xref: /titanic_50/usr/src/uts/sun4/vm/vm_dep.h (revision 08399995051c04db70a4f07eed94812105b52053)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * UNIX machine dependent virtual memory support.
28  */
29 
30 #ifndef	_VM_DEP_H
31 #define	_VM_DEP_H
32 
33 #ifdef	__cplusplus
34 extern "C" {
35 #endif
36 
37 #include <vm/hat_sfmmu.h>
38 #include <sys/archsystm.h>
39 #include <sys/memnode.h>
40 
41 #define	GETTICK()	gettick()
42 /*
43  * Do not use this function for obtaining clock tick.  This
44  * is called by callers who do not need to have a guarenteed
45  * correct tick value.  The proper routine to use is tsc_read().
46  */
47 #define	randtick()	gettick()
48 
49 /*
50  * Per page size free lists. Allocated dynamically.
51  */
52 #define	MAX_MEM_TYPES	2	/* 0 = reloc, 1 = noreloc */
53 #define	MTYPE_RELOC	0
54 #define	MTYPE_NORELOC	1
55 
56 #define	PP_2_MTYPE(pp)	(PP_ISNORELOC(pp) ? MTYPE_NORELOC : MTYPE_RELOC)
57 
58 #define	MTYPE_INIT(mtype, vp, vaddr, flags, pgsz)			\
59 	mtype = (flags & PG_NORELOC) ? MTYPE_NORELOC : MTYPE_RELOC;
60 
61 /* mtype init for page_get_replacement_page */
62 #define	MTYPE_PGR_INIT(mtype, flags, pp, mnode, pgcnt)			\
63 	mtype = (flags & PG_NORELOC) ? MTYPE_NORELOC : MTYPE_RELOC;
64 
65 #define	MNODETYPE_2_PFN(mnode, mtype, pfnlo, pfnhi)			\
66 	ASSERT(mtype != MTYPE_NORELOC);					\
67 	pfnlo = mem_node_config[mnode].physbase;			\
68 	pfnhi = mem_node_config[mnode].physmax;
69 
70 /*
71  * candidate counters in vm_pagelist.c are indexed by color and range
72  */
73 #define	MAX_MNODE_MRANGES		MAX_MEM_TYPES
74 #define	MNODE_RANGE_CNT(mnode)		MAX_MNODE_MRANGES
75 #define	MNODE_MAX_MRANGE(mnode)		(MAX_MEM_TYPES - 1)
76 #define	MTYPE_2_MRANGE(mnode, mtype)	(mtype)
77 
78 /*
79  * Internal PG_ flags.
80  */
81 #define	PGI_RELOCONLY	0x10000	/* acts in the opposite sense to PG_NORELOC */
82 #define	PGI_NOCAGE	0x20000	/* indicates Cage is disabled */
83 #define	PGI_PGCPHIPRI	0x40000	/* page_get_contig_page priority allocation */
84 #define	PGI_PGCPSZC0	0x80000	/* relocate base pagesize page */
85 
86 /*
87  * PGI mtype flags - should not overlap PGI flags
88  */
89 #define	PGI_MT_RANGE	0x1000000	/* mtype range */
90 #define	PGI_MT_NEXT	0x2000000	/* get next mtype */
91 
92 extern page_t ***page_freelists[MMU_PAGE_SIZES][MAX_MEM_TYPES];
93 extern page_t ***page_cachelists[MAX_MEM_TYPES];
94 
95 #define	PAGE_FREELISTS(mnode, szc, color, mtype) \
96 	(*(page_freelists[szc][mtype][mnode] + (color)))
97 
98 #define	PAGE_CACHELISTS(mnode, color, mtype) \
99 	(*(page_cachelists[mtype][mnode] + (color)))
100 
101 /*
102  * There are 'page_colors' colors/bins.  Spread them out under a
103  * couple of locks.  There are mutexes for both the page freelist
104  * and the page cachelist.  We want enough locks to make contention
105  * reasonable, but not too many -- otherwise page_freelist_lock() gets
106  * so expensive that it becomes the bottleneck!
107  */
108 #define	NPC_MUTEX	16
109 
110 extern kmutex_t	*fpc_mutex[NPC_MUTEX];
111 extern kmutex_t	*cpc_mutex[NPC_MUTEX];
112 
113 /*
114  * Iterator provides the info needed to convert RA to PA.
115  * MEM_NODE_ITERATOR_INIT() should be called before
116  * PAGE_NEXT_PFN_FOR_COLOR() if pfn was not obtained via a previous
117  * PAGE_NEXT_PFN_FOR_COLOR() call. Iterator caches color 2 hash
118  * translations requiring initializer call if color or ceq_mask changes,
119  * even if pfn doesn't. MEM_NODE_ITERATOR_INIT() must also be called before
120  * PFN_2_COLOR() that uses a valid iterator argument.
121  */
122 #ifdef	sun4v
123 
124 typedef struct mem_node_iterator {
125 	uint_t mi_mnode;		/* mnode in which to iterate */
126 	int mi_init;			/* set to 1 when first init */
127 	int mi_last_mblock;		/* last mblock visited */
128 	uint_t mi_hash_ceq_mask;	/* cached copy of ceq_mask */
129 	uint_t mi_hash_color;		/* cached copy of color */
130 	uint_t mi_mnode_mask;		/* number of mask bits */
131 	uint_t mi_mnode_pfn_shift;	/* mnode position in pfn */
132 	pfn_t mi_mblock_base;		/* first valid pfn in current mblock */
133 	pfn_t mi_mblock_end;		/* last valid pfn in current mblock */
134 	pfn_t mi_ra_to_pa;		/* ra adjustment for current mblock */
135 	pfn_t mi_mnode_pfn_mask;	/* mask to obtain mnode id bits */
136 } mem_node_iterator_t;
137 
138 #define	MEM_NODE_ITERATOR_DECL(it) \
139 	mem_node_iterator_t it
140 #define	MEM_NODE_ITERATOR_INIT(pfn, mnode, szc, it) \
141 	(pfn) = plat_mem_node_iterator_init((pfn), (mnode), (szc), (it), 1)
142 
143 extern pfn_t plat_mem_node_iterator_init(pfn_t, int, uchar_t,
144     mem_node_iterator_t *, int);
145 extern pfn_t plat_rapfn_to_papfn(pfn_t);
146 extern int interleaved_mnodes;
147 
148 #else	/* sun4v */
149 
150 #define	MEM_NODE_ITERATOR_DECL(it) \
151 	void *it = NULL
152 #define	MEM_NODE_ITERATOR_INIT(pfn, mnode, szc, it)
153 
154 #endif	/* sun4v */
155 
156 /*
157  * Return the mnode limits so that hpc_counters length and base
158  * index can be determined. When interleaved_mnodes is set, we
159  * create an array only for the first mnode that exists. All other
160  * mnodes will share the array in this case.
161  * If interleaved_mnodes is not set, simply return the limits for
162  * the given mnode.
163  */
164 #define	HPM_COUNTERS_LIMITS(mnode, physbase, physmax, first)		\
165 	if (!interleaved_mnodes) {					\
166 		(physbase) = mem_node_config[(mnode)].physbase;		\
167 		(physmax) = mem_node_config[(mnode)].physmax;		\
168 		(first) = (mnode);					\
169 	} else if ((first) < 0) {					\
170 		mem_node_max_range(&(physbase), &(physmax));		\
171 		(first) = (mnode);					\
172 	}
173 
174 #define	PAGE_CTRS_WRITE_LOCK(mnode)					\
175 	if (!interleaved_mnodes) {					\
176 		rw_enter(&page_ctrs_rwlock[(mnode)], RW_WRITER);	\
177 		page_freelist_lock(mnode);				\
178 	} else {							\
179 		/* changing shared hpm_counters */			\
180 		int _i;							\
181 		for (_i = 0; _i < max_mem_nodes; _i++) {		\
182 			rw_enter(&page_ctrs_rwlock[_i], RW_WRITER);	\
183 			page_freelist_lock(_i);				\
184 		}							\
185 	}
186 
187 #define	PAGE_CTRS_WRITE_UNLOCK(mnode)					\
188 	if (!interleaved_mnodes) {					\
189 		page_freelist_unlock(mnode);				\
190 		rw_exit(&page_ctrs_rwlock[(mnode)]);			\
191 	} else {							\
192 		int _i;							\
193 		for (_i = 0; _i < max_mem_nodes; _i++) {		\
194 			page_freelist_unlock(_i);			\
195 			rw_exit(&page_ctrs_rwlock[_i]);			\
196 		}							\
197 	}
198 
199 /*
200  * cpu specific color conversion functions
201  */
202 extern uint_t page_get_nsz_color_mask_cpu(uchar_t, uint_t);
203 #pragma weak page_get_nsz_color_mask_cpu
204 
205 extern uint_t page_get_nsz_color_cpu(uchar_t, uint_t);
206 #pragma weak page_get_nsz_color_cpu
207 
208 extern uint_t page_get_color_shift_cpu(uchar_t, uchar_t);
209 #pragma weak page_get_color_shift_cpu
210 
211 extern uint_t page_convert_color_cpu(uint_t, uchar_t, uchar_t);
212 #pragma weak page_convert_color_cpu
213 
214 extern pfn_t page_next_pfn_for_color_cpu(pfn_t,
215     uchar_t, uint_t, uint_t, uint_t, void *);
216 #pragma weak page_next_pfn_for_color_cpu
217 
218 extern uint_t  page_pfn_2_color_cpu(pfn_t, uchar_t, void *);
219 #pragma weak page_pfn_2_color_cpu
220 
221 #define	PAGE_GET_COLOR_SHIFT(szc, nszc)				\
222 	((&page_get_color_shift_cpu != NULL) ?			\
223 	    page_get_color_shift_cpu(szc, nszc) :		\
224 	    (hw_page_array[(nszc)].hp_shift -			\
225 		hw_page_array[(szc)].hp_shift))
226 
227 #define	PAGE_CONVERT_COLOR(ncolor, szc, nszc)			\
228 	((&page_convert_color_cpu != NULL) ?			\
229 	    page_convert_color_cpu(ncolor, szc, nszc) :		\
230 	    ((ncolor) << PAGE_GET_COLOR_SHIFT((szc), (nszc))))
231 
232 #define	PFN_2_COLOR(pfn, szc, it)				\
233 	((&page_pfn_2_color_cpu != NULL) ?			\
234 	    page_pfn_2_color_cpu(pfn, szc, it) :		\
235 	    ((pfn & (hw_page_array[0].hp_colors - 1)) >>	\
236 		(hw_page_array[szc].hp_shift -			\
237 		    hw_page_array[0].hp_shift)))
238 
239 #define	PNUM_SIZE(szc)							\
240 	(hw_page_array[(szc)].hp_pgcnt)
241 #define	PNUM_SHIFT(szc)							\
242 	(hw_page_array[(szc)].hp_shift - hw_page_array[0].hp_shift)
243 #define	PAGE_GET_SHIFT(szc)						\
244 	(hw_page_array[(szc)].hp_shift)
245 #define	PAGE_GET_PAGECOLORS(szc)					\
246 	(hw_page_array[(szc)].hp_colors)
247 
248 /*
249  * This macro calculates the next sequential pfn with the specified
250  * color using color equivalency mask
251  */
252 #define	PAGE_NEXT_PFN_FOR_COLOR(pfn, szc, color, ceq_mask, color_mask, it)   \
253 	{                                                                    \
254 		ASSERT(((color) & ~(ceq_mask)) == 0);                        \
255 		if (&page_next_pfn_for_color_cpu == NULL) {                  \
256 			uint_t	pfn_shift = PAGE_BSZS_SHIFT(szc);            \
257 			pfn_t	spfn = pfn >> pfn_shift;                     \
258 			pfn_t	stride = (ceq_mask) + 1;                     \
259 			ASSERT((((ceq_mask) + 1) & (ceq_mask)) == 0);        \
260 			if (((spfn ^ (color)) & (ceq_mask)) == 0) {          \
261 				pfn += stride << pfn_shift;                  \
262 			} else {                                             \
263 				pfn = (spfn & ~(pfn_t)(ceq_mask)) | (color); \
264 				pfn = (pfn > spfn ? pfn : pfn + stride) <<   \
265 				    pfn_shift;                               \
266 			}                                                    \
267 		} else {                                                     \
268 		    pfn = page_next_pfn_for_color_cpu(pfn, szc, color,	     \
269 			ceq_mask, color_mask, it);			     \
270 		}                                                            \
271 	}
272 
273 /* get the color equivalency mask for the next szc */
274 #define	PAGE_GET_NSZ_MASK(szc, mask)                                         \
275 	((&page_get_nsz_color_mask_cpu == NULL) ?                            \
276 	    ((mask) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc))) :  \
277 	    page_get_nsz_color_mask_cpu(szc, mask))
278 
279 /* get the color of the next szc */
280 #define	PAGE_GET_NSZ_COLOR(szc, color)                                       \
281 	((&page_get_nsz_color_cpu == NULL) ?                                 \
282 	    ((color) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc))) : \
283 	    page_get_nsz_color_cpu(szc, color))
284 
285 /* Find the bin for the given page if it was of size szc */
286 #define	PP_2_BIN_SZC(pp, szc)	(PFN_2_COLOR(pp->p_pagenum, szc, (void *)(-1)))
287 
288 #define	PP_2_BIN(pp)		(PP_2_BIN_SZC(pp, pp->p_szc))
289 
290 #define	PP_2_MEM_NODE(pp)	(PFN_2_MEM_NODE(pp->p_pagenum))
291 
292 #define	PC_BIN_MUTEX(mnode, bin, flags) ((flags & PG_FREE_LIST) ?	\
293 	&fpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode] :			\
294 	&cpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode])
295 
296 #define	FPC_MUTEX(mnode, i)	(&fpc_mutex[i][mnode])
297 #define	CPC_MUTEX(mnode, i)	(&cpc_mutex[i][mnode])
298 
299 #define	PFN_BASE(pfnum, szc)	(pfnum & ~((1 << PAGE_BSZS_SHIFT(szc)) - 1))
300 
301 /*
302  * this structure is used for walking free page lists
303  * controls when to split large pages into smaller pages,
304  * and when to coalesce smaller pages into larger pages
305  */
306 typedef struct page_list_walker {
307 	uint_t	plw_colors;		/* num of colors for szc */
308 	uint_t  plw_color_mask;		/* colors-1 */
309 	uint_t	plw_bin_step;		/* next bin: 1 or 2 */
310 	uint_t  plw_count;		/* loop count */
311 	uint_t	plw_bin0;		/* starting bin */
312 	uint_t  plw_bin_marker;		/* bin after initial jump */
313 	uint_t  plw_bin_split_prev;	/* last bin we tried to split */
314 	uint_t  plw_do_split;		/* set if OK to split */
315 	uint_t  plw_split_next;		/* next bin to split */
316 	uint_t	plw_ceq_dif;		/* number of different color groups */
317 					/* to check */
318 	uint_t	plw_ceq_mask[MMU_PAGE_SIZES + 1]; /* color equiv mask */
319 	uint_t	plw_bins[MMU_PAGE_SIZES + 1];	/* num of bins */
320 } page_list_walker_t;
321 
322 void	page_list_walk_init(uchar_t szc, uint_t flags, uint_t bin,
323     int can_split, int use_ceq, page_list_walker_t *plw);
324 
325 typedef	char	hpmctr_t;
326 
327 #ifdef DEBUG
328 #define	CHK_LPG(pp, szc)	chk_lpg(pp, szc)
329 extern void	chk_lpg(page_t *, uchar_t);
330 #else
331 #define	CHK_LPG(pp, szc)
332 #endif
333 
334 /*
335  * page list count per mnode and type.
336  */
337 typedef	struct {
338 	pgcnt_t	plc_mt_pgmax;		/* max page cnt */
339 	pgcnt_t plc_mt_clpgcnt;		/* cache list cnt */
340 	pgcnt_t plc_mt_flpgcnt;		/* free list cnt - small pages */
341 	pgcnt_t plc_mt_lgpgcnt;		/* free list cnt - large pages */
342 #ifdef DEBUG
343 	struct {
344 		pgcnt_t plc_mts_pgcnt;	/* per page size count */
345 		int	plc_mts_colors;
346 		pgcnt_t	*plc_mtsc_pgcnt; /* per color bin count */
347 	} plc_mts[MMU_PAGE_SIZES];
348 #endif
349 } plcnt_t[MAX_MEM_NODES][MAX_MEM_TYPES];
350 
351 #ifdef DEBUG
352 
353 #define	PLCNT_SZ(ctrs_sz) {						\
354 	int	szc;							\
355 	for (szc = 0; szc < mmu_page_sizes; szc++) {			\
356 		int	colors = page_get_pagecolors(szc);		\
357 		ctrs_sz += (max_mem_nodes * MAX_MEM_TYPES *		\
358 		    colors * sizeof (pgcnt_t));				\
359 	}								\
360 }
361 
362 #define	PLCNT_INIT(base) {						\
363 	int	mn, mt, szc, colors;					\
364 	for (szc = 0; szc < mmu_page_sizes; szc++) {			\
365 		colors = page_get_pagecolors(szc);			\
366 		for (mn = 0; mn < max_mem_nodes; mn++) {		\
367 			for (mt = 0; mt < MAX_MEM_TYPES; mt++) {	\
368 				plcnt[mn][mt].plc_mts[szc].		\
369 				    plc_mts_colors = colors;		\
370 				plcnt[mn][mt].plc_mts[szc].		\
371 				    plc_mtsc_pgcnt = (pgcnt_t *)base;	\
372 				base += (colors * sizeof (pgcnt_t));	\
373 			}						\
374 		}							\
375 	}								\
376 }
377 
378 #define	PLCNT_DO(pp, mn, mtype, szc, cnt, flags) {			\
379 	int	bin = PP_2_BIN(pp);					\
380 	if (flags & PG_CACHE_LIST)					\
381 		atomic_add_long(&plcnt[mn][mtype].plc_mt_clpgcnt, cnt);	\
382 	else if (szc)							\
383 		atomic_add_long(&plcnt[mn][mtype].plc_mt_lgpgcnt, cnt);	\
384 	else								\
385 		atomic_add_long(&plcnt[mn][mtype].plc_mt_flpgcnt, cnt);	\
386 	atomic_add_long(&plcnt[mn][mtype].plc_mts[szc].plc_mts_pgcnt,	\
387 	    cnt);							\
388 	atomic_add_long(&plcnt[mn][mtype].plc_mts[szc].			\
389 	    plc_mtsc_pgcnt[bin], cnt);					\
390 }
391 
392 #else
393 
394 #define	PLCNT_SZ(ctrs_sz)
395 
396 #define	PLCNT_INIT(base)
397 
398 /* PG_FREE_LIST may not be explicitly set in flags for large pages */
399 
400 #define	PLCNT_DO(pp, mn, mtype, szc, cnt, flags) {			\
401 	if (flags & PG_CACHE_LIST)					\
402 		atomic_add_long(&plcnt[mn][mtype].plc_mt_clpgcnt, cnt);	\
403 	else if (szc)							\
404 		atomic_add_long(&plcnt[mn][mtype].plc_mt_lgpgcnt, cnt);	\
405 	else								\
406 		atomic_add_long(&plcnt[mn][mtype].plc_mt_flpgcnt, cnt);	\
407 }
408 
409 #endif
410 
411 #define	PLCNT_INCR(pp, mn, mtype, szc, flags) {				\
412 	long	cnt = (1 << PAGE_BSZS_SHIFT(szc));			\
413 	PLCNT_DO(pp, mn, mtype, szc, cnt, flags);			\
414 }
415 
416 #define	PLCNT_DECR(pp, mn, mtype, szc, flags) {				\
417 	long	cnt = ((-1) << PAGE_BSZS_SHIFT(szc));			\
418 	PLCNT_DO(pp, mn, mtype, szc, cnt, flags);			\
419 }
420 
421 /*
422  * macros to update page list max counts - done when pages transferred
423  * from RELOC to NORELOC mtype (kcage_init or kcage_assimilate_page).
424  */
425 
426 #define	PLCNT_XFER_NORELOC(pp) {					\
427 	long	cnt = (1 << PAGE_BSZS_SHIFT((pp)->p_szc));		\
428 	int	mn = PP_2_MEM_NODE(pp);					\
429 	atomic_add_long(&plcnt[mn][MTYPE_NORELOC].plc_mt_pgmax, cnt);	\
430 	atomic_add_long(&plcnt[mn][MTYPE_RELOC].plc_mt_pgmax, -cnt);	\
431 }
432 
433 /*
434  * macro to modify the page list max counts when memory is added to
435  * the page lists during startup (add_physmem) or during a DR operation
436  * when memory is added (kphysm_add_memory_dynamic) or deleted
437  * (kphysm_del_cleanup).
438  */
439 #define	PLCNT_MODIFY_MAX(pfn, cnt) {					       \
440 	spgcnt_t _cnt = (spgcnt_t)(cnt);				       \
441 	pgcnt_t _acnt = ABS(_cnt);					       \
442 	int _mn;							       \
443 	pgcnt_t _np;							       \
444 	if (&plat_mem_node_intersect_range != NULL) {			       \
445 		for (_mn = 0; _mn < max_mem_nodes; _mn++) {		       \
446 			plat_mem_node_intersect_range((pfn), _acnt, _mn, &_np);\
447 			if (_np == 0)					       \
448 				continue;				       \
449 			atomic_add_long(&plcnt[_mn][MTYPE_RELOC].plc_mt_pgmax, \
450 			    (_cnt < 0) ? -_np : _np);			       \
451 		}							       \
452 	} else {							       \
453 		pfn_t _pfn = (pfn);					       \
454 		pfn_t _endpfn = _pfn + _acnt;				       \
455 		while (_pfn < _endpfn) {				       \
456 			_mn = PFN_2_MEM_NODE(_pfn);			       \
457 			_np = MIN(_endpfn, mem_node_config[_mn].physmax + 1) - \
458 			    _pfn;					       \
459 			_pfn += _np;					       \
460 			atomic_add_long(&plcnt[_mn][MTYPE_RELOC].plc_mt_pgmax, \
461 			    (_cnt < 0) ? -_np : _np);			       \
462 		}							       \
463 	}								       \
464 }
465 
466 extern plcnt_t	plcnt;
467 
468 #define	MNODE_PGCNT(mn)							\
469 	(plcnt[mn][MTYPE_RELOC].plc_mt_clpgcnt +			\
470 	    plcnt[mn][MTYPE_NORELOC].plc_mt_clpgcnt +			\
471 	    plcnt[mn][MTYPE_RELOC].plc_mt_flpgcnt +			\
472 	    plcnt[mn][MTYPE_NORELOC].plc_mt_flpgcnt +			\
473 	    plcnt[mn][MTYPE_RELOC].plc_mt_lgpgcnt +			\
474 	    plcnt[mn][MTYPE_NORELOC].plc_mt_lgpgcnt)
475 
476 #define	MNODETYPE_PGCNT(mn, mtype)					\
477 	(plcnt[mn][mtype].plc_mt_clpgcnt +				\
478 	    plcnt[mn][mtype].plc_mt_flpgcnt +				\
479 	    plcnt[mn][mtype].plc_mt_lgpgcnt)
480 
481 /*
482  * macros to loop through the mtype range - MTYPE_START returns -1 in
483  * mtype if no pages in mnode/mtype and possibly NEXT mtype.
484  */
485 #define	MTYPE_START(mnode, mtype, flags) {				\
486 	if (plcnt[mnode][mtype].plc_mt_pgmax == 0) {			\
487 		ASSERT(mtype == MTYPE_RELOC ||				\
488 		    MNODETYPE_PGCNT(mnode, mtype) == 0 ||		\
489 		    plcnt[mnode][mtype].plc_mt_pgmax != 0);		\
490 		MTYPE_NEXT(mnode, mtype, flags);			\
491 	}								\
492 }
493 
494 /*
495  * if allocation from the RELOC pool failed and there is sufficient cage
496  * memory, attempt to allocate from the NORELOC pool.
497  */
498 #define	MTYPE_NEXT(mnode, mtype, flags) { 				\
499 	if (!(flags & (PG_NORELOC | PGI_NOCAGE | PGI_RELOCONLY)) &&	\
500 	    (kcage_freemem >= kcage_lotsfree)) {			\
501 		if (plcnt[mnode][MTYPE_NORELOC].plc_mt_pgmax == 0) {	\
502 			ASSERT(MNODETYPE_PGCNT(mnode, MTYPE_NORELOC) == 0 || \
503 			    plcnt[mnode][MTYPE_NORELOC].plc_mt_pgmax != 0);  \
504 			mtype = -1;					\
505 		} else {						\
506 			mtype = MTYPE_NORELOC;				\
507 			flags |= PG_NORELOC;				\
508 		}							\
509 	} else {							\
510 		mtype = -1;						\
511 	}								\
512 }
513 
514 /*
515  * get the ecache setsize for the current cpu.
516  */
517 #define	CPUSETSIZE()	(cpunodes[CPU->cpu_id].ecache_setsize)
518 
519 extern struct cpu	cpu0;
520 #define	CPU0		&cpu0
521 
522 #define	PAGE_BSZS_SHIFT(szc)	TTE_BSZS_SHIFT(szc)
523 /*
524  * For sfmmu each larger page is 8 times the size of the previous
525  * size page.
526  */
527 #define	FULL_REGION_CNT(rg_szc)	(8)
528 
529 /*
530  * The counter base must be per page_counter element to prevent
531  * races when re-indexing, and the base page size element should
532  * be aligned on a boundary of the given region size.
533  *
534  * We also round up the number of pages spanned by the counters
535  * for a given region to PC_BASE_ALIGN in certain situations to simplify
536  * the coding for some non-performance critical routines.
537  */
538 #define	PC_BASE_ALIGN		((pfn_t)1 << PAGE_BSZS_SHIFT(mmu_page_sizes-1))
539 #define	PC_BASE_ALIGN_MASK	(PC_BASE_ALIGN - 1)
540 
541 extern int ecache_alignsize;
542 #define	L2CACHE_ALIGN		ecache_alignsize
543 #define	L2CACHE_ALIGN_MAX	512
544 
545 extern int update_proc_pgcolorbase_after_fork;
546 extern int consistent_coloring;
547 extern uint_t vac_colors_mask;
548 extern int vac_size;
549 extern int vac_shift;
550 
551 /*
552  * Kernel mem segment in 64-bit space
553  */
554 extern caddr_t kmem64_base, kmem64_end, kmem64_aligned_end;
555 extern int kmem64_alignsize, kmem64_szc;
556 extern uint64_t kmem64_pabase;
557 extern int max_bootlp_tteszc;
558 
559 /*
560  * Maximum and default values for user heap, stack, private and shared
561  * anonymous memory, and user text and initialized data.
562  *
563  * Initial values are defined in architecture specific mach_vm_dep.c file.
564  * Used by map_pgsz*() routines.
565  */
566 extern size_t max_uheap_lpsize;
567 extern size_t default_uheap_lpsize;
568 extern size_t max_ustack_lpsize;
569 extern size_t default_ustack_lpsize;
570 extern size_t max_privmap_lpsize;
571 extern size_t max_uidata_lpsize;
572 extern size_t max_utext_lpsize;
573 extern size_t max_shm_lpsize;
574 
575 /*
576  * For adjusting the default lpsize, for DTLB-limited page sizes.
577  */
578 extern void adjust_data_maxlpsize(size_t ismpagesize);
579 
580 /*
581  * Sanity control. Don't use large pages regardless of user
582  * settings if there's less than priv or shm_lpg_min_physmem memory installed.
583  * The units for this variable are 8K pages.
584  */
585 extern pgcnt_t privm_lpg_min_physmem;
586 extern pgcnt_t shm_lpg_min_physmem;
587 
588 /*
589  * AS_2_BIN macro controls the page coloring policy.
590  * 0 (default) uses various vaddr bits
591  * 1 virtual=paddr
592  * 2 bin hopping
593  */
594 #define	AS_2_BIN(as, seg, vp, addr, bin, szc)				\
595 switch (consistent_coloring) {						\
596 	default:                                                        \
597 		cmn_err(CE_WARN,					\
598 			"AS_2_BIN: bad consistent coloring value");	\
599 		/* assume default algorithm -> continue */		\
600 	case 0: {                                                       \
601 		uint32_t ndx, new;					\
602 		int slew = 0;						\
603 		pfn_t pfn;                                              \
604                                                                         \
605 		if (vp != NULL && IS_SWAPVP(vp) &&			\
606 		    seg->s_ops == &segvn_ops)				\
607 			slew = as_color_bin(as);			\
608                                                                         \
609 		pfn = ((uintptr_t)addr >> MMU_PAGESHIFT) +		\
610 			(((uintptr_t)addr >> page_coloring_shift) <<	\
611 			(vac_shift - MMU_PAGESHIFT));			\
612 		if ((szc) == 0 || &page_pfn_2_color_cpu == NULL) {	\
613 			pfn += slew;					\
614 			bin = PFN_2_COLOR(pfn, szc, NULL);		\
615 		} else {						\
616 			bin = PFN_2_COLOR(pfn, szc, NULL);		\
617 			bin += slew >> (vac_shift - MMU_PAGESHIFT);	\
618 			bin &= hw_page_array[(szc)].hp_colors - 1;	\
619 		}							\
620 		break;                                                  \
621 	}                                                               \
622 	case 1:                                                         \
623 		bin = PFN_2_COLOR(((uintptr_t)addr >> MMU_PAGESHIFT),	\
624 		    szc, NULL);						\
625 		break;                                                  \
626 	case 2: {                                                       \
627 		int cnt = as_color_bin(as);				\
628 		uint_t color_mask = page_get_pagecolors(0) - 1;		\
629                                                                         \
630 		/* make sure physical color aligns with vac color */	\
631 		while ((cnt & vac_colors_mask) !=			\
632 		    addr_to_vcolor(addr)) {				\
633 			cnt++;						\
634 		}                                                       \
635 		bin = cnt = cnt & color_mask;			        \
636 		bin >>= PAGE_GET_COLOR_SHIFT(0, szc);                   \
637 		/* update per as page coloring fields */		\
638 		cnt = (cnt + 1) & color_mask;			        \
639 		if (cnt == (as_color_start(as) & color_mask)) {	        \
640 			cnt = as_color_start(as) = as_color_start(as) + \
641 				PGCLR_LOOPFACTOR;			\
642 		}                                                       \
643 		as_color_bin(as) = cnt & color_mask;		        \
644 		break;                                                  \
645 	}								\
646 }									\
647 	ASSERT(bin < page_get_pagecolors(szc));
648 
649 /*
650  * cpu private vm data - accessed thru CPU->cpu_vm_data
651  *	vc_pnum_memseg: tracks last memseg visited in page_numtopp_nolock()
652  *	vc_pnext_memseg: tracks last memseg visited in page_nextn()
653  *	vc_kmptr: unaligned kmem pointer for this vm_cpu_data_t
654  *	vc_kmsize: orignal kmem size for this vm_cpu_data_t
655  */
656 
657 typedef struct {
658 	struct memseg	*vc_pnum_memseg;
659 	struct memseg	*vc_pnext_memseg;
660 	void		*vc_kmptr;
661 	size_t		vc_kmsize;
662 } vm_cpu_data_t;
663 
664 /* allocation size to ensure vm_cpu_data_t resides in its own cache line */
665 #define	VM_CPU_DATA_PADSIZE						\
666 	(P2ROUNDUP(sizeof (vm_cpu_data_t), L2CACHE_ALIGN_MAX))
667 
668 /* for boot cpu before kmem is initialized */
669 extern char	vm_cpu_data0[];
670 
671 /*
672  * Function to get an ecache color bin: F(as, cnt, vcolor).
673  * the goal of this function is to:
674  * - to spread a processes' physical pages across the entire ecache to
675  *	maximize its use.
676  * - to minimize vac flushes caused when we reuse a physical page on a
677  *	different vac color than it was previously used.
678  * - to prevent all processes to use the same exact colors and trash each
679  *	other.
680  *
681  * cnt is a bin ptr kept on a per as basis.  As we page_create we increment
682  * the ptr so we spread out the physical pages to cover the entire ecache.
683  * The virtual color is made a subset of the physical color in order to
684  * in minimize virtual cache flushing.
685  * We add in the as to spread out different as.	 This happens when we
686  * initialize the start count value.
687  * sizeof(struct as) is 60 so we shift by 3 to get into the bit range
688  * that will tend to change.  For example, on spitfire based machines
689  * (vcshft == 1) contigous as are spread bu ~6 bins.
690  * vcshft provides for proper virtual color alignment.
691  * In theory cnt should be updated using cas only but if we are off by one
692  * or 2 it is no big deal.
693  * We also keep a start value which is used to randomize on what bin we
694  * start counting when it is time to start another loop. This avoids
695  * contigous allocations of ecache size to point to the same bin.
696  * Why 3? Seems work ok. Better than 7 or anything larger.
697  */
698 #define	PGCLR_LOOPFACTOR 3
699 
700 /*
701  * When a bin is empty, and we can't satisfy a color request correctly,
702  * we scan.  If we assume that the programs have reasonable spatial
703  * behavior, then it will not be a good idea to use the adjacent color.
704  * Using the adjacent color would result in virtually adjacent addresses
705  * mapping into the same spot in the cache.  So, if we stumble across
706  * an empty bin, skip a bunch before looking.  After the first skip,
707  * then just look one bin at a time so we don't miss our cache on
708  * every look. Be sure to check every bin.  Page_create() will panic
709  * if we miss a page.
710  *
711  * This also explains the `<=' in the for loops in both page_get_freelist()
712  * and page_get_cachelist().  Since we checked the target bin, skipped
713  * a bunch, then continued one a time, we wind up checking the target bin
714  * twice to make sure we get all of them bins.
715  */
716 #define	BIN_STEP	20
717 
718 #ifdef VM_STATS
719 struct vmm_vmstats_str {
720 	ulong_t pgf_alloc[MMU_PAGE_SIZES];	/* page_get_freelist */
721 	ulong_t pgf_allocok[MMU_PAGE_SIZES];
722 	ulong_t pgf_allocokrem[MMU_PAGE_SIZES];
723 	ulong_t pgf_allocfailed[MMU_PAGE_SIZES];
724 	ulong_t pgf_allocdeferred;
725 	ulong_t	pgf_allocretry[MMU_PAGE_SIZES];
726 	ulong_t pgc_alloc;			/* page_get_cachelist */
727 	ulong_t pgc_allocok;
728 	ulong_t pgc_allocokrem;
729 	ulong_t	pgc_allocokdeferred;
730 	ulong_t pgc_allocfailed;
731 	ulong_t	pgcp_alloc[MMU_PAGE_SIZES];	/* page_get_contig_pages */
732 	ulong_t	pgcp_allocfailed[MMU_PAGE_SIZES];
733 	ulong_t	pgcp_allocempty[MMU_PAGE_SIZES];
734 	ulong_t	pgcp_allocok[MMU_PAGE_SIZES];
735 	ulong_t	ptcp[MMU_PAGE_SIZES];		/* page_trylock_contig_pages */
736 	ulong_t	ptcpfreethresh[MMU_PAGE_SIZES];
737 	ulong_t	ptcpfailexcl[MMU_PAGE_SIZES];
738 	ulong_t	ptcpfailszc[MMU_PAGE_SIZES];
739 	ulong_t	ptcpfailcage[MMU_PAGE_SIZES];
740 	ulong_t	ptcpok[MMU_PAGE_SIZES];
741 	ulong_t	pgmf_alloc[MMU_PAGE_SIZES];	/* page_get_mnode_freelist */
742 	ulong_t	pgmf_allocfailed[MMU_PAGE_SIZES];
743 	ulong_t	pgmf_allocempty[MMU_PAGE_SIZES];
744 	ulong_t	pgmf_allocok[MMU_PAGE_SIZES];
745 	ulong_t	pgmc_alloc;			/* page_get_mnode_cachelist */
746 	ulong_t	pgmc_allocfailed;
747 	ulong_t	pgmc_allocempty;
748 	ulong_t	pgmc_allocok;
749 	ulong_t	pladd_free[MMU_PAGE_SIZES];	/* page_list_add/sub */
750 	ulong_t	plsub_free[MMU_PAGE_SIZES];
751 	ulong_t	pladd_cache;
752 	ulong_t	plsub_cache;
753 	ulong_t	plsubpages_szcbig;
754 	ulong_t	plsubpages_szc0;
755 	ulong_t	pfs_req[MMU_PAGE_SIZES];	/* page_freelist_split */
756 	ulong_t	pfs_demote[MMU_PAGE_SIZES];
757 	ulong_t	pfc_coalok[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
758 	ulong_t ppr_reloc[MMU_PAGE_SIZES];	/* page_relocate */
759 	ulong_t ppr_relocok[MMU_PAGE_SIZES];
760 	ulong_t ppr_relocnoroot[MMU_PAGE_SIZES];
761 	ulong_t ppr_reloc_replnoroot[MMU_PAGE_SIZES];
762 	ulong_t ppr_relocnolock[MMU_PAGE_SIZES];
763 	ulong_t ppr_relocnomem[MMU_PAGE_SIZES];
764 	ulong_t ppr_krelocfail[MMU_PAGE_SIZES];
765 	ulong_t ppr_copyfail;
766 	/* page coalesce counter */
767 	ulong_t	page_ctrs_coalesce[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
768 	/* candidates useful */
769 	ulong_t	page_ctrs_cands_skip[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
770 	/* ctrs changed after locking */
771 	ulong_t	page_ctrs_changed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
772 	/* page_freelist_coalesce failed */
773 	ulong_t	page_ctrs_failed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
774 	ulong_t	page_ctrs_coalesce_all;	/* page coalesce all counter */
775 	ulong_t	page_ctrs_cands_skip_all; /* candidates useful for all func */
776 };
777 extern struct vmm_vmstats_str vmm_vmstats;
778 #endif	/* VM_STATS */
779 
780 /*
781  * Used to hold off page relocations into the cage until OBP has completed
782  * its boot-time handoff of its resources to the kernel.
783  */
784 extern int page_relocate_ready;
785 
786 /*
787  * cpu/mmu-dependent vm variables may be reset at bootup.
788  */
789 extern uint_t mmu_page_sizes;
790 extern uint_t max_mmu_page_sizes;
791 extern uint_t mmu_hashcnt;
792 extern uint_t max_mmu_hashcnt;
793 extern size_t mmu_ism_pagesize;
794 extern int mmu_exported_pagesize_mask;
795 extern uint_t mmu_exported_page_sizes;
796 extern uint_t szc_2_userszc[];
797 extern uint_t userszc_2_szc[];
798 
799 #define	mmu_legacy_page_sizes	mmu_exported_page_sizes
800 #define	USERSZC_2_SZC(userszc)	(userszc_2_szc[userszc])
801 #define	SZC_2_USERSZC(szc)	(szc_2_userszc[szc])
802 
803 /*
804  * Platform specific page routines
805  */
806 extern void mach_page_add(page_t **, page_t *);
807 extern void mach_page_sub(page_t **, page_t *);
808 extern uint_t page_get_pagecolors(uint_t);
809 extern void ppcopy_kernel__relocatable(page_t *, page_t *);
810 #define	ppcopy_kernel(p1, p2)	ppcopy_kernel__relocatable(p1, p2)
811 
812 /*
813  * platform specific large pages for kernel heap support
814  */
815 extern size_t get_segkmem_lpsize(size_t lpsize);
816 extern size_t mmu_get_kernel_lpsize(size_t lpsize);
817 extern void mmu_init_kernel_pgsz(struct hat *hat);
818 extern void mmu_init_kcontext();
819 extern uint64_t kcontextreg;
820 
821 /*
822  * Nucleus data page allocator routines
823  */
824 extern void ndata_alloc_init(struct memlist *, uintptr_t, uintptr_t);
825 extern void *ndata_alloc(struct memlist *, size_t, size_t);
826 extern void *ndata_extra_base(struct memlist *, size_t, caddr_t);
827 extern size_t ndata_maxsize(struct memlist *);
828 extern size_t ndata_spare(struct memlist *, size_t, size_t);
829 
830 /*
831  * Platform specific support for non-coherent I-cache and soft exec
832  */
833 extern uint_t	icache_is_coherent;
834 extern uint_t	force_sync_icache_after_bcopy;
835 extern uint_t	force_sync_icache_after_dma;
836 
837 extern void	mach_setup_icache(uint_t);
838 #pragma weak	mach_setup_icache
839 
840 #ifdef	__cplusplus
841 }
842 #endif
843 
844 #endif	/* _VM_DEP_H */
845