xref: /titanic_50/usr/src/uts/sun4u/cpu/opl_olympus.c (revision 29493bd8e037cbaea9095b34172305abb589cb6b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Support for Olympus-C (SPARC64-VI) and Jupiter (SPARC64-VII).
28  */
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 #include <sys/types.h>
33 #include <sys/systm.h>
34 #include <sys/ddi.h>
35 #include <sys/sysmacros.h>
36 #include <sys/archsystm.h>
37 #include <sys/vmsystm.h>
38 #include <sys/machparam.h>
39 #include <sys/machsystm.h>
40 #include <sys/machthread.h>
41 #include <sys/cpu.h>
42 #include <sys/cmp.h>
43 #include <sys/elf_SPARC.h>
44 #include <vm/vm_dep.h>
45 #include <vm/hat_sfmmu.h>
46 #include <vm/seg_kpm.h>
47 #include <vm/seg_kmem.h>
48 #include <sys/cpuvar.h>
49 #include <sys/opl_olympus_regs.h>
50 #include <sys/opl_module.h>
51 #include <sys/async.h>
52 #include <sys/cmn_err.h>
53 #include <sys/debug.h>
54 #include <sys/dditypes.h>
55 #include <sys/cpu_module.h>
56 #include <sys/sysmacros.h>
57 #include <sys/intreg.h>
58 #include <sys/clock.h>
59 #include <sys/platform_module.h>
60 #include <sys/ontrap.h>
61 #include <sys/panic.h>
62 #include <sys/memlist.h>
63 #include <sys/ndifm.h>
64 #include <sys/ddifm.h>
65 #include <sys/fm/protocol.h>
66 #include <sys/fm/util.h>
67 #include <sys/fm/cpu/SPARC64-VI.h>
68 #include <sys/dtrace.h>
69 #include <sys/watchpoint.h>
70 #include <sys/promif.h>
71 
72 /*
73  * Internal functions.
74  */
75 static int cpu_sync_log_err(void *flt);
76 static void cpu_payload_add_aflt(struct async_flt *, nvlist_t *, nvlist_t *);
77 static void opl_cpu_sync_error(struct regs *, ulong_t, ulong_t, uint_t, uint_t);
78 static int  cpu_flt_in_memory(opl_async_flt_t *, uint64_t);
79 static int prom_SPARC64VII_support_enabled(void);
80 static void opl_ta3();
81 static int plat_prom_preserve_kctx_is_supported(void);
82 
83 /*
84  * Error counters resetting interval.
85  */
86 static int opl_async_check_interval = 60;		/* 1 min */
87 
88 uint_t cpu_impl_dual_pgsz = 1;
89 
90 /*
91  * PA[22:0] represent Displacement in Jupiter
92  * configuration space.
93  */
94 uint_t	root_phys_addr_lo_mask = 0x7fffffu;
95 
96 /*
97  * set in /etc/system to control logging of user BERR/TO's
98  */
99 int cpu_berr_to_verbose = 0;
100 
101 /*
102  * Set to 1 if booted with all Jupiter cpus (all-Jupiter features enabled).
103  */
104 int cpu_alljupiter = 0;
105 
106 static int min_ecache_size;
107 static uint_t priv_hcl_1;
108 static uint_t priv_hcl_2;
109 static uint_t priv_hcl_4;
110 static uint_t priv_hcl_8;
111 
112 /*
113  * Olympus error log
114  */
115 static opl_errlog_t	*opl_err_log;
116 
117 /*
118  * OPL ta 3 save area.
119  */
120 char	*opl_ta3_save;
121 
122 /*
123  * UE is classified into four classes (MEM, CHANNEL, CPU, PATH).
124  * No any other ecc_type_info insertion is allowed in between the following
125  * four UE classess.
126  */
127 ecc_type_to_info_t ecc_type_to_info[] = {
128 	SFSR_UE,	"UE ",	(OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE,
129 	"Uncorrectable ECC",  FM_EREPORT_PAYLOAD_SYNC,
130 	FM_EREPORT_CPU_UE_MEM,
131 	SFSR_UE,	"UE ",	(OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE,
132 	"Uncorrectable ECC",  FM_EREPORT_PAYLOAD_SYNC,
133 	FM_EREPORT_CPU_UE_CHANNEL,
134 	SFSR_UE,	"UE ",	(OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE,
135 	"Uncorrectable ECC",  FM_EREPORT_PAYLOAD_SYNC,
136 	FM_EREPORT_CPU_UE_CPU,
137 	SFSR_UE,	"UE ",	(OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE,
138 	"Uncorrectable ECC",  FM_EREPORT_PAYLOAD_SYNC,
139 	FM_EREPORT_CPU_UE_PATH,
140 	SFSR_BERR, "BERR ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS,
141 	"Bus Error",  FM_EREPORT_PAYLOAD_SYNC,
142 	FM_EREPORT_CPU_BERR,
143 	SFSR_TO, "TO ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS,
144 	"Bus Timeout",  FM_EREPORT_PAYLOAD_SYNC,
145 	FM_EREPORT_CPU_BTO,
146 	SFSR_TLB_MUL, "TLB_MUL ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS,
147 	"TLB MultiHit",  FM_EREPORT_PAYLOAD_SYNC,
148 	FM_EREPORT_CPU_MTLB,
149 	SFSR_TLB_PRT, "TLB_PRT ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS,
150 	"TLB Parity",  FM_EREPORT_PAYLOAD_SYNC,
151 	FM_EREPORT_CPU_TLBP,
152 
153 	UGESR_IAUG_CRE, "IAUG_CRE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
154 	"IAUG CRE",  FM_EREPORT_PAYLOAD_URGENT,
155 	FM_EREPORT_CPU_CRE,
156 	UGESR_IAUG_TSBCTXT, "IAUG_TSBCTXT",
157 	OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
158 	"IAUG TSBCTXT",  FM_EREPORT_PAYLOAD_URGENT,
159 	FM_EREPORT_CPU_TSBCTX,
160 	UGESR_IUG_TSBP, "IUG_TSBP", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
161 	"IUG TSBP",  FM_EREPORT_PAYLOAD_URGENT,
162 	FM_EREPORT_CPU_TSBP,
163 	UGESR_IUG_PSTATE, "IUG_PSTATE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
164 	"IUG PSTATE",  FM_EREPORT_PAYLOAD_URGENT,
165 	FM_EREPORT_CPU_PSTATE,
166 	UGESR_IUG_TSTATE, "IUG_TSTATE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
167 	"IUG TSTATE",  FM_EREPORT_PAYLOAD_URGENT,
168 	FM_EREPORT_CPU_TSTATE,
169 	UGESR_IUG_F, "IUG_F", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
170 	"IUG FREG",  FM_EREPORT_PAYLOAD_URGENT,
171 	FM_EREPORT_CPU_IUG_F,
172 	UGESR_IUG_R, "IUG_R", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
173 	"IUG RREG",  FM_EREPORT_PAYLOAD_URGENT,
174 	FM_EREPORT_CPU_IUG_R,
175 	UGESR_AUG_SDC, "AUG_SDC", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
176 	"AUG SDC",  FM_EREPORT_PAYLOAD_URGENT,
177 	FM_EREPORT_CPU_SDC,
178 	UGESR_IUG_WDT, "IUG_WDT", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
179 	"IUG WDT",  FM_EREPORT_PAYLOAD_URGENT,
180 	FM_EREPORT_CPU_WDT,
181 	UGESR_IUG_DTLB, "IUG_DTLB", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
182 	"IUG DTLB",  FM_EREPORT_PAYLOAD_URGENT,
183 	FM_EREPORT_CPU_DTLB,
184 	UGESR_IUG_ITLB, "IUG_ITLB", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
185 	"IUG ITLB",  FM_EREPORT_PAYLOAD_URGENT,
186 	FM_EREPORT_CPU_ITLB,
187 	UGESR_IUG_COREERR, "IUG_COREERR",
188 	OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
189 	"IUG COREERR",  FM_EREPORT_PAYLOAD_URGENT,
190 	FM_EREPORT_CPU_CORE,
191 	UGESR_MULTI_DAE, "MULTI_DAE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
192 	"MULTI DAE",  FM_EREPORT_PAYLOAD_URGENT,
193 	FM_EREPORT_CPU_DAE,
194 	UGESR_MULTI_IAE, "MULTI_IAE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
195 	"MULTI IAE",  FM_EREPORT_PAYLOAD_URGENT,
196 	FM_EREPORT_CPU_IAE,
197 	UGESR_MULTI_UGE, "MULTI_UGE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
198 	"MULTI UGE",  FM_EREPORT_PAYLOAD_URGENT,
199 	FM_EREPORT_CPU_UGE,
200 	0,		NULL,		0,		0,
201 	NULL,  0,	   0,
202 };
203 
204 int (*p2get_mem_info)(int synd_code, uint64_t paddr,
205 		uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
206 		int *segsp, int *banksp, int *mcidp);
207 
208 
209 /*
210  * Setup trap handlers for 0xA, 0x32, 0x40 trap types
211  * and "ta 3" and "ta 4".
212  */
213 void
214 cpu_init_trap(void)
215 {
216 	OPL_SET_TRAP(tt0_iae, opl_serr_instr);
217 	OPL_SET_TRAP(tt1_iae, opl_serr_instr);
218 	OPL_SET_TRAP(tt0_dae, opl_serr_instr);
219 	OPL_SET_TRAP(tt1_dae, opl_serr_instr);
220 	OPL_SET_TRAP(tt0_asdat, opl_ugerr_instr);
221 	OPL_SET_TRAP(tt1_asdat, opl_ugerr_instr);
222 	OPL_SET_TRAP(tt0_flushw, opl_ta3_instr);
223 	OPL_PATCH_28(opl_cleanw_patch, opl_ta4_instr);
224 }
225 
226 static int
227 getintprop(pnode_t node, char *name, int deflt)
228 {
229 	int	value;
230 
231 	switch (prom_getproplen(node, name)) {
232 	case sizeof (int):
233 		(void) prom_getprop(node, name, (caddr_t)&value);
234 		break;
235 
236 	default:
237 		value = deflt;
238 		break;
239 	}
240 
241 	return (value);
242 }
243 
244 /*
245  * Set the magic constants of the implementation.
246  */
247 /*ARGSUSED*/
248 void
249 cpu_fiximp(pnode_t dnode)
250 {
251 	int i, a;
252 	extern int vac_size, vac_shift;
253 	extern uint_t vac_mask;
254 
255 	static struct {
256 		char	*name;
257 		int	*var;
258 		int	defval;
259 	} prop[] = {
260 		"l1-dcache-size", &dcache_size, OPL_DCACHE_SIZE,
261 		"l1-dcache-line-size", &dcache_linesize, OPL_DCACHE_LSIZE,
262 		"l1-icache-size", &icache_size, OPL_ICACHE_SIZE,
263 		"l1-icache-line-size", &icache_linesize, OPL_ICACHE_LSIZE,
264 		"l2-cache-size", &ecache_size, OPL_ECACHE_SIZE,
265 		"l2-cache-line-size", &ecache_alignsize, OPL_ECACHE_LSIZE,
266 		"l2-cache-associativity", &ecache_associativity, OPL_ECACHE_NWAY
267 	};
268 
269 	for (i = 0; i < sizeof (prop) / sizeof (prop[0]); i++)
270 		*prop[i].var = getintprop(dnode, prop[i].name, prop[i].defval);
271 
272 	ecache_setsize = ecache_size / ecache_associativity;
273 
274 	vac_size = OPL_VAC_SIZE;
275 	vac_mask = MMU_PAGEMASK & (vac_size - 1);
276 	i = 0; a = vac_size;
277 	while (a >>= 1)
278 		++i;
279 	vac_shift = i;
280 	shm_alignment = vac_size;
281 	vac = 1;
282 }
283 
284 /*
285  * Enable features for Jupiter-only domains.
286  */
287 void
288 cpu_fix_alljupiter(void)
289 {
290 	if (!prom_SPARC64VII_support_enabled()) {
291 		/*
292 		 * Do not enable all-Jupiter features and do not turn on
293 		 * the cpu_alljupiter flag.
294 		 */
295 		return;
296 	}
297 
298 	cpu_alljupiter = 1;
299 
300 	/*
301 	 * Enable ima hwcap for Jupiter-only domains.  DR will prevent
302 	 * addition of Olympus-C to all-Jupiter domains to preserve ima
303 	 * hwcap semantics.
304 	 */
305 	cpu_hwcap_flags |= AV_SPARC_IMA;
306 }
307 
308 #ifdef	OLYMPUS_C_REV_B_ERRATA_XCALL
309 /*
310  * Quick and dirty way to redefine locally in
311  * OPL the value of IDSR_BN_SETS to 31 instead
312  * of the standard 32 value. This is to workaround
313  * REV_B of Olympus_c processor's problem in handling
314  * more than 31 xcall broadcast.
315  */
316 #undef	IDSR_BN_SETS
317 #define	IDSR_BN_SETS    31
318 #endif	/* OLYMPUS_C_REV_B_ERRATA_XCALL */
319 
320 void
321 send_mondo_set(cpuset_t set)
322 {
323 	int lo, busy, nack, shipped = 0;
324 	uint16_t i, cpuids[IDSR_BN_SETS];
325 	uint64_t idsr, nackmask = 0, busymask, curnack, curbusy;
326 	uint64_t starttick, endtick, tick, lasttick;
327 #if (NCPU > IDSR_BN_SETS)
328 	int index = 0;
329 	int ncpuids = 0;
330 #endif
331 #ifdef	OLYMPUS_C_REV_A_ERRATA_XCALL
332 	int bn_sets = IDSR_BN_SETS;
333 	uint64_t ver;
334 
335 	ASSERT(NCPU > bn_sets);
336 #endif
337 
338 	ASSERT(!CPUSET_ISNULL(set));
339 	starttick = lasttick = gettick();
340 
341 #ifdef	OLYMPUS_C_REV_A_ERRATA_XCALL
342 	ver = ultra_getver();
343 	if (((ULTRA_VER_IMPL(ver)) == OLYMPUS_C_IMPL) &&
344 	    ((OLYMPUS_REV_MASK(ver)) == OLYMPUS_C_A))
345 		bn_sets = 1;
346 #endif
347 
348 #if (NCPU <= IDSR_BN_SETS)
349 	for (i = 0; i < NCPU; i++)
350 		if (CPU_IN_SET(set, i)) {
351 			shipit(i, shipped);
352 			nackmask |= IDSR_NACK_BIT(shipped);
353 			cpuids[shipped++] = i;
354 			CPUSET_DEL(set, i);
355 			if (CPUSET_ISNULL(set))
356 				break;
357 		}
358 	CPU_STATS_ADDQ(CPU, sys, xcalls, shipped);
359 #else
360 	for (i = 0; i < NCPU; i++)
361 		if (CPU_IN_SET(set, i)) {
362 			ncpuids++;
363 
364 			/*
365 			 * Ship only to the first (IDSR_BN_SETS) CPUs.  If we
366 			 * find we have shipped to more than (IDSR_BN_SETS)
367 			 * CPUs, set "index" to the highest numbered CPU in
368 			 * the set so we can ship to other CPUs a bit later on.
369 			 */
370 #ifdef	OLYMPUS_C_REV_A_ERRATA_XCALL
371 			if (shipped < bn_sets) {
372 #else
373 			if (shipped < IDSR_BN_SETS) {
374 #endif
375 				shipit(i, shipped);
376 				nackmask |= IDSR_NACK_BIT(shipped);
377 				cpuids[shipped++] = i;
378 				CPUSET_DEL(set, i);
379 				if (CPUSET_ISNULL(set))
380 					break;
381 			} else
382 				index = (int)i;
383 		}
384 
385 	CPU_STATS_ADDQ(CPU, sys, xcalls, ncpuids);
386 #endif
387 
388 	busymask = IDSR_NACK_TO_BUSY(nackmask);
389 	busy = nack = 0;
390 	endtick = starttick + xc_tick_limit;
391 	for (;;) {
392 		idsr = getidsr();
393 #if (NCPU <= IDSR_BN_SETS)
394 		if (idsr == 0)
395 			break;
396 #else
397 		if (idsr == 0 && shipped == ncpuids)
398 			break;
399 #endif
400 		tick = gettick();
401 		/*
402 		 * If there is a big jump between the current tick
403 		 * count and lasttick, we have probably hit a break
404 		 * point.  Adjust endtick accordingly to avoid panic.
405 		 */
406 		if (tick > (lasttick + xc_tick_jump_limit))
407 			endtick += (tick - lasttick);
408 		lasttick = tick;
409 		if (tick > endtick) {
410 			if (panic_quiesce)
411 				return;
412 			cmn_err(CE_CONT, "send mondo timeout [%d NACK %d "
413 			    "BUSY]\nIDSR 0x%" PRIx64 "  cpuids:",
414 			    nack, busy, idsr);
415 #ifdef	OLYMPUS_C_REV_A_ERRATA_XCALL
416 			for (i = 0; i < bn_sets; i++) {
417 #else
418 			for (i = 0; i < IDSR_BN_SETS; i++) {
419 #endif
420 				if (idsr & (IDSR_NACK_BIT(i) |
421 				    IDSR_BUSY_BIT(i))) {
422 					cmn_err(CE_CONT, " 0x%x", cpuids[i]);
423 				}
424 			}
425 			cmn_err(CE_CONT, "\n");
426 			cmn_err(CE_PANIC, "send_mondo_set: timeout");
427 		}
428 		curnack = idsr & nackmask;
429 		curbusy = idsr & busymask;
430 
431 #ifdef OLYMPUS_C_REV_B_ERRATA_XCALL
432 		/*
433 		 * Only proceed to send more xcalls if all the
434 		 * cpus in the previous IDSR_BN_SETS were completed.
435 		 */
436 		if (curbusy) {
437 			busy++;
438 			continue;
439 		}
440 #endif /* OLYMPUS_C_REV_B_ERRATA_XCALL */
441 
442 #if (NCPU > IDSR_BN_SETS)
443 		if (shipped < ncpuids) {
444 			uint64_t cpus_left;
445 			uint16_t next = (uint16_t)index;
446 
447 			cpus_left = ~(IDSR_NACK_TO_BUSY(curnack) | curbusy) &
448 			    busymask;
449 
450 			if (cpus_left) {
451 				do {
452 					/*
453 					 * Sequence through and ship to the
454 					 * remainder of the CPUs in the system
455 					 * (e.g. other than the first
456 					 * (IDSR_BN_SETS)) in reverse order.
457 					 */
458 					lo = lowbit(cpus_left) - 1;
459 					i = IDSR_BUSY_IDX(lo);
460 					shipit(next, i);
461 					shipped++;
462 					cpuids[i] = next;
463 
464 					/*
465 					 * If we've processed all the CPUs,
466 					 * exit the loop now and save
467 					 * instructions.
468 					 */
469 					if (shipped == ncpuids)
470 						break;
471 
472 					for ((index = ((int)next - 1));
473 					    index >= 0; index--)
474 						if (CPU_IN_SET(set, index)) {
475 							next = (uint16_t)index;
476 							break;
477 						}
478 
479 					cpus_left &= ~(1ull << lo);
480 				} while (cpus_left);
481 				continue;
482 			}
483 		}
484 #endif
485 #ifndef	OLYMPUS_C_REV_B_ERRATA_XCALL
486 		if (curbusy) {
487 			busy++;
488 			continue;
489 		}
490 #endif	/* OLYMPUS_C_REV_B_ERRATA_XCALL */
491 #ifdef SEND_MONDO_STATS
492 		{
493 			int n = gettick() - starttick;
494 			if (n < 8192)
495 				x_nack_stimes[n >> 7]++;
496 		}
497 #endif
498 		while (gettick() < (tick + sys_clock_mhz))
499 			;
500 		do {
501 			lo = lowbit(curnack) - 1;
502 			i = IDSR_NACK_IDX(lo);
503 			shipit(cpuids[i], i);
504 			curnack &= ~(1ull << lo);
505 		} while (curnack);
506 		nack++;
507 		busy = 0;
508 	}
509 #ifdef SEND_MONDO_STATS
510 	{
511 		int n = gettick() - starttick;
512 		if (n < 8192)
513 			x_set_stimes[n >> 7]++;
514 		else
515 			x_set_ltimes[(n >> 13) & 0xf]++;
516 	}
517 	x_set_cpus[shipped]++;
518 #endif
519 }
520 
521 /*
522  * Cpu private initialization.
523  */
524 void
525 cpu_init_private(struct cpu *cp)
526 {
527 	if (!((IS_OLYMPUS_C(cpunodes[cp->cpu_id].implementation)) ||
528 	    (IS_JUPITER(cpunodes[cp->cpu_id].implementation)))) {
529 		cmn_err(CE_PANIC, "CPU%d Impl %d: Only SPARC64-VI(I) is "
530 		    "supported", cp->cpu_id,
531 		    cpunodes[cp->cpu_id].implementation);
532 	}
533 
534 	adjust_hw_copy_limits(cpunodes[cp->cpu_id].ecache_size);
535 }
536 
537 void
538 cpu_setup(void)
539 {
540 	extern int at_flags;
541 	extern int cpc_has_overflow_intr;
542 	uint64_t cpu0_log;
543 	extern	 uint64_t opl_cpu0_err_log;
544 
545 	/*
546 	 * Initialize Error log Scratch register for error handling.
547 	 */
548 
549 	cpu0_log = va_to_pa(&opl_cpu0_err_log);
550 	opl_error_setup(cpu0_log);
551 
552 	/*
553 	 * Enable MMU translating multiple page sizes for
554 	 * sITLB and sDTLB.
555 	 */
556 	opl_mpg_enable();
557 
558 	/*
559 	 * Setup chip-specific trap handlers.
560 	 */
561 	cpu_init_trap();
562 
563 	cache |= (CACHE_VAC | CACHE_PTAG | CACHE_IOCOHERENT);
564 
565 	at_flags = EF_SPARC_32PLUS | EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3;
566 
567 	/*
568 	 * Due to the number of entries in the fully-associative tlb
569 	 * this may have to be tuned lower than in spitfire.
570 	 */
571 	pp_slots = MIN(8, MAXPP_SLOTS);
572 
573 	/*
574 	 * Block stores do not invalidate all pages of the d$, pagecopy
575 	 * et. al. need virtual translations with virtual coloring taken
576 	 * into consideration.  prefetch/ldd will pollute the d$ on the
577 	 * load side.
578 	 */
579 	pp_consistent_coloring = PPAGE_STORE_VCOLORING | PPAGE_LOADS_POLLUTE;
580 
581 	if (use_page_coloring) {
582 		do_pg_coloring = 1;
583 	}
584 
585 	isa_list =
586 	    "sparcv9+vis2 sparcv9+vis sparcv9 "
587 	    "sparcv8plus+vis2 sparcv8plus+vis sparcv8plus "
588 	    "sparcv8 sparcv8-fsmuld sparcv7 sparc";
589 
590 	cpu_hwcap_flags = AV_SPARC_VIS | AV_SPARC_VIS2 |
591 	    AV_SPARC_POPC | AV_SPARC_FMAF;
592 
593 	/*
594 	 * On SPARC64-VI, there's no hole in the virtual address space
595 	 */
596 	hole_start = hole_end = 0;
597 
598 	/*
599 	 * The kpm mapping window.
600 	 * kpm_size:
601 	 *	The size of a single kpm range.
602 	 *	The overall size will be: kpm_size * vac_colors.
603 	 * kpm_vbase:
604 	 *	The virtual start address of the kpm range within the kernel
605 	 *	virtual address space. kpm_vbase has to be kpm_size aligned.
606 	 */
607 	kpm_size = (size_t)(128ull * 1024 * 1024 * 1024 * 1024); /* 128TB */
608 	kpm_size_shift = 47;
609 	kpm_vbase = (caddr_t)0x8000000000000000ull; /* 8EB */
610 	kpm_smallpages = 1;
611 
612 	/*
613 	 * The traptrace code uses either %tick or %stick for
614 	 * timestamping.  We have %stick so we can use it.
615 	 */
616 	traptrace_use_stick = 1;
617 
618 	/*
619 	 * SPARC64-VI has a performance counter overflow interrupt
620 	 */
621 	cpc_has_overflow_intr = 1;
622 
623 	/*
624 	 * Declare that this architecture/cpu combination does not support
625 	 * fpRAS.
626 	 */
627 	fpras_implemented = 0;
628 }
629 
630 /*
631  * Called by setcpudelay
632  */
633 void
634 cpu_init_tick_freq(void)
635 {
636 	/*
637 	 * For SPARC64-VI we want to use the system clock rate as
638 	 * the basis for low level timing, due to support of mixed
639 	 * speed CPUs and power managment.
640 	 */
641 	if (system_clock_freq == 0)
642 		cmn_err(CE_PANIC, "setcpudelay: invalid system_clock_freq");
643 
644 	sys_tick_freq = system_clock_freq;
645 }
646 
647 #ifdef SEND_MONDO_STATS
648 uint32_t x_one_stimes[64];
649 uint32_t x_one_ltimes[16];
650 uint32_t x_set_stimes[64];
651 uint32_t x_set_ltimes[16];
652 uint32_t x_set_cpus[NCPU];
653 uint32_t x_nack_stimes[64];
654 #endif
655 
656 /*
657  * Note: A version of this function is used by the debugger via the KDI,
658  * and must be kept in sync with this version.  Any changes made to this
659  * function to support new chips or to accomodate errata must also be included
660  * in the KDI-specific version.  See us3_kdi.c.
661  */
662 void
663 send_one_mondo(int cpuid)
664 {
665 	int busy, nack;
666 	uint64_t idsr, starttick, endtick, tick, lasttick;
667 	uint64_t busymask;
668 
669 	CPU_STATS_ADDQ(CPU, sys, xcalls, 1);
670 	starttick = lasttick = gettick();
671 	shipit(cpuid, 0);
672 	endtick = starttick + xc_tick_limit;
673 	busy = nack = 0;
674 	busymask = IDSR_BUSY;
675 	for (;;) {
676 		idsr = getidsr();
677 		if (idsr == 0)
678 			break;
679 
680 		tick = gettick();
681 		/*
682 		 * If there is a big jump between the current tick
683 		 * count and lasttick, we have probably hit a break
684 		 * point.  Adjust endtick accordingly to avoid panic.
685 		 */
686 		if (tick > (lasttick + xc_tick_jump_limit))
687 			endtick += (tick - lasttick);
688 		lasttick = tick;
689 		if (tick > endtick) {
690 			if (panic_quiesce)
691 				return;
692 			cmn_err(CE_PANIC, "send mondo timeout (target 0x%x) "
693 			    "[%d NACK %d BUSY]", cpuid, nack, busy);
694 		}
695 
696 		if (idsr & busymask) {
697 			busy++;
698 			continue;
699 		}
700 		drv_usecwait(1);
701 		shipit(cpuid, 0);
702 		nack++;
703 		busy = 0;
704 	}
705 #ifdef SEND_MONDO_STATS
706 	{
707 		int n = gettick() - starttick;
708 		if (n < 8192)
709 			x_one_stimes[n >> 7]++;
710 		else
711 			x_one_ltimes[(n >> 13) & 0xf]++;
712 	}
713 #endif
714 }
715 
716 /*
717  * init_mmu_page_sizes is set to one after the bootup time initialization
718  * via mmu_init_mmu_page_sizes, to indicate that mmu_page_sizes has a
719  * valid value.
720  *
721  * mmu_disable_ism_large_pages and mmu_disable_large_pages are the mmu-specific
722  * versions of disable_ism_large_pages and disable_large_pages, and feed back
723  * into those two hat variables at hat initialization time.
724  *
725  */
726 int init_mmu_page_sizes = 0;
727 
728 static uint_t mmu_disable_large_pages = 0;
729 static uint_t mmu_disable_ism_large_pages = ((1 << TTE64K) |
730 	(1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M));
731 static uint_t mmu_disable_auto_data_large_pages = ((1 << TTE64K) |
732 	(1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M));
733 static uint_t mmu_disable_auto_text_large_pages = ((1 << TTE64K) |
734 	(1 << TTE512K));
735 
736 /*
737  * Re-initialize mmu_page_sizes and friends, for SPARC64-VI mmu support.
738  * Called during very early bootup from check_cpus_set().
739  * Can be called to verify that mmu_page_sizes are set up correctly.
740  *
741  * Set Olympus defaults. We do not use the function parameter.
742  */
743 /*ARGSUSED*/
744 int
745 mmu_init_mmu_page_sizes(int32_t not_used)
746 {
747 	if (!init_mmu_page_sizes) {
748 		mmu_page_sizes = MMU_PAGE_SIZES;
749 		mmu_hashcnt = MAX_HASHCNT;
750 		mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE;
751 		mmu_exported_pagesize_mask = (1 << TTE8K) |
752 		    (1 << TTE64K) | (1 << TTE512K) | (1 << TTE4M) |
753 		    (1 << TTE32M) | (1 << TTE256M);
754 		init_mmu_page_sizes = 1;
755 		return (0);
756 	}
757 	return (1);
758 }
759 
760 /* SPARC64-VI worst case DTLB parameters */
761 #ifndef	LOCKED_DTLB_ENTRIES
762 #define	LOCKED_DTLB_ENTRIES	5	/* 2 user TSBs, 2 nucleus, + OBP */
763 #endif
764 #define	TOTAL_DTLB_ENTRIES	32
765 #define	AVAIL_32M_ENTRIES	0
766 #define	AVAIL_256M_ENTRIES	0
767 #define	AVAIL_DTLB_ENTRIES	(TOTAL_DTLB_ENTRIES - LOCKED_DTLB_ENTRIES)
768 static uint64_t ttecnt_threshold[MMU_PAGE_SIZES] = {
769 	AVAIL_DTLB_ENTRIES, AVAIL_DTLB_ENTRIES,
770 	AVAIL_DTLB_ENTRIES, AVAIL_DTLB_ENTRIES,
771 	AVAIL_DTLB_ENTRIES, AVAIL_DTLB_ENTRIES};
772 
773 /*
774  * The function returns the mmu-specific values for the
775  * hat's disable_large_pages, disable_ism_large_pages, and
776  * disable_auto_data_large_pages and
777  * disable_text_data_large_pages variables.
778  */
779 uint_t
780 mmu_large_pages_disabled(uint_t flag)
781 {
782 	uint_t pages_disable = 0;
783 	extern int use_text_pgsz64K;
784 	extern int use_text_pgsz512K;
785 
786 	if (flag == HAT_LOAD) {
787 		pages_disable =  mmu_disable_large_pages;
788 	} else if (flag == HAT_LOAD_SHARE) {
789 		pages_disable = mmu_disable_ism_large_pages;
790 	} else if (flag == HAT_AUTO_DATA) {
791 		pages_disable = mmu_disable_auto_data_large_pages;
792 	} else if (flag == HAT_AUTO_TEXT) {
793 		pages_disable = mmu_disable_auto_text_large_pages;
794 		if (use_text_pgsz512K) {
795 			pages_disable &= ~(1 << TTE512K);
796 		}
797 		if (use_text_pgsz64K) {
798 			pages_disable &= ~(1 << TTE64K);
799 		}
800 	}
801 	return (pages_disable);
802 }
803 
804 /*
805  * mmu_init_large_pages is called with the desired ism_pagesize parameter.
806  * It may be called from set_platform_defaults, if some value other than 32M
807  * is desired.  mmu_ism_pagesize is the tunable.  If it has a bad value,
808  * then only warn, since it would be bad form to panic due to a user typo.
809  *
810  * The function re-initializes the mmu_disable_ism_large_pages variable.
811  */
812 void
813 mmu_init_large_pages(size_t ism_pagesize)
814 {
815 	switch (ism_pagesize) {
816 	case MMU_PAGESIZE4M:
817 		mmu_disable_ism_large_pages = ((1 << TTE64K) |
818 		    (1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M));
819 		mmu_disable_auto_data_large_pages = ((1 << TTE64K) |
820 		    (1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M));
821 		break;
822 	case MMU_PAGESIZE32M:
823 		mmu_disable_ism_large_pages = ((1 << TTE64K) |
824 		    (1 << TTE512K) | (1 << TTE256M));
825 		mmu_disable_auto_data_large_pages = ((1 << TTE64K) |
826 		    (1 << TTE512K) | (1 << TTE4M) | (1 << TTE256M));
827 		adjust_data_maxlpsize(ism_pagesize);
828 		break;
829 	case MMU_PAGESIZE256M:
830 		mmu_disable_ism_large_pages = ((1 << TTE64K) |
831 		    (1 << TTE512K) | (1 << TTE32M));
832 		mmu_disable_auto_data_large_pages = ((1 << TTE64K) |
833 		    (1 << TTE512K) | (1 << TTE4M) | (1 << TTE32M));
834 		adjust_data_maxlpsize(ism_pagesize);
835 		break;
836 	default:
837 		cmn_err(CE_WARN, "Unrecognized mmu_ism_pagesize value 0x%lx",
838 		    ism_pagesize);
839 		break;
840 	}
841 }
842 
843 /*
844  * Function to reprogram the TLBs when page sizes used
845  * by a process change significantly.
846  */
847 void
848 mmu_setup_page_sizes(struct hat *hat, uint64_t *ttecnt, uint8_t *tmp_pgsz)
849 {
850 	uint8_t pgsz0, pgsz1;
851 
852 	/*
853 	 * Don't program 2nd dtlb for kernel and ism hat
854 	 */
855 	ASSERT(hat->sfmmu_ismhat == NULL);
856 	ASSERT(hat != ksfmmup);
857 
858 	/*
859 	 * hat->sfmmu_pgsz[] is an array whose elements
860 	 * contain a sorted order of page sizes.  Element
861 	 * 0 is the most commonly used page size, followed
862 	 * by element 1, and so on.
863 	 *
864 	 * ttecnt[] is an array of per-page-size page counts
865 	 * mapped into the process.
866 	 *
867 	 * If the HAT's choice for page sizes is unsuitable,
868 	 * we can override it here.  The new values written
869 	 * to the array will be handed back to us later to
870 	 * do the actual programming of the TLB hardware.
871 	 *
872 	 */
873 	pgsz0 = (uint8_t)MIN(tmp_pgsz[0], tmp_pgsz[1]);
874 	pgsz1 = (uint8_t)MAX(tmp_pgsz[0], tmp_pgsz[1]);
875 
876 	/*
877 	 * This implements PAGESIZE programming of the sTLB
878 	 * if large TTE counts don't exceed the thresholds.
879 	 */
880 	if (ttecnt[pgsz0] < ttecnt_threshold[pgsz0])
881 		pgsz0 = page_szc(MMU_PAGESIZE);
882 	if (ttecnt[pgsz1] < ttecnt_threshold[pgsz1])
883 		pgsz1 = page_szc(MMU_PAGESIZE);
884 	tmp_pgsz[0] = pgsz0;
885 	tmp_pgsz[1] = pgsz1;
886 	/* otherwise, accept what the HAT chose for us */
887 }
888 
889 /*
890  * The HAT calls this function when an MMU context is allocated so that we
891  * can reprogram the large TLBs appropriately for the new process using
892  * the context.
893  *
894  * The caller must hold the HAT lock.
895  */
896 void
897 mmu_set_ctx_page_sizes(struct hat *hat)
898 {
899 	uint8_t pgsz0, pgsz1;
900 	uint8_t new_cext;
901 
902 	ASSERT(sfmmu_hat_lock_held(hat));
903 	/*
904 	 * Don't program 2nd dtlb for kernel and ism hat
905 	 */
906 	if (hat->sfmmu_ismhat || hat == ksfmmup)
907 		return;
908 
909 	/*
910 	 * If supported, reprogram the TLBs to a larger pagesize.
911 	 */
912 	pgsz0 = hat->sfmmu_pgsz[0];
913 	pgsz1 = hat->sfmmu_pgsz[1];
914 	ASSERT(pgsz0 < mmu_page_sizes);
915 	ASSERT(pgsz1 < mmu_page_sizes);
916 	new_cext = TAGACCEXT_MKSZPAIR(pgsz1, pgsz0);
917 	if (hat->sfmmu_cext != new_cext) {
918 #ifdef DEBUG
919 		int i;
920 		/*
921 		 * assert cnum should be invalid, this is because pagesize
922 		 * can only be changed after a proc's ctxs are invalidated.
923 		 */
924 		for (i = 0; i < max_mmu_ctxdoms; i++) {
925 			ASSERT(hat->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
926 		}
927 #endif /* DEBUG */
928 		hat->sfmmu_cext = new_cext;
929 	}
930 	/*
931 	 * sfmmu_setctx_sec() will take care of the
932 	 * rest of the dirty work for us.
933 	 */
934 }
935 
936 /*
937  * This function assumes that there are either four or six supported page
938  * sizes and at most two programmable TLBs, so we need to decide which
939  * page sizes are most important and then adjust the TLB page sizes
940  * accordingly (if supported).
941  *
942  * If these assumptions change, this function will need to be
943  * updated to support whatever the new limits are.
944  */
945 void
946 mmu_check_page_sizes(sfmmu_t *sfmmup, uint64_t *ttecnt)
947 {
948 	uint64_t sortcnt[MMU_PAGE_SIZES];
949 	uint8_t tmp_pgsz[MMU_PAGE_SIZES];
950 	uint8_t i, j, max;
951 	uint16_t oldval, newval;
952 
953 	/*
954 	 * We only consider reprogramming the TLBs if one or more of
955 	 * the two most used page sizes changes and we're using
956 	 * large pages in this process.
957 	 */
958 	if (SFMMU_LGPGS_INUSE(sfmmup)) {
959 		/* Sort page sizes. */
960 		for (i = 0; i < mmu_page_sizes; i++) {
961 			sortcnt[i] = ttecnt[i];
962 		}
963 		for (j = 0; j < mmu_page_sizes; j++) {
964 			for (i = mmu_page_sizes - 1, max = 0; i > 0; i--) {
965 				if (sortcnt[i] > sortcnt[max])
966 					max = i;
967 			}
968 			tmp_pgsz[j] = max;
969 			sortcnt[max] = 0;
970 		}
971 
972 		oldval = sfmmup->sfmmu_pgsz[0] << 8 | sfmmup->sfmmu_pgsz[1];
973 
974 		mmu_setup_page_sizes(sfmmup, ttecnt, tmp_pgsz);
975 
976 		/* Check 2 largest values after the sort. */
977 		newval = tmp_pgsz[0] << 8 | tmp_pgsz[1];
978 		if (newval != oldval) {
979 			sfmmu_reprog_pgsz_arr(sfmmup, tmp_pgsz);
980 		}
981 	}
982 }
983 
984 /*
985  * Return processor specific async error structure
986  * size used.
987  */
988 int
989 cpu_aflt_size(void)
990 {
991 	return (sizeof (opl_async_flt_t));
992 }
993 
994 /*
995  * The cpu_sync_log_err() function is called via the [uc]e_drain() function to
996  * post-process CPU events that are dequeued.  As such, it can be invoked
997  * from softint context, from AST processing in the trap() flow, or from the
998  * panic flow.  We decode the CPU-specific data, and take appropriate actions.
999  * Historically this entry point was used to log the actual cmn_err(9F) text;
1000  * now with FMA it is used to prepare 'flt' to be converted into an ereport.
1001  * With FMA this function now also returns a flag which indicates to the
1002  * caller whether the ereport should be posted (1) or suppressed (0).
1003  */
1004 /*ARGSUSED*/
1005 static int
1006 cpu_sync_log_err(void *flt)
1007 {
1008 	opl_async_flt_t *opl_flt = (opl_async_flt_t *)flt;
1009 	struct async_flt *aflt = (struct async_flt *)flt;
1010 
1011 	/*
1012 	 * No extra processing of urgent error events.
1013 	 * Always generate ereports for these events.
1014 	 */
1015 	if (aflt->flt_status == OPL_ECC_URGENT_TRAP)
1016 		return (1);
1017 
1018 	/*
1019 	 * Additional processing for synchronous errors.
1020 	 */
1021 	switch (opl_flt->flt_type) {
1022 	case OPL_CPU_INV_SFSR:
1023 		return (1);
1024 
1025 	case OPL_CPU_SYNC_UE:
1026 		/*
1027 		 * The validity: SFSR_MK_UE bit has been checked
1028 		 * in opl_cpu_sync_error()
1029 		 * No more check is required.
1030 		 *
1031 		 * opl_flt->flt_eid_mod and flt_eid_sid have been set by H/W,
1032 		 * and they have been retrieved in cpu_queue_events()
1033 		 */
1034 
1035 		if (opl_flt->flt_eid_mod == OPL_ERRID_MEM) {
1036 			ASSERT(aflt->flt_in_memory);
1037 			/*
1038 			 * We want to skip logging only if ALL the following
1039 			 * conditions are true:
1040 			 *
1041 			 *	1. We are not panicing already.
1042 			 *	2. The error is a memory error.
1043 			 *	3. There is only one error.
1044 			 *	4. The error is on a retired page.
1045 			 *	5. The error occurred under on_trap
1046 			 *	protection AFLT_PROT_EC
1047 			 */
1048 			if (!panicstr && aflt->flt_prot == AFLT_PROT_EC &&
1049 			    page_retire_check(aflt->flt_addr, NULL) == 0) {
1050 				/*
1051 				 * Do not log an error from
1052 				 * the retired page
1053 				 */
1054 				softcall(ecc_page_zero, (void *)aflt->flt_addr);
1055 				return (0);
1056 			}
1057 			if (!panicstr)
1058 				cpu_page_retire(opl_flt);
1059 		}
1060 		return (1);
1061 
1062 	case OPL_CPU_SYNC_OTHERS:
1063 		/*
1064 		 * For the following error cases, the processor HW does
1065 		 * not set the flt_eid_mod/flt_eid_sid. Instead, SW will attempt
1066 		 * to assign appropriate values here to reflect what we
1067 		 * think is the most likely cause of the problem w.r.t to
1068 		 * the particular error event.  For Buserr and timeout
1069 		 * error event, we will assign OPL_ERRID_CHANNEL as the
1070 		 * most likely reason.  For TLB parity or multiple hit
1071 		 * error events, we will assign the reason as
1072 		 * OPL_ERRID_CPU (cpu related problem) and set the
1073 		 * flt_eid_sid to point to the cpuid.
1074 		 */
1075 
1076 		if (opl_flt->flt_bit & (SFSR_BERR|SFSR_TO)) {
1077 			/*
1078 			 * flt_eid_sid will not be used for this case.
1079 			 */
1080 			opl_flt->flt_eid_mod = OPL_ERRID_CHANNEL;
1081 		}
1082 		if (opl_flt->flt_bit & (SFSR_TLB_MUL|SFSR_TLB_PRT)) {
1083 			opl_flt->flt_eid_mod = OPL_ERRID_CPU;
1084 			opl_flt->flt_eid_sid = aflt->flt_inst;
1085 		}
1086 
1087 		/*
1088 		 * In case of no effective error bit
1089 		 */
1090 		if ((opl_flt->flt_bit & SFSR_ERRS) == 0) {
1091 			opl_flt->flt_eid_mod = OPL_ERRID_CPU;
1092 			opl_flt->flt_eid_sid = aflt->flt_inst;
1093 		}
1094 		break;
1095 
1096 		default:
1097 			return (1);
1098 	}
1099 	return (1);
1100 }
1101 
1102 /*
1103  * Retire the bad page that may contain the flushed error.
1104  */
1105 void
1106 cpu_page_retire(opl_async_flt_t *opl_flt)
1107 {
1108 	struct async_flt *aflt = (struct async_flt *)opl_flt;
1109 	(void) page_retire(aflt->flt_addr, PR_UE);
1110 }
1111 
1112 /*
1113  * Invoked by error_init() early in startup and therefore before
1114  * startup_errorq() is called to drain any error Q -
1115  *
1116  * startup()
1117  *   startup_end()
1118  *     error_init()
1119  *       cpu_error_init()
1120  * errorq_init()
1121  *   errorq_drain()
1122  * start_other_cpus()
1123  *
1124  * The purpose of this routine is to create error-related taskqs.  Taskqs
1125  * are used for this purpose because cpu_lock can't be grabbed from interrupt
1126  * context.
1127  *
1128  */
1129 /*ARGSUSED*/
1130 void
1131 cpu_error_init(int items)
1132 {
1133 	opl_err_log = (opl_errlog_t *)
1134 	    kmem_alloc(ERRLOG_ALLOC_SZ, KM_SLEEP);
1135 	if ((uint64_t)opl_err_log & MMU_PAGEOFFSET)
1136 		cmn_err(CE_PANIC, "The base address of the error log "
1137 		    "is not page aligned");
1138 }
1139 
1140 /*
1141  * We route all errors through a single switch statement.
1142  */
1143 void
1144 cpu_ue_log_err(struct async_flt *aflt)
1145 {
1146 	switch (aflt->flt_class) {
1147 	case CPU_FAULT:
1148 		if (cpu_sync_log_err(aflt))
1149 			cpu_ereport_post(aflt);
1150 		break;
1151 
1152 	case BUS_FAULT:
1153 		bus_async_log_err(aflt);
1154 		break;
1155 
1156 	default:
1157 		cmn_err(CE_WARN, "discarding async error %p with invalid "
1158 		    "fault class (0x%x)", (void *)aflt, aflt->flt_class);
1159 		return;
1160 	}
1161 }
1162 
1163 /*
1164  * Routine for panic hook callback from panic_idle().
1165  *
1166  * Nothing to do here.
1167  */
1168 void
1169 cpu_async_panic_callb(void)
1170 {
1171 }
1172 
1173 /*
1174  * Routine to return a string identifying the physical name
1175  * associated with a memory/cache error.
1176  */
1177 /*ARGSUSED*/
1178 int
1179 cpu_get_mem_unum(int synd_status, ushort_t flt_synd, uint64_t flt_stat,
1180     uint64_t flt_addr, int flt_bus_id, int flt_in_memory,
1181     ushort_t flt_status, char *buf, int buflen, int *lenp)
1182 {
1183 	int synd_code;
1184 	int ret;
1185 
1186 	/*
1187 	 * An AFSR of -1 defaults to a memory syndrome.
1188 	 */
1189 	synd_code = (int)flt_synd;
1190 
1191 	if (&plat_get_mem_unum) {
1192 		if ((ret = plat_get_mem_unum(synd_code, flt_addr, flt_bus_id,
1193 		    flt_in_memory, flt_status, buf, buflen, lenp)) != 0) {
1194 			buf[0] = '\0';
1195 			*lenp = 0;
1196 		}
1197 		return (ret);
1198 	}
1199 	buf[0] = '\0';
1200 	*lenp = 0;
1201 	return (ENOTSUP);
1202 }
1203 
1204 /*
1205  * Wrapper for cpu_get_mem_unum() routine that takes an
1206  * async_flt struct rather than explicit arguments.
1207  */
1208 int
1209 cpu_get_mem_unum_aflt(int synd_status, struct async_flt *aflt,
1210     char *buf, int buflen, int *lenp)
1211 {
1212 	/*
1213 	 * We always pass -1 so that cpu_get_mem_unum will interpret this as a
1214 	 * memory error.
1215 	 */
1216 	return (cpu_get_mem_unum(synd_status, aflt->flt_synd,
1217 	    (uint64_t)-1,
1218 	    aflt->flt_addr, aflt->flt_bus_id, aflt->flt_in_memory,
1219 	    aflt->flt_status, buf, buflen, lenp));
1220 }
1221 
1222 /*
1223  * This routine is a more generic interface to cpu_get_mem_unum()
1224  * that may be used by other modules (e.g. mm).
1225  */
1226 /*ARGSUSED*/
1227 int
1228 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar,
1229     char *buf, int buflen, int *lenp)
1230 {
1231 	int synd_status, flt_in_memory, ret;
1232 	ushort_t flt_status = 0;
1233 	char unum[UNUM_NAMLEN];
1234 
1235 	/*
1236 	 * Check for an invalid address.
1237 	 */
1238 	if (afar == (uint64_t)-1)
1239 		return (ENXIO);
1240 
1241 	if (synd == (uint64_t)-1)
1242 		synd_status = AFLT_STAT_INVALID;
1243 	else
1244 		synd_status = AFLT_STAT_VALID;
1245 
1246 	flt_in_memory = (*afsr & SFSR_MEMORY) &&
1247 	    pf_is_memory(afar >> MMU_PAGESHIFT);
1248 
1249 	ret = cpu_get_mem_unum(synd_status, (ushort_t)synd, *afsr, afar,
1250 	    CPU->cpu_id, flt_in_memory, flt_status, unum, UNUM_NAMLEN, lenp);
1251 	if (ret != 0)
1252 		return (ret);
1253 
1254 	if (*lenp >= buflen)
1255 		return (ENAMETOOLONG);
1256 
1257 	(void) strncpy(buf, unum, buflen);
1258 
1259 	return (0);
1260 }
1261 
1262 /*
1263  * Routine to return memory information associated
1264  * with a physical address and syndrome.
1265  */
1266 /*ARGSUSED*/
1267 int
1268 cpu_get_mem_info(uint64_t synd, uint64_t afar,
1269     uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
1270     int *segsp, int *banksp, int *mcidp)
1271 {
1272 	int synd_code = (int)synd;
1273 
1274 	if (afar == (uint64_t)-1)
1275 		return (ENXIO);
1276 
1277 	if (p2get_mem_info != NULL)
1278 		return ((p2get_mem_info)(synd_code, afar, mem_sizep, seg_sizep,
1279 		    bank_sizep, segsp, banksp, mcidp));
1280 	else
1281 		return (ENOTSUP);
1282 }
1283 
1284 /*
1285  * Routine to return a string identifying the physical
1286  * name associated with a cpuid.
1287  */
1288 int
1289 cpu_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
1290 {
1291 	int ret;
1292 	char unum[UNUM_NAMLEN];
1293 
1294 	if (&plat_get_cpu_unum) {
1295 		if ((ret = plat_get_cpu_unum(cpuid, unum, UNUM_NAMLEN,
1296 		    lenp)) != 0)
1297 			return (ret);
1298 	} else {
1299 		return (ENOTSUP);
1300 	}
1301 
1302 	if (*lenp >= buflen)
1303 		return (ENAMETOOLONG);
1304 
1305 	(void) strncpy(buf, unum, *lenp);
1306 
1307 	return (0);
1308 }
1309 
1310 /*
1311  * This routine exports the name buffer size.
1312  */
1313 size_t
1314 cpu_get_name_bufsize()
1315 {
1316 	return (UNUM_NAMLEN);
1317 }
1318 
1319 /*
1320  * Flush the entire ecache by ASI_L2_CNTL.U2_FLUSH
1321  */
1322 void
1323 cpu_flush_ecache(void)
1324 {
1325 	flush_ecache(ecache_flushaddr, cpunodes[CPU->cpu_id].ecache_size,
1326 	    cpunodes[CPU->cpu_id].ecache_linesize);
1327 }
1328 
1329 static uint8_t
1330 flt_to_trap_type(struct async_flt *aflt)
1331 {
1332 	if (aflt->flt_status & OPL_ECC_ISYNC_TRAP)
1333 		return (TRAP_TYPE_ECC_I);
1334 	if (aflt->flt_status & OPL_ECC_DSYNC_TRAP)
1335 		return (TRAP_TYPE_ECC_D);
1336 	if (aflt->flt_status & OPL_ECC_URGENT_TRAP)
1337 		return (TRAP_TYPE_URGENT);
1338 	return (TRAP_TYPE_UNKNOWN);
1339 }
1340 
1341 /*
1342  * Encode the data saved in the opl_async_flt_t struct into
1343  * the FM ereport payload.
1344  */
1345 /* ARGSUSED */
1346 static void
1347 cpu_payload_add_aflt(struct async_flt *aflt, nvlist_t *payload,
1348 		nvlist_t *resource)
1349 {
1350 	opl_async_flt_t *opl_flt = (opl_async_flt_t *)aflt;
1351 	char unum[UNUM_NAMLEN];
1352 	char sbuf[21]; /* sizeof (UINT64_MAX) + '\0' */
1353 	int len;
1354 
1355 
1356 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_SFSR) {
1357 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_SFSR,
1358 		    DATA_TYPE_UINT64, aflt->flt_stat, NULL);
1359 	}
1360 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_SFAR) {
1361 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_SFAR,
1362 		    DATA_TYPE_UINT64, aflt->flt_addr, NULL);
1363 	}
1364 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_UGESR) {
1365 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_UGESR,
1366 		    DATA_TYPE_UINT64, aflt->flt_stat, NULL);
1367 	}
1368 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_PC) {
1369 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_PC,
1370 		    DATA_TYPE_UINT64, (uint64_t)aflt->flt_pc, NULL);
1371 	}
1372 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_TL) {
1373 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_TL,
1374 		    DATA_TYPE_UINT8, (uint8_t)aflt->flt_tl, NULL);
1375 	}
1376 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_TT) {
1377 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_TT,
1378 		    DATA_TYPE_UINT8, flt_to_trap_type(aflt), NULL);
1379 	}
1380 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_PRIV) {
1381 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_PRIV,
1382 		    DATA_TYPE_BOOLEAN_VALUE,
1383 		    (aflt->flt_priv ? B_TRUE : B_FALSE), NULL);
1384 	}
1385 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_FLT_STATUS) {
1386 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_FLT_STATUS,
1387 		    DATA_TYPE_UINT64, (uint64_t)aflt->flt_status, NULL);
1388 	}
1389 
1390 	switch (opl_flt->flt_eid_mod) {
1391 	case OPL_ERRID_CPU:
1392 		(void) snprintf(sbuf, sizeof (sbuf), "%llX",
1393 		    (u_longlong_t)cpunodes[opl_flt->flt_eid_sid].device_id);
1394 		(void) fm_fmri_cpu_set(resource, FM_CPU_SCHEME_VERSION,
1395 		    NULL, opl_flt->flt_eid_sid,
1396 		    (uint8_t *)&cpunodes[opl_flt->flt_eid_sid].version, sbuf);
1397 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_RESOURCE,
1398 		    DATA_TYPE_NVLIST, resource, NULL);
1399 		break;
1400 
1401 	case OPL_ERRID_CHANNEL:
1402 		/*
1403 		 * No resource is created but the cpumem DE will find
1404 		 * the defective path by retreiving EID from SFSR which is
1405 		 * included in the payload.
1406 		 */
1407 		break;
1408 
1409 	case OPL_ERRID_MEM:
1410 		(void) cpu_get_mem_unum_aflt(0, aflt, unum, UNUM_NAMLEN, &len);
1411 		(void) fm_fmri_mem_set(resource, FM_MEM_SCHEME_VERSION, NULL,
1412 		    unum, NULL, (uint64_t)-1);
1413 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_RESOURCE,
1414 		    DATA_TYPE_NVLIST, resource, NULL);
1415 		break;
1416 
1417 	case OPL_ERRID_PATH:
1418 		/*
1419 		 * No resource is created but the cpumem DE will find
1420 		 * the defective path by retreiving EID from SFSR which is
1421 		 * included in the payload.
1422 		 */
1423 		break;
1424 	}
1425 }
1426 
1427 /*
1428  * Returns whether fault address is valid for this error bit and
1429  * whether the address is "in memory" (i.e. pf_is_memory returns 1).
1430  */
1431 /*ARGSUSED*/
1432 static int
1433 cpu_flt_in_memory(opl_async_flt_t *opl_flt, uint64_t t_afsr_bit)
1434 {
1435 	struct async_flt *aflt = (struct async_flt *)opl_flt;
1436 
1437 	if (aflt->flt_status & (OPL_ECC_SYNC_TRAP)) {
1438 		return ((t_afsr_bit & SFSR_MEMORY) &&
1439 		    pf_is_memory(aflt->flt_addr >> MMU_PAGESHIFT));
1440 	}
1441 	return (0);
1442 }
1443 
1444 /*
1445  * In OPL SCF does the stick synchronization.
1446  */
1447 void
1448 sticksync_slave(void)
1449 {
1450 }
1451 
1452 /*
1453  * In OPL SCF does the stick synchronization.
1454  */
1455 void
1456 sticksync_master(void)
1457 {
1458 }
1459 
1460 /*
1461  * Cpu private unitialization.  OPL cpus do not use the private area.
1462  */
1463 void
1464 cpu_uninit_private(struct cpu *cp)
1465 {
1466 	cmp_delete_cpu(cp->cpu_id);
1467 }
1468 
1469 /*
1470  * Always flush an entire cache.
1471  */
1472 void
1473 cpu_error_ecache_flush(void)
1474 {
1475 	cpu_flush_ecache();
1476 }
1477 
1478 void
1479 cpu_ereport_post(struct async_flt *aflt)
1480 {
1481 	char *cpu_type, buf[FM_MAX_CLASS];
1482 	nv_alloc_t *nva = NULL;
1483 	nvlist_t *ereport, *detector, *resource;
1484 	errorq_elem_t *eqep;
1485 	char sbuf[21]; /* sizeof (UINT64_MAX) + '\0' */
1486 
1487 	if (aflt->flt_panic || panicstr) {
1488 		eqep = errorq_reserve(ereport_errorq);
1489 		if (eqep == NULL)
1490 			return;
1491 		ereport = errorq_elem_nvl(ereport_errorq, eqep);
1492 		nva = errorq_elem_nva(ereport_errorq, eqep);
1493 	} else {
1494 		ereport = fm_nvlist_create(nva);
1495 	}
1496 
1497 	/*
1498 	 * Create the scheme "cpu" FMRI.
1499 	 */
1500 	detector = fm_nvlist_create(nva);
1501 	resource = fm_nvlist_create(nva);
1502 	switch (cpunodes[aflt->flt_inst].implementation) {
1503 	case OLYMPUS_C_IMPL:
1504 		cpu_type = FM_EREPORT_CPU_SPARC64_VI;
1505 		break;
1506 	case JUPITER_IMPL:
1507 		cpu_type = FM_EREPORT_CPU_SPARC64_VII;
1508 		break;
1509 	default:
1510 		cpu_type = FM_EREPORT_CPU_UNSUPPORTED;
1511 		break;
1512 	}
1513 	(void) snprintf(sbuf, sizeof (sbuf), "%llX",
1514 	    (u_longlong_t)cpunodes[aflt->flt_inst].device_id);
1515 	(void) fm_fmri_cpu_set(detector, FM_CPU_SCHEME_VERSION, NULL,
1516 	    aflt->flt_inst, (uint8_t *)&cpunodes[aflt->flt_inst].version,
1517 	    sbuf);
1518 
1519 	/*
1520 	 * Encode all the common data into the ereport.
1521 	 */
1522 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s.%s",
1523 	    FM_ERROR_CPU, cpu_type, aflt->flt_erpt_class);
1524 
1525 	fm_ereport_set(ereport, FM_EREPORT_VERSION, buf,
1526 	    fm_ena_generate(aflt->flt_id, FM_ENA_FMT1), detector, NULL);
1527 
1528 	/*
1529 	 * Encode the error specific data that was saved in
1530 	 * the async_flt structure into the ereport.
1531 	 */
1532 	cpu_payload_add_aflt(aflt, ereport, resource);
1533 
1534 	if (aflt->flt_panic || panicstr) {
1535 		errorq_commit(ereport_errorq, eqep, ERRORQ_SYNC);
1536 	} else {
1537 		(void) fm_ereport_post(ereport, EVCH_TRYHARD);
1538 		fm_nvlist_destroy(ereport, FM_NVA_FREE);
1539 		fm_nvlist_destroy(detector, FM_NVA_FREE);
1540 		fm_nvlist_destroy(resource, FM_NVA_FREE);
1541 	}
1542 }
1543 
1544 void
1545 cpu_run_bus_error_handlers(struct async_flt *aflt, int expected)
1546 {
1547 	int status;
1548 	ddi_fm_error_t de;
1549 
1550 	bzero(&de, sizeof (ddi_fm_error_t));
1551 
1552 	de.fme_version = DDI_FME_VERSION;
1553 	de.fme_ena = fm_ena_generate(aflt->flt_id, FM_ENA_FMT1);
1554 	de.fme_flag = expected;
1555 	de.fme_bus_specific = (void *)aflt->flt_addr;
1556 	status = ndi_fm_handler_dispatch(ddi_root_node(), NULL, &de);
1557 	if ((aflt->flt_prot == AFLT_PROT_NONE) && (status == DDI_FM_FATAL))
1558 		aflt->flt_panic = 1;
1559 }
1560 
1561 void
1562 cpu_errorq_dispatch(char *error_class, void *payload, size_t payload_sz,
1563     errorq_t *eqp, uint_t flag)
1564 {
1565 	struct async_flt *aflt = (struct async_flt *)payload;
1566 
1567 	aflt->flt_erpt_class = error_class;
1568 	errorq_dispatch(eqp, payload, payload_sz, flag);
1569 }
1570 
1571 void
1572 adjust_hw_copy_limits(int ecache_size)
1573 {
1574 	/*
1575 	 * Set hw copy limits.
1576 	 *
1577 	 * /etc/system will be parsed later and can override one or more
1578 	 * of these settings.
1579 	 *
1580 	 * At this time, ecache size seems only mildly relevant.
1581 	 * We seem to run into issues with the d-cache and stalls
1582 	 * we see on misses.
1583 	 *
1584 	 * Cycle measurement indicates that 2 byte aligned copies fare
1585 	 * little better than doing things with VIS at around 512 bytes.
1586 	 * 4 byte aligned shows promise until around 1024 bytes. 8 Byte
1587 	 * aligned is faster whenever the source and destination data
1588 	 * in cache and the total size is less than 2 Kbytes.  The 2K
1589 	 * limit seems to be driven by the 2K write cache.
1590 	 * When more than 2K of copies are done in non-VIS mode, stores
1591 	 * backup in the write cache.  In VIS mode, the write cache is
1592 	 * bypassed, allowing faster cache-line writes aligned on cache
1593 	 * boundaries.
1594 	 *
1595 	 * In addition, in non-VIS mode, there is no prefetching, so
1596 	 * for larger copies, the advantage of prefetching to avoid even
1597 	 * occasional cache misses is enough to justify using the VIS code.
1598 	 *
1599 	 * During testing, it was discovered that netbench ran 3% slower
1600 	 * when hw_copy_limit_8 was 2K or larger.  Apparently for server
1601 	 * applications, data is only used once (copied to the output
1602 	 * buffer, then copied by the network device off the system).  Using
1603 	 * the VIS copy saves more L2 cache state.  Network copies are
1604 	 * around 1.3K to 1.5K in size for historical reasons.
1605 	 *
1606 	 * Therefore, a limit of 1K bytes will be used for the 8 byte
1607 	 * aligned copy even for large caches and 8 MB ecache.  The
1608 	 * infrastructure to allow different limits for different sized
1609 	 * caches is kept to allow further tuning in later releases.
1610 	 */
1611 
1612 	if (min_ecache_size == 0 && use_hw_bcopy) {
1613 		/*
1614 		 * First time through - should be before /etc/system
1615 		 * is read.
1616 		 * Could skip the checks for zero but this lets us
1617 		 * preserve any debugger rewrites.
1618 		 */
1619 		if (hw_copy_limit_1 == 0) {
1620 			hw_copy_limit_1 = VIS_COPY_THRESHOLD;
1621 			priv_hcl_1 = hw_copy_limit_1;
1622 		}
1623 		if (hw_copy_limit_2 == 0) {
1624 			hw_copy_limit_2 = 2 * VIS_COPY_THRESHOLD;
1625 			priv_hcl_2 = hw_copy_limit_2;
1626 		}
1627 		if (hw_copy_limit_4 == 0) {
1628 			hw_copy_limit_4 = 4 * VIS_COPY_THRESHOLD;
1629 			priv_hcl_4 = hw_copy_limit_4;
1630 		}
1631 		if (hw_copy_limit_8 == 0) {
1632 			hw_copy_limit_8 = 4 * VIS_COPY_THRESHOLD;
1633 			priv_hcl_8 = hw_copy_limit_8;
1634 		}
1635 		min_ecache_size = ecache_size;
1636 	} else {
1637 		/*
1638 		 * MP initialization. Called *after* /etc/system has
1639 		 * been parsed. One CPU has already been initialized.
1640 		 * Need to cater for /etc/system having scragged one
1641 		 * of our values.
1642 		 */
1643 		if (ecache_size == min_ecache_size) {
1644 			/*
1645 			 * Same size ecache. We do nothing unless we
1646 			 * have a pessimistic ecache setting. In that
1647 			 * case we become more optimistic (if the cache is
1648 			 * large enough).
1649 			 */
1650 			if (hw_copy_limit_8 == 4 * VIS_COPY_THRESHOLD) {
1651 				/*
1652 				 * Need to adjust hw_copy_limit* from our
1653 				 * pessimistic uniprocessor value to a more
1654 				 * optimistic UP value *iff* it hasn't been
1655 				 * reset.
1656 				 */
1657 				if ((ecache_size > 1048576) &&
1658 				    (priv_hcl_8 == hw_copy_limit_8)) {
1659 					if (ecache_size <= 2097152)
1660 						hw_copy_limit_8 = 4 *
1661 						    VIS_COPY_THRESHOLD;
1662 					else if (ecache_size <= 4194304)
1663 						hw_copy_limit_8 = 4 *
1664 						    VIS_COPY_THRESHOLD;
1665 					else
1666 						hw_copy_limit_8 = 4 *
1667 						    VIS_COPY_THRESHOLD;
1668 					priv_hcl_8 = hw_copy_limit_8;
1669 				}
1670 			}
1671 		} else if (ecache_size < min_ecache_size) {
1672 			/*
1673 			 * A different ecache size. Can this even happen?
1674 			 */
1675 			if (priv_hcl_8 == hw_copy_limit_8) {
1676 				/*
1677 				 * The previous value that we set
1678 				 * is unchanged (i.e., it hasn't been
1679 				 * scragged by /etc/system). Rewrite it.
1680 				 */
1681 				if (ecache_size <= 1048576)
1682 					hw_copy_limit_8 = 8 *
1683 					    VIS_COPY_THRESHOLD;
1684 				else if (ecache_size <= 2097152)
1685 					hw_copy_limit_8 = 8 *
1686 					    VIS_COPY_THRESHOLD;
1687 				else if (ecache_size <= 4194304)
1688 					hw_copy_limit_8 = 8 *
1689 					    VIS_COPY_THRESHOLD;
1690 				else
1691 					hw_copy_limit_8 = 10 *
1692 					    VIS_COPY_THRESHOLD;
1693 				priv_hcl_8 = hw_copy_limit_8;
1694 				min_ecache_size = ecache_size;
1695 			}
1696 		}
1697 	}
1698 }
1699 
1700 #define	VIS_BLOCKSIZE		64
1701 
1702 int
1703 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data)
1704 {
1705 	int ret, watched;
1706 
1707 	watched = watch_disable_addr((void *)addr, VIS_BLOCKSIZE, S_WRITE);
1708 	ret = dtrace_blksuword32(addr, data, 0);
1709 	if (watched)
1710 		watch_enable_addr((void *)addr, VIS_BLOCKSIZE, S_WRITE);
1711 
1712 	return (ret);
1713 }
1714 
1715 void
1716 opl_cpu_reg_init()
1717 {
1718 	uint64_t	this_cpu_log;
1719 
1720 	/*
1721 	 * We do not need to re-initialize cpu0 registers.
1722 	 */
1723 	if (cpu[getprocessorid()] == &cpu0) {
1724 		/*
1725 		 * Support for "ta 3"
1726 		 */
1727 		opl_ta3();
1728 		return;
1729 	}
1730 
1731 	/*
1732 	 * Initialize Error log Scratch register for error handling.
1733 	 */
1734 
1735 	this_cpu_log = va_to_pa((void*)(((uint64_t)opl_err_log) +
1736 	    ERRLOG_BUFSZ * (getprocessorid())));
1737 	opl_error_setup(this_cpu_log);
1738 
1739 	/*
1740 	 * Enable MMU translating multiple page sizes for
1741 	 * sITLB and sDTLB.
1742 	 */
1743 	opl_mpg_enable();
1744 }
1745 
1746 /*
1747  * Queue one event in ue_queue based on ecc_type_to_info entry.
1748  */
1749 static void
1750 cpu_queue_one_event(opl_async_flt_t *opl_flt, char *reason,
1751     ecc_type_to_info_t *eccp)
1752 {
1753 	struct async_flt *aflt = (struct async_flt *)opl_flt;
1754 
1755 	if (reason &&
1756 	    strlen(reason) + strlen(eccp->ec_reason) < MAX_REASON_STRING) {
1757 		(void) strcat(reason, eccp->ec_reason);
1758 	}
1759 
1760 	opl_flt->flt_bit = eccp->ec_afsr_bit;
1761 	opl_flt->flt_type = eccp->ec_flt_type;
1762 	aflt->flt_in_memory = cpu_flt_in_memory(opl_flt, opl_flt->flt_bit);
1763 	aflt->flt_payload = eccp->ec_err_payload;
1764 
1765 	ASSERT(aflt->flt_status & (OPL_ECC_SYNC_TRAP|OPL_ECC_URGENT_TRAP));
1766 	cpu_errorq_dispatch(eccp->ec_err_class, (void *)opl_flt,
1767 	    sizeof (opl_async_flt_t), ue_queue, aflt->flt_panic);
1768 }
1769 
1770 /*
1771  * Queue events on async event queue one event per error bit.
1772  * Return number of events queued.
1773  */
1774 int
1775 cpu_queue_events(opl_async_flt_t *opl_flt, char *reason, uint64_t t_afsr_errs)
1776 {
1777 	struct async_flt *aflt = (struct async_flt *)opl_flt;
1778 	ecc_type_to_info_t *eccp;
1779 	int nevents = 0;
1780 
1781 	/*
1782 	 * Queue expected errors, error bit and fault type must must match
1783 	 * in the ecc_type_to_info table.
1784 	 */
1785 	for (eccp = ecc_type_to_info; t_afsr_errs != 0 && eccp->ec_desc != NULL;
1786 	    eccp++) {
1787 		if ((eccp->ec_afsr_bit & t_afsr_errs) != 0 &&
1788 		    (eccp->ec_flags & aflt->flt_status) != 0) {
1789 			/*
1790 			 * UE error event can be further
1791 			 * classified/breakdown into finer granularity
1792 			 * based on the flt_eid_mod value set by HW.  We do
1793 			 * special handling here so that we can report UE
1794 			 * error in finer granularity as ue_mem,
1795 			 * ue_channel, ue_cpu or ue_path.
1796 			 */
1797 			if (eccp->ec_flt_type == OPL_CPU_SYNC_UE) {
1798 				opl_flt->flt_eid_mod = (aflt->flt_stat &
1799 				    SFSR_EID_MOD) >> SFSR_EID_MOD_SHIFT;
1800 				opl_flt->flt_eid_sid = (aflt->flt_stat &
1801 				    SFSR_EID_SID) >> SFSR_EID_SID_SHIFT;
1802 				/*
1803 				 * Need to advance eccp pointer by flt_eid_mod
1804 				 * so that we get an appropriate ecc pointer
1805 				 *
1806 				 * EID			# of advances
1807 				 * ----------------------------------
1808 				 * OPL_ERRID_MEM	0
1809 				 * OPL_ERRID_CHANNEL	1
1810 				 * OPL_ERRID_CPU	2
1811 				 * OPL_ERRID_PATH	3
1812 				 */
1813 				eccp += opl_flt->flt_eid_mod;
1814 			}
1815 			cpu_queue_one_event(opl_flt, reason, eccp);
1816 			t_afsr_errs &= ~eccp->ec_afsr_bit;
1817 			nevents++;
1818 		}
1819 	}
1820 
1821 	return (nevents);
1822 }
1823 
1824 /*
1825  * Sync. error wrapper functions.
1826  * We use these functions in order to transfer here from the
1827  * nucleus trap handler information about trap type (data or
1828  * instruction) and trap level (0 or above 0). This way we
1829  * get rid of using SFSR's reserved bits.
1830  */
1831 
1832 #define	OPL_SYNC_TL0	0
1833 #define	OPL_SYNC_TL1	1
1834 #define	OPL_ISYNC_ERR	0
1835 #define	OPL_DSYNC_ERR	1
1836 
1837 void
1838 opl_cpu_isync_tl0_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr)
1839 {
1840 	uint64_t t_sfar = p_sfar;
1841 	uint64_t t_sfsr = p_sfsr;
1842 
1843 	opl_cpu_sync_error(rp, t_sfar, t_sfsr,
1844 	    OPL_SYNC_TL0, OPL_ISYNC_ERR);
1845 }
1846 
1847 void
1848 opl_cpu_isync_tl1_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr)
1849 {
1850 	uint64_t t_sfar = p_sfar;
1851 	uint64_t t_sfsr = p_sfsr;
1852 
1853 	opl_cpu_sync_error(rp, t_sfar, t_sfsr,
1854 	    OPL_SYNC_TL1, OPL_ISYNC_ERR);
1855 }
1856 
1857 void
1858 opl_cpu_dsync_tl0_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr)
1859 {
1860 	uint64_t t_sfar = p_sfar;
1861 	uint64_t t_sfsr = p_sfsr;
1862 
1863 	opl_cpu_sync_error(rp, t_sfar, t_sfsr,
1864 	    OPL_SYNC_TL0, OPL_DSYNC_ERR);
1865 }
1866 
1867 void
1868 opl_cpu_dsync_tl1_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr)
1869 {
1870 	uint64_t t_sfar = p_sfar;
1871 	uint64_t t_sfsr = p_sfsr;
1872 
1873 	opl_cpu_sync_error(rp, t_sfar, t_sfsr,
1874 	    OPL_SYNC_TL1, OPL_DSYNC_ERR);
1875 }
1876 
1877 /*
1878  * The fj sync err handler transfers control here for UE, BERR, TO, TLB_MUL
1879  * and TLB_PRT.
1880  * This function is designed based on cpu_deferred_error().
1881  */
1882 
1883 static void
1884 opl_cpu_sync_error(struct regs *rp, ulong_t t_sfar, ulong_t t_sfsr,
1885     uint_t tl, uint_t derr)
1886 {
1887 	opl_async_flt_t opl_flt;
1888 	struct async_flt *aflt;
1889 	int trampolined = 0;
1890 	char pr_reason[MAX_REASON_STRING];
1891 	uint64_t log_sfsr;
1892 	int expected = DDI_FM_ERR_UNEXPECTED;
1893 	ddi_acc_hdl_t *hp;
1894 
1895 	/*
1896 	 * We need to look at p_flag to determine if the thread detected an
1897 	 * error while dumping core.  We can't grab p_lock here, but it's ok
1898 	 * because we just need a consistent snapshot and we know that everyone
1899 	 * else will store a consistent set of bits while holding p_lock.  We
1900 	 * don't have to worry about a race because SDOCORE is set once prior
1901 	 * to doing i/o from the process's address space and is never cleared.
1902 	 */
1903 	uint_t pflag = ttoproc(curthread)->p_flag;
1904 
1905 	pr_reason[0] = '\0';
1906 
1907 	/*
1908 	 * handle the specific error
1909 	 */
1910 	bzero(&opl_flt, sizeof (opl_async_flt_t));
1911 	aflt = (struct async_flt *)&opl_flt;
1912 	aflt->flt_id = gethrtime_waitfree();
1913 	aflt->flt_bus_id = getprocessorid();
1914 	aflt->flt_inst = CPU->cpu_id;
1915 	aflt->flt_stat = t_sfsr;
1916 	aflt->flt_addr = t_sfar;
1917 	aflt->flt_pc = (caddr_t)rp->r_pc;
1918 	aflt->flt_prot = (uchar_t)AFLT_PROT_NONE;
1919 	aflt->flt_class = (uchar_t)CPU_FAULT;
1920 	aflt->flt_priv = (uchar_t)(tl == 1 ? 1 : ((rp->r_tstate &
1921 	    TSTATE_PRIV) ? 1 : 0));
1922 	aflt->flt_tl = (uchar_t)tl;
1923 	aflt->flt_panic = (uchar_t)(tl != 0 || aft_testfatal != 0 ||
1924 	    (t_sfsr & (SFSR_TLB_MUL|SFSR_TLB_PRT)) != 0);
1925 	aflt->flt_core = (pflag & SDOCORE) ? 1 : 0;
1926 	aflt->flt_status = (derr) ? OPL_ECC_DSYNC_TRAP : OPL_ECC_ISYNC_TRAP;
1927 
1928 	/*
1929 	 * If SFSR.FV is not set, both SFSR and SFAR/SFPAR values are uncertain.
1930 	 * So, clear all error bits to avoid mis-handling and force the system
1931 	 * panicked.
1932 	 * We skip all the procedures below down to the panic message call.
1933 	 */
1934 	if (!(t_sfsr & SFSR_FV)) {
1935 		opl_flt.flt_type = OPL_CPU_INV_SFSR;
1936 		aflt->flt_panic = 1;
1937 		aflt->flt_payload = FM_EREPORT_PAYLOAD_SYNC;
1938 		cpu_errorq_dispatch(FM_EREPORT_CPU_INV_SFSR, (void *)&opl_flt,
1939 		    sizeof (opl_async_flt_t), ue_queue, aflt->flt_panic);
1940 		fm_panic("%sErrors(s)", "invalid SFSR");
1941 	}
1942 
1943 	/*
1944 	 * If either UE and MK bit is off, this is not valid UE error.
1945 	 * If it is not valid UE error, clear UE & MK_UE bits to prevent
1946 	 * mis-handling below.
1947 	 * aflt->flt_stat keeps the original bits as a reference.
1948 	 */
1949 	if ((t_sfsr & (SFSR_MK_UE|SFSR_UE)) !=
1950 	    (SFSR_MK_UE|SFSR_UE)) {
1951 		t_sfsr &= ~(SFSR_MK_UE|SFSR_UE);
1952 	}
1953 
1954 	/*
1955 	 * If the trap occurred in privileged mode at TL=0, we need to check to
1956 	 * see if we were executing in the kernel under on_trap() or t_lofault
1957 	 * protection.  If so, modify the saved registers so that we return
1958 	 * from the trap to the appropriate trampoline routine.
1959 	 */
1960 	if (!aflt->flt_panic && aflt->flt_priv && tl == 0) {
1961 		if (curthread->t_ontrap != NULL) {
1962 			on_trap_data_t *otp = curthread->t_ontrap;
1963 
1964 			if (otp->ot_prot & OT_DATA_EC) {
1965 				aflt->flt_prot = (uchar_t)AFLT_PROT_EC;
1966 				otp->ot_trap |= (ushort_t)OT_DATA_EC;
1967 				rp->r_pc = otp->ot_trampoline;
1968 				rp->r_npc = rp->r_pc + 4;
1969 				trampolined = 1;
1970 			}
1971 
1972 			if ((t_sfsr & (SFSR_TO | SFSR_BERR)) &&
1973 			    (otp->ot_prot & OT_DATA_ACCESS)) {
1974 				aflt->flt_prot = (uchar_t)AFLT_PROT_ACCESS;
1975 				otp->ot_trap |= (ushort_t)OT_DATA_ACCESS;
1976 				rp->r_pc = otp->ot_trampoline;
1977 				rp->r_npc = rp->r_pc + 4;
1978 				trampolined = 1;
1979 				/*
1980 				 * for peeks and caut_gets errors are expected
1981 				 */
1982 				hp = (ddi_acc_hdl_t *)otp->ot_handle;
1983 				if (!hp)
1984 					expected = DDI_FM_ERR_PEEK;
1985 				else if (hp->ah_acc.devacc_attr_access ==
1986 				    DDI_CAUTIOUS_ACC)
1987 					expected = DDI_FM_ERR_EXPECTED;
1988 			}
1989 
1990 		} else if (curthread->t_lofault) {
1991 			aflt->flt_prot = AFLT_PROT_COPY;
1992 			rp->r_g1 = EFAULT;
1993 			rp->r_pc = curthread->t_lofault;
1994 			rp->r_npc = rp->r_pc + 4;
1995 			trampolined = 1;
1996 		}
1997 	}
1998 
1999 	/*
2000 	 * If we're in user mode or we're doing a protected copy, we either
2001 	 * want the ASTON code below to send a signal to the user process
2002 	 * or we want to panic if aft_panic is set.
2003 	 *
2004 	 * If we're in privileged mode and we're not doing a copy, then we
2005 	 * need to check if we've trampolined.  If we haven't trampolined,
2006 	 * we should panic.
2007 	 */
2008 	if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY) {
2009 		if (t_sfsr & (SFSR_ERRS & ~(SFSR_BERR | SFSR_TO)))
2010 			aflt->flt_panic |= aft_panic;
2011 	} else if (!trampolined) {
2012 		aflt->flt_panic = 1;
2013 	}
2014 
2015 	/*
2016 	 * If we've trampolined due to a privileged TO or BERR, or if an
2017 	 * unprivileged TO or BERR occurred, we don't want to enqueue an
2018 	 * event for that TO or BERR.  Queue all other events (if any) besides
2019 	 * the TO/BERR.
2020 	 */
2021 	log_sfsr = t_sfsr;
2022 	if (trampolined) {
2023 		log_sfsr &= ~(SFSR_TO | SFSR_BERR);
2024 	} else if (!aflt->flt_priv) {
2025 		/*
2026 		 * User mode, suppress messages if
2027 		 * cpu_berr_to_verbose is not set.
2028 		 */
2029 		if (!cpu_berr_to_verbose)
2030 			log_sfsr &= ~(SFSR_TO | SFSR_BERR);
2031 	}
2032 
2033 	if (((log_sfsr & SFSR_ERRS) && (cpu_queue_events(&opl_flt, pr_reason,
2034 	    t_sfsr) == 0)) || ((t_sfsr & SFSR_ERRS) == 0)) {
2035 		opl_flt.flt_type = OPL_CPU_INV_SFSR;
2036 		aflt->flt_payload = FM_EREPORT_PAYLOAD_SYNC;
2037 		cpu_errorq_dispatch(FM_EREPORT_CPU_INV_SFSR, (void *)&opl_flt,
2038 		    sizeof (opl_async_flt_t), ue_queue, aflt->flt_panic);
2039 	}
2040 
2041 	if (t_sfsr & (SFSR_UE|SFSR_TO|SFSR_BERR)) {
2042 		cpu_run_bus_error_handlers(aflt, expected);
2043 	}
2044 
2045 	/*
2046 	 * Panic here if aflt->flt_panic has been set.  Enqueued errors will
2047 	 * be logged as part of the panic flow.
2048 	 */
2049 	if (aflt->flt_panic) {
2050 		if (pr_reason[0] == 0)
2051 			strcpy(pr_reason, "invalid SFSR ");
2052 
2053 		fm_panic("%sErrors(s)", pr_reason);
2054 	}
2055 
2056 	/*
2057 	 * If we queued an error and we are going to return from the trap and
2058 	 * the error was in user mode or inside of a copy routine, set AST flag
2059 	 * so the queue will be drained before returning to user mode.  The
2060 	 * AST processing will also act on our failure policy.
2061 	 */
2062 	if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY) {
2063 		int pcb_flag = 0;
2064 
2065 		if (t_sfsr & (SFSR_ERRS & ~(SFSR_BERR | SFSR_TO)))
2066 			pcb_flag |= ASYNC_HWERR;
2067 
2068 		if (t_sfsr & SFSR_BERR)
2069 			pcb_flag |= ASYNC_BERR;
2070 
2071 		if (t_sfsr & SFSR_TO)
2072 			pcb_flag |= ASYNC_BTO;
2073 
2074 		ttolwp(curthread)->lwp_pcb.pcb_flags |= pcb_flag;
2075 		aston(curthread);
2076 	}
2077 }
2078 
2079 /*ARGSUSED*/
2080 void
2081 opl_cpu_urgent_error(struct regs *rp, ulong_t p_ugesr, ulong_t tl)
2082 {
2083 	opl_async_flt_t opl_flt;
2084 	struct async_flt *aflt;
2085 	char pr_reason[MAX_REASON_STRING];
2086 
2087 	/* normalize tl */
2088 	tl = (tl >= 2 ? 1 : 0);
2089 	pr_reason[0] = '\0';
2090 
2091 	bzero(&opl_flt, sizeof (opl_async_flt_t));
2092 	aflt = (struct async_flt *)&opl_flt;
2093 	aflt->flt_id = gethrtime_waitfree();
2094 	aflt->flt_bus_id = getprocessorid();
2095 	aflt->flt_inst = CPU->cpu_id;
2096 	aflt->flt_stat = p_ugesr;
2097 	aflt->flt_pc = (caddr_t)rp->r_pc;
2098 	aflt->flt_class = (uchar_t)CPU_FAULT;
2099 	aflt->flt_tl = tl;
2100 	aflt->flt_priv = (uchar_t)(tl == 1 ? 1 : ((rp->r_tstate & TSTATE_PRIV) ?
2101 	    1 : 0));
2102 	aflt->flt_status = OPL_ECC_URGENT_TRAP;
2103 	aflt->flt_panic = 1;
2104 	/*
2105 	 * HW does not set mod/sid in case of urgent error.
2106 	 * So we have to set it here.
2107 	 */
2108 	opl_flt.flt_eid_mod = OPL_ERRID_CPU;
2109 	opl_flt.flt_eid_sid = aflt->flt_inst;
2110 
2111 	if (cpu_queue_events(&opl_flt, pr_reason, p_ugesr) == 0) {
2112 		opl_flt.flt_type = OPL_CPU_INV_UGESR;
2113 		aflt->flt_payload = FM_EREPORT_PAYLOAD_URGENT;
2114 		cpu_errorq_dispatch(FM_EREPORT_CPU_INV_URG, (void *)&opl_flt,
2115 		    sizeof (opl_async_flt_t), ue_queue, aflt->flt_panic);
2116 	}
2117 
2118 	fm_panic("Urgent Error");
2119 }
2120 
2121 /*
2122  * Initialization error counters resetting.
2123  */
2124 /* ARGSUSED */
2125 static void
2126 opl_ras_online(void *arg, cpu_t *cp, cyc_handler_t *hdlr, cyc_time_t *when)
2127 {
2128 	hdlr->cyh_func = (cyc_func_t)ras_cntr_reset;
2129 	hdlr->cyh_level = CY_LOW_LEVEL;
2130 	hdlr->cyh_arg = (void *)(uintptr_t)cp->cpu_id;
2131 
2132 	when->cyt_when = cp->cpu_id * (((hrtime_t)NANOSEC * 10)/ NCPU);
2133 	when->cyt_interval = (hrtime_t)NANOSEC * opl_async_check_interval;
2134 }
2135 
2136 void
2137 cpu_mp_init(void)
2138 {
2139 	cyc_omni_handler_t hdlr;
2140 
2141 	hdlr.cyo_online = opl_ras_online;
2142 	hdlr.cyo_offline = NULL;
2143 	hdlr.cyo_arg = NULL;
2144 	mutex_enter(&cpu_lock);
2145 	(void) cyclic_add_omni(&hdlr);
2146 	mutex_exit(&cpu_lock);
2147 }
2148 
2149 int heaplp_use_stlb = -1;
2150 
2151 void
2152 mmu_init_kernel_pgsz(struct hat *hat)
2153 {
2154 	uint_t tte = page_szc(segkmem_lpsize);
2155 	uchar_t new_cext_primary, new_cext_nucleus;
2156 
2157 	if (heaplp_use_stlb == 0) {
2158 		/* do not reprogram stlb */
2159 		tte = TTE8K;
2160 	} else if (!plat_prom_preserve_kctx_is_supported()) {
2161 		/* OBP does not support non-zero primary context */
2162 		tte = TTE8K;
2163 		heaplp_use_stlb = 0;
2164 	}
2165 
2166 	new_cext_nucleus = TAGACCEXT_MKSZPAIR(tte, TTE8K);
2167 	new_cext_primary = TAGACCEXT_MKSZPAIR(TTE8K, tte);
2168 
2169 	hat->sfmmu_cext = new_cext_primary;
2170 	kcontextreg = ((uint64_t)new_cext_nucleus << CTXREG_NEXT_SHIFT) |
2171 	    ((uint64_t)new_cext_primary << CTXREG_EXT_SHIFT);
2172 }
2173 
2174 size_t
2175 mmu_get_kernel_lpsize(size_t lpsize)
2176 {
2177 	uint_t tte;
2178 
2179 	if (lpsize == 0) {
2180 		/* no setting for segkmem_lpsize in /etc/system: use default */
2181 		return (MMU_PAGESIZE4M);
2182 	}
2183 
2184 	for (tte = TTE8K; tte <= TTE4M; tte++) {
2185 		if (lpsize == TTEBYTES(tte))
2186 			return (lpsize);
2187 	}
2188 
2189 	return (TTEBYTES(TTE8K));
2190 }
2191 
2192 /*
2193  * Support for ta 3.
2194  * We allocate here a buffer for each cpu
2195  * for saving the current register window.
2196  */
2197 typedef struct win_regs {
2198 	uint64_t l[8];
2199 	uint64_t i[8];
2200 } win_regs_t;
2201 static void
2202 opl_ta3(void)
2203 {
2204 	opl_ta3_save = (char *)kmem_alloc(NCPU * sizeof (win_regs_t), KM_SLEEP);
2205 }
2206 
2207 /*
2208  * The following are functions that are unused in
2209  * OPL cpu module. They are defined here to resolve
2210  * dependencies in the "unix" module.
2211  * Unused functions that should never be called in
2212  * OPL are coded with ASSERT(0).
2213  */
2214 
2215 void
2216 cpu_disable_errors(void)
2217 {}
2218 
2219 void
2220 cpu_enable_errors(void)
2221 { ASSERT(0); }
2222 
2223 /*ARGSUSED*/
2224 void
2225 cpu_ce_scrub_mem_err(struct async_flt *ecc, boolean_t t)
2226 { ASSERT(0); }
2227 
2228 /*ARGSUSED*/
2229 void
2230 cpu_faulted_enter(struct cpu *cp)
2231 {}
2232 
2233 /*ARGSUSED*/
2234 void
2235 cpu_faulted_exit(struct cpu *cp)
2236 {}
2237 
2238 /*ARGSUSED*/
2239 void
2240 cpu_check_allcpus(struct async_flt *aflt)
2241 {}
2242 
2243 /*ARGSUSED*/
2244 void
2245 cpu_ce_log_err(struct async_flt *aflt, errorq_elem_t *t)
2246 { ASSERT(0); }
2247 
2248 /*ARGSUSED*/
2249 void
2250 cpu_check_ce(int flag, uint64_t pa, caddr_t va, uint_t psz)
2251 { ASSERT(0); }
2252 
2253 /*ARGSUSED*/
2254 void
2255 cpu_ce_count_unum(struct async_flt *ecc, int len, char *unum)
2256 { ASSERT(0); }
2257 
2258 /*ARGSUSED*/
2259 void
2260 cpu_busy_ecache_scrub(struct cpu *cp)
2261 {}
2262 
2263 /*ARGSUSED*/
2264 void
2265 cpu_idle_ecache_scrub(struct cpu *cp)
2266 {}
2267 
2268 /* ARGSUSED */
2269 void
2270 cpu_change_speed(uint64_t divisor, uint64_t arg2)
2271 { ASSERT(0); }
2272 
2273 void
2274 cpu_init_cache_scrub(void)
2275 {}
2276 
2277 /* ARGSUSED */
2278 int
2279 cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
2280 {
2281 	if (&plat_get_mem_sid) {
2282 		return (plat_get_mem_sid(unum, buf, buflen, lenp));
2283 	} else {
2284 		return (ENOTSUP);
2285 	}
2286 }
2287 
2288 /* ARGSUSED */
2289 int
2290 cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
2291 {
2292 	if (&plat_get_mem_addr) {
2293 		return (plat_get_mem_addr(unum, sid, offset, addrp));
2294 	} else {
2295 		return (ENOTSUP);
2296 	}
2297 }
2298 
2299 /* ARGSUSED */
2300 int
2301 cpu_get_mem_offset(uint64_t flt_addr, uint64_t *offp)
2302 {
2303 	if (&plat_get_mem_offset) {
2304 		return (plat_get_mem_offset(flt_addr, offp));
2305 	} else {
2306 		return (ENOTSUP);
2307 	}
2308 }
2309 
2310 /*ARGSUSED*/
2311 void
2312 itlb_rd_entry(uint_t entry, tte_t *tte, uint64_t *va_tag)
2313 { ASSERT(0); }
2314 
2315 /*ARGSUSED*/
2316 void
2317 dtlb_rd_entry(uint_t entry, tte_t *tte, uint64_t *va_tag)
2318 { ASSERT(0); }
2319 
2320 /*ARGSUSED*/
2321 void
2322 read_ecc_data(struct async_flt *aflt, short verbose, short ce_err)
2323 { ASSERT(0); }
2324 
2325 /*ARGSUSED*/
2326 int
2327 ce_scrub_xdiag_recirc(struct async_flt *aflt, errorq_t *eqp,
2328     errorq_elem_t *eqep, size_t afltoffset)
2329 {
2330 	ASSERT(0);
2331 	return (0);
2332 }
2333 
2334 /*ARGSUSED*/
2335 char *
2336 flt_to_error_type(struct async_flt *aflt)
2337 {
2338 	ASSERT(0);
2339 	return (NULL);
2340 }
2341 
2342 #define	PROM_SPARC64VII_MODE_PROPNAME	"SPARC64-VII-mode"
2343 
2344 /*
2345  * Check for existence of OPL OBP property that indicates
2346  * SPARC64-VII support. By default, only enable Jupiter
2347  * features if the property is present.   It will be
2348  * present in all-Jupiter domains by OBP if the domain has
2349  * been selected by the user on the system controller to
2350  * run in Jupiter mode.  Basically, this OBP property must
2351  * be present to turn on the cpu_alljupiter flag.
2352  */
2353 static int
2354 prom_SPARC64VII_support_enabled(void)
2355 {
2356 	int val;
2357 
2358 	return ((prom_getprop(prom_rootnode(), PROM_SPARC64VII_MODE_PROPNAME,
2359 	    (caddr_t)&val) == 0) ? 1 : 0);
2360 }
2361 
2362 #define	PROM_KCTX_PRESERVED_PROPNAME	"context0-page-size-preserved"
2363 
2364 /*
2365  * Check for existence of OPL OBP property that indicates support for
2366  * preserving Solaris kernel page sizes when entering OBP.  We need to
2367  * check the prom tree since the ddi tree is not yet built when the
2368  * platform startup sequence is called.
2369  */
2370 static int
2371 plat_prom_preserve_kctx_is_supported(void)
2372 {
2373 	pnode_t		pnode;
2374 	int		val;
2375 
2376 	/*
2377 	 * Check for existence of context0-page-size-preserved property
2378 	 * in virtual-memory prom node.
2379 	 */
2380 	pnode = (pnode_t)prom_getphandle(prom_mmu_ihandle());
2381 	return ((prom_getprop(pnode, PROM_KCTX_PRESERVED_PROPNAME,
2382 	    (caddr_t)&val) == 0) ? 1 : 0);
2383 }
2384