xref: /titanic_50/usr/src/uts/sun4u/chicago/os/chicago.c (revision 726fad2a65f16c200a03969c29cb5c86c2d427db)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/sysmacros.h>
31 #include <sys/sunddi.h>
32 #include <sys/esunddi.h>
33 #include <sys/platform_module.h>
34 #include <sys/errno.h>
35 #include <sys/lgrp.h>
36 #include <sys/memnode.h>
37 #include <sys/promif.h>
38 
39 #define	EBUS_NAME	"ebus"
40 #define	RTC_NAME	"rtc"
41 #define	SHARED_MI2CV_PATH "/i2c@1f,520000"
42 static dev_info_t *shared_mi2cv_dip;
43 static kmutex_t chicago_mi2cv_mutex;
44 
45 /*
46  * External variables
47  */
48 extern	volatile uint8_t *v_rtc_addr_reg;
49 
50 int (*p2get_mem_unum)(int, uint64_t, char *, int, int *);
51 static void get_ebus_rtc_vaddr(void);
52 
53 void
54 startup_platform(void)
55 {
56 	mutex_init(&chicago_mi2cv_mutex, NULL, NULL, NULL);
57 }
58 
59 int
60 set_platform_tsb_spares()
61 {
62 	return (0);
63 }
64 
65 void
66 set_platform_defaults(void)
67 {
68 	extern char *tod_module_name;
69 
70 	/*
71 	 * We need to set tod_module_name explicitly because there is a
72 	 * well known South bridge RTC node on chicago and tod_module_name
73 	 * gets set to that.
74 	 */
75 	tod_module_name = "todbq4802";
76 
77 	/* Work-around for Chicago platform */
78 	get_ebus_rtc_vaddr();
79 
80 }
81 
82 /*
83  * Definitions for accessing the pci config space of the isa node
84  * of Southbridge.
85  */
86 static ddi_acc_handle_t isa_handle = NULL;	/* handle for isa pci space */
87 
88 
89 void
90 load_platform_drivers(void)
91 {
92 	/*
93 	 * Install power driver which handles the power button.
94 	 */
95 	if (i_ddi_attach_hw_nodes("power") != DDI_SUCCESS)
96 		cmn_err(CE_WARN, "Failed to install \"power\" driver.");
97 	(void) ddi_hold_driver(ddi_name_to_major("power"));
98 
99 	/*
100 	 * It is OK to return error because 'us' driver is not available
101 	 * in all clusters (e.g. missing in Core cluster).
102 	 */
103 	(void) i_ddi_attach_hw_nodes("us");
104 
105 	if (i_ddi_attach_hw_nodes("grbeep") != DDI_SUCCESS)
106 		cmn_err(CE_WARN, "Failed to install \"beep\" driver.");
107 
108 
109 	/*
110 	 * mc-us3i must stay loaded for plat_get_mem_unum()
111 	 */
112 	if (i_ddi_attach_hw_nodes("mc-us3i") != DDI_SUCCESS)
113 		cmn_err(CE_WARN, "mc-us3i driver failed to install");
114 	(void) ddi_hold_driver(ddi_name_to_major("mc-us3i"));
115 
116 	/*
117 	 * Figure out which mi2cv dip is shared with OBP for the nvram
118 	 * device, so the lock can be acquired.
119 	 */
120 	shared_mi2cv_dip = e_ddi_hold_devi_by_path(SHARED_MI2CV_PATH, 0);
121 }
122 
123 /*ARGSUSED*/
124 int
125 plat_cpu_poweron(struct cpu *cp)
126 {
127 	return (ENOTSUP);	/* not supported on this platform */
128 }
129 
130 /*ARGSUSED*/
131 int
132 plat_cpu_poweroff(struct cpu *cp)
133 {
134 	return (ENOTSUP);	/* not supported on this platform */
135 }
136 
137 /*ARGSUSED*/
138 void
139 plat_freelist_process(int mnode)
140 {
141 }
142 
143 char *platform_module_list[] = {
144 	"mi2cv",
145 	"jbusppm",
146 	"pca9556",
147 	"ppm",
148 	(char *)0
149 };
150 
151 /*ARGSUSED*/
152 void
153 plat_tod_fault(enum tod_fault_type tod_bad)
154 {
155 }
156 
157 /*ARGSUSED*/
158 int
159 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
160     int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp)
161 {
162 	if (flt_in_memory && (p2get_mem_unum != NULL))
163 		return (p2get_mem_unum(synd_code, P2ALIGN(flt_addr, 8),
164 		    buf, buflen, lenp));
165 	else
166 		return (ENOTSUP);
167 }
168 
169 /*ARGSUSED*/
170 int
171 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
172 {
173 	if (snprintf(buf, buflen, "MB") >= buflen) {
174 		return (ENOSPC);
175 	} else {
176 		*lenp = strlen(buf);
177 		return (0);
178 	}
179 }
180 
181 /*
182  * Fiesta support for lgroups.
183  *
184  * On fiesta platform, an lgroup platform handle == CPU id
185  */
186 
187 /*
188  * Macro for extracting the CPU number from the CPU id
189  */
190 #define	CPUID_TO_LGRP(id)	((id) & 0x7)
191 #define	CHICAGO_MC_SHIFT	36
192 
193 /*
194  * Return the platform handle for the lgroup containing the given CPU
195  */
196 void *
197 plat_lgrp_cpu_to_hand(processorid_t id)
198 {
199 	return ((void *)(uintptr_t)CPUID_TO_LGRP(id));
200 }
201 
202 /*
203  * Platform specific lgroup initialization
204  */
205 void
206 plat_lgrp_init(void)
207 {
208 	pnode_t		curnode;
209 	char		tmp_name[sizeof (OBP_CPU)];
210 	int		portid;
211 	int		cpucnt = 0;
212 	int		max_portid = -1;
213 	extern uint32_t lgrp_expand_proc_thresh;
214 	extern uint32_t lgrp_expand_proc_diff;
215 	extern pgcnt_t	lgrp_mem_free_thresh;
216 	extern uint32_t lgrp_loadavg_tolerance;
217 	extern uint32_t lgrp_loadavg_max_effect;
218 	extern uint32_t lgrp_load_thresh;
219 	extern lgrp_mem_policy_t  lgrp_mem_policy_root;
220 
221 	/*
222 	 * Count the number of CPUs installed to determine if
223 	 * NUMA optimization should be enabled or not.
224 	 *
225 	 * All CPU nodes reside in the root node and have a
226 	 * device type "cpu".
227 	 */
228 	curnode = prom_rootnode();
229 	for (curnode = prom_childnode(curnode); curnode;
230 	    curnode = prom_nextnode(curnode)) {
231 		bzero(tmp_name, sizeof (tmp_name));
232 		if (prom_bounded_getprop(curnode, OBP_DEVICETYPE, tmp_name,
233 		    sizeof (tmp_name)) == -1 || strcmp(tmp_name, OBP_CPU) != 0)
234 			continue;
235 
236 		cpucnt++;
237 		if (prom_getprop(curnode, "portid", (caddr_t)&portid) !=
238 		    -1 && portid > max_portid)
239 			max_portid = portid;
240 	}
241 	if (cpucnt <= 1)
242 		max_mem_nodes = 1;
243 	else if (max_portid >= 0 && max_portid < MAX_MEM_NODES)
244 		max_mem_nodes = max_portid + 1;
245 
246 	/*
247 	 * Set tuneables for fiesta architecture
248 	 *
249 	 * lgrp_expand_proc_thresh is the minimum load on the lgroups
250 	 * this process is currently running on before considering
251 	 * expanding threads to another lgroup.
252 	 *
253 	 * lgrp_expand_proc_diff determines how much less the remote lgroup
254 	 * must be loaded before expanding to it.
255 	 *
256 	 * Optimize for memory bandwidth by spreading multi-threaded
257 	 * program to different lgroups.
258 	 */
259 	lgrp_expand_proc_thresh = lgrp_loadavg_max_effect - 1;
260 	lgrp_expand_proc_diff = lgrp_loadavg_max_effect / 2;
261 	lgrp_loadavg_tolerance = lgrp_loadavg_max_effect / 2;
262 	lgrp_mem_free_thresh = 1;	/* home lgrp must have some memory */
263 	lgrp_expand_proc_thresh = lgrp_loadavg_max_effect - 1;
264 	lgrp_mem_policy_root = LGRP_MEM_POLICY_NEXT;
265 	lgrp_load_thresh = 0;
266 
267 	mem_node_pfn_shift = CHICAGO_MC_SHIFT - MMU_PAGESHIFT;
268 }
269 
270 /*
271  * Return latency between "from" and "to" lgroups
272  *
273  * This latency number can only be used for relative comparison
274  * between lgroups on the running system, cannot be used across platforms,
275  * and may not reflect the actual latency.  It is platform and implementation
276  * specific, so platform gets to decide its value.  It would be nice if the
277  * number was at least proportional to make comparisons more meaningful though.
278  * NOTE: The numbers below are supposed to be load latencies for uncached
279  * memory divided by 10.
280  */
281 int
282 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
283 {
284 	/*
285 	 * Return remote latency when there are more than two lgroups
286 	 * (root and child) and getting latency between two different
287 	 * lgroups or root is involved
288 	 */
289 	if (lgrp_optimizations() && (from != to ||
290 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
291 		return (17);
292 	else
293 		return (12);
294 }
295 
296 int
297 plat_pfn_to_mem_node(pfn_t pfn)
298 {
299 	ASSERT(max_mem_nodes > 1);
300 	return (pfn >> mem_node_pfn_shift);
301 }
302 
303 /*
304  * Assign memnode to lgroups
305  */
306 void
307 plat_fill_mc(pnode_t nodeid)
308 {
309 	int		portid;
310 
311 	/*
312 	 * Chicago memory controller portid == global CPU id
313 	 */
314 	if ((prom_getprop(nodeid, "portid", (caddr_t)&portid) == -1) ||
315 	    (portid < 0))
316 		return;
317 
318 	if (portid < max_mem_nodes)
319 		plat_assign_lgrphand_to_mem_node((lgrp_handle_t)portid, portid);
320 }
321 
322 /*
323  * Common locking enter code
324  */
325 void
326 plat_setprop_enter(void)
327 {
328 	mutex_enter(&chicago_mi2cv_mutex);
329 }
330 
331 /*
332  * Common locking exit code
333  */
334 void
335 plat_setprop_exit(void)
336 {
337 	mutex_exit(&chicago_mi2cv_mutex);
338 }
339 
340 /*
341  * Called by mi2cv driver
342  */
343 void
344 plat_shared_i2c_enter(dev_info_t *i2cnexus_dip)
345 {
346 	if (i2cnexus_dip == shared_mi2cv_dip) {
347 		plat_setprop_enter();
348 	}
349 }
350 
351 /*
352  * Called by mi2cv driver
353  */
354 void
355 plat_shared_i2c_exit(dev_info_t *i2cnexus_dip)
356 {
357 	if (i2cnexus_dip == shared_mi2cv_dip) {
358 		plat_setprop_exit();
359 	}
360 }
361 
362 /*
363  * Work-around for the Chicago platform.
364  * There are two RTCs in the Chicago platform, one on the Southbridge
365  * and one on the EBUS.
366  * In the current Solaris implementation, have_rtc in sun4u/os/fillsysinfo.c
367  * returns address of the first rtc it sees. In this case, it's the SB RTC.
368  *
369  * get_ebus_rtc_vaddr() looks for the EBUS RTC and setup the right address.
370  * If there is no EBUS RTC node or the RTC node does not have the valid
371  * address property, get_ebus_rtc_vaddr() will fail.
372  */
373 static void
374 get_ebus_rtc_vaddr()
375 {
376 	pnode_t node;
377 	int size;
378 	uint32_t eaddr;
379 
380 	/* Find ebus RTC node */
381 	if ((node = prom_findnode_byname(prom_rootnode(),
382 	    EBUS_NAME)) == OBP_NONODE)
383 		cmn_err(CE_PANIC, "ebus node not present\n");
384 	if ((node = prom_findnode_byname(node, RTC_NAME)) == OBP_NONODE)
385 		cmn_err(CE_PANIC, "ebus RTC node not found\n");
386 
387 	/* Make sure the ebus RTC address property is valid */
388 	if ((size = prom_getproplen(node, "address")) == -1)
389 		cmn_err(CE_PANIC, "ebus RTC addr prop. length not found\n");
390 	if (size != sizeof (eaddr))
391 		cmn_err(CE_PANIC, "ebus RTC addr length not OK."
392 		    " expected = %lu found =%d\n", sizeof (eaddr), size);
393 	if (prom_getprop(node, "address", (caddr_t)&eaddr) == -1)
394 		cmn_err(CE_PANIC, "ebus RTC addr propery not found\n");
395 	v_rtc_addr_reg = (volatile unsigned char *)(uintptr_t)eaddr;
396 
397 	/*
398 	 * Does this rtc have watchdog support?
399 	 */
400 	if (prom_getproplen(node, "watchdog-enable") != -1)
401 		watchdog_available = 1;
402 }
403