	if (t_sfsr & (SFSR_UE|SFSR_TO|SFSR_BERR)) {
2074 		cpu_run_bus_error_handlers(aflt, expected);
2075 	}
2076 
2077 	/*
2078 	 * Panic here if aflt->flt_panic has been set.  Enqueued errors will
2079 	 * be logged as part of the panic flow.
2080 	 */
2081 	if (aflt->flt_panic) {
2082 		if (pr_reason[0] == 0)
2083 			strcpy(pr_reason, "invalid SFSR ");
2084 
2085 		fm_panic("%sErrors(s)", pr_reason);
2086 	}
2087 
2088 	/*
2089 	 * If we queued an error and we are going to return from the trap and
2090 	 * the error was in user mode or inside of a copy routine, set AST flag
2091 	 * so the queue will be drained before returning to user mode.  The
2092 	 * AST processing will also act on our failure policy.
2093 	 */
2094 	if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY) {
2095 		int pcb_flag = 0;
2096 
2097 		if (t_sfsr & (SFSR_ERRS & ~(SFSR_BERR | SFSR_TO)))
2098 			pcb_flag |= ASYNC_HWERR;
2099 
2100 		if (t_sfsr & SFSR_BERR)
2101 			pcb_flag |= ASYNC_BERR;
2102 
2103 		if (t_sfsr & SFSR_TO)
2104 			pcb_flag |= ASYNC_BTO;
2105 
2106 		ttolwp(curthread)->lwp_pcb.pcb_flags |= pcb_flag;
2107 		aston(curthread);
2108 	}
2109 }
2110 
2111 /*ARGSUSED*/
2112 void
2113 opl_cpu_urgent_error(struct regs *rp, ulong_t p_ugesr, ulong_t tl)
2114 {
2115 	opl_async_flt_t opl_flt;
2116 	struct async_flt *aflt;
2117 	char pr_reason[MAX_REASON_STRING];
2118 
2119 	/* normalize tl */
2120 	tl = (tl >= 2 ? 1 : 0);
2121 	pr_reason[0] = '\0';
2122 
2123 	bzero(&opl_flt, sizeof (opl_async_flt_t));
2124 	aflt = (struct async_flt *)&opl_flt;
2125 	aflt->flt_id = gethrtime_waitfree();
2126 	aflt->flt_bus_id = getprocessorid();
2127 	aflt->flt_inst = CPU->cpu_id;
2128 	aflt->flt_stat = p_ugesr;
2129 	aflt->flt_pc = (caddr_t)rp->r_pc;
2130 	aflt->flt_class = (uchar_t)CPU_FAULT;
2131 	aflt->flt_tl = tl;
2132 	aflt->flt_priv = (uchar_t)(tl == 1 ? 1 : ((rp->r_tstate & TSTATE_PRIV) ?
2133 	    1 : 0));
2134 	aflt->flt_status = OPL_ECC_URGENT_TRAP;
2135 	aflt->flt_panic = 1;
2136 	/*
2137 	 * HW does not set mod/sid in case of urgent error.
2138 	 * So we have to set it here.
2139 	 */
2140 	opl_flt.flt_eid_mod = OPL_ERRID_CPU;
2141 	opl_flt.flt_eid_sid = aflt->flt_inst;
2142 
2143 	if (cpu_queue_events(&opl_flt, pr_reason, p_ugesr) == 0) {
2144 		opl_flt.flt_type = OPL_CPU_INV_UGESR;
2145 		aflt->flt_payload = FM_EREPORT_PAYLOAD_URGENT;
2146 		cpu_errorq_dispatch(FM_EREPORT_CPU_INV_URG, (void *)&opl_flt,
2147 		    sizeof (opl_async_flt_t), ue_queue, aflt->flt_panic);
2148 	}
2149 
2150 	fm_panic("Urgent Error");
2151 }
2152 
2153 /*
2154  * Initialization error counters resetting.
2155  */
2156 /* ARGSUSED */
2157 static void
2158 opl_ras_online(void *arg, cpu_t *cp, cyc_handler_t *hdlr, cyc_time_t *when)
2159 {
2160 	hdlr->cyh_func = (cyc_func_t)ras_cntr_reset;
2161 	hdlr->cyh_level = CY_LOW_LEVEL;
2162 	hdlr->cyh_arg = (void *)(uintptr_t)cp->cpu_id;
2163 
2164 	when->cyt_when = cp->cpu_id * (((hrtime_t)NANOSEC * 10)/ NCPU);
2165 	when->cyt_interval = (hrtime_t)NANOSEC * opl_async_check_interval;
2166 }
2167 
2168 void
2169 cpu_mp_init(void)
2170 {
2171 	cyc_omni_handler_t hdlr;
2172 
2173 	hdlr.cyo_online = opl_ras_online;
2174 	hdlr.cyo_offline = NULL;
2175 	hdlr.cyo_arg = NULL;
2176 	mutex_enter(&cpu_lock);
2177 	(void) cyclic_add_omni(&hdlr);
2178 	mutex_exit(&cpu_lock);
2179 }
2180 
2181 int heaplp_use_stlb = 0;
2182 
2183 void
2184 mmu_init_kernel_pgsz(struct hat *hat)
2185 {
2186 	uint_t tte = page_szc(segkmem_lpsize);
2187 	uchar_t new_cext_primary, new_cext_nucleus;
2188 
2189 	if (heaplp_use_stlb == 0) {
2190 		/* do not reprogram stlb */
2191 		tte = TTE8K;
2192 	} else if (!plat_prom_preserve_kctx_is_supported()) {
2193 		/* OBP does not support non-zero primary context */
2194 		tte = TTE8K;
2195 		heaplp_use_stlb = 0;
2196 	}
2197 
2198 	new_cext_nucleus = TAGACCEXT_MKSZPAIR(tte, TTE8K);
2199 	new_cext_primary = TAGACCEXT_MKSZPAIR(TTE8K, tte);
2200 
2201 	hat->sfmmu_cext = new_cext_primary;
2202 	kcontextreg = ((uint64_t)new_cext_nucleus << CTXREG_NEXT_SHIFT) |
2203 	    ((uint64_t)new_cext_primary << CTXREG_EXT_SHIFT);
2204 }
2205 
2206 size_t
2207 mmu_get_kernel_lpsize(size_t lpsize)
2208 {
2209 	uint_t tte;
2210 
2211 	if (lpsize == 0) {
2212 		/* no setting for segkmem_lpsize in /etc/system: use default */
2213 		return (MMU_PAGESIZE4M);
2214 	}
2215 
2216 	for (tte = TTE8K; tte <= TTE4M; tte++) {
2217 		if (lpsize == TTEBYTES(tte))
2218 			return (lpsize);
2219 	}
2220 
2221 	return (TTEBYTES(TTE8K));
2222 }
2223 
2224 /*
2225  * Support for ta 3.
2226  * We allocate here a buffer for each cpu
2227  * for saving the current register window.
2228  */
2229 typedef struct win_regs {
2230 	uint64_t l[8];
2231 	uint64_t i[8];
2232 } win_regs_t;
2233 static void
2234 opl_ta3(void)
2235 {
2236 	/*
2237 	 * opl_ta3 should only be called once at boot time.
2238 	 */
2239 	if (opl_ta3_save == NULL)
2240 		opl_ta3_save = (char *)kmem_alloc(NCPU * sizeof (win_regs_t),
2241 		    KM_SLEEP);
2242 }
2243 
2244 /*
2245  * The following are functions that are unused in
2246  * OPL cpu module. They are defined here to resolve
2247  * dependencies in the "unix" module.
2248  * Unused functions that should never be called in
2249  * OPL are coded with ASSERT(0).
2250  */
2251 
2252 void
2253 cpu_disable_errors(void)
2254 {}
2255 
2256 void
2257 cpu_enable_errors(void)
2258 { ASSERT(0); }
2259 
2260 /*ARGSUSED*/
2261 void
2262 cpu_ce_scrub_mem_err(struct async_flt *ecc, boolean_t t)
2263 { ASSERT(0); }
2264 
2265 /*ARGSUSED*/
2266 void
2267 cpu_faulted_enter(struct cpu *cp)
2268 {}
2269 
2270 /*ARGSUSED*/
2271 void
2272 cpu_faulted_exit(struct cpu *cp)
2273 {}
2274 
2275 /*ARGSUSED*/
2276 void
2277 cpu_check_allcpus(struct async_flt *aflt)
2278 {}
2279 
2280 /*ARGSUSED*/
2281 void
2282 cpu_ce_log_err(struct async_flt *aflt, errorq_elem_t *t)
2283 { ASSERT(0); }
2284 
2285 /*ARGSUSED*/
2286 void
2287 cpu_check_ce(int flag, uint64_t pa, caddr_t va, uint_t psz)
2288 { ASSERT(0); }
2289 
2290 /*ARGSUSED*/
2291 void
2292 cpu_ce_count_unum(struct async_flt *ecc, int len, char *unum)
2293 { ASSERT(0); }
2294 
2295 /*ARGSUSED*/
2296 void
2297 cpu_busy_ecache_scrub(struct cpu *cp)
2298 {}
2299 
2300 /*ARGSUSED*/
2301 void
2302 cpu_idle_ecache_scrub(struct cpu *cp)
2303 {}
2304 
2305 /* ARGSUSED */
2306 void
2307 cpu_change_speed(uint64_t divisor, uint64_t arg2)
2308 { ASSERT(0); }
2309 
2310 void
2311 cpu_init_cache_scrub(void)
2312 {}
2313 
2314 /* ARGSUSED */
2315 int
2316 cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
2317 {
2318 	if (&plat_get_mem_sid) {
2319 		return (plat_get_mem_sid(unum, buf, buflen, lenp));
2320 	} else {
2321 		return (ENOTSUP);
2322 	}
2323 }
2324 
2325 /* ARGSUSED */
2326 int
2327 cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
2328 {
2329 	if (&plat_get_mem_addr) {
2330 		return (plat_get_mem_addr(unum, sid, offset, addrp));
2331 	} else {
2332 		return (ENOTSUP);
2333 	}
2334 }
2335 
2336 /* ARGSUSED */
2337 int
2338 cpu_get_mem_offset(uint64_t flt_addr, uint64_t *offp)
2339 {
2340 	if (&plat_get_mem_offset) {
2341 		return (plat_get_mem_offset(flt_addr, offp));
2342 	} else {
2343 		return (ENOTSUP);
2344 	}
2345 }
2346 
2347 /*ARGSUSED*/
2348 void
2349 itlb_rd_entry(uint_t entry, tte_t *tte, uint64_t *va_tag)
2350 { ASSERT(0); }
2351 
2352 /*ARGSUSED*/
2353 void
2354 dtlb_rd_entry(uint_t entry, tte_t *tte, uint64_t *va_tag)
2355 { ASSERT(0); }
2356 
2357 /*ARGSUSED*/
2358 void
2359 read_ecc_data(struct async_flt *aflt, short verbose, short ce_err)
2360 { ASSERT(0); }
2361 
2362 /*ARGSUSED*/
2363 int
2364 ce_scrub_xdiag_recirc(struct async_flt *aflt, errorq_t *eqp,
2365     errorq_elem_t *eqep, size_t afltoffset)
2366 {
2367 	ASSERT(0);
2368 	return (0);
2369 }
2370 
2371 /*ARGSUSED*/
2372 char *
2373 flt_to_error_type(struct async_flt *aflt)
2374 {
2375 	ASSERT(0);
2376 	return (NULL);
2377 }
2378 
2379 #define	PROM_SPARC64VII_MODE_PROPNAME	"SPARC64-VII-mode"
2380 
2381 /*
2382  * Check for existence of OPL OBP property that indicates
2383  * SPARC64-VII support. By default, only enable Jupiter
2384  * features if the property is present.   It will be
2385  * present in all-Jupiter domains by OBP if the domain has
2386  * been selected by the user on the system controller to
2387  * run in Jupiter mode.  Basically, this OBP property must
2388  * be present to turn on the cpu_alljupiter flag.
2389  */
2390 static int
2391 prom_SPARC64VII_support_enabled(void)
2392 {
2393 	int val;
2394 
2395 	return ((prom_getprop(prom_rootnode(), PROM_SPARC64VII_MODE_PROPNAME,
2396 	    (caddr_t)&val) == 0) ? 1 : 0);
2397 }
2398 
2399 #define	PROM_KCTX_PRESERVED_PROPNAME	"context0-page-size-preserved"
2400 
2401 /*
2402  * Check for existence of OPL OBP property that indicates support for
2403  * preserving Solaris kernel page sizes when entering OBP.  We need to
2404  * check the prom tree since the ddi tree is not yet built when the
2405  * platform startup sequence is called.
2406  */
2407 static int
2408 plat_prom_preserve_kctx_is_supported(void)
2409 {
2410 	pnode_t		pnode;
2411 	int		val;
2412 
2413 	/*
2414 	 * Check for existence of context0-page-size-preserved property
2415 	 * in virtual-memory prom node.
2416 	 */
2417 	pnode = (pnode_t)prom_getphandle(prom_mmu_ihandle());
2418 	return ((prom_getprop(pnode, PROM_KCTX_PRESERVED_PROPNAME,
2419 	    (caddr_t)&val) == 0) ? 1 : 0);
2420 }
2421