xref: /titanic_50/usr/src/uts/sun4/os/startup.c (revision d9e728a2c2e62adeef072d782e4c8a7b34e7e8e8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/machsystm.h>
30 #include <sys/archsystm.h>
31 #include <sys/vm.h>
32 #include <sys/cpu.h>
33 #include <sys/atomic.h>
34 #include <sys/reboot.h>
35 #include <sys/kdi.h>
36 #include <sys/bootconf.h>
37 #include <sys/memlist_plat.h>
38 #include <sys/memlist_impl.h>
39 #include <sys/prom_plat.h>
40 #include <sys/prom_isa.h>
41 #include <sys/autoconf.h>
42 #include <sys/intreg.h>
43 #include <sys/ivintr.h>
44 #include <sys/fpu/fpusystm.h>
45 #include <sys/iommutsb.h>
46 #include <vm/vm_dep.h>
47 #include <vm/seg_dev.h>
48 #include <vm/seg_kmem.h>
49 #include <vm/seg_kpm.h>
50 #include <vm/seg_map.h>
51 #include <vm/seg_kp.h>
52 #include <sys/sysconf.h>
53 #include <vm/hat_sfmmu.h>
54 #include <sys/kobj.h>
55 #include <sys/sun4asi.h>
56 #include <sys/clconf.h>
57 #include <sys/platform_module.h>
58 #include <sys/panic.h>
59 #include <sys/cpu_sgnblk_defs.h>
60 #include <sys/clock.h>
61 #include <sys/cmn_err.h>
62 #include <sys/promif.h>
63 #include <sys/prom_debug.h>
64 #include <sys/traptrace.h>
65 #include <sys/memnode.h>
66 #include <sys/mem_cage.h>
67 #include <sys/mmu.h>
68 
69 extern void setup_trap_table(void);
70 extern void cpu_intrq_setup(struct cpu *);
71 extern void cpu_intrq_register(struct cpu *);
72 extern void contig_mem_init(void);
73 extern void mach_dump_buffer_init(void);
74 extern void mach_descrip_init(void);
75 extern void mach_descrip_startup_fini(void);
76 extern void mach_memscrub(void);
77 extern void mach_fpras(void);
78 extern void mach_cpu_halt_idle(void);
79 extern void mach_hw_copy_limit(void);
80 extern void load_mach_drivers(void);
81 extern void load_tod_module(void);
82 #pragma weak load_tod_module
83 
84 extern int ndata_alloc_mmfsa(struct memlist *ndata);
85 #pragma weak ndata_alloc_mmfsa
86 
87 extern void cif_init(void);
88 #pragma weak cif_init
89 
90 extern void parse_idprom(void);
91 extern void add_vx_handler(char *, int, void (*)(cell_t *));
92 extern void mem_config_init(void);
93 extern void memseg_remap_init(void);
94 
95 extern void mach_kpm_init(void);
96 
97 /*
98  * External Data:
99  */
100 extern int vac_size;	/* cache size in bytes */
101 extern uint_t vac_mask;	/* VAC alignment consistency mask */
102 extern uint_t vac_colors;
103 
104 /*
105  * Global Data Definitions:
106  */
107 
108 /*
109  * XXX - Don't port this to new architectures
110  * A 3rd party volume manager driver (vxdm) depends on the symbol romp.
111  * 'romp' has no use with a prom with an IEEE 1275 client interface.
112  * The driver doesn't use the value, but it depends on the symbol.
113  */
114 void *romp;		/* veritas driver won't load without romp 4154976 */
115 /*
116  * Declare these as initialized data so we can patch them.
117  */
118 pgcnt_t physmem = 0;	/* memory size in pages, patch if you want less */
119 pgcnt_t segkpsize =
120     btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
121 uint_t segmap_percent = 12; /* Size of segmap segment */
122 
123 int use_cache = 1;		/* cache not reliable (605 bugs) with MP */
124 int vac_copyback = 1;
125 char *cache_mode = NULL;
126 int use_mix = 1;
127 int prom_debug = 0;
128 
129 struct bootops *bootops = 0;	/* passed in from boot in %o2 */
130 caddr_t boot_tba;		/* %tba at boot - used by kmdb */
131 uint_t	tba_taken_over = 0;
132 
133 caddr_t s_text;			/* start of kernel text segment */
134 caddr_t e_text;			/* end of kernel text segment */
135 caddr_t s_data;			/* start of kernel data segment */
136 caddr_t e_data;			/* end of kernel data segment */
137 
138 caddr_t modtext;		/* beginning of module text */
139 size_t	modtext_sz;		/* size of module text */
140 caddr_t moddata;		/* beginning of module data reserve */
141 caddr_t e_moddata;		/* end of module data reserve */
142 
143 /*
144  * End of first block of contiguous kernel in 32-bit virtual address space
145  */
146 caddr_t		econtig32;	/* end of first blk of contiguous kernel */
147 
148 caddr_t		ncbase;		/* beginning of non-cached segment */
149 caddr_t		ncend;		/* end of non-cached segment */
150 caddr_t		sdata;		/* beginning of data segment */
151 
152 caddr_t		extra_etva;	/* beginning of unused nucleus text */
153 pgcnt_t		extra_etpg;	/* number of pages of unused nucleus text */
154 
155 size_t	ndata_remain_sz;	/* bytes from end of data to 4MB boundary */
156 caddr_t	nalloc_base;		/* beginning of nucleus allocation */
157 caddr_t nalloc_end;		/* end of nucleus allocatable memory */
158 caddr_t valloc_base;		/* beginning of kvalloc segment	*/
159 
160 caddr_t kmem64_base;		/* base of kernel mem segment in 64-bit space */
161 caddr_t kmem64_end;		/* end of kernel mem segment in 64-bit space */
162 
163 uintptr_t shm_alignment;	/* VAC address consistency modulus */
164 struct memlist *phys_install;	/* Total installed physical memory */
165 struct memlist *phys_avail;	/* Available (unreserved) physical memory */
166 struct memlist *virt_avail;	/* Available (unmapped?) virtual memory */
167 struct memlist ndata;		/* memlist of nucleus allocatable memory */
168 int memexp_flag;		/* memory expansion card flag */
169 uint64_t ecache_flushaddr;	/* physical address used for flushing E$ */
170 pgcnt_t obp_pages;		/* Physical pages used by OBP */
171 
172 /*
173  * VM data structures
174  */
175 long page_hashsz;		/* Size of page hash table (power of two) */
176 struct page *pp_base;		/* Base of system page struct array */
177 size_t pp_sz;			/* Size in bytes of page struct array */
178 struct page **page_hash;	/* Page hash table */
179 struct seg ktextseg;		/* Segment used for kernel executable image */
180 struct seg kvalloc;		/* Segment used for "valloc" mapping */
181 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
182 struct seg ktexthole;		/* Segment used for nucleus text hole */
183 struct seg kmapseg;		/* Segment used for generic kernel mappings */
184 struct seg kpmseg;		/* Segment used for physical mapping */
185 struct seg kdebugseg;		/* Segment used for the kernel debugger */
186 
187 uintptr_t kpm_pp_base;		/* Base of system kpm_page array */
188 size_t	kpm_pp_sz;		/* Size of system kpm_page array */
189 pgcnt_t	kpm_npages;		/* How many kpm pages are managed */
190 
191 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
192 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
193 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
194 
195 int segzio_fromheap = 0;	/* zio allocations occur from heap */
196 caddr_t segzio_base;		/* Base address of segzio */
197 pgcnt_t segziosize = 0;		/* size of zio segment in pages */
198 
199 /*
200  * debugger pages (if allocated)
201  */
202 struct vnode kdebugvp;
203 
204 /*
205  * VA range available to the debugger
206  */
207 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
208 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
209 
210 /*
211  * Segment for relocated kernel structures in 64-bit large RAM kernels
212  */
213 struct seg kmem64;
214 
215 struct memseg *memseg_base;
216 size_t memseg_sz;		/* Used to translate a va to page */
217 struct vnode unused_pages_vp;
218 
219 /*
220  * VM data structures allocated early during boot.
221  */
222 size_t pagehash_sz;
223 uint64_t memlist_sz;
224 
225 char tbr_wr_addr_inited = 0;
226 
227 
228 /*
229  * Static Routines:
230  */
231 static void memlist_add(uint64_t, uint64_t, struct memlist **,
232 	struct memlist **);
233 static void kphysm_init(page_t *, struct memseg *, pgcnt_t, uintptr_t,
234 	pgcnt_t);
235 static void kvm_init(void);
236 
237 static void startup_init(void);
238 static void startup_memlist(void);
239 static void startup_modules(void);
240 static void startup_bop_gone(void);
241 static void startup_vm(void);
242 static void startup_end(void);
243 static void setup_cage_params(void);
244 static void startup_create_io_node(void);
245 
246 static pgcnt_t npages;
247 static struct memlist *memlist;
248 void *memlist_end;
249 
250 static pgcnt_t bop_alloc_pages;
251 static caddr_t hblk_base;
252 uint_t hblk_alloc_dynamic = 0;
253 uint_t hblk1_min = H1MIN;
254 uint_t hblk8_min;
255 
256 
257 /*
258  * Hooks for unsupported platforms and down-rev firmware
259  */
260 int iam_positron(void);
261 #pragma weak iam_positron
262 static void do_prom_version_check(void);
263 static void kpm_init(void);
264 static void kpm_npages_setup(int);
265 static void kpm_memseg_init(void);
266 
267 /*
268  * After receiving a thermal interrupt, this is the number of seconds
269  * to delay before shutting off the system, assuming
270  * shutdown fails.  Use /etc/system to change the delay if this isn't
271  * large enough.
272  */
273 int thermal_powerdown_delay = 1200;
274 
275 /*
276  * Used to hold off page relocations into the cage until OBP has completed
277  * its boot-time handoff of its resources to the kernel.
278  */
279 int page_relocate_ready = 0;
280 
281 /*
282  * Enable some debugging messages concerning memory usage...
283  */
284 #ifdef  DEBUGGING_MEM
285 static int debugging_mem;
286 static void
287 printmemlist(char *title, struct memlist *list)
288 {
289 	if (!debugging_mem)
290 		return;
291 
292 	printf("%s\n", title);
293 
294 	while (list) {
295 		prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n",
296 		    (uint32_t)(list->address >> 32), (uint32_t)list->address,
297 		    (uint32_t)(list->size >> 32), (uint32_t)(list->size));
298 		list = list->next;
299 	}
300 }
301 
302 void
303 printmemseg(struct memseg *memseg)
304 {
305 	if (!debugging_mem)
306 		return;
307 
308 	printf("memseg\n");
309 
310 	while (memseg) {
311 		prom_printf("\tpage = 0x%p, epage = 0x%p, "
312 		    "pfn = 0x%x, epfn = 0x%x\n",
313 		    memseg->pages, memseg->epages,
314 		    memseg->pages_base, memseg->pages_end);
315 		memseg = memseg->next;
316 	}
317 }
318 
319 #define	debug_pause(str)	halt((str))
320 #define	MPRINTF(str)		if (debugging_mem) prom_printf((str))
321 #define	MPRINTF1(str, a)	if (debugging_mem) prom_printf((str), (a))
322 #define	MPRINTF2(str, a, b)	if (debugging_mem) prom_printf((str), (a), (b))
323 #define	MPRINTF3(str, a, b, c) \
324 	if (debugging_mem) prom_printf((str), (a), (b), (c))
325 #else	/* DEBUGGING_MEM */
326 #define	MPRINTF(str)
327 #define	MPRINTF1(str, a)
328 #define	MPRINTF2(str, a, b)
329 #define	MPRINTF3(str, a, b, c)
330 #endif	/* DEBUGGING_MEM */
331 
332 /* Simple message to indicate that the bootops pointer has been zeroed */
333 #ifdef DEBUG
334 static int bootops_gone_on = 0;
335 #define	BOOTOPS_GONE() \
336 	if (bootops_gone_on) \
337 		prom_printf("The bootops vec is zeroed now!\n");
338 #else
339 #define	BOOTOPS_GONE()
340 #endif /* DEBUG */
341 
342 /*
343  * Monitor pages may not be where this says they are.
344  * and the debugger may not be there either.
345  *
346  * Note that 'pages' here are *physical* pages, which are 8k on sun4u.
347  *
348  *                        Physical memory layout
349  *                     (not necessarily contiguous)
350  *                       (THIS IS SOMEWHAT WRONG)
351  *                       /-----------------------\
352  *                       |       monitor pages   |
353  *             availmem -|-----------------------|
354  *                       |                       |
355  *                       |       page pool       |
356  *                       |                       |
357  *                       |-----------------------|
358  *                       |   configured tables   |
359  *                       |       buffers         |
360  *            firstaddr -|-----------------------|
361  *                       |   hat data structures |
362  *                       |-----------------------|
363  *                       |    kernel data, bss   |
364  *                       |-----------------------|
365  *                       |    interrupt stack    |
366  *                       |-----------------------|
367  *                       |    kernel text (RO)   |
368  *                       |-----------------------|
369  *                       |    trap table (4k)    |
370  *                       |-----------------------|
371  *               page 1  |      panicbuf         |
372  *                       |-----------------------|
373  *               page 0  |       reclaimed       |
374  *                       |_______________________|
375  *
376  *
377  *
378  *                    Kernel's Virtual Memory Layout.
379  *                       /-----------------------\
380  * 0xFFFFFFFF.FFFFFFFF  -|                       |-
381  *                       |   OBP's virtual page  |
382  *                       |        tables         |
383  * 0xFFFFFFFC.00000000  -|-----------------------|-
384  *                       :                       :
385  *                       :                       :
386  *                      -|-----------------------|-
387  *                       |       segzio          | (base and size vary)
388  * 0xFFFFFE00.00000000  -|-----------------------|-
389  *                       |                       |  Ultrasparc I/II support
390  *                       |    segkpm segment     |  up to 2TB of physical
391  *                       | (64-bit kernel ONLY)  |  memory, VAC has 2 colors
392  *                       |                       |
393  * 0xFFFFFA00.00000000  -|-----------------------|- 2TB segkpm alignment
394  *                       :                       :
395  *                       :                       :
396  * 0xFFFFF810.00000000  -|-----------------------|- hole_end
397  *                       |                       |      ^
398  *                       |  UltraSPARC I/II call |      |
399  *                       | bug requires an extra |      |
400  *                       | 4 GB of space between |      |
401  *                       |   hole and used RAM   |	|
402  *                       |                       |      |
403  * 0xFFFFF800.00000000  -|-----------------------|-     |
404  *                       |                       |      |
405  *                       | Virtual Address Hole  |   UltraSPARC
406  *                       |  on UltraSPARC I/II   |  I/II * ONLY *
407  *                       |                       |      |
408  * 0x00000800.00000000  -|-----------------------|-     |
409  *                       |                       |      |
410  *                       |  UltraSPARC I/II call |      |
411  *                       | bug requires an extra |      |
412  *                       | 4 GB of space between |      |
413  *                       |   hole and used RAM   |      |
414  *                       |                       |      v
415  * 0x000007FF.00000000  -|-----------------------|- hole_start -----
416  *                       :                       :		   ^
417  *                       :                       :		   |
418  * 0x00000XXX.XXXXXXXX  -|-----------------------|- kmem64_end	   |
419  *                       |                       |		   |
420  *                       |   64-bit kernel ONLY  |		   |
421  *                       |                       |		   |
422  *                       |    kmem64 segment     |		   |
423  *                       |                       |		   |
424  *                       | (Relocated extra HME  |	     Approximately
425  *                       |   block allocations,  |	    1 TB of virtual
426  *                       |   memnode freelists,  |	     address space
427  *                       |    HME hash buckets,  |		   |
428  *                       | mml_table, kpmp_table,|		   |
429  *                       |  page_t array and     |		   |
430  *                       |  hashblock pool to    |		   |
431  *                       |   avoid hard-coded    |		   |
432  *                       |     32-bit vaddr      |		   |
433  *                       |     limitations)      |		   |
434  *                       |                       |		   v
435  * 0x00000700.00000000  -|-----------------------|- SYSLIMIT (kmem64_base)
436  *                       |                       |
437  *                       |  segkmem segment      | (SYSLIMIT - SYSBASE = 4TB)
438  *                       |                       |
439  * 0x00000300.00000000  -|-----------------------|- SYSBASE
440  *                       :                       :
441  *                       :                       :
442  *                      -|-----------------------|-
443  *                       |                       |
444  *                       |  segmap segment       |   SEGMAPSIZE (1/8th physmem,
445  *                       |                       |               256G MAX)
446  * 0x000002a7.50000000  -|-----------------------|- SEGMAPBASE
447  *                       :                       :
448  *                       :                       :
449  *                      -|-----------------------|-
450  *                       |                       |
451  *                       |       segkp           |    SEGKPSIZE (2GB)
452  *                       |                       |
453  *                       |                       |
454  * 0x000002a1.00000000  -|-----------------------|- SEGKPBASE
455  *                       |                       |
456  * 0x000002a0.00000000  -|-----------------------|- MEMSCRUBBASE
457  *                       |                       |       (SEGKPBASE - 0x400000)
458  * 0x0000029F.FFE00000  -|-----------------------|- ARGSBASE
459  *                       |                       |       (MEMSCRUBBASE - NCARGS)
460  * 0x0000029F.FFD80000  -|-----------------------|- PPMAPBASE
461  *                       |                       |       (ARGSBASE - PPMAPSIZE)
462  * 0x0000029F.FFD00000  -|-----------------------|- PPMAP_FAST_BASE
463  *                       |                       |
464  * 0x0000029F.FF980000  -|-----------------------|- PIOMAPBASE
465  *                       |                       |
466  * 0x0000029F.FF580000  -|-----------------------|- NARG_BASE
467  *                       :                       :
468  *                       :                       :
469  * 0x00000000.FFFFFFFF  -|-----------------------|- OFW_END_ADDR
470  *                       |                       |
471  *                       |         OBP           |
472  *                       |                       |
473  * 0x00000000.F0000000  -|-----------------------|- OFW_START_ADDR
474  *                       |         kmdb          |
475  * 0x00000000.EDD00000  -|-----------------------|- SEGDEBUGBASE
476  *                       :                       :
477  *                       :                       :
478  * 0x00000000.7c000000  -|-----------------------|- SYSLIMIT32
479  *                       |                       |
480  *                       |  segkmem32 segment    | (SYSLIMIT32 - SYSBASE32 =
481  *                       |                       |    ~64MB)
482  * 0x00000000.78002000  -|-----------------------|
483  *                       |     panicbuf          |
484  * 0x00000000.78000000  -|-----------------------|- SYSBASE32
485  *                       :                       :
486  *                       :                       :
487  *                       |                       |
488  *                       |-----------------------|- econtig32
489  *                       |    vm structures      |
490  * 0x00000000.01C00000   |-----------------------|- nalloc_end
491  *                       |         TSBs          |
492  *                       |-----------------------|- end/nalloc_base
493  *                       |   kernel data & bss   |
494  * 0x00000000.01800000  -|-----------------------|
495  *                       :   nucleus text hole   :
496  * 0x00000000.01400000  -|-----------------------|
497  *                       :                       :
498  *                       |-----------------------|
499  *                       |      module text      |
500  *                       |-----------------------|- e_text/modtext
501  *                       |      kernel text      |
502  *                       |-----------------------|
503  *                       |    trap table (48k)   |
504  * 0x00000000.01000000  -|-----------------------|- KERNELBASE
505  *                       | reserved for trapstat |} TSTAT_TOTAL_SIZE
506  *                       |-----------------------|
507  *                       |                       |
508  *                       |        invalid        |
509  *                       |                       |
510  * 0x00000000.00000000  _|_______________________|
511  *
512  *
513  *
514  *                   32-bit User Virtual Memory Layout.
515  *                       /-----------------------\
516  *                       |                       |
517  *                       |        invalid        |
518  *                       |                       |
519  *          0xFFC00000  -|-----------------------|- USERLIMIT
520  *                       |       user stack      |
521  *                       :                       :
522  *                       :                       :
523  *                       :                       :
524  *                       |       user data       |
525  *                      -|-----------------------|-
526  *                       |       user text       |
527  *          0x00002000  -|-----------------------|-
528  *                       |       invalid         |
529  *          0x00000000  _|_______________________|
530  *
531  *
532  *
533  *                   64-bit User Virtual Memory Layout.
534  *                       /-----------------------\
535  *                       |                       |
536  *                       |        invalid        |
537  *                       |                       |
538  *  0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT
539  *                       |       user stack      |
540  *                       :                       :
541  *                       :                       :
542  *                       :                       :
543  *                       |       user data       |
544  *                      -|-----------------------|-
545  *                       |       user text       |
546  *  0x00000000.00100000 -|-----------------------|-
547  *                       |       invalid         |
548  *  0x00000000.00000000 _|_______________________|
549  */
550 
551 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base);
552 extern uint64_t ecache_flush_address(void);
553 
554 #pragma weak load_platform_modules
555 #pragma weak plat_startup_memlist
556 #pragma weak ecache_init_scrub_flush_area
557 #pragma weak ecache_flush_address
558 
559 
560 /*
561  * By default the DR Cage is enabled for maximum OS
562  * MPSS performance.  Users needing to disable the cage mechanism
563  * can set this variable to zero via /etc/system.
564  * Disabling the cage on systems supporting Dynamic Reconfiguration (DR)
565  * will result in loss of DR functionality.
566  * Platforms wishing to disable kernel Cage by default
567  * should do so in their set_platform_defaults() routine.
568  */
569 int	kernel_cage_enable = 1;
570 
571 static void
572 setup_cage_params(void)
573 {
574 	void (*func)(void);
575 
576 	func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0);
577 	if (func != NULL) {
578 		(*func)();
579 		return;
580 	}
581 
582 	if (kernel_cage_enable == 0) {
583 		return;
584 	}
585 	kcage_range_lock();
586 	if (kcage_range_init(phys_avail, 1) == 0) {
587 		kcage_init(total_pages / 256);
588 	}
589 	kcage_range_unlock();
590 
591 	if (kcage_on) {
592 		cmn_err(CE_NOTE, "!Kernel Cage is ENABLED");
593 	} else {
594 		cmn_err(CE_NOTE, "!Kernel Cage is DISABLED");
595 	}
596 
597 }
598 
599 /*
600  * Machine-dependent startup code
601  */
602 void
603 startup(void)
604 {
605 	startup_init();
606 	if (&startup_platform)
607 		startup_platform();
608 	startup_memlist();
609 	startup_modules();
610 	setup_cage_params();
611 	startup_bop_gone();
612 	startup_vm();
613 	startup_end();
614 }
615 
616 struct regs sync_reg_buf;
617 uint64_t sync_tt;
618 
619 void
620 sync_handler(void)
621 {
622 	struct  trap_info 	ti;
623 	int i;
624 
625 	/*
626 	 * Prevent trying to talk to the other CPUs since they are
627 	 * sitting in the prom and won't reply.
628 	 */
629 	for (i = 0; i < NCPU; i++) {
630 		if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) {
631 			cpu[i]->cpu_flags &= ~CPU_READY;
632 			cpu[i]->cpu_flags |= CPU_QUIESCED;
633 			CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
634 		}
635 	}
636 
637 	/*
638 	 * We've managed to get here without going through the
639 	 * normal panic code path. Try and save some useful
640 	 * information.
641 	 */
642 	if (!panicstr && (curthread->t_panic_trap == NULL)) {
643 		ti.trap_type = sync_tt;
644 		ti.trap_regs = &sync_reg_buf;
645 		ti.trap_addr = NULL;
646 		ti.trap_mmu_fsr = 0x0;
647 
648 		curthread->t_panic_trap = &ti;
649 	}
650 
651 	/*
652 	 * If we're re-entering the panic path, update the signature
653 	 * block so that the SC knows we're in the second part of panic.
654 	 */
655 	if (panicstr)
656 		CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
657 
658 	nopanicdebug = 1; /* do not perform debug_enter() prior to dump */
659 	panic("sync initiated");
660 }
661 
662 
663 static void
664 startup_init(void)
665 {
666 	/*
667 	 * We want to save the registers while we're still in OBP
668 	 * so that we know they haven't been fiddled with since.
669 	 * (In principle, OBP can't change them just because it
670 	 * makes a callback, but we'd rather not depend on that
671 	 * behavior.)
672 	 */
673 	char		sync_str[] =
674 		"warning @ warning off : sync "
675 		"%%tl-c %%tstate h# %p x! "
676 		"%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! "
677 		"%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! "
678 		"%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! "
679 		"%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! "
680 		"%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! "
681 		"%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! "
682 		"%%y h# %p l! %%tl-c %%tt h# %p x! "
683 		"sync ; warning !";
684 
685 	/*
686 	 * 20 == num of %p substrings
687 	 * 16 == max num of chars %p will expand to.
688 	 */
689 	char 		bp[sizeof (sync_str) + 16 * 20];
690 
691 	(void) check_boot_version(BOP_GETVERSION(bootops));
692 
693 	/*
694 	 * Initialize ptl1 stack for the 1st CPU.
695 	 */
696 	ptl1_init_cpu(&cpu0);
697 
698 	/*
699 	 * Initialize the address map for cache consistent mappings
700 	 * to random pages; must be done after vac_size is set.
701 	 */
702 	ppmapinit();
703 
704 	/*
705 	 * Initialize the PROM callback handler.
706 	 */
707 	init_vx_handler();
708 
709 	/*
710 	 * have prom call sync_callback() to handle the sync and
711 	 * save some useful information which will be stored in the
712 	 * core file later.
713 	 */
714 	(void) sprintf((char *)bp, sync_str,
715 		(void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1,
716 		(void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3,
717 		(void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5,
718 		(void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7,
719 		(void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1,
720 		(void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3,
721 		(void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5,
722 		(void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7,
723 		(void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc,
724 		(void *)&sync_reg_buf.r_y, (void *)&sync_tt);
725 	prom_interpret(bp, 0, 0, 0, 0, 0);
726 	add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler);
727 }
728 
729 static u_longlong_t *boot_physinstalled, *boot_physavail, *boot_virtavail;
730 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len;
731 
732 #define	IVSIZE	((MAXIVNUM * sizeof (intr_vec_t *)) + \
733 		(MAX_RSVD_IV * sizeof (intr_vec_t)) + \
734 		(MAX_RSVD_IVX * sizeof (intr_vecx_t)))
735 
736 /*
737  * As OBP takes up some RAM when the system boots, pages will already be "lost"
738  * to the system and reflected in npages by the time we see it.
739  *
740  * We only want to allocate kernel structures in the 64-bit virtual address
741  * space on systems with enough RAM to make the overhead of keeping track of
742  * an extra kernel memory segment worthwhile.
743  *
744  * Since OBP has already performed its memory allocations by this point, if we
745  * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map
746  * memory in the 64-bit virtual address space; otherwise keep allocations
747  * contiguous with we've mapped so far in the 32-bit virtual address space.
748  */
749 #define	MINMOVE_RAM_MB	((size_t)1900)
750 #define	MB_TO_BYTES(mb)	((mb) * 1048576ul)
751 
752 pgcnt_t	tune_npages = (pgcnt_t)
753 	(MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE);
754 
755 static void
756 startup_memlist(void)
757 {
758 	size_t alloc_sz;
759 	size_t ctrs_sz;
760 	caddr_t alloc_base;
761 	caddr_t ctrs_base, ctrs_end;
762 	caddr_t memspace;
763 	caddr_t va;
764 	int memblocks = 0;
765 	struct memlist *cur;
766 	size_t syslimit = (size_t)SYSLIMIT;
767 	size_t sysbase = (size_t)SYSBASE;
768 	int alloc_alignsize = MMU_PAGESIZE;
769 	extern void page_coloring_init(void);
770 
771 	/*
772 	 * Initialize enough of the system to allow kmem_alloc to work by
773 	 * calling boot to allocate its memory until the time that
774 	 * kvm_init is completed.  The page structs are allocated after
775 	 * rounding up end to the nearest page boundary; the memsegs are
776 	 * initialized and the space they use comes from the kernel heap.
777 	 * With appropriate initialization, they can be reallocated later
778 	 * to a size appropriate for the machine's configuration.
779 	 *
780 	 * At this point, memory is allocated for things that will never
781 	 * need to be freed, this used to be "valloced".  This allows a
782 	 * savings as the pages don't need page structures to describe
783 	 * them because them will not be managed by the vm system.
784 	 */
785 
786 	/*
787 	 * We're loaded by boot with the following configuration (as
788 	 * specified in the sun4u/conf/Mapfile):
789 	 *
790 	 * 	text:		4 MB chunk aligned on a 4MB boundary
791 	 * 	data & bss:	4 MB chunk aligned on a 4MB boundary
792 	 *
793 	 * These two chunks will eventually be mapped by 2 locked 4MB
794 	 * ttes and will represent the nucleus of the kernel.  This gives
795 	 * us some free space that is already allocated, some or all of
796 	 * which is made available to kernel module text.
797 	 *
798 	 * The free space in the data-bss chunk is used for nucleus
799 	 * allocatable data structures and we reserve it using the
800 	 * nalloc_base and nalloc_end variables.  This space is currently
801 	 * being used for hat data structures required for tlb miss
802 	 * handling operations.  We align nalloc_base to a l2 cache
803 	 * linesize because this is the line size the hardware uses to
804 	 * maintain cache coherency.
805 	 * 256K is carved out for module data.
806 	 */
807 
808 	nalloc_base = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE);
809 	moddata = nalloc_base;
810 	e_moddata = nalloc_base + MODDATA;
811 	nalloc_base = e_moddata;
812 
813 	nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M);
814 	valloc_base = nalloc_base;
815 
816 	/*
817 	 * Calculate the start of the data segment.
818 	 */
819 	sdata = (caddr_t)((uintptr_t)e_data & MMU_PAGEMASK4M);
820 
821 	PRM_DEBUG(moddata);
822 	PRM_DEBUG(nalloc_base);
823 	PRM_DEBUG(nalloc_end);
824 	PRM_DEBUG(sdata);
825 
826 	/*
827 	 * Remember any slop after e_text so we can give it to the modules.
828 	 */
829 	PRM_DEBUG(e_text);
830 	modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE);
831 	if (((uintptr_t)modtext & MMU_PAGEMASK4M) != (uintptr_t)s_text)
832 		panic("nucleus text overflow");
833 	modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) -
834 	    modtext;
835 	PRM_DEBUG(modtext);
836 	PRM_DEBUG(modtext_sz);
837 
838 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
839 	    &boot_physavail, &boot_physavail_len,
840 	    &boot_virtavail, &boot_virtavail_len);
841 	/*
842 	 * Remember what the physically available highest page is
843 	 * so that dumpsys works properly, and find out how much
844 	 * memory is installed.
845 	 */
846 	installed_top_size_memlist_array(boot_physinstalled,
847 	    boot_physinstalled_len, &physmax, &physinstalled);
848 	PRM_DEBUG(physinstalled);
849 	PRM_DEBUG(physmax);
850 
851 	/* Fill out memory nodes config structure */
852 	startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len);
853 
854 	/*
855 	 * Get the list of physically available memory to size
856 	 * the number of page structures needed.
857 	 */
858 	size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks);
859 	/*
860 	 * This first snap shot of npages can represent the pages used
861 	 * by OBP's text and data approximately. This is used in the
862 	 * the calculation of the kernel size
863 	 */
864 	obp_pages = physinstalled - npages;
865 
866 
867 	/*
868 	 * On small-memory systems (<MODTEXT_SM_SIZE MB, currently 256MB), the
869 	 * in-nucleus module text is capped to MODTEXT_SM_CAP bytes (currently
870 	 * 2MB) and any excess pages are put on physavail.  The assumption is
871 	 * that small-memory systems will need more pages more than they'll
872 	 * need efficiently-mapped module texts.
873 	 */
874 	if ((physinstalled < mmu_btop(MODTEXT_SM_SIZE << 20)) &&
875 	    modtext_sz > MODTEXT_SM_CAP) {
876 		extra_etpg = mmu_btop(modtext_sz - MODTEXT_SM_CAP);
877 		modtext_sz = MODTEXT_SM_CAP;
878 	} else
879 		extra_etpg = 0;
880 	PRM_DEBUG(extra_etpg);
881 	PRM_DEBUG(modtext_sz);
882 	extra_etva = modtext + modtext_sz;
883 	PRM_DEBUG(extra_etva);
884 
885 	/*
886 	 * Account for any pages after e_text and e_data.
887 	 */
888 	npages += extra_etpg;
889 	npages += mmu_btopr(nalloc_end - nalloc_base);
890 	PRM_DEBUG(npages);
891 
892 	/*
893 	 * npages is the maximum of available physical memory possible.
894 	 * (ie. it will never be more than this)
895 	 */
896 
897 	/*
898 	 * initialize the nucleus memory allocator.
899 	 */
900 	ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end);
901 
902 	/*
903 	 * Allocate mmu fault status area from the nucleus data area.
904 	 */
905 	if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0))
906 		cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc");
907 
908 	/*
909 	 * Allocate kernel TSBs from the nucleus data area.
910 	 */
911 	if (ndata_alloc_tsbs(&ndata, npages) != 0)
912 		cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc");
913 
914 	/*
915 	 * Allocate dmv dispatch table from the nucleus data area.
916 	 */
917 	if (ndata_alloc_dmv(&ndata) != 0)
918 		cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc");
919 
920 
921 	page_coloring_init();
922 
923 	/*
924 	 * Allocate page_freelists bin headers for memnode 0 from the
925 	 * nucleus data area.
926 	 */
927 	if (ndata_alloc_page_freelists(&ndata, 0) != 0)
928 		cmn_err(CE_PANIC,
929 		    "no more nucleus memory after page free lists alloc");
930 
931 	if (kpm_enable) {
932 		kpm_init();
933 		/*
934 		 * kpm page space -- Update kpm_npages and make the
935 		 * same assumption about fragmenting as it is done
936 		 * for memseg_sz.
937 		 */
938 		kpm_npages_setup(memblocks + 4);
939 	}
940 
941 	/*
942 	 * Allocate hat related structs from the nucleus data area.
943 	 */
944 	if (ndata_alloc_hat(&ndata, npages, kpm_npages) != 0)
945 		cmn_err(CE_PANIC, "no more nucleus memory after hat alloc");
946 
947 	/*
948 	 * We want to do the BOP_ALLOCs before the real allocation of page
949 	 * structs in order to not have to allocate page structs for this
950 	 * memory.  We need to calculate a virtual address because we want
951 	 * the page structs to come before other allocations in virtual address
952 	 * space.  This is so some (if not all) of page structs can actually
953 	 * live in the nucleus.
954 	 */
955 
956 	/*
957 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
958 	 *
959 	 * There are comments all over the SFMMU code warning of dire
960 	 * consequences if the TSBs are moved out of 32-bit space.  This
961 	 * is largely because the asm code uses "sethi %hi(addr)"-type
962 	 * instructions which will not provide the expected result if the
963 	 * address is a 64-bit one.
964 	 *
965 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
966 	 */
967 	alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE);
968 	alloc_base = sfmmu_ktsb_alloc(alloc_base);
969 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
970 	PRM_DEBUG(alloc_base);
971 
972 	/*
973 	 * Allocate IOMMU TSB array.  We do this here so that the physical
974 	 * memory gets deducted from the PROM's physical memory list.
975 	 */
976 	alloc_base = iommu_tsb_init(alloc_base);
977 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
978 	    ecache_alignsize);
979 	PRM_DEBUG(alloc_base);
980 
981 	/*
982 	 * Platforms like Starcat and OPL need special structures assigned in
983 	 * 32-bit virtual address space because their probing routines execute
984 	 * FCode, and FCode can't handle 64-bit virtual addresses...
985 	 */
986 	if (&plat_startup_memlist) {
987 		alloc_base = plat_startup_memlist(alloc_base);
988 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
989 		    ecache_alignsize);
990 		PRM_DEBUG(alloc_base);
991 	}
992 
993 	/*
994 	 * If we have enough memory, use 4M pages for alignment because it
995 	 * greatly reduces the number of TLB misses we take albeit at the cost
996 	 * of possible RAM wastage (degenerate case of 4 MB - MMU_PAGESIZE per
997 	 * allocation.) Still, the speedup on large memory systems (e.g. > 64
998 	 * GB) is quite noticeable, so it is worth the effort to do if we can.
999 	 *
1000 	 * Note, however, that this speedup will only occur if the boot PROM
1001 	 * uses the largest possible MMU page size possible to map memory
1002 	 * requests that are properly aligned and sized (for example, a request
1003 	 * for a multiple of 4MB of memory aligned to a 4MB boundary will
1004 	 * result in a mapping using a 4MB MMU page.)
1005 	 *
1006 	 * Even then, the large page mappings will only speed things up until
1007 	 * the startup process proceeds a bit further, as when
1008 	 * sfmmu_map_prom_mappings() copies page mappings from the PROM to the
1009 	 * kernel it remaps everything but the TSBs using 8K pages anyway...
1010 	 *
1011 	 * At some point in the future, sfmmu_map_prom_mappings() will be
1012 	 * rewritten to copy memory mappings to the kernel using the same MMU
1013 	 * page sizes the PROM used.  When that occurs, if the PROM did use
1014 	 * large MMU pages to map memory, the alignment/sizing work we're
1015 	 * doing now should give us a nice extra performance boost, albeit at
1016 	 * the cost of greater RAM usage...
1017 	 */
1018 	alloc_alignsize = ((npages >= tune_npages) ? MMU_PAGESIZE4M :
1019 	    MMU_PAGESIZE);
1020 
1021 	PRM_DEBUG(tune_npages);
1022 	PRM_DEBUG(alloc_alignsize);
1023 
1024 	/*
1025 	 * Save off where the contiguous allocations to date have ended
1026 	 * in econtig32.
1027 	 */
1028 	econtig32 = alloc_base;
1029 	PRM_DEBUG(econtig32);
1030 
1031 	if (econtig32 > (caddr_t)KERNEL_LIMIT32)
1032 		cmn_err(CE_PANIC, "econtig32 too big");
1033 
1034 	/*
1035 	 * To avoid memory allocation collisions in the 32-bit virtual address
1036 	 * space, make allocations from this point forward in 64-bit virtual
1037 	 * address space starting at syslimit and working up.  Also use the
1038 	 * alignment specified by alloc_alignsize, as we may be able to save
1039 	 * ourselves TLB misses by using larger page sizes if they're
1040 	 * available.
1041 	 *
1042 	 * All this is needed because on large memory systems, the default
1043 	 * Solaris allocations will collide with SYSBASE32, which is hard
1044 	 * coded to be at the virtual address 0x78000000.  Therefore, on 64-bit
1045 	 * kernels, move the allocations to a location in the 64-bit virtual
1046 	 * address space space, allowing those structures to grow without
1047 	 * worry.
1048 	 *
1049 	 * On current CPUs we'll run out of physical memory address bits before
1050 	 * we need to worry about the allocations running into anything else in
1051 	 * VM or the virtual address holes on US-I and II, as there's currently
1052 	 * about 1 TB of addressable space before the US-I/II VA hole.
1053 	 */
1054 	kmem64_base = (caddr_t)syslimit;
1055 	PRM_DEBUG(kmem64_base);
1056 
1057 	alloc_base = (caddr_t)roundup((uintptr_t)kmem64_base, alloc_alignsize);
1058 
1059 	/*
1060 	 * If KHME and/or UHME hash buckets won't fit in the nucleus, allocate
1061 	 * them here.
1062 	 */
1063 	if (khme_hash == NULL || uhme_hash == NULL) {
1064 		/*
1065 		 * alloc_hme_buckets() will align alloc_base properly before
1066 		 * assigning the hash buckets, so we don't need to do it
1067 		 * before the call...
1068 		 */
1069 		alloc_base = alloc_hme_buckets(alloc_base, alloc_alignsize);
1070 
1071 		PRM_DEBUG(alloc_base);
1072 		PRM_DEBUG(khme_hash);
1073 		PRM_DEBUG(uhme_hash);
1074 	}
1075 
1076 	/*
1077 	 * Allocate the remaining page freelists.  NUMA systems can
1078 	 * have lots of page freelists, one per node, which quickly
1079 	 * outgrow the amount of nucleus memory available.
1080 	 */
1081 	if (max_mem_nodes > 1) {
1082 		int mnode;
1083 		caddr_t alloc_start = alloc_base;
1084 
1085 		for (mnode = 1; mnode < max_mem_nodes; mnode++) {
1086 			alloc_base = alloc_page_freelists(mnode, alloc_base,
1087 				ecache_alignsize);
1088 		}
1089 
1090 		if (alloc_base > alloc_start) {
1091 			alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1092 				alloc_alignsize);
1093 			if ((caddr_t)BOP_ALLOC(bootops, alloc_start,
1094 				alloc_base - alloc_start,
1095 				alloc_alignsize) != alloc_start)
1096 				cmn_err(CE_PANIC,
1097 					"Unable to alloc page freelists\n");
1098 		}
1099 
1100 		PRM_DEBUG(alloc_base);
1101 	}
1102 
1103 	if (!mml_table) {
1104 		size_t mmltable_sz;
1105 
1106 		/*
1107 		 * We need to allocate the mml_table here because there
1108 		 * was not enough space within the nucleus.
1109 		 */
1110 		mmltable_sz = sizeof (kmutex_t) * mml_table_sz;
1111 		alloc_sz = roundup(mmltable_sz, alloc_alignsize);
1112 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1113 		    alloc_alignsize);
1114 
1115 		if ((mml_table = (kmutex_t *)BOP_ALLOC(bootops, alloc_base,
1116 		    alloc_sz, alloc_alignsize)) != (kmutex_t *)alloc_base)
1117 			panic("mml_table alloc failure");
1118 
1119 		alloc_base += alloc_sz;
1120 		PRM_DEBUG(mml_table);
1121 		PRM_DEBUG(alloc_base);
1122 	}
1123 
1124 	if (kpm_enable && !(kpmp_table || kpmp_stable)) {
1125 		size_t kpmptable_sz;
1126 		caddr_t table;
1127 
1128 		/*
1129 		 * We need to allocate either kpmp_table or kpmp_stable here
1130 		 * because there was not enough space within the nucleus.
1131 		 */
1132 		kpmptable_sz = (kpm_smallpages == 0) ?
1133 				sizeof (kpm_hlk_t) * kpmp_table_sz :
1134 				sizeof (kpm_shlk_t) * kpmp_stable_sz;
1135 
1136 		alloc_sz = roundup(kpmptable_sz, alloc_alignsize);
1137 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1138 		    alloc_alignsize);
1139 
1140 		table = BOP_ALLOC(bootops, alloc_base, alloc_sz,
1141 				alloc_alignsize);
1142 
1143 		if (table != alloc_base)
1144 			panic("kpmp_table or kpmp_stable alloc failure");
1145 
1146 		if (kpm_smallpages == 0) {
1147 			kpmp_table = (kpm_hlk_t *)table;
1148 			PRM_DEBUG(kpmp_table);
1149 		} else {
1150 			kpmp_stable = (kpm_shlk_t *)table;
1151 			PRM_DEBUG(kpmp_stable);
1152 		}
1153 
1154 		alloc_base += alloc_sz;
1155 		PRM_DEBUG(alloc_base);
1156 	}
1157 
1158 	if (&ecache_init_scrub_flush_area) {
1159 		/*
1160 		 * Pass alloc_base directly, as the routine itself is
1161 		 * responsible for any special alignment requirements...
1162 		 */
1163 		alloc_base = ecache_init_scrub_flush_area(alloc_base);
1164 		PRM_DEBUG(alloc_base);
1165 	}
1166 
1167 	/*
1168 	 * Take the most current snapshot we can by calling mem-update.
1169 	 */
1170 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1171 	    &boot_physavail, &boot_physavail_len,
1172 	    &boot_virtavail, &boot_virtavail_len);
1173 
1174 	/*
1175 	 * Reset npages and memblocks based on boot_physavail list.
1176 	 */
1177 	size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks);
1178 	PRM_DEBUG(npages);
1179 
1180 	/*
1181 	 * Account for extra memory after e_text.
1182 	 */
1183 	npages += extra_etpg;
1184 
1185 	/*
1186 	 * Calculate the largest free memory chunk in the nucleus data area.
1187 	 * We need to figure out if page structs can fit in there or not.
1188 	 * We also make sure enough page structs get created for any physical
1189 	 * memory we might be returning to the system.
1190 	 */
1191 	ndata_remain_sz = ndata_maxsize(&ndata);
1192 	PRM_DEBUG(ndata_remain_sz);
1193 
1194 	pp_sz = sizeof (struct page) * npages;
1195 
1196 	/*
1197 	 * Here's a nice bit of code based on somewhat recursive logic:
1198 	 *
1199 	 * If the page array would fit within the nucleus, we want to
1200 	 * add npages to cover any extra memory we may be returning back
1201 	 * to the system.
1202 	 *
1203 	 * HOWEVER, the page array is sized by calculating the size of
1204 	 * (struct page * npages), as are the pagehash table, ctrs and
1205 	 * memseg_list, so the very act of performing the calculation below may
1206 	 * in fact make the array large enough that it no longer fits in the
1207 	 * nucleus, meaning there would now be a much larger area of the
1208 	 * nucleus free that should really be added to npages, which would
1209 	 * make the page array that much larger, and so on.
1210 	 *
1211 	 * This also ignores the memory possibly used in the nucleus for the
1212 	 * the page hash, ctrs and memseg list and the fact that whether they
1213 	 * fit there or not varies with the npages calculation below, but we
1214 	 * don't even factor them into the equation at this point; perhaps we
1215 	 * should or perhaps we should just take the approach that the few
1216 	 * extra pages we could add via this calculation REALLY aren't worth
1217 	 * the hassle...
1218 	 */
1219 	if (ndata_remain_sz > pp_sz) {
1220 		size_t spare = ndata_spare(&ndata, pp_sz, ecache_alignsize);
1221 
1222 		npages += mmu_btop(spare);
1223 
1224 		pp_sz = npages * sizeof (struct page);
1225 
1226 		pp_base = ndata_alloc(&ndata, pp_sz, ecache_alignsize);
1227 	}
1228 
1229 	/*
1230 	 * If physmem is patched to be non-zero, use it instead of
1231 	 * the monitor value unless physmem is larger than the total
1232 	 * amount of memory on hand.
1233 	 */
1234 	if (physmem == 0 || physmem > npages)
1235 		physmem = npages;
1236 
1237 	/*
1238 	 * If pp_base is NULL that means the routines above have determined
1239 	 * the page array will not fit in the nucleus; we'll have to
1240 	 * BOP_ALLOC() ourselves some space for them.
1241 	 */
1242 	if (pp_base == NULL) {
1243 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1244 		    alloc_alignsize);
1245 
1246 		alloc_sz = roundup(pp_sz, alloc_alignsize);
1247 
1248 		if ((pp_base = (struct page *)BOP_ALLOC(bootops,
1249 		    alloc_base, alloc_sz, alloc_alignsize)) !=
1250 		    (struct page *)alloc_base)
1251 			panic("page alloc failure");
1252 
1253 		alloc_base += alloc_sz;
1254 	}
1255 
1256 	/*
1257 	 * The page structure hash table size is a power of 2
1258 	 * such that the average hash chain length is PAGE_HASHAVELEN.
1259 	 */
1260 	page_hashsz = npages / PAGE_HASHAVELEN;
1261 	page_hashsz = 1 << highbit((ulong_t)page_hashsz);
1262 	pagehash_sz = sizeof (struct page *) * page_hashsz;
1263 
1264 	/*
1265 	 * We want to TRY to fit the page structure hash table,
1266 	 * the page size free list counters, the memseg list and
1267 	 * and the kpm page space in the nucleus if possible.
1268 	 *
1269 	 * alloc_sz counts how much memory needs to be allocated by
1270 	 * BOP_ALLOC().
1271 	 */
1272 	page_hash = ndata_alloc(&ndata, pagehash_sz, ecache_alignsize);
1273 
1274 	alloc_sz = (page_hash == NULL ? pagehash_sz : 0);
1275 
1276 	/*
1277 	 * Size up per page size free list counters.
1278 	 */
1279 	ctrs_sz = page_ctrs_sz();
1280 	ctrs_base = ndata_alloc(&ndata, ctrs_sz, ecache_alignsize);
1281 
1282 	if (ctrs_base == NULL)
1283 		alloc_sz = roundup(alloc_sz, ecache_alignsize) + ctrs_sz;
1284 
1285 	/*
1286 	 * The memseg list is for the chunks of physical memory that
1287 	 * will be managed by the vm system.  The number calculated is
1288 	 * a guess as boot may fragment it more when memory allocations
1289 	 * are made before kphysm_init().  Currently, there are two
1290 	 * allocations before then, so we assume each causes fragmen-
1291 	 * tation, and add a couple more for good measure.
1292 	 */
1293 	memseg_sz = sizeof (struct memseg) * (memblocks + 4);
1294 	memseg_base = ndata_alloc(&ndata, memseg_sz, ecache_alignsize);
1295 
1296 	if (memseg_base == NULL)
1297 		alloc_sz = roundup(alloc_sz, ecache_alignsize) + memseg_sz;
1298 
1299 
1300 	if (kpm_enable) {
1301 		/*
1302 		 * kpm page space -- Update kpm_npages and make the
1303 		 * same assumption about fragmenting as it is done
1304 		 * for memseg_sz above.
1305 		 */
1306 		kpm_npages_setup(memblocks + 4);
1307 		kpm_pp_sz = (kpm_smallpages == 0) ?
1308 				kpm_npages * sizeof (kpm_page_t):
1309 				kpm_npages * sizeof (kpm_spage_t);
1310 
1311 		kpm_pp_base = (uintptr_t)ndata_alloc(&ndata, kpm_pp_sz,
1312 		    ecache_alignsize);
1313 
1314 		if (kpm_pp_base == NULL)
1315 			alloc_sz = roundup(alloc_sz, ecache_alignsize) +
1316 			    kpm_pp_sz;
1317 	}
1318 
1319 	if (alloc_sz > 0) {
1320 		uintptr_t bop_base;
1321 
1322 		/*
1323 		 * We need extra memory allocated through BOP_ALLOC.
1324 		 */
1325 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1326 		    alloc_alignsize);
1327 
1328 		alloc_sz = roundup(alloc_sz, alloc_alignsize);
1329 
1330 		if ((bop_base = (uintptr_t)BOP_ALLOC(bootops, alloc_base,
1331 		    alloc_sz, alloc_alignsize)) != (uintptr_t)alloc_base)
1332 			panic("system page struct alloc failure");
1333 
1334 		alloc_base += alloc_sz;
1335 
1336 		if (page_hash == NULL) {
1337 			page_hash = (struct page **)bop_base;
1338 			bop_base = roundup(bop_base + pagehash_sz,
1339 			    ecache_alignsize);
1340 		}
1341 
1342 		if (ctrs_base == NULL) {
1343 			ctrs_base = (caddr_t)bop_base;
1344 			bop_base = roundup(bop_base + ctrs_sz,
1345 			    ecache_alignsize);
1346 		}
1347 
1348 		if (memseg_base == NULL) {
1349 			memseg_base = (struct memseg *)bop_base;
1350 			bop_base = roundup(bop_base + memseg_sz,
1351 			    ecache_alignsize);
1352 		}
1353 
1354 		if (kpm_enable && kpm_pp_base == NULL) {
1355 			kpm_pp_base = (uintptr_t)bop_base;
1356 			bop_base = roundup(bop_base + kpm_pp_sz,
1357 			    ecache_alignsize);
1358 		}
1359 
1360 		ASSERT(bop_base <= (uintptr_t)alloc_base);
1361 	}
1362 
1363 	/*
1364 	 * Initialize per page size free list counters.
1365 	 */
1366 	ctrs_end = page_ctrs_alloc(ctrs_base);
1367 	ASSERT(ctrs_base + ctrs_sz >= ctrs_end);
1368 
1369 	PRM_DEBUG(page_hash);
1370 	PRM_DEBUG(memseg_base);
1371 	PRM_DEBUG(kpm_pp_base);
1372 	PRM_DEBUG(kpm_pp_sz);
1373 	PRM_DEBUG(pp_base);
1374 	PRM_DEBUG(pp_sz);
1375 	PRM_DEBUG(alloc_base);
1376 
1377 #ifdef	TRAPTRACE
1378 	/*
1379 	 * Allocate trap trace buffer last so as not to affect
1380 	 * the 4M alignments of the allocations above on V9 SPARCs...
1381 	 */
1382 	alloc_base = trap_trace_alloc(alloc_base);
1383 	PRM_DEBUG(alloc_base);
1384 #endif	/* TRAPTRACE */
1385 
1386 	if (kmem64_base) {
1387 		/*
1388 		 * Set the end of the kmem64 segment for V9 SPARCs, if
1389 		 * appropriate...
1390 		 */
1391 		kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base,
1392 		    alloc_alignsize);
1393 
1394 		PRM_DEBUG(kmem64_base);
1395 		PRM_DEBUG(kmem64_end);
1396 	}
1397 
1398 	/*
1399 	 * Allocate space for the interrupt vector table and also for the
1400 	 * reserved interrupt vector data structures.
1401 	 */
1402 	memspace = (caddr_t)BOP_ALLOC(bootops, (caddr_t)intr_vec_table,
1403 	    IVSIZE, MMU_PAGESIZE);
1404 	if (memspace != (caddr_t)intr_vec_table)
1405 		panic("interrupt vector table allocation failure");
1406 
1407 	/*
1408 	 * The memory lists from boot are allocated from the heap arena
1409 	 * so that later they can be freed and/or reallocated.
1410 	 */
1411 	if (BOP_GETPROP(bootops, "extent", &memlist_sz) == -1)
1412 		panic("could not retrieve property \"extent\"");
1413 
1414 	/*
1415 	 * Between now and when we finish copying in the memory lists,
1416 	 * allocations happen so the space gets fragmented and the
1417 	 * lists longer.  Leave enough space for lists twice as long
1418 	 * as what boot says it has now; roundup to a pagesize.
1419 	 * Also add space for the final phys-avail copy in the fixup
1420 	 * routine.
1421 	 */
1422 	va = (caddr_t)(sysbase + PAGESIZE + PANICBUFSIZE +
1423 	    roundup(IVSIZE, MMU_PAGESIZE));
1424 	memlist_sz *= 4;
1425 	memlist_sz = roundup(memlist_sz, MMU_PAGESIZE);
1426 	memspace = (caddr_t)BOP_ALLOC(bootops, va, memlist_sz, BO_NO_ALIGN);
1427 	if (memspace == NULL)
1428 		halt("Boot allocation failed.");
1429 
1430 	memlist = (struct memlist *)memspace;
1431 	memlist_end = (char *)memspace + memlist_sz;
1432 
1433 	PRM_DEBUG(memlist);
1434 	PRM_DEBUG(memlist_end);
1435 	PRM_DEBUG(sysbase);
1436 	PRM_DEBUG(syslimit);
1437 
1438 	kernelheap_init((void *)sysbase, (void *)syslimit,
1439 	    (caddr_t)sysbase + PAGESIZE, NULL, NULL);
1440 
1441 	/*
1442 	 * Take the most current snapshot we can by calling mem-update.
1443 	 */
1444 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1445 	    &boot_physavail, &boot_physavail_len,
1446 	    &boot_virtavail, &boot_virtavail_len);
1447 
1448 	/*
1449 	 * Remove the space used by BOP_ALLOC from the kernel heap
1450 	 * plus the area actually used by the OBP (if any)
1451 	 * ignoring virtual addresses in virt_avail, above syslimit.
1452 	 */
1453 	virt_avail = memlist;
1454 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1455 
1456 	for (cur = virt_avail; cur->next; cur = cur->next) {
1457 		uint64_t range_base, range_size;
1458 
1459 		if ((range_base = cur->address + cur->size) < (uint64_t)sysbase)
1460 			continue;
1461 		if (range_base >= (uint64_t)syslimit)
1462 			break;
1463 		/*
1464 		 * Limit the range to end at syslimit.
1465 		 */
1466 		range_size = MIN(cur->next->address,
1467 		    (uint64_t)syslimit) - range_base;
1468 		(void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE,
1469 		    0, 0, (void *)range_base, (void *)(range_base + range_size),
1470 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1471 	}
1472 
1473 	phys_avail = memlist;
1474 	(void) copy_physavail(boot_physavail, boot_physavail_len,
1475 	    &memlist, 0, 0);
1476 
1477 	/*
1478 	 * Add any extra memory after e_text to the phys_avail list, as long
1479 	 * as there's at least a page to add.
1480 	 */
1481 	if (extra_etpg)
1482 		memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg),
1483 		    &memlist, &phys_avail);
1484 
1485 	/*
1486 	 * Add any extra memory after e_data to the phys_avail list as long
1487 	 * as there's at least a page to add.  Usually, there isn't any,
1488 	 * since extra HME blocks typically get allocated there first before
1489 	 * using RAM elsewhere.
1490 	 */
1491 	if ((nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE)) == NULL)
1492 		nalloc_base = nalloc_end;
1493 	ndata_remain_sz = nalloc_end - nalloc_base;
1494 
1495 	if (ndata_remain_sz >= MMU_PAGESIZE)
1496 		memlist_add(va_to_pa(nalloc_base),
1497 		    (uint64_t)ndata_remain_sz, &memlist, &phys_avail);
1498 
1499 	PRM_DEBUG(memlist);
1500 	PRM_DEBUG(memlist_sz);
1501 	PRM_DEBUG(memspace);
1502 
1503 	if ((caddr_t)memlist > (memspace + memlist_sz))
1504 		panic("memlist overflow");
1505 
1506 	PRM_DEBUG(pp_base);
1507 	PRM_DEBUG(memseg_base);
1508 	PRM_DEBUG(npages);
1509 
1510 	/*
1511 	 * Initialize the page structures from the memory lists.
1512 	 */
1513 	kphysm_init(pp_base, memseg_base, npages, kpm_pp_base, kpm_npages);
1514 
1515 	availrmem_initial = availrmem = freemem;
1516 	PRM_DEBUG(availrmem);
1517 
1518 	/*
1519 	 * Some of the locks depend on page_hashsz being set!
1520 	 * kmem_init() depends on this; so, keep it here.
1521 	 */
1522 	page_lock_init();
1523 
1524 	/*
1525 	 * Initialize kernel memory allocator.
1526 	 */
1527 	kmem_init();
1528 
1529 	/*
1530 	 * Initialize bp_mapin().
1531 	 */
1532 	bp_init(shm_alignment, HAT_STRICTORDER);
1533 
1534 	/*
1535 	 * Reserve space for panicbuf, intr_vec_table and reserved interrupt
1536 	 * vector data structures from the 32-bit heap.
1537 	 */
1538 	(void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0,
1539 	    panicbuf, panicbuf + PANICBUFSIZE,
1540 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1541 
1542 	(void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0,
1543 	    intr_vec_table, (caddr_t)intr_vec_table + IVSIZE,
1544 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1545 
1546 	mem_config_init();
1547 }
1548 
1549 static void
1550 startup_modules(void)
1551 {
1552 	int proplen, nhblk1, nhblk8;
1553 	size_t  nhblksz;
1554 	pgcnt_t hblk_pages, pages_per_hblk;
1555 	size_t hme8blk_sz, hme1blk_sz;
1556 
1557 	/*
1558 	 * Log any optional messages from the boot program
1559 	 */
1560 	proplen = (size_t)BOP_GETPROPLEN(bootops, "boot-message");
1561 	if (proplen > 0) {
1562 		char *msg;
1563 		size_t len = (size_t)proplen;
1564 
1565 		msg = kmem_zalloc(len, KM_SLEEP);
1566 		(void) BOP_GETPROP(bootops, "boot-message", msg);
1567 		cmn_err(CE_CONT, "?%s\n", msg);
1568 		kmem_free(msg, len);
1569 	}
1570 
1571 	/*
1572 	 * Let the platforms have a chance to change default
1573 	 * values before reading system file.
1574 	 */
1575 	if (&set_platform_defaults)
1576 		set_platform_defaults();
1577 
1578 	/*
1579 	 * Calculate default settings of system parameters based upon
1580 	 * maxusers, yet allow to be overridden via the /etc/system file.
1581 	 */
1582 	param_calc(0);
1583 
1584 	mod_setup();
1585 
1586 	/*
1587 	 * If this is a positron, complain and halt.
1588 	 */
1589 	if (&iam_positron && iam_positron()) {
1590 		cmn_err(CE_WARN, "This hardware platform is not supported"
1591 		    " by this release of Solaris.\n");
1592 #ifdef DEBUG
1593 		prom_enter_mon();	/* Type 'go' to resume */
1594 		cmn_err(CE_WARN, "Booting an unsupported platform.\n");
1595 		cmn_err(CE_WARN, "Booting with down-rev firmware.\n");
1596 
1597 #else /* DEBUG */
1598 		halt(0);
1599 #endif /* DEBUG */
1600 	}
1601 
1602 	/*
1603 	 * If we are running firmware that isn't 64-bit ready
1604 	 * then complain and halt.
1605 	 */
1606 	do_prom_version_check();
1607 
1608 	/*
1609 	 * Initialize system parameters
1610 	 */
1611 	param_init();
1612 
1613 	/*
1614 	 * maxmem is the amount of physical memory we're playing with.
1615 	 */
1616 	maxmem = physmem;
1617 
1618 	/* Set segkp limits. */
1619 	ncbase = kdi_segdebugbase;
1620 	ncend = kdi_segdebugbase;
1621 
1622 	/*
1623 	 * Initialize the hat layer.
1624 	 */
1625 	hat_init();
1626 
1627 	/*
1628 	 * Initialize segment management stuff.
1629 	 */
1630 	seg_init();
1631 
1632 	/*
1633 	 * Create the va>tte handler, so the prom can understand
1634 	 * kernel translations.  The handler is installed later, just
1635 	 * as we are about to take over the trap table from the prom.
1636 	 */
1637 	create_va_to_tte();
1638 
1639 	/*
1640 	 * Load the forthdebugger (optional)
1641 	 */
1642 	forthdebug_init();
1643 
1644 	/*
1645 	 * Create OBP node for console input callbacks
1646 	 * if it is needed.
1647 	 */
1648 	startup_create_io_node();
1649 
1650 	if (modloadonly("fs", "specfs") == -1)
1651 		halt("Can't load specfs");
1652 
1653 	if (modloadonly("fs", "devfs") == -1)
1654 		halt("Can't load devfs");
1655 
1656 	if (modloadonly("misc", "swapgeneric") == -1)
1657 		halt("Can't load swapgeneric");
1658 
1659 	(void) modloadonly("sys", "lbl_edition");
1660 
1661 	dispinit();
1662 
1663 	/*
1664 	 * Infer meanings to the members of the idprom buffer.
1665 	 */
1666 	parse_idprom();
1667 
1668 	/* Read cluster configuration data. */
1669 	clconf_init();
1670 
1671 	setup_ddi();
1672 
1673 	/*
1674 	 * Lets take this opportunity to load the root device.
1675 	 */
1676 	if (loadrootmodules() != 0)
1677 		debug_enter("Can't load the root filesystem");
1678 
1679 	/*
1680 	 * Load tod driver module for the tod part found on this system.
1681 	 * Recompute the cpu frequency/delays based on tod as tod part
1682 	 * tends to keep time more accurately.
1683 	 */
1684 	if (&load_tod_module)
1685 		load_tod_module();
1686 
1687 	/*
1688 	 * Allow platforms to load modules which might
1689 	 * be needed after bootops are gone.
1690 	 */
1691 	if (&load_platform_modules)
1692 		load_platform_modules();
1693 
1694 	setcpudelay();
1695 
1696 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1697 	    &boot_physavail, &boot_physavail_len,
1698 	    &boot_virtavail, &boot_virtavail_len);
1699 
1700 	bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len);
1701 
1702 	/*
1703 	 * Calculation and allocation of hmeblks needed to remap
1704 	 * the memory allocated by PROM till now:
1705 	 *
1706 	 * (1)  calculate how much virtual memory has been bop_alloc'ed.
1707 	 * (2)  roundup this memory to span of hme8blk, i.e. 64KB
1708 	 * (3)  calculate number of hme8blk's needed to remap this memory
1709 	 * (4)  calculate amount of memory that's consumed by these hme8blk's
1710 	 * (5)  add memory calculated in steps (2) and (4) above.
1711 	 * (6)  roundup this memory to span of hme8blk, i.e. 64KB
1712 	 * (7)  calculate number of hme8blk's needed to remap this memory
1713 	 * (8)  calculate amount of memory that's consumed by these hme8blk's
1714 	 * (9)  allocate additional hme1blk's to hold large mappings.
1715 	 *	H8TOH1 determines this.  The current SWAG gives enough hblk1's
1716 	 *	to remap everything with 4M mappings.
1717 	 * (10) account for partially used hblk8's due to non-64K aligned
1718 	 *	PROM mapping entries.
1719 	 * (11) add memory calculated in steps (8), (9), and (10) above.
1720 	 * (12) kmem_zalloc the memory calculated in (11); since segkmem
1721 	 *	is not ready yet, this gets bop_alloc'ed.
1722 	 * (13) there will be very few bop_alloc's after this point before
1723 	 *	trap table takes over
1724 	 */
1725 
1726 	/* sfmmu_init_nucleus_hblks expects properly aligned data structures. */
1727 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
1728 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
1729 
1730 	pages_per_hblk = btop(HMEBLK_SPAN(TTE8K));
1731 	bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1732 	nhblk8 = bop_alloc_pages / pages_per_hblk;
1733 	nhblk1 = roundup(nhblk8, H8TOH1) / H8TOH1;
1734 	hblk_pages = btopr(nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz);
1735 	bop_alloc_pages += hblk_pages;
1736 	bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1737 	nhblk8 = bop_alloc_pages / pages_per_hblk;
1738 	nhblk1 = roundup(nhblk8, H8TOH1) / H8TOH1;
1739 	if (nhblk1 < hblk1_min)
1740 		nhblk1 = hblk1_min;
1741 	if (nhblk8 < hblk8_min)
1742 		nhblk8 = hblk8_min;
1743 
1744 	/*
1745 	 * Since hblk8's can hold up to 64k of mappings aligned on a 64k
1746 	 * boundary, the number of hblk8's needed to map the entries in the
1747 	 * boot_virtavail list needs to be adjusted to take this into
1748 	 * consideration.  Thus, we need to add additional hblk8's since it
1749 	 * is possible that an hblk8 will not have all 8 slots used due to
1750 	 * alignment constraints.  Since there were boot_virtavail_len entries
1751 	 * in that list, we need to add that many hblk8's to the number
1752 	 * already calculated to make sure we don't underestimate.
1753 	 */
1754 	nhblk8 += boot_virtavail_len;
1755 	nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz;
1756 
1757 	/* Allocate in pagesize chunks */
1758 	nhblksz = roundup(nhblksz, MMU_PAGESIZE);
1759 	hblk_base = kmem_zalloc(nhblksz, KM_SLEEP);
1760 	sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1);
1761 }
1762 
1763 static void
1764 startup_bop_gone(void)
1765 {
1766 	extern int bop_io_quiesced;
1767 
1768 	/*
1769 	 * Destroy the MD initialized at startup
1770 	 * The startup initializes the MD framework
1771 	 * using prom and BOP alloc free it now.
1772 	 */
1773 	mach_descrip_startup_fini();
1774 
1775 	/*
1776 	 * Call back into boot and release boots resources.
1777 	 */
1778 	BOP_QUIESCE_IO(bootops);
1779 	bop_io_quiesced = 1;
1780 
1781 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1782 	    &boot_physavail, &boot_physavail_len,
1783 	    &boot_virtavail, &boot_virtavail_len);
1784 	/*
1785 	 * Copy physinstalled list into kernel space.
1786 	 */
1787 	phys_install = memlist;
1788 	copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist);
1789 
1790 	/*
1791 	 * setup physically contiguous area twice as large as the ecache.
1792 	 * this is used while doing displacement flush of ecaches
1793 	 */
1794 	if (&ecache_flush_address) {
1795 		ecache_flushaddr = ecache_flush_address();
1796 		if (ecache_flushaddr == (uint64_t)-1) {
1797 			cmn_err(CE_PANIC,
1798 			    "startup: no memory to set ecache_flushaddr");
1799 		}
1800 	}
1801 
1802 	/*
1803 	 * Virtual available next.
1804 	 */
1805 	ASSERT(virt_avail != NULL);
1806 	memlist_free_list(virt_avail);
1807 	virt_avail = memlist;
1808 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1809 
1810 	/*
1811 	 * Last chance to ask our booter questions ..
1812 	 */
1813 }
1814 
1815 
1816 /*
1817  * startup_fixup_physavail - called from mach_sfmmu.c after the final
1818  * allocations have been performed.  We can't call it in startup_bop_gone
1819  * since later operations can cause obp to allocate more memory.
1820  */
1821 void
1822 startup_fixup_physavail(void)
1823 {
1824 	struct memlist *cur;
1825 
1826 	/*
1827 	 * take the most current snapshot we can by calling mem-update
1828 	 */
1829 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1830 	    &boot_physavail, &boot_physavail_len,
1831 	    &boot_virtavail, &boot_virtavail_len);
1832 
1833 	/*
1834 	 * Copy phys_avail list, again.
1835 	 * Both the kernel/boot and the prom have been allocating
1836 	 * from the original list we copied earlier.
1837 	 */
1838 	cur = memlist;
1839 	(void) copy_physavail(boot_physavail, boot_physavail_len,
1840 	    &memlist, 0, 0);
1841 
1842 	/*
1843 	 * Add any extra memory after e_text we added to the phys_avail list
1844 	 * back to the old list.
1845 	 */
1846 	if (extra_etpg)
1847 		memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg),
1848 		    &memlist, &cur);
1849 	if (ndata_remain_sz >= MMU_PAGESIZE)
1850 		memlist_add(va_to_pa(nalloc_base),
1851 		    (uint64_t)ndata_remain_sz, &memlist, &cur);
1852 
1853 	/*
1854 	 * There isn't any bounds checking on the memlist area
1855 	 * so ensure it hasn't overgrown.
1856 	 */
1857 	if ((caddr_t)memlist > (caddr_t)memlist_end)
1858 		cmn_err(CE_PANIC, "startup: memlist size exceeded");
1859 
1860 	/*
1861 	 * The kernel removes the pages that were allocated for it from
1862 	 * the freelist, but we now have to find any -extra- pages that
1863 	 * the prom has allocated for it's own book-keeping, and remove
1864 	 * them from the freelist too. sigh.
1865 	 */
1866 	fix_prom_pages(phys_avail, cur);
1867 
1868 	ASSERT(phys_avail != NULL);
1869 	memlist_free_list(phys_avail);
1870 	phys_avail = cur;
1871 
1872 	/*
1873 	 * We're done with boot.  Just after this point in time, boot
1874 	 * gets unmapped, so we can no longer rely on its services.
1875 	 * Zero the bootops to indicate this fact.
1876 	 */
1877 	bootops = (struct bootops *)NULL;
1878 	BOOTOPS_GONE();
1879 }
1880 
1881 static void
1882 startup_vm(void)
1883 {
1884 	size_t	i;
1885 	struct segmap_crargs a;
1886 	struct segkpm_crargs b;
1887 
1888 	uint64_t avmem;
1889 	caddr_t va;
1890 	pgcnt_t	max_phys_segkp;
1891 	int	mnode;
1892 
1893 	extern int use_brk_lpg, use_stk_lpg;
1894 
1895 	/*
1896 	 * get prom's mappings, create hments for them and switch
1897 	 * to the kernel context.
1898 	 */
1899 	hat_kern_setup();
1900 
1901 	/*
1902 	 * Take over trap table
1903 	 */
1904 	setup_trap_table();
1905 
1906 	/*
1907 	 * Install the va>tte handler, so that the prom can handle
1908 	 * misses and understand the kernel table layout in case
1909 	 * we need call into the prom.
1910 	 */
1911 	install_va_to_tte();
1912 
1913 	/*
1914 	 * Set a flag to indicate that the tba has been taken over.
1915 	 */
1916 	tba_taken_over = 1;
1917 
1918 	/* initialize MMU primary context register */
1919 	mmu_init_kcontext();
1920 
1921 	/*
1922 	 * The boot cpu can now take interrupts, x-calls, x-traps
1923 	 */
1924 	CPUSET_ADD(cpu_ready_set, CPU->cpu_id);
1925 	CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS);
1926 
1927 	/*
1928 	 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR.
1929 	 */
1930 	tbr_wr_addr_inited = 1;
1931 
1932 	/*
1933 	 * Initialize VM system, and map kernel address space.
1934 	 */
1935 	kvm_init();
1936 
1937 	/*
1938 	 * XXX4U: previously, we initialized and turned on
1939 	 * the caches at this point. But of course we have
1940 	 * nothing to do, as the prom has already done this
1941 	 * for us -- main memory must be E$able at all times.
1942 	 */
1943 
1944 	/*
1945 	 * If the following is true, someone has patched
1946 	 * phsymem to be less than the number of pages that
1947 	 * the system actually has.  Remove pages until system
1948 	 * memory is limited to the requested amount.  Since we
1949 	 * have allocated page structures for all pages, we
1950 	 * correct the amount of memory we want to remove
1951 	 * by the size of the memory used to hold page structures
1952 	 * for the non-used pages.
1953 	 */
1954 	if (physmem < npages) {
1955 		pgcnt_t diff, off;
1956 		struct page *pp;
1957 		struct seg kseg;
1958 
1959 		cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem);
1960 
1961 		off = 0;
1962 		diff = npages - physmem;
1963 		diff -= mmu_btopr(diff * sizeof (struct page));
1964 		kseg.s_as = &kas;
1965 		while (diff--) {
1966 			pp = page_create_va(&unused_pages_vp, (offset_t)off,
1967 			    MMU_PAGESIZE, PG_WAIT | PG_EXCL,
1968 			    &kseg, (caddr_t)off);
1969 			if (pp == NULL)
1970 				cmn_err(CE_PANIC, "limited physmem too much!");
1971 			page_io_unlock(pp);
1972 			page_downgrade(pp);
1973 			availrmem--;
1974 			off += MMU_PAGESIZE;
1975 		}
1976 	}
1977 
1978 	/*
1979 	 * When printing memory, show the total as physmem less
1980 	 * that stolen by a debugger.
1981 	 */
1982 	cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n",
1983 	    (ulong_t)(physinstalled) << (PAGESHIFT - 10),
1984 	    (ulong_t)(physinstalled) << (PAGESHIFT - 12));
1985 
1986 	avmem = (uint64_t)freemem << PAGESHIFT;
1987 	cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem);
1988 
1989 	/*
1990 	 * For small memory systems disable automatic large pages.
1991 	 */
1992 	if (physmem < privm_lpg_min_physmem) {
1993 		use_brk_lpg = 0;
1994 		use_stk_lpg = 0;
1995 	}
1996 
1997 	/*
1998 	 * Perform platform specific freelist processing
1999 	 */
2000 	if (&plat_freelist_process) {
2001 		for (mnode = 0; mnode < max_mem_nodes; mnode++)
2002 			if (mem_node_config[mnode].exists)
2003 				plat_freelist_process(mnode);
2004 	}
2005 
2006 	/*
2007 	 * Initialize the segkp segment type.  We position it
2008 	 * after the configured tables and buffers (whose end
2009 	 * is given by econtig) and before V_WKBASE_ADDR.
2010 	 * Also in this area is segkmap (size SEGMAPSIZE).
2011 	 */
2012 
2013 	/* XXX - cache alignment? */
2014 	va = (caddr_t)SEGKPBASE;
2015 	ASSERT(((uintptr_t)va & PAGEOFFSET) == 0);
2016 
2017 	max_phys_segkp = (physmem * 2);
2018 
2019 	if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) {
2020 		segkpsize = btop(SEGKPDEFSIZE);
2021 		cmn_err(CE_WARN, "Illegal value for segkpsize. "
2022 		    "segkpsize has been reset to %ld pages", segkpsize);
2023 	}
2024 
2025 	i = ptob(MIN(segkpsize, max_phys_segkp));
2026 
2027 	rw_enter(&kas.a_lock, RW_WRITER);
2028 	if (seg_attach(&kas, va, i, segkp) < 0)
2029 		cmn_err(CE_PANIC, "startup: cannot attach segkp");
2030 	if (segkp_create(segkp) != 0)
2031 		cmn_err(CE_PANIC, "startup: segkp_create failed");
2032 	rw_exit(&kas.a_lock);
2033 
2034 	/*
2035 	 * kpm segment
2036 	 */
2037 	segmap_kpm = kpm_enable &&
2038 		segmap_kpm && PAGESIZE == MAXBSIZE;
2039 
2040 	if (kpm_enable) {
2041 		rw_enter(&kas.a_lock, RW_WRITER);
2042 
2043 		/*
2044 		 * The segkpm virtual range range is larger than the
2045 		 * actual physical memory size and also covers gaps in
2046 		 * the physical address range for the following reasons:
2047 		 * . keep conversion between segkpm and physical addresses
2048 		 *   simple, cheap and unambiguous.
2049 		 * . avoid extension/shrink of the the segkpm in case of DR.
2050 		 * . avoid complexity for handling of virtual addressed
2051 		 *   caches, segkpm and the regular mapping scheme must be
2052 		 *   kept in sync wrt. the virtual color of mapped pages.
2053 		 * Any accesses to virtual segkpm ranges not backed by
2054 		 * physical memory will fall through the memseg pfn hash
2055 		 * and will be handled in segkpm_fault.
2056 		 * Additional kpm_size spaces needed for vac alias prevention.
2057 		 */
2058 		if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors,
2059 		    segkpm) < 0)
2060 			cmn_err(CE_PANIC, "cannot attach segkpm");
2061 
2062 		b.prot = PROT_READ | PROT_WRITE;
2063 		b.nvcolors = shm_alignment >> MMU_PAGESHIFT;
2064 
2065 		if (segkpm_create(segkpm, (caddr_t)&b) != 0)
2066 			panic("segkpm_create segkpm");
2067 
2068 		rw_exit(&kas.a_lock);
2069 
2070 		mach_kpm_init();
2071 	}
2072 
2073 	if (!segzio_fromheap) {
2074 		size_t size;
2075 		size_t physmem_b = mmu_ptob(physmem);
2076 
2077 		/* size is in bytes, segziosize is in pages */
2078 		if (segziosize == 0) {
2079 			size = physmem_b;
2080 		} else {
2081 			size = mmu_ptob(segziosize);
2082 		}
2083 
2084 		if (size < SEGZIOMINSIZE) {
2085 			size = SEGZIOMINSIZE;
2086 		} else if (size > SEGZIOMAXSIZE) {
2087 			size = SEGZIOMAXSIZE;
2088 			/*
2089 			 * On 64-bit x86, we only have 2TB of KVA.  This exists
2090 			 * for parity with x86.
2091 			 *
2092 			 * SEGZIOMAXSIZE is capped at 512gb so that segzio
2093 			 * doesn't consume all of KVA.  However, if we have a
2094 			 * system that has more thant 512gb of physical memory,
2095 			 * we can actually consume about half of the difference
2096 			 * between 512gb and the rest of the available physical
2097 			 * memory.
2098 			 */
2099 			if (physmem_b > SEGZIOMAXSIZE) {
2100 				size += (physmem_b - SEGZIOMAXSIZE) / 2;
2101 		}
2102 		}
2103 		segziosize = mmu_btop(roundup(size, MMU_PAGESIZE));
2104 		/* put the base of the ZIO segment after the kpm segment */
2105 		segzio_base = kpm_vbase + (kpm_size * vac_colors);
2106 		PRM_DEBUG(segziosize);
2107 		PRM_DEBUG(segzio_base);
2108 
2109 		/*
2110 		 * On some platforms, kvm_init is called after the kpm
2111 		 * sizes have been determined.  On SPARC, kvm_init is called
2112 		 * before, so we have to attach the kzioseg after kvm is
2113 		 * initialized, otherwise we'll try to allocate from the boot
2114 		 * area since the kernel heap hasn't yet been configured.
2115 		 */
2116 		rw_enter(&kas.a_lock, RW_WRITER);
2117 
2118 		(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2119 		    &kzioseg);
2120 		(void) segkmem_zio_create(&kzioseg);
2121 
2122 		/* create zio area covering new segment */
2123 		segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2124 
2125 		rw_exit(&kas.a_lock);
2126 	}
2127 
2128 
2129 	/*
2130 	 * Now create generic mapping segment.  This mapping
2131 	 * goes SEGMAPSIZE beyond SEGMAPBASE.  But if the total
2132 	 * virtual address is greater than the amount of free
2133 	 * memory that is available, then we trim back the
2134 	 * segment size to that amount
2135 	 */
2136 	va = (caddr_t)SEGMAPBASE;
2137 
2138 	/*
2139 	 * 1201049: segkmap base address must be MAXBSIZE aligned
2140 	 */
2141 	ASSERT(((uintptr_t)va & MAXBOFFSET) == 0);
2142 
2143 	/*
2144 	 * Set size of segmap to percentage of freemem at boot,
2145 	 * but stay within the allowable range
2146 	 * Note we take percentage  before converting from pages
2147 	 * to bytes to avoid an overflow on 32-bit kernels.
2148 	 */
2149 	i = mmu_ptob((freemem * segmap_percent) / 100);
2150 
2151 	if (i < MINMAPSIZE)
2152 		i = MINMAPSIZE;
2153 
2154 	if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem)))
2155 		i = MIN(SEGMAPSIZE, mmu_ptob(freemem));
2156 
2157 	i &= MAXBMASK;	/* 1201049: segkmap size must be MAXBSIZE aligned */
2158 
2159 	rw_enter(&kas.a_lock, RW_WRITER);
2160 	if (seg_attach(&kas, va, i, segkmap) < 0)
2161 		cmn_err(CE_PANIC, "cannot attach segkmap");
2162 
2163 	a.prot = PROT_READ | PROT_WRITE;
2164 	a.shmsize = shm_alignment;
2165 	a.nfreelist = 0;	/* use segmap driver defaults */
2166 
2167 	if (segmap_create(segkmap, (caddr_t)&a) != 0)
2168 		panic("segmap_create segkmap");
2169 	rw_exit(&kas.a_lock);
2170 
2171 	segdev_init();
2172 }
2173 
2174 static void
2175 startup_end(void)
2176 {
2177 	if ((caddr_t)memlist > (caddr_t)memlist_end)
2178 		panic("memlist overflow 2");
2179 	memlist_free_block((caddr_t)memlist,
2180 	    ((caddr_t)memlist_end - (caddr_t)memlist));
2181 	memlist = NULL;
2182 
2183 	/* enable page_relocation since OBP is now done */
2184 	page_relocate_ready = 1;
2185 
2186 	/*
2187 	 * Perform tasks that get done after most of the VM
2188 	 * initialization has been done but before the clock
2189 	 * and other devices get started.
2190 	 */
2191 	kern_setup1();
2192 
2193 	/*
2194 	 * Intialize the VM arenas for allocating physically
2195 	 * contiguus memory chunk for interrupt queues snd
2196 	 * allocate/register boot cpu's queues, if any and
2197 	 * allocate dump buffer for sun4v systems to store
2198 	 * extra crash information during crash dump
2199 	 */
2200 	contig_mem_init();
2201 	mach_descrip_init();
2202 	cpu_intrq_setup(CPU);
2203 	cpu_intrq_register(CPU);
2204 	mach_htraptrace_setup(CPU->cpu_id);
2205 	mach_htraptrace_configure(CPU->cpu_id);
2206 	mach_dump_buffer_init();
2207 
2208 	/*
2209 	 * Initialize interrupt related stuff
2210 	 */
2211 	cpu_intr_alloc(CPU, NINTR_THREADS);
2212 
2213 	(void) splzs();			/* allow hi clock ints but not zs */
2214 
2215 	/*
2216 	 * Initialize errors.
2217 	 */
2218 	error_init();
2219 
2220 	/*
2221 	 * Note that we may have already used kernel bcopy before this
2222 	 * point - but if you really care about this, adb the use_hw_*
2223 	 * variables to 0 before rebooting.
2224 	 */
2225 	mach_hw_copy_limit();
2226 
2227 	/*
2228 	 * Install the "real" preemption guards before DDI services
2229 	 * are available.
2230 	 */
2231 	(void) prom_set_preprom(kern_preprom);
2232 	(void) prom_set_postprom(kern_postprom);
2233 	CPU->cpu_m.mutex_ready = 1;
2234 
2235 	/*
2236 	 * Initialize segnf (kernel support for non-faulting loads).
2237 	 */
2238 	segnf_init();
2239 
2240 	/*
2241 	 * Configure the root devinfo node.
2242 	 */
2243 	configure();		/* set up devices */
2244 	mach_cpu_halt_idle();
2245 }
2246 
2247 
2248 void
2249 post_startup(void)
2250 {
2251 #ifdef	PTL1_PANIC_DEBUG
2252 	extern void init_ptl1_thread(void);
2253 #endif	/* PTL1_PANIC_DEBUG */
2254 	extern void abort_sequence_init(void);
2255 
2256 	/*
2257 	 * Set the system wide, processor-specific flags to be passed
2258 	 * to userland via the aux vector for performance hints and
2259 	 * instruction set extensions.
2260 	 */
2261 	bind_hwcap();
2262 
2263 	/*
2264 	 * Startup memory scrubber (if any)
2265 	 */
2266 	mach_memscrub();
2267 
2268 	/*
2269 	 * Allocate soft interrupt to handle abort sequence.
2270 	 */
2271 	abort_sequence_init();
2272 
2273 	/*
2274 	 * Configure the rest of the system.
2275 	 * Perform forceloading tasks for /etc/system.
2276 	 */
2277 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2278 	/*
2279 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2280 	 * ON4.0: This must be fixed or restated in /etc/systems.
2281 	 */
2282 	(void) modload("fs", "procfs");
2283 
2284 	/* load machine class specific drivers */
2285 	load_mach_drivers();
2286 
2287 	/* load platform specific drivers */
2288 	if (&load_platform_drivers)
2289 		load_platform_drivers();
2290 
2291 	/* load vis simulation module, if we are running w/fpu off */
2292 	if (!fpu_exists) {
2293 		if (modload("misc", "vis") == -1)
2294 			halt("Can't load vis");
2295 	}
2296 
2297 	mach_fpras();
2298 
2299 	maxmem = freemem;
2300 
2301 #ifdef	PTL1_PANIC_DEBUG
2302 	init_ptl1_thread();
2303 #endif	/* PTL1_PANIC_DEBUG */
2304 
2305 	if (&cif_init)
2306 		cif_init();
2307 }
2308 
2309 #ifdef	PTL1_PANIC_DEBUG
2310 int		ptl1_panic_test = 0;
2311 int		ptl1_panic_xc_one_test = 0;
2312 int		ptl1_panic_xc_all_test = 0;
2313 int		ptl1_panic_xt_one_test = 0;
2314 int		ptl1_panic_xt_all_test = 0;
2315 kthread_id_t	ptl1_thread_p = NULL;
2316 kcondvar_t	ptl1_cv;
2317 kmutex_t	ptl1_mutex;
2318 int		ptl1_recurse_count_threshold = 0x40;
2319 int		ptl1_recurse_trap_threshold = 0x3d;
2320 extern void	ptl1_recurse(int, int);
2321 extern void	ptl1_panic_xt(int, int);
2322 
2323 /*
2324  * Called once per second by timeout() to wake up
2325  * the ptl1_panic thread to see if it should cause
2326  * a trap to the ptl1_panic() code.
2327  */
2328 /* ARGSUSED */
2329 static void
2330 ptl1_wakeup(void *arg)
2331 {
2332 	mutex_enter(&ptl1_mutex);
2333 	cv_signal(&ptl1_cv);
2334 	mutex_exit(&ptl1_mutex);
2335 }
2336 
2337 /*
2338  * ptl1_panic cross call function:
2339  *     Needed because xc_one() and xc_some() can pass
2340  *	64 bit args but ptl1_recurse() expects ints.
2341  */
2342 static void
2343 ptl1_panic_xc(void)
2344 {
2345 	ptl1_recurse(ptl1_recurse_count_threshold,
2346 	    ptl1_recurse_trap_threshold);
2347 }
2348 
2349 /*
2350  * The ptl1 thread waits for a global flag to be set
2351  * and uses the recurse thresholds to set the stack depth
2352  * to cause a ptl1_panic() directly via a call to ptl1_recurse
2353  * or indirectly via the cross call and cross trap functions.
2354  *
2355  * This is useful testing stack overflows and normal
2356  * ptl1_panic() states with a know stack frame.
2357  *
2358  * ptl1_recurse() is an asm function in ptl1_panic.s that
2359  * sets the {In, Local, Out, and Global} registers to a
2360  * know state on the stack and just prior to causing a
2361  * test ptl1_panic trap.
2362  */
2363 static void
2364 ptl1_thread(void)
2365 {
2366 	mutex_enter(&ptl1_mutex);
2367 	while (ptl1_thread_p) {
2368 		cpuset_t	other_cpus;
2369 		int		cpu_id;
2370 		int		my_cpu_id;
2371 		int		target_cpu_id;
2372 		int		target_found;
2373 
2374 		if (ptl1_panic_test) {
2375 			ptl1_recurse(ptl1_recurse_count_threshold,
2376 			    ptl1_recurse_trap_threshold);
2377 		}
2378 
2379 		/*
2380 		 * Find potential targets for x-call and x-trap,
2381 		 * if any exist while preempt is disabled we
2382 		 * start a ptl1_panic if requested via a
2383 		 * globals.
2384 		 */
2385 		kpreempt_disable();
2386 		my_cpu_id = CPU->cpu_id;
2387 		other_cpus = cpu_ready_set;
2388 		CPUSET_DEL(other_cpus, CPU->cpu_id);
2389 		target_found = 0;
2390 		if (!CPUSET_ISNULL(other_cpus)) {
2391 			/*
2392 			 * Pick the first one
2393 			 */
2394 			for (cpu_id = 0; cpu_id < NCPU; cpu_id++) {
2395 				if (cpu_id == my_cpu_id)
2396 					continue;
2397 
2398 				if (CPU_XCALL_READY(cpu_id)) {
2399 					target_cpu_id = cpu_id;
2400 					target_found = 1;
2401 					break;
2402 				}
2403 			}
2404 			ASSERT(target_found);
2405 
2406 			if (ptl1_panic_xc_one_test) {
2407 				xc_one(target_cpu_id,
2408 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2409 			}
2410 			if (ptl1_panic_xc_all_test) {
2411 				xc_some(other_cpus,
2412 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2413 			}
2414 			if (ptl1_panic_xt_one_test) {
2415 				xt_one(target_cpu_id,
2416 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2417 			}
2418 			if (ptl1_panic_xt_all_test) {
2419 				xt_some(other_cpus,
2420 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2421 			}
2422 		}
2423 		kpreempt_enable();
2424 		(void) timeout(ptl1_wakeup, NULL, hz);
2425 		(void) cv_wait(&ptl1_cv, &ptl1_mutex);
2426 	}
2427 	mutex_exit(&ptl1_mutex);
2428 }
2429 
2430 /*
2431  * Called during early startup to create the ptl1_thread
2432  */
2433 void
2434 init_ptl1_thread(void)
2435 {
2436 	ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0,
2437 	    &p0, TS_RUN, 0);
2438 }
2439 #endif	/* PTL1_PANIC_DEBUG */
2440 
2441 
2442 /*
2443  * Add to a memory list.
2444  * start = start of new memory segment
2445  * len = length of new memory segment in bytes
2446  * memlistp = pointer to array of available memory segment structures
2447  * curmemlistp = memory list to which to add segment.
2448  */
2449 static void
2450 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp,
2451 	struct memlist **curmemlistp)
2452 {
2453 	struct memlist *new;
2454 
2455 	new = *memlistp;
2456 	new->address = start;
2457 	new->size = len;
2458 	*memlistp = new + 1;
2459 
2460 	memlist_insert(new, curmemlistp);
2461 }
2462 
2463 /*
2464  * In the case of architectures that support dynamic addition of
2465  * memory at run-time there are two cases where memsegs need to
2466  * be initialized and added to the memseg list.
2467  * 1) memsegs that are constructed at startup.
2468  * 2) memsegs that are constructed at run-time on
2469  *    hot-plug capable architectures.
2470  * This code was originally part of the function kphysm_init().
2471  */
2472 
2473 static void
2474 memseg_list_add(struct memseg *memsegp)
2475 {
2476 	struct memseg **prev_memsegp;
2477 	pgcnt_t num;
2478 
2479 	/* insert in memseg list, decreasing number of pages order */
2480 
2481 	num = MSEG_NPAGES(memsegp);
2482 
2483 	for (prev_memsegp = &memsegs; *prev_memsegp;
2484 	    prev_memsegp = &((*prev_memsegp)->next)) {
2485 		if (num > MSEG_NPAGES(*prev_memsegp))
2486 			break;
2487 	}
2488 
2489 	memsegp->next = *prev_memsegp;
2490 	*prev_memsegp = memsegp;
2491 
2492 	if (kpm_enable) {
2493 		memsegp->nextpa = (memsegp->next) ?
2494 			va_to_pa(memsegp->next) : MSEG_NULLPTR_PA;
2495 
2496 		if (prev_memsegp != &memsegs) {
2497 			struct memseg *msp;
2498 			msp = (struct memseg *)((caddr_t)prev_memsegp -
2499 				offsetof(struct memseg, next));
2500 			msp->nextpa = va_to_pa(memsegp);
2501 		} else {
2502 			memsegspa = va_to_pa(memsegs);
2503 		}
2504 	}
2505 }
2506 
2507 /*
2508  * PSM add_physmem_cb(). US-II and newer processors have some
2509  * flavor of the prefetch capability implemented. We exploit
2510  * this capability for optimum performance.
2511  */
2512 #define	PREFETCH_BYTES	64
2513 
2514 void
2515 add_physmem_cb(page_t *pp, pfn_t pnum)
2516 {
2517 	extern void	 prefetch_page_w(void *);
2518 
2519 	pp->p_pagenum = pnum;
2520 
2521 	/*
2522 	 * Prefetch one more page_t into E$. To prevent future
2523 	 * mishaps with the sizeof(page_t) changing on us, we
2524 	 * catch this on debug kernels if we can't bring in the
2525 	 * entire hpage with 2 PREFETCH_BYTES reads. See
2526 	 * also, sun4u/cpu/cpu_module.c
2527 	 */
2528 	/*LINTED*/
2529 	ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES);
2530 	prefetch_page_w((char *)pp);
2531 }
2532 
2533 /*
2534  * kphysm_init() tackles the problem of initializing physical memory.
2535  * The old startup made some assumptions about the kernel living in
2536  * physically contiguous space which is no longer valid.
2537  */
2538 static void
2539 kphysm_init(page_t *pp, struct memseg *memsegp, pgcnt_t npages,
2540 	uintptr_t kpm_pp, pgcnt_t kpm_npages)
2541 {
2542 	struct memlist	*pmem;
2543 	struct memseg	*msp;
2544 	pfn_t		 base;
2545 	pgcnt_t		 num;
2546 	pfn_t		 lastseg_pages_end = 0;
2547 	pgcnt_t		 nelem_used = 0;
2548 
2549 	ASSERT(page_hash != NULL && page_hashsz != 0);
2550 
2551 	msp = memsegp;
2552 	for (pmem = phys_avail; pmem && npages; pmem = pmem->next) {
2553 
2554 		/*
2555 		 * Build the memsegs entry
2556 		 */
2557 		num = btop(pmem->size);
2558 		if (num > npages)
2559 			num = npages;
2560 		npages -= num;
2561 		base = btop(pmem->address);
2562 
2563 		msp->pages = pp;
2564 		msp->epages = pp + num;
2565 		msp->pages_base = base;
2566 		msp->pages_end = base + num;
2567 
2568 		if (kpm_enable) {
2569 			pfn_t pbase_a;
2570 			pfn_t pend_a;
2571 			pfn_t prev_pend_a;
2572 			pgcnt_t	nelem;
2573 
2574 			msp->pagespa = va_to_pa(pp);
2575 			msp->epagespa = va_to_pa(pp + num);
2576 			pbase_a = kpmptop(ptokpmp(base));
2577 			pend_a = kpmptop(ptokpmp(base + num - 1)) + kpmpnpgs;
2578 			nelem = ptokpmp(pend_a - pbase_a);
2579 			msp->kpm_nkpmpgs = nelem;
2580 			msp->kpm_pbase = pbase_a;
2581 			if (lastseg_pages_end) {
2582 				/*
2583 				 * Assume phys_avail is in ascending order
2584 				 * of physical addresses.
2585 				 */
2586 				ASSERT(base + num > lastseg_pages_end);
2587 				prev_pend_a = kpmptop(
2588 				    ptokpmp(lastseg_pages_end - 1)) + kpmpnpgs;
2589 
2590 				if (prev_pend_a > pbase_a) {
2591 					/*
2592 					 * Overlap, more than one memseg may
2593 					 * point to the same kpm_page range.
2594 					 */
2595 					if (kpm_smallpages == 0) {
2596 						msp->kpm_pages =
2597 						    (kpm_page_t *)kpm_pp - 1;
2598 						kpm_pp = (uintptr_t)
2599 							((kpm_page_t *)kpm_pp
2600 							+ nelem - 1);
2601 					} else {
2602 						msp->kpm_spages =
2603 						    (kpm_spage_t *)kpm_pp - 1;
2604 						kpm_pp = (uintptr_t)
2605 							((kpm_spage_t *)kpm_pp
2606 							+ nelem - 1);
2607 					}
2608 					nelem_used += nelem - 1;
2609 
2610 				} else {
2611 					if (kpm_smallpages == 0) {
2612 						msp->kpm_pages =
2613 						    (kpm_page_t *)kpm_pp;
2614 						kpm_pp = (uintptr_t)
2615 							((kpm_page_t *)kpm_pp
2616 							+ nelem);
2617 					} else {
2618 						msp->kpm_spages =
2619 						    (kpm_spage_t *)kpm_pp;
2620 						kpm_pp = (uintptr_t)
2621 							((kpm_spage_t *)
2622 							kpm_pp + nelem);
2623 					}
2624 					nelem_used += nelem;
2625 				}
2626 
2627 			} else {
2628 				if (kpm_smallpages == 0) {
2629 					msp->kpm_pages = (kpm_page_t *)kpm_pp;
2630 					kpm_pp = (uintptr_t)
2631 						((kpm_page_t *)kpm_pp + nelem);
2632 				} else {
2633 					msp->kpm_spages = (kpm_spage_t *)kpm_pp;
2634 					kpm_pp = (uintptr_t)
2635 						((kpm_spage_t *)kpm_pp + nelem);
2636 				}
2637 				nelem_used = nelem;
2638 			}
2639 
2640 			if (nelem_used > kpm_npages)
2641 				panic("kphysm_init: kpm_pp overflow\n");
2642 
2643 			msp->kpm_pagespa = va_to_pa(msp->kpm_pages);
2644 			lastseg_pages_end = msp->pages_end;
2645 		}
2646 
2647 		memseg_list_add(msp);
2648 
2649 		/*
2650 		 * add_physmem() initializes the PSM part of the page
2651 		 * struct by calling the PSM back with add_physmem_cb().
2652 		 * In addition it coalesces pages into larger pages as
2653 		 * it initializes them.
2654 		 */
2655 		add_physmem(pp, num, base);
2656 		pp += num;
2657 		msp++;
2658 	}
2659 
2660 	build_pfn_hash();
2661 }
2662 
2663 /*
2664  * Kernel VM initialization.
2665  * Assumptions about kernel address space ordering:
2666  *	(1) gap (user space)
2667  *	(2) kernel text
2668  *	(3) kernel data/bss
2669  *	(4) gap
2670  *	(5) kernel data structures
2671  *	(6) gap
2672  *	(7) debugger (optional)
2673  *	(8) monitor
2674  *	(9) gap (possibly null)
2675  *	(10) dvma
2676  *	(11) devices
2677  */
2678 static void
2679 kvm_init(void)
2680 {
2681 	/*
2682 	 * Put the kernel segments in kernel address space.
2683 	 */
2684 	rw_enter(&kas.a_lock, RW_WRITER);
2685 	as_avlinit(&kas);
2686 
2687 	(void) seg_attach(&kas, (caddr_t)KERNELBASE,
2688 	    (size_t)(e_moddata - KERNELBASE), &ktextseg);
2689 	(void) segkmem_create(&ktextseg);
2690 
2691 	(void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M),
2692 	    (size_t)(MMU_PAGESIZE4M), &ktexthole);
2693 	(void) segkmem_create(&ktexthole);
2694 
2695 	(void) seg_attach(&kas, (caddr_t)valloc_base,
2696 	    (size_t)(econtig32 - valloc_base), &kvalloc);
2697 	(void) segkmem_create(&kvalloc);
2698 
2699 	if (kmem64_base) {
2700 	    (void) seg_attach(&kas, (caddr_t)kmem64_base,
2701 		(size_t)(kmem64_end - kmem64_base), &kmem64);
2702 	    (void) segkmem_create(&kmem64);
2703 	}
2704 
2705 	/*
2706 	 * We're about to map out /boot.  This is the beginning of the
2707 	 * system resource management transition. We can no longer
2708 	 * call into /boot for I/O or memory allocations.
2709 	 */
2710 	(void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg);
2711 	(void) segkmem_create(&kvseg);
2712 	hblk_alloc_dynamic = 1;
2713 
2714 	/*
2715 	 * we need to preallocate pages for DR operations before enabling large
2716 	 * page kernel heap because of memseg_remap_init() hat_unload() hack.
2717 	 */
2718 	memseg_remap_init();
2719 
2720 	/* at this point we are ready to use large page heap */
2721 	segkmem_heap_lp_init();
2722 
2723 	(void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32,
2724 	    &kvseg32);
2725 	(void) segkmem_create(&kvseg32);
2726 
2727 	/*
2728 	 * Create a segment for the debugger.
2729 	 */
2730 	(void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2731 	(void) segkmem_create(&kdebugseg);
2732 
2733 	rw_exit(&kas.a_lock);
2734 }
2735 
2736 char obp_tte_str[] =
2737 	"h# %x constant MMU_PAGESHIFT "
2738 	"h# %x constant TTE8K "
2739 	"h# %x constant SFHME_SIZE "
2740 	"h# %x constant SFHME_TTE "
2741 	"h# %x constant HMEBLK_TAG "
2742 	"h# %x constant HMEBLK_NEXT "
2743 	"h# %x constant HMEBLK_MISC "
2744 	"h# %x constant HMEBLK_HME1 "
2745 	"h# %x constant NHMENTS "
2746 	"h# %x constant HBLK_SZMASK "
2747 	"h# %x constant HBLK_RANGE_SHIFT "
2748 	"h# %x constant HMEBP_HBLK "
2749 	"h# %x constant HMEBUCKET_SIZE "
2750 	"h# %x constant HTAG_SFMMUPSZ "
2751 	"h# %x constant HTAG_REHASHSZ "
2752 	"h# %x constant mmu_hashcnt "
2753 	"h# %p constant uhme_hash "
2754 	"h# %p constant khme_hash "
2755 	"h# %x constant UHMEHASH_SZ "
2756 	"h# %x constant KHMEHASH_SZ "
2757 	"h# %p constant KCONTEXT "
2758 	"h# %p constant KHATID "
2759 	"h# %x constant ASI_MEM "
2760 
2761 	": PHYS-X@ ( phys -- data ) "
2762 	"   ASI_MEM spacex@ "
2763 	"; "
2764 
2765 	": PHYS-W@ ( phys -- data ) "
2766 	"   ASI_MEM spacew@ "
2767 	"; "
2768 
2769 	": PHYS-L@ ( phys -- data ) "
2770 	"   ASI_MEM spaceL@ "
2771 	"; "
2772 
2773 	": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) "
2774 	"   3 * MMU_PAGESHIFT + "
2775 	"; "
2776 
2777 	": TTE_IS_VALID ( ttep -- flag ) "
2778 	"   PHYS-X@ 0< "
2779 	"; "
2780 
2781 	": HME_HASH_SHIFT ( ttesz -- hmeshift ) "
2782 	"   dup TTE8K =  if "
2783 	"      drop HBLK_RANGE_SHIFT "
2784 	"   else "
2785 	"      TTE_PAGE_SHIFT "
2786 	"   then "
2787 	"; "
2788 
2789 	": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) "
2790 	"   tuck >> swap MMU_PAGESHIFT - << "
2791 	"; "
2792 
2793 	": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) "
2794 	"   >> over xor swap                    ( hash sfmmup ) "
2795 	"   KHATID <>  if                       ( hash ) "
2796 	"      UHMEHASH_SZ and                  ( bucket ) "
2797 	"      HMEBUCKET_SIZE * uhme_hash +     ( hmebp ) "
2798 	"   else                                ( hash ) "
2799 	"      KHMEHASH_SZ and                  ( bucket ) "
2800 	"      HMEBUCKET_SIZE * khme_hash +     ( hmebp ) "
2801 	"   then                                ( hmebp ) "
2802 	"; "
2803 
2804 	": HME_HASH_TABLE_SEARCH "
2805 	"       ( sfmmup hmebp hblktag --  sfmmup null | sfmmup hmeblkp ) "
2806 	"   >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) "
2807 	"      dup if   		( sfmmup hmeblkp ) ( r: hblktag ) "
2808 	"         dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp )	  "
2809 	"	     dup hmeblk_tag + 8 + phys-x@ 2 pick = if		  "
2810 	"		  true 	( sfmmup hmeblkp true ) ( r: hblktag )	  "
2811 	"	     else						  "
2812 	"	     	  hmeblk_next + phys-x@ false 			  "
2813 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2814 	"	     then  						  "
2815 	"	  else							  "
2816 	"	     hmeblk_next + phys-x@ false 			  "
2817 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2818 	"	  then 							  "
2819 	"      else							  "
2820 	"         true 							  "
2821 	"      then  							  "
2822 	"   until r> drop 						  "
2823 	"; "
2824 
2825 	": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) "
2826 	"   over HME_HASH_SHIFT HME_HASH_BSPAGE      ( sfmmup rehash bspage ) "
2827 	"   HTAG_REHASHSZ << or nip		     ( hblktag ) "
2828 	"; "
2829 
2830 	": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) "
2831 	"   over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and  ( hmeblkp addr ttesz ) "
2832 	"   TTE8K =  if                            ( hmeblkp addr ) "
2833 	"      MMU_PAGESHIFT >> NHMENTS 1- and     ( hmeblkp hme-index ) "
2834 	"   else                                   ( hmeblkp addr ) "
2835 	"      drop 0                              ( hmeblkp 0 ) "
2836 	"   then                                   ( hmeblkp hme-index ) "
2837 	"   SFHME_SIZE * + HMEBLK_HME1 +           ( hmep ) "
2838 	"   SFHME_TTE +                            ( ttep ) "
2839 	"; "
2840 
2841 	": unix-tte ( addr cnum -- false | tte-data true ) "
2842 	"    KCONTEXT = if                   ( addr ) "
2843 	"	KHATID                       ( addr khatid ) "
2844 	"    else                            ( addr ) "
2845 	"       drop false exit              ( false ) "
2846 	"    then "
2847 	"      ( addr khatid ) "
2848 	"      mmu_hashcnt 1+ 1  do           ( addr sfmmup ) "
2849 	"         2dup swap i HME_HASH_SHIFT  "
2850 					"( addr sfmmup sfmmup addr hmeshift ) "
2851 	"         HME_HASH_FUNCTION           ( addr sfmmup hmebp ) "
2852 	"         over i 4 pick               "
2853 				"( addr sfmmup hmebp sfmmup rehash addr ) "
2854 	"         HME_HASH_TAG                ( addr sfmmup hmebp hblktag ) "
2855 	"         HME_HASH_TABLE_SEARCH       "
2856 					"( addr sfmmup { null | hmeblkp } ) "
2857 	"         ?dup  if                    ( addr sfmmup hmeblkp ) "
2858 	"            nip swap HBLK_TO_TTEP    ( ttep ) "
2859 	"            dup TTE_IS_VALID  if     ( valid-ttep ) "
2860 	"               PHYS-X@ true          ( tte-data true ) "
2861 	"            else                     ( invalid-tte ) "
2862 	"               drop false            ( false ) "
2863 	"            then                     ( false | tte-data true ) "
2864 	"            unloop exit              ( false | tte-data true ) "
2865 	"         then                        ( addr sfmmup ) "
2866 	"      loop                           ( addr sfmmup ) "
2867 	"      2drop false                    ( false ) "
2868 	"; "
2869 ;
2870 
2871 void
2872 create_va_to_tte(void)
2873 {
2874 	char *bp;
2875 	extern int khmehash_num, uhmehash_num;
2876 	extern struct hmehash_bucket *khme_hash, *uhme_hash;
2877 
2878 #define	OFFSET(type, field)	((uintptr_t)(&((type *)0)->field))
2879 
2880 	bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP);
2881 
2882 	/*
2883 	 * Teach obp how to parse our sw ttes.
2884 	 */
2885 	(void) sprintf(bp, obp_tte_str,
2886 	    MMU_PAGESHIFT,
2887 	    TTE8K,
2888 	    sizeof (struct sf_hment),
2889 	    OFFSET(struct sf_hment, hme_tte),
2890 	    OFFSET(struct hme_blk, hblk_tag),
2891 	    OFFSET(struct hme_blk, hblk_nextpa),
2892 	    OFFSET(struct hme_blk, hblk_misc),
2893 	    OFFSET(struct hme_blk, hblk_hme),
2894 	    NHMENTS,
2895 	    HBLK_SZMASK,
2896 	    HBLK_RANGE_SHIFT,
2897 	    OFFSET(struct hmehash_bucket, hmeh_nextpa),
2898 	    sizeof (struct hmehash_bucket),
2899 	    HTAG_SFMMUPSZ,
2900 	    HTAG_REHASHSZ,
2901 	    mmu_hashcnt,
2902 	    (caddr_t)va_to_pa((caddr_t)uhme_hash),
2903 	    (caddr_t)va_to_pa((caddr_t)khme_hash),
2904 	    UHMEHASH_SZ,
2905 	    KHMEHASH_SZ,
2906 	    KCONTEXT,
2907 	    KHATID,
2908 	    ASI_MEM);
2909 	prom_interpret(bp, 0, 0, 0, 0, 0);
2910 
2911 	kobj_free(bp, MMU_PAGESIZE);
2912 }
2913 
2914 void
2915 install_va_to_tte(void)
2916 {
2917 	/*
2918 	 * advise prom that he can use unix-tte
2919 	 */
2920 	prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0);
2921 }
2922 
2923 
2924 /*
2925  * Because kmdb links prom_stdout_is_framebuffer into its own
2926  * module, we add "device-type=display" here for /os-io node, so that
2927  * prom_stdout_is_framebuffer still works corrrectly  after /os-io node
2928  * is registered into OBP.
2929  */
2930 static char *create_node =
2931 	"\" /\" find-device "
2932 	"new-device "
2933 	"\" os-io\" device-name "
2934 	"\" display\" device-type "
2935 	": cb-r/w  ( adr,len method$ -- #read/#written ) "
2936 	"   2>r swap 2 2r> ['] $callback  catch  if "
2937 	"      2drop 3drop 0 "
2938 	"   then "
2939 	"; "
2940 	": read ( adr,len -- #read ) "
2941 	"       \" read\" ['] cb-r/w catch  if  2drop 2drop -2 exit then "
2942 	"       ( retN ... ret1 N ) "
2943 	"       ?dup  if "
2944 	"               swap >r 1-  0  ?do  drop  loop  r> "
2945 	"       else "
2946 	"               -2 "
2947 	"       then "
2948 	";    "
2949 	": write ( adr,len -- #written ) "
2950 	"       \" write\" ['] cb-r/w catch  if  2drop 2drop 0 exit  then "
2951 	"       ( retN ... ret1 N ) "
2952 	"       ?dup  if "
2953 	"               swap >r 1-  0  ?do  drop  loop  r> "
2954 	"        else "
2955 	"               0 "
2956 	"       then "
2957 	"; "
2958 	": poll-tty ( -- ) ; "
2959 	": install-abort  ( -- )  ['] poll-tty d# 10 alarm ; "
2960 	": remove-abort ( -- )  ['] poll-tty 0 alarm ; "
2961 	": cb-give/take ( $method -- ) "
2962 	"       0 -rot ['] $callback catch  ?dup  if "
2963 	"               >r 2drop 2drop r> throw "
2964 	"       else "
2965 	"               0  ?do  drop  loop "
2966 	"       then "
2967 	"; "
2968 	": give ( -- )  \" exit-input\" cb-give/take ; "
2969 	": take ( -- )  \" enter-input\" cb-give/take ; "
2970 	": open ( -- ok? )  true ; "
2971 	": close ( -- ) ; "
2972 	"finish-device "
2973 	"device-end ";
2974 
2975 /*
2976  * Create the OBP input/output node (FCode serial driver).
2977  * It is needed for both USB console keyboard and for
2978  * the kernel terminal emulator.  It is too early to check for a
2979  * kernel console compatible framebuffer now, so we create this
2980  * so that we're ready if we need to enable kernel terminal emulation.
2981  *
2982  * When the USB software takes over the input device at the time
2983  * consconfig runs, OBP's stdin is redirected to this node.
2984  * Whenever the FORTH user interface is used after this switch,
2985  * the node will call back into the kernel for console input.
2986  * If a serial device such as ttya or a UART with a Type 5 keyboard
2987  * attached is used, OBP takes over the serial device when the system
2988  * goes to the debugger after the system is booted.  This sharing
2989  * of the relatively simple serial device is difficult but possible.
2990  * Sharing the USB host controller is impossible due its complexity.
2991  *
2992  * Similarly to USB keyboard input redirection, after consconfig_dacf
2993  * configures a kernel console framebuffer as the standard output
2994  * device, OBP's stdout is switched to to vector through the
2995  * /os-io node into the kernel terminal emulator.
2996  */
2997 static void
2998 startup_create_io_node(void)
2999 {
3000 	prom_interpret(create_node, 0, 0, 0, 0, 0);
3001 }
3002 
3003 
3004 static void
3005 do_prom_version_check(void)
3006 {
3007 	int i;
3008 	pnode_t node;
3009 	char buf[64];
3010 	static char drev[] = "Down-rev firmware detected%s\n"
3011 		"\tPlease upgrade to the following minimum version:\n"
3012 		"\t\t%s\n";
3013 
3014 	i = prom_version_check(buf, sizeof (buf), &node);
3015 
3016 	if (i == PROM_VER64_OK)
3017 		return;
3018 
3019 	if (i == PROM_VER64_UPGRADE) {
3020 		cmn_err(CE_WARN, drev, "", buf);
3021 
3022 #ifdef	DEBUG
3023 		prom_enter_mon();	/* Type 'go' to continue */
3024 		cmn_err(CE_WARN, "Booting with down-rev firmware\n");
3025 		return;
3026 #else
3027 		halt(0);
3028 #endif
3029 	}
3030 
3031 	/*
3032 	 * The other possibility is that this is a server running
3033 	 * good firmware, but down-rev firmware was detected on at
3034 	 * least one other cpu board. We just complain if we see
3035 	 * that.
3036 	 */
3037 	cmn_err(CE_WARN, drev, " on one or more CPU boards", buf);
3038 }
3039 
3040 static void
3041 kpm_init()
3042 {
3043 	kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT;
3044 	kpm_pgsz = 1ull << kpm_pgshft;
3045 	kpm_pgoff = kpm_pgsz - 1;
3046 	kpmp2pshft = kpm_pgshft - PAGESHIFT;
3047 	kpmpnpgs = 1 << kpmp2pshft;
3048 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
3049 }
3050 
3051 void
3052 kpm_npages_setup(int memblocks)
3053 {
3054 	/*
3055 	 * npages can be scattered in a maximum of 'memblocks'
3056 	 */
3057 	kpm_npages = ptokpmpr(npages) + memblocks;
3058 }
3059 
3060 /*
3061  * Must be defined in platform dependent code.
3062  */
3063 extern caddr_t modtext;
3064 extern size_t modtext_sz;
3065 extern caddr_t moddata;
3066 
3067 #define	HEAPTEXT_ARENA(addr)	\
3068 	((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \
3069 	(((uintptr_t)(addr) - HEAPTEXT_BASE) / \
3070 	(HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1))
3071 
3072 #define	HEAPTEXT_OVERSIZED(addr)	\
3073 	((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE)
3074 
3075 vmem_t *texthole_source[HEAPTEXT_NARENAS];
3076 vmem_t *texthole_arena[HEAPTEXT_NARENAS];
3077 kmutex_t texthole_lock;
3078 
3079 char kern_bootargs[OBP_MAXPATHLEN];
3080 
3081 void
3082 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3083 {
3084 	uintptr_t addr, limit;
3085 
3086 	addr = HEAPTEXT_BASE;
3087 	limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE;
3088 
3089 	/*
3090 	 * Before we initialize the text_arena, we want to punch holes in the
3091 	 * underlying heaptext_arena.  This guarantees that for any text
3092 	 * address we can find a text hole less than HEAPTEXT_MAPPED away.
3093 	 */
3094 	for (; addr + HEAPTEXT_UNMAPPED <= limit;
3095 	    addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) {
3096 		(void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE,
3097 		    0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED),
3098 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3099 	}
3100 
3101 	/*
3102 	 * Allocate one page at the oversize to break up the text region
3103 	 * from the oversized region.
3104 	 */
3105 	(void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0,
3106 	    (void *)limit, (void *)(limit + PAGESIZE),
3107 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3108 
3109 	*text_arena = vmem_create("module_text", modtext, modtext_sz,
3110 	    sizeof (uintptr_t), segkmem_alloc, segkmem_free,
3111 	    heaptext_arena, 0, VM_SLEEP);
3112 	*data_arena = vmem_create("module_data", moddata, MODDATA, 1,
3113 	    segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3114 }
3115 
3116 caddr_t
3117 kobj_text_alloc(vmem_t *arena, size_t size)
3118 {
3119 	caddr_t rval, better;
3120 
3121 	/*
3122 	 * First, try a sleeping allocation.
3123 	 */
3124 	rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT);
3125 
3126 	if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval))
3127 		return (rval);
3128 
3129 	/*
3130 	 * We didn't get the area that we wanted.  We're going to try to do an
3131 	 * allocation with explicit constraints.
3132 	 */
3133 	better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL,
3134 	    (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE),
3135 	    VM_NOSLEEP | VM_BESTFIT);
3136 
3137 	if (better != NULL) {
3138 		/*
3139 		 * That worked.  Free our first attempt and return.
3140 		 */
3141 		vmem_free(arena, rval, size);
3142 		return (better);
3143 	}
3144 
3145 	/*
3146 	 * That didn't work; we'll have to return our first attempt.
3147 	 */
3148 	return (rval);
3149 }
3150 
3151 caddr_t
3152 kobj_texthole_alloc(caddr_t addr, size_t size)
3153 {
3154 	int arena = HEAPTEXT_ARENA(addr);
3155 	char c[30];
3156 	uintptr_t base;
3157 
3158 	if (HEAPTEXT_OVERSIZED(addr)) {
3159 		/*
3160 		 * If this is an oversized allocation, there is no text hole
3161 		 * available for it; return NULL.
3162 		 */
3163 		return (NULL);
3164 	}
3165 
3166 	mutex_enter(&texthole_lock);
3167 
3168 	if (texthole_arena[arena] == NULL) {
3169 		ASSERT(texthole_source[arena] == NULL);
3170 
3171 		if (arena == 0) {
3172 			texthole_source[0] = vmem_create("module_text_holesrc",
3173 			    (void *)(KERNELBASE + MMU_PAGESIZE4M),
3174 			    MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL,
3175 			    0, VM_SLEEP);
3176 		} else {
3177 			base = HEAPTEXT_BASE +
3178 			    (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED);
3179 
3180 			(void) snprintf(c, sizeof (c),
3181 			    "heaptext_holesrc_%d", arena);
3182 
3183 			texthole_source[arena] = vmem_create(c, (void *)base,
3184 			    HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL,
3185 			    0, VM_SLEEP);
3186 		}
3187 
3188 		(void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena);
3189 
3190 		texthole_arena[arena] = vmem_create(c, NULL, 0,
3191 		    sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free,
3192 		    texthole_source[arena], 0, VM_SLEEP);
3193 	}
3194 
3195 	mutex_exit(&texthole_lock);
3196 
3197 	ASSERT(texthole_arena[arena] != NULL);
3198 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3199 	return (vmem_alloc(texthole_arena[arena], size,
3200 	    VM_BESTFIT | VM_NOSLEEP));
3201 }
3202 
3203 void
3204 kobj_texthole_free(caddr_t addr, size_t size)
3205 {
3206 	int arena = HEAPTEXT_ARENA(addr);
3207 
3208 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3209 	ASSERT(texthole_arena[arena] != NULL);
3210 	vmem_free(texthole_arena[arena], addr, size);
3211 }
3212