xref: /titanic_50/usr/src/uts/sun4/os/startup.c (revision d6b3210d4ed626e58d72b0c439ecba06617f963e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/machsystm.h>
30 #include <sys/archsystm.h>
31 #include <sys/vm.h>
32 #include <sys/cpu.h>
33 #include <sys/atomic.h>
34 #include <sys/reboot.h>
35 #include <sys/kdi.h>
36 #include <sys/bootconf.h>
37 #include <sys/memlist_plat.h>
38 #include <sys/memlist_impl.h>
39 #include <sys/prom_plat.h>
40 #include <sys/prom_isa.h>
41 #include <sys/autoconf.h>
42 #include <sys/intreg.h>
43 #include <sys/ivintr.h>
44 #include <sys/fpu/fpusystm.h>
45 #include <sys/iommutsb.h>
46 #include <vm/vm_dep.h>
47 #include <vm/seg_dev.h>
48 #include <vm/seg_kmem.h>
49 #include <vm/seg_kpm.h>
50 #include <vm/seg_map.h>
51 #include <vm/seg_kp.h>
52 #include <sys/sysconf.h>
53 #include <vm/hat_sfmmu.h>
54 #include <sys/kobj.h>
55 #include <sys/sun4asi.h>
56 #include <sys/clconf.h>
57 #include <sys/platform_module.h>
58 #include <sys/panic.h>
59 #include <sys/cpu_sgnblk_defs.h>
60 #include <sys/clock.h>
61 #include <sys/cmn_err.h>
62 #include <sys/promif.h>
63 #include <sys/prom_debug.h>
64 #include <sys/traptrace.h>
65 #include <sys/memnode.h>
66 #include <sys/mem_cage.h>
67 #include <sys/mmu.h>
68 
69 extern void setup_trap_table(void);
70 extern void cpu_intrq_setup(struct cpu *);
71 extern void cpu_intrq_register(struct cpu *);
72 extern void contig_mem_init(void);
73 extern void mach_dump_buffer_init(void);
74 extern void mach_descrip_init(void);
75 extern void mach_descrip_startup_fini(void);
76 extern void mach_memscrub(void);
77 extern void mach_fpras(void);
78 extern void mach_cpu_halt_idle(void);
79 extern void mach_hw_copy_limit(void);
80 extern void load_mach_drivers(void);
81 extern void load_tod_module(void);
82 #pragma weak load_tod_module
83 
84 extern int ndata_alloc_mmfsa(struct memlist *ndata);
85 #pragma weak ndata_alloc_mmfsa
86 
87 extern void cif_init(void);
88 #pragma weak cif_init
89 
90 extern void parse_idprom(void);
91 extern void add_vx_handler(char *, int, void (*)(cell_t *));
92 extern void mem_config_init(void);
93 extern void memseg_remap_init(void);
94 
95 extern void mach_kpm_init(void);
96 
97 /*
98  * External Data:
99  */
100 extern int vac_size;	/* cache size in bytes */
101 extern uint_t vac_mask;	/* VAC alignment consistency mask */
102 extern uint_t vac_colors;
103 
104 /*
105  * Global Data Definitions:
106  */
107 
108 /*
109  * XXX - Don't port this to new architectures
110  * A 3rd party volume manager driver (vxdm) depends on the symbol romp.
111  * 'romp' has no use with a prom with an IEEE 1275 client interface.
112  * The driver doesn't use the value, but it depends on the symbol.
113  */
114 void *romp;		/* veritas driver won't load without romp 4154976 */
115 /*
116  * Declare these as initialized data so we can patch them.
117  */
118 pgcnt_t physmem = 0;	/* memory size in pages, patch if you want less */
119 pgcnt_t segkpsize =
120     btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
121 uint_t segmap_percent = 12; /* Size of segmap segment */
122 
123 int use_cache = 1;		/* cache not reliable (605 bugs) with MP */
124 int vac_copyback = 1;
125 char *cache_mode = NULL;
126 int use_mix = 1;
127 int prom_debug = 0;
128 
129 struct bootops *bootops = 0;	/* passed in from boot in %o2 */
130 caddr_t boot_tba;		/* %tba at boot - used by kmdb */
131 uint_t	tba_taken_over = 0;
132 
133 caddr_t s_text;			/* start of kernel text segment */
134 caddr_t e_text;			/* end of kernel text segment */
135 caddr_t s_data;			/* start of kernel data segment */
136 caddr_t e_data;			/* end of kernel data segment */
137 
138 caddr_t modtext;		/* beginning of module text */
139 size_t	modtext_sz;		/* size of module text */
140 caddr_t moddata;		/* beginning of module data reserve */
141 caddr_t e_moddata;		/* end of module data reserve */
142 
143 /*
144  * End of first block of contiguous kernel in 32-bit virtual address space
145  */
146 caddr_t		econtig32;	/* end of first blk of contiguous kernel */
147 
148 caddr_t		ncbase;		/* beginning of non-cached segment */
149 caddr_t		ncend;		/* end of non-cached segment */
150 caddr_t		sdata;		/* beginning of data segment */
151 
152 caddr_t		extra_etva;	/* beginning of unused nucleus text */
153 pgcnt_t		extra_etpg;	/* number of pages of unused nucleus text */
154 
155 size_t	ndata_remain_sz;	/* bytes from end of data to 4MB boundary */
156 caddr_t	nalloc_base;		/* beginning of nucleus allocation */
157 caddr_t nalloc_end;		/* end of nucleus allocatable memory */
158 caddr_t valloc_base;		/* beginning of kvalloc segment	*/
159 
160 caddr_t kmem64_base;		/* base of kernel mem segment in 64-bit space */
161 caddr_t kmem64_end;		/* end of kernel mem segment in 64-bit space */
162 
163 uintptr_t shm_alignment;	/* VAC address consistency modulus */
164 struct memlist *phys_install;	/* Total installed physical memory */
165 struct memlist *phys_avail;	/* Available (unreserved) physical memory */
166 struct memlist *virt_avail;	/* Available (unmapped?) virtual memory */
167 struct memlist ndata;		/* memlist of nucleus allocatable memory */
168 int memexp_flag;		/* memory expansion card flag */
169 uint64_t ecache_flushaddr;	/* physical address used for flushing E$ */
170 pgcnt_t obp_pages;		/* Physical pages used by OBP */
171 
172 /*
173  * VM data structures
174  */
175 long page_hashsz;		/* Size of page hash table (power of two) */
176 struct page *pp_base;		/* Base of system page struct array */
177 size_t pp_sz;			/* Size in bytes of page struct array */
178 struct page **page_hash;	/* Page hash table */
179 struct seg ktextseg;		/* Segment used for kernel executable image */
180 struct seg kvalloc;		/* Segment used for "valloc" mapping */
181 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
182 struct seg ktexthole;		/* Segment used for nucleus text hole */
183 struct seg kmapseg;		/* Segment used for generic kernel mappings */
184 struct seg kpmseg;		/* Segment used for physical mapping */
185 struct seg kdebugseg;		/* Segment used for the kernel debugger */
186 
187 uintptr_t kpm_pp_base;		/* Base of system kpm_page array */
188 size_t	kpm_pp_sz;		/* Size of system kpm_page array */
189 pgcnt_t	kpm_npages;		/* How many kpm pages are managed */
190 
191 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
192 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
193 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
194 
195 int segzio_fromheap = 0;	/* zio allocations occur from heap */
196 caddr_t segzio_base;		/* Base address of segzio */
197 pgcnt_t segziosize = 0;		/* size of zio segment in pages */
198 
199 /*
200  * debugger pages (if allocated)
201  */
202 struct vnode kdebugvp;
203 
204 /*
205  * VA range available to the debugger
206  */
207 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
208 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
209 
210 /*
211  * Segment for relocated kernel structures in 64-bit large RAM kernels
212  */
213 struct seg kmem64;
214 
215 struct memseg *memseg_base;
216 size_t memseg_sz;		/* Used to translate a va to page */
217 struct vnode unused_pages_vp;
218 
219 /*
220  * VM data structures allocated early during boot.
221  */
222 size_t pagehash_sz;
223 uint64_t memlist_sz;
224 
225 char tbr_wr_addr_inited = 0;
226 
227 
228 /*
229  * Static Routines:
230  */
231 static void memlist_add(uint64_t, uint64_t, struct memlist **,
232 	struct memlist **);
233 static void kphysm_init(page_t *, struct memseg *, pgcnt_t, uintptr_t,
234 	pgcnt_t);
235 static void kvm_init(void);
236 
237 static void startup_init(void);
238 static void startup_memlist(void);
239 static void startup_modules(void);
240 static void startup_bop_gone(void);
241 static void startup_vm(void);
242 static void startup_end(void);
243 static void setup_cage_params(void);
244 static void startup_create_io_node(void);
245 
246 static pgcnt_t npages;
247 static struct memlist *memlist;
248 void *memlist_end;
249 
250 static pgcnt_t bop_alloc_pages;
251 static caddr_t hblk_base;
252 uint_t hblk_alloc_dynamic = 0;
253 uint_t hblk1_min = H1MIN;
254 uint_t hblk8_min;
255 
256 
257 /*
258  * Hooks for unsupported platforms and down-rev firmware
259  */
260 int iam_positron(void);
261 #pragma weak iam_positron
262 static void do_prom_version_check(void);
263 static void kpm_init(void);
264 static void kpm_npages_setup(int);
265 static void kpm_memseg_init(void);
266 
267 /*
268  * After receiving a thermal interrupt, this is the number of seconds
269  * to delay before shutting off the system, assuming
270  * shutdown fails.  Use /etc/system to change the delay if this isn't
271  * large enough.
272  */
273 int thermal_powerdown_delay = 1200;
274 
275 /*
276  * Used to hold off page relocations into the cage until OBP has completed
277  * its boot-time handoff of its resources to the kernel.
278  */
279 int page_relocate_ready = 0;
280 
281 /*
282  * Enable some debugging messages concerning memory usage...
283  */
284 #ifdef  DEBUGGING_MEM
285 static int debugging_mem;
286 static void
287 printmemlist(char *title, struct memlist *list)
288 {
289 	if (!debugging_mem)
290 		return;
291 
292 	printf("%s\n", title);
293 
294 	while (list) {
295 		prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n",
296 		    (uint32_t)(list->address >> 32), (uint32_t)list->address,
297 		    (uint32_t)(list->size >> 32), (uint32_t)(list->size));
298 		list = list->next;
299 	}
300 }
301 
302 void
303 printmemseg(struct memseg *memseg)
304 {
305 	if (!debugging_mem)
306 		return;
307 
308 	printf("memseg\n");
309 
310 	while (memseg) {
311 		prom_printf("\tpage = 0x%p, epage = 0x%p, "
312 		    "pfn = 0x%x, epfn = 0x%x\n",
313 		    memseg->pages, memseg->epages,
314 		    memseg->pages_base, memseg->pages_end);
315 		memseg = memseg->next;
316 	}
317 }
318 
319 #define	debug_pause(str)	halt((str))
320 #define	MPRINTF(str)		if (debugging_mem) prom_printf((str))
321 #define	MPRINTF1(str, a)	if (debugging_mem) prom_printf((str), (a))
322 #define	MPRINTF2(str, a, b)	if (debugging_mem) prom_printf((str), (a), (b))
323 #define	MPRINTF3(str, a, b, c) \
324 	if (debugging_mem) prom_printf((str), (a), (b), (c))
325 #else	/* DEBUGGING_MEM */
326 #define	MPRINTF(str)
327 #define	MPRINTF1(str, a)
328 #define	MPRINTF2(str, a, b)
329 #define	MPRINTF3(str, a, b, c)
330 #endif	/* DEBUGGING_MEM */
331 
332 /* Simple message to indicate that the bootops pointer has been zeroed */
333 #ifdef DEBUG
334 static int bootops_gone_on = 0;
335 #define	BOOTOPS_GONE() \
336 	if (bootops_gone_on) \
337 		prom_printf("The bootops vec is zeroed now!\n");
338 #else
339 #define	BOOTOPS_GONE()
340 #endif /* DEBUG */
341 
342 /*
343  * Monitor pages may not be where this says they are.
344  * and the debugger may not be there either.
345  *
346  * Note that 'pages' here are *physical* pages, which are 8k on sun4u.
347  *
348  *                        Physical memory layout
349  *                     (not necessarily contiguous)
350  *                       (THIS IS SOMEWHAT WRONG)
351  *                       /-----------------------\
352  *                       |       monitor pages   |
353  *             availmem -|-----------------------|
354  *                       |                       |
355  *                       |       page pool       |
356  *                       |                       |
357  *                       |-----------------------|
358  *                       |   configured tables   |
359  *                       |       buffers         |
360  *            firstaddr -|-----------------------|
361  *                       |   hat data structures |
362  *                       |-----------------------|
363  *                       |    kernel data, bss   |
364  *                       |-----------------------|
365  *                       |    interrupt stack    |
366  *                       |-----------------------|
367  *                       |    kernel text (RO)   |
368  *                       |-----------------------|
369  *                       |    trap table (4k)    |
370  *                       |-----------------------|
371  *               page 1  |      panicbuf         |
372  *                       |-----------------------|
373  *               page 0  |       reclaimed       |
374  *                       |_______________________|
375  *
376  *
377  *
378  *                    Kernel's Virtual Memory Layout.
379  *                       /-----------------------\
380  * 0xFFFFFFFF.FFFFFFFF  -|                       |-
381  *                       |   OBP's virtual page  |
382  *                       |        tables         |
383  * 0xFFFFFFFC.00000000  -|-----------------------|-
384  *                       :                       :
385  *                       :                       :
386  *                      -|-----------------------|-
387  *                       |       segzio          | (base and size vary)
388  * 0xFFFFFE00.00000000  -|-----------------------|-
389  *                       |                       |  Ultrasparc I/II support
390  *                       |    segkpm segment     |  up to 2TB of physical
391  *                       | (64-bit kernel ONLY)  |  memory, VAC has 2 colors
392  *                       |                       |
393  * 0xFFFFFA00.00000000  -|-----------------------|- 2TB segkpm alignment
394  *                       :                       :
395  *                       :                       :
396  * 0xFFFFF810.00000000  -|-----------------------|- hole_end
397  *                       |                       |      ^
398  *                       |  UltraSPARC I/II call |      |
399  *                       | bug requires an extra |      |
400  *                       | 4 GB of space between |      |
401  *                       |   hole and used RAM   |	|
402  *                       |                       |      |
403  * 0xFFFFF800.00000000  -|-----------------------|-     |
404  *                       |                       |      |
405  *                       | Virtual Address Hole  |   UltraSPARC
406  *                       |  on UltraSPARC I/II   |  I/II * ONLY *
407  *                       |                       |      |
408  * 0x00000800.00000000  -|-----------------------|-     |
409  *                       |                       |      |
410  *                       |  UltraSPARC I/II call |      |
411  *                       | bug requires an extra |      |
412  *                       | 4 GB of space between |      |
413  *                       |   hole and used RAM   |      |
414  *                       |                       |      v
415  * 0x000007FF.00000000  -|-----------------------|- hole_start -----
416  *                       :                       :		   ^
417  *                       :                       :		   |
418  * 0x00000XXX.XXXXXXXX  -|-----------------------|- kmem64_end	   |
419  *                       |                       |		   |
420  *                       |   64-bit kernel ONLY  |		   |
421  *                       |                       |		   |
422  *                       |    kmem64 segment     |		   |
423  *                       |                       |		   |
424  *                       | (Relocated extra HME  |	     Approximately
425  *                       |   block allocations,  |	    1 TB of virtual
426  *                       |   memnode freelists,  |	     address space
427  *                       |    HME hash buckets,  |		   |
428  *                       | mml_table, kpmp_table,|		   |
429  *                       |  page_t array and     |		   |
430  *                       |  hashblock pool to    |		   |
431  *                       |   avoid hard-coded    |		   |
432  *                       |     32-bit vaddr      |		   |
433  *                       |     limitations)      |		   |
434  *                       |                       |		   v
435  * 0x00000700.00000000  -|-----------------------|- SYSLIMIT (kmem64_base)
436  *                       |                       |
437  *                       |  segkmem segment      | (SYSLIMIT - SYSBASE = 4TB)
438  *                       |                       |
439  * 0x00000300.00000000  -|-----------------------|- SYSBASE
440  *                       :                       :
441  *                       :                       :
442  *                      -|-----------------------|-
443  *                       |                       |
444  *                       |  segmap segment       |   SEGMAPSIZE (1/8th physmem,
445  *                       |                       |               256G MAX)
446  * 0x000002a7.50000000  -|-----------------------|- SEGMAPBASE
447  *                       :                       :
448  *                       :                       :
449  *                      -|-----------------------|-
450  *                       |                       |
451  *                       |       segkp           |    SEGKPSIZE (2GB)
452  *                       |                       |
453  *                       |                       |
454  * 0x000002a1.00000000  -|-----------------------|- SEGKPBASE
455  *                       |                       |
456  * 0x000002a0.00000000  -|-----------------------|- MEMSCRUBBASE
457  *                       |                       |       (SEGKPBASE - 0x400000)
458  * 0x0000029F.FFE00000  -|-----------------------|- ARGSBASE
459  *                       |                       |       (MEMSCRUBBASE - NCARGS)
460  * 0x0000029F.FFD80000  -|-----------------------|- PPMAPBASE
461  *                       |                       |       (ARGSBASE - PPMAPSIZE)
462  * 0x0000029F.FFD00000  -|-----------------------|- PPMAP_FAST_BASE
463  *                       |                       |
464  * 0x0000029F.FF980000  -|-----------------------|- PIOMAPBASE
465  *                       |                       |
466  * 0x0000029F.FF580000  -|-----------------------|- NARG_BASE
467  *                       :                       :
468  *                       :                       :
469  * 0x00000000.FFFFFFFF  -|-----------------------|- OFW_END_ADDR
470  *                       |                       |
471  *                       |         OBP           |
472  *                       |                       |
473  * 0x00000000.F0000000  -|-----------------------|- OFW_START_ADDR
474  *                       |         kmdb          |
475  * 0x00000000.EDD00000  -|-----------------------|- SEGDEBUGBASE
476  *                       :                       :
477  *                       :                       :
478  * 0x00000000.7c000000  -|-----------------------|- SYSLIMIT32
479  *                       |                       |
480  *                       |  segkmem32 segment    | (SYSLIMIT32 - SYSBASE32 =
481  *                       |                       |    ~64MB)
482  * 0x00000000.78002000  -|-----------------------|
483  *                       |     panicbuf          |
484  * 0x00000000.78000000  -|-----------------------|- SYSBASE32
485  *                       :                       :
486  *                       :                       :
487  *                       |                       |
488  *                       |-----------------------|- econtig32
489  *                       |    vm structures      |
490  * 0x00000000.01C00000   |-----------------------|- nalloc_end
491  *                       |         TSBs          |
492  *                       |-----------------------|- end/nalloc_base
493  *                       |   kernel data & bss   |
494  * 0x00000000.01800000  -|-----------------------|
495  *                       :   nucleus text hole   :
496  * 0x00000000.01400000  -|-----------------------|
497  *                       :                       :
498  *                       |-----------------------|
499  *                       |      module text      |
500  *                       |-----------------------|- e_text/modtext
501  *                       |      kernel text      |
502  *                       |-----------------------|
503  *                       |    trap table (48k)   |
504  * 0x00000000.01000000  -|-----------------------|- KERNELBASE
505  *                       | reserved for trapstat |} TSTAT_TOTAL_SIZE
506  *                       |-----------------------|
507  *                       |                       |
508  *                       |        invalid        |
509  *                       |                       |
510  * 0x00000000.00000000  _|_______________________|
511  *
512  *
513  *
514  *                   32-bit User Virtual Memory Layout.
515  *                       /-----------------------\
516  *                       |                       |
517  *                       |        invalid        |
518  *                       |                       |
519  *          0xFFC00000  -|-----------------------|- USERLIMIT
520  *                       |       user stack      |
521  *                       :                       :
522  *                       :                       :
523  *                       :                       :
524  *                       |       user data       |
525  *                      -|-----------------------|-
526  *                       |       user text       |
527  *          0x00002000  -|-----------------------|-
528  *                       |       invalid         |
529  *          0x00000000  _|_______________________|
530  *
531  *
532  *
533  *                   64-bit User Virtual Memory Layout.
534  *                       /-----------------------\
535  *                       |                       |
536  *                       |        invalid        |
537  *                       |                       |
538  *  0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT
539  *                       |       user stack      |
540  *                       :                       :
541  *                       :                       :
542  *                       :                       :
543  *                       |       user data       |
544  *                      -|-----------------------|-
545  *                       |       user text       |
546  *  0x00000000.00100000 -|-----------------------|-
547  *                       |       invalid         |
548  *  0x00000000.00000000 _|_______________________|
549  */
550 
551 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base);
552 extern uint64_t ecache_flush_address(void);
553 
554 #pragma weak load_platform_modules
555 #pragma weak plat_startup_memlist
556 #pragma weak ecache_init_scrub_flush_area
557 #pragma weak ecache_flush_address
558 
559 
560 /*
561  * By default the DR Cage is enabled for maximum OS
562  * MPSS performance.  Users needing to disable the cage mechanism
563  * can set this variable to zero via /etc/system.
564  * Disabling the cage on systems supporting Dynamic Reconfiguration (DR)
565  * will result in loss of DR functionality.
566  * Platforms wishing to disable kernel Cage by default
567  * should do so in their set_platform_defaults() routine.
568  */
569 int	kernel_cage_enable = 1;
570 
571 static void
572 setup_cage_params(void)
573 {
574 	void (*func)(void);
575 
576 	func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0);
577 	if (func != NULL) {
578 		(*func)();
579 		return;
580 	}
581 
582 	if (kernel_cage_enable == 0) {
583 		return;
584 	}
585 	kcage_range_lock();
586 	if (kcage_range_init(phys_avail, 1) == 0) {
587 		kcage_init(total_pages / 256);
588 	}
589 	kcage_range_unlock();
590 
591 	if (kcage_on) {
592 		cmn_err(CE_NOTE, "!Kernel Cage is ENABLED");
593 	} else {
594 		cmn_err(CE_NOTE, "!Kernel Cage is DISABLED");
595 	}
596 
597 }
598 
599 /*
600  * Machine-dependent startup code
601  */
602 void
603 startup(void)
604 {
605 	startup_init();
606 	if (&startup_platform)
607 		startup_platform();
608 	startup_memlist();
609 	startup_modules();
610 	setup_cage_params();
611 	startup_bop_gone();
612 	startup_vm();
613 	startup_end();
614 }
615 
616 struct regs sync_reg_buf;
617 uint64_t sync_tt;
618 
619 void
620 sync_handler(void)
621 {
622 	struct  trap_info 	ti;
623 	int i;
624 
625 	/*
626 	 * Prevent trying to talk to the other CPUs since they are
627 	 * sitting in the prom and won't reply.
628 	 */
629 	for (i = 0; i < NCPU; i++) {
630 		if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) {
631 			cpu[i]->cpu_flags &= ~CPU_READY;
632 			cpu[i]->cpu_flags |= CPU_QUIESCED;
633 			CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
634 		}
635 	}
636 
637 	/*
638 	 * We've managed to get here without going through the
639 	 * normal panic code path. Try and save some useful
640 	 * information.
641 	 */
642 	if (!panicstr && (curthread->t_panic_trap == NULL)) {
643 		ti.trap_type = sync_tt;
644 		ti.trap_regs = &sync_reg_buf;
645 		ti.trap_addr = NULL;
646 		ti.trap_mmu_fsr = 0x0;
647 
648 		curthread->t_panic_trap = &ti;
649 	}
650 
651 	/*
652 	 * If we're re-entering the panic path, update the signature
653 	 * block so that the SC knows we're in the second part of panic.
654 	 */
655 	if (panicstr)
656 		CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
657 
658 	nopanicdebug = 1; /* do not perform debug_enter() prior to dump */
659 	panic("sync initiated");
660 }
661 
662 
663 static void
664 startup_init(void)
665 {
666 	/*
667 	 * We want to save the registers while we're still in OBP
668 	 * so that we know they haven't been fiddled with since.
669 	 * (In principle, OBP can't change them just because it
670 	 * makes a callback, but we'd rather not depend on that
671 	 * behavior.)
672 	 */
673 	char		sync_str[] =
674 		"warning @ warning off : sync "
675 		"%%tl-c %%tstate h# %p x! "
676 		"%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! "
677 		"%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! "
678 		"%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! "
679 		"%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! "
680 		"%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! "
681 		"%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! "
682 		"%%y h# %p l! %%tl-c %%tt h# %p x! "
683 		"sync ; warning !";
684 
685 	/*
686 	 * 20 == num of %p substrings
687 	 * 16 == max num of chars %p will expand to.
688 	 */
689 	char 		bp[sizeof (sync_str) + 16 * 20];
690 
691 	(void) check_boot_version(BOP_GETVERSION(bootops));
692 
693 	/*
694 	 * Initialize ptl1 stack for the 1st CPU.
695 	 */
696 	ptl1_init_cpu(&cpu0);
697 
698 	/*
699 	 * Initialize the address map for cache consistent mappings
700 	 * to random pages; must be done after vac_size is set.
701 	 */
702 	ppmapinit();
703 
704 	/*
705 	 * Initialize the PROM callback handler.
706 	 */
707 	init_vx_handler();
708 
709 	/*
710 	 * have prom call sync_callback() to handle the sync and
711 	 * save some useful information which will be stored in the
712 	 * core file later.
713 	 */
714 	(void) sprintf((char *)bp, sync_str,
715 		(void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1,
716 		(void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3,
717 		(void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5,
718 		(void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7,
719 		(void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1,
720 		(void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3,
721 		(void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5,
722 		(void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7,
723 		(void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc,
724 		(void *)&sync_reg_buf.r_y, (void *)&sync_tt);
725 	prom_interpret(bp, 0, 0, 0, 0, 0);
726 	add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler);
727 }
728 
729 static u_longlong_t *boot_physinstalled, *boot_physavail, *boot_virtavail;
730 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len;
731 
732 #define	IVSIZE	((MAXIVNUM * sizeof (intr_vec_t *)) + \
733 		(MAX_RSVD_IV * sizeof (intr_vec_t)) + \
734 		(MAX_RSVD_IVX * sizeof (intr_vecx_t)))
735 
736 /*
737  * As OBP takes up some RAM when the system boots, pages will already be "lost"
738  * to the system and reflected in npages by the time we see it.
739  *
740  * We only want to allocate kernel structures in the 64-bit virtual address
741  * space on systems with enough RAM to make the overhead of keeping track of
742  * an extra kernel memory segment worthwhile.
743  *
744  * Since OBP has already performed its memory allocations by this point, if we
745  * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map
746  * memory in the 64-bit virtual address space; otherwise keep allocations
747  * contiguous with we've mapped so far in the 32-bit virtual address space.
748  */
749 #define	MINMOVE_RAM_MB	((size_t)1900)
750 #define	MB_TO_BYTES(mb)	((mb) * 1048576ul)
751 
752 pgcnt_t	tune_npages = (pgcnt_t)
753 	(MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE);
754 
755 static void
756 startup_memlist(void)
757 {
758 	size_t alloc_sz;
759 	size_t ctrs_sz;
760 	caddr_t alloc_base;
761 	caddr_t ctrs_base, ctrs_end;
762 	caddr_t memspace;
763 	caddr_t va;
764 	int memblocks = 0;
765 	struct memlist *cur;
766 	size_t syslimit = (size_t)SYSLIMIT;
767 	size_t sysbase = (size_t)SYSBASE;
768 	int alloc_alignsize = MMU_PAGESIZE;
769 	extern void page_coloring_init(void);
770 	extern void page_set_colorequiv_arr(void);
771 
772 	/*
773 	 * Initialize enough of the system to allow kmem_alloc to work by
774 	 * calling boot to allocate its memory until the time that
775 	 * kvm_init is completed.  The page structs are allocated after
776 	 * rounding up end to the nearest page boundary; the memsegs are
777 	 * initialized and the space they use comes from the kernel heap.
778 	 * With appropriate initialization, they can be reallocated later
779 	 * to a size appropriate for the machine's configuration.
780 	 *
781 	 * At this point, memory is allocated for things that will never
782 	 * need to be freed, this used to be "valloced".  This allows a
783 	 * savings as the pages don't need page structures to describe
784 	 * them because them will not be managed by the vm system.
785 	 */
786 
787 	/*
788 	 * We're loaded by boot with the following configuration (as
789 	 * specified in the sun4u/conf/Mapfile):
790 	 *
791 	 * 	text:		4 MB chunk aligned on a 4MB boundary
792 	 * 	data & bss:	4 MB chunk aligned on a 4MB boundary
793 	 *
794 	 * These two chunks will eventually be mapped by 2 locked 4MB
795 	 * ttes and will represent the nucleus of the kernel.  This gives
796 	 * us some free space that is already allocated, some or all of
797 	 * which is made available to kernel module text.
798 	 *
799 	 * The free space in the data-bss chunk is used for nucleus
800 	 * allocatable data structures and we reserve it using the
801 	 * nalloc_base and nalloc_end variables.  This space is currently
802 	 * being used for hat data structures required for tlb miss
803 	 * handling operations.  We align nalloc_base to a l2 cache
804 	 * linesize because this is the line size the hardware uses to
805 	 * maintain cache coherency.
806 	 * 256K is carved out for module data.
807 	 */
808 
809 	nalloc_base = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE);
810 	moddata = nalloc_base;
811 	e_moddata = nalloc_base + MODDATA;
812 	nalloc_base = e_moddata;
813 
814 	nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M);
815 	valloc_base = nalloc_base;
816 
817 	/*
818 	 * Calculate the start of the data segment.
819 	 */
820 	sdata = (caddr_t)((uintptr_t)e_data & MMU_PAGEMASK4M);
821 
822 	PRM_DEBUG(moddata);
823 	PRM_DEBUG(nalloc_base);
824 	PRM_DEBUG(nalloc_end);
825 	PRM_DEBUG(sdata);
826 
827 	/*
828 	 * Remember any slop after e_text so we can give it to the modules.
829 	 */
830 	PRM_DEBUG(e_text);
831 	modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE);
832 	if (((uintptr_t)modtext & MMU_PAGEMASK4M) != (uintptr_t)s_text)
833 		panic("nucleus text overflow");
834 	modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) -
835 	    modtext;
836 	PRM_DEBUG(modtext);
837 	PRM_DEBUG(modtext_sz);
838 
839 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
840 	    &boot_physavail, &boot_physavail_len,
841 	    &boot_virtavail, &boot_virtavail_len);
842 	/*
843 	 * Remember what the physically available highest page is
844 	 * so that dumpsys works properly, and find out how much
845 	 * memory is installed.
846 	 */
847 	installed_top_size_memlist_array(boot_physinstalled,
848 	    boot_physinstalled_len, &physmax, &physinstalled);
849 	PRM_DEBUG(physinstalled);
850 	PRM_DEBUG(physmax);
851 
852 	/* Fill out memory nodes config structure */
853 	startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len);
854 
855 	/*
856 	 * Get the list of physically available memory to size
857 	 * the number of page structures needed.
858 	 */
859 	size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks);
860 	/*
861 	 * This first snap shot of npages can represent the pages used
862 	 * by OBP's text and data approximately. This is used in the
863 	 * the calculation of the kernel size
864 	 */
865 	obp_pages = physinstalled - npages;
866 
867 
868 	/*
869 	 * On small-memory systems (<MODTEXT_SM_SIZE MB, currently 256MB), the
870 	 * in-nucleus module text is capped to MODTEXT_SM_CAP bytes (currently
871 	 * 2MB) and any excess pages are put on physavail.  The assumption is
872 	 * that small-memory systems will need more pages more than they'll
873 	 * need efficiently-mapped module texts.
874 	 */
875 	if ((physinstalled < mmu_btop(MODTEXT_SM_SIZE << 20)) &&
876 	    modtext_sz > MODTEXT_SM_CAP) {
877 		extra_etpg = mmu_btop(modtext_sz - MODTEXT_SM_CAP);
878 		modtext_sz = MODTEXT_SM_CAP;
879 	} else
880 		extra_etpg = 0;
881 	PRM_DEBUG(extra_etpg);
882 	PRM_DEBUG(modtext_sz);
883 	extra_etva = modtext + modtext_sz;
884 	PRM_DEBUG(extra_etva);
885 
886 	/*
887 	 * Account for any pages after e_text and e_data.
888 	 */
889 	npages += extra_etpg;
890 	npages += mmu_btopr(nalloc_end - nalloc_base);
891 	PRM_DEBUG(npages);
892 
893 	/*
894 	 * npages is the maximum of available physical memory possible.
895 	 * (ie. it will never be more than this)
896 	 */
897 
898 	/*
899 	 * initialize the nucleus memory allocator.
900 	 */
901 	ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end);
902 
903 	/*
904 	 * Allocate mmu fault status area from the nucleus data area.
905 	 */
906 	if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0))
907 		cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc");
908 
909 	/*
910 	 * Allocate kernel TSBs from the nucleus data area.
911 	 */
912 	if (ndata_alloc_tsbs(&ndata, npages) != 0)
913 		cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc");
914 
915 	/*
916 	 * Allocate dmv dispatch table from the nucleus data area.
917 	 */
918 	if (ndata_alloc_dmv(&ndata) != 0)
919 		cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc");
920 
921 
922 	page_coloring_init();
923 
924 	/*
925 	 * Allocate page_freelists bin headers for memnode 0 from the
926 	 * nucleus data area.
927 	 */
928 	if (ndata_alloc_page_freelists(&ndata, 0) != 0)
929 		cmn_err(CE_PANIC,
930 		    "no more nucleus memory after page free lists alloc");
931 
932 	if (kpm_enable) {
933 		kpm_init();
934 		/*
935 		 * kpm page space -- Update kpm_npages and make the
936 		 * same assumption about fragmenting as it is done
937 		 * for memseg_sz.
938 		 */
939 		kpm_npages_setup(memblocks + 4);
940 	}
941 
942 	/*
943 	 * Allocate hat related structs from the nucleus data area.
944 	 */
945 	if (ndata_alloc_hat(&ndata, npages, kpm_npages) != 0)
946 		cmn_err(CE_PANIC, "no more nucleus memory after hat alloc");
947 
948 	/*
949 	 * We want to do the BOP_ALLOCs before the real allocation of page
950 	 * structs in order to not have to allocate page structs for this
951 	 * memory.  We need to calculate a virtual address because we want
952 	 * the page structs to come before other allocations in virtual address
953 	 * space.  This is so some (if not all) of page structs can actually
954 	 * live in the nucleus.
955 	 */
956 
957 	/*
958 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
959 	 *
960 	 * There are comments all over the SFMMU code warning of dire
961 	 * consequences if the TSBs are moved out of 32-bit space.  This
962 	 * is largely because the asm code uses "sethi %hi(addr)"-type
963 	 * instructions which will not provide the expected result if the
964 	 * address is a 64-bit one.
965 	 *
966 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
967 	 */
968 	alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE);
969 	alloc_base = sfmmu_ktsb_alloc(alloc_base);
970 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
971 	PRM_DEBUG(alloc_base);
972 
973 	/*
974 	 * Allocate IOMMU TSB array.  We do this here so that the physical
975 	 * memory gets deducted from the PROM's physical memory list.
976 	 */
977 	alloc_base = iommu_tsb_init(alloc_base);
978 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
979 	    ecache_alignsize);
980 	PRM_DEBUG(alloc_base);
981 
982 	/*
983 	 * Platforms like Starcat and OPL need special structures assigned in
984 	 * 32-bit virtual address space because their probing routines execute
985 	 * FCode, and FCode can't handle 64-bit virtual addresses...
986 	 */
987 	if (&plat_startup_memlist) {
988 		alloc_base = plat_startup_memlist(alloc_base);
989 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
990 		    ecache_alignsize);
991 		PRM_DEBUG(alloc_base);
992 	}
993 
994 	/*
995 	 * If we have enough memory, use 4M pages for alignment because it
996 	 * greatly reduces the number of TLB misses we take albeit at the cost
997 	 * of possible RAM wastage (degenerate case of 4 MB - MMU_PAGESIZE per
998 	 * allocation.) Still, the speedup on large memory systems (e.g. > 64
999 	 * GB) is quite noticeable, so it is worth the effort to do if we can.
1000 	 *
1001 	 * Note, however, that this speedup will only occur if the boot PROM
1002 	 * uses the largest possible MMU page size possible to map memory
1003 	 * requests that are properly aligned and sized (for example, a request
1004 	 * for a multiple of 4MB of memory aligned to a 4MB boundary will
1005 	 * result in a mapping using a 4MB MMU page.)
1006 	 *
1007 	 * Even then, the large page mappings will only speed things up until
1008 	 * the startup process proceeds a bit further, as when
1009 	 * sfmmu_map_prom_mappings() copies page mappings from the PROM to the
1010 	 * kernel it remaps everything but the TSBs using 8K pages anyway...
1011 	 *
1012 	 * At some point in the future, sfmmu_map_prom_mappings() will be
1013 	 * rewritten to copy memory mappings to the kernel using the same MMU
1014 	 * page sizes the PROM used.  When that occurs, if the PROM did use
1015 	 * large MMU pages to map memory, the alignment/sizing work we're
1016 	 * doing now should give us a nice extra performance boost, albeit at
1017 	 * the cost of greater RAM usage...
1018 	 */
1019 	alloc_alignsize = ((npages >= tune_npages) ? MMU_PAGESIZE4M :
1020 	    MMU_PAGESIZE);
1021 
1022 	PRM_DEBUG(tune_npages);
1023 	PRM_DEBUG(alloc_alignsize);
1024 
1025 	/*
1026 	 * Save off where the contiguous allocations to date have ended
1027 	 * in econtig32.
1028 	 */
1029 	econtig32 = alloc_base;
1030 	PRM_DEBUG(econtig32);
1031 
1032 	if (econtig32 > (caddr_t)KERNEL_LIMIT32)
1033 		cmn_err(CE_PANIC, "econtig32 too big");
1034 
1035 	/*
1036 	 * To avoid memory allocation collisions in the 32-bit virtual address
1037 	 * space, make allocations from this point forward in 64-bit virtual
1038 	 * address space starting at syslimit and working up.  Also use the
1039 	 * alignment specified by alloc_alignsize, as we may be able to save
1040 	 * ourselves TLB misses by using larger page sizes if they're
1041 	 * available.
1042 	 *
1043 	 * All this is needed because on large memory systems, the default
1044 	 * Solaris allocations will collide with SYSBASE32, which is hard
1045 	 * coded to be at the virtual address 0x78000000.  Therefore, on 64-bit
1046 	 * kernels, move the allocations to a location in the 64-bit virtual
1047 	 * address space space, allowing those structures to grow without
1048 	 * worry.
1049 	 *
1050 	 * On current CPUs we'll run out of physical memory address bits before
1051 	 * we need to worry about the allocations running into anything else in
1052 	 * VM or the virtual address holes on US-I and II, as there's currently
1053 	 * about 1 TB of addressable space before the US-I/II VA hole.
1054 	 */
1055 	kmem64_base = (caddr_t)syslimit;
1056 	PRM_DEBUG(kmem64_base);
1057 
1058 	alloc_base = (caddr_t)roundup((uintptr_t)kmem64_base, alloc_alignsize);
1059 
1060 	/*
1061 	 * If KHME and/or UHME hash buckets won't fit in the nucleus, allocate
1062 	 * them here.
1063 	 */
1064 	if (khme_hash == NULL || uhme_hash == NULL) {
1065 		/*
1066 		 * alloc_hme_buckets() will align alloc_base properly before
1067 		 * assigning the hash buckets, so we don't need to do it
1068 		 * before the call...
1069 		 */
1070 		alloc_base = alloc_hme_buckets(alloc_base, alloc_alignsize);
1071 
1072 		PRM_DEBUG(alloc_base);
1073 		PRM_DEBUG(khme_hash);
1074 		PRM_DEBUG(uhme_hash);
1075 	}
1076 
1077 	/*
1078 	 * Allocate the remaining page freelists.  NUMA systems can
1079 	 * have lots of page freelists, one per node, which quickly
1080 	 * outgrow the amount of nucleus memory available.
1081 	 */
1082 	if (max_mem_nodes > 1) {
1083 		int mnode;
1084 		caddr_t alloc_start = alloc_base;
1085 
1086 		for (mnode = 1; mnode < max_mem_nodes; mnode++) {
1087 			alloc_base = alloc_page_freelists(mnode, alloc_base,
1088 				ecache_alignsize);
1089 		}
1090 
1091 		if (alloc_base > alloc_start) {
1092 			alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1093 				alloc_alignsize);
1094 			if ((caddr_t)BOP_ALLOC(bootops, alloc_start,
1095 				alloc_base - alloc_start,
1096 				alloc_alignsize) != alloc_start)
1097 				cmn_err(CE_PANIC,
1098 					"Unable to alloc page freelists\n");
1099 		}
1100 
1101 		PRM_DEBUG(alloc_base);
1102 	}
1103 
1104 	if (!mml_table) {
1105 		size_t mmltable_sz;
1106 
1107 		/*
1108 		 * We need to allocate the mml_table here because there
1109 		 * was not enough space within the nucleus.
1110 		 */
1111 		mmltable_sz = sizeof (kmutex_t) * mml_table_sz;
1112 		alloc_sz = roundup(mmltable_sz, alloc_alignsize);
1113 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1114 		    alloc_alignsize);
1115 
1116 		if ((mml_table = (kmutex_t *)BOP_ALLOC(bootops, alloc_base,
1117 		    alloc_sz, alloc_alignsize)) != (kmutex_t *)alloc_base)
1118 			panic("mml_table alloc failure");
1119 
1120 		alloc_base += alloc_sz;
1121 		PRM_DEBUG(mml_table);
1122 		PRM_DEBUG(alloc_base);
1123 	}
1124 
1125 	if (kpm_enable && !(kpmp_table || kpmp_stable)) {
1126 		size_t kpmptable_sz;
1127 		caddr_t table;
1128 
1129 		/*
1130 		 * We need to allocate either kpmp_table or kpmp_stable here
1131 		 * because there was not enough space within the nucleus.
1132 		 */
1133 		kpmptable_sz = (kpm_smallpages == 0) ?
1134 				sizeof (kpm_hlk_t) * kpmp_table_sz :
1135 				sizeof (kpm_shlk_t) * kpmp_stable_sz;
1136 
1137 		alloc_sz = roundup(kpmptable_sz, alloc_alignsize);
1138 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1139 		    alloc_alignsize);
1140 
1141 		table = BOP_ALLOC(bootops, alloc_base, alloc_sz,
1142 				alloc_alignsize);
1143 
1144 		if (table != alloc_base)
1145 			panic("kpmp_table or kpmp_stable alloc failure");
1146 
1147 		if (kpm_smallpages == 0) {
1148 			kpmp_table = (kpm_hlk_t *)table;
1149 			PRM_DEBUG(kpmp_table);
1150 		} else {
1151 			kpmp_stable = (kpm_shlk_t *)table;
1152 			PRM_DEBUG(kpmp_stable);
1153 		}
1154 
1155 		alloc_base += alloc_sz;
1156 		PRM_DEBUG(alloc_base);
1157 	}
1158 
1159 	if (&ecache_init_scrub_flush_area) {
1160 		/*
1161 		 * Pass alloc_base directly, as the routine itself is
1162 		 * responsible for any special alignment requirements...
1163 		 */
1164 		alloc_base = ecache_init_scrub_flush_area(alloc_base);
1165 		PRM_DEBUG(alloc_base);
1166 	}
1167 
1168 	/*
1169 	 * Take the most current snapshot we can by calling mem-update.
1170 	 */
1171 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1172 	    &boot_physavail, &boot_physavail_len,
1173 	    &boot_virtavail, &boot_virtavail_len);
1174 
1175 	/*
1176 	 * Reset npages and memblocks based on boot_physavail list.
1177 	 */
1178 	size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks);
1179 	PRM_DEBUG(npages);
1180 
1181 	/*
1182 	 * Account for extra memory after e_text.
1183 	 */
1184 	npages += extra_etpg;
1185 
1186 	/*
1187 	 * Calculate the largest free memory chunk in the nucleus data area.
1188 	 * We need to figure out if page structs can fit in there or not.
1189 	 * We also make sure enough page structs get created for any physical
1190 	 * memory we might be returning to the system.
1191 	 */
1192 	ndata_remain_sz = ndata_maxsize(&ndata);
1193 	PRM_DEBUG(ndata_remain_sz);
1194 
1195 	pp_sz = sizeof (struct page) * npages;
1196 
1197 	/*
1198 	 * Here's a nice bit of code based on somewhat recursive logic:
1199 	 *
1200 	 * If the page array would fit within the nucleus, we want to
1201 	 * add npages to cover any extra memory we may be returning back
1202 	 * to the system.
1203 	 *
1204 	 * HOWEVER, the page array is sized by calculating the size of
1205 	 * (struct page * npages), as are the pagehash table, ctrs and
1206 	 * memseg_list, so the very act of performing the calculation below may
1207 	 * in fact make the array large enough that it no longer fits in the
1208 	 * nucleus, meaning there would now be a much larger area of the
1209 	 * nucleus free that should really be added to npages, which would
1210 	 * make the page array that much larger, and so on.
1211 	 *
1212 	 * This also ignores the memory possibly used in the nucleus for the
1213 	 * the page hash, ctrs and memseg list and the fact that whether they
1214 	 * fit there or not varies with the npages calculation below, but we
1215 	 * don't even factor them into the equation at this point; perhaps we
1216 	 * should or perhaps we should just take the approach that the few
1217 	 * extra pages we could add via this calculation REALLY aren't worth
1218 	 * the hassle...
1219 	 */
1220 	if (ndata_remain_sz > pp_sz) {
1221 		size_t spare = ndata_spare(&ndata, pp_sz, ecache_alignsize);
1222 
1223 		npages += mmu_btop(spare);
1224 
1225 		pp_sz = npages * sizeof (struct page);
1226 
1227 		pp_base = ndata_alloc(&ndata, pp_sz, ecache_alignsize);
1228 	}
1229 
1230 	/*
1231 	 * If physmem is patched to be non-zero, use it instead of
1232 	 * the monitor value unless physmem is larger than the total
1233 	 * amount of memory on hand.
1234 	 */
1235 	if (physmem == 0 || physmem > npages)
1236 		physmem = npages;
1237 
1238 	/*
1239 	 * If pp_base is NULL that means the routines above have determined
1240 	 * the page array will not fit in the nucleus; we'll have to
1241 	 * BOP_ALLOC() ourselves some space for them.
1242 	 */
1243 	if (pp_base == NULL) {
1244 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1245 		    alloc_alignsize);
1246 
1247 		alloc_sz = roundup(pp_sz, alloc_alignsize);
1248 
1249 		if ((pp_base = (struct page *)BOP_ALLOC(bootops,
1250 		    alloc_base, alloc_sz, alloc_alignsize)) !=
1251 		    (struct page *)alloc_base)
1252 			panic("page alloc failure");
1253 
1254 		alloc_base += alloc_sz;
1255 	}
1256 
1257 	/*
1258 	 * The page structure hash table size is a power of 2
1259 	 * such that the average hash chain length is PAGE_HASHAVELEN.
1260 	 */
1261 	page_hashsz = npages / PAGE_HASHAVELEN;
1262 	page_hashsz = 1 << highbit((ulong_t)page_hashsz);
1263 	pagehash_sz = sizeof (struct page *) * page_hashsz;
1264 
1265 	/*
1266 	 * We want to TRY to fit the page structure hash table,
1267 	 * the page size free list counters, the memseg list and
1268 	 * and the kpm page space in the nucleus if possible.
1269 	 *
1270 	 * alloc_sz counts how much memory needs to be allocated by
1271 	 * BOP_ALLOC().
1272 	 */
1273 	page_hash = ndata_alloc(&ndata, pagehash_sz, ecache_alignsize);
1274 
1275 	alloc_sz = (page_hash == NULL ? pagehash_sz : 0);
1276 
1277 	/*
1278 	 * Size up per page size free list counters.
1279 	 */
1280 	ctrs_sz = page_ctrs_sz();
1281 	ctrs_base = ndata_alloc(&ndata, ctrs_sz, ecache_alignsize);
1282 
1283 	if (ctrs_base == NULL)
1284 		alloc_sz = roundup(alloc_sz, ecache_alignsize) + ctrs_sz;
1285 
1286 	/*
1287 	 * The memseg list is for the chunks of physical memory that
1288 	 * will be managed by the vm system.  The number calculated is
1289 	 * a guess as boot may fragment it more when memory allocations
1290 	 * are made before kphysm_init().  Currently, there are two
1291 	 * allocations before then, so we assume each causes fragmen-
1292 	 * tation, and add a couple more for good measure.
1293 	 */
1294 	memseg_sz = sizeof (struct memseg) * (memblocks + 4);
1295 	memseg_base = ndata_alloc(&ndata, memseg_sz, ecache_alignsize);
1296 
1297 	if (memseg_base == NULL)
1298 		alloc_sz = roundup(alloc_sz, ecache_alignsize) + memseg_sz;
1299 
1300 
1301 	if (kpm_enable) {
1302 		/*
1303 		 * kpm page space -- Update kpm_npages and make the
1304 		 * same assumption about fragmenting as it is done
1305 		 * for memseg_sz above.
1306 		 */
1307 		kpm_npages_setup(memblocks + 4);
1308 		kpm_pp_sz = (kpm_smallpages == 0) ?
1309 				kpm_npages * sizeof (kpm_page_t):
1310 				kpm_npages * sizeof (kpm_spage_t);
1311 
1312 		kpm_pp_base = (uintptr_t)ndata_alloc(&ndata, kpm_pp_sz,
1313 		    ecache_alignsize);
1314 
1315 		if (kpm_pp_base == NULL)
1316 			alloc_sz = roundup(alloc_sz, ecache_alignsize) +
1317 			    kpm_pp_sz;
1318 	}
1319 
1320 	if (alloc_sz > 0) {
1321 		uintptr_t bop_base;
1322 
1323 		/*
1324 		 * We need extra memory allocated through BOP_ALLOC.
1325 		 */
1326 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1327 		    alloc_alignsize);
1328 
1329 		alloc_sz = roundup(alloc_sz, alloc_alignsize);
1330 
1331 		if ((bop_base = (uintptr_t)BOP_ALLOC(bootops, alloc_base,
1332 		    alloc_sz, alloc_alignsize)) != (uintptr_t)alloc_base)
1333 			panic("system page struct alloc failure");
1334 
1335 		alloc_base += alloc_sz;
1336 
1337 		if (page_hash == NULL) {
1338 			page_hash = (struct page **)bop_base;
1339 			bop_base = roundup(bop_base + pagehash_sz,
1340 			    ecache_alignsize);
1341 		}
1342 
1343 		if (ctrs_base == NULL) {
1344 			ctrs_base = (caddr_t)bop_base;
1345 			bop_base = roundup(bop_base + ctrs_sz,
1346 			    ecache_alignsize);
1347 		}
1348 
1349 		if (memseg_base == NULL) {
1350 			memseg_base = (struct memseg *)bop_base;
1351 			bop_base = roundup(bop_base + memseg_sz,
1352 			    ecache_alignsize);
1353 		}
1354 
1355 		if (kpm_enable && kpm_pp_base == NULL) {
1356 			kpm_pp_base = (uintptr_t)bop_base;
1357 			bop_base = roundup(bop_base + kpm_pp_sz,
1358 			    ecache_alignsize);
1359 		}
1360 
1361 		ASSERT(bop_base <= (uintptr_t)alloc_base);
1362 	}
1363 
1364 	/*
1365 	 * Initialize per page size free list counters.
1366 	 */
1367 	ctrs_end = page_ctrs_alloc(ctrs_base);
1368 	ASSERT(ctrs_base + ctrs_sz >= ctrs_end);
1369 
1370 	PRM_DEBUG(page_hash);
1371 	PRM_DEBUG(memseg_base);
1372 	PRM_DEBUG(kpm_pp_base);
1373 	PRM_DEBUG(kpm_pp_sz);
1374 	PRM_DEBUG(pp_base);
1375 	PRM_DEBUG(pp_sz);
1376 	PRM_DEBUG(alloc_base);
1377 
1378 #ifdef	TRAPTRACE
1379 	/*
1380 	 * Allocate trap trace buffer last so as not to affect
1381 	 * the 4M alignments of the allocations above on V9 SPARCs...
1382 	 */
1383 	alloc_base = trap_trace_alloc(alloc_base);
1384 	PRM_DEBUG(alloc_base);
1385 #endif	/* TRAPTRACE */
1386 
1387 	if (kmem64_base) {
1388 		/*
1389 		 * Set the end of the kmem64 segment for V9 SPARCs, if
1390 		 * appropriate...
1391 		 */
1392 		kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base,
1393 		    alloc_alignsize);
1394 
1395 		PRM_DEBUG(kmem64_base);
1396 		PRM_DEBUG(kmem64_end);
1397 	}
1398 
1399 	/*
1400 	 * Allocate space for the interrupt vector table and also for the
1401 	 * reserved interrupt vector data structures.
1402 	 */
1403 	memspace = (caddr_t)BOP_ALLOC(bootops, (caddr_t)intr_vec_table,
1404 	    IVSIZE, MMU_PAGESIZE);
1405 	if (memspace != (caddr_t)intr_vec_table)
1406 		panic("interrupt vector table allocation failure");
1407 
1408 	/*
1409 	 * The memory lists from boot are allocated from the heap arena
1410 	 * so that later they can be freed and/or reallocated.
1411 	 */
1412 	if (BOP_GETPROP(bootops, "extent", &memlist_sz) == -1)
1413 		panic("could not retrieve property \"extent\"");
1414 
1415 	/*
1416 	 * Between now and when we finish copying in the memory lists,
1417 	 * allocations happen so the space gets fragmented and the
1418 	 * lists longer.  Leave enough space for lists twice as long
1419 	 * as what boot says it has now; roundup to a pagesize.
1420 	 * Also add space for the final phys-avail copy in the fixup
1421 	 * routine.
1422 	 */
1423 	va = (caddr_t)(sysbase + PAGESIZE + PANICBUFSIZE +
1424 	    roundup(IVSIZE, MMU_PAGESIZE));
1425 	memlist_sz *= 4;
1426 	memlist_sz = roundup(memlist_sz, MMU_PAGESIZE);
1427 	memspace = (caddr_t)BOP_ALLOC(bootops, va, memlist_sz, BO_NO_ALIGN);
1428 	if (memspace == NULL)
1429 		halt("Boot allocation failed.");
1430 
1431 	memlist = (struct memlist *)memspace;
1432 	memlist_end = (char *)memspace + memlist_sz;
1433 
1434 	PRM_DEBUG(memlist);
1435 	PRM_DEBUG(memlist_end);
1436 	PRM_DEBUG(sysbase);
1437 	PRM_DEBUG(syslimit);
1438 
1439 	kernelheap_init((void *)sysbase, (void *)syslimit,
1440 	    (caddr_t)sysbase + PAGESIZE, NULL, NULL);
1441 
1442 	/*
1443 	 * Take the most current snapshot we can by calling mem-update.
1444 	 */
1445 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1446 	    &boot_physavail, &boot_physavail_len,
1447 	    &boot_virtavail, &boot_virtavail_len);
1448 
1449 	/*
1450 	 * Remove the space used by BOP_ALLOC from the kernel heap
1451 	 * plus the area actually used by the OBP (if any)
1452 	 * ignoring virtual addresses in virt_avail, above syslimit.
1453 	 */
1454 	virt_avail = memlist;
1455 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1456 
1457 	for (cur = virt_avail; cur->next; cur = cur->next) {
1458 		uint64_t range_base, range_size;
1459 
1460 		if ((range_base = cur->address + cur->size) < (uint64_t)sysbase)
1461 			continue;
1462 		if (range_base >= (uint64_t)syslimit)
1463 			break;
1464 		/*
1465 		 * Limit the range to end at syslimit.
1466 		 */
1467 		range_size = MIN(cur->next->address,
1468 		    (uint64_t)syslimit) - range_base;
1469 		(void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE,
1470 		    0, 0, (void *)range_base, (void *)(range_base + range_size),
1471 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1472 	}
1473 
1474 	phys_avail = memlist;
1475 	(void) copy_physavail(boot_physavail, boot_physavail_len,
1476 	    &memlist, 0, 0);
1477 
1478 	/*
1479 	 * Add any extra memory after e_text to the phys_avail list, as long
1480 	 * as there's at least a page to add.
1481 	 */
1482 	if (extra_etpg)
1483 		memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg),
1484 		    &memlist, &phys_avail);
1485 
1486 	/*
1487 	 * Add any extra memory after e_data to the phys_avail list as long
1488 	 * as there's at least a page to add.  Usually, there isn't any,
1489 	 * since extra HME blocks typically get allocated there first before
1490 	 * using RAM elsewhere.
1491 	 */
1492 	if ((nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE)) == NULL)
1493 		nalloc_base = nalloc_end;
1494 	ndata_remain_sz = nalloc_end - nalloc_base;
1495 
1496 	if (ndata_remain_sz >= MMU_PAGESIZE)
1497 		memlist_add(va_to_pa(nalloc_base),
1498 		    (uint64_t)ndata_remain_sz, &memlist, &phys_avail);
1499 
1500 	PRM_DEBUG(memlist);
1501 	PRM_DEBUG(memlist_sz);
1502 	PRM_DEBUG(memspace);
1503 
1504 	if ((caddr_t)memlist > (memspace + memlist_sz))
1505 		panic("memlist overflow");
1506 
1507 	PRM_DEBUG(pp_base);
1508 	PRM_DEBUG(memseg_base);
1509 	PRM_DEBUG(npages);
1510 
1511 	/*
1512 	 * Initialize the page structures from the memory lists.
1513 	 */
1514 	kphysm_init(pp_base, memseg_base, npages, kpm_pp_base, kpm_npages);
1515 
1516 	availrmem_initial = availrmem = freemem;
1517 	PRM_DEBUG(availrmem);
1518 
1519 	/*
1520 	 * Some of the locks depend on page_hashsz being set!
1521 	 * kmem_init() depends on this; so, keep it here.
1522 	 */
1523 	page_lock_init();
1524 
1525 	/*
1526 	 * Initialize kernel memory allocator.
1527 	 */
1528 	kmem_init();
1529 
1530 	/*
1531 	 * Factor in colorequiv to check additional 'equivalent' bins
1532 	 */
1533 	page_set_colorequiv_arr();
1534 
1535 	/*
1536 	 * Initialize bp_mapin().
1537 	 */
1538 	bp_init(shm_alignment, HAT_STRICTORDER);
1539 
1540 	/*
1541 	 * Reserve space for panicbuf, intr_vec_table and reserved interrupt
1542 	 * vector data structures from the 32-bit heap.
1543 	 */
1544 	(void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0,
1545 	    panicbuf, panicbuf + PANICBUFSIZE,
1546 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1547 
1548 	(void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0,
1549 	    intr_vec_table, (caddr_t)intr_vec_table + IVSIZE,
1550 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1551 
1552 	mem_config_init();
1553 }
1554 
1555 static void
1556 startup_modules(void)
1557 {
1558 	int proplen, nhblk1, nhblk8;
1559 	size_t  nhblksz;
1560 	pgcnt_t hblk_pages, pages_per_hblk;
1561 	size_t hme8blk_sz, hme1blk_sz;
1562 
1563 	/*
1564 	 * Log any optional messages from the boot program
1565 	 */
1566 	proplen = (size_t)BOP_GETPROPLEN(bootops, "boot-message");
1567 	if (proplen > 0) {
1568 		char *msg;
1569 		size_t len = (size_t)proplen;
1570 
1571 		msg = kmem_zalloc(len, KM_SLEEP);
1572 		(void) BOP_GETPROP(bootops, "boot-message", msg);
1573 		cmn_err(CE_CONT, "?%s\n", msg);
1574 		kmem_free(msg, len);
1575 	}
1576 
1577 	/*
1578 	 * Let the platforms have a chance to change default
1579 	 * values before reading system file.
1580 	 */
1581 	if (&set_platform_defaults)
1582 		set_platform_defaults();
1583 
1584 	/*
1585 	 * Calculate default settings of system parameters based upon
1586 	 * maxusers, yet allow to be overridden via the /etc/system file.
1587 	 */
1588 	param_calc(0);
1589 
1590 	mod_setup();
1591 
1592 	/*
1593 	 * If this is a positron, complain and halt.
1594 	 */
1595 	if (&iam_positron && iam_positron()) {
1596 		cmn_err(CE_WARN, "This hardware platform is not supported"
1597 		    " by this release of Solaris.\n");
1598 #ifdef DEBUG
1599 		prom_enter_mon();	/* Type 'go' to resume */
1600 		cmn_err(CE_WARN, "Booting an unsupported platform.\n");
1601 		cmn_err(CE_WARN, "Booting with down-rev firmware.\n");
1602 
1603 #else /* DEBUG */
1604 		halt(0);
1605 #endif /* DEBUG */
1606 	}
1607 
1608 	/*
1609 	 * If we are running firmware that isn't 64-bit ready
1610 	 * then complain and halt.
1611 	 */
1612 	do_prom_version_check();
1613 
1614 	/*
1615 	 * Initialize system parameters
1616 	 */
1617 	param_init();
1618 
1619 	/*
1620 	 * maxmem is the amount of physical memory we're playing with.
1621 	 */
1622 	maxmem = physmem;
1623 
1624 	/* Set segkp limits. */
1625 	ncbase = kdi_segdebugbase;
1626 	ncend = kdi_segdebugbase;
1627 
1628 	/*
1629 	 * Initialize the hat layer.
1630 	 */
1631 	hat_init();
1632 
1633 	/*
1634 	 * Initialize segment management stuff.
1635 	 */
1636 	seg_init();
1637 
1638 	/*
1639 	 * Create the va>tte handler, so the prom can understand
1640 	 * kernel translations.  The handler is installed later, just
1641 	 * as we are about to take over the trap table from the prom.
1642 	 */
1643 	create_va_to_tte();
1644 
1645 	/*
1646 	 * Load the forthdebugger (optional)
1647 	 */
1648 	forthdebug_init();
1649 
1650 	/*
1651 	 * Create OBP node for console input callbacks
1652 	 * if it is needed.
1653 	 */
1654 	startup_create_io_node();
1655 
1656 	if (modloadonly("fs", "specfs") == -1)
1657 		halt("Can't load specfs");
1658 
1659 	if (modloadonly("fs", "devfs") == -1)
1660 		halt("Can't load devfs");
1661 
1662 	if (modloadonly("misc", "swapgeneric") == -1)
1663 		halt("Can't load swapgeneric");
1664 
1665 	(void) modloadonly("sys", "lbl_edition");
1666 
1667 	dispinit();
1668 
1669 	/*
1670 	 * Infer meanings to the members of the idprom buffer.
1671 	 */
1672 	parse_idprom();
1673 
1674 	/* Read cluster configuration data. */
1675 	clconf_init();
1676 
1677 	setup_ddi();
1678 
1679 	/*
1680 	 * Lets take this opportunity to load the root device.
1681 	 */
1682 	if (loadrootmodules() != 0)
1683 		debug_enter("Can't load the root filesystem");
1684 
1685 	/*
1686 	 * Load tod driver module for the tod part found on this system.
1687 	 * Recompute the cpu frequency/delays based on tod as tod part
1688 	 * tends to keep time more accurately.
1689 	 */
1690 	if (&load_tod_module)
1691 		load_tod_module();
1692 
1693 	/*
1694 	 * Allow platforms to load modules which might
1695 	 * be needed after bootops are gone.
1696 	 */
1697 	if (&load_platform_modules)
1698 		load_platform_modules();
1699 
1700 	setcpudelay();
1701 
1702 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1703 	    &boot_physavail, &boot_physavail_len,
1704 	    &boot_virtavail, &boot_virtavail_len);
1705 
1706 	bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len);
1707 
1708 	/*
1709 	 * Calculation and allocation of hmeblks needed to remap
1710 	 * the memory allocated by PROM till now:
1711 	 *
1712 	 * (1)  calculate how much virtual memory has been bop_alloc'ed.
1713 	 * (2)  roundup this memory to span of hme8blk, i.e. 64KB
1714 	 * (3)  calculate number of hme8blk's needed to remap this memory
1715 	 * (4)  calculate amount of memory that's consumed by these hme8blk's
1716 	 * (5)  add memory calculated in steps (2) and (4) above.
1717 	 * (6)  roundup this memory to span of hme8blk, i.e. 64KB
1718 	 * (7)  calculate number of hme8blk's needed to remap this memory
1719 	 * (8)  calculate amount of memory that's consumed by these hme8blk's
1720 	 * (9)  allocate additional hme1blk's to hold large mappings.
1721 	 *	H8TOH1 determines this.  The current SWAG gives enough hblk1's
1722 	 *	to remap everything with 4M mappings.
1723 	 * (10) account for partially used hblk8's due to non-64K aligned
1724 	 *	PROM mapping entries.
1725 	 * (11) add memory calculated in steps (8), (9), and (10) above.
1726 	 * (12) kmem_zalloc the memory calculated in (11); since segkmem
1727 	 *	is not ready yet, this gets bop_alloc'ed.
1728 	 * (13) there will be very few bop_alloc's after this point before
1729 	 *	trap table takes over
1730 	 */
1731 
1732 	/* sfmmu_init_nucleus_hblks expects properly aligned data structures. */
1733 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
1734 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
1735 
1736 	pages_per_hblk = btop(HMEBLK_SPAN(TTE8K));
1737 	bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1738 	nhblk8 = bop_alloc_pages / pages_per_hblk;
1739 	nhblk1 = roundup(nhblk8, H8TOH1) / H8TOH1;
1740 	hblk_pages = btopr(nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz);
1741 	bop_alloc_pages += hblk_pages;
1742 	bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1743 	nhblk8 = bop_alloc_pages / pages_per_hblk;
1744 	nhblk1 = roundup(nhblk8, H8TOH1) / H8TOH1;
1745 	if (nhblk1 < hblk1_min)
1746 		nhblk1 = hblk1_min;
1747 	if (nhblk8 < hblk8_min)
1748 		nhblk8 = hblk8_min;
1749 
1750 	/*
1751 	 * Since hblk8's can hold up to 64k of mappings aligned on a 64k
1752 	 * boundary, the number of hblk8's needed to map the entries in the
1753 	 * boot_virtavail list needs to be adjusted to take this into
1754 	 * consideration.  Thus, we need to add additional hblk8's since it
1755 	 * is possible that an hblk8 will not have all 8 slots used due to
1756 	 * alignment constraints.  Since there were boot_virtavail_len entries
1757 	 * in that list, we need to add that many hblk8's to the number
1758 	 * already calculated to make sure we don't underestimate.
1759 	 */
1760 	nhblk8 += boot_virtavail_len;
1761 	nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz;
1762 
1763 	/* Allocate in pagesize chunks */
1764 	nhblksz = roundup(nhblksz, MMU_PAGESIZE);
1765 	hblk_base = kmem_zalloc(nhblksz, KM_SLEEP);
1766 	sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1);
1767 }
1768 
1769 static void
1770 startup_bop_gone(void)
1771 {
1772 	extern int bop_io_quiesced;
1773 
1774 	/*
1775 	 * Destroy the MD initialized at startup
1776 	 * The startup initializes the MD framework
1777 	 * using prom and BOP alloc free it now.
1778 	 */
1779 	mach_descrip_startup_fini();
1780 
1781 	/*
1782 	 * Call back into boot and release boots resources.
1783 	 */
1784 	BOP_QUIESCE_IO(bootops);
1785 	bop_io_quiesced = 1;
1786 
1787 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1788 	    &boot_physavail, &boot_physavail_len,
1789 	    &boot_virtavail, &boot_virtavail_len);
1790 	/*
1791 	 * Copy physinstalled list into kernel space.
1792 	 */
1793 	phys_install = memlist;
1794 	copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist);
1795 
1796 	/*
1797 	 * setup physically contiguous area twice as large as the ecache.
1798 	 * this is used while doing displacement flush of ecaches
1799 	 */
1800 	if (&ecache_flush_address) {
1801 		ecache_flushaddr = ecache_flush_address();
1802 		if (ecache_flushaddr == (uint64_t)-1) {
1803 			cmn_err(CE_PANIC,
1804 			    "startup: no memory to set ecache_flushaddr");
1805 		}
1806 	}
1807 
1808 	/*
1809 	 * Virtual available next.
1810 	 */
1811 	ASSERT(virt_avail != NULL);
1812 	memlist_free_list(virt_avail);
1813 	virt_avail = memlist;
1814 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1815 
1816 	/*
1817 	 * Last chance to ask our booter questions ..
1818 	 */
1819 }
1820 
1821 
1822 /*
1823  * startup_fixup_physavail - called from mach_sfmmu.c after the final
1824  * allocations have been performed.  We can't call it in startup_bop_gone
1825  * since later operations can cause obp to allocate more memory.
1826  */
1827 void
1828 startup_fixup_physavail(void)
1829 {
1830 	struct memlist *cur;
1831 
1832 	/*
1833 	 * take the most current snapshot we can by calling mem-update
1834 	 */
1835 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1836 	    &boot_physavail, &boot_physavail_len,
1837 	    &boot_virtavail, &boot_virtavail_len);
1838 
1839 	/*
1840 	 * Copy phys_avail list, again.
1841 	 * Both the kernel/boot and the prom have been allocating
1842 	 * from the original list we copied earlier.
1843 	 */
1844 	cur = memlist;
1845 	(void) copy_physavail(boot_physavail, boot_physavail_len,
1846 	    &memlist, 0, 0);
1847 
1848 	/*
1849 	 * Add any extra memory after e_text we added to the phys_avail list
1850 	 * back to the old list.
1851 	 */
1852 	if (extra_etpg)
1853 		memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg),
1854 		    &memlist, &cur);
1855 	if (ndata_remain_sz >= MMU_PAGESIZE)
1856 		memlist_add(va_to_pa(nalloc_base),
1857 		    (uint64_t)ndata_remain_sz, &memlist, &cur);
1858 
1859 	/*
1860 	 * There isn't any bounds checking on the memlist area
1861 	 * so ensure it hasn't overgrown.
1862 	 */
1863 	if ((caddr_t)memlist > (caddr_t)memlist_end)
1864 		cmn_err(CE_PANIC, "startup: memlist size exceeded");
1865 
1866 	/*
1867 	 * The kernel removes the pages that were allocated for it from
1868 	 * the freelist, but we now have to find any -extra- pages that
1869 	 * the prom has allocated for it's own book-keeping, and remove
1870 	 * them from the freelist too. sigh.
1871 	 */
1872 	fix_prom_pages(phys_avail, cur);
1873 
1874 	ASSERT(phys_avail != NULL);
1875 	memlist_free_list(phys_avail);
1876 	phys_avail = cur;
1877 
1878 	/*
1879 	 * We're done with boot.  Just after this point in time, boot
1880 	 * gets unmapped, so we can no longer rely on its services.
1881 	 * Zero the bootops to indicate this fact.
1882 	 */
1883 	bootops = (struct bootops *)NULL;
1884 	BOOTOPS_GONE();
1885 }
1886 
1887 static void
1888 startup_vm(void)
1889 {
1890 	size_t	i;
1891 	struct segmap_crargs a;
1892 	struct segkpm_crargs b;
1893 
1894 	uint64_t avmem;
1895 	caddr_t va;
1896 	pgcnt_t	max_phys_segkp;
1897 	int	mnode;
1898 
1899 	extern int use_brk_lpg, use_stk_lpg;
1900 
1901 	/*
1902 	 * get prom's mappings, create hments for them and switch
1903 	 * to the kernel context.
1904 	 */
1905 	hat_kern_setup();
1906 
1907 	/*
1908 	 * Take over trap table
1909 	 */
1910 	setup_trap_table();
1911 
1912 	/*
1913 	 * Install the va>tte handler, so that the prom can handle
1914 	 * misses and understand the kernel table layout in case
1915 	 * we need call into the prom.
1916 	 */
1917 	install_va_to_tte();
1918 
1919 	/*
1920 	 * Set a flag to indicate that the tba has been taken over.
1921 	 */
1922 	tba_taken_over = 1;
1923 
1924 	/* initialize MMU primary context register */
1925 	mmu_init_kcontext();
1926 
1927 	/*
1928 	 * The boot cpu can now take interrupts, x-calls, x-traps
1929 	 */
1930 	CPUSET_ADD(cpu_ready_set, CPU->cpu_id);
1931 	CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS);
1932 
1933 	/*
1934 	 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR.
1935 	 */
1936 	tbr_wr_addr_inited = 1;
1937 
1938 	/*
1939 	 * Initialize VM system, and map kernel address space.
1940 	 */
1941 	kvm_init();
1942 
1943 	/*
1944 	 * XXX4U: previously, we initialized and turned on
1945 	 * the caches at this point. But of course we have
1946 	 * nothing to do, as the prom has already done this
1947 	 * for us -- main memory must be E$able at all times.
1948 	 */
1949 
1950 	/*
1951 	 * If the following is true, someone has patched
1952 	 * phsymem to be less than the number of pages that
1953 	 * the system actually has.  Remove pages until system
1954 	 * memory is limited to the requested amount.  Since we
1955 	 * have allocated page structures for all pages, we
1956 	 * correct the amount of memory we want to remove
1957 	 * by the size of the memory used to hold page structures
1958 	 * for the non-used pages.
1959 	 */
1960 	if (physmem < npages) {
1961 		pgcnt_t diff, off;
1962 		struct page *pp;
1963 		struct seg kseg;
1964 
1965 		cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem);
1966 
1967 		off = 0;
1968 		diff = npages - physmem;
1969 		diff -= mmu_btopr(diff * sizeof (struct page));
1970 		kseg.s_as = &kas;
1971 		while (diff--) {
1972 			pp = page_create_va(&unused_pages_vp, (offset_t)off,
1973 			    MMU_PAGESIZE, PG_WAIT | PG_EXCL,
1974 			    &kseg, (caddr_t)off);
1975 			if (pp == NULL)
1976 				cmn_err(CE_PANIC, "limited physmem too much!");
1977 			page_io_unlock(pp);
1978 			page_downgrade(pp);
1979 			availrmem--;
1980 			off += MMU_PAGESIZE;
1981 		}
1982 	}
1983 
1984 	/*
1985 	 * When printing memory, show the total as physmem less
1986 	 * that stolen by a debugger.
1987 	 */
1988 	cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n",
1989 	    (ulong_t)(physinstalled) << (PAGESHIFT - 10),
1990 	    (ulong_t)(physinstalled) << (PAGESHIFT - 12));
1991 
1992 	avmem = (uint64_t)freemem << PAGESHIFT;
1993 	cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem);
1994 
1995 	/*
1996 	 * For small memory systems disable automatic large pages.
1997 	 */
1998 	if (physmem < privm_lpg_min_physmem) {
1999 		use_brk_lpg = 0;
2000 		use_stk_lpg = 0;
2001 	}
2002 
2003 	/*
2004 	 * Perform platform specific freelist processing
2005 	 */
2006 	if (&plat_freelist_process) {
2007 		for (mnode = 0; mnode < max_mem_nodes; mnode++)
2008 			if (mem_node_config[mnode].exists)
2009 				plat_freelist_process(mnode);
2010 	}
2011 
2012 	/*
2013 	 * Initialize the segkp segment type.  We position it
2014 	 * after the configured tables and buffers (whose end
2015 	 * is given by econtig) and before V_WKBASE_ADDR.
2016 	 * Also in this area is segkmap (size SEGMAPSIZE).
2017 	 */
2018 
2019 	/* XXX - cache alignment? */
2020 	va = (caddr_t)SEGKPBASE;
2021 	ASSERT(((uintptr_t)va & PAGEOFFSET) == 0);
2022 
2023 	max_phys_segkp = (physmem * 2);
2024 
2025 	if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) {
2026 		segkpsize = btop(SEGKPDEFSIZE);
2027 		cmn_err(CE_WARN, "Illegal value for segkpsize. "
2028 		    "segkpsize has been reset to %ld pages", segkpsize);
2029 	}
2030 
2031 	i = ptob(MIN(segkpsize, max_phys_segkp));
2032 
2033 	rw_enter(&kas.a_lock, RW_WRITER);
2034 	if (seg_attach(&kas, va, i, segkp) < 0)
2035 		cmn_err(CE_PANIC, "startup: cannot attach segkp");
2036 	if (segkp_create(segkp) != 0)
2037 		cmn_err(CE_PANIC, "startup: segkp_create failed");
2038 	rw_exit(&kas.a_lock);
2039 
2040 	/*
2041 	 * kpm segment
2042 	 */
2043 	segmap_kpm = kpm_enable &&
2044 		segmap_kpm && PAGESIZE == MAXBSIZE;
2045 
2046 	if (kpm_enable) {
2047 		rw_enter(&kas.a_lock, RW_WRITER);
2048 
2049 		/*
2050 		 * The segkpm virtual range range is larger than the
2051 		 * actual physical memory size and also covers gaps in
2052 		 * the physical address range for the following reasons:
2053 		 * . keep conversion between segkpm and physical addresses
2054 		 *   simple, cheap and unambiguous.
2055 		 * . avoid extension/shrink of the the segkpm in case of DR.
2056 		 * . avoid complexity for handling of virtual addressed
2057 		 *   caches, segkpm and the regular mapping scheme must be
2058 		 *   kept in sync wrt. the virtual color of mapped pages.
2059 		 * Any accesses to virtual segkpm ranges not backed by
2060 		 * physical memory will fall through the memseg pfn hash
2061 		 * and will be handled in segkpm_fault.
2062 		 * Additional kpm_size spaces needed for vac alias prevention.
2063 		 */
2064 		if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors,
2065 		    segkpm) < 0)
2066 			cmn_err(CE_PANIC, "cannot attach segkpm");
2067 
2068 		b.prot = PROT_READ | PROT_WRITE;
2069 		b.nvcolors = shm_alignment >> MMU_PAGESHIFT;
2070 
2071 		if (segkpm_create(segkpm, (caddr_t)&b) != 0)
2072 			panic("segkpm_create segkpm");
2073 
2074 		rw_exit(&kas.a_lock);
2075 
2076 		mach_kpm_init();
2077 	}
2078 
2079 	if (!segzio_fromheap) {
2080 		size_t size;
2081 		size_t physmem_b = mmu_ptob(physmem);
2082 
2083 		/* size is in bytes, segziosize is in pages */
2084 		if (segziosize == 0) {
2085 			size = physmem_b;
2086 		} else {
2087 			size = mmu_ptob(segziosize);
2088 		}
2089 
2090 		if (size < SEGZIOMINSIZE) {
2091 			size = SEGZIOMINSIZE;
2092 		} else if (size > SEGZIOMAXSIZE) {
2093 			size = SEGZIOMAXSIZE;
2094 			/*
2095 			 * On 64-bit x86, we only have 2TB of KVA.  This exists
2096 			 * for parity with x86.
2097 			 *
2098 			 * SEGZIOMAXSIZE is capped at 512gb so that segzio
2099 			 * doesn't consume all of KVA.  However, if we have a
2100 			 * system that has more thant 512gb of physical memory,
2101 			 * we can actually consume about half of the difference
2102 			 * between 512gb and the rest of the available physical
2103 			 * memory.
2104 			 */
2105 			if (physmem_b > SEGZIOMAXSIZE) {
2106 				size += (physmem_b - SEGZIOMAXSIZE) / 2;
2107 		}
2108 		}
2109 		segziosize = mmu_btop(roundup(size, MMU_PAGESIZE));
2110 		/* put the base of the ZIO segment after the kpm segment */
2111 		segzio_base = kpm_vbase + (kpm_size * vac_colors);
2112 		PRM_DEBUG(segziosize);
2113 		PRM_DEBUG(segzio_base);
2114 
2115 		/*
2116 		 * On some platforms, kvm_init is called after the kpm
2117 		 * sizes have been determined.  On SPARC, kvm_init is called
2118 		 * before, so we have to attach the kzioseg after kvm is
2119 		 * initialized, otherwise we'll try to allocate from the boot
2120 		 * area since the kernel heap hasn't yet been configured.
2121 		 */
2122 		rw_enter(&kas.a_lock, RW_WRITER);
2123 
2124 		(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2125 		    &kzioseg);
2126 		(void) segkmem_zio_create(&kzioseg);
2127 
2128 		/* create zio area covering new segment */
2129 		segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2130 
2131 		rw_exit(&kas.a_lock);
2132 	}
2133 
2134 
2135 	/*
2136 	 * Now create generic mapping segment.  This mapping
2137 	 * goes SEGMAPSIZE beyond SEGMAPBASE.  But if the total
2138 	 * virtual address is greater than the amount of free
2139 	 * memory that is available, then we trim back the
2140 	 * segment size to that amount
2141 	 */
2142 	va = (caddr_t)SEGMAPBASE;
2143 
2144 	/*
2145 	 * 1201049: segkmap base address must be MAXBSIZE aligned
2146 	 */
2147 	ASSERT(((uintptr_t)va & MAXBOFFSET) == 0);
2148 
2149 	/*
2150 	 * Set size of segmap to percentage of freemem at boot,
2151 	 * but stay within the allowable range
2152 	 * Note we take percentage  before converting from pages
2153 	 * to bytes to avoid an overflow on 32-bit kernels.
2154 	 */
2155 	i = mmu_ptob((freemem * segmap_percent) / 100);
2156 
2157 	if (i < MINMAPSIZE)
2158 		i = MINMAPSIZE;
2159 
2160 	if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem)))
2161 		i = MIN(SEGMAPSIZE, mmu_ptob(freemem));
2162 
2163 	i &= MAXBMASK;	/* 1201049: segkmap size must be MAXBSIZE aligned */
2164 
2165 	rw_enter(&kas.a_lock, RW_WRITER);
2166 	if (seg_attach(&kas, va, i, segkmap) < 0)
2167 		cmn_err(CE_PANIC, "cannot attach segkmap");
2168 
2169 	a.prot = PROT_READ | PROT_WRITE;
2170 	a.shmsize = shm_alignment;
2171 	a.nfreelist = 0;	/* use segmap driver defaults */
2172 
2173 	if (segmap_create(segkmap, (caddr_t)&a) != 0)
2174 		panic("segmap_create segkmap");
2175 	rw_exit(&kas.a_lock);
2176 
2177 	segdev_init();
2178 }
2179 
2180 static void
2181 startup_end(void)
2182 {
2183 	if ((caddr_t)memlist > (caddr_t)memlist_end)
2184 		panic("memlist overflow 2");
2185 	memlist_free_block((caddr_t)memlist,
2186 	    ((caddr_t)memlist_end - (caddr_t)memlist));
2187 	memlist = NULL;
2188 
2189 	/* enable page_relocation since OBP is now done */
2190 	page_relocate_ready = 1;
2191 
2192 	/*
2193 	 * Perform tasks that get done after most of the VM
2194 	 * initialization has been done but before the clock
2195 	 * and other devices get started.
2196 	 */
2197 	kern_setup1();
2198 
2199 	/*
2200 	 * Intialize the VM arenas for allocating physically
2201 	 * contiguus memory chunk for interrupt queues snd
2202 	 * allocate/register boot cpu's queues, if any and
2203 	 * allocate dump buffer for sun4v systems to store
2204 	 * extra crash information during crash dump
2205 	 */
2206 	contig_mem_init();
2207 	mach_descrip_init();
2208 	cpu_intrq_setup(CPU);
2209 	cpu_intrq_register(CPU);
2210 	mach_htraptrace_setup(CPU->cpu_id);
2211 	mach_htraptrace_configure(CPU->cpu_id);
2212 	mach_dump_buffer_init();
2213 
2214 	/*
2215 	 * Initialize interrupt related stuff
2216 	 */
2217 	cpu_intr_alloc(CPU, NINTR_THREADS);
2218 
2219 	(void) splzs();			/* allow hi clock ints but not zs */
2220 
2221 	/*
2222 	 * Initialize errors.
2223 	 */
2224 	error_init();
2225 
2226 	/*
2227 	 * Note that we may have already used kernel bcopy before this
2228 	 * point - but if you really care about this, adb the use_hw_*
2229 	 * variables to 0 before rebooting.
2230 	 */
2231 	mach_hw_copy_limit();
2232 
2233 	/*
2234 	 * Install the "real" preemption guards before DDI services
2235 	 * are available.
2236 	 */
2237 	(void) prom_set_preprom(kern_preprom);
2238 	(void) prom_set_postprom(kern_postprom);
2239 	CPU->cpu_m.mutex_ready = 1;
2240 
2241 	/*
2242 	 * Initialize segnf (kernel support for non-faulting loads).
2243 	 */
2244 	segnf_init();
2245 
2246 	/*
2247 	 * Configure the root devinfo node.
2248 	 */
2249 	configure();		/* set up devices */
2250 	mach_cpu_halt_idle();
2251 }
2252 
2253 
2254 void
2255 post_startup(void)
2256 {
2257 #ifdef	PTL1_PANIC_DEBUG
2258 	extern void init_ptl1_thread(void);
2259 #endif	/* PTL1_PANIC_DEBUG */
2260 	extern void abort_sequence_init(void);
2261 
2262 	/*
2263 	 * Set the system wide, processor-specific flags to be passed
2264 	 * to userland via the aux vector for performance hints and
2265 	 * instruction set extensions.
2266 	 */
2267 	bind_hwcap();
2268 
2269 	/*
2270 	 * Startup memory scrubber (if any)
2271 	 */
2272 	mach_memscrub();
2273 
2274 	/*
2275 	 * Allocate soft interrupt to handle abort sequence.
2276 	 */
2277 	abort_sequence_init();
2278 
2279 	/*
2280 	 * Configure the rest of the system.
2281 	 * Perform forceloading tasks for /etc/system.
2282 	 */
2283 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2284 	/*
2285 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2286 	 * ON4.0: This must be fixed or restated in /etc/systems.
2287 	 */
2288 	(void) modload("fs", "procfs");
2289 
2290 	/* load machine class specific drivers */
2291 	load_mach_drivers();
2292 
2293 	/* load platform specific drivers */
2294 	if (&load_platform_drivers)
2295 		load_platform_drivers();
2296 
2297 	/* load vis simulation module, if we are running w/fpu off */
2298 	if (!fpu_exists) {
2299 		if (modload("misc", "vis") == -1)
2300 			halt("Can't load vis");
2301 	}
2302 
2303 	mach_fpras();
2304 
2305 	maxmem = freemem;
2306 
2307 #ifdef	PTL1_PANIC_DEBUG
2308 	init_ptl1_thread();
2309 #endif	/* PTL1_PANIC_DEBUG */
2310 
2311 	if (&cif_init)
2312 		cif_init();
2313 }
2314 
2315 #ifdef	PTL1_PANIC_DEBUG
2316 int		ptl1_panic_test = 0;
2317 int		ptl1_panic_xc_one_test = 0;
2318 int		ptl1_panic_xc_all_test = 0;
2319 int		ptl1_panic_xt_one_test = 0;
2320 int		ptl1_panic_xt_all_test = 0;
2321 kthread_id_t	ptl1_thread_p = NULL;
2322 kcondvar_t	ptl1_cv;
2323 kmutex_t	ptl1_mutex;
2324 int		ptl1_recurse_count_threshold = 0x40;
2325 int		ptl1_recurse_trap_threshold = 0x3d;
2326 extern void	ptl1_recurse(int, int);
2327 extern void	ptl1_panic_xt(int, int);
2328 
2329 /*
2330  * Called once per second by timeout() to wake up
2331  * the ptl1_panic thread to see if it should cause
2332  * a trap to the ptl1_panic() code.
2333  */
2334 /* ARGSUSED */
2335 static void
2336 ptl1_wakeup(void *arg)
2337 {
2338 	mutex_enter(&ptl1_mutex);
2339 	cv_signal(&ptl1_cv);
2340 	mutex_exit(&ptl1_mutex);
2341 }
2342 
2343 /*
2344  * ptl1_panic cross call function:
2345  *     Needed because xc_one() and xc_some() can pass
2346  *	64 bit args but ptl1_recurse() expects ints.
2347  */
2348 static void
2349 ptl1_panic_xc(void)
2350 {
2351 	ptl1_recurse(ptl1_recurse_count_threshold,
2352 	    ptl1_recurse_trap_threshold);
2353 }
2354 
2355 /*
2356  * The ptl1 thread waits for a global flag to be set
2357  * and uses the recurse thresholds to set the stack depth
2358  * to cause a ptl1_panic() directly via a call to ptl1_recurse
2359  * or indirectly via the cross call and cross trap functions.
2360  *
2361  * This is useful testing stack overflows and normal
2362  * ptl1_panic() states with a know stack frame.
2363  *
2364  * ptl1_recurse() is an asm function in ptl1_panic.s that
2365  * sets the {In, Local, Out, and Global} registers to a
2366  * know state on the stack and just prior to causing a
2367  * test ptl1_panic trap.
2368  */
2369 static void
2370 ptl1_thread(void)
2371 {
2372 	mutex_enter(&ptl1_mutex);
2373 	while (ptl1_thread_p) {
2374 		cpuset_t	other_cpus;
2375 		int		cpu_id;
2376 		int		my_cpu_id;
2377 		int		target_cpu_id;
2378 		int		target_found;
2379 
2380 		if (ptl1_panic_test) {
2381 			ptl1_recurse(ptl1_recurse_count_threshold,
2382 			    ptl1_recurse_trap_threshold);
2383 		}
2384 
2385 		/*
2386 		 * Find potential targets for x-call and x-trap,
2387 		 * if any exist while preempt is disabled we
2388 		 * start a ptl1_panic if requested via a
2389 		 * globals.
2390 		 */
2391 		kpreempt_disable();
2392 		my_cpu_id = CPU->cpu_id;
2393 		other_cpus = cpu_ready_set;
2394 		CPUSET_DEL(other_cpus, CPU->cpu_id);
2395 		target_found = 0;
2396 		if (!CPUSET_ISNULL(other_cpus)) {
2397 			/*
2398 			 * Pick the first one
2399 			 */
2400 			for (cpu_id = 0; cpu_id < NCPU; cpu_id++) {
2401 				if (cpu_id == my_cpu_id)
2402 					continue;
2403 
2404 				if (CPU_XCALL_READY(cpu_id)) {
2405 					target_cpu_id = cpu_id;
2406 					target_found = 1;
2407 					break;
2408 				}
2409 			}
2410 			ASSERT(target_found);
2411 
2412 			if (ptl1_panic_xc_one_test) {
2413 				xc_one(target_cpu_id,
2414 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2415 			}
2416 			if (ptl1_panic_xc_all_test) {
2417 				xc_some(other_cpus,
2418 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2419 			}
2420 			if (ptl1_panic_xt_one_test) {
2421 				xt_one(target_cpu_id,
2422 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2423 			}
2424 			if (ptl1_panic_xt_all_test) {
2425 				xt_some(other_cpus,
2426 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2427 			}
2428 		}
2429 		kpreempt_enable();
2430 		(void) timeout(ptl1_wakeup, NULL, hz);
2431 		(void) cv_wait(&ptl1_cv, &ptl1_mutex);
2432 	}
2433 	mutex_exit(&ptl1_mutex);
2434 }
2435 
2436 /*
2437  * Called during early startup to create the ptl1_thread
2438  */
2439 void
2440 init_ptl1_thread(void)
2441 {
2442 	ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0,
2443 	    &p0, TS_RUN, 0);
2444 }
2445 #endif	/* PTL1_PANIC_DEBUG */
2446 
2447 
2448 /*
2449  * Add to a memory list.
2450  * start = start of new memory segment
2451  * len = length of new memory segment in bytes
2452  * memlistp = pointer to array of available memory segment structures
2453  * curmemlistp = memory list to which to add segment.
2454  */
2455 static void
2456 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp,
2457 	struct memlist **curmemlistp)
2458 {
2459 	struct memlist *new;
2460 
2461 	new = *memlistp;
2462 	new->address = start;
2463 	new->size = len;
2464 	*memlistp = new + 1;
2465 
2466 	memlist_insert(new, curmemlistp);
2467 }
2468 
2469 /*
2470  * In the case of architectures that support dynamic addition of
2471  * memory at run-time there are two cases where memsegs need to
2472  * be initialized and added to the memseg list.
2473  * 1) memsegs that are constructed at startup.
2474  * 2) memsegs that are constructed at run-time on
2475  *    hot-plug capable architectures.
2476  * This code was originally part of the function kphysm_init().
2477  */
2478 
2479 static void
2480 memseg_list_add(struct memseg *memsegp)
2481 {
2482 	struct memseg **prev_memsegp;
2483 	pgcnt_t num;
2484 
2485 	/* insert in memseg list, decreasing number of pages order */
2486 
2487 	num = MSEG_NPAGES(memsegp);
2488 
2489 	for (prev_memsegp = &memsegs; *prev_memsegp;
2490 	    prev_memsegp = &((*prev_memsegp)->next)) {
2491 		if (num > MSEG_NPAGES(*prev_memsegp))
2492 			break;
2493 	}
2494 
2495 	memsegp->next = *prev_memsegp;
2496 	*prev_memsegp = memsegp;
2497 
2498 	if (kpm_enable) {
2499 		memsegp->nextpa = (memsegp->next) ?
2500 			va_to_pa(memsegp->next) : MSEG_NULLPTR_PA;
2501 
2502 		if (prev_memsegp != &memsegs) {
2503 			struct memseg *msp;
2504 			msp = (struct memseg *)((caddr_t)prev_memsegp -
2505 				offsetof(struct memseg, next));
2506 			msp->nextpa = va_to_pa(memsegp);
2507 		} else {
2508 			memsegspa = va_to_pa(memsegs);
2509 		}
2510 	}
2511 }
2512 
2513 /*
2514  * PSM add_physmem_cb(). US-II and newer processors have some
2515  * flavor of the prefetch capability implemented. We exploit
2516  * this capability for optimum performance.
2517  */
2518 #define	PREFETCH_BYTES	64
2519 
2520 void
2521 add_physmem_cb(page_t *pp, pfn_t pnum)
2522 {
2523 	extern void	 prefetch_page_w(void *);
2524 
2525 	pp->p_pagenum = pnum;
2526 
2527 	/*
2528 	 * Prefetch one more page_t into E$. To prevent future
2529 	 * mishaps with the sizeof(page_t) changing on us, we
2530 	 * catch this on debug kernels if we can't bring in the
2531 	 * entire hpage with 2 PREFETCH_BYTES reads. See
2532 	 * also, sun4u/cpu/cpu_module.c
2533 	 */
2534 	/*LINTED*/
2535 	ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES);
2536 	prefetch_page_w((char *)pp);
2537 }
2538 
2539 /*
2540  * kphysm_init() tackles the problem of initializing physical memory.
2541  * The old startup made some assumptions about the kernel living in
2542  * physically contiguous space which is no longer valid.
2543  */
2544 static void
2545 kphysm_init(page_t *pp, struct memseg *memsegp, pgcnt_t npages,
2546 	uintptr_t kpm_pp, pgcnt_t kpm_npages)
2547 {
2548 	struct memlist	*pmem;
2549 	struct memseg	*msp;
2550 	pfn_t		 base;
2551 	pgcnt_t		 num;
2552 	pfn_t		 lastseg_pages_end = 0;
2553 	pgcnt_t		 nelem_used = 0;
2554 
2555 	ASSERT(page_hash != NULL && page_hashsz != 0);
2556 
2557 	msp = memsegp;
2558 	for (pmem = phys_avail; pmem && npages; pmem = pmem->next) {
2559 
2560 		/*
2561 		 * Build the memsegs entry
2562 		 */
2563 		num = btop(pmem->size);
2564 		if (num > npages)
2565 			num = npages;
2566 		npages -= num;
2567 		base = btop(pmem->address);
2568 
2569 		msp->pages = pp;
2570 		msp->epages = pp + num;
2571 		msp->pages_base = base;
2572 		msp->pages_end = base + num;
2573 
2574 		if (kpm_enable) {
2575 			pfn_t pbase_a;
2576 			pfn_t pend_a;
2577 			pfn_t prev_pend_a;
2578 			pgcnt_t	nelem;
2579 
2580 			msp->pagespa = va_to_pa(pp);
2581 			msp->epagespa = va_to_pa(pp + num);
2582 			pbase_a = kpmptop(ptokpmp(base));
2583 			pend_a = kpmptop(ptokpmp(base + num - 1)) + kpmpnpgs;
2584 			nelem = ptokpmp(pend_a - pbase_a);
2585 			msp->kpm_nkpmpgs = nelem;
2586 			msp->kpm_pbase = pbase_a;
2587 			if (lastseg_pages_end) {
2588 				/*
2589 				 * Assume phys_avail is in ascending order
2590 				 * of physical addresses.
2591 				 */
2592 				ASSERT(base + num > lastseg_pages_end);
2593 				prev_pend_a = kpmptop(
2594 				    ptokpmp(lastseg_pages_end - 1)) + kpmpnpgs;
2595 
2596 				if (prev_pend_a > pbase_a) {
2597 					/*
2598 					 * Overlap, more than one memseg may
2599 					 * point to the same kpm_page range.
2600 					 */
2601 					if (kpm_smallpages == 0) {
2602 						msp->kpm_pages =
2603 						    (kpm_page_t *)kpm_pp - 1;
2604 						kpm_pp = (uintptr_t)
2605 							((kpm_page_t *)kpm_pp
2606 							+ nelem - 1);
2607 					} else {
2608 						msp->kpm_spages =
2609 						    (kpm_spage_t *)kpm_pp - 1;
2610 						kpm_pp = (uintptr_t)
2611 							((kpm_spage_t *)kpm_pp
2612 							+ nelem - 1);
2613 					}
2614 					nelem_used += nelem - 1;
2615 
2616 				} else {
2617 					if (kpm_smallpages == 0) {
2618 						msp->kpm_pages =
2619 						    (kpm_page_t *)kpm_pp;
2620 						kpm_pp = (uintptr_t)
2621 							((kpm_page_t *)kpm_pp
2622 							+ nelem);
2623 					} else {
2624 						msp->kpm_spages =
2625 						    (kpm_spage_t *)kpm_pp;
2626 						kpm_pp = (uintptr_t)
2627 							((kpm_spage_t *)
2628 							kpm_pp + nelem);
2629 					}
2630 					nelem_used += nelem;
2631 				}
2632 
2633 			} else {
2634 				if (kpm_smallpages == 0) {
2635 					msp->kpm_pages = (kpm_page_t *)kpm_pp;
2636 					kpm_pp = (uintptr_t)
2637 						((kpm_page_t *)kpm_pp + nelem);
2638 				} else {
2639 					msp->kpm_spages = (kpm_spage_t *)kpm_pp;
2640 					kpm_pp = (uintptr_t)
2641 						((kpm_spage_t *)kpm_pp + nelem);
2642 				}
2643 				nelem_used = nelem;
2644 			}
2645 
2646 			if (nelem_used > kpm_npages)
2647 				panic("kphysm_init: kpm_pp overflow\n");
2648 
2649 			msp->kpm_pagespa = va_to_pa(msp->kpm_pages);
2650 			lastseg_pages_end = msp->pages_end;
2651 		}
2652 
2653 		memseg_list_add(msp);
2654 
2655 		/*
2656 		 * add_physmem() initializes the PSM part of the page
2657 		 * struct by calling the PSM back with add_physmem_cb().
2658 		 * In addition it coalesces pages into larger pages as
2659 		 * it initializes them.
2660 		 */
2661 		add_physmem(pp, num, base);
2662 		pp += num;
2663 		msp++;
2664 	}
2665 
2666 	build_pfn_hash();
2667 }
2668 
2669 /*
2670  * Kernel VM initialization.
2671  * Assumptions about kernel address space ordering:
2672  *	(1) gap (user space)
2673  *	(2) kernel text
2674  *	(3) kernel data/bss
2675  *	(4) gap
2676  *	(5) kernel data structures
2677  *	(6) gap
2678  *	(7) debugger (optional)
2679  *	(8) monitor
2680  *	(9) gap (possibly null)
2681  *	(10) dvma
2682  *	(11) devices
2683  */
2684 static void
2685 kvm_init(void)
2686 {
2687 	/*
2688 	 * Put the kernel segments in kernel address space.
2689 	 */
2690 	rw_enter(&kas.a_lock, RW_WRITER);
2691 	as_avlinit(&kas);
2692 
2693 	(void) seg_attach(&kas, (caddr_t)KERNELBASE,
2694 	    (size_t)(e_moddata - KERNELBASE), &ktextseg);
2695 	(void) segkmem_create(&ktextseg);
2696 
2697 	(void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M),
2698 	    (size_t)(MMU_PAGESIZE4M), &ktexthole);
2699 	(void) segkmem_create(&ktexthole);
2700 
2701 	(void) seg_attach(&kas, (caddr_t)valloc_base,
2702 	    (size_t)(econtig32 - valloc_base), &kvalloc);
2703 	(void) segkmem_create(&kvalloc);
2704 
2705 	if (kmem64_base) {
2706 	    (void) seg_attach(&kas, (caddr_t)kmem64_base,
2707 		(size_t)(kmem64_end - kmem64_base), &kmem64);
2708 	    (void) segkmem_create(&kmem64);
2709 	}
2710 
2711 	/*
2712 	 * We're about to map out /boot.  This is the beginning of the
2713 	 * system resource management transition. We can no longer
2714 	 * call into /boot for I/O or memory allocations.
2715 	 */
2716 	(void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg);
2717 	(void) segkmem_create(&kvseg);
2718 	hblk_alloc_dynamic = 1;
2719 
2720 	/*
2721 	 * we need to preallocate pages for DR operations before enabling large
2722 	 * page kernel heap because of memseg_remap_init() hat_unload() hack.
2723 	 */
2724 	memseg_remap_init();
2725 
2726 	/* at this point we are ready to use large page heap */
2727 	segkmem_heap_lp_init();
2728 
2729 	(void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32,
2730 	    &kvseg32);
2731 	(void) segkmem_create(&kvseg32);
2732 
2733 	/*
2734 	 * Create a segment for the debugger.
2735 	 */
2736 	(void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2737 	(void) segkmem_create(&kdebugseg);
2738 
2739 	rw_exit(&kas.a_lock);
2740 }
2741 
2742 char obp_tte_str[] =
2743 	"h# %x constant MMU_PAGESHIFT "
2744 	"h# %x constant TTE8K "
2745 	"h# %x constant SFHME_SIZE "
2746 	"h# %x constant SFHME_TTE "
2747 	"h# %x constant HMEBLK_TAG "
2748 	"h# %x constant HMEBLK_NEXT "
2749 	"h# %x constant HMEBLK_MISC "
2750 	"h# %x constant HMEBLK_HME1 "
2751 	"h# %x constant NHMENTS "
2752 	"h# %x constant HBLK_SZMASK "
2753 	"h# %x constant HBLK_RANGE_SHIFT "
2754 	"h# %x constant HMEBP_HBLK "
2755 	"h# %x constant HMEBUCKET_SIZE "
2756 	"h# %x constant HTAG_SFMMUPSZ "
2757 	"h# %x constant HTAG_REHASHSZ "
2758 	"h# %x constant mmu_hashcnt "
2759 	"h# %p constant uhme_hash "
2760 	"h# %p constant khme_hash "
2761 	"h# %x constant UHMEHASH_SZ "
2762 	"h# %x constant KHMEHASH_SZ "
2763 	"h# %p constant KCONTEXT "
2764 	"h# %p constant KHATID "
2765 	"h# %x constant ASI_MEM "
2766 
2767 	": PHYS-X@ ( phys -- data ) "
2768 	"   ASI_MEM spacex@ "
2769 	"; "
2770 
2771 	": PHYS-W@ ( phys -- data ) "
2772 	"   ASI_MEM spacew@ "
2773 	"; "
2774 
2775 	": PHYS-L@ ( phys -- data ) "
2776 	"   ASI_MEM spaceL@ "
2777 	"; "
2778 
2779 	": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) "
2780 	"   3 * MMU_PAGESHIFT + "
2781 	"; "
2782 
2783 	": TTE_IS_VALID ( ttep -- flag ) "
2784 	"   PHYS-X@ 0< "
2785 	"; "
2786 
2787 	": HME_HASH_SHIFT ( ttesz -- hmeshift ) "
2788 	"   dup TTE8K =  if "
2789 	"      drop HBLK_RANGE_SHIFT "
2790 	"   else "
2791 	"      TTE_PAGE_SHIFT "
2792 	"   then "
2793 	"; "
2794 
2795 	": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) "
2796 	"   tuck >> swap MMU_PAGESHIFT - << "
2797 	"; "
2798 
2799 	": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) "
2800 	"   >> over xor swap                    ( hash sfmmup ) "
2801 	"   KHATID <>  if                       ( hash ) "
2802 	"      UHMEHASH_SZ and                  ( bucket ) "
2803 	"      HMEBUCKET_SIZE * uhme_hash +     ( hmebp ) "
2804 	"   else                                ( hash ) "
2805 	"      KHMEHASH_SZ and                  ( bucket ) "
2806 	"      HMEBUCKET_SIZE * khme_hash +     ( hmebp ) "
2807 	"   then                                ( hmebp ) "
2808 	"; "
2809 
2810 	": HME_HASH_TABLE_SEARCH "
2811 	"       ( sfmmup hmebp hblktag --  sfmmup null | sfmmup hmeblkp ) "
2812 	"   >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) "
2813 	"      dup if   		( sfmmup hmeblkp ) ( r: hblktag ) "
2814 	"         dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp )	  "
2815 	"	     dup hmeblk_tag + 8 + phys-x@ 2 pick = if		  "
2816 	"		  true 	( sfmmup hmeblkp true ) ( r: hblktag )	  "
2817 	"	     else						  "
2818 	"	     	  hmeblk_next + phys-x@ false 			  "
2819 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2820 	"	     then  						  "
2821 	"	  else							  "
2822 	"	     hmeblk_next + phys-x@ false 			  "
2823 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2824 	"	  then 							  "
2825 	"      else							  "
2826 	"         true 							  "
2827 	"      then  							  "
2828 	"   until r> drop 						  "
2829 	"; "
2830 
2831 	": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) "
2832 	"   over HME_HASH_SHIFT HME_HASH_BSPAGE      ( sfmmup rehash bspage ) "
2833 	"   HTAG_REHASHSZ << or nip		     ( hblktag ) "
2834 	"; "
2835 
2836 	": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) "
2837 	"   over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and  ( hmeblkp addr ttesz ) "
2838 	"   TTE8K =  if                            ( hmeblkp addr ) "
2839 	"      MMU_PAGESHIFT >> NHMENTS 1- and     ( hmeblkp hme-index ) "
2840 	"   else                                   ( hmeblkp addr ) "
2841 	"      drop 0                              ( hmeblkp 0 ) "
2842 	"   then                                   ( hmeblkp hme-index ) "
2843 	"   SFHME_SIZE * + HMEBLK_HME1 +           ( hmep ) "
2844 	"   SFHME_TTE +                            ( ttep ) "
2845 	"; "
2846 
2847 	": unix-tte ( addr cnum -- false | tte-data true ) "
2848 	"    KCONTEXT = if                   ( addr ) "
2849 	"	KHATID                       ( addr khatid ) "
2850 	"    else                            ( addr ) "
2851 	"       drop false exit              ( false ) "
2852 	"    then "
2853 	"      ( addr khatid ) "
2854 	"      mmu_hashcnt 1+ 1  do           ( addr sfmmup ) "
2855 	"         2dup swap i HME_HASH_SHIFT  "
2856 					"( addr sfmmup sfmmup addr hmeshift ) "
2857 	"         HME_HASH_FUNCTION           ( addr sfmmup hmebp ) "
2858 	"         over i 4 pick               "
2859 				"( addr sfmmup hmebp sfmmup rehash addr ) "
2860 	"         HME_HASH_TAG                ( addr sfmmup hmebp hblktag ) "
2861 	"         HME_HASH_TABLE_SEARCH       "
2862 					"( addr sfmmup { null | hmeblkp } ) "
2863 	"         ?dup  if                    ( addr sfmmup hmeblkp ) "
2864 	"            nip swap HBLK_TO_TTEP    ( ttep ) "
2865 	"            dup TTE_IS_VALID  if     ( valid-ttep ) "
2866 	"               PHYS-X@ true          ( tte-data true ) "
2867 	"            else                     ( invalid-tte ) "
2868 	"               drop false            ( false ) "
2869 	"            then                     ( false | tte-data true ) "
2870 	"            unloop exit              ( false | tte-data true ) "
2871 	"         then                        ( addr sfmmup ) "
2872 	"      loop                           ( addr sfmmup ) "
2873 	"      2drop false                    ( false ) "
2874 	"; "
2875 ;
2876 
2877 void
2878 create_va_to_tte(void)
2879 {
2880 	char *bp;
2881 	extern int khmehash_num, uhmehash_num;
2882 	extern struct hmehash_bucket *khme_hash, *uhme_hash;
2883 
2884 #define	OFFSET(type, field)	((uintptr_t)(&((type *)0)->field))
2885 
2886 	bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP);
2887 
2888 	/*
2889 	 * Teach obp how to parse our sw ttes.
2890 	 */
2891 	(void) sprintf(bp, obp_tte_str,
2892 	    MMU_PAGESHIFT,
2893 	    TTE8K,
2894 	    sizeof (struct sf_hment),
2895 	    OFFSET(struct sf_hment, hme_tte),
2896 	    OFFSET(struct hme_blk, hblk_tag),
2897 	    OFFSET(struct hme_blk, hblk_nextpa),
2898 	    OFFSET(struct hme_blk, hblk_misc),
2899 	    OFFSET(struct hme_blk, hblk_hme),
2900 	    NHMENTS,
2901 	    HBLK_SZMASK,
2902 	    HBLK_RANGE_SHIFT,
2903 	    OFFSET(struct hmehash_bucket, hmeh_nextpa),
2904 	    sizeof (struct hmehash_bucket),
2905 	    HTAG_SFMMUPSZ,
2906 	    HTAG_REHASHSZ,
2907 	    mmu_hashcnt,
2908 	    (caddr_t)va_to_pa((caddr_t)uhme_hash),
2909 	    (caddr_t)va_to_pa((caddr_t)khme_hash),
2910 	    UHMEHASH_SZ,
2911 	    KHMEHASH_SZ,
2912 	    KCONTEXT,
2913 	    KHATID,
2914 	    ASI_MEM);
2915 	prom_interpret(bp, 0, 0, 0, 0, 0);
2916 
2917 	kobj_free(bp, MMU_PAGESIZE);
2918 }
2919 
2920 void
2921 install_va_to_tte(void)
2922 {
2923 	/*
2924 	 * advise prom that he can use unix-tte
2925 	 */
2926 	prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0);
2927 }
2928 
2929 
2930 /*
2931  * Because kmdb links prom_stdout_is_framebuffer into its own
2932  * module, we add "device-type=display" here for /os-io node, so that
2933  * prom_stdout_is_framebuffer still works corrrectly  after /os-io node
2934  * is registered into OBP.
2935  */
2936 static char *create_node =
2937 	"\" /\" find-device "
2938 	"new-device "
2939 	"\" os-io\" device-name "
2940 	"\" display\" device-type "
2941 	": cb-r/w  ( adr,len method$ -- #read/#written ) "
2942 	"   2>r swap 2 2r> ['] $callback  catch  if "
2943 	"      2drop 3drop 0 "
2944 	"   then "
2945 	"; "
2946 	": read ( adr,len -- #read ) "
2947 	"       \" read\" ['] cb-r/w catch  if  2drop 2drop -2 exit then "
2948 	"       ( retN ... ret1 N ) "
2949 	"       ?dup  if "
2950 	"               swap >r 1-  0  ?do  drop  loop  r> "
2951 	"       else "
2952 	"               -2 "
2953 	"       then "
2954 	";    "
2955 	": write ( adr,len -- #written ) "
2956 	"       \" write\" ['] cb-r/w catch  if  2drop 2drop 0 exit  then "
2957 	"       ( retN ... ret1 N ) "
2958 	"       ?dup  if "
2959 	"               swap >r 1-  0  ?do  drop  loop  r> "
2960 	"        else "
2961 	"               0 "
2962 	"       then "
2963 	"; "
2964 	": poll-tty ( -- ) ; "
2965 	": install-abort  ( -- )  ['] poll-tty d# 10 alarm ; "
2966 	": remove-abort ( -- )  ['] poll-tty 0 alarm ; "
2967 	": cb-give/take ( $method -- ) "
2968 	"       0 -rot ['] $callback catch  ?dup  if "
2969 	"               >r 2drop 2drop r> throw "
2970 	"       else "
2971 	"               0  ?do  drop  loop "
2972 	"       then "
2973 	"; "
2974 	": give ( -- )  \" exit-input\" cb-give/take ; "
2975 	": take ( -- )  \" enter-input\" cb-give/take ; "
2976 	": open ( -- ok? )  true ; "
2977 	": close ( -- ) ; "
2978 	"finish-device "
2979 	"device-end ";
2980 
2981 /*
2982  * Create the OBP input/output node (FCode serial driver).
2983  * It is needed for both USB console keyboard and for
2984  * the kernel terminal emulator.  It is too early to check for a
2985  * kernel console compatible framebuffer now, so we create this
2986  * so that we're ready if we need to enable kernel terminal emulation.
2987  *
2988  * When the USB software takes over the input device at the time
2989  * consconfig runs, OBP's stdin is redirected to this node.
2990  * Whenever the FORTH user interface is used after this switch,
2991  * the node will call back into the kernel for console input.
2992  * If a serial device such as ttya or a UART with a Type 5 keyboard
2993  * attached is used, OBP takes over the serial device when the system
2994  * goes to the debugger after the system is booted.  This sharing
2995  * of the relatively simple serial device is difficult but possible.
2996  * Sharing the USB host controller is impossible due its complexity.
2997  *
2998  * Similarly to USB keyboard input redirection, after consconfig_dacf
2999  * configures a kernel console framebuffer as the standard output
3000  * device, OBP's stdout is switched to to vector through the
3001  * /os-io node into the kernel terminal emulator.
3002  */
3003 static void
3004 startup_create_io_node(void)
3005 {
3006 	prom_interpret(create_node, 0, 0, 0, 0, 0);
3007 }
3008 
3009 
3010 static void
3011 do_prom_version_check(void)
3012 {
3013 	int i;
3014 	pnode_t node;
3015 	char buf[64];
3016 	static char drev[] = "Down-rev firmware detected%s\n"
3017 		"\tPlease upgrade to the following minimum version:\n"
3018 		"\t\t%s\n";
3019 
3020 	i = prom_version_check(buf, sizeof (buf), &node);
3021 
3022 	if (i == PROM_VER64_OK)
3023 		return;
3024 
3025 	if (i == PROM_VER64_UPGRADE) {
3026 		cmn_err(CE_WARN, drev, "", buf);
3027 
3028 #ifdef	DEBUG
3029 		prom_enter_mon();	/* Type 'go' to continue */
3030 		cmn_err(CE_WARN, "Booting with down-rev firmware\n");
3031 		return;
3032 #else
3033 		halt(0);
3034 #endif
3035 	}
3036 
3037 	/*
3038 	 * The other possibility is that this is a server running
3039 	 * good firmware, but down-rev firmware was detected on at
3040 	 * least one other cpu board. We just complain if we see
3041 	 * that.
3042 	 */
3043 	cmn_err(CE_WARN, drev, " on one or more CPU boards", buf);
3044 }
3045 
3046 static void
3047 kpm_init()
3048 {
3049 	kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT;
3050 	kpm_pgsz = 1ull << kpm_pgshft;
3051 	kpm_pgoff = kpm_pgsz - 1;
3052 	kpmp2pshft = kpm_pgshft - PAGESHIFT;
3053 	kpmpnpgs = 1 << kpmp2pshft;
3054 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
3055 }
3056 
3057 void
3058 kpm_npages_setup(int memblocks)
3059 {
3060 	/*
3061 	 * npages can be scattered in a maximum of 'memblocks'
3062 	 */
3063 	kpm_npages = ptokpmpr(npages) + memblocks;
3064 }
3065 
3066 /*
3067  * Must be defined in platform dependent code.
3068  */
3069 extern caddr_t modtext;
3070 extern size_t modtext_sz;
3071 extern caddr_t moddata;
3072 
3073 #define	HEAPTEXT_ARENA(addr)	\
3074 	((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \
3075 	(((uintptr_t)(addr) - HEAPTEXT_BASE) / \
3076 	(HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1))
3077 
3078 #define	HEAPTEXT_OVERSIZED(addr)	\
3079 	((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE)
3080 
3081 vmem_t *texthole_source[HEAPTEXT_NARENAS];
3082 vmem_t *texthole_arena[HEAPTEXT_NARENAS];
3083 kmutex_t texthole_lock;
3084 
3085 char kern_bootargs[OBP_MAXPATHLEN];
3086 
3087 void
3088 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3089 {
3090 	uintptr_t addr, limit;
3091 
3092 	addr = HEAPTEXT_BASE;
3093 	limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE;
3094 
3095 	/*
3096 	 * Before we initialize the text_arena, we want to punch holes in the
3097 	 * underlying heaptext_arena.  This guarantees that for any text
3098 	 * address we can find a text hole less than HEAPTEXT_MAPPED away.
3099 	 */
3100 	for (; addr + HEAPTEXT_UNMAPPED <= limit;
3101 	    addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) {
3102 		(void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE,
3103 		    0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED),
3104 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3105 	}
3106 
3107 	/*
3108 	 * Allocate one page at the oversize to break up the text region
3109 	 * from the oversized region.
3110 	 */
3111 	(void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0,
3112 	    (void *)limit, (void *)(limit + PAGESIZE),
3113 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3114 
3115 	*text_arena = vmem_create("module_text", modtext, modtext_sz,
3116 	    sizeof (uintptr_t), segkmem_alloc, segkmem_free,
3117 	    heaptext_arena, 0, VM_SLEEP);
3118 	*data_arena = vmem_create("module_data", moddata, MODDATA, 1,
3119 	    segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3120 }
3121 
3122 caddr_t
3123 kobj_text_alloc(vmem_t *arena, size_t size)
3124 {
3125 	caddr_t rval, better;
3126 
3127 	/*
3128 	 * First, try a sleeping allocation.
3129 	 */
3130 	rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT);
3131 
3132 	if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval))
3133 		return (rval);
3134 
3135 	/*
3136 	 * We didn't get the area that we wanted.  We're going to try to do an
3137 	 * allocation with explicit constraints.
3138 	 */
3139 	better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL,
3140 	    (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE),
3141 	    VM_NOSLEEP | VM_BESTFIT);
3142 
3143 	if (better != NULL) {
3144 		/*
3145 		 * That worked.  Free our first attempt and return.
3146 		 */
3147 		vmem_free(arena, rval, size);
3148 		return (better);
3149 	}
3150 
3151 	/*
3152 	 * That didn't work; we'll have to return our first attempt.
3153 	 */
3154 	return (rval);
3155 }
3156 
3157 caddr_t
3158 kobj_texthole_alloc(caddr_t addr, size_t size)
3159 {
3160 	int arena = HEAPTEXT_ARENA(addr);
3161 	char c[30];
3162 	uintptr_t base;
3163 
3164 	if (HEAPTEXT_OVERSIZED(addr)) {
3165 		/*
3166 		 * If this is an oversized allocation, there is no text hole
3167 		 * available for it; return NULL.
3168 		 */
3169 		return (NULL);
3170 	}
3171 
3172 	mutex_enter(&texthole_lock);
3173 
3174 	if (texthole_arena[arena] == NULL) {
3175 		ASSERT(texthole_source[arena] == NULL);
3176 
3177 		if (arena == 0) {
3178 			texthole_source[0] = vmem_create("module_text_holesrc",
3179 			    (void *)(KERNELBASE + MMU_PAGESIZE4M),
3180 			    MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL,
3181 			    0, VM_SLEEP);
3182 		} else {
3183 			base = HEAPTEXT_BASE +
3184 			    (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED);
3185 
3186 			(void) snprintf(c, sizeof (c),
3187 			    "heaptext_holesrc_%d", arena);
3188 
3189 			texthole_source[arena] = vmem_create(c, (void *)base,
3190 			    HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL,
3191 			    0, VM_SLEEP);
3192 		}
3193 
3194 		(void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena);
3195 
3196 		texthole_arena[arena] = vmem_create(c, NULL, 0,
3197 		    sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free,
3198 		    texthole_source[arena], 0, VM_SLEEP);
3199 	}
3200 
3201 	mutex_exit(&texthole_lock);
3202 
3203 	ASSERT(texthole_arena[arena] != NULL);
3204 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3205 	return (vmem_alloc(texthole_arena[arena], size,
3206 	    VM_BESTFIT | VM_NOSLEEP));
3207 }
3208 
3209 void
3210 kobj_texthole_free(caddr_t addr, size_t size)
3211 {
3212 	int arena = HEAPTEXT_ARENA(addr);
3213 
3214 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3215 	ASSERT(texthole_arena[arena] != NULL);
3216 	vmem_free(texthole_arena[arena], addr, size);
3217 }
3218