xref: /titanic_50/usr/src/uts/sun4/os/startup.c (revision b86efd96f8acd85ddaa930a2f0c1d664237e4aaf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/machsystm.h>
30 #include <sys/archsystm.h>
31 #include <sys/vm.h>
32 #include <sys/cpu.h>
33 #include <sys/atomic.h>
34 #include <sys/reboot.h>
35 #include <sys/kdi.h>
36 #include <sys/bootconf.h>
37 #include <sys/memlist_plat.h>
38 #include <sys/memlist_impl.h>
39 #include <sys/prom_plat.h>
40 #include <sys/prom_isa.h>
41 #include <sys/autoconf.h>
42 #include <sys/intreg.h>
43 #include <sys/ivintr.h>
44 #include <sys/fpu/fpusystm.h>
45 #include <sys/iommutsb.h>
46 #include <vm/vm_dep.h>
47 #include <vm/seg_dev.h>
48 #include <vm/seg_kmem.h>
49 #include <vm/seg_kpm.h>
50 #include <vm/seg_map.h>
51 #include <vm/seg_kp.h>
52 #include <sys/sysconf.h>
53 #include <vm/hat_sfmmu.h>
54 #include <sys/kobj.h>
55 #include <sys/sun4asi.h>
56 #include <sys/clconf.h>
57 #include <sys/platform_module.h>
58 #include <sys/panic.h>
59 #include <sys/cpu_sgnblk_defs.h>
60 #include <sys/clock.h>
61 #include <sys/cmn_err.h>
62 #include <sys/promif.h>
63 #include <sys/prom_debug.h>
64 #include <sys/traptrace.h>
65 #include <sys/memnode.h>
66 #include <sys/mem_cage.h>
67 #include <sys/mmu.h>
68 
69 extern void setup_trap_table(void);
70 extern void cpu_intrq_setup(struct cpu *);
71 extern void cpu_intrq_register(struct cpu *);
72 extern void contig_mem_init(void);
73 extern void mach_dump_buffer_init(void);
74 extern void mach_descrip_init(void);
75 extern void mach_descrip_startup_fini(void);
76 extern void mach_memscrub(void);
77 extern void mach_fpras(void);
78 extern void mach_cpu_halt_idle(void);
79 extern void mach_hw_copy_limit(void);
80 extern void load_mach_drivers(void);
81 extern void load_tod_module(void);
82 #pragma weak load_tod_module
83 
84 extern int ndata_alloc_mmfsa(struct memlist *ndata);
85 #pragma weak ndata_alloc_mmfsa
86 
87 extern void cif_init(void);
88 #pragma weak cif_init
89 
90 extern void parse_idprom(void);
91 extern void add_vx_handler(char *, int, void (*)(cell_t *));
92 extern void mem_config_init(void);
93 extern void memseg_remap_init(void);
94 
95 extern void mach_kpm_init(void);
96 
97 /*
98  * External Data:
99  */
100 extern int vac_size;	/* cache size in bytes */
101 extern uint_t vac_mask;	/* VAC alignment consistency mask */
102 extern uint_t vac_colors;
103 
104 /*
105  * Global Data Definitions:
106  */
107 
108 /*
109  * XXX - Don't port this to new architectures
110  * A 3rd party volume manager driver (vxdm) depends on the symbol romp.
111  * 'romp' has no use with a prom with an IEEE 1275 client interface.
112  * The driver doesn't use the value, but it depends on the symbol.
113  */
114 void *romp;		/* veritas driver won't load without romp 4154976 */
115 /*
116  * Declare these as initialized data so we can patch them.
117  */
118 pgcnt_t physmem = 0;	/* memory size in pages, patch if you want less */
119 pgcnt_t segkpsize =
120     btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
121 uint_t segmap_percent = 12; /* Size of segmap segment */
122 
123 int use_cache = 1;		/* cache not reliable (605 bugs) with MP */
124 int vac_copyback = 1;
125 char *cache_mode = NULL;
126 int use_mix = 1;
127 int prom_debug = 0;
128 
129 struct bootops *bootops = 0;	/* passed in from boot in %o2 */
130 caddr_t boot_tba;		/* %tba at boot - used by kmdb */
131 uint_t	tba_taken_over = 0;
132 
133 caddr_t s_text;			/* start of kernel text segment */
134 caddr_t e_text;			/* end of kernel text segment */
135 caddr_t s_data;			/* start of kernel data segment */
136 caddr_t e_data;			/* end of kernel data segment */
137 
138 caddr_t modtext;		/* beginning of module text */
139 size_t	modtext_sz;		/* size of module text */
140 caddr_t moddata;		/* beginning of module data reserve */
141 caddr_t e_moddata;		/* end of module data reserve */
142 
143 /*
144  * End of first block of contiguous kernel in 32-bit virtual address space
145  */
146 caddr_t		econtig32;	/* end of first blk of contiguous kernel */
147 
148 caddr_t		ncbase;		/* beginning of non-cached segment */
149 caddr_t		ncend;		/* end of non-cached segment */
150 caddr_t		sdata;		/* beginning of data segment */
151 
152 caddr_t		extra_etva;	/* beginning of unused nucleus text */
153 pgcnt_t		extra_etpg;	/* number of pages of unused nucleus text */
154 
155 size_t	ndata_remain_sz;	/* bytes from end of data to 4MB boundary */
156 caddr_t	nalloc_base;		/* beginning of nucleus allocation */
157 caddr_t nalloc_end;		/* end of nucleus allocatable memory */
158 caddr_t valloc_base;		/* beginning of kvalloc segment	*/
159 
160 caddr_t kmem64_base;		/* base of kernel mem segment in 64-bit space */
161 caddr_t kmem64_end;		/* end of kernel mem segment in 64-bit space */
162 
163 uintptr_t shm_alignment;	/* VAC address consistency modulus */
164 struct memlist *phys_install;	/* Total installed physical memory */
165 struct memlist *phys_avail;	/* Available (unreserved) physical memory */
166 struct memlist *virt_avail;	/* Available (unmapped?) virtual memory */
167 struct memlist ndata;		/* memlist of nucleus allocatable memory */
168 int memexp_flag;		/* memory expansion card flag */
169 uint64_t ecache_flushaddr;	/* physical address used for flushing E$ */
170 pgcnt_t obp_pages;		/* Physical pages used by OBP */
171 
172 /*
173  * VM data structures
174  */
175 long page_hashsz;		/* Size of page hash table (power of two) */
176 struct page *pp_base;		/* Base of system page struct array */
177 size_t pp_sz;			/* Size in bytes of page struct array */
178 struct page **page_hash;	/* Page hash table */
179 struct seg ktextseg;		/* Segment used for kernel executable image */
180 struct seg kvalloc;		/* Segment used for "valloc" mapping */
181 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
182 struct seg ktexthole;		/* Segment used for nucleus text hole */
183 struct seg kmapseg;		/* Segment used for generic kernel mappings */
184 struct seg kpmseg;		/* Segment used for physical mapping */
185 struct seg kdebugseg;		/* Segment used for the kernel debugger */
186 
187 uintptr_t kpm_pp_base;		/* Base of system kpm_page array */
188 size_t	kpm_pp_sz;		/* Size of system kpm_page array */
189 pgcnt_t	kpm_npages;		/* How many kpm pages are managed */
190 
191 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
192 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
193 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
194 
195 int segzio_fromheap = 0;	/* zio allocations occur from heap */
196 caddr_t segzio_base;		/* Base address of segzio */
197 pgcnt_t segziosize = 0;		/* size of zio segment in pages */
198 
199 /*
200  * debugger pages (if allocated)
201  */
202 struct vnode kdebugvp;
203 
204 /*
205  * Segment for relocated kernel structures in 64-bit large RAM kernels
206  */
207 struct seg kmem64;
208 
209 struct memseg *memseg_base;
210 size_t memseg_sz;		/* Used to translate a va to page */
211 struct vnode unused_pages_vp;
212 
213 /*
214  * VM data structures allocated early during boot.
215  */
216 size_t pagehash_sz;
217 uint64_t memlist_sz;
218 
219 char tbr_wr_addr_inited = 0;
220 
221 
222 /*
223  * Static Routines:
224  */
225 static void memlist_add(uint64_t, uint64_t, struct memlist **,
226 	struct memlist **);
227 static void kphysm_init(page_t *, struct memseg *, pgcnt_t, uintptr_t,
228 	pgcnt_t);
229 static void kvm_init(void);
230 
231 static void startup_init(void);
232 static void startup_memlist(void);
233 static void startup_modules(void);
234 static void startup_bop_gone(void);
235 static void startup_vm(void);
236 static void startup_end(void);
237 static void setup_cage_params(void);
238 static void startup_create_io_node(void);
239 
240 static pgcnt_t npages;
241 static struct memlist *memlist;
242 void *memlist_end;
243 
244 static pgcnt_t bop_alloc_pages;
245 static caddr_t hblk_base;
246 uint_t hblk_alloc_dynamic = 0;
247 uint_t hblk1_min = H1MIN;
248 uint_t hblk8_min;
249 
250 
251 /*
252  * Hooks for unsupported platforms and down-rev firmware
253  */
254 int iam_positron(void);
255 #pragma weak iam_positron
256 static void do_prom_version_check(void);
257 static void kpm_init(void);
258 static void kpm_npages_setup(int);
259 static void kpm_memseg_init(void);
260 
261 /*
262  * After receiving a thermal interrupt, this is the number of seconds
263  * to delay before shutting off the system, assuming
264  * shutdown fails.  Use /etc/system to change the delay if this isn't
265  * large enough.
266  */
267 int thermal_powerdown_delay = 1200;
268 
269 /*
270  * Used to hold off page relocations into the cage until OBP has completed
271  * its boot-time handoff of its resources to the kernel.
272  */
273 int page_relocate_ready = 0;
274 
275 /*
276  * Enable some debugging messages concerning memory usage...
277  */
278 #ifdef  DEBUGGING_MEM
279 static int debugging_mem;
280 static void
281 printmemlist(char *title, struct memlist *list)
282 {
283 	if (!debugging_mem)
284 		return;
285 
286 	printf("%s\n", title);
287 
288 	while (list) {
289 		prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n",
290 		    (uint32_t)(list->address >> 32), (uint32_t)list->address,
291 		    (uint32_t)(list->size >> 32), (uint32_t)(list->size));
292 		list = list->next;
293 	}
294 }
295 
296 void
297 printmemseg(struct memseg *memseg)
298 {
299 	if (!debugging_mem)
300 		return;
301 
302 	printf("memseg\n");
303 
304 	while (memseg) {
305 		prom_printf("\tpage = 0x%p, epage = 0x%p, "
306 		    "pfn = 0x%x, epfn = 0x%x\n",
307 		    memseg->pages, memseg->epages,
308 		    memseg->pages_base, memseg->pages_end);
309 		memseg = memseg->next;
310 	}
311 }
312 
313 #define	debug_pause(str)	halt((str))
314 #define	MPRINTF(str)		if (debugging_mem) prom_printf((str))
315 #define	MPRINTF1(str, a)	if (debugging_mem) prom_printf((str), (a))
316 #define	MPRINTF2(str, a, b)	if (debugging_mem) prom_printf((str), (a), (b))
317 #define	MPRINTF3(str, a, b, c) \
318 	if (debugging_mem) prom_printf((str), (a), (b), (c))
319 #else	/* DEBUGGING_MEM */
320 #define	MPRINTF(str)
321 #define	MPRINTF1(str, a)
322 #define	MPRINTF2(str, a, b)
323 #define	MPRINTF3(str, a, b, c)
324 #endif	/* DEBUGGING_MEM */
325 
326 /* Simple message to indicate that the bootops pointer has been zeroed */
327 #ifdef DEBUG
328 static int bootops_gone_on = 0;
329 #define	BOOTOPS_GONE() \
330 	if (bootops_gone_on) \
331 		prom_printf("The bootops vec is zeroed now!\n");
332 #else
333 #define	BOOTOPS_GONE()
334 #endif /* DEBUG */
335 
336 /*
337  * Monitor pages may not be where this says they are.
338  * and the debugger may not be there either.
339  *
340  * Note that 'pages' here are *physical* pages, which are 8k on sun4u.
341  *
342  *                        Physical memory layout
343  *                     (not necessarily contiguous)
344  *                       (THIS IS SOMEWHAT WRONG)
345  *                       /-----------------------\
346  *                       |       monitor pages   |
347  *             availmem -|-----------------------|
348  *                       |                       |
349  *                       |       page pool       |
350  *                       |                       |
351  *                       |-----------------------|
352  *                       |   configured tables   |
353  *                       |       buffers         |
354  *            firstaddr -|-----------------------|
355  *                       |   hat data structures |
356  *                       |-----------------------|
357  *                       |    kernel data, bss   |
358  *                       |-----------------------|
359  *                       |    interrupt stack    |
360  *                       |-----------------------|
361  *                       |    kernel text (RO)   |
362  *                       |-----------------------|
363  *                       |    trap table (4k)    |
364  *                       |-----------------------|
365  *               page 1  |      panicbuf         |
366  *                       |-----------------------|
367  *               page 0  |       reclaimed       |
368  *                       |_______________________|
369  *
370  *
371  *
372  *                    Kernel's Virtual Memory Layout.
373  *                       /-----------------------\
374  * 0xFFFFFFFF.FFFFFFFF  -|                       |-
375  *                       |   OBP's virtual page  |
376  *                       |        tables         |
377  * 0xFFFFFFFC.00000000  -|-----------------------|-
378  *                       :                       :
379  *                       :                       :
380  *                      -|-----------------------|-
381  *                       |       segzio          | (base and size vary)
382  * 0xFFFFFE00.00000000  -|-----------------------|-
383  *                       |                       |  Ultrasparc I/II support
384  *                       |    segkpm segment     |  up to 2TB of physical
385  *                       | (64-bit kernel ONLY)  |  memory, VAC has 2 colors
386  *                       |                       |
387  * 0xFFFFFA00.00000000  -|-----------------------|- 2TB segkpm alignment
388  *                       :                       :
389  *                       :                       :
390  * 0xFFFFF810.00000000  -|-----------------------|- hole_end
391  *                       |                       |      ^
392  *                       |  UltraSPARC I/II call |      |
393  *                       | bug requires an extra |      |
394  *                       | 4 GB of space between |      |
395  *                       |   hole and used RAM   |	|
396  *                       |                       |      |
397  * 0xFFFFF800.00000000  -|-----------------------|-     |
398  *                       |                       |      |
399  *                       | Virtual Address Hole  |   UltraSPARC
400  *                       |  on UltraSPARC I/II   |  I/II * ONLY *
401  *                       |                       |      |
402  * 0x00000800.00000000  -|-----------------------|-     |
403  *                       |                       |      |
404  *                       |  UltraSPARC I/II call |      |
405  *                       | bug requires an extra |      |
406  *                       | 4 GB of space between |      |
407  *                       |   hole and used RAM   |      |
408  *                       |                       |      v
409  * 0x000007FF.00000000  -|-----------------------|- hole_start -----
410  *                       :                       :		   ^
411  *                       :                       :		   |
412  * 0x00000XXX.XXXXXXXX  -|-----------------------|- kmem64_end	   |
413  *                       |                       |		   |
414  *                       |   64-bit kernel ONLY  |		   |
415  *                       |                       |		   |
416  *                       |    kmem64 segment     |		   |
417  *                       |                       |		   |
418  *                       | (Relocated extra HME  |	     Approximately
419  *                       |   block allocations,  |	    1 TB of virtual
420  *                       |   memnode freelists,  |	     address space
421  *                       |    HME hash buckets,  |		   |
422  *                       | mml_table, kpmp_table,|		   |
423  *                       |  page_t array and     |		   |
424  *                       |  hashblock pool to    |		   |
425  *                       |   avoid hard-coded    |		   |
426  *                       |     32-bit vaddr      |		   |
427  *                       |     limitations)      |		   |
428  *                       |                       |		   v
429  * 0x00000700.00000000  -|-----------------------|- SYSLIMIT (kmem64_base)
430  *                       |                       |
431  *                       |  segkmem segment      | (SYSLIMIT - SYSBASE = 4TB)
432  *                       |                       |
433  * 0x00000300.00000000  -|-----------------------|- SYSBASE
434  *                       :                       :
435  *                       :                       :
436  *                      -|-----------------------|-
437  *                       |                       |
438  *                       |  segmap segment       |   SEGMAPSIZE (1/8th physmem,
439  *                       |                       |               256G MAX)
440  * 0x000002a7.50000000  -|-----------------------|- SEGMAPBASE
441  *                       :                       :
442  *                       :                       :
443  *                      -|-----------------------|-
444  *                       |                       |
445  *                       |       segkp           |    SEGKPSIZE (2GB)
446  *                       |                       |
447  *                       |                       |
448  * 0x000002a1.00000000  -|-----------------------|- SEGKPBASE
449  *                       |                       |
450  * 0x000002a0.00000000  -|-----------------------|- MEMSCRUBBASE
451  *                       |                       |       (SEGKPBASE - 0x400000)
452  * 0x0000029F.FFE00000  -|-----------------------|- ARGSBASE
453  *                       |                       |       (MEMSCRUBBASE - NCARGS)
454  * 0x0000029F.FFD80000  -|-----------------------|- PPMAPBASE
455  *                       |                       |       (ARGSBASE - PPMAPSIZE)
456  * 0x0000029F.FFD00000  -|-----------------------|- PPMAP_FAST_BASE
457  *                       |                       |
458  * 0x0000029F.FF980000  -|-----------------------|- PIOMAPBASE
459  *                       |                       |
460  * 0x0000029F.FF580000  -|-----------------------|- NARG_BASE
461  *                       :                       :
462  *                       :                       :
463  * 0x00000000.FFFFFFFF  -|-----------------------|- OFW_END_ADDR
464  *                       |                       |
465  *                       |         OBP           |
466  *                       |                       |
467  * 0x00000000.F0000000  -|-----------------------|- OFW_START_ADDR
468  *                       |         kmdb          |
469  * 0x00000000.EDD00000  -|-----------------------|- SEGDEBUGBASE
470  *                       :                       :
471  *                       :                       :
472  * 0x00000000.7c000000  -|-----------------------|- SYSLIMIT32
473  *                       |                       |
474  *                       |  segkmem32 segment    | (SYSLIMIT32 - SYSBASE32 =
475  *                       |                       |    ~64MB)
476  * 0x00000000.78002000  -|-----------------------|
477  *                       |     panicbuf          |
478  * 0x00000000.78000000  -|-----------------------|- SYSBASE32
479  *                       :                       :
480  *                       :                       :
481  *                       |                       |
482  *                       |-----------------------|- econtig32
483  *                       |    vm structures      |
484  * 0x00000000.01C00000   |-----------------------|- nalloc_end
485  *                       |         TSBs          |
486  *                       |-----------------------|- end/nalloc_base
487  *                       |   kernel data & bss   |
488  * 0x00000000.01800000  -|-----------------------|
489  *                       :   nucleus text hole   :
490  * 0x00000000.01400000  -|-----------------------|
491  *                       :                       :
492  *                       |-----------------------|
493  *                       |      module text      |
494  *                       |-----------------------|- e_text/modtext
495  *                       |      kernel text      |
496  *                       |-----------------------|
497  *                       |    trap table (48k)   |
498  * 0x00000000.01000000  -|-----------------------|- KERNELBASE
499  *                       | reserved for trapstat |} TSTAT_TOTAL_SIZE
500  *                       |-----------------------|
501  *                       |                       |
502  *                       |        invalid        |
503  *                       |                       |
504  * 0x00000000.00000000  _|_______________________|
505  *
506  *
507  *
508  *                   32-bit User Virtual Memory Layout.
509  *                       /-----------------------\
510  *                       |                       |
511  *                       |        invalid        |
512  *                       |                       |
513  *          0xFFC00000  -|-----------------------|- USERLIMIT
514  *                       |       user stack      |
515  *                       :                       :
516  *                       :                       :
517  *                       :                       :
518  *                       |       user data       |
519  *                      -|-----------------------|-
520  *                       |       user text       |
521  *          0x00002000  -|-----------------------|-
522  *                       |       invalid         |
523  *          0x00000000  _|_______________________|
524  *
525  *
526  *
527  *                   64-bit User Virtual Memory Layout.
528  *                       /-----------------------\
529  *                       |                       |
530  *                       |        invalid        |
531  *                       |                       |
532  *  0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT
533  *                       |       user stack      |
534  *                       :                       :
535  *                       :                       :
536  *                       :                       :
537  *                       |       user data       |
538  *                      -|-----------------------|-
539  *                       |       user text       |
540  *  0x00000000.00100000 -|-----------------------|-
541  *                       |       invalid         |
542  *  0x00000000.00000000 _|_______________________|
543  */
544 
545 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base);
546 extern uint64_t ecache_flush_address(void);
547 
548 #pragma weak load_platform_modules
549 #pragma weak plat_startup_memlist
550 #pragma weak ecache_init_scrub_flush_area
551 #pragma weak ecache_flush_address
552 
553 
554 /*
555  * By default the DR Cage is enabled for maximum OS
556  * MPSS performance.  Users needing to disable the cage mechanism
557  * can set this variable to zero via /etc/system.
558  * Disabling the cage on systems supporting Dynamic Reconfiguration (DR)
559  * will result in loss of DR functionality.
560  * Platforms wishing to disable kernel Cage by default
561  * should do so in their set_platform_defaults() routine.
562  */
563 int	kernel_cage_enable = 1;
564 
565 static void
566 setup_cage_params(void)
567 {
568 	void (*func)(void);
569 
570 	func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0);
571 	if (func != NULL) {
572 		(*func)();
573 		return;
574 	}
575 
576 	if (kernel_cage_enable == 0) {
577 		return;
578 	}
579 	kcage_range_lock();
580 	if (kcage_range_init(phys_avail, 1) == 0) {
581 		kcage_init(total_pages / 256);
582 	}
583 	kcage_range_unlock();
584 
585 	if (kcage_on) {
586 		cmn_err(CE_NOTE, "!Kernel Cage is ENABLED");
587 	} else {
588 		cmn_err(CE_NOTE, "!Kernel Cage is DISABLED");
589 	}
590 
591 }
592 
593 /*
594  * Machine-dependent startup code
595  */
596 void
597 startup(void)
598 {
599 	startup_init();
600 	if (&startup_platform)
601 		startup_platform();
602 	startup_memlist();
603 	startup_modules();
604 	setup_cage_params();
605 	startup_bop_gone();
606 	startup_vm();
607 	startup_end();
608 }
609 
610 struct regs sync_reg_buf;
611 uint64_t sync_tt;
612 
613 void
614 sync_handler(void)
615 {
616 	struct  trap_info 	ti;
617 	int i;
618 
619 	/*
620 	 * Prevent trying to talk to the other CPUs since they are
621 	 * sitting in the prom and won't reply.
622 	 */
623 	for (i = 0; i < NCPU; i++) {
624 		if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) {
625 			cpu[i]->cpu_flags &= ~CPU_READY;
626 			cpu[i]->cpu_flags |= CPU_QUIESCED;
627 			CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
628 		}
629 	}
630 
631 	/*
632 	 * We've managed to get here without going through the
633 	 * normal panic code path. Try and save some useful
634 	 * information.
635 	 */
636 	if (!panicstr && (curthread->t_panic_trap == NULL)) {
637 		ti.trap_type = sync_tt;
638 		ti.trap_regs = &sync_reg_buf;
639 		ti.trap_addr = NULL;
640 		ti.trap_mmu_fsr = 0x0;
641 
642 		curthread->t_panic_trap = &ti;
643 	}
644 
645 	/*
646 	 * If we're re-entering the panic path, update the signature
647 	 * block so that the SC knows we're in the second part of panic.
648 	 */
649 	if (panicstr)
650 		CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
651 
652 	nopanicdebug = 1; /* do not perform debug_enter() prior to dump */
653 	panic("sync initiated");
654 }
655 
656 
657 static void
658 startup_init(void)
659 {
660 	/*
661 	 * We want to save the registers while we're still in OBP
662 	 * so that we know they haven't been fiddled with since.
663 	 * (In principle, OBP can't change them just because it
664 	 * makes a callback, but we'd rather not depend on that
665 	 * behavior.)
666 	 */
667 	char		sync_str[] =
668 		"warning @ warning off : sync "
669 		"%%tl-c %%tstate h# %p x! "
670 		"%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! "
671 		"%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! "
672 		"%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! "
673 		"%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! "
674 		"%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! "
675 		"%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! "
676 		"%%y h# %p l! %%tl-c %%tt h# %p x! "
677 		"sync ; warning !";
678 
679 	/*
680 	 * 20 == num of %p substrings
681 	 * 16 == max num of chars %p will expand to.
682 	 */
683 	char 		bp[sizeof (sync_str) + 16 * 20];
684 
685 	(void) check_boot_version(BOP_GETVERSION(bootops));
686 
687 	/*
688 	 * Initialize ptl1 stack for the 1st CPU.
689 	 */
690 	ptl1_init_cpu(&cpu0);
691 
692 	/*
693 	 * Initialize the address map for cache consistent mappings
694 	 * to random pages; must be done after vac_size is set.
695 	 */
696 	ppmapinit();
697 
698 	/*
699 	 * Initialize the PROM callback handler.
700 	 */
701 	init_vx_handler();
702 
703 	/*
704 	 * have prom call sync_callback() to handle the sync and
705 	 * save some useful information which will be stored in the
706 	 * core file later.
707 	 */
708 	(void) sprintf((char *)bp, sync_str,
709 		(void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1,
710 		(void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3,
711 		(void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5,
712 		(void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7,
713 		(void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1,
714 		(void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3,
715 		(void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5,
716 		(void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7,
717 		(void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc,
718 		(void *)&sync_reg_buf.r_y, (void *)&sync_tt);
719 	prom_interpret(bp, 0, 0, 0, 0, 0);
720 	add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler);
721 }
722 
723 static u_longlong_t *boot_physinstalled, *boot_physavail, *boot_virtavail;
724 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len;
725 
726 #define	IVSIZE	((MAXIVNUM * sizeof (intr_vec_t *)) + \
727 		(MAX_RSVD_IV * sizeof (intr_vec_t)) + \
728 		(MAX_RSVD_IVX * sizeof (intr_vecx_t)))
729 
730 /*
731  * As OBP takes up some RAM when the system boots, pages will already be "lost"
732  * to the system and reflected in npages by the time we see it.
733  *
734  * We only want to allocate kernel structures in the 64-bit virtual address
735  * space on systems with enough RAM to make the overhead of keeping track of
736  * an extra kernel memory segment worthwhile.
737  *
738  * Since OBP has already performed its memory allocations by this point, if we
739  * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map
740  * memory in the 64-bit virtual address space; otherwise keep allocations
741  * contiguous with we've mapped so far in the 32-bit virtual address space.
742  */
743 #define	MINMOVE_RAM_MB	((size_t)1900)
744 #define	MB_TO_BYTES(mb)	((mb) * 1048576ul)
745 
746 pgcnt_t	tune_npages = (pgcnt_t)
747 	(MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE);
748 
749 static void
750 startup_memlist(void)
751 {
752 	size_t alloc_sz;
753 	size_t ctrs_sz;
754 	caddr_t alloc_base;
755 	caddr_t ctrs_base, ctrs_end;
756 	caddr_t memspace;
757 	caddr_t va;
758 	int memblocks = 0;
759 	struct memlist *cur;
760 	size_t syslimit = (size_t)SYSLIMIT;
761 	size_t sysbase = (size_t)SYSBASE;
762 	int alloc_alignsize = MMU_PAGESIZE;
763 	extern void page_coloring_init(void);
764 
765 	/*
766 	 * Initialize enough of the system to allow kmem_alloc to work by
767 	 * calling boot to allocate its memory until the time that
768 	 * kvm_init is completed.  The page structs are allocated after
769 	 * rounding up end to the nearest page boundary; the memsegs are
770 	 * initialized and the space they use comes from the kernel heap.
771 	 * With appropriate initialization, they can be reallocated later
772 	 * to a size appropriate for the machine's configuration.
773 	 *
774 	 * At this point, memory is allocated for things that will never
775 	 * need to be freed, this used to be "valloced".  This allows a
776 	 * savings as the pages don't need page structures to describe
777 	 * them because them will not be managed by the vm system.
778 	 */
779 
780 	/*
781 	 * We're loaded by boot with the following configuration (as
782 	 * specified in the sun4u/conf/Mapfile):
783 	 *
784 	 * 	text:		4 MB chunk aligned on a 4MB boundary
785 	 * 	data & bss:	4 MB chunk aligned on a 4MB boundary
786 	 *
787 	 * These two chunks will eventually be mapped by 2 locked 4MB
788 	 * ttes and will represent the nucleus of the kernel.  This gives
789 	 * us some free space that is already allocated, some or all of
790 	 * which is made available to kernel module text.
791 	 *
792 	 * The free space in the data-bss chunk is used for nucleus
793 	 * allocatable data structures and we reserve it using the
794 	 * nalloc_base and nalloc_end variables.  This space is currently
795 	 * being used for hat data structures required for tlb miss
796 	 * handling operations.  We align nalloc_base to a l2 cache
797 	 * linesize because this is the line size the hardware uses to
798 	 * maintain cache coherency.
799 	 * 256K is carved out for module data.
800 	 */
801 
802 	nalloc_base = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE);
803 	moddata = nalloc_base;
804 	e_moddata = nalloc_base + MODDATA;
805 	nalloc_base = e_moddata;
806 
807 	nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M);
808 	valloc_base = nalloc_base;
809 
810 	/*
811 	 * Calculate the start of the data segment.
812 	 */
813 	sdata = (caddr_t)((uintptr_t)e_data & MMU_PAGEMASK4M);
814 
815 	PRM_DEBUG(moddata);
816 	PRM_DEBUG(nalloc_base);
817 	PRM_DEBUG(nalloc_end);
818 	PRM_DEBUG(sdata);
819 
820 	/*
821 	 * Remember any slop after e_text so we can give it to the modules.
822 	 */
823 	PRM_DEBUG(e_text);
824 	modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE);
825 	if (((uintptr_t)modtext & MMU_PAGEMASK4M) != (uintptr_t)s_text)
826 		panic("nucleus text overflow");
827 	modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) -
828 	    modtext;
829 	PRM_DEBUG(modtext);
830 	PRM_DEBUG(modtext_sz);
831 
832 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
833 	    &boot_physavail, &boot_physavail_len,
834 	    &boot_virtavail, &boot_virtavail_len);
835 	/*
836 	 * Remember what the physically available highest page is
837 	 * so that dumpsys works properly, and find out how much
838 	 * memory is installed.
839 	 */
840 	installed_top_size_memlist_array(boot_physinstalled,
841 	    boot_physinstalled_len, &physmax, &physinstalled);
842 	PRM_DEBUG(physinstalled);
843 	PRM_DEBUG(physmax);
844 
845 	/* Fill out memory nodes config structure */
846 	startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len);
847 
848 	/*
849 	 * Get the list of physically available memory to size
850 	 * the number of page structures needed.
851 	 */
852 	size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks);
853 	/*
854 	 * This first snap shot of npages can represent the pages used
855 	 * by OBP's text and data approximately. This is used in the
856 	 * the calculation of the kernel size
857 	 */
858 	obp_pages = physinstalled - npages;
859 
860 
861 	/*
862 	 * On small-memory systems (<MODTEXT_SM_SIZE MB, currently 256MB), the
863 	 * in-nucleus module text is capped to MODTEXT_SM_CAP bytes (currently
864 	 * 2MB) and any excess pages are put on physavail.  The assumption is
865 	 * that small-memory systems will need more pages more than they'll
866 	 * need efficiently-mapped module texts.
867 	 */
868 	if ((physinstalled < mmu_btop(MODTEXT_SM_SIZE << 20)) &&
869 	    modtext_sz > MODTEXT_SM_CAP) {
870 		extra_etpg = mmu_btop(modtext_sz - MODTEXT_SM_CAP);
871 		modtext_sz = MODTEXT_SM_CAP;
872 	} else
873 		extra_etpg = 0;
874 	PRM_DEBUG(extra_etpg);
875 	PRM_DEBUG(modtext_sz);
876 	extra_etva = modtext + modtext_sz;
877 	PRM_DEBUG(extra_etva);
878 
879 	/*
880 	 * Account for any pages after e_text and e_data.
881 	 */
882 	npages += extra_etpg;
883 	npages += mmu_btopr(nalloc_end - nalloc_base);
884 	PRM_DEBUG(npages);
885 
886 	/*
887 	 * npages is the maximum of available physical memory possible.
888 	 * (ie. it will never be more than this)
889 	 */
890 
891 	/*
892 	 * initialize the nucleus memory allocator.
893 	 */
894 	ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end);
895 
896 	/*
897 	 * Allocate mmu fault status area from the nucleus data area.
898 	 */
899 	if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0))
900 		cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc");
901 
902 	/*
903 	 * Allocate kernel TSBs from the nucleus data area.
904 	 */
905 	if (ndata_alloc_tsbs(&ndata, npages) != 0)
906 		cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc");
907 
908 	/*
909 	 * Allocate dmv dispatch table from the nucleus data area.
910 	 */
911 	if (ndata_alloc_dmv(&ndata) != 0)
912 		cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc");
913 
914 
915 	page_coloring_init();
916 
917 	/*
918 	 * Allocate page_freelists bin headers for memnode 0 from the
919 	 * nucleus data area.
920 	 */
921 	if (ndata_alloc_page_freelists(&ndata, 0) != 0)
922 		cmn_err(CE_PANIC,
923 		    "no more nucleus memory after page free lists alloc");
924 
925 	if (kpm_enable) {
926 		kpm_init();
927 		/*
928 		 * kpm page space -- Update kpm_npages and make the
929 		 * same assumption about fragmenting as it is done
930 		 * for memseg_sz.
931 		 */
932 		kpm_npages_setup(memblocks + 4);
933 	}
934 
935 	/*
936 	 * Allocate hat related structs from the nucleus data area.
937 	 */
938 	if (ndata_alloc_hat(&ndata, npages, kpm_npages) != 0)
939 		cmn_err(CE_PANIC, "no more nucleus memory after hat alloc");
940 
941 	/*
942 	 * We want to do the BOP_ALLOCs before the real allocation of page
943 	 * structs in order to not have to allocate page structs for this
944 	 * memory.  We need to calculate a virtual address because we want
945 	 * the page structs to come before other allocations in virtual address
946 	 * space.  This is so some (if not all) of page structs can actually
947 	 * live in the nucleus.
948 	 */
949 
950 	/*
951 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
952 	 *
953 	 * There are comments all over the SFMMU code warning of dire
954 	 * consequences if the TSBs are moved out of 32-bit space.  This
955 	 * is largely because the asm code uses "sethi %hi(addr)"-type
956 	 * instructions which will not provide the expected result if the
957 	 * address is a 64-bit one.
958 	 *
959 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
960 	 */
961 	alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE);
962 	alloc_base = sfmmu_ktsb_alloc(alloc_base);
963 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
964 	PRM_DEBUG(alloc_base);
965 
966 	/*
967 	 * Allocate IOMMU TSB array.  We do this here so that the physical
968 	 * memory gets deducted from the PROM's physical memory list.
969 	 */
970 	alloc_base = iommu_tsb_init(alloc_base);
971 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
972 	    ecache_alignsize);
973 	PRM_DEBUG(alloc_base);
974 
975 	/*
976 	 * Platforms like Starcat and OPL need special structures assigned in
977 	 * 32-bit virtual address space because their probing routines execute
978 	 * FCode, and FCode can't handle 64-bit virtual addresses...
979 	 */
980 	if (&plat_startup_memlist) {
981 		alloc_base = plat_startup_memlist(alloc_base);
982 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
983 		    ecache_alignsize);
984 		PRM_DEBUG(alloc_base);
985 	}
986 
987 	/*
988 	 * If we have enough memory, use 4M pages for alignment because it
989 	 * greatly reduces the number of TLB misses we take albeit at the cost
990 	 * of possible RAM wastage (degenerate case of 4 MB - MMU_PAGESIZE per
991 	 * allocation.) Still, the speedup on large memory systems (e.g. > 64
992 	 * GB) is quite noticeable, so it is worth the effort to do if we can.
993 	 *
994 	 * Note, however, that this speedup will only occur if the boot PROM
995 	 * uses the largest possible MMU page size possible to map memory
996 	 * requests that are properly aligned and sized (for example, a request
997 	 * for a multiple of 4MB of memory aligned to a 4MB boundary will
998 	 * result in a mapping using a 4MB MMU page.)
999 	 *
1000 	 * Even then, the large page mappings will only speed things up until
1001 	 * the startup process proceeds a bit further, as when
1002 	 * sfmmu_map_prom_mappings() copies page mappings from the PROM to the
1003 	 * kernel it remaps everything but the TSBs using 8K pages anyway...
1004 	 *
1005 	 * At some point in the future, sfmmu_map_prom_mappings() will be
1006 	 * rewritten to copy memory mappings to the kernel using the same MMU
1007 	 * page sizes the PROM used.  When that occurs, if the PROM did use
1008 	 * large MMU pages to map memory, the alignment/sizing work we're
1009 	 * doing now should give us a nice extra performance boost, albeit at
1010 	 * the cost of greater RAM usage...
1011 	 */
1012 	alloc_alignsize = ((npages >= tune_npages) ? MMU_PAGESIZE4M :
1013 	    MMU_PAGESIZE);
1014 
1015 	PRM_DEBUG(tune_npages);
1016 	PRM_DEBUG(alloc_alignsize);
1017 
1018 	/*
1019 	 * Save off where the contiguous allocations to date have ended
1020 	 * in econtig32.
1021 	 */
1022 	econtig32 = alloc_base;
1023 	PRM_DEBUG(econtig32);
1024 
1025 	if (econtig32 > (caddr_t)KERNEL_LIMIT32)
1026 		cmn_err(CE_PANIC, "econtig32 too big");
1027 
1028 	/*
1029 	 * To avoid memory allocation collisions in the 32-bit virtual address
1030 	 * space, make allocations from this point forward in 64-bit virtual
1031 	 * address space starting at syslimit and working up.  Also use the
1032 	 * alignment specified by alloc_alignsize, as we may be able to save
1033 	 * ourselves TLB misses by using larger page sizes if they're
1034 	 * available.
1035 	 *
1036 	 * All this is needed because on large memory systems, the default
1037 	 * Solaris allocations will collide with SYSBASE32, which is hard
1038 	 * coded to be at the virtual address 0x78000000.  Therefore, on 64-bit
1039 	 * kernels, move the allocations to a location in the 64-bit virtual
1040 	 * address space space, allowing those structures to grow without
1041 	 * worry.
1042 	 *
1043 	 * On current CPUs we'll run out of physical memory address bits before
1044 	 * we need to worry about the allocations running into anything else in
1045 	 * VM or the virtual address holes on US-I and II, as there's currently
1046 	 * about 1 TB of addressable space before the US-I/II VA hole.
1047 	 */
1048 	kmem64_base = (caddr_t)syslimit;
1049 	PRM_DEBUG(kmem64_base);
1050 
1051 	alloc_base = (caddr_t)roundup((uintptr_t)kmem64_base, alloc_alignsize);
1052 
1053 	/*
1054 	 * If KHME and/or UHME hash buckets won't fit in the nucleus, allocate
1055 	 * them here.
1056 	 */
1057 	if (khme_hash == NULL || uhme_hash == NULL) {
1058 		/*
1059 		 * alloc_hme_buckets() will align alloc_base properly before
1060 		 * assigning the hash buckets, so we don't need to do it
1061 		 * before the call...
1062 		 */
1063 		alloc_base = alloc_hme_buckets(alloc_base, alloc_alignsize);
1064 
1065 		PRM_DEBUG(alloc_base);
1066 		PRM_DEBUG(khme_hash);
1067 		PRM_DEBUG(uhme_hash);
1068 	}
1069 
1070 	/*
1071 	 * Allocate the remaining page freelists.  NUMA systems can
1072 	 * have lots of page freelists, one per node, which quickly
1073 	 * outgrow the amount of nucleus memory available.
1074 	 */
1075 	if (max_mem_nodes > 1) {
1076 		int mnode;
1077 		caddr_t alloc_start = alloc_base;
1078 
1079 		for (mnode = 1; mnode < max_mem_nodes; mnode++) {
1080 			alloc_base = alloc_page_freelists(mnode, alloc_base,
1081 				ecache_alignsize);
1082 		}
1083 
1084 		if (alloc_base > alloc_start) {
1085 			alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1086 				alloc_alignsize);
1087 			if ((caddr_t)BOP_ALLOC(bootops, alloc_start,
1088 				alloc_base - alloc_start,
1089 				alloc_alignsize) != alloc_start)
1090 				cmn_err(CE_PANIC,
1091 					"Unable to alloc page freelists\n");
1092 		}
1093 
1094 		PRM_DEBUG(alloc_base);
1095 	}
1096 
1097 	if (!mml_table) {
1098 		size_t mmltable_sz;
1099 
1100 		/*
1101 		 * We need to allocate the mml_table here because there
1102 		 * was not enough space within the nucleus.
1103 		 */
1104 		mmltable_sz = sizeof (kmutex_t) * mml_table_sz;
1105 		alloc_sz = roundup(mmltable_sz, alloc_alignsize);
1106 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1107 		    alloc_alignsize);
1108 
1109 		if ((mml_table = (kmutex_t *)BOP_ALLOC(bootops, alloc_base,
1110 		    alloc_sz, alloc_alignsize)) != (kmutex_t *)alloc_base)
1111 			panic("mml_table alloc failure");
1112 
1113 		alloc_base += alloc_sz;
1114 		PRM_DEBUG(mml_table);
1115 		PRM_DEBUG(alloc_base);
1116 	}
1117 
1118 	if (kpm_enable && !(kpmp_table || kpmp_stable)) {
1119 		size_t kpmptable_sz;
1120 		caddr_t table;
1121 
1122 		/*
1123 		 * We need to allocate either kpmp_table or kpmp_stable here
1124 		 * because there was not enough space within the nucleus.
1125 		 */
1126 		kpmptable_sz = (kpm_smallpages == 0) ?
1127 				sizeof (kpm_hlk_t) * kpmp_table_sz :
1128 				sizeof (kpm_shlk_t) * kpmp_stable_sz;
1129 
1130 		alloc_sz = roundup(kpmptable_sz, alloc_alignsize);
1131 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1132 		    alloc_alignsize);
1133 
1134 		table = BOP_ALLOC(bootops, alloc_base, alloc_sz,
1135 				alloc_alignsize);
1136 
1137 		if (table != alloc_base)
1138 			panic("kpmp_table or kpmp_stable alloc failure");
1139 
1140 		if (kpm_smallpages == 0) {
1141 			kpmp_table = (kpm_hlk_t *)table;
1142 			PRM_DEBUG(kpmp_table);
1143 		} else {
1144 			kpmp_stable = (kpm_shlk_t *)table;
1145 			PRM_DEBUG(kpmp_stable);
1146 		}
1147 
1148 		alloc_base += alloc_sz;
1149 		PRM_DEBUG(alloc_base);
1150 	}
1151 
1152 	if (&ecache_init_scrub_flush_area) {
1153 		/*
1154 		 * Pass alloc_base directly, as the routine itself is
1155 		 * responsible for any special alignment requirements...
1156 		 */
1157 		alloc_base = ecache_init_scrub_flush_area(alloc_base);
1158 		PRM_DEBUG(alloc_base);
1159 	}
1160 
1161 	/*
1162 	 * Take the most current snapshot we can by calling mem-update.
1163 	 */
1164 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1165 	    &boot_physavail, &boot_physavail_len,
1166 	    &boot_virtavail, &boot_virtavail_len);
1167 
1168 	/*
1169 	 * Reset npages and memblocks based on boot_physavail list.
1170 	 */
1171 	size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks);
1172 	PRM_DEBUG(npages);
1173 
1174 	/*
1175 	 * Account for extra memory after e_text.
1176 	 */
1177 	npages += extra_etpg;
1178 
1179 	/*
1180 	 * Calculate the largest free memory chunk in the nucleus data area.
1181 	 * We need to figure out if page structs can fit in there or not.
1182 	 * We also make sure enough page structs get created for any physical
1183 	 * memory we might be returning to the system.
1184 	 */
1185 	ndata_remain_sz = ndata_maxsize(&ndata);
1186 	PRM_DEBUG(ndata_remain_sz);
1187 
1188 	pp_sz = sizeof (struct page) * npages;
1189 
1190 	/*
1191 	 * Here's a nice bit of code based on somewhat recursive logic:
1192 	 *
1193 	 * If the page array would fit within the nucleus, we want to
1194 	 * add npages to cover any extra memory we may be returning back
1195 	 * to the system.
1196 	 *
1197 	 * HOWEVER, the page array is sized by calculating the size of
1198 	 * (struct page * npages), as are the pagehash table, ctrs and
1199 	 * memseg_list, so the very act of performing the calculation below may
1200 	 * in fact make the array large enough that it no longer fits in the
1201 	 * nucleus, meaning there would now be a much larger area of the
1202 	 * nucleus free that should really be added to npages, which would
1203 	 * make the page array that much larger, and so on.
1204 	 *
1205 	 * This also ignores the memory possibly used in the nucleus for the
1206 	 * the page hash, ctrs and memseg list and the fact that whether they
1207 	 * fit there or not varies with the npages calculation below, but we
1208 	 * don't even factor them into the equation at this point; perhaps we
1209 	 * should or perhaps we should just take the approach that the few
1210 	 * extra pages we could add via this calculation REALLY aren't worth
1211 	 * the hassle...
1212 	 */
1213 	if (ndata_remain_sz > pp_sz) {
1214 		size_t spare = ndata_spare(&ndata, pp_sz, ecache_alignsize);
1215 
1216 		npages += mmu_btop(spare);
1217 
1218 		pp_sz = npages * sizeof (struct page);
1219 
1220 		pp_base = ndata_alloc(&ndata, pp_sz, ecache_alignsize);
1221 	}
1222 
1223 	/*
1224 	 * If physmem is patched to be non-zero, use it instead of
1225 	 * the monitor value unless physmem is larger than the total
1226 	 * amount of memory on hand.
1227 	 */
1228 	if (physmem == 0 || physmem > npages)
1229 		physmem = npages;
1230 
1231 	/*
1232 	 * If pp_base is NULL that means the routines above have determined
1233 	 * the page array will not fit in the nucleus; we'll have to
1234 	 * BOP_ALLOC() ourselves some space for them.
1235 	 */
1236 	if (pp_base == NULL) {
1237 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1238 		    alloc_alignsize);
1239 
1240 		alloc_sz = roundup(pp_sz, alloc_alignsize);
1241 
1242 		if ((pp_base = (struct page *)BOP_ALLOC(bootops,
1243 		    alloc_base, alloc_sz, alloc_alignsize)) !=
1244 		    (struct page *)alloc_base)
1245 			panic("page alloc failure");
1246 
1247 		alloc_base += alloc_sz;
1248 	}
1249 
1250 	/*
1251 	 * The page structure hash table size is a power of 2
1252 	 * such that the average hash chain length is PAGE_HASHAVELEN.
1253 	 */
1254 	page_hashsz = npages / PAGE_HASHAVELEN;
1255 	page_hashsz = 1 << highbit((ulong_t)page_hashsz);
1256 	pagehash_sz = sizeof (struct page *) * page_hashsz;
1257 
1258 	/*
1259 	 * We want to TRY to fit the page structure hash table,
1260 	 * the page size free list counters, the memseg list and
1261 	 * and the kpm page space in the nucleus if possible.
1262 	 *
1263 	 * alloc_sz counts how much memory needs to be allocated by
1264 	 * BOP_ALLOC().
1265 	 */
1266 	page_hash = ndata_alloc(&ndata, pagehash_sz, ecache_alignsize);
1267 
1268 	alloc_sz = (page_hash == NULL ? pagehash_sz : 0);
1269 
1270 	/*
1271 	 * Size up per page size free list counters.
1272 	 */
1273 	ctrs_sz = page_ctrs_sz();
1274 	ctrs_base = ndata_alloc(&ndata, ctrs_sz, ecache_alignsize);
1275 
1276 	if (ctrs_base == NULL)
1277 		alloc_sz = roundup(alloc_sz, ecache_alignsize) + ctrs_sz;
1278 
1279 	/*
1280 	 * The memseg list is for the chunks of physical memory that
1281 	 * will be managed by the vm system.  The number calculated is
1282 	 * a guess as boot may fragment it more when memory allocations
1283 	 * are made before kphysm_init().  Currently, there are two
1284 	 * allocations before then, so we assume each causes fragmen-
1285 	 * tation, and add a couple more for good measure.
1286 	 */
1287 	memseg_sz = sizeof (struct memseg) * (memblocks + 4);
1288 	memseg_base = ndata_alloc(&ndata, memseg_sz, ecache_alignsize);
1289 
1290 	if (memseg_base == NULL)
1291 		alloc_sz = roundup(alloc_sz, ecache_alignsize) + memseg_sz;
1292 
1293 
1294 	if (kpm_enable) {
1295 		/*
1296 		 * kpm page space -- Update kpm_npages and make the
1297 		 * same assumption about fragmenting as it is done
1298 		 * for memseg_sz above.
1299 		 */
1300 		kpm_npages_setup(memblocks + 4);
1301 		kpm_pp_sz = (kpm_smallpages == 0) ?
1302 				kpm_npages * sizeof (kpm_page_t):
1303 				kpm_npages * sizeof (kpm_spage_t);
1304 
1305 		kpm_pp_base = (uintptr_t)ndata_alloc(&ndata, kpm_pp_sz,
1306 		    ecache_alignsize);
1307 
1308 		if (kpm_pp_base == NULL)
1309 			alloc_sz = roundup(alloc_sz, ecache_alignsize) +
1310 			    kpm_pp_sz;
1311 	}
1312 
1313 	if (alloc_sz > 0) {
1314 		uintptr_t bop_base;
1315 
1316 		/*
1317 		 * We need extra memory allocated through BOP_ALLOC.
1318 		 */
1319 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1320 		    alloc_alignsize);
1321 
1322 		alloc_sz = roundup(alloc_sz, alloc_alignsize);
1323 
1324 		if ((bop_base = (uintptr_t)BOP_ALLOC(bootops, alloc_base,
1325 		    alloc_sz, alloc_alignsize)) != (uintptr_t)alloc_base)
1326 			panic("system page struct alloc failure");
1327 
1328 		alloc_base += alloc_sz;
1329 
1330 		if (page_hash == NULL) {
1331 			page_hash = (struct page **)bop_base;
1332 			bop_base = roundup(bop_base + pagehash_sz,
1333 			    ecache_alignsize);
1334 		}
1335 
1336 		if (ctrs_base == NULL) {
1337 			ctrs_base = (caddr_t)bop_base;
1338 			bop_base = roundup(bop_base + ctrs_sz,
1339 			    ecache_alignsize);
1340 		}
1341 
1342 		if (memseg_base == NULL) {
1343 			memseg_base = (struct memseg *)bop_base;
1344 			bop_base = roundup(bop_base + memseg_sz,
1345 			    ecache_alignsize);
1346 		}
1347 
1348 		if (kpm_enable && kpm_pp_base == NULL) {
1349 			kpm_pp_base = (uintptr_t)bop_base;
1350 			bop_base = roundup(bop_base + kpm_pp_sz,
1351 			    ecache_alignsize);
1352 		}
1353 
1354 		ASSERT(bop_base <= (uintptr_t)alloc_base);
1355 	}
1356 
1357 	/*
1358 	 * Initialize per page size free list counters.
1359 	 */
1360 	ctrs_end = page_ctrs_alloc(ctrs_base);
1361 	ASSERT(ctrs_base + ctrs_sz >= ctrs_end);
1362 
1363 	PRM_DEBUG(page_hash);
1364 	PRM_DEBUG(memseg_base);
1365 	PRM_DEBUG(kpm_pp_base);
1366 	PRM_DEBUG(kpm_pp_sz);
1367 	PRM_DEBUG(pp_base);
1368 	PRM_DEBUG(pp_sz);
1369 	PRM_DEBUG(alloc_base);
1370 
1371 #ifdef	TRAPTRACE
1372 	/*
1373 	 * Allocate trap trace buffer last so as not to affect
1374 	 * the 4M alignments of the allocations above on V9 SPARCs...
1375 	 */
1376 	alloc_base = trap_trace_alloc(alloc_base);
1377 	PRM_DEBUG(alloc_base);
1378 #endif	/* TRAPTRACE */
1379 
1380 	if (kmem64_base) {
1381 		/*
1382 		 * Set the end of the kmem64 segment for V9 SPARCs, if
1383 		 * appropriate...
1384 		 */
1385 		kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base,
1386 		    alloc_alignsize);
1387 
1388 		PRM_DEBUG(kmem64_base);
1389 		PRM_DEBUG(kmem64_end);
1390 	}
1391 
1392 	/*
1393 	 * Allocate space for the interrupt vector table and also for the
1394 	 * reserved interrupt vector data structures.
1395 	 */
1396 	memspace = (caddr_t)BOP_ALLOC(bootops, (caddr_t)intr_vec_table,
1397 	    IVSIZE, MMU_PAGESIZE);
1398 	if (memspace != (caddr_t)intr_vec_table)
1399 		panic("interrupt vector table allocation failure");
1400 
1401 	/*
1402 	 * The memory lists from boot are allocated from the heap arena
1403 	 * so that later they can be freed and/or reallocated.
1404 	 */
1405 	if (BOP_GETPROP(bootops, "extent", &memlist_sz) == -1)
1406 		panic("could not retrieve property \"extent\"");
1407 
1408 	/*
1409 	 * Between now and when we finish copying in the memory lists,
1410 	 * allocations happen so the space gets fragmented and the
1411 	 * lists longer.  Leave enough space for lists twice as long
1412 	 * as what boot says it has now; roundup to a pagesize.
1413 	 * Also add space for the final phys-avail copy in the fixup
1414 	 * routine.
1415 	 */
1416 	va = (caddr_t)(sysbase + PAGESIZE + PANICBUFSIZE +
1417 	    roundup(IVSIZE, MMU_PAGESIZE));
1418 	memlist_sz *= 4;
1419 	memlist_sz = roundup(memlist_sz, MMU_PAGESIZE);
1420 	memspace = (caddr_t)BOP_ALLOC(bootops, va, memlist_sz, BO_NO_ALIGN);
1421 	if (memspace == NULL)
1422 		halt("Boot allocation failed.");
1423 
1424 	memlist = (struct memlist *)memspace;
1425 	memlist_end = (char *)memspace + memlist_sz;
1426 
1427 	PRM_DEBUG(memlist);
1428 	PRM_DEBUG(memlist_end);
1429 	PRM_DEBUG(sysbase);
1430 	PRM_DEBUG(syslimit);
1431 
1432 	kernelheap_init((void *)sysbase, (void *)syslimit,
1433 	    (caddr_t)sysbase + PAGESIZE, NULL, NULL);
1434 
1435 	/*
1436 	 * Take the most current snapshot we can by calling mem-update.
1437 	 */
1438 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1439 	    &boot_physavail, &boot_physavail_len,
1440 	    &boot_virtavail, &boot_virtavail_len);
1441 
1442 	/*
1443 	 * Remove the space used by BOP_ALLOC from the kernel heap
1444 	 * plus the area actually used by the OBP (if any)
1445 	 * ignoring virtual addresses in virt_avail, above syslimit.
1446 	 */
1447 	virt_avail = memlist;
1448 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1449 
1450 	for (cur = virt_avail; cur->next; cur = cur->next) {
1451 		uint64_t range_base, range_size;
1452 
1453 		if ((range_base = cur->address + cur->size) < (uint64_t)sysbase)
1454 			continue;
1455 		if (range_base >= (uint64_t)syslimit)
1456 			break;
1457 		/*
1458 		 * Limit the range to end at syslimit.
1459 		 */
1460 		range_size = MIN(cur->next->address,
1461 		    (uint64_t)syslimit) - range_base;
1462 		(void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE,
1463 		    0, 0, (void *)range_base, (void *)(range_base + range_size),
1464 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1465 	}
1466 
1467 	phys_avail = memlist;
1468 	(void) copy_physavail(boot_physavail, boot_physavail_len,
1469 	    &memlist, 0, 0);
1470 
1471 	/*
1472 	 * Add any extra memory after e_text to the phys_avail list, as long
1473 	 * as there's at least a page to add.
1474 	 */
1475 	if (extra_etpg)
1476 		memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg),
1477 		    &memlist, &phys_avail);
1478 
1479 	/*
1480 	 * Add any extra memory after e_data to the phys_avail list as long
1481 	 * as there's at least a page to add.  Usually, there isn't any,
1482 	 * since extra HME blocks typically get allocated there first before
1483 	 * using RAM elsewhere.
1484 	 */
1485 	if ((nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE)) == NULL)
1486 		nalloc_base = nalloc_end;
1487 	ndata_remain_sz = nalloc_end - nalloc_base;
1488 
1489 	if (ndata_remain_sz >= MMU_PAGESIZE)
1490 		memlist_add(va_to_pa(nalloc_base),
1491 		    (uint64_t)ndata_remain_sz, &memlist, &phys_avail);
1492 
1493 	PRM_DEBUG(memlist);
1494 	PRM_DEBUG(memlist_sz);
1495 	PRM_DEBUG(memspace);
1496 
1497 	if ((caddr_t)memlist > (memspace + memlist_sz))
1498 		panic("memlist overflow");
1499 
1500 	PRM_DEBUG(pp_base);
1501 	PRM_DEBUG(memseg_base);
1502 	PRM_DEBUG(npages);
1503 
1504 	/*
1505 	 * Initialize the page structures from the memory lists.
1506 	 */
1507 	kphysm_init(pp_base, memseg_base, npages, kpm_pp_base, kpm_npages);
1508 
1509 	availrmem_initial = availrmem = freemem;
1510 	PRM_DEBUG(availrmem);
1511 
1512 	/*
1513 	 * Some of the locks depend on page_hashsz being set!
1514 	 * kmem_init() depends on this; so, keep it here.
1515 	 */
1516 	page_lock_init();
1517 
1518 	/*
1519 	 * Initialize kernel memory allocator.
1520 	 */
1521 	kmem_init();
1522 
1523 	/*
1524 	 * Initialize bp_mapin().
1525 	 */
1526 	bp_init(shm_alignment, HAT_STRICTORDER);
1527 
1528 	/*
1529 	 * Reserve space for panicbuf, intr_vec_table and reserved interrupt
1530 	 * vector data structures from the 32-bit heap.
1531 	 */
1532 	(void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0,
1533 	    panicbuf, panicbuf + PANICBUFSIZE,
1534 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1535 
1536 	(void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0,
1537 	    intr_vec_table, (caddr_t)intr_vec_table + IVSIZE,
1538 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1539 
1540 	mem_config_init();
1541 }
1542 
1543 static void
1544 startup_modules(void)
1545 {
1546 	int proplen, nhblk1, nhblk8;
1547 	size_t  nhblksz;
1548 	pgcnt_t hblk_pages, pages_per_hblk;
1549 	size_t hme8blk_sz, hme1blk_sz;
1550 
1551 	/*
1552 	 * Log any optional messages from the boot program
1553 	 */
1554 	proplen = (size_t)BOP_GETPROPLEN(bootops, "boot-message");
1555 	if (proplen > 0) {
1556 		char *msg;
1557 		size_t len = (size_t)proplen;
1558 
1559 		msg = kmem_zalloc(len, KM_SLEEP);
1560 		(void) BOP_GETPROP(bootops, "boot-message", msg);
1561 		cmn_err(CE_CONT, "?%s\n", msg);
1562 		kmem_free(msg, len);
1563 	}
1564 
1565 	/*
1566 	 * Let the platforms have a chance to change default
1567 	 * values before reading system file.
1568 	 */
1569 	if (&set_platform_defaults)
1570 		set_platform_defaults();
1571 
1572 	/*
1573 	 * Calculate default settings of system parameters based upon
1574 	 * maxusers, yet allow to be overridden via the /etc/system file.
1575 	 */
1576 	param_calc(0);
1577 
1578 	mod_setup();
1579 
1580 	/*
1581 	 * If this is a positron, complain and halt.
1582 	 */
1583 	if (&iam_positron && iam_positron()) {
1584 		cmn_err(CE_WARN, "This hardware platform is not supported"
1585 		    " by this release of Solaris.\n");
1586 #ifdef DEBUG
1587 		prom_enter_mon();	/* Type 'go' to resume */
1588 		cmn_err(CE_WARN, "Booting an unsupported platform.\n");
1589 		cmn_err(CE_WARN, "Booting with down-rev firmware.\n");
1590 
1591 #else /* DEBUG */
1592 		halt(0);
1593 #endif /* DEBUG */
1594 	}
1595 
1596 	/*
1597 	 * If we are running firmware that isn't 64-bit ready
1598 	 * then complain and halt.
1599 	 */
1600 	do_prom_version_check();
1601 
1602 	/*
1603 	 * Initialize system parameters
1604 	 */
1605 	param_init();
1606 
1607 	/*
1608 	 * maxmem is the amount of physical memory we're playing with.
1609 	 */
1610 	maxmem = physmem;
1611 
1612 	/* Set segkp limits. */
1613 	ncbase = (caddr_t)SEGDEBUGBASE;
1614 	ncend = (caddr_t)SEGDEBUGBASE;
1615 
1616 	/*
1617 	 * Initialize the hat layer.
1618 	 */
1619 	hat_init();
1620 
1621 	/*
1622 	 * Initialize segment management stuff.
1623 	 */
1624 	seg_init();
1625 
1626 	/*
1627 	 * Create the va>tte handler, so the prom can understand
1628 	 * kernel translations.  The handler is installed later, just
1629 	 * as we are about to take over the trap table from the prom.
1630 	 */
1631 	create_va_to_tte();
1632 
1633 	/*
1634 	 * Load the forthdebugger (optional)
1635 	 */
1636 	forthdebug_init();
1637 
1638 	/*
1639 	 * Create OBP node for console input callbacks
1640 	 * if it is needed.
1641 	 */
1642 	startup_create_io_node();
1643 
1644 	if (modloadonly("fs", "specfs") == -1)
1645 		halt("Can't load specfs");
1646 
1647 	if (modloadonly("fs", "devfs") == -1)
1648 		halt("Can't load devfs");
1649 
1650 	if (modloadonly("misc", "swapgeneric") == -1)
1651 		halt("Can't load swapgeneric");
1652 
1653 	(void) modloadonly("sys", "lbl_edition");
1654 
1655 	dispinit();
1656 
1657 	/*
1658 	 * Infer meanings to the members of the idprom buffer.
1659 	 */
1660 	parse_idprom();
1661 
1662 	/* Read cluster configuration data. */
1663 	clconf_init();
1664 
1665 	setup_ddi();
1666 
1667 	/*
1668 	 * Lets take this opportunity to load the root device.
1669 	 */
1670 	if (loadrootmodules() != 0)
1671 		debug_enter("Can't load the root filesystem");
1672 
1673 	/*
1674 	 * Load tod driver module for the tod part found on this system.
1675 	 * Recompute the cpu frequency/delays based on tod as tod part
1676 	 * tends to keep time more accurately.
1677 	 */
1678 	if (&load_tod_module)
1679 		load_tod_module();
1680 
1681 	/*
1682 	 * Allow platforms to load modules which might
1683 	 * be needed after bootops are gone.
1684 	 */
1685 	if (&load_platform_modules)
1686 		load_platform_modules();
1687 
1688 	setcpudelay();
1689 
1690 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1691 	    &boot_physavail, &boot_physavail_len,
1692 	    &boot_virtavail, &boot_virtavail_len);
1693 
1694 	bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len);
1695 
1696 	/*
1697 	 * Calculation and allocation of hmeblks needed to remap
1698 	 * the memory allocated by PROM till now:
1699 	 *
1700 	 * (1)  calculate how much virtual memory has been bop_alloc'ed.
1701 	 * (2)  roundup this memory to span of hme8blk, i.e. 64KB
1702 	 * (3)  calculate number of hme8blk's needed to remap this memory
1703 	 * (4)  calculate amount of memory that's consumed by these hme8blk's
1704 	 * (5)  add memory calculated in steps (2) and (4) above.
1705 	 * (6)  roundup this memory to span of hme8blk, i.e. 64KB
1706 	 * (7)  calculate number of hme8blk's needed to remap this memory
1707 	 * (8)  calculate amount of memory that's consumed by these hme8blk's
1708 	 * (9)  allocate additional hme1blk's to hold large mappings.
1709 	 *	H8TOH1 determines this.  The current SWAG gives enough hblk1's
1710 	 *	to remap everything with 4M mappings.
1711 	 * (10) account for partially used hblk8's due to non-64K aligned
1712 	 *	PROM mapping entries.
1713 	 * (11) add memory calculated in steps (8), (9), and (10) above.
1714 	 * (12) kmem_zalloc the memory calculated in (11); since segkmem
1715 	 *	is not ready yet, this gets bop_alloc'ed.
1716 	 * (13) there will be very few bop_alloc's after this point before
1717 	 *	trap table takes over
1718 	 */
1719 
1720 	/* sfmmu_init_nucleus_hblks expects properly aligned data structures. */
1721 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
1722 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
1723 
1724 	pages_per_hblk = btop(HMEBLK_SPAN(TTE8K));
1725 	bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1726 	nhblk8 = bop_alloc_pages / pages_per_hblk;
1727 	nhblk1 = roundup(nhblk8, H8TOH1) / H8TOH1;
1728 	hblk_pages = btopr(nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz);
1729 	bop_alloc_pages += hblk_pages;
1730 	bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1731 	nhblk8 = bop_alloc_pages / pages_per_hblk;
1732 	nhblk1 = roundup(nhblk8, H8TOH1) / H8TOH1;
1733 	if (nhblk1 < hblk1_min)
1734 		nhblk1 = hblk1_min;
1735 	if (nhblk8 < hblk8_min)
1736 		nhblk8 = hblk8_min;
1737 
1738 	/*
1739 	 * Since hblk8's can hold up to 64k of mappings aligned on a 64k
1740 	 * boundary, the number of hblk8's needed to map the entries in the
1741 	 * boot_virtavail list needs to be adjusted to take this into
1742 	 * consideration.  Thus, we need to add additional hblk8's since it
1743 	 * is possible that an hblk8 will not have all 8 slots used due to
1744 	 * alignment constraints.  Since there were boot_virtavail_len entries
1745 	 * in that list, we need to add that many hblk8's to the number
1746 	 * already calculated to make sure we don't underestimate.
1747 	 */
1748 	nhblk8 += boot_virtavail_len;
1749 	nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz;
1750 
1751 	/* Allocate in pagesize chunks */
1752 	nhblksz = roundup(nhblksz, MMU_PAGESIZE);
1753 	hblk_base = kmem_zalloc(nhblksz, KM_SLEEP);
1754 	sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1);
1755 }
1756 
1757 static void
1758 startup_bop_gone(void)
1759 {
1760 	extern int bop_io_quiesced;
1761 
1762 	/*
1763 	 * Destroy the MD initialized at startup
1764 	 * The startup initializes the MD framework
1765 	 * using prom and BOP alloc free it now.
1766 	 */
1767 	mach_descrip_startup_fini();
1768 
1769 	/*
1770 	 * Call back into boot and release boots resources.
1771 	 */
1772 	BOP_QUIESCE_IO(bootops);
1773 	bop_io_quiesced = 1;
1774 
1775 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1776 	    &boot_physavail, &boot_physavail_len,
1777 	    &boot_virtavail, &boot_virtavail_len);
1778 	/*
1779 	 * Copy physinstalled list into kernel space.
1780 	 */
1781 	phys_install = memlist;
1782 	copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist);
1783 
1784 	/*
1785 	 * setup physically contiguous area twice as large as the ecache.
1786 	 * this is used while doing displacement flush of ecaches
1787 	 */
1788 	if (&ecache_flush_address) {
1789 		ecache_flushaddr = ecache_flush_address();
1790 		if (ecache_flushaddr == (uint64_t)-1) {
1791 			cmn_err(CE_PANIC,
1792 			    "startup: no memory to set ecache_flushaddr");
1793 		}
1794 	}
1795 
1796 	/*
1797 	 * Virtual available next.
1798 	 */
1799 	ASSERT(virt_avail != NULL);
1800 	memlist_free_list(virt_avail);
1801 	virt_avail = memlist;
1802 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1803 
1804 	/*
1805 	 * Last chance to ask our booter questions ..
1806 	 */
1807 }
1808 
1809 
1810 /*
1811  * startup_fixup_physavail - called from mach_sfmmu.c after the final
1812  * allocations have been performed.  We can't call it in startup_bop_gone
1813  * since later operations can cause obp to allocate more memory.
1814  */
1815 void
1816 startup_fixup_physavail(void)
1817 {
1818 	struct memlist *cur;
1819 
1820 	/*
1821 	 * take the most current snapshot we can by calling mem-update
1822 	 */
1823 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1824 	    &boot_physavail, &boot_physavail_len,
1825 	    &boot_virtavail, &boot_virtavail_len);
1826 
1827 	/*
1828 	 * Copy phys_avail list, again.
1829 	 * Both the kernel/boot and the prom have been allocating
1830 	 * from the original list we copied earlier.
1831 	 */
1832 	cur = memlist;
1833 	(void) copy_physavail(boot_physavail, boot_physavail_len,
1834 	    &memlist, 0, 0);
1835 
1836 	/*
1837 	 * Add any extra memory after e_text we added to the phys_avail list
1838 	 * back to the old list.
1839 	 */
1840 	if (extra_etpg)
1841 		memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg),
1842 		    &memlist, &cur);
1843 	if (ndata_remain_sz >= MMU_PAGESIZE)
1844 		memlist_add(va_to_pa(nalloc_base),
1845 		    (uint64_t)ndata_remain_sz, &memlist, &cur);
1846 
1847 	/*
1848 	 * There isn't any bounds checking on the memlist area
1849 	 * so ensure it hasn't overgrown.
1850 	 */
1851 	if ((caddr_t)memlist > (caddr_t)memlist_end)
1852 		cmn_err(CE_PANIC, "startup: memlist size exceeded");
1853 
1854 	/*
1855 	 * The kernel removes the pages that were allocated for it from
1856 	 * the freelist, but we now have to find any -extra- pages that
1857 	 * the prom has allocated for it's own book-keeping, and remove
1858 	 * them from the freelist too. sigh.
1859 	 */
1860 	fix_prom_pages(phys_avail, cur);
1861 
1862 	ASSERT(phys_avail != NULL);
1863 	memlist_free_list(phys_avail);
1864 	phys_avail = cur;
1865 
1866 	/*
1867 	 * We're done with boot.  Just after this point in time, boot
1868 	 * gets unmapped, so we can no longer rely on its services.
1869 	 * Zero the bootops to indicate this fact.
1870 	 */
1871 	bootops = (struct bootops *)NULL;
1872 	BOOTOPS_GONE();
1873 }
1874 
1875 static void
1876 startup_vm(void)
1877 {
1878 	size_t	i;
1879 	struct segmap_crargs a;
1880 	struct segkpm_crargs b;
1881 
1882 	uint64_t avmem;
1883 	caddr_t va;
1884 	pgcnt_t	max_phys_segkp;
1885 	int	mnode;
1886 
1887 	extern int use_brk_lpg, use_stk_lpg;
1888 
1889 	/*
1890 	 * get prom's mappings, create hments for them and switch
1891 	 * to the kernel context.
1892 	 */
1893 	hat_kern_setup();
1894 
1895 	/*
1896 	 * Take over trap table
1897 	 */
1898 	setup_trap_table();
1899 
1900 	/*
1901 	 * Install the va>tte handler, so that the prom can handle
1902 	 * misses and understand the kernel table layout in case
1903 	 * we need call into the prom.
1904 	 */
1905 	install_va_to_tte();
1906 
1907 	/*
1908 	 * Set a flag to indicate that the tba has been taken over.
1909 	 */
1910 	tba_taken_over = 1;
1911 
1912 	/* initialize MMU primary context register */
1913 	mmu_init_kcontext();
1914 
1915 	/*
1916 	 * The boot cpu can now take interrupts, x-calls, x-traps
1917 	 */
1918 	CPUSET_ADD(cpu_ready_set, CPU->cpu_id);
1919 	CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS);
1920 
1921 	/*
1922 	 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR.
1923 	 */
1924 	tbr_wr_addr_inited = 1;
1925 
1926 	/*
1927 	 * Initialize VM system, and map kernel address space.
1928 	 */
1929 	kvm_init();
1930 
1931 	/*
1932 	 * XXX4U: previously, we initialized and turned on
1933 	 * the caches at this point. But of course we have
1934 	 * nothing to do, as the prom has already done this
1935 	 * for us -- main memory must be E$able at all times.
1936 	 */
1937 
1938 	/*
1939 	 * If the following is true, someone has patched
1940 	 * phsymem to be less than the number of pages that
1941 	 * the system actually has.  Remove pages until system
1942 	 * memory is limited to the requested amount.  Since we
1943 	 * have allocated page structures for all pages, we
1944 	 * correct the amount of memory we want to remove
1945 	 * by the size of the memory used to hold page structures
1946 	 * for the non-used pages.
1947 	 */
1948 	if (physmem < npages) {
1949 		pgcnt_t diff, off;
1950 		struct page *pp;
1951 		struct seg kseg;
1952 
1953 		cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem);
1954 
1955 		off = 0;
1956 		diff = npages - physmem;
1957 		diff -= mmu_btopr(diff * sizeof (struct page));
1958 		kseg.s_as = &kas;
1959 		while (diff--) {
1960 			pp = page_create_va(&unused_pages_vp, (offset_t)off,
1961 			    MMU_PAGESIZE, PG_WAIT | PG_EXCL,
1962 			    &kseg, (caddr_t)off);
1963 			if (pp == NULL)
1964 				cmn_err(CE_PANIC, "limited physmem too much!");
1965 			page_io_unlock(pp);
1966 			page_downgrade(pp);
1967 			availrmem--;
1968 			off += MMU_PAGESIZE;
1969 		}
1970 	}
1971 
1972 	/*
1973 	 * When printing memory, show the total as physmem less
1974 	 * that stolen by a debugger.
1975 	 */
1976 	cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n",
1977 	    (ulong_t)(physinstalled) << (PAGESHIFT - 10),
1978 	    (ulong_t)(physinstalled) << (PAGESHIFT - 12));
1979 
1980 	avmem = (uint64_t)freemem << PAGESHIFT;
1981 	cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem);
1982 
1983 	/*
1984 	 * For small memory systems disable automatic large pages.
1985 	 */
1986 	if (physmem < privm_lpg_min_physmem) {
1987 		use_brk_lpg = 0;
1988 		use_stk_lpg = 0;
1989 	}
1990 
1991 	/*
1992 	 * Perform platform specific freelist processing
1993 	 */
1994 	if (&plat_freelist_process) {
1995 		for (mnode = 0; mnode < max_mem_nodes; mnode++)
1996 			if (mem_node_config[mnode].exists)
1997 				plat_freelist_process(mnode);
1998 	}
1999 
2000 	/*
2001 	 * Initialize the segkp segment type.  We position it
2002 	 * after the configured tables and buffers (whose end
2003 	 * is given by econtig) and before V_WKBASE_ADDR.
2004 	 * Also in this area is segkmap (size SEGMAPSIZE).
2005 	 */
2006 
2007 	/* XXX - cache alignment? */
2008 	va = (caddr_t)SEGKPBASE;
2009 	ASSERT(((uintptr_t)va & PAGEOFFSET) == 0);
2010 
2011 	max_phys_segkp = (physmem * 2);
2012 
2013 	if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) {
2014 		segkpsize = btop(SEGKPDEFSIZE);
2015 		cmn_err(CE_WARN, "Illegal value for segkpsize. "
2016 		    "segkpsize has been reset to %ld pages", segkpsize);
2017 	}
2018 
2019 	i = ptob(MIN(segkpsize, max_phys_segkp));
2020 
2021 	rw_enter(&kas.a_lock, RW_WRITER);
2022 	if (seg_attach(&kas, va, i, segkp) < 0)
2023 		cmn_err(CE_PANIC, "startup: cannot attach segkp");
2024 	if (segkp_create(segkp) != 0)
2025 		cmn_err(CE_PANIC, "startup: segkp_create failed");
2026 	rw_exit(&kas.a_lock);
2027 
2028 	/*
2029 	 * kpm segment
2030 	 */
2031 	segmap_kpm = kpm_enable &&
2032 		segmap_kpm && PAGESIZE == MAXBSIZE;
2033 
2034 	if (kpm_enable) {
2035 		rw_enter(&kas.a_lock, RW_WRITER);
2036 
2037 		/*
2038 		 * The segkpm virtual range range is larger than the
2039 		 * actual physical memory size and also covers gaps in
2040 		 * the physical address range for the following reasons:
2041 		 * . keep conversion between segkpm and physical addresses
2042 		 *   simple, cheap and unambiguous.
2043 		 * . avoid extension/shrink of the the segkpm in case of DR.
2044 		 * . avoid complexity for handling of virtual addressed
2045 		 *   caches, segkpm and the regular mapping scheme must be
2046 		 *   kept in sync wrt. the virtual color of mapped pages.
2047 		 * Any accesses to virtual segkpm ranges not backed by
2048 		 * physical memory will fall through the memseg pfn hash
2049 		 * and will be handled in segkpm_fault.
2050 		 * Additional kpm_size spaces needed for vac alias prevention.
2051 		 */
2052 		if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors,
2053 		    segkpm) < 0)
2054 			cmn_err(CE_PANIC, "cannot attach segkpm");
2055 
2056 		b.prot = PROT_READ | PROT_WRITE;
2057 		b.nvcolors = shm_alignment >> MMU_PAGESHIFT;
2058 
2059 		if (segkpm_create(segkpm, (caddr_t)&b) != 0)
2060 			panic("segkpm_create segkpm");
2061 
2062 		rw_exit(&kas.a_lock);
2063 
2064 		mach_kpm_init();
2065 	}
2066 
2067 	if (!segzio_fromheap) {
2068 		size_t size;
2069 
2070 		/* size is in bytes, segziosize is in pages */
2071 		if (segziosize == 0) {
2072 			size = mmu_ptob(physmem * 2);
2073 		} else {
2074 			size = mmu_ptob(segziosize);
2075 		}
2076 
2077 		if (size < SEGZIOMINSIZE) {
2078 			size = SEGZIOMINSIZE;
2079 		} else if (size > mmu_ptob(physmem * 4)) {
2080 			size = mmu_ptob(physmem * 4);
2081 		}
2082 		segziosize = mmu_btop(roundup(size, MMU_PAGESIZE));
2083 		/* put the base of the ZIO segment after the kpm segment */
2084 		segzio_base = kpm_vbase + (kpm_size * vac_colors);
2085 		PRM_DEBUG(segziosize);
2086 		PRM_DEBUG(segzio_base);
2087 
2088 		/*
2089 		 * On some platforms, kvm_init is called after the kpm
2090 		 * sizes have been determined.  On SPARC, kvm_init is called
2091 		 * before, so we have to attach the kzioseg after kvm is
2092 		 * initialized, otherwise we'll try to allocate from the boot
2093 		 * area since the kernel heap hasn't yet been configured.
2094 		 */
2095 		rw_enter(&kas.a_lock, RW_WRITER);
2096 
2097 		(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2098 		    &kzioseg);
2099 		(void) segkmem_zio_create(&kzioseg);
2100 
2101 		/* create zio area covering new segment */
2102 		segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2103 
2104 		rw_exit(&kas.a_lock);
2105 	}
2106 
2107 
2108 	/*
2109 	 * Now create generic mapping segment.  This mapping
2110 	 * goes SEGMAPSIZE beyond SEGMAPBASE.  But if the total
2111 	 * virtual address is greater than the amount of free
2112 	 * memory that is available, then we trim back the
2113 	 * segment size to that amount
2114 	 */
2115 	va = (caddr_t)SEGMAPBASE;
2116 
2117 	/*
2118 	 * 1201049: segkmap base address must be MAXBSIZE aligned
2119 	 */
2120 	ASSERT(((uintptr_t)va & MAXBOFFSET) == 0);
2121 
2122 	/*
2123 	 * Set size of segmap to percentage of freemem at boot,
2124 	 * but stay within the allowable range
2125 	 * Note we take percentage  before converting from pages
2126 	 * to bytes to avoid an overflow on 32-bit kernels.
2127 	 */
2128 	i = mmu_ptob((freemem * segmap_percent) / 100);
2129 
2130 	if (i < MINMAPSIZE)
2131 		i = MINMAPSIZE;
2132 
2133 	if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem)))
2134 		i = MIN(SEGMAPSIZE, mmu_ptob(freemem));
2135 
2136 	i &= MAXBMASK;	/* 1201049: segkmap size must be MAXBSIZE aligned */
2137 
2138 	rw_enter(&kas.a_lock, RW_WRITER);
2139 	if (seg_attach(&kas, va, i, segkmap) < 0)
2140 		cmn_err(CE_PANIC, "cannot attach segkmap");
2141 
2142 	a.prot = PROT_READ | PROT_WRITE;
2143 	a.shmsize = shm_alignment;
2144 	a.nfreelist = 0;	/* use segmap driver defaults */
2145 
2146 	if (segmap_create(segkmap, (caddr_t)&a) != 0)
2147 		panic("segmap_create segkmap");
2148 	rw_exit(&kas.a_lock);
2149 
2150 	segdev_init();
2151 }
2152 
2153 static void
2154 startup_end(void)
2155 {
2156 	if ((caddr_t)memlist > (caddr_t)memlist_end)
2157 		panic("memlist overflow 2");
2158 	memlist_free_block((caddr_t)memlist,
2159 	    ((caddr_t)memlist_end - (caddr_t)memlist));
2160 	memlist = NULL;
2161 
2162 	/* enable page_relocation since OBP is now done */
2163 	page_relocate_ready = 1;
2164 
2165 	/*
2166 	 * Perform tasks that get done after most of the VM
2167 	 * initialization has been done but before the clock
2168 	 * and other devices get started.
2169 	 */
2170 	kern_setup1();
2171 
2172 	/*
2173 	 * Intialize the VM arenas for allocating physically
2174 	 * contiguus memory chunk for interrupt queues snd
2175 	 * allocate/register boot cpu's queues, if any and
2176 	 * allocate dump buffer for sun4v systems to store
2177 	 * extra crash information during crash dump
2178 	 */
2179 	contig_mem_init();
2180 	mach_descrip_init();
2181 	cpu_intrq_setup(CPU);
2182 	cpu_intrq_register(CPU);
2183 	mach_htraptrace_setup(CPU->cpu_id);
2184 	mach_htraptrace_configure(CPU->cpu_id);
2185 	mach_dump_buffer_init();
2186 
2187 	/*
2188 	 * Initialize interrupt related stuff
2189 	 */
2190 	cpu_intr_alloc(CPU, NINTR_THREADS);
2191 
2192 	(void) splzs();			/* allow hi clock ints but not zs */
2193 
2194 	/*
2195 	 * Initialize errors.
2196 	 */
2197 	error_init();
2198 
2199 	/*
2200 	 * Note that we may have already used kernel bcopy before this
2201 	 * point - but if you really care about this, adb the use_hw_*
2202 	 * variables to 0 before rebooting.
2203 	 */
2204 	mach_hw_copy_limit();
2205 
2206 	/*
2207 	 * Install the "real" preemption guards before DDI services
2208 	 * are available.
2209 	 */
2210 	(void) prom_set_preprom(kern_preprom);
2211 	(void) prom_set_postprom(kern_postprom);
2212 	CPU->cpu_m.mutex_ready = 1;
2213 
2214 	/*
2215 	 * Initialize segnf (kernel support for non-faulting loads).
2216 	 */
2217 	segnf_init();
2218 
2219 	/*
2220 	 * Configure the root devinfo node.
2221 	 */
2222 	configure();		/* set up devices */
2223 	mach_cpu_halt_idle();
2224 }
2225 
2226 
2227 void
2228 post_startup(void)
2229 {
2230 #ifdef	PTL1_PANIC_DEBUG
2231 	extern void init_ptl1_thread(void);
2232 #endif	/* PTL1_PANIC_DEBUG */
2233 	extern void abort_sequence_init(void);
2234 
2235 	/*
2236 	 * Set the system wide, processor-specific flags to be passed
2237 	 * to userland via the aux vector for performance hints and
2238 	 * instruction set extensions.
2239 	 */
2240 	bind_hwcap();
2241 
2242 	/*
2243 	 * Startup memory scrubber (if any)
2244 	 */
2245 	mach_memscrub();
2246 
2247 	/*
2248 	 * Allocate soft interrupt to handle abort sequence.
2249 	 */
2250 	abort_sequence_init();
2251 
2252 	/*
2253 	 * Configure the rest of the system.
2254 	 * Perform forceloading tasks for /etc/system.
2255 	 */
2256 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2257 	/*
2258 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2259 	 * ON4.0: This must be fixed or restated in /etc/systems.
2260 	 */
2261 	(void) modload("fs", "procfs");
2262 
2263 	/* load machine class specific drivers */
2264 	load_mach_drivers();
2265 
2266 	/* load platform specific drivers */
2267 	if (&load_platform_drivers)
2268 		load_platform_drivers();
2269 
2270 	/* load vis simulation module, if we are running w/fpu off */
2271 	if (!fpu_exists) {
2272 		if (modload("misc", "vis") == -1)
2273 			halt("Can't load vis");
2274 	}
2275 
2276 	mach_fpras();
2277 
2278 	maxmem = freemem;
2279 
2280 #ifdef	PTL1_PANIC_DEBUG
2281 	init_ptl1_thread();
2282 #endif	/* PTL1_PANIC_DEBUG */
2283 
2284 	if (&cif_init)
2285 		cif_init();
2286 }
2287 
2288 #ifdef	PTL1_PANIC_DEBUG
2289 int		ptl1_panic_test = 0;
2290 int		ptl1_panic_xc_one_test = 0;
2291 int		ptl1_panic_xc_all_test = 0;
2292 int		ptl1_panic_xt_one_test = 0;
2293 int		ptl1_panic_xt_all_test = 0;
2294 kthread_id_t	ptl1_thread_p = NULL;
2295 kcondvar_t	ptl1_cv;
2296 kmutex_t	ptl1_mutex;
2297 int		ptl1_recurse_count_threshold = 0x40;
2298 int		ptl1_recurse_trap_threshold = 0x3d;
2299 extern void	ptl1_recurse(int, int);
2300 extern void	ptl1_panic_xt(int, int);
2301 
2302 /*
2303  * Called once per second by timeout() to wake up
2304  * the ptl1_panic thread to see if it should cause
2305  * a trap to the ptl1_panic() code.
2306  */
2307 /* ARGSUSED */
2308 static void
2309 ptl1_wakeup(void *arg)
2310 {
2311 	mutex_enter(&ptl1_mutex);
2312 	cv_signal(&ptl1_cv);
2313 	mutex_exit(&ptl1_mutex);
2314 }
2315 
2316 /*
2317  * ptl1_panic cross call function:
2318  *     Needed because xc_one() and xc_some() can pass
2319  *	64 bit args but ptl1_recurse() expects ints.
2320  */
2321 static void
2322 ptl1_panic_xc(void)
2323 {
2324 	ptl1_recurse(ptl1_recurse_count_threshold,
2325 	    ptl1_recurse_trap_threshold);
2326 }
2327 
2328 /*
2329  * The ptl1 thread waits for a global flag to be set
2330  * and uses the recurse thresholds to set the stack depth
2331  * to cause a ptl1_panic() directly via a call to ptl1_recurse
2332  * or indirectly via the cross call and cross trap functions.
2333  *
2334  * This is useful testing stack overflows and normal
2335  * ptl1_panic() states with a know stack frame.
2336  *
2337  * ptl1_recurse() is an asm function in ptl1_panic.s that
2338  * sets the {In, Local, Out, and Global} registers to a
2339  * know state on the stack and just prior to causing a
2340  * test ptl1_panic trap.
2341  */
2342 static void
2343 ptl1_thread(void)
2344 {
2345 	mutex_enter(&ptl1_mutex);
2346 	while (ptl1_thread_p) {
2347 		cpuset_t	other_cpus;
2348 		int		cpu_id;
2349 		int		my_cpu_id;
2350 		int		target_cpu_id;
2351 		int		target_found;
2352 
2353 		if (ptl1_panic_test) {
2354 			ptl1_recurse(ptl1_recurse_count_threshold,
2355 			    ptl1_recurse_trap_threshold);
2356 		}
2357 
2358 		/*
2359 		 * Find potential targets for x-call and x-trap,
2360 		 * if any exist while preempt is disabled we
2361 		 * start a ptl1_panic if requested via a
2362 		 * globals.
2363 		 */
2364 		kpreempt_disable();
2365 		my_cpu_id = CPU->cpu_id;
2366 		other_cpus = cpu_ready_set;
2367 		CPUSET_DEL(other_cpus, CPU->cpu_id);
2368 		target_found = 0;
2369 		if (!CPUSET_ISNULL(other_cpus)) {
2370 			/*
2371 			 * Pick the first one
2372 			 */
2373 			for (cpu_id = 0; cpu_id < NCPU; cpu_id++) {
2374 				if (cpu_id == my_cpu_id)
2375 					continue;
2376 
2377 				if (CPU_XCALL_READY(cpu_id)) {
2378 					target_cpu_id = cpu_id;
2379 					target_found = 1;
2380 					break;
2381 				}
2382 			}
2383 			ASSERT(target_found);
2384 
2385 			if (ptl1_panic_xc_one_test) {
2386 				xc_one(target_cpu_id,
2387 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2388 			}
2389 			if (ptl1_panic_xc_all_test) {
2390 				xc_some(other_cpus,
2391 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2392 			}
2393 			if (ptl1_panic_xt_one_test) {
2394 				xt_one(target_cpu_id,
2395 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2396 			}
2397 			if (ptl1_panic_xt_all_test) {
2398 				xt_some(other_cpus,
2399 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2400 			}
2401 		}
2402 		kpreempt_enable();
2403 		(void) timeout(ptl1_wakeup, NULL, hz);
2404 		(void) cv_wait(&ptl1_cv, &ptl1_mutex);
2405 	}
2406 	mutex_exit(&ptl1_mutex);
2407 }
2408 
2409 /*
2410  * Called during early startup to create the ptl1_thread
2411  */
2412 void
2413 init_ptl1_thread(void)
2414 {
2415 	ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0,
2416 	    &p0, TS_RUN, 0);
2417 }
2418 #endif	/* PTL1_PANIC_DEBUG */
2419 
2420 
2421 /*
2422  * Add to a memory list.
2423  * start = start of new memory segment
2424  * len = length of new memory segment in bytes
2425  * memlistp = pointer to array of available memory segment structures
2426  * curmemlistp = memory list to which to add segment.
2427  */
2428 static void
2429 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp,
2430 	struct memlist **curmemlistp)
2431 {
2432 	struct memlist *new;
2433 
2434 	new = *memlistp;
2435 	new->address = start;
2436 	new->size = len;
2437 	*memlistp = new + 1;
2438 
2439 	memlist_insert(new, curmemlistp);
2440 }
2441 
2442 /*
2443  * In the case of architectures that support dynamic addition of
2444  * memory at run-time there are two cases where memsegs need to
2445  * be initialized and added to the memseg list.
2446  * 1) memsegs that are constructed at startup.
2447  * 2) memsegs that are constructed at run-time on
2448  *    hot-plug capable architectures.
2449  * This code was originally part of the function kphysm_init().
2450  */
2451 
2452 static void
2453 memseg_list_add(struct memseg *memsegp)
2454 {
2455 	struct memseg **prev_memsegp;
2456 	pgcnt_t num;
2457 
2458 	/* insert in memseg list, decreasing number of pages order */
2459 
2460 	num = MSEG_NPAGES(memsegp);
2461 
2462 	for (prev_memsegp = &memsegs; *prev_memsegp;
2463 	    prev_memsegp = &((*prev_memsegp)->next)) {
2464 		if (num > MSEG_NPAGES(*prev_memsegp))
2465 			break;
2466 	}
2467 
2468 	memsegp->next = *prev_memsegp;
2469 	*prev_memsegp = memsegp;
2470 
2471 	if (kpm_enable) {
2472 		memsegp->nextpa = (memsegp->next) ?
2473 			va_to_pa(memsegp->next) : MSEG_NULLPTR_PA;
2474 
2475 		if (prev_memsegp != &memsegs) {
2476 			struct memseg *msp;
2477 			msp = (struct memseg *)((caddr_t)prev_memsegp -
2478 				offsetof(struct memseg, next));
2479 			msp->nextpa = va_to_pa(memsegp);
2480 		} else {
2481 			memsegspa = va_to_pa(memsegs);
2482 		}
2483 	}
2484 }
2485 
2486 /*
2487  * PSM add_physmem_cb(). US-II and newer processors have some
2488  * flavor of the prefetch capability implemented. We exploit
2489  * this capability for optimum performance.
2490  */
2491 #define	PREFETCH_BYTES	64
2492 
2493 void
2494 add_physmem_cb(page_t *pp, pfn_t pnum)
2495 {
2496 	extern void	 prefetch_page_w(void *);
2497 
2498 	pp->p_pagenum = pnum;
2499 
2500 	/*
2501 	 * Prefetch one more page_t into E$. To prevent future
2502 	 * mishaps with the sizeof(page_t) changing on us, we
2503 	 * catch this on debug kernels if we can't bring in the
2504 	 * entire hpage with 2 PREFETCH_BYTES reads. See
2505 	 * also, sun4u/cpu/cpu_module.c
2506 	 */
2507 	/*LINTED*/
2508 	ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES);
2509 	prefetch_page_w((char *)pp);
2510 }
2511 
2512 /*
2513  * kphysm_init() tackles the problem of initializing physical memory.
2514  * The old startup made some assumptions about the kernel living in
2515  * physically contiguous space which is no longer valid.
2516  */
2517 static void
2518 kphysm_init(page_t *pp, struct memseg *memsegp, pgcnt_t npages,
2519 	uintptr_t kpm_pp, pgcnt_t kpm_npages)
2520 {
2521 	struct memlist	*pmem;
2522 	struct memseg	*msp;
2523 	pfn_t		 base;
2524 	pgcnt_t		 num;
2525 	pfn_t		 lastseg_pages_end = 0;
2526 	pgcnt_t		 nelem_used = 0;
2527 
2528 	ASSERT(page_hash != NULL && page_hashsz != 0);
2529 
2530 	msp = memsegp;
2531 	for (pmem = phys_avail; pmem && npages; pmem = pmem->next) {
2532 
2533 		/*
2534 		 * Build the memsegs entry
2535 		 */
2536 		num = btop(pmem->size);
2537 		if (num > npages)
2538 			num = npages;
2539 		npages -= num;
2540 		base = btop(pmem->address);
2541 
2542 		msp->pages = pp;
2543 		msp->epages = pp + num;
2544 		msp->pages_base = base;
2545 		msp->pages_end = base + num;
2546 
2547 		if (kpm_enable) {
2548 			pfn_t pbase_a;
2549 			pfn_t pend_a;
2550 			pfn_t prev_pend_a;
2551 			pgcnt_t	nelem;
2552 
2553 			msp->pagespa = va_to_pa(pp);
2554 			msp->epagespa = va_to_pa(pp + num);
2555 			pbase_a = kpmptop(ptokpmp(base));
2556 			pend_a = kpmptop(ptokpmp(base + num - 1)) + kpmpnpgs;
2557 			nelem = ptokpmp(pend_a - pbase_a);
2558 			msp->kpm_nkpmpgs = nelem;
2559 			msp->kpm_pbase = pbase_a;
2560 			if (lastseg_pages_end) {
2561 				/*
2562 				 * Assume phys_avail is in ascending order
2563 				 * of physical addresses.
2564 				 */
2565 				ASSERT(base + num > lastseg_pages_end);
2566 				prev_pend_a = kpmptop(
2567 				    ptokpmp(lastseg_pages_end - 1)) + kpmpnpgs;
2568 
2569 				if (prev_pend_a > pbase_a) {
2570 					/*
2571 					 * Overlap, more than one memseg may
2572 					 * point to the same kpm_page range.
2573 					 */
2574 					if (kpm_smallpages == 0) {
2575 						msp->kpm_pages =
2576 						    (kpm_page_t *)kpm_pp - 1;
2577 						kpm_pp = (uintptr_t)
2578 							((kpm_page_t *)kpm_pp
2579 							+ nelem - 1);
2580 					} else {
2581 						msp->kpm_spages =
2582 						    (kpm_spage_t *)kpm_pp - 1;
2583 						kpm_pp = (uintptr_t)
2584 							((kpm_spage_t *)kpm_pp
2585 							+ nelem - 1);
2586 					}
2587 					nelem_used += nelem - 1;
2588 
2589 				} else {
2590 					if (kpm_smallpages == 0) {
2591 						msp->kpm_pages =
2592 						    (kpm_page_t *)kpm_pp;
2593 						kpm_pp = (uintptr_t)
2594 							((kpm_page_t *)kpm_pp
2595 							+ nelem);
2596 					} else {
2597 						msp->kpm_spages =
2598 						    (kpm_spage_t *)kpm_pp;
2599 						kpm_pp = (uintptr_t)
2600 							((kpm_spage_t *)
2601 							kpm_pp + nelem);
2602 					}
2603 					nelem_used += nelem;
2604 				}
2605 
2606 			} else {
2607 				if (kpm_smallpages == 0) {
2608 					msp->kpm_pages = (kpm_page_t *)kpm_pp;
2609 					kpm_pp = (uintptr_t)
2610 						((kpm_page_t *)kpm_pp + nelem);
2611 				} else {
2612 					msp->kpm_spages = (kpm_spage_t *)kpm_pp;
2613 					kpm_pp = (uintptr_t)
2614 						((kpm_spage_t *)kpm_pp + nelem);
2615 				}
2616 				nelem_used = nelem;
2617 			}
2618 
2619 			if (nelem_used > kpm_npages)
2620 				panic("kphysm_init: kpm_pp overflow\n");
2621 
2622 			msp->kpm_pagespa = va_to_pa(msp->kpm_pages);
2623 			lastseg_pages_end = msp->pages_end;
2624 		}
2625 
2626 		memseg_list_add(msp);
2627 
2628 		/*
2629 		 * add_physmem() initializes the PSM part of the page
2630 		 * struct by calling the PSM back with add_physmem_cb().
2631 		 * In addition it coalesces pages into larger pages as
2632 		 * it initializes them.
2633 		 */
2634 		add_physmem(pp, num, base);
2635 		pp += num;
2636 		msp++;
2637 	}
2638 
2639 	build_pfn_hash();
2640 }
2641 
2642 /*
2643  * Kernel VM initialization.
2644  * Assumptions about kernel address space ordering:
2645  *	(1) gap (user space)
2646  *	(2) kernel text
2647  *	(3) kernel data/bss
2648  *	(4) gap
2649  *	(5) kernel data structures
2650  *	(6) gap
2651  *	(7) debugger (optional)
2652  *	(8) monitor
2653  *	(9) gap (possibly null)
2654  *	(10) dvma
2655  *	(11) devices
2656  */
2657 static void
2658 kvm_init(void)
2659 {
2660 	/*
2661 	 * Put the kernel segments in kernel address space.
2662 	 */
2663 	rw_enter(&kas.a_lock, RW_WRITER);
2664 	as_avlinit(&kas);
2665 
2666 	(void) seg_attach(&kas, (caddr_t)KERNELBASE,
2667 	    (size_t)(e_moddata - KERNELBASE), &ktextseg);
2668 	(void) segkmem_create(&ktextseg);
2669 
2670 	(void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M),
2671 	    (size_t)(MMU_PAGESIZE4M), &ktexthole);
2672 	(void) segkmem_create(&ktexthole);
2673 
2674 	(void) seg_attach(&kas, (caddr_t)valloc_base,
2675 	    (size_t)(econtig32 - valloc_base), &kvalloc);
2676 	(void) segkmem_create(&kvalloc);
2677 
2678 	if (kmem64_base) {
2679 	    (void) seg_attach(&kas, (caddr_t)kmem64_base,
2680 		(size_t)(kmem64_end - kmem64_base), &kmem64);
2681 	    (void) segkmem_create(&kmem64);
2682 	}
2683 
2684 	/*
2685 	 * We're about to map out /boot.  This is the beginning of the
2686 	 * system resource management transition. We can no longer
2687 	 * call into /boot for I/O or memory allocations.
2688 	 */
2689 	(void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg);
2690 	(void) segkmem_create(&kvseg);
2691 	hblk_alloc_dynamic = 1;
2692 
2693 	/*
2694 	 * we need to preallocate pages for DR operations before enabling large
2695 	 * page kernel heap because of memseg_remap_init() hat_unload() hack.
2696 	 */
2697 	memseg_remap_init();
2698 
2699 	/* at this point we are ready to use large page heap */
2700 	segkmem_heap_lp_init();
2701 
2702 	(void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32,
2703 	    &kvseg32);
2704 	(void) segkmem_create(&kvseg32);
2705 
2706 	/*
2707 	 * Create a segment for the debugger.
2708 	 */
2709 	(void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE,
2710 	    &kdebugseg);
2711 	(void) segkmem_create(&kdebugseg);
2712 
2713 	rw_exit(&kas.a_lock);
2714 }
2715 
2716 char obp_tte_str[] =
2717 	"h# %x constant MMU_PAGESHIFT "
2718 	"h# %x constant TTE8K "
2719 	"h# %x constant SFHME_SIZE "
2720 	"h# %x constant SFHME_TTE "
2721 	"h# %x constant HMEBLK_TAG "
2722 	"h# %x constant HMEBLK_NEXT "
2723 	"h# %x constant HMEBLK_MISC "
2724 	"h# %x constant HMEBLK_HME1 "
2725 	"h# %x constant NHMENTS "
2726 	"h# %x constant HBLK_SZMASK "
2727 	"h# %x constant HBLK_RANGE_SHIFT "
2728 	"h# %x constant HMEBP_HBLK "
2729 	"h# %x constant HMEBUCKET_SIZE "
2730 	"h# %x constant HTAG_SFMMUPSZ "
2731 	"h# %x constant HTAG_REHASHSZ "
2732 	"h# %x constant mmu_hashcnt "
2733 	"h# %p constant uhme_hash "
2734 	"h# %p constant khme_hash "
2735 	"h# %x constant UHMEHASH_SZ "
2736 	"h# %x constant KHMEHASH_SZ "
2737 	"h# %p constant KCONTEXT "
2738 	"h# %p constant KHATID "
2739 	"h# %x constant ASI_MEM "
2740 
2741 	": PHYS-X@ ( phys -- data ) "
2742 	"   ASI_MEM spacex@ "
2743 	"; "
2744 
2745 	": PHYS-W@ ( phys -- data ) "
2746 	"   ASI_MEM spacew@ "
2747 	"; "
2748 
2749 	": PHYS-L@ ( phys -- data ) "
2750 	"   ASI_MEM spaceL@ "
2751 	"; "
2752 
2753 	": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) "
2754 	"   3 * MMU_PAGESHIFT + "
2755 	"; "
2756 
2757 	": TTE_IS_VALID ( ttep -- flag ) "
2758 	"   PHYS-X@ 0< "
2759 	"; "
2760 
2761 	": HME_HASH_SHIFT ( ttesz -- hmeshift ) "
2762 	"   dup TTE8K =  if "
2763 	"      drop HBLK_RANGE_SHIFT "
2764 	"   else "
2765 	"      TTE_PAGE_SHIFT "
2766 	"   then "
2767 	"; "
2768 
2769 	": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) "
2770 	"   tuck >> swap MMU_PAGESHIFT - << "
2771 	"; "
2772 
2773 	": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) "
2774 	"   >> over xor swap                    ( hash sfmmup ) "
2775 	"   KHATID <>  if                       ( hash ) "
2776 	"      UHMEHASH_SZ and                  ( bucket ) "
2777 	"      HMEBUCKET_SIZE * uhme_hash +     ( hmebp ) "
2778 	"   else                                ( hash ) "
2779 	"      KHMEHASH_SZ and                  ( bucket ) "
2780 	"      HMEBUCKET_SIZE * khme_hash +     ( hmebp ) "
2781 	"   then                                ( hmebp ) "
2782 	"; "
2783 
2784 	": HME_HASH_TABLE_SEARCH "
2785 	"       ( sfmmup hmebp hblktag --  sfmmup null | sfmmup hmeblkp ) "
2786 	"   >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) "
2787 	"      dup if   		( sfmmup hmeblkp ) ( r: hblktag ) "
2788 	"         dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp )	  "
2789 	"	     dup hmeblk_tag + 8 + phys-x@ 2 pick = if		  "
2790 	"		  true 	( sfmmup hmeblkp true ) ( r: hblktag )	  "
2791 	"	     else						  "
2792 	"	     	  hmeblk_next + phys-x@ false 			  "
2793 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2794 	"	     then  						  "
2795 	"	  else							  "
2796 	"	     hmeblk_next + phys-x@ false 			  "
2797 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2798 	"	  then 							  "
2799 	"      else							  "
2800 	"         true 							  "
2801 	"      then  							  "
2802 	"   until r> drop 						  "
2803 	"; "
2804 
2805 	": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) "
2806 	"   over HME_HASH_SHIFT HME_HASH_BSPAGE      ( sfmmup rehash bspage ) "
2807 	"   HTAG_REHASHSZ << or nip		     ( hblktag ) "
2808 	"; "
2809 
2810 	": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) "
2811 	"   over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and  ( hmeblkp addr ttesz ) "
2812 	"   TTE8K =  if                            ( hmeblkp addr ) "
2813 	"      MMU_PAGESHIFT >> NHMENTS 1- and     ( hmeblkp hme-index ) "
2814 	"   else                                   ( hmeblkp addr ) "
2815 	"      drop 0                              ( hmeblkp 0 ) "
2816 	"   then                                   ( hmeblkp hme-index ) "
2817 	"   SFHME_SIZE * + HMEBLK_HME1 +           ( hmep ) "
2818 	"   SFHME_TTE +                            ( ttep ) "
2819 	"; "
2820 
2821 	": unix-tte ( addr cnum -- false | tte-data true ) "
2822 	"    KCONTEXT = if                   ( addr ) "
2823 	"	KHATID                       ( addr khatid ) "
2824 	"    else                            ( addr ) "
2825 	"       drop false exit              ( false ) "
2826 	"    then "
2827 	"      ( addr khatid ) "
2828 	"      mmu_hashcnt 1+ 1  do           ( addr sfmmup ) "
2829 	"         2dup swap i HME_HASH_SHIFT  "
2830 					"( addr sfmmup sfmmup addr hmeshift ) "
2831 	"         HME_HASH_FUNCTION           ( addr sfmmup hmebp ) "
2832 	"         over i 4 pick               "
2833 				"( addr sfmmup hmebp sfmmup rehash addr ) "
2834 	"         HME_HASH_TAG                ( addr sfmmup hmebp hblktag ) "
2835 	"         HME_HASH_TABLE_SEARCH       "
2836 					"( addr sfmmup { null | hmeblkp } ) "
2837 	"         ?dup  if                    ( addr sfmmup hmeblkp ) "
2838 	"            nip swap HBLK_TO_TTEP    ( ttep ) "
2839 	"            dup TTE_IS_VALID  if     ( valid-ttep ) "
2840 	"               PHYS-X@ true          ( tte-data true ) "
2841 	"            else                     ( invalid-tte ) "
2842 	"               drop false            ( false ) "
2843 	"            then                     ( false | tte-data true ) "
2844 	"            unloop exit              ( false | tte-data true ) "
2845 	"         then                        ( addr sfmmup ) "
2846 	"      loop                           ( addr sfmmup ) "
2847 	"      2drop false                    ( false ) "
2848 	"; "
2849 ;
2850 
2851 void
2852 create_va_to_tte(void)
2853 {
2854 	char *bp;
2855 	extern int khmehash_num, uhmehash_num;
2856 	extern struct hmehash_bucket *khme_hash, *uhme_hash;
2857 
2858 #define	OFFSET(type, field)	((uintptr_t)(&((type *)0)->field))
2859 
2860 	bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP);
2861 
2862 	/*
2863 	 * Teach obp how to parse our sw ttes.
2864 	 */
2865 	(void) sprintf(bp, obp_tte_str,
2866 	    MMU_PAGESHIFT,
2867 	    TTE8K,
2868 	    sizeof (struct sf_hment),
2869 	    OFFSET(struct sf_hment, hme_tte),
2870 	    OFFSET(struct hme_blk, hblk_tag),
2871 	    OFFSET(struct hme_blk, hblk_nextpa),
2872 	    OFFSET(struct hme_blk, hblk_misc),
2873 	    OFFSET(struct hme_blk, hblk_hme),
2874 	    NHMENTS,
2875 	    HBLK_SZMASK,
2876 	    HBLK_RANGE_SHIFT,
2877 	    OFFSET(struct hmehash_bucket, hmeh_nextpa),
2878 	    sizeof (struct hmehash_bucket),
2879 	    HTAG_SFMMUPSZ,
2880 	    HTAG_REHASHSZ,
2881 	    mmu_hashcnt,
2882 	    (caddr_t)va_to_pa((caddr_t)uhme_hash),
2883 	    (caddr_t)va_to_pa((caddr_t)khme_hash),
2884 	    UHMEHASH_SZ,
2885 	    KHMEHASH_SZ,
2886 	    KCONTEXT,
2887 	    KHATID,
2888 	    ASI_MEM);
2889 	prom_interpret(bp, 0, 0, 0, 0, 0);
2890 
2891 	kobj_free(bp, MMU_PAGESIZE);
2892 }
2893 
2894 void
2895 install_va_to_tte(void)
2896 {
2897 	/*
2898 	 * advise prom that he can use unix-tte
2899 	 */
2900 	prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0);
2901 }
2902 
2903 
2904 /*
2905  * Because kmdb links prom_stdout_is_framebuffer into its own
2906  * module, we add "device-type=display" here for /os-io node, so that
2907  * prom_stdout_is_framebuffer still works corrrectly  after /os-io node
2908  * is registered into OBP.
2909  */
2910 static char *create_node =
2911 	"\" /\" find-device "
2912 	"new-device "
2913 	"\" os-io\" device-name "
2914 	"\" display\" device-type "
2915 	": cb-r/w  ( adr,len method$ -- #read/#written ) "
2916 	"   2>r swap 2 2r> ['] $callback  catch  if "
2917 	"      2drop 3drop 0 "
2918 	"   then "
2919 	"; "
2920 	": read ( adr,len -- #read ) "
2921 	"       \" read\" ['] cb-r/w catch  if  2drop 2drop -2 exit then "
2922 	"       ( retN ... ret1 N ) "
2923 	"       ?dup  if "
2924 	"               swap >r 1-  0  ?do  drop  loop  r> "
2925 	"       else "
2926 	"               -2 "
2927 	"       then "
2928 	";    "
2929 	": write ( adr,len -- #written ) "
2930 	"       \" write\" ['] cb-r/w catch  if  2drop 2drop 0 exit  then "
2931 	"       ( retN ... ret1 N ) "
2932 	"       ?dup  if "
2933 	"               swap >r 1-  0  ?do  drop  loop  r> "
2934 	"        else "
2935 	"               0 "
2936 	"       then "
2937 	"; "
2938 	": poll-tty ( -- ) ; "
2939 	": install-abort  ( -- )  ['] poll-tty d# 10 alarm ; "
2940 	": remove-abort ( -- )  ['] poll-tty 0 alarm ; "
2941 	": cb-give/take ( $method -- ) "
2942 	"       0 -rot ['] $callback catch  ?dup  if "
2943 	"               >r 2drop 2drop r> throw "
2944 	"       else "
2945 	"               0  ?do  drop  loop "
2946 	"       then "
2947 	"; "
2948 	": give ( -- )  \" exit-input\" cb-give/take ; "
2949 	": take ( -- )  \" enter-input\" cb-give/take ; "
2950 	": open ( -- ok? )  true ; "
2951 	": close ( -- ) ; "
2952 	"finish-device "
2953 	"device-end ";
2954 
2955 /*
2956  * Create the OBP input/output node (FCode serial driver).
2957  * It is needed for both USB console keyboard and for
2958  * the kernel terminal emulator.  It is too early to check for a
2959  * kernel console compatible framebuffer now, so we create this
2960  * so that we're ready if we need to enable kernel terminal emulation.
2961  *
2962  * When the USB software takes over the input device at the time
2963  * consconfig runs, OBP's stdin is redirected to this node.
2964  * Whenever the FORTH user interface is used after this switch,
2965  * the node will call back into the kernel for console input.
2966  * If a serial device such as ttya or a UART with a Type 5 keyboard
2967  * attached is used, OBP takes over the serial device when the system
2968  * goes to the debugger after the system is booted.  This sharing
2969  * of the relatively simple serial device is difficult but possible.
2970  * Sharing the USB host controller is impossible due its complexity.
2971  *
2972  * Similarly to USB keyboard input redirection, after consconfig_dacf
2973  * configures a kernel console framebuffer as the standard output
2974  * device, OBP's stdout is switched to to vector through the
2975  * /os-io node into the kernel terminal emulator.
2976  */
2977 static void
2978 startup_create_io_node(void)
2979 {
2980 	prom_interpret(create_node, 0, 0, 0, 0, 0);
2981 }
2982 
2983 
2984 static void
2985 do_prom_version_check(void)
2986 {
2987 	int i;
2988 	pnode_t node;
2989 	char buf[64];
2990 	static char drev[] = "Down-rev firmware detected%s\n"
2991 		"\tPlease upgrade to the following minimum version:\n"
2992 		"\t\t%s\n";
2993 
2994 	i = prom_version_check(buf, sizeof (buf), &node);
2995 
2996 	if (i == PROM_VER64_OK)
2997 		return;
2998 
2999 	if (i == PROM_VER64_UPGRADE) {
3000 		cmn_err(CE_WARN, drev, "", buf);
3001 
3002 #ifdef	DEBUG
3003 		prom_enter_mon();	/* Type 'go' to continue */
3004 		cmn_err(CE_WARN, "Booting with down-rev firmware\n");
3005 		return;
3006 #else
3007 		halt(0);
3008 #endif
3009 	}
3010 
3011 	/*
3012 	 * The other possibility is that this is a server running
3013 	 * good firmware, but down-rev firmware was detected on at
3014 	 * least one other cpu board. We just complain if we see
3015 	 * that.
3016 	 */
3017 	cmn_err(CE_WARN, drev, " on one or more CPU boards", buf);
3018 }
3019 
3020 static void
3021 kpm_init()
3022 {
3023 	kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT;
3024 	kpm_pgsz = 1ull << kpm_pgshft;
3025 	kpm_pgoff = kpm_pgsz - 1;
3026 	kpmp2pshft = kpm_pgshft - PAGESHIFT;
3027 	kpmpnpgs = 1 << kpmp2pshft;
3028 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
3029 }
3030 
3031 void
3032 kpm_npages_setup(int memblocks)
3033 {
3034 	/*
3035 	 * npages can be scattered in a maximum of 'memblocks'
3036 	 */
3037 	kpm_npages = ptokpmpr(npages) + memblocks;
3038 }
3039 
3040 /*
3041  * Must be defined in platform dependent code.
3042  */
3043 extern caddr_t modtext;
3044 extern size_t modtext_sz;
3045 extern caddr_t moddata;
3046 
3047 #define	HEAPTEXT_ARENA(addr)	\
3048 	((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \
3049 	(((uintptr_t)(addr) - HEAPTEXT_BASE) / \
3050 	(HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1))
3051 
3052 #define	HEAPTEXT_OVERSIZED(addr)	\
3053 	((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE)
3054 
3055 vmem_t *texthole_source[HEAPTEXT_NARENAS];
3056 vmem_t *texthole_arena[HEAPTEXT_NARENAS];
3057 kmutex_t texthole_lock;
3058 
3059 char kern_bootargs[OBP_MAXPATHLEN];
3060 
3061 void
3062 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3063 {
3064 	uintptr_t addr, limit;
3065 
3066 	addr = HEAPTEXT_BASE;
3067 	limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE;
3068 
3069 	/*
3070 	 * Before we initialize the text_arena, we want to punch holes in the
3071 	 * underlying heaptext_arena.  This guarantees that for any text
3072 	 * address we can find a text hole less than HEAPTEXT_MAPPED away.
3073 	 */
3074 	for (; addr + HEAPTEXT_UNMAPPED <= limit;
3075 	    addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) {
3076 		(void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE,
3077 		    0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED),
3078 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3079 	}
3080 
3081 	/*
3082 	 * Allocate one page at the oversize to break up the text region
3083 	 * from the oversized region.
3084 	 */
3085 	(void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0,
3086 	    (void *)limit, (void *)(limit + PAGESIZE),
3087 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3088 
3089 	*text_arena = vmem_create("module_text", modtext, modtext_sz,
3090 	    sizeof (uintptr_t), segkmem_alloc, segkmem_free,
3091 	    heaptext_arena, 0, VM_SLEEP);
3092 	*data_arena = vmem_create("module_data", moddata, MODDATA, 1,
3093 	    segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3094 }
3095 
3096 caddr_t
3097 kobj_text_alloc(vmem_t *arena, size_t size)
3098 {
3099 	caddr_t rval, better;
3100 
3101 	/*
3102 	 * First, try a sleeping allocation.
3103 	 */
3104 	rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT);
3105 
3106 	if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval))
3107 		return (rval);
3108 
3109 	/*
3110 	 * We didn't get the area that we wanted.  We're going to try to do an
3111 	 * allocation with explicit constraints.
3112 	 */
3113 	better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL,
3114 	    (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE),
3115 	    VM_NOSLEEP | VM_BESTFIT);
3116 
3117 	if (better != NULL) {
3118 		/*
3119 		 * That worked.  Free our first attempt and return.
3120 		 */
3121 		vmem_free(arena, rval, size);
3122 		return (better);
3123 	}
3124 
3125 	/*
3126 	 * That didn't work; we'll have to return our first attempt.
3127 	 */
3128 	return (rval);
3129 }
3130 
3131 caddr_t
3132 kobj_texthole_alloc(caddr_t addr, size_t size)
3133 {
3134 	int arena = HEAPTEXT_ARENA(addr);
3135 	char c[30];
3136 	uintptr_t base;
3137 
3138 	if (HEAPTEXT_OVERSIZED(addr)) {
3139 		/*
3140 		 * If this is an oversized allocation, there is no text hole
3141 		 * available for it; return NULL.
3142 		 */
3143 		return (NULL);
3144 	}
3145 
3146 	mutex_enter(&texthole_lock);
3147 
3148 	if (texthole_arena[arena] == NULL) {
3149 		ASSERT(texthole_source[arena] == NULL);
3150 
3151 		if (arena == 0) {
3152 			texthole_source[0] = vmem_create("module_text_holesrc",
3153 			    (void *)(KERNELBASE + MMU_PAGESIZE4M),
3154 			    MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL,
3155 			    0, VM_SLEEP);
3156 		} else {
3157 			base = HEAPTEXT_BASE +
3158 			    (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED);
3159 
3160 			(void) snprintf(c, sizeof (c),
3161 			    "heaptext_holesrc_%d", arena);
3162 
3163 			texthole_source[arena] = vmem_create(c, (void *)base,
3164 			    HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL,
3165 			    0, VM_SLEEP);
3166 		}
3167 
3168 		(void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena);
3169 
3170 		texthole_arena[arena] = vmem_create(c, NULL, 0,
3171 		    sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free,
3172 		    texthole_source[arena], 0, VM_SLEEP);
3173 	}
3174 
3175 	mutex_exit(&texthole_lock);
3176 
3177 	ASSERT(texthole_arena[arena] != NULL);
3178 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3179 	return (vmem_alloc(texthole_arena[arena], size,
3180 	    VM_BESTFIT | VM_NOSLEEP));
3181 }
3182 
3183 void
3184 kobj_texthole_free(caddr_t addr, size_t size)
3185 {
3186 	int arena = HEAPTEXT_ARENA(addr);
3187 
3188 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3189 	ASSERT(texthole_arena[arena] != NULL);
3190 	vmem_free(texthole_arena[arena], addr, size);
3191 }
3192