xref: /titanic_50/usr/src/uts/sun4u/cherrystone/os/cherrystone.c (revision eb2b0a6162b47bdee86cc3d2e844dc8f89d95371)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/sunddi.h>
31 #include <sys/esunddi.h>
32 #include <sys/sunndi.h>
33 #include <sys/ddi.h>
34 #include <sys/modctl.h>
35 #include <sys/sysmacros.h>
36 #include <sys/note.h>
37 
38 #include <sys/platform_module.h>
39 #include <sys/errno.h>
40 #include <sys/i2c/clients/i2c_client.h>
41 #include <sys/cherrystone.h>
42 #include <sys/machsystm.h>
43 #include <sys/promif.h>
44 #include <vm/page.h>
45 #include <sys/memnode.h>
46 #include <vm/vm_dep.h>
47 
48 /* Cherrystone Keyswitch Information */
49 #define	CHERRY_KEY_POLL_PORT	3
50 #define	CHERRY_KEY_POLL_BIT	2
51 #define	CHERRY_KEY_POLL_INTVL	10
52 
53 #define	SHARED_PCF8584_PATH "/pci@9,700000/ebus@1/i2c@1,2e/nvram@4,a4"
54 static dev_info_t *shared_pcf8584_dip;
55 static kmutex_t cherry_pcf8584_mutex;
56 
57 static	boolean_t	key_locked_bit;
58 static	clock_t		keypoll_timeout_hz;
59 
60 /*
61  * Table that maps memory slices to a specific memnode.
62  */
63 int slice_to_memnode[CHERRYSTONE_MAX_SLICE];
64 
65 /*
66  * For software memory interleaving support.
67  */
68 static void update_mem_bounds(int, int, int, uint64_t, uint64_t);
69 
70 static uint64_t
71 slice_table[CHERRYSTONE_SBD_SLOTS][CHERRYSTONE_CPUS_PER_BOARD]
72 		[CHERRYSTONE_BANKS_PER_MC][2];
73 
74 #define	SLICE_PA	0
75 #define	SLICE_SPAN	1
76 
77 /* Function prototypes */
78 int (*p2get_mem_unum)(int, uint64_t, char *, int, int *);
79 
80 int (*cherry_ssc050_get_port_bit) (dev_info_t *, int, int, uint8_t *, int);
81 extern	void (*abort_seq_handler)();
82 
83 static	int cherry_dev_search(dev_info_t *, void *);
84 static	void keyswitch_poll(void *);
85 static	void cherry_abort_seq_handler(char *msg);
86 
87 /* Function definitions from this point forward. */
88 
89 int
90 set_platform_tsb_spares()
91 {
92 	return (0);
93 }
94 
95 void
96 startup_platform(void)
97 {
98 	/*
99 	 * Disable an active h/w watchdog timer
100 	 * upon exit to OBP.
101 	 */
102 	extern int disable_watchdog_on_exit;
103 	disable_watchdog_on_exit = 1;
104 
105 	mutex_init(&cherry_pcf8584_mutex, NULL, NULL, NULL);
106 }
107 
108 #pragma weak mmu_init_large_pages
109 
110 void
111 set_platform_defaults(void)
112 {
113 	extern void mmu_init_large_pages(size_t);
114 
115 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
116 	    (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
117 		if (&mmu_init_large_pages)
118 			mmu_init_large_pages(mmu_ism_pagesize);
119 	}
120 }
121 
122 void
123 load_platform_modules(void)
124 {
125 	if (modload("drv", "pmc") < 0) {
126 		cmn_err(CE_NOTE, "pmc driver failed to load");
127 	}
128 }
129 
130 void
131 load_platform_drivers(void)
132 {
133 	char		**drv;
134 	dev_info_t	*i2cnexus_dip;
135 	dev_info_t	*keysw_dip = NULL;
136 
137 	static char	*boot_time_drivers[] = {
138 		"todds1287",
139 		"mc-us3",
140 		"ssc050",
141 		NULL
142 	};
143 
144 	for (drv = boot_time_drivers; *drv; drv++) {
145 		if (i_ddi_attach_hw_nodes(*drv) != DDI_SUCCESS)
146 			cmn_err(CE_WARN, "Failed to install \"%s\" driver.",
147 				*drv);
148 	}
149 
150 	/*
151 	 * mc-us3 and ssc050 must stay loaded for plat_get_mem_unum()
152 	 * and keyswitch_poll()
153 	 */
154 	(void) ddi_hold_driver(ddi_name_to_major("mc-us3"));
155 	(void) ddi_hold_driver(ddi_name_to_major("ssc050"));
156 
157 	/* Gain access into the ssc050_get_port function */
158 	cherry_ssc050_get_port_bit = (int (*) (dev_info_t *, int, int,
159 		uint8_t *, int)) modgetsymvalue("ssc050_get_port_bit", 0);
160 	if (cherry_ssc050_get_port_bit == NULL) {
161 		cmn_err(CE_WARN, "cannot find ssc050_get_port_bit");
162 		return;
163 	}
164 
165 	e_ddi_walk_driver("i2c-ssc050", cherry_dev_search, (void *)&keysw_dip);
166 	ASSERT(keysw_dip != NULL);
167 
168 	keypoll_timeout_hz = drv_usectohz(10 * MICROSEC);
169 	keyswitch_poll(keysw_dip);
170 	abort_seq_handler = cherry_abort_seq_handler;
171 
172 	/*
173 	 * Figure out which pcf8584_dip is shared with OBP for the nvram
174 	 * device, so the lock can be acquired.
175 	 */
176 
177 	i2cnexus_dip = e_ddi_hold_devi_by_path(SHARED_PCF8584_PATH, 0);
178 
179 	ASSERT(i2cnexus_dip != NULL);
180 	shared_pcf8584_dip = ddi_get_parent(i2cnexus_dip);
181 
182 	ndi_hold_devi(shared_pcf8584_dip);
183 	ndi_rele_devi(i2cnexus_dip);
184 }
185 
186 static int
187 cherry_dev_search(dev_info_t *dip, void *arg)
188 {
189 	int		*dev_regs; /* Info about where the device is. */
190 	uint_t		len;
191 	int		err;
192 
193 	if (strcmp(ddi_binding_name(dip), "i2c-ssc050") != 0)
194 		return (DDI_WALK_CONTINUE);
195 
196 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
197 		DDI_PROP_DONTPASS, "reg", &dev_regs, &len);
198 	if (err != DDI_PROP_SUCCESS) {
199 		return (DDI_WALK_CONTINUE);
200 	}
201 	/*
202 	 * regs[0] contains the bus number and regs[1]
203 	 * contains the device address of the i2c device.
204 	 * 0x82 is the device address of the i2c device
205 	 * from which  the key switch position is read.
206 	 */
207 	if (dev_regs[0] == 0 && dev_regs[1] == 0x82) {
208 		*((dev_info_t **)arg) = dip;
209 		ddi_prop_free(dev_regs);
210 		return (DDI_WALK_TERMINATE);
211 	}
212 	ddi_prop_free(dev_regs);
213 	return (DDI_WALK_CONTINUE);
214 }
215 
216 static void
217 keyswitch_poll(void *arg)
218 {
219 	dev_info_t	*dip = arg;
220 	uchar_t	port_byte;
221 	int	port = CHERRY_KEY_POLL_PORT;
222 	int	bit = CHERRY_KEY_POLL_BIT;
223 	int	err;
224 
225 	err = cherry_ssc050_get_port_bit(dip, port, bit,
226 		&port_byte, I2C_NOSLEEP);
227 	if (err != 0) {
228 		return;
229 	}
230 
231 	key_locked_bit = (boolean_t)((port_byte & 0x1));
232 	timeout(keyswitch_poll, (caddr_t)dip, keypoll_timeout_hz);
233 }
234 
235 static void
236 cherry_abort_seq_handler(char *msg)
237 {
238 	if (key_locked_bit == 0)
239 		cmn_err(CE_CONT, "KEY in LOCKED position, "
240 			"ignoring debug enter sequence");
241 	else  {
242 		debug_enter(msg);
243 	}
244 }
245 
246 
247 /*ARGSUSED*/
248 int
249 plat_cpu_poweron(struct cpu *cp)
250 {
251 	return (ENOTSUP);	/* not supported on this platform */
252 }
253 
254 /*ARGSUSED*/
255 int
256 plat_cpu_poweroff(struct cpu *cp)
257 {
258 	return (ENOTSUP);	/* not supported on this platform */
259 }
260 
261 /*
262  * Given a pfn, return the board and beginning/end of the page's
263  * memory controller's address range.
264  */
265 static int
266 plat_discover_slice(pfn_t pfn, pfn_t *first, pfn_t *last)
267 {
268 	int bd, cpu, bank;
269 
270 	for (bd = 0; bd < CHERRYSTONE_SBD_SLOTS; bd++) {
271 		for (cpu = 0; cpu < CHERRYSTONE_CPUS_PER_BOARD; cpu++) {
272 			for (bank = 0; bank < CHERRYSTONE_BANKS_PER_MC;
273 				bank++) {
274 				uint64_t *slice = slice_table[bd][cpu][bank];
275 				uint64_t base = btop(slice[SLICE_PA]);
276 				uint64_t len = btop(slice[SLICE_SPAN]);
277 				if (len && pfn >= base && pfn < (base + len)) {
278 					*first = base;
279 					*last = base + len - 1;
280 					return (bd);
281 				}
282 			}
283 		}
284 	}
285 	panic("plat_discover_slice: no slice for pfn 0x%lx\n", pfn);
286 	/* NOTREACHED */
287 }
288 
289 /*ARGSUSED*/
290 void
291 plat_freelist_process(int mnode)
292 {}
293 
294 /*
295  * Called for each board/cpu/PA range detected in plat_fill_mc().
296  */
297 static void
298 update_mem_bounds(int boardid, int cpuid, int bankid,
299 	uint64_t base, uint64_t size)
300 {
301 	uint64_t	end;
302 	int		mnode;
303 
304 	slice_table[boardid][cpuid][bankid][SLICE_PA] = base;
305 	slice_table[boardid][cpuid][bankid][SLICE_SPAN] = size;
306 
307 	end = base + size - 1;
308 
309 	/*
310 	 * First see if this board already has a memnode associated
311 	 * with it.  If not, see if this slice has a memnode.  This
312 	 * covers the cases where a single slice covers multiple
313 	 * boards (cross-board interleaving) and where a single
314 	 * board has multiple slices (1+GB DIMMs).
315 	 */
316 	if ((mnode = plat_lgrphand_to_mem_node(boardid)) == -1) {
317 		if ((mnode = slice_to_memnode[PA_2_SLICE(base)]) == -1)
318 			mnode = mem_node_alloc();
319 
320 		ASSERT(mnode >= 0);
321 		ASSERT(mnode < MAX_MEM_NODES);
322 		plat_assign_lgrphand_to_mem_node(boardid, mnode);
323 	}
324 
325 	base = P2ALIGN(base, (1ul << PA_SLICE_SHIFT));
326 
327 	while (base < end) {
328 		slice_to_memnode[PA_2_SLICE(base)] = mnode;
329 		base += (1ul << PA_SLICE_SHIFT);
330 	}
331 }
332 
333 /*
334  * Dynamically detect memory slices in the system by decoding
335  * the cpu memory decoder registers at boot time.
336  */
337 void
338 plat_fill_mc(pnode_t nodeid)
339 {
340 	uint64_t	mc_addr, saf_addr;
341 	uint64_t	mc_decode[CHERRYSTONE_BANKS_PER_MC];
342 	uint64_t	base, size;
343 	uint64_t	saf_mask;
344 	uint64_t	offset;
345 	uint32_t	regs[4];
346 	int		len;
347 	int		local_mc;
348 	int		portid;
349 	int		boardid;
350 	int		cpuid;
351 	int		i;
352 
353 	if ((prom_getprop(nodeid, "portid", (caddr_t)&portid) < 0) ||
354 	    (portid == -1))
355 		return;
356 
357 	/*
358 	 * Decode the board number from the MC portid.  Assumes
359 	 * portid == safari agentid.
360 	 */
361 	boardid = CHERRYSTONE_GETSLOT(portid);
362 	cpuid = CHERRYSTONE_GETSID(portid);
363 
364 	/*
365 	 * The "reg" property returns 4 32-bit values. The first two are
366 	 * combined to form a 64-bit address.  The second two are for a
367 	 * 64-bit size, but we don't actually need to look at that value.
368 	 */
369 	len = prom_getproplen(nodeid, "reg");
370 	if (len != (sizeof (uint32_t) * 4)) {
371 		prom_printf("Warning: malformed 'reg' property\n");
372 		return;
373 	}
374 	if (prom_getprop(nodeid, "reg", (caddr_t)regs) < 0)
375 		return;
376 	mc_addr = ((uint64_t)regs[0]) << 32;
377 	mc_addr |= (uint64_t)regs[1];
378 
379 	/*
380 	 * Figure out whether the memory controller we are examining
381 	 * belongs to this CPU or a different one.
382 	 */
383 	saf_addr = lddsafaddr(8);
384 	saf_mask = (uint64_t)SAF_MASK;
385 	if ((mc_addr & saf_mask) == saf_addr)
386 		local_mc = 1;
387 	else
388 		local_mc = 0;
389 
390 	for (i = 0; i < CHERRYSTONE_BANKS_PER_MC; i++) {
391 		/*
392 		 * Memory decode masks are at offsets 0x10 - 0x28.
393 		 */
394 		offset = 0x10 + (i << 3);
395 
396 		/*
397 		 * If the memory controller is local to this CPU, we use
398 		 * the special ASI to read the decode registers.
399 		 * Otherwise, we load the values from a magic address in
400 		 * I/O space.
401 		 */
402 		if (local_mc)
403 			mc_decode[i] = lddmcdecode(offset);
404 		else
405 			mc_decode[i] = lddphysio(mc_addr | offset);
406 
407 		/*
408 		 * If the upper bit is set, we have a valid mask
409 		 */
410 		if ((int64_t)mc_decode[i] < 0) {
411 			/*
412 			 * The memory decode register is a bitmask field,
413 			 * so we can decode that into both a base and
414 			 * a span.
415 			 */
416 			base = MC_BASE(mc_decode[i]) << PHYS2UM_SHIFT;
417 			size = MC_UK2SPAN(mc_decode[i]);
418 			update_mem_bounds(boardid, cpuid, i, base, size);
419 		}
420 	}
421 }
422 
423 /*
424  * This routine is run midway through the boot process.  By the time we get
425  * here, we know about all the active CPU boards in the system, and we have
426  * extracted information about each board's memory from the memory
427  * controllers.  We have also figured out which ranges of memory will be
428  * assigned to which memnodes, so we walk the slice table to build the table
429  * of memnodes.
430  */
431 /* ARGSUSED */
432 void
433 plat_build_mem_nodes(u_longlong_t *list, size_t  nelems)
434 {
435 	int	slice;
436 	pfn_t	basepfn;
437 	pgcnt_t npgs;
438 
439 	mem_node_pfn_shift = PFN_SLICE_SHIFT;
440 	mem_node_physalign = (1ull << PA_SLICE_SHIFT);
441 	npgs = 1ull << PFN_SLICE_SHIFT;
442 
443 	for (slice = 0; slice < CHERRYSTONE_MAX_SLICE; slice++) {
444 		if (slice_to_memnode[slice] == -1)
445 			continue;
446 		basepfn = (uint64_t)slice << PFN_SLICE_SHIFT;
447 		mem_node_add_slice(basepfn, basepfn + npgs - 1);
448 	}
449 }
450 
451 
452 
453 /*
454  * Cherrystone support for lgroups.
455  *
456  * On Cherrystone, an lgroup platform handle == slot number.
457  *
458  * Mappings between lgroup handles and memnodes are managed
459  * in addition to mappings between memory slices and memnodes
460  * to support cross-board interleaving as well as multiple
461  * slices per board (e.g. >1GB DIMMs). The initial mapping
462  * of memnodes to lgroup handles is determined at boot time.
463  */
464 
465 int
466 plat_pfn_to_mem_node(pfn_t pfn)
467 {
468 	return (slice_to_memnode[PFN_2_SLICE(pfn)]);
469 }
470 
471 /*
472  * Return the platform handle for the lgroup containing the given CPU
473  *
474  * For Cherrystone, lgroup platform handle == slot/board number
475  */
476 lgrp_handle_t
477 plat_lgrp_cpu_to_hand(processorid_t id)
478 {
479 	return (CHERRYSTONE_GETSLOT(id));
480 }
481 
482 /*
483  * Platform specific lgroup initialization
484  */
485 void
486 plat_lgrp_init(void)
487 {
488 	int i;
489 
490 	/*
491 	 * Initialize lookup tables to invalid values so we catch
492 	 * any illegal use of them.
493 	 */
494 	for (i = 0; i < CHERRYSTONE_MAX_SLICE; i++) {
495 		slice_to_memnode[i] = -1;
496 	}
497 }
498 
499 /*
500  * Return latency between "from" and "to" lgroups
501  *
502  * This latency number can only be used for relative comparison
503  * between lgroups on the running system, cannot be used across platforms,
504  * and may not reflect the actual latency.  It is platform and implementation
505  * specific, so platform gets to decide its value.  It would be nice if the
506  * number was at least proportional to make comparisons more meaningful though.
507  * NOTE: The numbers below are supposed to be load latencies for uncached
508  * memory divided by 10.
509  */
510 int
511 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
512 {
513 	/*
514 	 * Return min remote latency when there are more than two lgroups
515 	 * (root and child) and getting latency between two different lgroups
516 	 * or root is involved
517 	 */
518 	if (lgrp_optimizations() && (from != to ||
519 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
520 		return (21);
521 	else
522 		return (19);
523 }
524 
525 /*
526  * No platform drivers on this platform
527  */
528 char *platform_module_list[] = {
529 	(char *)0
530 };
531 
532 /*ARGSUSED*/
533 void
534 plat_tod_fault(enum tod_fault_type tod_bad)
535 {
536 }
537 
538 /*ARGSUSED*/
539 int
540 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
541     int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp)
542 {
543 	if (flt_in_memory && (p2get_mem_unum != NULL))
544 		return (p2get_mem_unum(synd_code, P2ALIGN(flt_addr, 8),
545 			buf, buflen, lenp));
546 	else
547 		return (ENOTSUP);
548 }
549 
550 /*
551  * This platform hook gets called from mc_add_mem_unum_label() in the mc-us3
552  * driver giving each platform the opportunity to add platform
553  * specific label information to the unum for ECC error logging purposes.
554  */
555 void
556 plat_add_mem_unum_label(char *unum, int mcid, int bank, int dimm)
557 {
558 	_NOTE(ARGUNUSED(bank, dimm))
559 
560 	char board = CHERRYSTONE_GETSLOT_LABEL(mcid);
561 	char old_unum[UNUM_NAMLEN];
562 
563 	strcpy(old_unum, unum);
564 	snprintf(unum, UNUM_NAMLEN, "Slot %c: %s", board, old_unum);
565 }
566 
567 int
568 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
569 {
570 	char board = CHERRYSTONE_GETSLOT_LABEL(cpuid);
571 
572 	if (snprintf(buf, buflen, "Slot %c", board) >= buflen) {
573 		return (ENOSPC);
574 	} else {
575 		*lenp = strlen(buf);
576 		return (0);
577 	}
578 }
579 
580 /*
581  * Cherrystone's BBC pcf8584 controller is used by both OBP and the OS's i2c
582  * drivers.  The 'eeprom' command executes OBP code to handle property requests.
583  * If eeprom didn't do this, or if the controllers were partitioned so that all
584  * devices on a given controller were driven by either OBP or the OS, this
585  * wouldn't be necessary.
586  *
587  * Note that getprop doesn't have the same issue as it reads from cached
588  * memory in OBP.
589  */
590 
591 /*
592  * Common locking enter code
593  */
594 void
595 plat_setprop_enter(void)
596 {
597 	mutex_enter(&cherry_pcf8584_mutex);
598 }
599 
600 /*
601  * Common locking exit code
602  */
603 void
604 plat_setprop_exit(void)
605 {
606 	mutex_exit(&cherry_pcf8584_mutex);
607 }
608 
609 /*
610  * Called by pcf8584 driver
611  */
612 void
613 plat_shared_i2c_enter(dev_info_t *i2cnexus_dip)
614 {
615 	if (i2cnexus_dip == shared_pcf8584_dip) {
616 		plat_setprop_enter();
617 	}
618 }
619 
620 /*
621  * Called by pcf8584 driver
622  */
623 void
624 plat_shared_i2c_exit(dev_info_t *i2cnexus_dip)
625 {
626 	if (i2cnexus_dip == shared_pcf8584_dip) {
627 		plat_setprop_exit();
628 	}
629 }
630