xref: /titanic_50/usr/src/uts/sun4/vm/sfmmu.c (revision fea9cb91bd8e12d84069b4dab1268363668b4bff)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <vm/hat.h>
31 #include <vm/hat_sfmmu.h>
32 #include <vm/page.h>
33 #include <sys/pte.h>
34 #include <sys/systm.h>
35 #include <sys/mman.h>
36 #include <sys/sysmacros.h>
37 #include <sys/machparam.h>
38 #include <sys/vtrace.h>
39 #include <sys/kmem.h>
40 #include <sys/mmu.h>
41 #include <sys/cmn_err.h>
42 #include <sys/cpu.h>
43 #include <sys/cpuvar.h>
44 #include <sys/debug.h>
45 #include <sys/lgrp.h>
46 #include <sys/archsystm.h>
47 #include <sys/machsystm.h>
48 #include <sys/vmsystm.h>
49 #include <sys/bitmap.h>
50 #include <vm/as.h>
51 #include <vm/seg.h>
52 #include <vm/seg_kmem.h>
53 #include <vm/seg_kp.h>
54 #include <vm/seg_kpm.h>
55 #include <vm/rm.h>
56 #include <vm/vm_dep.h>
57 #include <sys/t_lock.h>
58 #include <sys/vm_machparam.h>
59 #include <sys/promif.h>
60 #include <sys/prom_isa.h>
61 #include <sys/prom_plat.h>
62 #include <sys/prom_debug.h>
63 #include <sys/privregs.h>
64 #include <sys/bootconf.h>
65 #include <sys/memlist.h>
66 #include <sys/memlist_plat.h>
67 #include <sys/cpu_module.h>
68 #include <sys/reboot.h>
69 #include <sys/kdi.h>
70 
71 /*
72  * Static routines
73  */
74 static void	sfmmu_map_prom_mappings(struct translation *, size_t);
75 static struct translation *read_prom_mappings(size_t *);
76 static void	sfmmu_reloc_trap_handler(void *, void *, size_t);
77 
78 /*
79  * External routines
80  */
81 extern void sfmmu_remap_kernel(void);
82 extern void sfmmu_patch_utsb(void);
83 
84 /*
85  * Global Data:
86  */
87 extern caddr_t	textva, datava;
88 extern tte_t	ktext_tte, kdata_tte;	/* ttes for kernel text and data */
89 extern int	enable_bigktsb;
90 
91 uint64_t memsegspa = (uintptr_t)MSEG_NULLPTR_PA; /* memsegs physical linkage */
92 uint64_t memseg_phash[N_MEM_SLOTS];	/* use physical memseg addresses */
93 
94 int	sfmmu_kern_mapped = 0;
95 
96 /*
97  * DMMU primary context register for the kernel context. Machine specific code
98  * inserts correct page size codes when necessary
99  */
100 uint64_t kcontextreg = KCONTEXT;
101 
102 /* Extern Global Data */
103 
104 extern int page_relocate_ready;
105 
106 /*
107  * Controls the logic which enables the use of the
108  * QUAD_LDD_PHYS ASI for TSB accesses.
109  */
110 extern int	ktsb_phys;
111 
112 /*
113  * Global Routines called from within:
114  *	usr/src/uts/sun4u
115  *	usr/src/uts/sfmmu
116  *	usr/src/uts/sun
117  */
118 
119 pfn_t
120 va_to_pfn(void *vaddr)
121 {
122 	u_longlong_t physaddr;
123 	int mode, valid;
124 
125 	if (tba_taken_over)
126 		return (hat_getpfnum(kas.a_hat, (caddr_t)vaddr));
127 
128 	if ((prom_translate_virt(vaddr, &valid, &physaddr, &mode) != -1) &&
129 	    (valid == -1)) {
130 		return ((pfn_t)(physaddr >> MMU_PAGESHIFT));
131 	}
132 	return (PFN_INVALID);
133 }
134 
135 uint64_t
136 va_to_pa(void *vaddr)
137 {
138 	pfn_t pfn;
139 
140 	if ((pfn = va_to_pfn(vaddr)) == PFN_INVALID)
141 		return ((uint64_t)-1);
142 	return (((uint64_t)pfn << MMU_PAGESHIFT) |
143 		((uint64_t)vaddr & MMU_PAGEOFFSET));
144 }
145 
146 void
147 hat_kern_setup(void)
148 {
149 	struct translation *trans_root;
150 	size_t ntrans_root;
151 	extern void startup_fixup_physavail(void);
152 
153 	/*
154 	 * These are the steps we take to take over the mmu from the prom.
155 	 *
156 	 * (1)	Read the prom's mappings through the translation property.
157 	 * (2)	Remap the kernel text and kernel data with 2 locked 4MB ttes.
158 	 *	Create the the hmeblks for these 2 ttes at this time.
159 	 * (3)	Create hat structures for all other prom mappings.  Since the
160 	 *	kernel text and data hme_blks have already been created we
161 	 *	skip the equivalent prom's mappings.
162 	 * (4)	Initialize the tsb and its corresponding hardware regs.
163 	 * (5)	Take over the trap table (currently in startup).
164 	 * (6)	Up to this point it is possible the prom required some of its
165 	 *	locked tte's.  Now that we own the trap table we remove them.
166 	 */
167 
168 	ktsb_pbase = va_to_pa(ktsb_base);
169 	ktsb4m_pbase = va_to_pa(ktsb4m_base);
170 	PRM_DEBUG(ktsb_pbase);
171 	PRM_DEBUG(ktsb4m_pbase);
172 
173 	sfmmu_setup_4lp();
174 	sfmmu_patch_ktsb();
175 	sfmmu_patch_utsb();
176 	sfmmu_patch_mmu_asi(ktsb_phys);
177 
178 	sfmmu_init_tsbs();
179 
180 	if (kpm_enable) {
181 		sfmmu_kpm_patch_tlbm();
182 		if (kpm_smallpages == 0) {
183 			sfmmu_kpm_patch_tsbm();
184 		}
185 	}
186 
187 	/*
188 	 * The 8K-indexed kernel TSB space is used to hold
189 	 * translations below...
190 	 */
191 	trans_root = read_prom_mappings(&ntrans_root);
192 	sfmmu_remap_kernel();
193 	startup_fixup_physavail();
194 	mmu_init_kernel_pgsz(kas.a_hat);
195 	sfmmu_map_prom_mappings(trans_root, ntrans_root);
196 
197 	/*
198 	 * We invalidate 8K kernel TSB because we used it in
199 	 * sfmmu_map_prom_mappings()
200 	 */
201 	sfmmu_inv_tsb(ktsb_base, ktsb_sz);
202 	sfmmu_inv_tsb(ktsb4m_base, ktsb4m_sz);
203 
204 	sfmmu_init_ktsbinfo();
205 
206 
207 	sfmmu_kern_mapped = 1;
208 
209 	/*
210 	 * hments have been created for mapped pages, and thus we're ready
211 	 * for kmdb to start using its own trap table.  It walks the hments
212 	 * to resolve TLB misses, and can't be used until they're ready.
213 	 */
214 	if (boothowto & RB_DEBUG)
215 		kdi_dvec_vmready();
216 }
217 
218 /*
219  * Macro used below to convert the prom's 32-bit high and low fields into
220  * a value appropriate for the 64-bit kernel.
221  */
222 
223 #define	COMBINE(hi, lo) (((uint64_t)(uint32_t)(hi) << 32) | (uint32_t)(lo))
224 
225 /*
226  * This function traverses the prom mapping list and creates equivalent
227  * mappings in the sfmmu mapping hash.
228  */
229 static void
230 sfmmu_map_prom_mappings(struct translation *trans_root, size_t ntrans_root)
231 {
232 	struct translation *promt;
233 	tte_t	tte, oldtte, *ttep;
234 	pfn_t	pfn, oldpfn, basepfn;
235 	caddr_t vaddr;
236 	size_t	size, offset;
237 	unsigned long i;
238 	uint_t	attr;
239 	page_t *pp;
240 	extern struct memlist *virt_avail;
241 
242 	ttep = &tte;
243 	for (i = 0, promt = trans_root; i < ntrans_root; i++, promt++) {
244 		ASSERT(promt->tte_hi != 0);
245 		ASSERT32(promt->virt_hi == 0 && promt->size_hi == 0);
246 
247 		/*
248 		 * hack until we get rid of map-for-unix
249 		 */
250 		if (COMBINE(promt->virt_hi, promt->virt_lo) < KERNELBASE)
251 			continue;
252 
253 		ttep->tte_inthi = promt->tte_hi;
254 		ttep->tte_intlo = promt->tte_lo;
255 		attr = PROC_DATA | HAT_NOSYNC;
256 #if defined(TTE_IS_GLOBAL)
257 		if (TTE_IS_GLOBAL(ttep)) {
258 			/*
259 			 * The prom better not use global translations
260 			 * because a user process might use the same
261 			 * virtual addresses
262 			 */
263 			cmn_err(CE_PANIC, "map_prom: global translation");
264 			TTE_SET_LOFLAGS(ttep, TTE_GLB_INT, 0);
265 		}
266 #endif
267 		if (TTE_IS_LOCKED(ttep)) {
268 			/* clear the lock bits */
269 			TTE_CLR_LOCKED(ttep);
270 		}
271 		attr |= (TTE_IS_VCACHEABLE(ttep)) ? 0 : SFMMU_UNCACHEVTTE;
272 		attr |= (TTE_IS_PCACHEABLE(ttep)) ? 0 : SFMMU_UNCACHEPTTE;
273 		attr |= (TTE_IS_SIDEFFECT(ttep)) ? SFMMU_SIDEFFECT : 0;
274 		attr |= (TTE_IS_IE(ttep)) ? HAT_STRUCTURE_LE : 0;
275 
276 		size = COMBINE(promt->size_hi, promt->size_lo);
277 		offset = 0;
278 		basepfn = TTE_TO_PFN((caddr_t)COMBINE(promt->virt_hi,
279 		    promt->virt_lo), ttep);
280 		while (size) {
281 			vaddr = (caddr_t)(COMBINE(promt->virt_hi,
282 			    promt->virt_lo) + offset);
283 
284 			/*
285 			 * make sure address is not in virt-avail list
286 			 */
287 			if (address_in_memlist(virt_avail, (uint64_t)vaddr,
288 			    size)) {
289 				cmn_err(CE_PANIC, "map_prom: inconsistent "
290 				    "translation/avail lists");
291 			}
292 
293 			pfn = basepfn + mmu_btop(offset);
294 			if (pf_is_memory(pfn)) {
295 				if (attr & SFMMU_UNCACHEPTTE) {
296 					cmn_err(CE_PANIC, "map_prom: "
297 					    "uncached prom memory page");
298 				}
299 			} else {
300 				if (!(attr & SFMMU_SIDEFFECT)) {
301 					cmn_err(CE_PANIC, "map_prom: prom "
302 					    "i/o page without side-effect");
303 				}
304 			}
305 			oldpfn = sfmmu_vatopfn(vaddr, KHATID, &oldtte);
306 			ASSERT(oldpfn != PFN_SUSPENDED);
307 			ASSERT(page_relocate_ready == 0);
308 
309 			if (oldpfn != PFN_INVALID) {
310 				/*
311 				 * mapping already exists.
312 				 * Verify they are equal
313 				 */
314 				if (pfn != oldpfn) {
315 					cmn_err(CE_PANIC, "map_prom: mapping "
316 					    "conflict (va=0x%p pfn=%p, "
317 					    "oldpfn=%p)",
318 					    (void *)vaddr, (void *)pfn,
319 					    (void *)oldpfn);
320 				}
321 				size -= MMU_PAGESIZE;
322 				offset += MMU_PAGESIZE;
323 				continue;
324 			}
325 
326 			pp = page_numtopp_nolock(pfn);
327 			if ((pp != NULL) && PP_ISFREE((page_t *)pp)) {
328 				cmn_err(CE_PANIC, "map_prom: "
329 				    "prom-mapped page (va 0x%p, pfn 0x%p) "
330 				    "on free list", (void *)vaddr, (void *)pfn);
331 			}
332 
333 			sfmmu_memtte(ttep, pfn, attr, TTE8K);
334 			sfmmu_tteload(kas.a_hat, ttep, vaddr, pp,
335 			    HAT_LOAD_LOCK | SFMMU_NO_TSBLOAD);
336 			size -= MMU_PAGESIZE;
337 			offset += MMU_PAGESIZE;
338 		}
339 	}
340 }
341 
342 #undef COMBINE	/* local to previous routine */
343 
344 /*
345  * This routine reads in the "translations" property in to a buffer and
346  * returns a pointer to this buffer and the number of translations.
347  */
348 static struct translation *
349 read_prom_mappings(size_t *ntransrootp)
350 {
351 	char *prop = "translations";
352 	size_t translen;
353 	pnode_t node;
354 	struct translation *transroot;
355 
356 	/*
357 	 * the "translations" property is associated with the mmu node
358 	 */
359 	node = (pnode_t)prom_getphandle(prom_mmu_ihandle());
360 
361 	/*
362 	 * We use the TSB space to read in the prom mappings.  This space
363 	 * is currently not being used because we haven't taken over the
364 	 * trap table yet.  It should be big enough to hold the mappings.
365 	 */
366 	if ((translen = prom_getproplen(node, prop)) == -1)
367 		cmn_err(CE_PANIC, "no translations property");
368 	*ntransrootp = translen / sizeof (*transroot);
369 	translen = roundup(translen, MMU_PAGESIZE);
370 	PRM_DEBUG(translen);
371 	if (translen > TSB_BYTES(ktsb_szcode))
372 		cmn_err(CE_PANIC, "not enough space for translations");
373 
374 	transroot = (struct translation *)ktsb_base;
375 	ASSERT(transroot);
376 	if (prom_getprop(node, prop, (caddr_t)transroot) == -1) {
377 		cmn_err(CE_PANIC, "translations getprop failed");
378 	}
379 	return (transroot);
380 }
381 
382 /*
383  * Init routine of the nucleus data memory allocator.
384  *
385  * The nucleus data memory allocator is organized in ecache_alignsize'd
386  * memory chunks. Memory allocated by ndata_alloc() will never be freed.
387  *
388  * The ndata argument is used as header of the ndata freelist.
389  * Other freelist nodes are placed in the nucleus memory itself
390  * at the beginning of a free memory chunk. Therefore a freelist
391  * node (struct memlist) must fit into the smallest allocatable
392  * memory chunk (ecache_alignsize bytes).
393  *
394  * The memory interval [base, end] passed to ndata_alloc_init() must be
395  * bzero'd to allow the allocator to return bzero'd memory easily.
396  */
397 void
398 ndata_alloc_init(struct memlist *ndata, uintptr_t base, uintptr_t end)
399 {
400 	ASSERT(sizeof (struct memlist) <= ecache_alignsize);
401 
402 	base = roundup(base, ecache_alignsize);
403 	end = end - end % ecache_alignsize;
404 
405 	ASSERT(base < end);
406 
407 	ndata->address = base;
408 	ndata->size = end - base;
409 	ndata->next = NULL;
410 	ndata->prev = NULL;
411 }
412 
413 /*
414  * Deliver the size of the largest free memory chunk.
415  */
416 size_t
417 ndata_maxsize(struct memlist *ndata)
418 {
419 	size_t chunksize = ndata->size;
420 
421 	while ((ndata = ndata->next) != NULL) {
422 		if (chunksize < ndata->size)
423 			chunksize = ndata->size;
424 	}
425 
426 	return (chunksize);
427 }
428 
429 /*
430  * This is a special function to figure out if the memory chunk needed
431  * for the page structs can fit in the nucleus or not. If it fits the
432  * function calculates and returns the possible remaining ndata size
433  * in the last element if the size needed for page structs would be
434  * allocated from the nucleus.
435  */
436 size_t
437 ndata_spare(struct memlist *ndata, size_t wanted, size_t alignment)
438 {
439 	struct memlist *frlist;
440 	uintptr_t base;
441 	uintptr_t end;
442 
443 	for (frlist = ndata; frlist != NULL; frlist = frlist->next) {
444 		base = roundup(frlist->address, alignment);
445 		end = roundup(base + wanted, ecache_alignsize);
446 
447 		if (end <= frlist->address + frlist->size) {
448 			if (frlist->next == NULL)
449 				return (frlist->address + frlist->size - end);
450 
451 			while (frlist->next != NULL)
452 				frlist = frlist->next;
453 
454 			return (frlist->size);
455 		}
456 	}
457 
458 	return (0);
459 }
460 
461 /*
462  * Allocate the last properly aligned memory chunk.
463  * This function is called when no more large nucleus memory chunks
464  * will be allocated.  The remaining free nucleus memory at the end
465  * of the nucleus can be added to the phys_avail list.
466  */
467 void *
468 ndata_extra_base(struct memlist *ndata, size_t alignment)
469 {
470 	uintptr_t base;
471 	size_t wasteage = 0;
472 #ifdef	DEBUG
473 	static int called = 0;
474 
475 	if (called++ > 0)
476 		cmn_err(CE_PANIC, "ndata_extra_base() called more than once");
477 #endif /* DEBUG */
478 
479 	/*
480 	 * The alignment needs to be a multiple of ecache_alignsize.
481 	 */
482 	ASSERT((alignment % ecache_alignsize) ==  0);
483 
484 	while (ndata->next != NULL) {
485 		wasteage += ndata->size;
486 		ndata = ndata->next;
487 	}
488 
489 	base = roundup(ndata->address, alignment);
490 
491 	if (base >= ndata->address + ndata->size)
492 		return (NULL);
493 
494 	if (base == ndata->address) {
495 		if (ndata->prev != NULL)
496 			ndata->prev->next = NULL;
497 		else
498 			ndata->size = 0;
499 
500 		bzero((void *)base, sizeof (struct memlist));
501 
502 	} else {
503 		ndata->size = base - ndata->address;
504 		wasteage += ndata->size;
505 	}
506 	PRM_DEBUG(wasteage);
507 
508 	return ((void *)base);
509 }
510 
511 /*
512  * Select the best matching buffer, avoid memory fragmentation.
513  */
514 static struct memlist *
515 ndata_select_chunk(struct memlist *ndata, size_t wanted, size_t alignment)
516 {
517 	struct memlist *fnd_below = NULL;
518 	struct memlist *fnd_above = NULL;
519 	struct memlist *fnd_unused = NULL;
520 	struct memlist *frlist;
521 	uintptr_t base;
522 	uintptr_t end;
523 	size_t below;
524 	size_t above;
525 	size_t unused;
526 	size_t best_below = ULONG_MAX;
527 	size_t best_above = ULONG_MAX;
528 	size_t best_unused = ULONG_MAX;
529 
530 	ASSERT(ndata != NULL);
531 
532 	/*
533 	 * Look for the best matching buffer, avoid memory fragmentation.
534 	 * The following strategy is used, try to find
535 	 *   1. an exact fitting buffer
536 	 *   2. avoid wasting any space below the buffer, take first
537 	 *	fitting buffer
538 	 *   3. avoid wasting any space above the buffer, take first
539 	 *	fitting buffer
540 	 *   4. avoid wasting space, take first fitting buffer
541 	 *   5. take the last buffer in chain
542 	 */
543 	for (frlist = ndata; frlist != NULL; frlist = frlist->next) {
544 		base = roundup(frlist->address, alignment);
545 		end = roundup(base + wanted, ecache_alignsize);
546 
547 		if (end > frlist->address + frlist->size)
548 			continue;
549 
550 		below = (base - frlist->address) / ecache_alignsize;
551 		above = (frlist->address + frlist->size - end) /
552 		    ecache_alignsize;
553 		unused = below + above;
554 
555 		if (unused == 0)
556 			return (frlist);
557 
558 		if (frlist->next == NULL)
559 			break;
560 
561 		if (below < best_below) {
562 			best_below = below;
563 			fnd_below = frlist;
564 		}
565 
566 		if (above < best_above) {
567 			best_above = above;
568 			fnd_above = frlist;
569 		}
570 
571 		if (unused < best_unused) {
572 			best_unused = unused;
573 			fnd_unused = frlist;
574 		}
575 	}
576 
577 	if (best_below == 0)
578 		return (fnd_below);
579 	if (best_above == 0)
580 		return (fnd_above);
581 	if (best_unused < ULONG_MAX)
582 		return (fnd_unused);
583 
584 	return (frlist);
585 }
586 
587 /*
588  * Nucleus data memory allocator.
589  * The granularity of the allocator is ecache_alignsize.
590  * See also comment for ndata_alloc_init().
591  */
592 void *
593 ndata_alloc(struct memlist *ndata, size_t wanted, size_t alignment)
594 {
595 	struct memlist *found;
596 	struct memlist *fnd_above;
597 	uintptr_t base;
598 	uintptr_t end;
599 	size_t below;
600 	size_t above;
601 
602 	/*
603 	 * Look for the best matching buffer, avoid memory fragmentation.
604 	 */
605 	if ((found = ndata_select_chunk(ndata, wanted, alignment)) == NULL)
606 		return (NULL);
607 
608 	/*
609 	 * Allocate the nucleus data buffer.
610 	 */
611 	base = roundup(found->address, alignment);
612 	end = roundup(base + wanted, ecache_alignsize);
613 	ASSERT(end <= found->address + found->size);
614 
615 	below = base - found->address;
616 	above = found->address + found->size - end;
617 	ASSERT(above == 0 || (above % ecache_alignsize) == 0);
618 
619 	if (below >= ecache_alignsize) {
620 		/*
621 		 * There is free memory below the allocated memory chunk.
622 		 */
623 		found->size = below - below % ecache_alignsize;
624 
625 		if (above) {
626 			fnd_above = (struct memlist *)end;
627 			fnd_above->address = end;
628 			fnd_above->size = above;
629 
630 			if ((fnd_above->next = found->next) != NULL)
631 				found->next->prev = fnd_above;
632 			fnd_above->prev = found;
633 			found->next = fnd_above;
634 		}
635 
636 		return ((void *)base);
637 	}
638 
639 	if (found->prev == NULL) {
640 		/*
641 		 * The first chunk (ndata) is selected.
642 		 */
643 		ASSERT(found == ndata);
644 		if (above) {
645 			found->address = end;
646 			found->size = above;
647 		} else if (found->next != NULL) {
648 			found->address = found->next->address;
649 			found->size = found->next->size;
650 			if ((found->next = found->next->next) != NULL)
651 				found->next->prev = found;
652 
653 			bzero((void *)found->address, sizeof (struct memlist));
654 		} else {
655 			found->address = end;
656 			found->size = 0;
657 		}
658 
659 		return ((void *)base);
660 	}
661 
662 	/*
663 	 * Not the first chunk.
664 	 */
665 	if (above) {
666 		fnd_above = (struct memlist *)end;
667 		fnd_above->address = end;
668 		fnd_above->size = above;
669 
670 		if ((fnd_above->next = found->next) != NULL)
671 			fnd_above->next->prev = fnd_above;
672 		fnd_above->prev = found->prev;
673 		found->prev->next = fnd_above;
674 
675 	} else {
676 		if ((found->prev->next = found->next) != NULL)
677 			found->next->prev = found->prev;
678 	}
679 
680 	bzero((void *)found->address, sizeof (struct memlist));
681 
682 	return ((void *)base);
683 }
684 
685 /*
686  * Size the kernel TSBs based upon the amount of physical
687  * memory in the system.
688  */
689 static void
690 calc_tsb_sizes(pgcnt_t npages)
691 {
692 	PRM_DEBUG(npages);
693 
694 	if (npages <= TSB_FREEMEM_MIN) {
695 		ktsb_szcode = TSB_128K_SZCODE;
696 		enable_bigktsb = 0;
697 	} else if (npages <= TSB_FREEMEM_LARGE / 2) {
698 		ktsb_szcode = TSB_256K_SZCODE;
699 		enable_bigktsb = 0;
700 	} else if (npages <= TSB_FREEMEM_LARGE) {
701 		ktsb_szcode = TSB_512K_SZCODE;
702 		enable_bigktsb = 0;
703 	} else if (npages <= TSB_FREEMEM_LARGE * 2 ||
704 	    enable_bigktsb == 0) {
705 		ktsb_szcode = TSB_1M_SZCODE;
706 		enable_bigktsb = 0;
707 	} else {
708 		ktsb_szcode = highbit(npages - 1);
709 		ktsb_szcode -= TSB_START_SIZE;
710 		ktsb_szcode = MAX(ktsb_szcode, MIN_BIGKTSB_SZCODE);
711 		ktsb_szcode = MIN(ktsb_szcode, MAX_BIGKTSB_SZCODE);
712 	}
713 
714 	/*
715 	 * We choose the TSB to hold kernel 4M mappings to have twice
716 	 * the reach as the primary kernel TSB since this TSB will
717 	 * potentially (currently) be shared by both mappings to all of
718 	 * physical memory plus user TSBs.  Since the current
719 	 * limit on primary kernel TSB size is 16MB this will top out
720 	 * at 64K which we can certainly afford.
721 	 */
722 	ktsb4m_szcode = ktsb_szcode - (MMU_PAGESHIFT4M - MMU_PAGESHIFT) + 1;
723 	if (ktsb4m_szcode < TSB_MIN_SZCODE)
724 		ktsb4m_szcode = TSB_MIN_SZCODE;
725 
726 	ktsb_sz = TSB_BYTES(ktsb_szcode);	/* kernel 8K tsb size */
727 	ktsb4m_sz = TSB_BYTES(ktsb4m_szcode);	/* kernel 4M tsb size */
728 }
729 
730 /*
731  * Allocate kernel TSBs from nucleus data memory.
732  * The function return 0 on success and -1 on failure.
733  */
734 int
735 ndata_alloc_tsbs(struct memlist *ndata, pgcnt_t npages)
736 {
737 	/*
738 	 * Size the kernel TSBs based upon the amount of physical
739 	 * memory in the system.
740 	 */
741 	calc_tsb_sizes(npages);
742 
743 	/*
744 	 * Allocate the 8K kernel TSB if it belongs inside the nucleus.
745 	 */
746 	if (enable_bigktsb == 0) {
747 		if ((ktsb_base = ndata_alloc(ndata, ktsb_sz, ktsb_sz)) == NULL)
748 			return (-1);
749 		ASSERT(!((uintptr_t)ktsb_base & (ktsb_sz - 1)));
750 
751 		PRM_DEBUG(ktsb_base);
752 		PRM_DEBUG(ktsb_sz);
753 		PRM_DEBUG(ktsb_szcode);
754 	}
755 
756 	/*
757 	 * Next, allocate 4M kernel TSB from the nucleus since it's small.
758 	 */
759 	if ((ktsb4m_base = ndata_alloc(ndata, ktsb4m_sz, ktsb4m_sz)) == NULL)
760 		return (-1);
761 	ASSERT(!((uintptr_t)ktsb4m_base & (ktsb4m_sz - 1)));
762 
763 	PRM_DEBUG(ktsb4m_base);
764 	PRM_DEBUG(ktsb4m_sz);
765 	PRM_DEBUG(ktsb4m_szcode);
766 
767 	return (0);
768 }
769 
770 /*
771  * Allocate hat structs from the nucleus data memory.
772  */
773 int
774 ndata_alloc_hat(struct memlist *ndata, pgcnt_t npages, pgcnt_t kpm_npages)
775 {
776 	size_t 	ctx_sz;
777 	size_t	mml_alloc_sz;
778 	size_t	cb_alloc_sz;
779 	int	max_nucuhme_buckets = MAX_NUCUHME_BUCKETS;
780 	int	max_nuckhme_buckets = MAX_NUCKHME_BUCKETS;
781 	ulong_t hme_buckets;
782 
783 	if (enable_bigktsb) {
784 		ASSERT((max_nucuhme_buckets + max_nuckhme_buckets) *
785 		    sizeof (struct hmehash_bucket) <=
786 			TSB_BYTES(TSB_1M_SZCODE));
787 
788 		max_nucuhme_buckets *= 2;
789 		max_nuckhme_buckets *= 2;
790 	}
791 
792 	/*
793 	 * Allocate ctx structures
794 	 *
795 	 * based on v_proc to calculate how many ctx structures
796 	 * is not possible;
797 	 * use whatever module_setup() assigned to nctxs
798 	 */
799 	PRM_DEBUG(nctxs);
800 	ctx_sz = nctxs * sizeof (struct ctx);
801 	if ((ctxs = ndata_alloc(ndata, ctx_sz, sizeof (struct ctx))) == NULL)
802 		return (-1);
803 
804 	PRM_DEBUG(ctxs);
805 
806 	/*
807 	 * The number of buckets in the hme hash tables
808 	 * is a power of 2 such that the average hash chain length is
809 	 * HMENT_HASHAVELEN.  The number of buckets for the user hash is
810 	 * a function of physical memory and a predefined overmapping factor.
811 	 * The number of buckets for the kernel hash is a function of
812 	 * physical memory only.
813 	 */
814 	hme_buckets = (npages * HMEHASH_FACTOR) /
815 		(HMENT_HASHAVELEN * (HMEBLK_SPAN(TTE8K) >> MMU_PAGESHIFT));
816 
817 	uhmehash_num = (int)MIN(hme_buckets, MAX_UHME_BUCKETS);
818 
819 	if (uhmehash_num > USER_BUCKETS_THRESHOLD) {
820 		/*
821 		 * if uhmehash_num is not power of 2 round it down to the
822 		 *  next power of 2.
823 		 */
824 		uint_t align = 1 << (highbit(uhmehash_num - 1) - 1);
825 		uhmehash_num = P2ALIGN(uhmehash_num, align);
826 	} else
827 		uhmehash_num = 1 << highbit(uhmehash_num - 1);
828 
829 	hme_buckets = npages / (HMEBLK_SPAN(TTE8K) >> MMU_PAGESHIFT);
830 	khmehash_num = (int)MIN(hme_buckets, MAX_KHME_BUCKETS);
831 	khmehash_num = 1 << highbit(khmehash_num - 1);
832 	khmehash_num = MAX(khmehash_num, MIN_KHME_BUCKETS);
833 
834 	if ((khmehash_num > max_nuckhme_buckets) ||
835 		(uhmehash_num > max_nucuhme_buckets)) {
836 		khme_hash = NULL;
837 		uhme_hash = NULL;
838 	} else {
839 		size_t hmehash_sz = (uhmehash_num + khmehash_num) *
840 		    sizeof (struct hmehash_bucket);
841 
842 		if ((khme_hash = ndata_alloc(ndata, hmehash_sz,
843 		    ecache_alignsize)) != NULL)
844 			uhme_hash = &khme_hash[khmehash_num];
845 		else
846 			uhme_hash = NULL;
847 
848 		PRM_DEBUG(hmehash_sz);
849 	}
850 
851 	PRM_DEBUG(khme_hash);
852 	PRM_DEBUG(khmehash_num);
853 	PRM_DEBUG(uhme_hash);
854 	PRM_DEBUG(uhmehash_num);
855 
856 	/*
857 	 * For the page mapping list mutex array we allocate one mutex
858 	 * for every 128 pages (1 MB) with a minimum of 64 entries and
859 	 * a maximum of 8K entries. For the initial computation npages
860 	 * is rounded up (ie. 1 << highbit(npages * 1.5 / 128))
861 	 *
862 	 * mml_shift is roughly log2(mml_table_sz) + 3 for MLIST_HASH
863 	 *
864 	 * It is not required that this be allocated from the nucleus,
865 	 * but it is desirable.  So we first allocate from the nucleus
866 	 * everything that must be there.  Having done so, if mml_table
867 	 * will fit within what remains of the nucleus then it will be
868 	 * allocated here.  If not, set mml_table to NULL, which will cause
869 	 * startup_memlist() to BOP_ALLOC() space for it after our return...
870 	 */
871 	mml_table_sz = 1 << highbit((npages * 3) / 256);
872 	if (mml_table_sz < 64)
873 		mml_table_sz = 64;
874 	else if (mml_table_sz > 8192)
875 		mml_table_sz = 8192;
876 	mml_shift = highbit(mml_table_sz) + 3;
877 
878 	PRM_DEBUG(mml_table_sz);
879 	PRM_DEBUG(mml_shift);
880 
881 	mml_alloc_sz = mml_table_sz * sizeof (kmutex_t);
882 
883 	mml_table = ndata_alloc(ndata, mml_alloc_sz, ecache_alignsize);
884 
885 	PRM_DEBUG(mml_table);
886 
887 	cb_alloc_sz = sfmmu_max_cb_id * sizeof (struct sfmmu_callback);
888 	PRM_DEBUG(cb_alloc_sz);
889 	sfmmu_cb_table = ndata_alloc(ndata, cb_alloc_sz, ecache_alignsize);
890 	PRM_DEBUG(sfmmu_cb_table);
891 
892 	/*
893 	 * For the kpm_page mutex array we allocate one mutex every 16
894 	 * kpm pages (64MB). In smallpage mode we allocate one mutex
895 	 * every 8K pages. The minimum is set to 64 entries and the
896 	 * maximum to 8K entries.
897 	 *
898 	 * It is not required that this be allocated from the nucleus,
899 	 * but it is desirable.  So we first allocate from the nucleus
900 	 * everything that must be there.  Having done so, if kpmp_table
901 	 * or kpmp_stable will fit within what remains of the nucleus
902 	 * then it will be allocated here.  If not, startup_memlist()
903 	 * will use BOP_ALLOC() space for it after our return...
904 	 */
905 	if (kpm_enable) {
906 		size_t	kpmp_alloc_sz;
907 
908 		if (kpm_smallpages == 0) {
909 			kpmp_shift = highbit(sizeof (kpm_page_t)) - 1;
910 			kpmp_table_sz = 1 << highbit(kpm_npages / 16);
911 			kpmp_table_sz = (kpmp_table_sz < 64) ? 64 :
912 			    ((kpmp_table_sz > 8192) ? 8192 : kpmp_table_sz);
913 			kpmp_alloc_sz = kpmp_table_sz * sizeof (kpm_hlk_t);
914 
915 			kpmp_table = ndata_alloc(ndata, kpmp_alloc_sz,
916 			    ecache_alignsize);
917 
918 			PRM_DEBUG(kpmp_table);
919 			PRM_DEBUG(kpmp_table_sz);
920 
921 			kpmp_stable_sz = 0;
922 			kpmp_stable = NULL;
923 		} else {
924 			ASSERT(kpm_pgsz == PAGESIZE);
925 			kpmp_shift = highbit(sizeof (kpm_shlk_t)) + 1;
926 			kpmp_stable_sz = 1 << highbit(kpm_npages / 8192);
927 			kpmp_stable_sz = (kpmp_stable_sz < 64) ? 64 :
928 			    ((kpmp_stable_sz > 8192) ? 8192 : kpmp_stable_sz);
929 			kpmp_alloc_sz = kpmp_stable_sz * sizeof (kpm_shlk_t);
930 
931 			kpmp_stable = ndata_alloc(ndata, kpmp_alloc_sz,
932 			    ecache_alignsize);
933 
934 			PRM_DEBUG(kpmp_stable);
935 			PRM_DEBUG(kpmp_stable_sz);
936 
937 			kpmp_table_sz = 0;
938 			kpmp_table = NULL;
939 		}
940 		PRM_DEBUG(kpmp_shift);
941 	}
942 
943 	return (0);
944 }
945 
946 caddr_t
947 alloc_hme_buckets(caddr_t base, int pagesize)
948 {
949 	size_t hmehash_sz = (uhmehash_num + khmehash_num) *
950 	sizeof (struct hmehash_bucket);
951 
952 	ASSERT(khme_hash == NULL);
953 	ASSERT(uhme_hash == NULL);
954 
955 	/* If no pagesize specified, use default MMU pagesize */
956 	if (!pagesize)
957 		pagesize = MMU_PAGESIZE;
958 
959 	/*
960 	 * If we start aligned and ask for a multiple of a pagesize, and OBP
961 	 * supports large pages, we will then use mappings of the largest size
962 	 * possible for the BOP_ALLOC, possibly saving us tens of thousands of
963 	 * TLB miss-induced traversals of the TSBs and/or the HME hashes...
964 	 */
965 	base = (caddr_t)roundup((uintptr_t)base, pagesize);
966 	hmehash_sz = roundup(hmehash_sz, pagesize);
967 
968 	khme_hash = (struct hmehash_bucket *)BOP_ALLOC(bootops, base,
969 		hmehash_sz, pagesize);
970 
971 	if ((caddr_t)khme_hash != base)
972 		cmn_err(CE_PANIC, "Cannot bop_alloc hme hash buckets.");
973 
974 	uhme_hash = (struct hmehash_bucket *)((caddr_t)khme_hash +
975 		khmehash_num * sizeof (struct hmehash_bucket));
976 	base += hmehash_sz;
977 	return (base);
978 }
979 
980 /*
981  * This function bop allocs the kernel TSB.
982  */
983 caddr_t
984 sfmmu_ktsb_alloc(caddr_t tsbbase)
985 {
986 	caddr_t vaddr;
987 
988 	if (enable_bigktsb) {
989 		ktsb_base = (caddr_t)roundup((uintptr_t)tsbbase, ktsb_sz);
990 		vaddr = (caddr_t)BOP_ALLOC(bootops, ktsb_base, ktsb_sz,
991 		    ktsb_sz);
992 		if (vaddr != ktsb_base)
993 			cmn_err(CE_PANIC, "sfmmu_ktsb_alloc: can't alloc"
994 			    " bigktsb");
995 		ktsb_base = vaddr;
996 		tsbbase = ktsb_base + ktsb_sz;
997 		PRM_DEBUG(ktsb_base);
998 		PRM_DEBUG(tsbbase);
999 	}
1000 	return (tsbbase);
1001 }
1002 
1003 /*
1004  * Moves code assembled outside of the trap table into the trap
1005  * table taking care to relocate relative branches to code outside
1006  * of the trap handler.
1007  */
1008 static void
1009 sfmmu_reloc_trap_handler(void *tablep, void *start, size_t count)
1010 {
1011 	size_t i;
1012 	uint32_t *src;
1013 	uint32_t *dst;
1014 	uint32_t inst;
1015 	int op, op2;
1016 	int32_t offset;
1017 	int disp;
1018 
1019 	src = start;
1020 	dst = tablep;
1021 	offset = src - dst;
1022 	for (src = start, i = 0; i < count; i++, src++, dst++) {
1023 		inst = *dst = *src;
1024 		op = (inst >> 30) & 0x2;
1025 		if (op == 1) {
1026 			/* call */
1027 			disp = ((int32_t)inst << 2) >> 2; /* sign-extend */
1028 			if (disp + i >= 0 && disp + i < count)
1029 				continue;
1030 			disp += offset;
1031 			inst = 0x40000000u | (disp & 0x3fffffffu);
1032 			*dst = inst;
1033 		} else if (op == 0) {
1034 			/* branch or sethi */
1035 			op2 = (inst >> 22) & 0x7;
1036 
1037 			switch (op2) {
1038 			case 0x3: /* BPr */
1039 				disp = (((inst >> 20) & 0x3) << 14) |
1040 				    (inst & 0x3fff);
1041 				disp = (disp << 16) >> 16; /* sign-extend */
1042 				if (disp + i >= 0 && disp + i < count)
1043 					continue;
1044 				disp += offset;
1045 				if (((disp << 16) >> 16) != disp)
1046 					cmn_err(CE_PANIC, "bad reloc");
1047 				inst &= ~0x303fff;
1048 				inst |= (disp & 0x3fff);
1049 				inst |= (disp & 0xc000) << 6;
1050 				break;
1051 
1052 			case 0x2: /* Bicc */
1053 				disp = ((int32_t)inst << 10) >> 10;
1054 				if (disp + i >= 0 && disp + i < count)
1055 					continue;
1056 				disp += offset;
1057 				if (((disp << 10) >> 10) != disp)
1058 					cmn_err(CE_PANIC, "bad reloc");
1059 				inst &= ~0x3fffff;
1060 				inst |= (disp & 0x3fffff);
1061 				break;
1062 
1063 			case 0x1: /* Bpcc */
1064 				disp = ((int32_t)inst << 13) >> 13;
1065 				if (disp + i >= 0 && disp + i < count)
1066 					continue;
1067 				disp += offset;
1068 				if (((disp << 13) >> 13) != disp)
1069 					cmn_err(CE_PANIC, "bad reloc");
1070 				inst &= ~0x7ffff;
1071 				inst |= (disp & 0x7ffffu);
1072 				break;
1073 			}
1074 			*dst = inst;
1075 		}
1076 	}
1077 	flush_instr_mem(tablep, count * sizeof (uint32_t));
1078 }
1079 
1080 /*
1081  * Routine to allocate a large page to use in the TSB caches.
1082  */
1083 /*ARGSUSED*/
1084 static page_t *
1085 sfmmu_tsb_page_create(void *addr, size_t size, int vmflag, void *arg)
1086 {
1087 	int pgflags;
1088 
1089 	pgflags = PG_EXCL;
1090 	if ((vmflag & VM_NOSLEEP) == 0)
1091 		pgflags |= PG_WAIT;
1092 	if (vmflag & VM_PANIC)
1093 		pgflags |= PG_PANIC;
1094 	if (vmflag & VM_PUSHPAGE)
1095 		pgflags |= PG_PUSHPAGE;
1096 
1097 	return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size,
1098 	    pgflags, &kvseg, addr, arg));
1099 }
1100 
1101 /*
1102  * Allocate a large page to back the virtual address range
1103  * [addr, addr + size).  If addr is NULL, allocate the virtual address
1104  * space as well.
1105  */
1106 static void *
1107 sfmmu_tsb_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag,
1108     uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *),
1109     void *pcarg)
1110 {
1111 	page_t *ppl;
1112 	page_t *rootpp;
1113 	caddr_t addr = inaddr;
1114 	pgcnt_t npages = btopr(size);
1115 	page_t **ppa;
1116 	int i = 0;
1117 
1118 	/*
1119 	 * Assuming that only TSBs will call this with size > PAGESIZE
1120 	 * There is no reason why this couldn't be expanded to 8k pages as
1121 	 * well, or other page sizes in the future .... but for now, we
1122 	 * only support fixed sized page requests.
1123 	 */
1124 	if ((inaddr == NULL) && ((addr = vmem_xalloc(vmp, size, size, 0, 0,
1125 	    NULL, NULL, vmflag)) == NULL))
1126 		return (NULL);
1127 
1128 	/* If we ever don't want TSB slab-sized pages, this will panic */
1129 	ASSERT(((uintptr_t)addr & (tsb_slab_size - 1)) == 0);
1130 
1131 	if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
1132 		if (inaddr == NULL)
1133 			vmem_xfree(vmp, addr, size);
1134 		return (NULL);
1135 	}
1136 
1137 	ppl = page_create_func(addr, size, vmflag, pcarg);
1138 	if (ppl == NULL) {
1139 		if (inaddr == NULL)
1140 			vmem_xfree(vmp, addr, size);
1141 		page_unresv(npages);
1142 		return (NULL);
1143 	}
1144 
1145 	rootpp = ppl;
1146 	ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP);
1147 	while (ppl != NULL) {
1148 		page_t *pp = ppl;
1149 		ppa[i++] = pp;
1150 		page_sub(&ppl, pp);
1151 		ASSERT(page_iolock_assert(pp));
1152 		page_io_unlock(pp);
1153 	}
1154 
1155 	/*
1156 	 * Load the locked entry.  It's OK to preload the entry into
1157 	 * the TSB since we now support large mappings in the kernel TSB.
1158 	 */
1159 	hat_memload_array(kas.a_hat, (caddr_t)rootpp->p_offset, size,
1160 	    ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, HAT_LOAD_LOCK);
1161 
1162 	for (--i; i >= 0; --i) {
1163 		(void) page_pp_lock(ppa[i], 0, 1);
1164 		page_unlock(ppa[i]);
1165 	}
1166 
1167 	kmem_free(ppa, npages * sizeof (page_t *));
1168 	return (addr);
1169 }
1170 
1171 /* Called to import new spans into the TSB vmem arenas */
1172 void *
1173 sfmmu_tsb_segkmem_alloc(vmem_t *vmp, size_t size, int vmflag)
1174 {
1175 	lgrp_id_t lgrpid = LGRP_NONE;
1176 
1177 	if (tsb_lgrp_affinity) {
1178 		/*
1179 		 * Search for the vmp->lgrpid mapping by brute force;
1180 		 * some day vmp will have an lgrp, until then we have
1181 		 * to do this the hard way.
1182 		 */
1183 		for (lgrpid = 0; lgrpid < NLGRPS_MAX &&
1184 		    vmp != kmem_tsb_default_arena[lgrpid]; lgrpid++);
1185 		if (lgrpid == NLGRPS_MAX)
1186 			lgrpid = LGRP_NONE;
1187 	}
1188 
1189 	return (sfmmu_tsb_xalloc(vmp, NULL, size, vmflag, 0,
1190 	    sfmmu_tsb_page_create, lgrpid != LGRP_NONE? &lgrpid : NULL));
1191 }
1192 
1193 /* Called to free spans from the TSB vmem arenas */
1194 void
1195 sfmmu_tsb_segkmem_free(vmem_t *vmp, void *inaddr, size_t size)
1196 {
1197 	page_t *pp;
1198 	caddr_t addr = inaddr;
1199 	caddr_t eaddr;
1200 	pgcnt_t npages = btopr(size);
1201 	pgcnt_t pgs_left = npages;
1202 	page_t *rootpp = NULL;
1203 
1204 	ASSERT(((uintptr_t)addr & (tsb_slab_size - 1)) == 0);
1205 
1206 	hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
1207 
1208 	for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
1209 		pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL);
1210 		if (pp == NULL)
1211 			panic("sfmmu_tsb_segkmem_free: page not found");
1212 
1213 		ASSERT(PAGE_EXCL(pp));
1214 		page_pp_unlock(pp, 0, 1);
1215 
1216 		if (rootpp == NULL)
1217 			rootpp = pp;
1218 		if (--pgs_left == 0) {
1219 			/*
1220 			 * similar logic to segspt_free_pages, but we know we
1221 			 * have one large page.
1222 			 */
1223 			page_destroy_pages(rootpp);
1224 		}
1225 	}
1226 	page_unresv(npages);
1227 
1228 	if (vmp != NULL)
1229 		vmem_xfree(vmp, inaddr, size);
1230 }
1231