1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <vm/hat.h> 30 #include <vm/hat_sfmmu.h> 31 #include <vm/page.h> 32 #include <sys/pte.h> 33 #include <sys/systm.h> 34 #include <sys/mman.h> 35 #include <sys/sysmacros.h> 36 #include <sys/machparam.h> 37 #include <sys/vtrace.h> 38 #include <sys/kmem.h> 39 #include <sys/mmu.h> 40 #include <sys/cmn_err.h> 41 #include <sys/cpu.h> 42 #include <sys/cpuvar.h> 43 #include <sys/debug.h> 44 #include <sys/lgrp.h> 45 #include <sys/archsystm.h> 46 #include <sys/machsystm.h> 47 #include <sys/vmsystm.h> 48 #include <sys/bitmap.h> 49 #include <vm/as.h> 50 #include <vm/seg.h> 51 #include <vm/seg_kmem.h> 52 #include <vm/seg_kp.h> 53 #include <vm/seg_kpm.h> 54 #include <vm/rm.h> 55 #include <vm/vm_dep.h> 56 #include <sys/t_lock.h> 57 #include <sys/vm_machparam.h> 58 #include <sys/promif.h> 59 #include <sys/prom_isa.h> 60 #include <sys/prom_plat.h> 61 #include <sys/prom_debug.h> 62 #include <sys/privregs.h> 63 #include <sys/bootconf.h> 64 #include <sys/memlist.h> 65 #include <sys/memlist_plat.h> 66 #include <sys/cpu_module.h> 67 #include <sys/reboot.h> 68 #include <sys/kdi.h> 69 70 /* 71 * Static routines 72 */ 73 static void sfmmu_map_prom_mappings(struct translation *, size_t); 74 static struct translation *read_prom_mappings(size_t *); 75 static void sfmmu_reloc_trap_handler(void *, void *, size_t); 76 77 /* 78 * External routines 79 */ 80 extern void sfmmu_remap_kernel(void); 81 extern void sfmmu_patch_utsb(void); 82 83 /* 84 * Global Data: 85 */ 86 extern caddr_t textva, datava; 87 extern tte_t ktext_tte, kdata_tte; /* ttes for kernel text and data */ 88 extern int enable_bigktsb; 89 90 uint64_t memsegspa = (uintptr_t)MSEG_NULLPTR_PA; /* memsegs physical linkage */ 91 uint64_t memseg_phash[N_MEM_SLOTS]; /* use physical memseg addresses */ 92 93 int sfmmu_kern_mapped = 0; 94 95 /* 96 * DMMU primary context register for the kernel context. Machine specific code 97 * inserts correct page size codes when necessary 98 */ 99 uint64_t kcontextreg = KCONTEXT; 100 101 #ifdef DEBUG 102 static int ndata_middle_hole_detected = 0; 103 #endif 104 105 /* Extern Global Data */ 106 107 extern int page_relocate_ready; 108 109 /* 110 * Controls the logic which enables the use of the 111 * QUAD_LDD_PHYS ASI for TSB accesses. 112 */ 113 extern int ktsb_phys; 114 115 /* 116 * Global Routines called from within: 117 * usr/src/uts/sun4u 118 * usr/src/uts/sfmmu 119 * usr/src/uts/sun 120 */ 121 122 pfn_t 123 va_to_pfn(void *vaddr) 124 { 125 u_longlong_t physaddr; 126 int mode, valid; 127 128 if (tba_taken_over) 129 return (hat_getpfnum(kas.a_hat, (caddr_t)vaddr)); 130 131 #if !defined(C_OBP) 132 if ((caddr_t)vaddr >= kmem64_base && (caddr_t)vaddr < kmem64_end) { 133 if (kmem64_pabase == (uint64_t)-1) 134 prom_panic("va_to_pfn: kmem64_pabase not init"); 135 physaddr = kmem64_pabase + ((caddr_t)vaddr - kmem64_base); 136 return ((pfn_t)physaddr >> MMU_PAGESHIFT); 137 } 138 #endif /* !C_OBP */ 139 140 if ((prom_translate_virt(vaddr, &valid, &physaddr, &mode) != -1) && 141 (valid == -1)) { 142 return ((pfn_t)(physaddr >> MMU_PAGESHIFT)); 143 } 144 return (PFN_INVALID); 145 } 146 147 uint64_t 148 va_to_pa(void *vaddr) 149 { 150 pfn_t pfn; 151 152 if ((pfn = va_to_pfn(vaddr)) == PFN_INVALID) 153 return ((uint64_t)-1); 154 return (((uint64_t)pfn << MMU_PAGESHIFT) | 155 ((uint64_t)vaddr & MMU_PAGEOFFSET)); 156 } 157 158 void 159 hat_kern_setup(void) 160 { 161 struct translation *trans_root; 162 size_t ntrans_root; 163 extern void startup_fixup_physavail(void); 164 165 /* 166 * These are the steps we take to take over the mmu from the prom. 167 * 168 * (1) Read the prom's mappings through the translation property. 169 * (2) Remap the kernel text and kernel data with 2 locked 4MB ttes. 170 * Create the the hmeblks for these 2 ttes at this time. 171 * (3) Create hat structures for all other prom mappings. Since the 172 * kernel text and data hme_blks have already been created we 173 * skip the equivalent prom's mappings. 174 * (4) Initialize the tsb and its corresponding hardware regs. 175 * (5) Take over the trap table (currently in startup). 176 * (6) Up to this point it is possible the prom required some of its 177 * locked tte's. Now that we own the trap table we remove them. 178 */ 179 180 ktsb_pbase = va_to_pa(ktsb_base); 181 ktsb4m_pbase = va_to_pa(ktsb4m_base); 182 PRM_DEBUG(ktsb_pbase); 183 PRM_DEBUG(ktsb4m_pbase); 184 185 sfmmu_patch_ktsb(); 186 sfmmu_patch_utsb(); 187 sfmmu_patch_mmu_asi(ktsb_phys); 188 189 sfmmu_init_tsbs(); 190 191 if (kpm_enable) { 192 sfmmu_kpm_patch_tlbm(); 193 if (kpm_smallpages == 0) { 194 sfmmu_kpm_patch_tsbm(); 195 } 196 } 197 198 if (!shctx_on || disable_shctx) { 199 sfmmu_patch_shctx(); 200 } 201 202 /* 203 * The 8K-indexed kernel TSB space is used to hold 204 * translations below... 205 */ 206 trans_root = read_prom_mappings(&ntrans_root); 207 sfmmu_remap_kernel(); 208 startup_fixup_physavail(); 209 mmu_init_kernel_pgsz(kas.a_hat); 210 sfmmu_map_prom_mappings(trans_root, ntrans_root); 211 212 /* 213 * We invalidate 8K kernel TSB because we used it in 214 * sfmmu_map_prom_mappings() 215 */ 216 sfmmu_inv_tsb(ktsb_base, ktsb_sz); 217 sfmmu_inv_tsb(ktsb4m_base, ktsb4m_sz); 218 219 sfmmu_init_ktsbinfo(); 220 221 222 sfmmu_kern_mapped = 1; 223 224 /* 225 * hments have been created for mapped pages, and thus we're ready 226 * for kmdb to start using its own trap table. It walks the hments 227 * to resolve TLB misses, and can't be used until they're ready. 228 */ 229 if (boothowto & RB_DEBUG) 230 kdi_dvec_vmready(); 231 } 232 233 /* 234 * Macro used below to convert the prom's 32-bit high and low fields into 235 * a value appropriate for the 64-bit kernel. 236 */ 237 238 #define COMBINE(hi, lo) (((uint64_t)(uint32_t)(hi) << 32) | (uint32_t)(lo)) 239 240 /* 241 * Track larges pages used. 242 * Provides observability for this feature on non-debug kernels. 243 */ 244 ulong_t map_prom_lpcount[MMU_PAGE_SIZES]; 245 246 /* 247 * This function traverses the prom mapping list and creates equivalent 248 * mappings in the sfmmu mapping hash. 249 */ 250 static void 251 sfmmu_map_prom_mappings(struct translation *trans_root, size_t ntrans_root) 252 { 253 struct translation *promt; 254 tte_t tte, oldtte, *ttep; 255 pfn_t pfn, oldpfn, basepfn; 256 caddr_t vaddr; 257 size_t size, offset; 258 unsigned long i; 259 uint_t attr; 260 page_t *pp; 261 extern struct memlist *virt_avail; 262 char buf[256]; 263 264 ttep = &tte; 265 for (i = 0, promt = trans_root; i < ntrans_root; i++, promt++) { 266 ASSERT(promt->tte_hi != 0); 267 ASSERT32(promt->virt_hi == 0 && promt->size_hi == 0); 268 269 vaddr = (caddr_t)COMBINE(promt->virt_hi, promt->virt_lo); 270 271 /* 272 * hack until we get rid of map-for-unix 273 */ 274 if (vaddr < (caddr_t)KERNELBASE) 275 continue; 276 277 ttep->tte_inthi = promt->tte_hi; 278 ttep->tte_intlo = promt->tte_lo; 279 attr = PROC_DATA | HAT_NOSYNC; 280 #if defined(TTE_IS_GLOBAL) 281 if (TTE_IS_GLOBAL(ttep)) { 282 /* 283 * The prom better not use global translations 284 * because a user process might use the same 285 * virtual addresses 286 */ 287 prom_panic("sfmmu_map_prom_mappings: global" 288 " translation"); 289 TTE_SET_LOFLAGS(ttep, TTE_GLB_INT, 0); 290 } 291 #endif 292 if (TTE_IS_LOCKED(ttep)) { 293 /* clear the lock bits */ 294 TTE_CLR_LOCKED(ttep); 295 } 296 attr |= (TTE_IS_VCACHEABLE(ttep)) ? 0 : SFMMU_UNCACHEVTTE; 297 attr |= (TTE_IS_PCACHEABLE(ttep)) ? 0 : SFMMU_UNCACHEPTTE; 298 attr |= (TTE_IS_SIDEFFECT(ttep)) ? SFMMU_SIDEFFECT : 0; 299 attr |= (TTE_IS_IE(ttep)) ? HAT_STRUCTURE_LE : 0; 300 301 size = COMBINE(promt->size_hi, promt->size_lo); 302 offset = 0; 303 basepfn = TTE_TO_PFN((caddr_t)COMBINE(promt->virt_hi, 304 promt->virt_lo), ttep); 305 while (size) { 306 vaddr = (caddr_t)(COMBINE(promt->virt_hi, 307 promt->virt_lo) + offset); 308 309 /* 310 * make sure address is not in virt-avail list 311 */ 312 if (address_in_memlist(virt_avail, (uint64_t)vaddr, 313 size)) { 314 prom_panic("sfmmu_map_prom_mappings:" 315 " inconsistent translation/avail lists"); 316 } 317 318 pfn = basepfn + mmu_btop(offset); 319 if (pf_is_memory(pfn)) { 320 if (attr & SFMMU_UNCACHEPTTE) { 321 prom_panic("sfmmu_map_prom_mappings:" 322 " uncached prom memory page"); 323 } 324 } else { 325 if (!(attr & SFMMU_SIDEFFECT)) { 326 prom_panic("sfmmu_map_prom_mappings:" 327 " prom i/o page without" 328 " side-effect"); 329 } 330 } 331 332 /* 333 * skip kmem64 area 334 */ 335 if (vaddr >= kmem64_base && 336 vaddr < kmem64_aligned_end) { 337 #if !defined(C_OBP) 338 prom_panic("sfmmu_map_prom_mappings:" 339 " unexpected kmem64 prom mapping"); 340 #else /* !C_OBP */ 341 size_t mapsz; 342 343 if (ptob(pfn) != 344 kmem64_pabase + (vaddr - kmem64_base)) { 345 prom_panic("sfmmu_map_prom_mappings:" 346 " unexpected kmem64 prom mapping"); 347 } 348 349 mapsz = kmem64_aligned_end - vaddr; 350 if (mapsz >= size) { 351 break; 352 } 353 size -= mapsz; 354 offset += mapsz; 355 continue; 356 #endif /* !C_OBP */ 357 } 358 359 oldpfn = sfmmu_vatopfn(vaddr, KHATID, &oldtte); 360 ASSERT(oldpfn != PFN_SUSPENDED); 361 ASSERT(page_relocate_ready == 0); 362 363 if (oldpfn != PFN_INVALID) { 364 /* 365 * mapping already exists. 366 * Verify they are equal 367 */ 368 if (pfn != oldpfn) { 369 (void) snprintf(buf, sizeof (buf), 370 "sfmmu_map_prom_mappings: mapping" 371 " conflict (va = 0x%p, pfn = 0x%p," 372 " oldpfn = 0x%p)", (void *)vaddr, 373 (void *)pfn, (void *)oldpfn); 374 prom_panic(buf); 375 } 376 size -= MMU_PAGESIZE; 377 offset += MMU_PAGESIZE; 378 continue; 379 } 380 381 pp = page_numtopp_nolock(pfn); 382 if ((pp != NULL) && PP_ISFREE((page_t *)pp)) { 383 (void) snprintf(buf, sizeof (buf), 384 "sfmmu_map_prom_mappings: prom-mapped" 385 " page (va = 0x%p, pfn = 0x%p) on free list", 386 (void *)vaddr, (void *)pfn); 387 prom_panic(buf); 388 } 389 390 sfmmu_memtte(ttep, pfn, attr, TTE8K); 391 sfmmu_tteload(kas.a_hat, ttep, vaddr, pp, 392 HAT_LOAD_LOCK | SFMMU_NO_TSBLOAD); 393 size -= MMU_PAGESIZE; 394 offset += MMU_PAGESIZE; 395 } 396 } 397 398 /* 399 * We claimed kmem64 from prom, so now we need to load tte. 400 */ 401 if (kmem64_base != NULL) { 402 pgcnt_t pages; 403 size_t psize; 404 int pszc; 405 406 pszc = kmem64_szc; 407 #ifdef sun4u 408 if (pszc > TTE8K) { 409 pszc = segkmem_lpszc; 410 } 411 #endif /* sun4u */ 412 psize = TTEBYTES(pszc); 413 pages = btop(psize); 414 basepfn = kmem64_pabase >> MMU_PAGESHIFT; 415 vaddr = kmem64_base; 416 while (vaddr < kmem64_end) { 417 sfmmu_memtte(ttep, basepfn, 418 PROC_DATA | HAT_NOSYNC, pszc); 419 sfmmu_tteload(kas.a_hat, ttep, vaddr, NULL, 420 HAT_LOAD_LOCK | SFMMU_NO_TSBLOAD); 421 vaddr += psize; 422 basepfn += pages; 423 } 424 map_prom_lpcount[pszc] = 425 ((caddr_t)P2ROUNDUP((uintptr_t)kmem64_end, psize) - 426 kmem64_base) >> TTE_PAGE_SHIFT(pszc); 427 } 428 } 429 430 #undef COMBINE /* local to previous routine */ 431 432 /* 433 * This routine reads in the "translations" property in to a buffer and 434 * returns a pointer to this buffer and the number of translations. 435 */ 436 static struct translation * 437 read_prom_mappings(size_t *ntransrootp) 438 { 439 char *prop = "translations"; 440 size_t translen; 441 pnode_t node; 442 struct translation *transroot; 443 444 /* 445 * the "translations" property is associated with the mmu node 446 */ 447 node = (pnode_t)prom_getphandle(prom_mmu_ihandle()); 448 449 /* 450 * We use the TSB space to read in the prom mappings. This space 451 * is currently not being used because we haven't taken over the 452 * trap table yet. It should be big enough to hold the mappings. 453 */ 454 if ((translen = prom_getproplen(node, prop)) == -1) 455 cmn_err(CE_PANIC, "no translations property"); 456 *ntransrootp = translen / sizeof (*transroot); 457 translen = roundup(translen, MMU_PAGESIZE); 458 PRM_DEBUG(translen); 459 if (translen > TSB_BYTES(ktsb_szcode)) 460 cmn_err(CE_PANIC, "not enough space for translations"); 461 462 transroot = (struct translation *)ktsb_base; 463 ASSERT(transroot); 464 if (prom_getprop(node, prop, (caddr_t)transroot) == -1) { 465 cmn_err(CE_PANIC, "translations getprop failed"); 466 } 467 return (transroot); 468 } 469 470 /* 471 * Init routine of the nucleus data memory allocator. 472 * 473 * The nucleus data memory allocator is organized in ecache_alignsize'd 474 * memory chunks. Memory allocated by ndata_alloc() will never be freed. 475 * 476 * The ndata argument is used as header of the ndata freelist. 477 * Other freelist nodes are placed in the nucleus memory itself 478 * at the beginning of a free memory chunk. Therefore a freelist 479 * node (struct memlist) must fit into the smallest allocatable 480 * memory chunk (ecache_alignsize bytes). 481 * 482 * The memory interval [base, end] passed to ndata_alloc_init() must be 483 * bzero'd to allow the allocator to return bzero'd memory easily. 484 */ 485 void 486 ndata_alloc_init(struct memlist *ndata, uintptr_t base, uintptr_t end) 487 { 488 ASSERT(sizeof (struct memlist) <= ecache_alignsize); 489 490 base = roundup(base, ecache_alignsize); 491 end = end - end % ecache_alignsize; 492 493 ASSERT(base < end); 494 495 ndata->address = base; 496 ndata->size = end - base; 497 ndata->next = NULL; 498 ndata->prev = NULL; 499 } 500 501 /* 502 * Deliver the size of the largest free memory chunk. 503 */ 504 size_t 505 ndata_maxsize(struct memlist *ndata) 506 { 507 size_t chunksize = ndata->size; 508 509 while ((ndata = ndata->next) != NULL) { 510 if (chunksize < ndata->size) 511 chunksize = ndata->size; 512 } 513 514 return (chunksize); 515 } 516 517 /* 518 * This is a special function to figure out if the memory chunk needed 519 * for the page structs can fit in the nucleus or not. If it fits the 520 * function calculates and returns the possible remaining ndata size 521 * in the last element if the size needed for page structs would be 522 * allocated from the nucleus. 523 */ 524 size_t 525 ndata_spare(struct memlist *ndata, size_t wanted, size_t alignment) 526 { 527 struct memlist *frlist; 528 uintptr_t base; 529 uintptr_t end; 530 531 for (frlist = ndata; frlist != NULL; frlist = frlist->next) { 532 base = roundup(frlist->address, alignment); 533 end = roundup(base + wanted, ecache_alignsize); 534 535 if (end <= frlist->address + frlist->size) { 536 if (frlist->next == NULL) 537 return (frlist->address + frlist->size - end); 538 539 while (frlist->next != NULL) 540 frlist = frlist->next; 541 542 return (frlist->size); 543 } 544 } 545 546 return (0); 547 } 548 549 /* 550 * Allocate the last properly aligned memory chunk. 551 * This function is called when no more large nucleus memory chunks 552 * will be allocated. The remaining free nucleus memory at the end 553 * of the nucleus can be added to the phys_avail list. 554 */ 555 void * 556 ndata_extra_base(struct memlist *ndata, size_t alignment, caddr_t endaddr) 557 { 558 uintptr_t base; 559 size_t wasteage = 0; 560 #ifdef DEBUG 561 static int called = 0; 562 563 if (called++ > 0) 564 cmn_err(CE_PANIC, "ndata_extra_base() called more than once"); 565 #endif /* DEBUG */ 566 567 /* 568 * The alignment needs to be a multiple of ecache_alignsize. 569 */ 570 ASSERT((alignment % ecache_alignsize) == 0); 571 572 while (ndata->next != NULL) { 573 wasteage += ndata->size; 574 ndata = ndata->next; 575 } 576 577 base = roundup(ndata->address, alignment); 578 579 if (base >= ndata->address + ndata->size) 580 return (NULL); 581 582 if ((caddr_t)(ndata->address + ndata->size) != endaddr) { 583 #ifdef DEBUG 584 ndata_middle_hole_detected = 1; /* see if we hit this again */ 585 #endif 586 return (NULL); 587 } 588 589 if (base == ndata->address) { 590 if (ndata->prev != NULL) 591 ndata->prev->next = NULL; 592 else 593 ndata->size = 0; 594 595 bzero((void *)base, sizeof (struct memlist)); 596 597 } else { 598 ndata->size = base - ndata->address; 599 wasteage += ndata->size; 600 } 601 PRM_DEBUG(wasteage); 602 603 return ((void *)base); 604 } 605 606 /* 607 * Select the best matching buffer, avoid memory fragmentation. 608 */ 609 static struct memlist * 610 ndata_select_chunk(struct memlist *ndata, size_t wanted, size_t alignment) 611 { 612 struct memlist *fnd_below = NULL; 613 struct memlist *fnd_above = NULL; 614 struct memlist *fnd_unused = NULL; 615 struct memlist *frlist; 616 uintptr_t base; 617 uintptr_t end; 618 size_t below; 619 size_t above; 620 size_t unused; 621 size_t best_below = ULONG_MAX; 622 size_t best_above = ULONG_MAX; 623 size_t best_unused = ULONG_MAX; 624 625 ASSERT(ndata != NULL); 626 627 /* 628 * Look for the best matching buffer, avoid memory fragmentation. 629 * The following strategy is used, try to find 630 * 1. an exact fitting buffer 631 * 2. avoid wasting any space below the buffer, take first 632 * fitting buffer 633 * 3. avoid wasting any space above the buffer, take first 634 * fitting buffer 635 * 4. avoid wasting space, take first fitting buffer 636 * 5. take the last buffer in chain 637 */ 638 for (frlist = ndata; frlist != NULL; frlist = frlist->next) { 639 base = roundup(frlist->address, alignment); 640 end = roundup(base + wanted, ecache_alignsize); 641 642 if (end > frlist->address + frlist->size) 643 continue; 644 645 below = (base - frlist->address) / ecache_alignsize; 646 above = (frlist->address + frlist->size - end) / 647 ecache_alignsize; 648 unused = below + above; 649 650 if (unused == 0) 651 return (frlist); 652 653 if (frlist->next == NULL) 654 break; 655 656 if (below < best_below) { 657 best_below = below; 658 fnd_below = frlist; 659 } 660 661 if (above < best_above) { 662 best_above = above; 663 fnd_above = frlist; 664 } 665 666 if (unused < best_unused) { 667 best_unused = unused; 668 fnd_unused = frlist; 669 } 670 } 671 672 if (best_below == 0) 673 return (fnd_below); 674 if (best_above == 0) 675 return (fnd_above); 676 if (best_unused < ULONG_MAX) 677 return (fnd_unused); 678 679 return (frlist); 680 } 681 682 /* 683 * Nucleus data memory allocator. 684 * The granularity of the allocator is ecache_alignsize. 685 * See also comment for ndata_alloc_init(). 686 */ 687 void * 688 ndata_alloc(struct memlist *ndata, size_t wanted, size_t alignment) 689 { 690 struct memlist *found; 691 struct memlist *fnd_above; 692 uintptr_t base; 693 uintptr_t end; 694 size_t below; 695 size_t above; 696 697 /* 698 * Look for the best matching buffer, avoid memory fragmentation. 699 */ 700 if ((found = ndata_select_chunk(ndata, wanted, alignment)) == NULL) 701 return (NULL); 702 703 /* 704 * Allocate the nucleus data buffer. 705 */ 706 base = roundup(found->address, alignment); 707 end = roundup(base + wanted, ecache_alignsize); 708 ASSERT(end <= found->address + found->size); 709 710 below = base - found->address; 711 above = found->address + found->size - end; 712 ASSERT(above == 0 || (above % ecache_alignsize) == 0); 713 714 if (below >= ecache_alignsize) { 715 /* 716 * There is free memory below the allocated memory chunk. 717 */ 718 found->size = below - below % ecache_alignsize; 719 720 if (above) { 721 fnd_above = (struct memlist *)end; 722 fnd_above->address = end; 723 fnd_above->size = above; 724 725 if ((fnd_above->next = found->next) != NULL) 726 found->next->prev = fnd_above; 727 fnd_above->prev = found; 728 found->next = fnd_above; 729 } 730 731 return ((void *)base); 732 } 733 734 if (found->prev == NULL) { 735 /* 736 * The first chunk (ndata) is selected. 737 */ 738 ASSERT(found == ndata); 739 if (above) { 740 found->address = end; 741 found->size = above; 742 } else if (found->next != NULL) { 743 found->address = found->next->address; 744 found->size = found->next->size; 745 if ((found->next = found->next->next) != NULL) 746 found->next->prev = found; 747 748 bzero((void *)found->address, sizeof (struct memlist)); 749 } else { 750 found->address = end; 751 found->size = 0; 752 } 753 754 return ((void *)base); 755 } 756 757 /* 758 * Not the first chunk. 759 */ 760 if (above) { 761 fnd_above = (struct memlist *)end; 762 fnd_above->address = end; 763 fnd_above->size = above; 764 765 if ((fnd_above->next = found->next) != NULL) 766 fnd_above->next->prev = fnd_above; 767 fnd_above->prev = found->prev; 768 found->prev->next = fnd_above; 769 770 } else { 771 if ((found->prev->next = found->next) != NULL) 772 found->next->prev = found->prev; 773 } 774 775 bzero((void *)found->address, sizeof (struct memlist)); 776 777 return ((void *)base); 778 } 779 780 /* 781 * Size the kernel TSBs based upon the amount of physical 782 * memory in the system. 783 */ 784 static void 785 calc_tsb_sizes(pgcnt_t npages) 786 { 787 PRM_DEBUG(npages); 788 789 if (npages <= TSB_FREEMEM_MIN) { 790 ktsb_szcode = TSB_128K_SZCODE; 791 enable_bigktsb = 0; 792 } else if (npages <= TSB_FREEMEM_LARGE / 2) { 793 ktsb_szcode = TSB_256K_SZCODE; 794 enable_bigktsb = 0; 795 } else if (npages <= TSB_FREEMEM_LARGE) { 796 ktsb_szcode = TSB_512K_SZCODE; 797 enable_bigktsb = 0; 798 } else if (npages <= TSB_FREEMEM_LARGE * 2 || 799 enable_bigktsb == 0) { 800 ktsb_szcode = TSB_1M_SZCODE; 801 enable_bigktsb = 0; 802 } else { 803 ktsb_szcode = highbit(npages - 1); 804 ktsb_szcode -= TSB_START_SIZE; 805 ktsb_szcode = MAX(ktsb_szcode, MIN_BIGKTSB_SZCODE); 806 ktsb_szcode = MIN(ktsb_szcode, MAX_BIGKTSB_SZCODE); 807 } 808 809 /* 810 * We choose the TSB to hold kernel 4M mappings to have twice 811 * the reach as the primary kernel TSB since this TSB will 812 * potentially (currently) be shared by both mappings to all of 813 * physical memory plus user TSBs. If this TSB has to be in nucleus 814 * (only for Spitfire and Cheetah) limit its size to 64K. 815 */ 816 ktsb4m_szcode = highbit((2 * npages) / TTEPAGES(TTE4M) - 1); 817 ktsb4m_szcode -= TSB_START_SIZE; 818 ktsb4m_szcode = MAX(ktsb4m_szcode, TSB_MIN_SZCODE); 819 ktsb4m_szcode = MIN(ktsb4m_szcode, TSB_SOFTSZ_MASK); 820 if ((enable_bigktsb == 0 || ktsb_phys == 0) && ktsb4m_szcode > 821 TSB_64K_SZCODE) { 822 ktsb4m_szcode = TSB_64K_SZCODE; 823 max_bootlp_tteszc = TTE8K; 824 } 825 826 ktsb_sz = TSB_BYTES(ktsb_szcode); /* kernel 8K tsb size */ 827 ktsb4m_sz = TSB_BYTES(ktsb4m_szcode); /* kernel 4M tsb size */ 828 } 829 830 /* 831 * Allocate kernel TSBs from nucleus data memory. 832 * The function return 0 on success and -1 on failure. 833 */ 834 int 835 ndata_alloc_tsbs(struct memlist *ndata, pgcnt_t npages) 836 { 837 /* 838 * Set ktsb_phys to 1 if the processor supports ASI_QUAD_LDD_PHYS. 839 */ 840 sfmmu_setup_4lp(); 841 842 /* 843 * Size the kernel TSBs based upon the amount of physical 844 * memory in the system. 845 */ 846 calc_tsb_sizes(npages); 847 848 /* 849 * Allocate the 8K kernel TSB if it belongs inside the nucleus. 850 */ 851 if (enable_bigktsb == 0) { 852 if ((ktsb_base = ndata_alloc(ndata, ktsb_sz, ktsb_sz)) == NULL) 853 return (-1); 854 ASSERT(!((uintptr_t)ktsb_base & (ktsb_sz - 1))); 855 856 PRM_DEBUG(ktsb_base); 857 PRM_DEBUG(ktsb_sz); 858 PRM_DEBUG(ktsb_szcode); 859 } 860 861 /* 862 * Next, allocate 4M kernel TSB from the nucleus since it's small. 863 */ 864 if (ktsb4m_szcode <= TSB_64K_SZCODE) { 865 866 ktsb4m_base = ndata_alloc(ndata, ktsb4m_sz, ktsb4m_sz); 867 if (ktsb4m_base == NULL) 868 return (-1); 869 ASSERT(!((uintptr_t)ktsb4m_base & (ktsb4m_sz - 1))); 870 871 PRM_DEBUG(ktsb4m_base); 872 PRM_DEBUG(ktsb4m_sz); 873 PRM_DEBUG(ktsb4m_szcode); 874 } 875 876 return (0); 877 } 878 879 /* 880 * Allocate hat structs from the nucleus data memory. 881 */ 882 int 883 ndata_alloc_hat(struct memlist *ndata, pgcnt_t npages, pgcnt_t kpm_npages) 884 { 885 size_t mml_alloc_sz; 886 size_t cb_alloc_sz; 887 int max_nucuhme_buckets = MAX_NUCUHME_BUCKETS; 888 int max_nuckhme_buckets = MAX_NUCKHME_BUCKETS; 889 ulong_t hme_buckets; 890 891 if (enable_bigktsb) { 892 ASSERT((max_nucuhme_buckets + max_nuckhme_buckets) * 893 sizeof (struct hmehash_bucket) <= 894 TSB_BYTES(TSB_1M_SZCODE)); 895 896 max_nucuhme_buckets *= 2; 897 max_nuckhme_buckets *= 2; 898 } 899 900 /* 901 * The number of buckets in the hme hash tables 902 * is a power of 2 such that the average hash chain length is 903 * HMENT_HASHAVELEN. The number of buckets for the user hash is 904 * a function of physical memory and a predefined overmapping factor. 905 * The number of buckets for the kernel hash is a function of 906 * physical memory only. 907 */ 908 hme_buckets = (npages * HMEHASH_FACTOR) / 909 (HMENT_HASHAVELEN * (HMEBLK_SPAN(TTE8K) >> MMU_PAGESHIFT)); 910 911 uhmehash_num = (int)MIN(hme_buckets, MAX_UHME_BUCKETS); 912 913 if (uhmehash_num > USER_BUCKETS_THRESHOLD) { 914 /* 915 * if uhmehash_num is not power of 2 round it down to the 916 * next power of 2. 917 */ 918 uint_t align = 1 << (highbit(uhmehash_num - 1) - 1); 919 uhmehash_num = P2ALIGN(uhmehash_num, align); 920 } else 921 uhmehash_num = 1 << highbit(uhmehash_num - 1); 922 923 hme_buckets = npages / (HMEBLK_SPAN(TTE8K) >> MMU_PAGESHIFT); 924 khmehash_num = (int)MIN(hme_buckets, MAX_KHME_BUCKETS); 925 khmehash_num = 1 << highbit(khmehash_num - 1); 926 khmehash_num = MAX(khmehash_num, MIN_KHME_BUCKETS); 927 928 if ((khmehash_num > max_nuckhme_buckets) || 929 (uhmehash_num > max_nucuhme_buckets)) { 930 khme_hash = NULL; 931 uhme_hash = NULL; 932 } else { 933 size_t hmehash_sz = (uhmehash_num + khmehash_num) * 934 sizeof (struct hmehash_bucket); 935 936 if ((khme_hash = ndata_alloc(ndata, hmehash_sz, 937 ecache_alignsize)) != NULL) 938 uhme_hash = &khme_hash[khmehash_num]; 939 else 940 uhme_hash = NULL; 941 942 PRM_DEBUG(hmehash_sz); 943 } 944 945 PRM_DEBUG(khme_hash); 946 PRM_DEBUG(khmehash_num); 947 PRM_DEBUG(uhme_hash); 948 PRM_DEBUG(uhmehash_num); 949 950 /* 951 * For the page mapping list mutex array we allocate one mutex 952 * for every 128 pages (1 MB) with a minimum of 64 entries and 953 * a maximum of 8K entries. For the initial computation npages 954 * is rounded up (ie. 1 << highbit(npages * 1.5 / 128)) 955 * 956 * mml_shift is roughly log2(mml_table_sz) + 3 for MLIST_HASH 957 * 958 * It is not required that this be allocated from the nucleus, 959 * but it is desirable. So we first allocate from the nucleus 960 * everything that must be there. Having done so, if mml_table 961 * will fit within what remains of the nucleus then it will be 962 * allocated here. If not, set mml_table to NULL, which will cause 963 * startup_memlist() to BOP_ALLOC() space for it after our return... 964 */ 965 mml_table_sz = 1 << highbit((npages * 3) / 256); 966 if (mml_table_sz < 64) 967 mml_table_sz = 64; 968 else if (mml_table_sz > 8192) 969 mml_table_sz = 8192; 970 mml_shift = highbit(mml_table_sz) + 3; 971 972 PRM_DEBUG(mml_table_sz); 973 PRM_DEBUG(mml_shift); 974 975 mml_alloc_sz = mml_table_sz * sizeof (kmutex_t); 976 977 mml_table = ndata_alloc(ndata, mml_alloc_sz, ecache_alignsize); 978 979 PRM_DEBUG(mml_table); 980 981 cb_alloc_sz = sfmmu_max_cb_id * sizeof (struct sfmmu_callback); 982 PRM_DEBUG(cb_alloc_sz); 983 sfmmu_cb_table = ndata_alloc(ndata, cb_alloc_sz, ecache_alignsize); 984 PRM_DEBUG(sfmmu_cb_table); 985 986 /* 987 * For the kpm_page mutex array we allocate one mutex every 16 988 * kpm pages (64MB). In smallpage mode we allocate one mutex 989 * every 8K pages. The minimum is set to 64 entries and the 990 * maximum to 8K entries. 991 * 992 * It is not required that this be allocated from the nucleus, 993 * but it is desirable. So we first allocate from the nucleus 994 * everything that must be there. Having done so, if kpmp_table 995 * or kpmp_stable will fit within what remains of the nucleus 996 * then it will be allocated here. If not, startup_memlist() 997 * will use BOP_ALLOC() space for it after our return... 998 */ 999 if (kpm_enable) { 1000 size_t kpmp_alloc_sz; 1001 1002 if (kpm_smallpages == 0) { 1003 kpmp_shift = highbit(sizeof (kpm_page_t)) - 1; 1004 kpmp_table_sz = 1 << highbit(kpm_npages / 16); 1005 kpmp_table_sz = (kpmp_table_sz < 64) ? 64 : 1006 ((kpmp_table_sz > 8192) ? 8192 : kpmp_table_sz); 1007 kpmp_alloc_sz = kpmp_table_sz * sizeof (kpm_hlk_t); 1008 1009 kpmp_table = ndata_alloc(ndata, kpmp_alloc_sz, 1010 ecache_alignsize); 1011 1012 PRM_DEBUG(kpmp_table); 1013 PRM_DEBUG(kpmp_table_sz); 1014 1015 kpmp_stable_sz = 0; 1016 kpmp_stable = NULL; 1017 } else { 1018 ASSERT(kpm_pgsz == PAGESIZE); 1019 kpmp_shift = highbit(sizeof (kpm_shlk_t)) + 1; 1020 kpmp_stable_sz = 1 << highbit(kpm_npages / 8192); 1021 kpmp_stable_sz = (kpmp_stable_sz < 64) ? 64 : 1022 ((kpmp_stable_sz > 8192) ? 8192 : kpmp_stable_sz); 1023 kpmp_alloc_sz = kpmp_stable_sz * sizeof (kpm_shlk_t); 1024 1025 kpmp_stable = ndata_alloc(ndata, kpmp_alloc_sz, 1026 ecache_alignsize); 1027 1028 PRM_DEBUG(kpmp_stable); 1029 PRM_DEBUG(kpmp_stable_sz); 1030 1031 kpmp_table_sz = 0; 1032 kpmp_table = NULL; 1033 } 1034 PRM_DEBUG(kpmp_shift); 1035 } 1036 1037 return (0); 1038 } 1039 1040 /* 1041 * Allocate virtual addresses at base with given alignment. 1042 * Note that there is no physical memory behind the address yet. 1043 */ 1044 caddr_t 1045 alloc_hme_buckets(caddr_t base, int alignsize) 1046 { 1047 size_t hmehash_sz = (uhmehash_num + khmehash_num) * 1048 sizeof (struct hmehash_bucket); 1049 1050 ASSERT(khme_hash == NULL); 1051 ASSERT(uhme_hash == NULL); 1052 1053 base = (caddr_t)roundup((uintptr_t)base, alignsize); 1054 hmehash_sz = roundup(hmehash_sz, alignsize); 1055 1056 khme_hash = (struct hmehash_bucket *)base; 1057 uhme_hash = (struct hmehash_bucket *)((caddr_t)khme_hash + 1058 khmehash_num * sizeof (struct hmehash_bucket)); 1059 base += hmehash_sz; 1060 return (base); 1061 } 1062 1063 /* 1064 * This function bop allocs kernel TSBs. 1065 */ 1066 caddr_t 1067 sfmmu_ktsb_alloc(caddr_t tsbbase) 1068 { 1069 caddr_t vaddr; 1070 1071 if (enable_bigktsb) { 1072 ktsb_base = (caddr_t)roundup((uintptr_t)tsbbase, ktsb_sz); 1073 vaddr = (caddr_t)BOP_ALLOC(bootops, ktsb_base, ktsb_sz, 1074 ktsb_sz); 1075 if (vaddr != ktsb_base) 1076 cmn_err(CE_PANIC, "sfmmu_ktsb_alloc: can't alloc" 1077 " 8K bigktsb"); 1078 ktsb_base = vaddr; 1079 tsbbase = ktsb_base + ktsb_sz; 1080 PRM_DEBUG(ktsb_base); 1081 PRM_DEBUG(tsbbase); 1082 } 1083 1084 if (ktsb4m_szcode > TSB_64K_SZCODE) { 1085 ASSERT(ktsb_phys && enable_bigktsb); 1086 ktsb4m_base = (caddr_t)roundup((uintptr_t)tsbbase, ktsb4m_sz); 1087 vaddr = (caddr_t)BOP_ALLOC(bootops, ktsb4m_base, ktsb4m_sz, 1088 ktsb4m_sz); 1089 if (vaddr != ktsb4m_base) 1090 cmn_err(CE_PANIC, "sfmmu_ktsb_alloc: can't alloc" 1091 " 4M bigktsb"); 1092 ktsb4m_base = vaddr; 1093 tsbbase = ktsb4m_base + ktsb4m_sz; 1094 PRM_DEBUG(ktsb4m_base); 1095 PRM_DEBUG(tsbbase); 1096 } 1097 return (tsbbase); 1098 } 1099 1100 /* 1101 * Moves code assembled outside of the trap table into the trap 1102 * table taking care to relocate relative branches to code outside 1103 * of the trap handler. 1104 */ 1105 static void 1106 sfmmu_reloc_trap_handler(void *tablep, void *start, size_t count) 1107 { 1108 size_t i; 1109 uint32_t *src; 1110 uint32_t *dst; 1111 uint32_t inst; 1112 int op, op2; 1113 int32_t offset; 1114 int disp; 1115 1116 src = start; 1117 dst = tablep; 1118 offset = src - dst; 1119 for (src = start, i = 0; i < count; i++, src++, dst++) { 1120 inst = *dst = *src; 1121 op = (inst >> 30) & 0x2; 1122 if (op == 1) { 1123 /* call */ 1124 disp = ((int32_t)inst << 2) >> 2; /* sign-extend */ 1125 if (disp + i >= 0 && disp + i < count) 1126 continue; 1127 disp += offset; 1128 inst = 0x40000000u | (disp & 0x3fffffffu); 1129 *dst = inst; 1130 } else if (op == 0) { 1131 /* branch or sethi */ 1132 op2 = (inst >> 22) & 0x7; 1133 1134 switch (op2) { 1135 case 0x3: /* BPr */ 1136 disp = (((inst >> 20) & 0x3) << 14) | 1137 (inst & 0x3fff); 1138 disp = (disp << 16) >> 16; /* sign-extend */ 1139 if (disp + i >= 0 && disp + i < count) 1140 continue; 1141 disp += offset; 1142 if (((disp << 16) >> 16) != disp) 1143 cmn_err(CE_PANIC, "bad reloc"); 1144 inst &= ~0x303fff; 1145 inst |= (disp & 0x3fff); 1146 inst |= (disp & 0xc000) << 6; 1147 break; 1148 1149 case 0x2: /* Bicc */ 1150 disp = ((int32_t)inst << 10) >> 10; 1151 if (disp + i >= 0 && disp + i < count) 1152 continue; 1153 disp += offset; 1154 if (((disp << 10) >> 10) != disp) 1155 cmn_err(CE_PANIC, "bad reloc"); 1156 inst &= ~0x3fffff; 1157 inst |= (disp & 0x3fffff); 1158 break; 1159 1160 case 0x1: /* Bpcc */ 1161 disp = ((int32_t)inst << 13) >> 13; 1162 if (disp + i >= 0 && disp + i < count) 1163 continue; 1164 disp += offset; 1165 if (((disp << 13) >> 13) != disp) 1166 cmn_err(CE_PANIC, "bad reloc"); 1167 inst &= ~0x7ffff; 1168 inst |= (disp & 0x7ffffu); 1169 break; 1170 } 1171 *dst = inst; 1172 } 1173 } 1174 flush_instr_mem(tablep, count * sizeof (uint32_t)); 1175 } 1176 1177 /* 1178 * Routine to allocate a large page to use in the TSB caches. 1179 */ 1180 /*ARGSUSED*/ 1181 static page_t * 1182 sfmmu_tsb_page_create(void *addr, size_t size, int vmflag, void *arg) 1183 { 1184 int pgflags; 1185 1186 pgflags = PG_EXCL; 1187 if ((vmflag & VM_NOSLEEP) == 0) 1188 pgflags |= PG_WAIT; 1189 if (vmflag & VM_PANIC) 1190 pgflags |= PG_PANIC; 1191 if (vmflag & VM_PUSHPAGE) 1192 pgflags |= PG_PUSHPAGE; 1193 1194 return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size, 1195 pgflags, &kvseg, addr, arg)); 1196 } 1197 1198 /* 1199 * Allocate a large page to back the virtual address range 1200 * [addr, addr + size). If addr is NULL, allocate the virtual address 1201 * space as well. 1202 */ 1203 static void * 1204 sfmmu_tsb_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, 1205 uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *), 1206 void *pcarg) 1207 { 1208 page_t *ppl; 1209 page_t *rootpp; 1210 caddr_t addr = inaddr; 1211 pgcnt_t npages = btopr(size); 1212 page_t **ppa; 1213 int i = 0; 1214 1215 /* 1216 * Assuming that only TSBs will call this with size > PAGESIZE 1217 * There is no reason why this couldn't be expanded to 8k pages as 1218 * well, or other page sizes in the future .... but for now, we 1219 * only support fixed sized page requests. 1220 */ 1221 if ((inaddr == NULL) && ((addr = vmem_xalloc(vmp, size, size, 0, 0, 1222 NULL, NULL, vmflag)) == NULL)) 1223 return (NULL); 1224 1225 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 1226 if (inaddr == NULL) 1227 vmem_xfree(vmp, addr, size); 1228 return (NULL); 1229 } 1230 1231 ppl = page_create_func(addr, size, vmflag, pcarg); 1232 if (ppl == NULL) { 1233 if (inaddr == NULL) 1234 vmem_xfree(vmp, addr, size); 1235 page_unresv(npages); 1236 return (NULL); 1237 } 1238 1239 rootpp = ppl; 1240 ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP); 1241 while (ppl != NULL) { 1242 page_t *pp = ppl; 1243 ppa[i++] = pp; 1244 page_sub(&ppl, pp); 1245 ASSERT(page_iolock_assert(pp)); 1246 page_io_unlock(pp); 1247 } 1248 1249 /* 1250 * Load the locked entry. It's OK to preload the entry into 1251 * the TSB since we now support large mappings in the kernel TSB. 1252 */ 1253 hat_memload_array(kas.a_hat, (caddr_t)rootpp->p_offset, size, 1254 ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, HAT_LOAD_LOCK); 1255 1256 for (--i; i >= 0; --i) { 1257 (void) page_pp_lock(ppa[i], 0, 1); 1258 page_unlock(ppa[i]); 1259 } 1260 1261 kmem_free(ppa, npages * sizeof (page_t *)); 1262 return (addr); 1263 } 1264 1265 /* Called to import new spans into the TSB vmem arenas */ 1266 void * 1267 sfmmu_tsb_segkmem_alloc(vmem_t *vmp, size_t size, int vmflag) 1268 { 1269 lgrp_id_t lgrpid = LGRP_NONE; 1270 1271 if (tsb_lgrp_affinity) { 1272 /* 1273 * Search for the vmp->lgrpid mapping by brute force; 1274 * some day vmp will have an lgrp, until then we have 1275 * to do this the hard way. 1276 */ 1277 for (lgrpid = 0; lgrpid < NLGRPS_MAX && 1278 vmp != kmem_tsb_default_arena[lgrpid]; lgrpid++); 1279 if (lgrpid == NLGRPS_MAX) 1280 lgrpid = LGRP_NONE; 1281 } 1282 1283 return (sfmmu_tsb_xalloc(vmp, NULL, size, vmflag, 0, 1284 sfmmu_tsb_page_create, lgrpid != LGRP_NONE? &lgrpid : NULL)); 1285 } 1286 1287 /* Called to free spans from the TSB vmem arenas */ 1288 void 1289 sfmmu_tsb_segkmem_free(vmem_t *vmp, void *inaddr, size_t size) 1290 { 1291 page_t *pp; 1292 caddr_t addr = inaddr; 1293 caddr_t eaddr; 1294 pgcnt_t npages = btopr(size); 1295 pgcnt_t pgs_left = npages; 1296 page_t *rootpp = NULL; 1297 1298 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1299 1300 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 1301 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1302 if (pp == NULL) 1303 panic("sfmmu_tsb_segkmem_free: page not found"); 1304 1305 ASSERT(PAGE_EXCL(pp)); 1306 page_pp_unlock(pp, 0, 1); 1307 1308 if (rootpp == NULL) 1309 rootpp = pp; 1310 if (--pgs_left == 0) { 1311 /* 1312 * similar logic to segspt_free_pages, but we know we 1313 * have one large page. 1314 */ 1315 page_destroy_pages(rootpp); 1316 } 1317 } 1318 page_unresv(npages); 1319 1320 if (vmp != NULL) 1321 vmem_xfree(vmp, inaddr, size); 1322 } 1323