1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/machsystm.h> 28 #include <sys/archsystm.h> 29 #include <sys/vm.h> 30 #include <sys/cpu.h> 31 #include <sys/atomic.h> 32 #include <sys/reboot.h> 33 #include <sys/kdi.h> 34 #include <sys/bootconf.h> 35 #include <sys/memlist_plat.h> 36 #include <sys/memlist_impl.h> 37 #include <sys/prom_plat.h> 38 #include <sys/prom_isa.h> 39 #include <sys/autoconf.h> 40 #include <sys/ivintr.h> 41 #include <sys/fpu/fpusystm.h> 42 #include <sys/iommutsb.h> 43 #include <vm/vm_dep.h> 44 #include <vm/seg_dev.h> 45 #include <vm/seg_kmem.h> 46 #include <vm/seg_kpm.h> 47 #include <vm/seg_map.h> 48 #include <vm/seg_kp.h> 49 #include <sys/sysconf.h> 50 #include <vm/hat_sfmmu.h> 51 #include <sys/kobj.h> 52 #include <sys/sun4asi.h> 53 #include <sys/clconf.h> 54 #include <sys/platform_module.h> 55 #include <sys/panic.h> 56 #include <sys/cpu_sgnblk_defs.h> 57 #include <sys/clock.h> 58 #include <sys/cmn_err.h> 59 #include <sys/promif.h> 60 #include <sys/prom_debug.h> 61 #include <sys/traptrace.h> 62 #include <sys/memnode.h> 63 #include <sys/mem_cage.h> 64 #include <sys/mmu.h> 65 66 extern void setup_trap_table(void); 67 extern int cpu_intrq_setup(struct cpu *); 68 extern void cpu_intrq_register(struct cpu *); 69 extern void contig_mem_init(void); 70 extern caddr_t contig_mem_prealloc(caddr_t, pgcnt_t); 71 extern void mach_dump_buffer_init(void); 72 extern void mach_descrip_init(void); 73 extern void mach_descrip_startup_fini(void); 74 extern void mach_memscrub(void); 75 extern void mach_fpras(void); 76 extern void mach_cpu_halt_idle(void); 77 extern void mach_hw_copy_limit(void); 78 extern void load_mach_drivers(void); 79 extern void load_tod_module(void); 80 #pragma weak load_tod_module 81 82 extern int ndata_alloc_mmfsa(struct memlist *ndata); 83 #pragma weak ndata_alloc_mmfsa 84 85 extern void cif_init(void); 86 #pragma weak cif_init 87 88 extern void parse_idprom(void); 89 extern void add_vx_handler(char *, int, void (*)(cell_t *)); 90 extern void mem_config_init(void); 91 extern void memseg_remap_init(void); 92 93 extern void mach_kpm_init(void); 94 extern void pcf_init(); 95 extern int size_pse_array(pgcnt_t, int); 96 extern void pg_init(); 97 98 /* 99 * External Data: 100 */ 101 extern int vac_size; /* cache size in bytes */ 102 extern uint_t vac_mask; /* VAC alignment consistency mask */ 103 extern uint_t vac_colors; 104 105 /* 106 * Global Data Definitions: 107 */ 108 109 /* 110 * XXX - Don't port this to new architectures 111 * A 3rd party volume manager driver (vxdm) depends on the symbol romp. 112 * 'romp' has no use with a prom with an IEEE 1275 client interface. 113 * The driver doesn't use the value, but it depends on the symbol. 114 */ 115 void *romp; /* veritas driver won't load without romp 4154976 */ 116 /* 117 * Declare these as initialized data so we can patch them. 118 */ 119 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ 120 pgcnt_t segkpsize = 121 btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 122 uint_t segmap_percent = 6; /* Size of segmap segment */ 123 124 int use_cache = 1; /* cache not reliable (605 bugs) with MP */ 125 int vac_copyback = 1; 126 char *cache_mode = NULL; 127 int use_mix = 1; 128 int prom_debug = 0; 129 130 caddr_t boot_tba; /* %tba at boot - used by kmdb */ 131 uint_t tba_taken_over = 0; 132 133 caddr_t s_text; /* start of kernel text segment */ 134 caddr_t e_text; /* end of kernel text segment */ 135 caddr_t s_data; /* start of kernel data segment */ 136 caddr_t e_data; /* end of kernel data segment */ 137 138 caddr_t modtext; /* beginning of module text */ 139 size_t modtext_sz; /* size of module text */ 140 caddr_t moddata; /* beginning of module data reserve */ 141 caddr_t e_moddata; /* end of module data reserve */ 142 143 /* 144 * End of first block of contiguous kernel in 32-bit virtual address space 145 */ 146 caddr_t econtig32; /* end of first blk of contiguous kernel */ 147 148 caddr_t ncbase; /* beginning of non-cached segment */ 149 caddr_t ncend; /* end of non-cached segment */ 150 151 size_t ndata_remain_sz; /* bytes from end of data to 4MB boundary */ 152 caddr_t nalloc_base; /* beginning of nucleus allocation */ 153 caddr_t nalloc_end; /* end of nucleus allocatable memory */ 154 caddr_t valloc_base; /* beginning of kvalloc segment */ 155 156 caddr_t kmem64_base; /* base of kernel mem segment in 64-bit space */ 157 caddr_t kmem64_end; /* end of kernel mem segment in 64-bit space */ 158 size_t kmem64_sz; /* bytes in kernel mem segment, 64-bit space */ 159 caddr_t kmem64_aligned_end; /* end of large page, overmaps 64-bit space */ 160 int kmem64_szc; /* page size code */ 161 uint64_t kmem64_pabase = (uint64_t)-1; /* physical address of kmem64_base */ 162 163 uintptr_t shm_alignment; /* VAC address consistency modulus */ 164 struct memlist *phys_install; /* Total installed physical memory */ 165 struct memlist *phys_avail; /* Available (unreserved) physical memory */ 166 struct memlist *virt_avail; /* Available (unmapped?) virtual memory */ 167 struct memlist *nopp_list; /* pages with no backing page structs */ 168 struct memlist ndata; /* memlist of nucleus allocatable memory */ 169 int memexp_flag; /* memory expansion card flag */ 170 uint64_t ecache_flushaddr; /* physical address used for flushing E$ */ 171 pgcnt_t obp_pages; /* Physical pages used by OBP */ 172 173 /* 174 * VM data structures 175 */ 176 long page_hashsz; /* Size of page hash table (power of two) */ 177 struct page *pp_base; /* Base of system page struct array */ 178 size_t pp_sz; /* Size in bytes of page struct array */ 179 struct page **page_hash; /* Page hash table */ 180 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 181 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 182 int pse_shift; /* log2(pse_table_size) */ 183 struct seg ktextseg; /* Segment used for kernel executable image */ 184 struct seg kvalloc; /* Segment used for "valloc" mapping */ 185 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 186 struct seg ktexthole; /* Segment used for nucleus text hole */ 187 struct seg kmapseg; /* Segment used for generic kernel mappings */ 188 struct seg kpmseg; /* Segment used for physical mapping */ 189 struct seg kdebugseg; /* Segment used for the kernel debugger */ 190 191 void *kpm_pp_base; /* Base of system kpm_page array */ 192 size_t kpm_pp_sz; /* Size of system kpm_page array */ 193 pgcnt_t kpm_npages; /* How many kpm pages are managed */ 194 195 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 196 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 197 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 198 199 int segzio_fromheap = 0; /* zio allocations occur from heap */ 200 caddr_t segzio_base; /* Base address of segzio */ 201 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 202 203 /* 204 * A static DR page_t VA map is reserved that can map the page structures 205 * for a domain's entire RA space. The pages that backs this space are 206 * dynamically allocated and need not be physically contiguous. The DR 207 * map size is derived from KPM size. 208 */ 209 int ppvm_enable = 0; /* Static virtual map for page structs */ 210 page_t *ppvm_base; /* Base of page struct map */ 211 pgcnt_t ppvm_size = 0; /* Size of page struct map */ 212 213 /* 214 * debugger pages (if allocated) 215 */ 216 struct vnode kdebugvp; 217 218 /* 219 * VA range available to the debugger 220 */ 221 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 222 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 223 224 /* 225 * Segment for relocated kernel structures in 64-bit large RAM kernels 226 */ 227 struct seg kmem64; 228 229 struct memseg *memseg_free; 230 231 struct vnode unused_pages_vp; 232 233 /* 234 * VM data structures allocated early during boot. 235 */ 236 size_t pagehash_sz; 237 uint64_t memlist_sz; 238 239 char tbr_wr_addr_inited = 0; 240 241 caddr_t mpo_heap32_buf = NULL; 242 size_t mpo_heap32_bufsz = 0; 243 244 /* 245 * Static Routines: 246 */ 247 static int ndata_alloc_memseg(struct memlist *, size_t); 248 static void memlist_new(uint64_t, uint64_t, struct memlist **); 249 static void memlist_add(uint64_t, uint64_t, 250 struct memlist **, struct memlist **); 251 static void kphysm_init(void); 252 static void kvm_init(void); 253 static void install_kmem64_tte(void); 254 255 static void startup_init(void); 256 static void startup_memlist(void); 257 static void startup_modules(void); 258 static void startup_bop_gone(void); 259 static void startup_vm(void); 260 static void startup_end(void); 261 static void setup_cage_params(void); 262 static void startup_create_io_node(void); 263 264 static pgcnt_t npages; 265 static struct memlist *memlist; 266 void *memlist_end; 267 268 static pgcnt_t bop_alloc_pages; 269 static caddr_t hblk_base; 270 uint_t hblk_alloc_dynamic = 0; 271 uint_t hblk1_min = H1MIN; 272 273 274 /* 275 * Hooks for unsupported platforms and down-rev firmware 276 */ 277 int iam_positron(void); 278 #pragma weak iam_positron 279 static void do_prom_version_check(void); 280 281 /* 282 * After receiving a thermal interrupt, this is the number of seconds 283 * to delay before shutting off the system, assuming 284 * shutdown fails. Use /etc/system to change the delay if this isn't 285 * large enough. 286 */ 287 int thermal_powerdown_delay = 1200; 288 289 /* 290 * Used to hold off page relocations into the cage until OBP has completed 291 * its boot-time handoff of its resources to the kernel. 292 */ 293 int page_relocate_ready = 0; 294 295 /* 296 * Indicate if kmem64 allocation was done in small chunks 297 */ 298 int kmem64_smchunks = 0; 299 300 /* 301 * Enable some debugging messages concerning memory usage... 302 */ 303 #ifdef DEBUGGING_MEM 304 static int debugging_mem; 305 static void 306 printmemlist(char *title, struct memlist *list) 307 { 308 if (!debugging_mem) 309 return; 310 311 printf("%s\n", title); 312 313 while (list) { 314 prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n", 315 (uint32_t)(list->address >> 32), (uint32_t)list->address, 316 (uint32_t)(list->size >> 32), (uint32_t)(list->size)); 317 list = list->next; 318 } 319 } 320 321 void 322 printmemseg(struct memseg *memseg) 323 { 324 if (!debugging_mem) 325 return; 326 327 printf("memseg\n"); 328 329 while (memseg) { 330 prom_printf("\tpage = 0x%p, epage = 0x%p, " 331 "pfn = 0x%x, epfn = 0x%x\n", 332 memseg->pages, memseg->epages, 333 memseg->pages_base, memseg->pages_end); 334 memseg = memseg->next; 335 } 336 } 337 338 #define debug_pause(str) halt((str)) 339 #define MPRINTF(str) if (debugging_mem) prom_printf((str)) 340 #define MPRINTF1(str, a) if (debugging_mem) prom_printf((str), (a)) 341 #define MPRINTF2(str, a, b) if (debugging_mem) prom_printf((str), (a), (b)) 342 #define MPRINTF3(str, a, b, c) \ 343 if (debugging_mem) prom_printf((str), (a), (b), (c)) 344 #else /* DEBUGGING_MEM */ 345 #define MPRINTF(str) 346 #define MPRINTF1(str, a) 347 #define MPRINTF2(str, a, b) 348 #define MPRINTF3(str, a, b, c) 349 #endif /* DEBUGGING_MEM */ 350 351 352 /* 353 * 354 * Kernel's Virtual Memory Layout. 355 * /-----------------------\ 356 * 0xFFFFFFFF.FFFFFFFF -| |- 357 * | OBP's virtual page | 358 * | tables | 359 * 0xFFFFFFFC.00000000 -|-----------------------|- 360 * : : 361 * : : 362 * -|-----------------------|- 363 * | segzio | (base and size vary) 364 * 0xFFFFFE00.00000000 -|-----------------------|- 365 * | | Ultrasparc I/II support 366 * | segkpm segment | up to 2TB of physical 367 * | (64-bit kernel ONLY) | memory, VAC has 2 colors 368 * | | 369 * 0xFFFFFA00.00000000 -|-----------------------|- 2TB segkpm alignment 370 * : : 371 * : : 372 * 0xFFFFF810.00000000 -|-----------------------|- hole_end 373 * | | ^ 374 * | UltraSPARC I/II call | | 375 * | bug requires an extra | | 376 * | 4 GB of space between | | 377 * | hole and used RAM | | 378 * | | | 379 * 0xFFFFF800.00000000 -|-----------------------|- | 380 * | | | 381 * | Virtual Address Hole | UltraSPARC 382 * | on UltraSPARC I/II | I/II * ONLY * 383 * | | | 384 * 0x00000800.00000000 -|-----------------------|- | 385 * | | | 386 * | UltraSPARC I/II call | | 387 * | bug requires an extra | | 388 * | 4 GB of space between | | 389 * | hole and used RAM | | 390 * | | v 391 * 0x000007FF.00000000 -|-----------------------|- hole_start ----- 392 * : : ^ 393 * : : | 394 * |-----------------------| | 395 * | | | 396 * | ecache flush area | | 397 * | (twice largest e$) | | 398 * | | | 399 * 0x00000XXX.XXX00000 -|-----------------------|- kmem64_ | 400 * | overmapped area | alignend_end | 401 * | (kmem64_alignsize | | 402 * | boundary) | | 403 * 0x00000XXX.XXXXXXXX -|-----------------------|- kmem64_end | 404 * | | | 405 * | 64-bit kernel ONLY | | 406 * | | | 407 * | kmem64 segment | | 408 * | | | 409 * | (Relocated extra HME | Approximately 410 * | block allocations, | 1 TB of virtual 411 * | memnode freelists, | address space 412 * | HME hash buckets, | | 413 * | mml_table, kpmp_table,| | 414 * | page_t array and | | 415 * | hashblock pool to | | 416 * | avoid hard-coded | | 417 * | 32-bit vaddr | | 418 * | limitations) | | 419 * | | v 420 * 0x00000700.00000000 -|-----------------------|- SYSLIMIT (kmem64_base) 421 * | | 422 * | segkmem segment | (SYSLIMIT - SYSBASE = 4TB) 423 * | | 424 * 0x00000300.00000000 -|-----------------------|- SYSBASE 425 * : : 426 * : : 427 * -|-----------------------|- 428 * | | 429 * | segmap segment | SEGMAPSIZE (1/8th physmem, 430 * | | 256G MAX) 431 * 0x000002a7.50000000 -|-----------------------|- SEGMAPBASE 432 * : : 433 * : : 434 * -|-----------------------|- 435 * | | 436 * | segkp | SEGKPSIZE (2GB) 437 * | | 438 * | | 439 * 0x000002a1.00000000 -|-----------------------|- SEGKPBASE 440 * | | 441 * 0x000002a0.00000000 -|-----------------------|- MEMSCRUBBASE 442 * | | (SEGKPBASE - 0x400000) 443 * 0x0000029F.FFE00000 -|-----------------------|- ARGSBASE 444 * | | (MEMSCRUBBASE - NCARGS) 445 * 0x0000029F.FFD80000 -|-----------------------|- PPMAPBASE 446 * | | (ARGSBASE - PPMAPSIZE) 447 * 0x0000029F.FFD00000 -|-----------------------|- PPMAP_FAST_BASE 448 * | | 449 * 0x0000029F.FF980000 -|-----------------------|- PIOMAPBASE 450 * | | 451 * 0x0000029F.FF580000 -|-----------------------|- NARG_BASE 452 * : : 453 * : : 454 * 0x00000000.FFFFFFFF -|-----------------------|- OFW_END_ADDR 455 * | | 456 * | OBP | 457 * | | 458 * 0x00000000.F0000000 -|-----------------------|- OFW_START_ADDR 459 * | kmdb | 460 * 0x00000000.EDD00000 -|-----------------------|- SEGDEBUGBASE 461 * : : 462 * : : 463 * 0x00000000.7c000000 -|-----------------------|- SYSLIMIT32 464 * | | 465 * | segkmem32 segment | (SYSLIMIT32 - SYSBASE32 = 466 * | | ~64MB) 467 * |-----------------------| 468 * | IVSIZE | 469 * 0x00000000.70004000 -|-----------------------| 470 * | panicbuf | 471 * 0x00000000.70002000 -|-----------------------| 472 * | PAGESIZE | 473 * 0x00000000.70000000 -|-----------------------|- SYSBASE32 474 * | boot-time | 475 * | temporary space | 476 * 0x00000000.4C000000 -|-----------------------|- BOOTTMPBASE 477 * : : 478 * : : 479 * | | 480 * |-----------------------|- econtig32 481 * | vm structures | 482 * 0x00000000.01C00000 |-----------------------|- nalloc_end 483 * | TSBs | 484 * |-----------------------|- end/nalloc_base 485 * | kernel data & bss | 486 * 0x00000000.01800000 -|-----------------------| 487 * : nucleus text hole : 488 * 0x00000000.01400000 -|-----------------------| 489 * : : 490 * |-----------------------| 491 * | module text | 492 * |-----------------------|- e_text/modtext 493 * | kernel text | 494 * |-----------------------| 495 * | trap table (48k) | 496 * 0x00000000.01000000 -|-----------------------|- KERNELBASE 497 * | reserved for trapstat |} TSTAT_TOTAL_SIZE 498 * |-----------------------| 499 * | | 500 * | invalid | 501 * | | 502 * 0x00000000.00000000 _|_______________________| 503 * 504 * 505 * 506 * 32-bit User Virtual Memory Layout. 507 * /-----------------------\ 508 * | | 509 * | invalid | 510 * | | 511 * 0xFFC00000 -|-----------------------|- USERLIMIT 512 * | user stack | 513 * : : 514 * : : 515 * : : 516 * | user data | 517 * -|-----------------------|- 518 * | user text | 519 * 0x00002000 -|-----------------------|- 520 * | invalid | 521 * 0x00000000 _|_______________________| 522 * 523 * 524 * 525 * 64-bit User Virtual Memory Layout. 526 * /-----------------------\ 527 * | | 528 * | invalid | 529 * | | 530 * 0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT 531 * | user stack | 532 * : : 533 * : : 534 * : : 535 * | user data | 536 * -|-----------------------|- 537 * | user text | 538 * 0x00000000.01000000 -|-----------------------|- 539 * | invalid | 540 * 0x00000000.00000000 _|_______________________| 541 */ 542 543 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base); 544 extern uint64_t ecache_flush_address(void); 545 546 #pragma weak load_platform_modules 547 #pragma weak plat_startup_memlist 548 #pragma weak ecache_init_scrub_flush_area 549 #pragma weak ecache_flush_address 550 551 552 /* 553 * By default the DR Cage is enabled for maximum OS 554 * MPSS performance. Users needing to disable the cage mechanism 555 * can set this variable to zero via /etc/system. 556 * Disabling the cage on systems supporting Dynamic Reconfiguration (DR) 557 * will result in loss of DR functionality. 558 * Platforms wishing to disable kernel Cage by default 559 * should do so in their set_platform_defaults() routine. 560 */ 561 int kernel_cage_enable = 1; 562 563 static void 564 setup_cage_params(void) 565 { 566 void (*func)(void); 567 568 func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0); 569 if (func != NULL) { 570 (*func)(); 571 return; 572 } 573 574 if (kernel_cage_enable == 0) { 575 return; 576 } 577 kcage_range_init(phys_avail, KCAGE_DOWN, total_pages / 256); 578 579 if (kcage_on) { 580 cmn_err(CE_NOTE, "!Kernel Cage is ENABLED"); 581 } else { 582 cmn_err(CE_NOTE, "!Kernel Cage is DISABLED"); 583 } 584 585 } 586 587 /* 588 * Machine-dependent startup code 589 */ 590 void 591 startup(void) 592 { 593 startup_init(); 594 if (&startup_platform) 595 startup_platform(); 596 startup_memlist(); 597 startup_modules(); 598 setup_cage_params(); 599 startup_bop_gone(); 600 startup_vm(); 601 startup_end(); 602 } 603 604 struct regs sync_reg_buf; 605 uint64_t sync_tt; 606 607 void 608 sync_handler(void) 609 { 610 struct panic_trap_info ti; 611 int i; 612 613 /* 614 * Prevent trying to talk to the other CPUs since they are 615 * sitting in the prom and won't reply. 616 */ 617 for (i = 0; i < NCPU; i++) { 618 if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) { 619 cpu[i]->cpu_flags &= ~CPU_READY; 620 cpu[i]->cpu_flags |= CPU_QUIESCED; 621 CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id); 622 } 623 } 624 625 /* 626 * We've managed to get here without going through the 627 * normal panic code path. Try and save some useful 628 * information. 629 */ 630 if (!panicstr && (curthread->t_panic_trap == NULL)) { 631 ti.trap_type = sync_tt; 632 ti.trap_regs = &sync_reg_buf; 633 ti.trap_addr = NULL; 634 ti.trap_mmu_fsr = 0x0; 635 636 curthread->t_panic_trap = &ti; 637 } 638 639 /* 640 * If we're re-entering the panic path, update the signature 641 * block so that the SC knows we're in the second part of panic. 642 */ 643 if (panicstr) 644 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1); 645 646 nopanicdebug = 1; /* do not perform debug_enter() prior to dump */ 647 panic("sync initiated"); 648 } 649 650 651 static void 652 startup_init(void) 653 { 654 /* 655 * We want to save the registers while we're still in OBP 656 * so that we know they haven't been fiddled with since. 657 * (In principle, OBP can't change them just because it 658 * makes a callback, but we'd rather not depend on that 659 * behavior.) 660 */ 661 char sync_str[] = 662 "warning @ warning off : sync " 663 "%%tl-c %%tstate h# %p x! " 664 "%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! " 665 "%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! " 666 "%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! " 667 "%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! " 668 "%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! " 669 "%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! " 670 "%%y h# %p l! %%tl-c %%tt h# %p x! " 671 "sync ; warning !"; 672 673 /* 674 * 20 == num of %p substrings 675 * 16 == max num of chars %p will expand to. 676 */ 677 char bp[sizeof (sync_str) + 16 * 20]; 678 679 /* 680 * Initialize ptl1 stack for the 1st CPU. 681 */ 682 ptl1_init_cpu(&cpu0); 683 684 /* 685 * Initialize the address map for cache consistent mappings 686 * to random pages; must be done after vac_size is set. 687 */ 688 ppmapinit(); 689 690 /* 691 * Initialize the PROM callback handler. 692 */ 693 init_vx_handler(); 694 695 /* 696 * have prom call sync_callback() to handle the sync and 697 * save some useful information which will be stored in the 698 * core file later. 699 */ 700 (void) sprintf((char *)bp, sync_str, 701 (void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1, 702 (void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3, 703 (void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5, 704 (void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7, 705 (void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1, 706 (void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3, 707 (void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5, 708 (void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7, 709 (void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc, 710 (void *)&sync_reg_buf.r_y, (void *)&sync_tt); 711 prom_interpret(bp, 0, 0, 0, 0, 0); 712 add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler); 713 } 714 715 716 size_t 717 calc_pp_sz(pgcnt_t npages) 718 { 719 720 return (npages * sizeof (struct page)); 721 } 722 723 size_t 724 calc_kpmpp_sz(pgcnt_t npages) 725 { 726 727 kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT; 728 kpm_pgsz = 1ull << kpm_pgshft; 729 kpm_pgoff = kpm_pgsz - 1; 730 kpmp2pshft = kpm_pgshft - PAGESHIFT; 731 kpmpnpgs = 1 << kpmp2pshft; 732 733 if (kpm_smallpages == 0) { 734 /* 735 * Avoid fragmentation problems in kphysm_init() 736 * by allocating for all of physical memory 737 */ 738 kpm_npages = ptokpmpr(physinstalled); 739 return (kpm_npages * sizeof (kpm_page_t)); 740 } else { 741 kpm_npages = npages; 742 return (kpm_npages * sizeof (kpm_spage_t)); 743 } 744 } 745 746 size_t 747 calc_pagehash_sz(pgcnt_t npages) 748 { 749 750 /* 751 * The page structure hash table size is a power of 2 752 * such that the average hash chain length is PAGE_HASHAVELEN. 753 */ 754 page_hashsz = npages / PAGE_HASHAVELEN; 755 page_hashsz = 1 << highbit(page_hashsz); 756 return (page_hashsz * sizeof (struct page *)); 757 } 758 759 int testkmem64_smchunks = 0; 760 761 int 762 alloc_kmem64(caddr_t base, caddr_t end) 763 { 764 int i; 765 caddr_t aligned_end = NULL; 766 767 if (testkmem64_smchunks) 768 return (1); 769 770 /* 771 * Make one large memory alloc after figuring out the 64-bit size. This 772 * will enable use of the largest page size appropriate for the system 773 * architecture. 774 */ 775 ASSERT(mmu_exported_pagesize_mask & (1 << TTE8K)); 776 ASSERT(IS_P2ALIGNED(base, TTEBYTES(max_bootlp_tteszc))); 777 for (i = max_bootlp_tteszc; i >= TTE8K; i--) { 778 size_t alloc_size, alignsize; 779 #if !defined(C_OBP) 780 unsigned long long pa; 781 #endif /* !C_OBP */ 782 783 if ((mmu_exported_pagesize_mask & (1 << i)) == 0) 784 continue; 785 alignsize = TTEBYTES(i); 786 kmem64_szc = i; 787 788 /* limit page size for small memory */ 789 if (mmu_btop(alignsize) > (npages >> 2)) 790 continue; 791 792 aligned_end = (caddr_t)roundup((uintptr_t)end, alignsize); 793 alloc_size = aligned_end - base; 794 #if !defined(C_OBP) 795 if (prom_allocate_phys(alloc_size, alignsize, &pa) == 0) { 796 if (prom_claim_virt(alloc_size, base) != (caddr_t)-1) { 797 kmem64_pabase = pa; 798 kmem64_aligned_end = aligned_end; 799 install_kmem64_tte(); 800 break; 801 } else { 802 prom_free_phys(alloc_size, pa); 803 } 804 } 805 #else /* !C_OBP */ 806 if (prom_alloc(base, alloc_size, alignsize) == base) { 807 kmem64_pabase = va_to_pa(kmem64_base); 808 kmem64_aligned_end = aligned_end; 809 break; 810 } 811 #endif /* !C_OBP */ 812 if (i == TTE8K) { 813 #ifdef sun4v 814 /* return failure to try small allocations */ 815 return (1); 816 #else 817 prom_panic("kmem64 allocation failure"); 818 #endif 819 } 820 } 821 ASSERT(aligned_end != NULL); 822 return (0); 823 } 824 825 static prom_memlist_t *boot_physinstalled, *boot_physavail, *boot_virtavail; 826 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len; 827 828 #if !defined(C_OBP) 829 /* 830 * Install a temporary tte handler in OBP for kmem64 area. 831 * 832 * We map kmem64 area with large pages before the trap table is taken 833 * over. Since OBP makes 8K mappings, it can create 8K tlb entries in 834 * the same area. Duplicate tlb entries with different page sizes 835 * cause unpredicatble behavior. To avoid this, we don't create 836 * kmem64 mappings via BOP_ALLOC (ends up as prom_alloc() call to 837 * OBP). Instead, we manage translations with a temporary va>tte-data 838 * handler (kmem64-tte). This handler is replaced by unix-tte when 839 * the trap table is taken over. 840 * 841 * The temporary handler knows the physical address of the kmem64 842 * area. It uses the prom's pgmap@ Forth word for other addresses. 843 * 844 * We have to use BOP_ALLOC() method for C-OBP platforms because 845 * pgmap@ is not defined in C-OBP. C-OBP is only used on serengeti 846 * sun4u platforms. On sun4u we flush tlb after trap table is taken 847 * over if we use large pages for kernel heap and kmem64. Since sun4u 848 * prom (unlike sun4v) calls va>tte-data first for client address 849 * translation prom's ttes for kmem64 can't get into TLB even if we 850 * later switch to prom's trap table again. C-OBP uses 4M pages for 851 * client mappings when possible so on all platforms we get the 852 * benefit from large mappings for kmem64 area immediately during 853 * boot. 854 * 855 * pseudo code: 856 * if (context != 0) { 857 * return false 858 * } else if (miss_va in range[kmem64_base, kmem64_end)) { 859 * tte = tte_template + 860 * (((miss_va & pagemask) - kmem64_base)); 861 * return tte, true 862 * } else { 863 * return pgmap@ result 864 * } 865 */ 866 char kmem64_obp_str[] = 867 "h# %lx constant kmem64-base " 868 "h# %lx constant kmem64-end " 869 "h# %lx constant kmem64-pagemask " 870 "h# %lx constant kmem64-template " 871 872 ": kmem64-tte ( addr cnum -- false | tte-data true ) " 873 " if ( addr ) " 874 " drop false exit then ( false ) " 875 " dup kmem64-base kmem64-end within if ( addr ) " 876 " kmem64-pagemask and ( addr' ) " 877 " kmem64-base - ( addr' ) " 878 " kmem64-template + ( tte ) " 879 " true ( tte true ) " 880 " else ( addr ) " 881 " pgmap@ ( tte ) " 882 " dup 0< if true else drop false then ( tte true | false ) " 883 " then ( tte true | false ) " 884 "; " 885 886 "' kmem64-tte is va>tte-data " 887 ; 888 889 static void 890 install_kmem64_tte() 891 { 892 char b[sizeof (kmem64_obp_str) + (4 * 16)]; 893 tte_t tte; 894 895 PRM_DEBUG(kmem64_pabase); 896 PRM_DEBUG(kmem64_szc); 897 sfmmu_memtte(&tte, kmem64_pabase >> MMU_PAGESHIFT, 898 PROC_DATA | HAT_NOSYNC, kmem64_szc); 899 PRM_DEBUG(tte.ll); 900 (void) sprintf(b, kmem64_obp_str, 901 kmem64_base, kmem64_end, TTE_PAGEMASK(kmem64_szc), tte.ll); 902 ASSERT(strlen(b) < sizeof (b)); 903 prom_interpret(b, 0, 0, 0, 0, 0); 904 } 905 #endif /* !C_OBP */ 906 907 /* 908 * As OBP takes up some RAM when the system boots, pages will already be "lost" 909 * to the system and reflected in npages by the time we see it. 910 * 911 * We only want to allocate kernel structures in the 64-bit virtual address 912 * space on systems with enough RAM to make the overhead of keeping track of 913 * an extra kernel memory segment worthwhile. 914 * 915 * Since OBP has already performed its memory allocations by this point, if we 916 * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map 917 * memory in the 64-bit virtual address space; otherwise keep allocations 918 * contiguous with we've mapped so far in the 32-bit virtual address space. 919 */ 920 #define MINMOVE_RAM_MB ((size_t)1900) 921 #define MB_TO_BYTES(mb) ((mb) * 1048576ul) 922 #define BYTES_TO_MB(b) ((b) / 1048576ul) 923 924 pgcnt_t tune_npages = (pgcnt_t) 925 (MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE); 926 927 #pragma weak page_set_colorequiv_arr_cpu 928 extern void page_set_colorequiv_arr_cpu(void); 929 extern void page_set_colorequiv_arr(void); 930 931 static pgcnt_t ramdisk_npages; 932 static struct memlist *old_phys_avail; 933 934 kcage_dir_t kcage_startup_dir = KCAGE_DOWN; 935 936 static void 937 startup_memlist(void) 938 { 939 size_t hmehash_sz, pagelist_sz, tt_sz; 940 size_t psetable_sz; 941 caddr_t alloc_base; 942 caddr_t memspace; 943 struct memlist *cur; 944 size_t syslimit = (size_t)SYSLIMIT; 945 size_t sysbase = (size_t)SYSBASE; 946 947 /* 948 * Initialize enough of the system to allow kmem_alloc to work by 949 * calling boot to allocate its memory until the time that 950 * kvm_init is completed. The page structs are allocated after 951 * rounding up end to the nearest page boundary; the memsegs are 952 * initialized and the space they use comes from the kernel heap. 953 * With appropriate initialization, they can be reallocated later 954 * to a size appropriate for the machine's configuration. 955 * 956 * At this point, memory is allocated for things that will never 957 * need to be freed, this used to be "valloced". This allows a 958 * savings as the pages don't need page structures to describe 959 * them because them will not be managed by the vm system. 960 */ 961 962 /* 963 * We're loaded by boot with the following configuration (as 964 * specified in the sun4u/conf/Mapfile): 965 * 966 * text: 4 MB chunk aligned on a 4MB boundary 967 * data & bss: 4 MB chunk aligned on a 4MB boundary 968 * 969 * These two chunks will eventually be mapped by 2 locked 4MB 970 * ttes and will represent the nucleus of the kernel. This gives 971 * us some free space that is already allocated, some or all of 972 * which is made available to kernel module text. 973 * 974 * The free space in the data-bss chunk is used for nucleus 975 * allocatable data structures and we reserve it using the 976 * nalloc_base and nalloc_end variables. This space is currently 977 * being used for hat data structures required for tlb miss 978 * handling operations. We align nalloc_base to a l2 cache 979 * linesize because this is the line size the hardware uses to 980 * maintain cache coherency. 981 * 512K is carved out for module data. 982 */ 983 984 moddata = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE); 985 e_moddata = moddata + MODDATA; 986 nalloc_base = e_moddata; 987 988 nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M); 989 valloc_base = nalloc_base; 990 991 /* 992 * Calculate the start of the data segment. 993 */ 994 if (((uintptr_t)e_moddata & MMU_PAGEMASK4M) != (uintptr_t)s_data) 995 prom_panic("nucleus data overflow"); 996 997 PRM_DEBUG(moddata); 998 PRM_DEBUG(nalloc_base); 999 PRM_DEBUG(nalloc_end); 1000 1001 /* 1002 * Remember any slop after e_text so we can give it to the modules. 1003 */ 1004 PRM_DEBUG(e_text); 1005 modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE); 1006 if (((uintptr_t)e_text & MMU_PAGEMASK4M) != (uintptr_t)s_text) 1007 prom_panic("nucleus text overflow"); 1008 modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) - 1009 modtext; 1010 PRM_DEBUG(modtext); 1011 PRM_DEBUG(modtext_sz); 1012 1013 init_boot_memlists(); 1014 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1015 &boot_physavail, &boot_physavail_len, 1016 &boot_virtavail, &boot_virtavail_len); 1017 1018 /* 1019 * Remember what the physically available highest page is 1020 * so that dumpsys works properly, and find out how much 1021 * memory is installed. 1022 */ 1023 installed_top_size_memlist_array(boot_physinstalled, 1024 boot_physinstalled_len, &physmax, &physinstalled); 1025 PRM_DEBUG(physinstalled); 1026 PRM_DEBUG(physmax); 1027 1028 /* Fill out memory nodes config structure */ 1029 startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len); 1030 1031 /* 1032 * npages is the maximum of available physical memory possible. 1033 * (ie. it will never be more than this) 1034 * 1035 * When we boot from a ramdisk, the ramdisk memory isn't free, so 1036 * using phys_avail will underestimate what will end up being freed. 1037 * A better initial guess is just total memory minus the kernel text 1038 */ 1039 npages = physinstalled - btop(MMU_PAGESIZE4M); 1040 1041 /* 1042 * First allocate things that can go in the nucleus data page 1043 * (fault status, TSBs, dmv, CPUs) 1044 */ 1045 ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end); 1046 1047 if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0)) 1048 cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc"); 1049 1050 if (ndata_alloc_tsbs(&ndata, npages) != 0) 1051 cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc"); 1052 1053 if (ndata_alloc_dmv(&ndata) != 0) 1054 cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc"); 1055 1056 if (ndata_alloc_page_mutexs(&ndata) != 0) 1057 cmn_err(CE_PANIC, 1058 "no more nucleus memory after page free lists alloc"); 1059 1060 if (ndata_alloc_hat(&ndata, npages) != 0) 1061 cmn_err(CE_PANIC, "no more nucleus memory after hat alloc"); 1062 1063 if (ndata_alloc_memseg(&ndata, boot_physavail_len) != 0) 1064 cmn_err(CE_PANIC, "no more nucleus memory after memseg alloc"); 1065 1066 /* 1067 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING 1068 * 1069 * There are comments all over the SFMMU code warning of dire 1070 * consequences if the TSBs are moved out of 32-bit space. This 1071 * is largely because the asm code uses "sethi %hi(addr)"-type 1072 * instructions which will not provide the expected result if the 1073 * address is a 64-bit one. 1074 * 1075 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING 1076 */ 1077 alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE); 1078 PRM_DEBUG(alloc_base); 1079 1080 alloc_base = sfmmu_ktsb_alloc(alloc_base); 1081 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1082 PRM_DEBUG(alloc_base); 1083 1084 /* 1085 * Allocate IOMMU TSB array. We do this here so that the physical 1086 * memory gets deducted from the PROM's physical memory list. 1087 */ 1088 alloc_base = iommu_tsb_init(alloc_base); 1089 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1090 PRM_DEBUG(alloc_base); 1091 1092 /* 1093 * Allow for an early allocation of physically contiguous memory. 1094 */ 1095 alloc_base = contig_mem_prealloc(alloc_base, npages); 1096 1097 /* 1098 * Platforms like Starcat and OPL need special structures assigned in 1099 * 32-bit virtual address space because their probing routines execute 1100 * FCode, and FCode can't handle 64-bit virtual addresses... 1101 */ 1102 if (&plat_startup_memlist) { 1103 alloc_base = plat_startup_memlist(alloc_base); 1104 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 1105 ecache_alignsize); 1106 PRM_DEBUG(alloc_base); 1107 } 1108 1109 /* 1110 * Save off where the contiguous allocations to date have ended 1111 * in econtig32. 1112 */ 1113 econtig32 = alloc_base; 1114 PRM_DEBUG(econtig32); 1115 if (econtig32 > (caddr_t)KERNEL_LIMIT32) 1116 cmn_err(CE_PANIC, "econtig32 too big"); 1117 1118 pp_sz = calc_pp_sz(npages); 1119 PRM_DEBUG(pp_sz); 1120 if (kpm_enable) { 1121 kpm_pp_sz = calc_kpmpp_sz(npages); 1122 PRM_DEBUG(kpm_pp_sz); 1123 } 1124 1125 hmehash_sz = calc_hmehash_sz(npages); 1126 PRM_DEBUG(hmehash_sz); 1127 1128 pagehash_sz = calc_pagehash_sz(npages); 1129 PRM_DEBUG(pagehash_sz); 1130 1131 pagelist_sz = calc_free_pagelist_sz(); 1132 PRM_DEBUG(pagelist_sz); 1133 1134 #ifdef TRAPTRACE 1135 tt_sz = calc_traptrace_sz(); 1136 PRM_DEBUG(tt_sz); 1137 #else 1138 tt_sz = 0; 1139 #endif /* TRAPTRACE */ 1140 1141 /* 1142 * Place the array that protects pp->p_selock in the kmem64 wad. 1143 */ 1144 pse_shift = size_pse_array(npages, max_ncpus); 1145 PRM_DEBUG(pse_shift); 1146 pse_table_size = 1 << pse_shift; 1147 PRM_DEBUG(pse_table_size); 1148 psetable_sz = roundup( 1149 pse_table_size * sizeof (pad_mutex_t), ecache_alignsize); 1150 PRM_DEBUG(psetable_sz); 1151 1152 /* 1153 * Now allocate the whole wad 1154 */ 1155 kmem64_sz = pp_sz + kpm_pp_sz + hmehash_sz + pagehash_sz + 1156 pagelist_sz + tt_sz + psetable_sz; 1157 kmem64_sz = roundup(kmem64_sz, PAGESIZE); 1158 kmem64_base = (caddr_t)syslimit; 1159 kmem64_end = kmem64_base + kmem64_sz; 1160 if (alloc_kmem64(kmem64_base, kmem64_end)) { 1161 /* 1162 * Attempt for kmem64 to allocate one big 1163 * contiguous chunk of memory failed. 1164 * We get here because we are sun4v. 1165 * We will proceed by breaking up 1166 * the allocation into two attempts. 1167 * First, we allocate kpm_pp_sz, hmehash_sz, 1168 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz as 1169 * one contiguous chunk. This is a much smaller 1170 * chunk and we should get it, if not we panic. 1171 * Note that hmehash and tt need to be physically 1172 * (in the real address sense) contiguous. 1173 * Next, we use bop_alloc_chunk() to 1174 * to allocate the page_t structures. 1175 * This will allow the page_t to be allocated 1176 * in multiple smaller chunks. 1177 * In doing so, the assumption that page_t is 1178 * physically contiguous no longer hold, this is ok 1179 * for sun4v but not for sun4u. 1180 */ 1181 size_t tmp_size; 1182 caddr_t tmp_base; 1183 1184 pp_sz = roundup(pp_sz, PAGESIZE); 1185 1186 /* 1187 * Allocate kpm_pp_sz, hmehash_sz, 1188 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz 1189 */ 1190 tmp_base = kmem64_base + pp_sz; 1191 tmp_size = roundup(kpm_pp_sz + hmehash_sz + pagehash_sz + 1192 pagelist_sz + tt_sz + psetable_sz, PAGESIZE); 1193 if (prom_alloc(tmp_base, tmp_size, PAGESIZE) == 0) 1194 prom_panic("kmem64 prom_alloc contig failed"); 1195 PRM_DEBUG(tmp_base); 1196 PRM_DEBUG(tmp_size); 1197 1198 /* 1199 * Allocate the page_ts 1200 */ 1201 if (bop_alloc_chunk(kmem64_base, pp_sz, PAGESIZE) == 0) 1202 prom_panic("kmem64 bop_alloc_chunk page_t failed"); 1203 PRM_DEBUG(kmem64_base); 1204 PRM_DEBUG(pp_sz); 1205 1206 kmem64_aligned_end = kmem64_base + pp_sz + tmp_size; 1207 ASSERT(kmem64_aligned_end >= kmem64_end); 1208 1209 kmem64_smchunks = 1; 1210 } else { 1211 1212 /* 1213 * We need to adjust pp_sz for the normal 1214 * case where kmem64 can allocate one large chunk 1215 */ 1216 if (kpm_smallpages == 0) { 1217 npages -= kmem64_sz / (PAGESIZE + sizeof (struct page)); 1218 } else { 1219 npages -= kmem64_sz / (PAGESIZE + sizeof (struct page) + 1220 sizeof (kpm_spage_t)); 1221 } 1222 pp_sz = npages * sizeof (struct page); 1223 } 1224 1225 if (kmem64_aligned_end > (hole_start ? hole_start : kpm_vbase)) 1226 cmn_err(CE_PANIC, "not enough kmem64 space"); 1227 PRM_DEBUG(kmem64_base); 1228 PRM_DEBUG(kmem64_end); 1229 PRM_DEBUG(kmem64_aligned_end); 1230 1231 /* 1232 * ... and divy it up 1233 */ 1234 alloc_base = kmem64_base; 1235 1236 pp_base = (page_t *)alloc_base; 1237 alloc_base += pp_sz; 1238 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1239 PRM_DEBUG(pp_base); 1240 PRM_DEBUG(npages); 1241 1242 if (kpm_enable) { 1243 kpm_pp_base = alloc_base; 1244 if (kpm_smallpages == 0) { 1245 /* kpm_npages based on physinstalled, don't reset */ 1246 kpm_pp_sz = kpm_npages * sizeof (kpm_page_t); 1247 } else { 1248 kpm_npages = ptokpmpr(npages); 1249 kpm_pp_sz = kpm_npages * sizeof (kpm_spage_t); 1250 } 1251 alloc_base += kpm_pp_sz; 1252 alloc_base = 1253 (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1254 PRM_DEBUG(kpm_pp_base); 1255 } 1256 1257 alloc_base = alloc_hmehash(alloc_base); 1258 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1259 PRM_DEBUG(alloc_base); 1260 1261 page_hash = (page_t **)alloc_base; 1262 alloc_base += pagehash_sz; 1263 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1264 PRM_DEBUG(page_hash); 1265 1266 alloc_base = alloc_page_freelists(alloc_base); 1267 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1268 PRM_DEBUG(alloc_base); 1269 1270 #ifdef TRAPTRACE 1271 ttrace_buf = alloc_base; 1272 alloc_base += tt_sz; 1273 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1274 PRM_DEBUG(alloc_base); 1275 #endif /* TRAPTRACE */ 1276 1277 pse_mutex = (pad_mutex_t *)alloc_base; 1278 alloc_base += psetable_sz; 1279 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1280 PRM_DEBUG(alloc_base); 1281 1282 /* 1283 * Note that if we use small chunk allocations for 1284 * kmem64, we need to ensure kmem64_end is the same as 1285 * kmem64_aligned_end to prevent subsequent logic from 1286 * trying to reuse the overmapping. 1287 * Otherwise we adjust kmem64_end to what we really allocated. 1288 */ 1289 if (kmem64_smchunks) { 1290 kmem64_end = kmem64_aligned_end; 1291 } else { 1292 kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base, PAGESIZE); 1293 } 1294 kmem64_sz = kmem64_end - kmem64_base; 1295 1296 if (&ecache_init_scrub_flush_area) { 1297 alloc_base = ecache_init_scrub_flush_area(kmem64_aligned_end); 1298 ASSERT(alloc_base <= (hole_start ? hole_start : kpm_vbase)); 1299 } 1300 1301 /* 1302 * If physmem is patched to be non-zero, use it instead of 1303 * the monitor value unless physmem is larger than the total 1304 * amount of memory on hand. 1305 */ 1306 if (physmem == 0 || physmem > npages) 1307 physmem = npages; 1308 1309 /* 1310 * root_is_ramdisk is set via /etc/system when the ramdisk miniroot 1311 * is mounted as root. This memory is held down by OBP and unlike 1312 * the stub boot_archive is never released. 1313 * 1314 * In order to get things sized correctly on lower memory 1315 * machines (where the memory used by the ramdisk represents 1316 * a significant portion of memory), physmem is adjusted. 1317 * 1318 * This is done by subtracting the ramdisk_size which is set 1319 * to the size of the ramdisk (in Kb) in /etc/system at the 1320 * time the miniroot archive is constructed. 1321 */ 1322 if (root_is_ramdisk == B_TRUE) { 1323 ramdisk_npages = (ramdisk_size * 1024) / PAGESIZE; 1324 physmem -= ramdisk_npages; 1325 } 1326 1327 if (kpm_enable && (ndata_alloc_kpm(&ndata, kpm_npages) != 0)) 1328 cmn_err(CE_PANIC, "no more nucleus memory after kpm alloc"); 1329 1330 /* 1331 * Allocate space for the interrupt vector table. 1332 */ 1333 memspace = prom_alloc((caddr_t)intr_vec_table, IVSIZE, MMU_PAGESIZE); 1334 if (memspace != (caddr_t)intr_vec_table) 1335 prom_panic("interrupt vector table allocation failure"); 1336 1337 /* 1338 * Between now and when we finish copying in the memory lists, 1339 * allocations happen so the space gets fragmented and the 1340 * lists longer. Leave enough space for lists twice as 1341 * long as we have now; then roundup to a pagesize. 1342 */ 1343 memlist_sz = sizeof (struct memlist) * (prom_phys_installed_len() + 1344 prom_phys_avail_len() + prom_virt_avail_len()); 1345 memlist_sz *= 2; 1346 memlist_sz = roundup(memlist_sz, PAGESIZE); 1347 memspace = ndata_alloc(&ndata, memlist_sz, ecache_alignsize); 1348 if (memspace == NULL) 1349 cmn_err(CE_PANIC, "no more nucleus memory after memlist alloc"); 1350 1351 memlist = (struct memlist *)memspace; 1352 memlist_end = (char *)memspace + memlist_sz; 1353 PRM_DEBUG(memlist); 1354 PRM_DEBUG(memlist_end); 1355 1356 PRM_DEBUG(sysbase); 1357 PRM_DEBUG(syslimit); 1358 kernelheap_init((void *)sysbase, (void *)syslimit, 1359 (caddr_t)sysbase + PAGESIZE, NULL, NULL); 1360 1361 /* 1362 * Take the most current snapshot we can by calling mem-update. 1363 */ 1364 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1365 &boot_physavail, &boot_physavail_len, 1366 &boot_virtavail, &boot_virtavail_len); 1367 1368 /* 1369 * Remove the space used by prom_alloc from the kernel heap 1370 * plus the area actually used by the OBP (if any) 1371 * ignoring virtual addresses in virt_avail, above syslimit. 1372 */ 1373 virt_avail = memlist; 1374 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist); 1375 1376 for (cur = virt_avail; cur->next; cur = cur->next) { 1377 uint64_t range_base, range_size; 1378 1379 if ((range_base = cur->address + cur->size) < (uint64_t)sysbase) 1380 continue; 1381 if (range_base >= (uint64_t)syslimit) 1382 break; 1383 /* 1384 * Limit the range to end at syslimit. 1385 */ 1386 range_size = MIN(cur->next->address, 1387 (uint64_t)syslimit) - range_base; 1388 (void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE, 1389 0, 0, (void *)range_base, (void *)(range_base + range_size), 1390 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1391 } 1392 1393 phys_avail = memlist; 1394 copy_memlist(boot_physavail, boot_physavail_len, &memlist); 1395 1396 /* 1397 * Add any extra memory at the end of the ndata region if there's at 1398 * least a page to add. There might be a few more pages available in 1399 * the middle of the ndata region, but for now they are ignored. 1400 */ 1401 nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE, nalloc_end); 1402 if (nalloc_base == NULL) 1403 nalloc_base = nalloc_end; 1404 ndata_remain_sz = nalloc_end - nalloc_base; 1405 1406 /* 1407 * Copy physinstalled list into kernel space. 1408 */ 1409 phys_install = memlist; 1410 copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist); 1411 1412 /* 1413 * Create list of physical addrs we don't need pp's for: 1414 * kernel text 4M page 1415 * kernel data 4M page - ndata_remain_sz 1416 * kmem64 pages 1417 * 1418 * NB if adding any pages here, make sure no kpm page 1419 * overlaps can occur (see ASSERTs in kphysm_memsegs) 1420 */ 1421 nopp_list = memlist; 1422 memlist_new(va_to_pa(s_text), MMU_PAGESIZE4M, &memlist); 1423 memlist_add(va_to_pa(s_data), MMU_PAGESIZE4M - ndata_remain_sz, 1424 &memlist, &nopp_list); 1425 1426 /* Don't add to nopp_list if kmem64 was allocated in smchunks */ 1427 if (!kmem64_smchunks) 1428 memlist_add(kmem64_pabase, kmem64_sz, &memlist, &nopp_list); 1429 1430 if ((caddr_t)memlist > (memspace + memlist_sz)) 1431 prom_panic("memlist overflow"); 1432 1433 /* 1434 * Size the pcf array based on the number of cpus in the box at 1435 * boot time. 1436 */ 1437 pcf_init(); 1438 1439 /* 1440 * Initialize the page structures from the memory lists. 1441 */ 1442 kphysm_init(); 1443 1444 availrmem_initial = availrmem = freemem; 1445 PRM_DEBUG(availrmem); 1446 1447 /* 1448 * Some of the locks depend on page_hashsz being set! 1449 * kmem_init() depends on this; so, keep it here. 1450 */ 1451 page_lock_init(); 1452 1453 /* 1454 * Initialize kernel memory allocator. 1455 */ 1456 kmem_init(); 1457 1458 /* 1459 * Factor in colorequiv to check additional 'equivalent' bins 1460 */ 1461 if (&page_set_colorequiv_arr_cpu != NULL) 1462 page_set_colorequiv_arr_cpu(); 1463 else 1464 page_set_colorequiv_arr(); 1465 1466 /* 1467 * Initialize bp_mapin(). 1468 */ 1469 bp_init(shm_alignment, HAT_STRICTORDER); 1470 1471 /* 1472 * Reserve space for MPO mblock structs from the 32-bit heap. 1473 */ 1474 1475 if (mpo_heap32_bufsz > (size_t)0) { 1476 (void) vmem_xalloc(heap32_arena, mpo_heap32_bufsz, 1477 PAGESIZE, 0, 0, mpo_heap32_buf, 1478 mpo_heap32_buf + mpo_heap32_bufsz, 1479 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1480 } 1481 mem_config_init(); 1482 } 1483 1484 static void 1485 startup_modules(void) 1486 { 1487 int nhblk1, nhblk8; 1488 size_t nhblksz; 1489 pgcnt_t pages_per_hblk; 1490 size_t hme8blk_sz, hme1blk_sz; 1491 1492 /* 1493 * Let the platforms have a chance to change default 1494 * values before reading system file. 1495 */ 1496 if (&set_platform_defaults) 1497 set_platform_defaults(); 1498 1499 /* 1500 * Calculate default settings of system parameters based upon 1501 * maxusers, yet allow to be overridden via the /etc/system file. 1502 */ 1503 param_calc(0); 1504 1505 mod_setup(); 1506 1507 /* 1508 * If this is a positron, complain and halt. 1509 */ 1510 if (&iam_positron && iam_positron()) { 1511 cmn_err(CE_WARN, "This hardware platform is not supported" 1512 " by this release of Solaris.\n"); 1513 #ifdef DEBUG 1514 prom_enter_mon(); /* Type 'go' to resume */ 1515 cmn_err(CE_WARN, "Booting an unsupported platform.\n"); 1516 cmn_err(CE_WARN, "Booting with down-rev firmware.\n"); 1517 1518 #else /* DEBUG */ 1519 halt(0); 1520 #endif /* DEBUG */ 1521 } 1522 1523 /* 1524 * If we are running firmware that isn't 64-bit ready 1525 * then complain and halt. 1526 */ 1527 do_prom_version_check(); 1528 1529 /* 1530 * Initialize system parameters 1531 */ 1532 param_init(); 1533 1534 /* 1535 * maxmem is the amount of physical memory we're playing with. 1536 */ 1537 maxmem = physmem; 1538 1539 /* Set segkp limits. */ 1540 ncbase = kdi_segdebugbase; 1541 ncend = kdi_segdebugbase; 1542 1543 /* 1544 * Initialize the hat layer. 1545 */ 1546 hat_init(); 1547 1548 /* 1549 * Initialize segment management stuff. 1550 */ 1551 seg_init(); 1552 1553 /* 1554 * Create the va>tte handler, so the prom can understand 1555 * kernel translations. The handler is installed later, just 1556 * as we are about to take over the trap table from the prom. 1557 */ 1558 create_va_to_tte(); 1559 1560 /* 1561 * Load the forthdebugger (optional) 1562 */ 1563 forthdebug_init(); 1564 1565 /* 1566 * Create OBP node for console input callbacks 1567 * if it is needed. 1568 */ 1569 startup_create_io_node(); 1570 1571 if (modloadonly("fs", "specfs") == -1) 1572 halt("Can't load specfs"); 1573 1574 if (modloadonly("fs", "devfs") == -1) 1575 halt("Can't load devfs"); 1576 1577 if (modloadonly("fs", "procfs") == -1) 1578 halt("Can't load procfs"); 1579 1580 if (modloadonly("misc", "swapgeneric") == -1) 1581 halt("Can't load swapgeneric"); 1582 1583 (void) modloadonly("sys", "lbl_edition"); 1584 1585 dispinit(); 1586 1587 /* 1588 * Infer meanings to the members of the idprom buffer. 1589 */ 1590 parse_idprom(); 1591 1592 /* Read cluster configuration data. */ 1593 clconf_init(); 1594 1595 setup_ddi(); 1596 1597 /* 1598 * Lets take this opportunity to load the root device. 1599 */ 1600 if (loadrootmodules() != 0) 1601 debug_enter("Can't load the root filesystem"); 1602 1603 /* 1604 * Load tod driver module for the tod part found on this system. 1605 * Recompute the cpu frequency/delays based on tod as tod part 1606 * tends to keep time more accurately. 1607 */ 1608 if (&load_tod_module) 1609 load_tod_module(); 1610 1611 /* 1612 * Allow platforms to load modules which might 1613 * be needed after bootops are gone. 1614 */ 1615 if (&load_platform_modules) 1616 load_platform_modules(); 1617 1618 setcpudelay(); 1619 1620 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1621 &boot_physavail, &boot_physavail_len, 1622 &boot_virtavail, &boot_virtavail_len); 1623 1624 /* 1625 * Calculation and allocation of hmeblks needed to remap 1626 * the memory allocated by PROM till now. 1627 * Overestimate the number of hblk1 elements by assuming 1628 * worst case of TTE64K mappings. 1629 * sfmmu_hblk_alloc will panic if this calculation is wrong. 1630 */ 1631 bop_alloc_pages = btopr(kmem64_end - kmem64_base); 1632 pages_per_hblk = btop(HMEBLK_SPAN(TTE64K)); 1633 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk); 1634 nhblk1 = bop_alloc_pages / pages_per_hblk + hblk1_min; 1635 1636 bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len); 1637 1638 /* sfmmu_init_nucleus_hblks expects properly aligned data structures */ 1639 hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t)); 1640 hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t)); 1641 1642 bop_alloc_pages += btopr(nhblk1 * hme1blk_sz); 1643 1644 pages_per_hblk = btop(HMEBLK_SPAN(TTE8K)); 1645 nhblk8 = 0; 1646 while (bop_alloc_pages > 1) { 1647 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk); 1648 nhblk8 += bop_alloc_pages /= pages_per_hblk; 1649 bop_alloc_pages *= hme8blk_sz; 1650 bop_alloc_pages = btopr(bop_alloc_pages); 1651 } 1652 nhblk8 += 2; 1653 1654 /* 1655 * Since hblk8's can hold up to 64k of mappings aligned on a 64k 1656 * boundary, the number of hblk8's needed to map the entries in the 1657 * boot_virtavail list needs to be adjusted to take this into 1658 * consideration. Thus, we need to add additional hblk8's since it 1659 * is possible that an hblk8 will not have all 8 slots used due to 1660 * alignment constraints. Since there were boot_virtavail_len entries 1661 * in that list, we need to add that many hblk8's to the number 1662 * already calculated to make sure we don't underestimate. 1663 */ 1664 nhblk8 += boot_virtavail_len; 1665 nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz; 1666 1667 /* Allocate in pagesize chunks */ 1668 nhblksz = roundup(nhblksz, MMU_PAGESIZE); 1669 hblk_base = kmem_zalloc(nhblksz, KM_SLEEP); 1670 sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1); 1671 } 1672 1673 static void 1674 startup_bop_gone(void) 1675 { 1676 1677 /* 1678 * Destroy the MD initialized at startup 1679 * The startup initializes the MD framework 1680 * using prom and BOP alloc free it now. 1681 */ 1682 mach_descrip_startup_fini(); 1683 1684 /* 1685 * We're done with prom allocations. 1686 */ 1687 bop_fini(); 1688 1689 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1690 &boot_physavail, &boot_physavail_len, 1691 &boot_virtavail, &boot_virtavail_len); 1692 1693 /* 1694 * setup physically contiguous area twice as large as the ecache. 1695 * this is used while doing displacement flush of ecaches 1696 */ 1697 if (&ecache_flush_address) { 1698 ecache_flushaddr = ecache_flush_address(); 1699 if (ecache_flushaddr == (uint64_t)-1) { 1700 cmn_err(CE_PANIC, 1701 "startup: no memory to set ecache_flushaddr"); 1702 } 1703 } 1704 1705 /* 1706 * Virtual available next. 1707 */ 1708 ASSERT(virt_avail != NULL); 1709 memlist_free_list(virt_avail); 1710 virt_avail = memlist; 1711 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist); 1712 1713 } 1714 1715 1716 /* 1717 * startup_fixup_physavail - called from mach_sfmmu.c after the final 1718 * allocations have been performed. We can't call it in startup_bop_gone 1719 * since later operations can cause obp to allocate more memory. 1720 */ 1721 void 1722 startup_fixup_physavail(void) 1723 { 1724 struct memlist *cur; 1725 size_t kmem64_overmap_size = kmem64_aligned_end - kmem64_end; 1726 1727 PRM_DEBUG(kmem64_overmap_size); 1728 1729 /* 1730 * take the most current snapshot we can by calling mem-update 1731 */ 1732 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1733 &boot_physavail, &boot_physavail_len, 1734 &boot_virtavail, &boot_virtavail_len); 1735 1736 /* 1737 * Copy phys_avail list, again. 1738 * Both the kernel/boot and the prom have been allocating 1739 * from the original list we copied earlier. 1740 */ 1741 cur = memlist; 1742 copy_memlist(boot_physavail, boot_physavail_len, &memlist); 1743 1744 /* 1745 * Add any unused kmem64 memory from overmapped page 1746 * (Note: va_to_pa does not work for kmem64_end) 1747 */ 1748 if (kmem64_overmap_size) { 1749 memlist_add(kmem64_pabase + (kmem64_end - kmem64_base), 1750 kmem64_overmap_size, &memlist, &cur); 1751 } 1752 1753 /* 1754 * Add any extra memory after e_data we added to the phys_avail list 1755 * back to the old list. 1756 */ 1757 if (ndata_remain_sz >= MMU_PAGESIZE) 1758 memlist_add(va_to_pa(nalloc_base), 1759 (uint64_t)ndata_remain_sz, &memlist, &cur); 1760 1761 /* 1762 * There isn't any bounds checking on the memlist area 1763 * so ensure it hasn't overgrown. 1764 */ 1765 if ((caddr_t)memlist > (caddr_t)memlist_end) 1766 cmn_err(CE_PANIC, "startup: memlist size exceeded"); 1767 1768 /* 1769 * The kernel removes the pages that were allocated for it from 1770 * the freelist, but we now have to find any -extra- pages that 1771 * the prom has allocated for it's own book-keeping, and remove 1772 * them from the freelist too. sigh. 1773 */ 1774 sync_memlists(phys_avail, cur); 1775 1776 ASSERT(phys_avail != NULL); 1777 1778 old_phys_avail = phys_avail; 1779 phys_avail = cur; 1780 } 1781 1782 void 1783 update_kcage_ranges(uint64_t addr, uint64_t len) 1784 { 1785 pfn_t base = btop(addr); 1786 pgcnt_t num = btop(len); 1787 int rv; 1788 1789 rv = kcage_range_add(base, num, kcage_startup_dir); 1790 1791 if (rv == ENOMEM) { 1792 cmn_err(CE_WARN, "%ld megabytes not available to kernel cage", 1793 (len == 0 ? 0 : BYTES_TO_MB(len))); 1794 } else if (rv != 0) { 1795 /* catch this in debug kernels */ 1796 ASSERT(0); 1797 1798 cmn_err(CE_WARN, "unexpected kcage_range_add" 1799 " return value %d", rv); 1800 } 1801 } 1802 1803 static void 1804 startup_vm(void) 1805 { 1806 size_t i; 1807 struct segmap_crargs a; 1808 struct segkpm_crargs b; 1809 1810 uint64_t avmem; 1811 caddr_t va; 1812 pgcnt_t max_phys_segkp; 1813 int mnode; 1814 1815 extern int use_brk_lpg, use_stk_lpg; 1816 1817 /* 1818 * get prom's mappings, create hments for them and switch 1819 * to the kernel context. 1820 */ 1821 hat_kern_setup(); 1822 1823 /* 1824 * Take over trap table 1825 */ 1826 setup_trap_table(); 1827 1828 /* 1829 * Install the va>tte handler, so that the prom can handle 1830 * misses and understand the kernel table layout in case 1831 * we need call into the prom. 1832 */ 1833 install_va_to_tte(); 1834 1835 /* 1836 * Set a flag to indicate that the tba has been taken over. 1837 */ 1838 tba_taken_over = 1; 1839 1840 /* initialize MMU primary context register */ 1841 mmu_init_kcontext(); 1842 1843 /* 1844 * The boot cpu can now take interrupts, x-calls, x-traps 1845 */ 1846 CPUSET_ADD(cpu_ready_set, CPU->cpu_id); 1847 CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS); 1848 1849 /* 1850 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR. 1851 */ 1852 tbr_wr_addr_inited = 1; 1853 1854 /* 1855 * Initialize VM system, and map kernel address space. 1856 */ 1857 kvm_init(); 1858 1859 ASSERT(old_phys_avail != NULL && phys_avail != NULL); 1860 if (kernel_cage_enable) { 1861 diff_memlists(phys_avail, old_phys_avail, update_kcage_ranges); 1862 } 1863 memlist_free_list(old_phys_avail); 1864 1865 /* 1866 * If the following is true, someone has patched 1867 * phsymem to be less than the number of pages that 1868 * the system actually has. Remove pages until system 1869 * memory is limited to the requested amount. Since we 1870 * have allocated page structures for all pages, we 1871 * correct the amount of memory we want to remove 1872 * by the size of the memory used to hold page structures 1873 * for the non-used pages. 1874 */ 1875 if (physmem + ramdisk_npages < npages) { 1876 pgcnt_t diff, off; 1877 struct page *pp; 1878 struct seg kseg; 1879 1880 cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem); 1881 1882 off = 0; 1883 diff = npages - (physmem + ramdisk_npages); 1884 diff -= mmu_btopr(diff * sizeof (struct page)); 1885 kseg.s_as = &kas; 1886 while (diff--) { 1887 pp = page_create_va(&unused_pages_vp, (offset_t)off, 1888 MMU_PAGESIZE, PG_WAIT | PG_EXCL, 1889 &kseg, (caddr_t)off); 1890 if (pp == NULL) 1891 cmn_err(CE_PANIC, "limited physmem too much!"); 1892 page_io_unlock(pp); 1893 page_downgrade(pp); 1894 availrmem--; 1895 off += MMU_PAGESIZE; 1896 } 1897 } 1898 1899 /* 1900 * When printing memory, show the total as physmem less 1901 * that stolen by a debugger. 1902 */ 1903 cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n", 1904 (ulong_t)(physinstalled) << (PAGESHIFT - 10), 1905 (ulong_t)(physinstalled) << (PAGESHIFT - 12)); 1906 1907 avmem = (uint64_t)freemem << PAGESHIFT; 1908 cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem); 1909 1910 /* 1911 * For small memory systems disable automatic large pages. 1912 */ 1913 if (physmem < privm_lpg_min_physmem) { 1914 use_brk_lpg = 0; 1915 use_stk_lpg = 0; 1916 } 1917 1918 /* 1919 * Perform platform specific freelist processing 1920 */ 1921 if (&plat_freelist_process) { 1922 for (mnode = 0; mnode < max_mem_nodes; mnode++) 1923 if (mem_node_config[mnode].exists) 1924 plat_freelist_process(mnode); 1925 } 1926 1927 /* 1928 * Initialize the segkp segment type. We position it 1929 * after the configured tables and buffers (whose end 1930 * is given by econtig) and before V_WKBASE_ADDR. 1931 * Also in this area is segkmap (size SEGMAPSIZE). 1932 */ 1933 1934 /* XXX - cache alignment? */ 1935 va = (caddr_t)SEGKPBASE; 1936 ASSERT(((uintptr_t)va & PAGEOFFSET) == 0); 1937 1938 max_phys_segkp = (physmem * 2); 1939 1940 if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) { 1941 segkpsize = btop(SEGKPDEFSIZE); 1942 cmn_err(CE_WARN, "Illegal value for segkpsize. " 1943 "segkpsize has been reset to %ld pages", segkpsize); 1944 } 1945 1946 i = ptob(MIN(segkpsize, max_phys_segkp)); 1947 1948 rw_enter(&kas.a_lock, RW_WRITER); 1949 if (seg_attach(&kas, va, i, segkp) < 0) 1950 cmn_err(CE_PANIC, "startup: cannot attach segkp"); 1951 if (segkp_create(segkp) != 0) 1952 cmn_err(CE_PANIC, "startup: segkp_create failed"); 1953 rw_exit(&kas.a_lock); 1954 1955 /* 1956 * kpm segment 1957 */ 1958 segmap_kpm = kpm_enable && 1959 segmap_kpm && PAGESIZE == MAXBSIZE; 1960 1961 if (kpm_enable) { 1962 rw_enter(&kas.a_lock, RW_WRITER); 1963 1964 /* 1965 * The segkpm virtual range range is larger than the 1966 * actual physical memory size and also covers gaps in 1967 * the physical address range for the following reasons: 1968 * . keep conversion between segkpm and physical addresses 1969 * simple, cheap and unambiguous. 1970 * . avoid extension/shrink of the the segkpm in case of DR. 1971 * . avoid complexity for handling of virtual addressed 1972 * caches, segkpm and the regular mapping scheme must be 1973 * kept in sync wrt. the virtual color of mapped pages. 1974 * Any accesses to virtual segkpm ranges not backed by 1975 * physical memory will fall through the memseg pfn hash 1976 * and will be handled in segkpm_fault. 1977 * Additional kpm_size spaces needed for vac alias prevention. 1978 */ 1979 if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors, 1980 segkpm) < 0) 1981 cmn_err(CE_PANIC, "cannot attach segkpm"); 1982 1983 b.prot = PROT_READ | PROT_WRITE; 1984 b.nvcolors = shm_alignment >> MMU_PAGESHIFT; 1985 1986 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 1987 panic("segkpm_create segkpm"); 1988 1989 rw_exit(&kas.a_lock); 1990 1991 mach_kpm_init(); 1992 } 1993 1994 va = kpm_vbase + (kpm_size * vac_colors); 1995 1996 if (!segzio_fromheap) { 1997 size_t size; 1998 size_t physmem_b = mmu_ptob(physmem); 1999 2000 /* size is in bytes, segziosize is in pages */ 2001 if (segziosize == 0) { 2002 size = physmem_b; 2003 } else { 2004 size = mmu_ptob(segziosize); 2005 } 2006 2007 if (size < SEGZIOMINSIZE) { 2008 size = SEGZIOMINSIZE; 2009 } else if (size > SEGZIOMAXSIZE) { 2010 size = SEGZIOMAXSIZE; 2011 /* 2012 * On 64-bit x86, we only have 2TB of KVA. This exists 2013 * for parity with x86. 2014 * 2015 * SEGZIOMAXSIZE is capped at 512gb so that segzio 2016 * doesn't consume all of KVA. However, if we have a 2017 * system that has more thant 512gb of physical memory, 2018 * we can actually consume about half of the difference 2019 * between 512gb and the rest of the available physical 2020 * memory. 2021 */ 2022 if (physmem_b > SEGZIOMAXSIZE) { 2023 size += (physmem_b - SEGZIOMAXSIZE) / 2; 2024 } 2025 } 2026 segziosize = mmu_btop(roundup(size, MMU_PAGESIZE)); 2027 /* put the base of the ZIO segment after the kpm segment */ 2028 segzio_base = va; 2029 va += mmu_ptob(segziosize); 2030 PRM_DEBUG(segziosize); 2031 PRM_DEBUG(segzio_base); 2032 2033 /* 2034 * On some platforms, kvm_init is called after the kpm 2035 * sizes have been determined. On SPARC, kvm_init is called 2036 * before, so we have to attach the kzioseg after kvm is 2037 * initialized, otherwise we'll try to allocate from the boot 2038 * area since the kernel heap hasn't yet been configured. 2039 */ 2040 rw_enter(&kas.a_lock, RW_WRITER); 2041 2042 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2043 &kzioseg); 2044 (void) segkmem_zio_create(&kzioseg); 2045 2046 /* create zio area covering new segment */ 2047 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2048 2049 rw_exit(&kas.a_lock); 2050 } 2051 2052 if (ppvm_enable) { 2053 caddr_t ppvm_max; 2054 2055 /* 2056 * ppvm refers to the static VA space used to map 2057 * the page_t's for dynamically added memory. 2058 * 2059 * ppvm_base should not cross a potential VA hole. 2060 * 2061 * ppvm_size should be large enough to map the 2062 * page_t's needed to manage all of KPM range. 2063 */ 2064 ppvm_size = 2065 roundup(mmu_btop(kpm_size * vac_colors) * sizeof (page_t), 2066 MMU_PAGESIZE); 2067 ppvm_max = (caddr_t)(0ull - ppvm_size); 2068 ppvm_base = (page_t *)va; 2069 2070 if ((caddr_t)ppvm_base <= hole_end) { 2071 cmn_err(CE_WARN, 2072 "Memory DR disabled: invalid DR map base: 0x%p\n", 2073 (void *)ppvm_base); 2074 ppvm_enable = 0; 2075 } else if ((caddr_t)ppvm_base > ppvm_max) { 2076 uint64_t diff = (caddr_t)ppvm_base - ppvm_max; 2077 2078 cmn_err(CE_WARN, 2079 "Memory DR disabled: insufficient DR map size:" 2080 " 0x%lx (needed 0x%lx)\n", 2081 ppvm_size - diff, ppvm_size); 2082 ppvm_enable = 0; 2083 } 2084 PRM_DEBUG(ppvm_size); 2085 PRM_DEBUG(ppvm_base); 2086 } 2087 2088 /* 2089 * Now create generic mapping segment. This mapping 2090 * goes SEGMAPSIZE beyond SEGMAPBASE. But if the total 2091 * virtual address is greater than the amount of free 2092 * memory that is available, then we trim back the 2093 * segment size to that amount 2094 */ 2095 va = (caddr_t)SEGMAPBASE; 2096 2097 /* 2098 * 1201049: segkmap base address must be MAXBSIZE aligned 2099 */ 2100 ASSERT(((uintptr_t)va & MAXBOFFSET) == 0); 2101 2102 /* 2103 * Set size of segmap to percentage of freemem at boot, 2104 * but stay within the allowable range 2105 * Note we take percentage before converting from pages 2106 * to bytes to avoid an overflow on 32-bit kernels. 2107 */ 2108 i = mmu_ptob((freemem * segmap_percent) / 100); 2109 2110 if (i < MINMAPSIZE) 2111 i = MINMAPSIZE; 2112 2113 if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem))) 2114 i = MIN(SEGMAPSIZE, mmu_ptob(freemem)); 2115 2116 i &= MAXBMASK; /* 1201049: segkmap size must be MAXBSIZE aligned */ 2117 2118 rw_enter(&kas.a_lock, RW_WRITER); 2119 if (seg_attach(&kas, va, i, segkmap) < 0) 2120 cmn_err(CE_PANIC, "cannot attach segkmap"); 2121 2122 a.prot = PROT_READ | PROT_WRITE; 2123 a.shmsize = shm_alignment; 2124 a.nfreelist = 0; /* use segmap driver defaults */ 2125 2126 if (segmap_create(segkmap, (caddr_t)&a) != 0) 2127 panic("segmap_create segkmap"); 2128 rw_exit(&kas.a_lock); 2129 2130 segdev_init(); 2131 } 2132 2133 static void 2134 startup_end(void) 2135 { 2136 if ((caddr_t)memlist > (caddr_t)memlist_end) 2137 panic("memlist overflow 2"); 2138 memlist_free_block((caddr_t)memlist, 2139 ((caddr_t)memlist_end - (caddr_t)memlist)); 2140 memlist = NULL; 2141 2142 /* enable page_relocation since OBP is now done */ 2143 page_relocate_ready = 1; 2144 2145 /* 2146 * Perform tasks that get done after most of the VM 2147 * initialization has been done but before the clock 2148 * and other devices get started. 2149 */ 2150 kern_setup1(); 2151 2152 /* 2153 * Perform CPC initialization for this CPU. 2154 */ 2155 kcpc_hw_init(); 2156 2157 /* 2158 * Intialize the VM arenas for allocating physically 2159 * contiguus memory chunk for interrupt queues snd 2160 * allocate/register boot cpu's queues, if any and 2161 * allocate dump buffer for sun4v systems to store 2162 * extra crash information during crash dump 2163 */ 2164 contig_mem_init(); 2165 mach_descrip_init(); 2166 2167 if (cpu_intrq_setup(CPU)) { 2168 cmn_err(CE_PANIC, "cpu%d: setup failed", CPU->cpu_id); 2169 } 2170 cpu_intrq_register(CPU); 2171 mach_htraptrace_setup(CPU->cpu_id); 2172 mach_htraptrace_configure(CPU->cpu_id); 2173 mach_dump_buffer_init(); 2174 2175 /* 2176 * Initialize interrupt related stuff 2177 */ 2178 cpu_intr_alloc(CPU, NINTR_THREADS); 2179 2180 (void) splzs(); /* allow hi clock ints but not zs */ 2181 2182 /* 2183 * Initialize errors. 2184 */ 2185 error_init(); 2186 2187 /* 2188 * Note that we may have already used kernel bcopy before this 2189 * point - but if you really care about this, adb the use_hw_* 2190 * variables to 0 before rebooting. 2191 */ 2192 mach_hw_copy_limit(); 2193 2194 /* 2195 * Install the "real" preemption guards before DDI services 2196 * are available. 2197 */ 2198 (void) prom_set_preprom(kern_preprom); 2199 (void) prom_set_postprom(kern_postprom); 2200 CPU->cpu_m.mutex_ready = 1; 2201 2202 /* 2203 * Initialize segnf (kernel support for non-faulting loads). 2204 */ 2205 segnf_init(); 2206 2207 /* 2208 * Configure the root devinfo node. 2209 */ 2210 configure(); /* set up devices */ 2211 mach_cpu_halt_idle(); 2212 } 2213 2214 2215 void 2216 post_startup(void) 2217 { 2218 #ifdef PTL1_PANIC_DEBUG 2219 extern void init_ptl1_thread(void); 2220 #endif /* PTL1_PANIC_DEBUG */ 2221 extern void abort_sequence_init(void); 2222 2223 /* 2224 * Set the system wide, processor-specific flags to be passed 2225 * to userland via the aux vector for performance hints and 2226 * instruction set extensions. 2227 */ 2228 bind_hwcap(); 2229 2230 /* 2231 * Startup memory scrubber (if any) 2232 */ 2233 mach_memscrub(); 2234 2235 /* 2236 * Allocate soft interrupt to handle abort sequence. 2237 */ 2238 abort_sequence_init(); 2239 2240 /* 2241 * Configure the rest of the system. 2242 * Perform forceloading tasks for /etc/system. 2243 */ 2244 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2245 /* 2246 * ON4.0: Force /proc module in until clock interrupt handle fixed 2247 * ON4.0: This must be fixed or restated in /etc/systems. 2248 */ 2249 (void) modload("fs", "procfs"); 2250 2251 /* load machine class specific drivers */ 2252 load_mach_drivers(); 2253 2254 /* load platform specific drivers */ 2255 if (&load_platform_drivers) 2256 load_platform_drivers(); 2257 2258 /* load vis simulation module, if we are running w/fpu off */ 2259 if (!fpu_exists) { 2260 if (modload("misc", "vis") == -1) 2261 halt("Can't load vis"); 2262 } 2263 2264 mach_fpras(); 2265 2266 maxmem = freemem; 2267 2268 pg_init(); 2269 2270 #ifdef PTL1_PANIC_DEBUG 2271 init_ptl1_thread(); 2272 #endif /* PTL1_PANIC_DEBUG */ 2273 } 2274 2275 #ifdef PTL1_PANIC_DEBUG 2276 int ptl1_panic_test = 0; 2277 int ptl1_panic_xc_one_test = 0; 2278 int ptl1_panic_xc_all_test = 0; 2279 int ptl1_panic_xt_one_test = 0; 2280 int ptl1_panic_xt_all_test = 0; 2281 kthread_id_t ptl1_thread_p = NULL; 2282 kcondvar_t ptl1_cv; 2283 kmutex_t ptl1_mutex; 2284 int ptl1_recurse_count_threshold = 0x40; 2285 int ptl1_recurse_trap_threshold = 0x3d; 2286 extern void ptl1_recurse(int, int); 2287 extern void ptl1_panic_xt(int, int); 2288 2289 /* 2290 * Called once per second by timeout() to wake up 2291 * the ptl1_panic thread to see if it should cause 2292 * a trap to the ptl1_panic() code. 2293 */ 2294 /* ARGSUSED */ 2295 static void 2296 ptl1_wakeup(void *arg) 2297 { 2298 mutex_enter(&ptl1_mutex); 2299 cv_signal(&ptl1_cv); 2300 mutex_exit(&ptl1_mutex); 2301 } 2302 2303 /* 2304 * ptl1_panic cross call function: 2305 * Needed because xc_one() and xc_some() can pass 2306 * 64 bit args but ptl1_recurse() expects ints. 2307 */ 2308 static void 2309 ptl1_panic_xc(void) 2310 { 2311 ptl1_recurse(ptl1_recurse_count_threshold, 2312 ptl1_recurse_trap_threshold); 2313 } 2314 2315 /* 2316 * The ptl1 thread waits for a global flag to be set 2317 * and uses the recurse thresholds to set the stack depth 2318 * to cause a ptl1_panic() directly via a call to ptl1_recurse 2319 * or indirectly via the cross call and cross trap functions. 2320 * 2321 * This is useful testing stack overflows and normal 2322 * ptl1_panic() states with a know stack frame. 2323 * 2324 * ptl1_recurse() is an asm function in ptl1_panic.s that 2325 * sets the {In, Local, Out, and Global} registers to a 2326 * know state on the stack and just prior to causing a 2327 * test ptl1_panic trap. 2328 */ 2329 static void 2330 ptl1_thread(void) 2331 { 2332 mutex_enter(&ptl1_mutex); 2333 while (ptl1_thread_p) { 2334 cpuset_t other_cpus; 2335 int cpu_id; 2336 int my_cpu_id; 2337 int target_cpu_id; 2338 int target_found; 2339 2340 if (ptl1_panic_test) { 2341 ptl1_recurse(ptl1_recurse_count_threshold, 2342 ptl1_recurse_trap_threshold); 2343 } 2344 2345 /* 2346 * Find potential targets for x-call and x-trap, 2347 * if any exist while preempt is disabled we 2348 * start a ptl1_panic if requested via a 2349 * globals. 2350 */ 2351 kpreempt_disable(); 2352 my_cpu_id = CPU->cpu_id; 2353 other_cpus = cpu_ready_set; 2354 CPUSET_DEL(other_cpus, CPU->cpu_id); 2355 target_found = 0; 2356 if (!CPUSET_ISNULL(other_cpus)) { 2357 /* 2358 * Pick the first one 2359 */ 2360 for (cpu_id = 0; cpu_id < NCPU; cpu_id++) { 2361 if (cpu_id == my_cpu_id) 2362 continue; 2363 2364 if (CPU_XCALL_READY(cpu_id)) { 2365 target_cpu_id = cpu_id; 2366 target_found = 1; 2367 break; 2368 } 2369 } 2370 ASSERT(target_found); 2371 2372 if (ptl1_panic_xc_one_test) { 2373 xc_one(target_cpu_id, 2374 (xcfunc_t *)ptl1_panic_xc, 0, 0); 2375 } 2376 if (ptl1_panic_xc_all_test) { 2377 xc_some(other_cpus, 2378 (xcfunc_t *)ptl1_panic_xc, 0, 0); 2379 } 2380 if (ptl1_panic_xt_one_test) { 2381 xt_one(target_cpu_id, 2382 (xcfunc_t *)ptl1_panic_xt, 0, 0); 2383 } 2384 if (ptl1_panic_xt_all_test) { 2385 xt_some(other_cpus, 2386 (xcfunc_t *)ptl1_panic_xt, 0, 0); 2387 } 2388 } 2389 kpreempt_enable(); 2390 (void) timeout(ptl1_wakeup, NULL, hz); 2391 (void) cv_wait(&ptl1_cv, &ptl1_mutex); 2392 } 2393 mutex_exit(&ptl1_mutex); 2394 } 2395 2396 /* 2397 * Called during early startup to create the ptl1_thread 2398 */ 2399 void 2400 init_ptl1_thread(void) 2401 { 2402 ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0, 2403 &p0, TS_RUN, 0); 2404 } 2405 #endif /* PTL1_PANIC_DEBUG */ 2406 2407 2408 static void 2409 memlist_new(uint64_t start, uint64_t len, struct memlist **memlistp) 2410 { 2411 struct memlist *new; 2412 2413 new = *memlistp; 2414 new->address = start; 2415 new->size = len; 2416 *memlistp = new + 1; 2417 } 2418 2419 /* 2420 * Add to a memory list. 2421 * start = start of new memory segment 2422 * len = length of new memory segment in bytes 2423 * memlistp = pointer to array of available memory segment structures 2424 * curmemlistp = memory list to which to add segment. 2425 */ 2426 static void 2427 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp, 2428 struct memlist **curmemlistp) 2429 { 2430 struct memlist *new = *memlistp; 2431 2432 memlist_new(start, len, memlistp); 2433 memlist_insert(new, curmemlistp); 2434 } 2435 2436 static int 2437 ndata_alloc_memseg(struct memlist *ndata, size_t avail) 2438 { 2439 int nseg; 2440 size_t memseg_sz; 2441 struct memseg *msp; 2442 2443 /* 2444 * The memseg list is for the chunks of physical memory that 2445 * will be managed by the vm system. The number calculated is 2446 * a guess as boot may fragment it more when memory allocations 2447 * are made before kphysm_init(). 2448 */ 2449 memseg_sz = (avail + 10) * sizeof (struct memseg); 2450 memseg_sz = roundup(memseg_sz, PAGESIZE); 2451 nseg = memseg_sz / sizeof (struct memseg); 2452 msp = ndata_alloc(ndata, memseg_sz, ecache_alignsize); 2453 if (msp == NULL) 2454 return (1); 2455 PRM_DEBUG(memseg_free); 2456 2457 while (nseg--) { 2458 msp->next = memseg_free; 2459 memseg_free = msp; 2460 msp++; 2461 } 2462 return (0); 2463 } 2464 2465 /* 2466 * In the case of architectures that support dynamic addition of 2467 * memory at run-time there are two cases where memsegs need to 2468 * be initialized and added to the memseg list. 2469 * 1) memsegs that are constructed at startup. 2470 * 2) memsegs that are constructed at run-time on 2471 * hot-plug capable architectures. 2472 * This code was originally part of the function kphysm_init(). 2473 */ 2474 2475 static void 2476 memseg_list_add(struct memseg *memsegp) 2477 { 2478 struct memseg **prev_memsegp; 2479 pgcnt_t num; 2480 2481 /* insert in memseg list, decreasing number of pages order */ 2482 2483 num = MSEG_NPAGES(memsegp); 2484 2485 for (prev_memsegp = &memsegs; *prev_memsegp; 2486 prev_memsegp = &((*prev_memsegp)->next)) { 2487 if (num > MSEG_NPAGES(*prev_memsegp)) 2488 break; 2489 } 2490 2491 memsegp->next = *prev_memsegp; 2492 *prev_memsegp = memsegp; 2493 2494 if (kpm_enable) { 2495 memsegp->nextpa = (memsegp->next) ? 2496 va_to_pa(memsegp->next) : MSEG_NULLPTR_PA; 2497 2498 if (prev_memsegp != &memsegs) { 2499 struct memseg *msp; 2500 msp = (struct memseg *)((caddr_t)prev_memsegp - 2501 offsetof(struct memseg, next)); 2502 msp->nextpa = va_to_pa(memsegp); 2503 } else { 2504 memsegspa = va_to_pa(memsegs); 2505 } 2506 } 2507 } 2508 2509 /* 2510 * PSM add_physmem_cb(). US-II and newer processors have some 2511 * flavor of the prefetch capability implemented. We exploit 2512 * this capability for optimum performance. 2513 */ 2514 #define PREFETCH_BYTES 64 2515 2516 void 2517 add_physmem_cb(page_t *pp, pfn_t pnum) 2518 { 2519 extern void prefetch_page_w(void *); 2520 2521 pp->p_pagenum = pnum; 2522 2523 /* 2524 * Prefetch one more page_t into E$. To prevent future 2525 * mishaps with the sizeof(page_t) changing on us, we 2526 * catch this on debug kernels if we can't bring in the 2527 * entire hpage with 2 PREFETCH_BYTES reads. See 2528 * also, sun4u/cpu/cpu_module.c 2529 */ 2530 /*LINTED*/ 2531 ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES); 2532 prefetch_page_w((char *)pp); 2533 } 2534 2535 /* 2536 * Find memseg with given pfn 2537 */ 2538 static struct memseg * 2539 memseg_find(pfn_t base, pfn_t *next) 2540 { 2541 struct memseg *seg; 2542 2543 if (next != NULL) 2544 *next = LONG_MAX; 2545 for (seg = memsegs; seg != NULL; seg = seg->next) { 2546 if (base >= seg->pages_base && base < seg->pages_end) 2547 return (seg); 2548 if (next != NULL && seg->pages_base > base && 2549 seg->pages_base < *next) 2550 *next = seg->pages_base; 2551 } 2552 return (NULL); 2553 } 2554 2555 /* 2556 * Put page allocated by OBP on prom_ppages 2557 */ 2558 static void 2559 kphysm_erase(uint64_t addr, uint64_t len) 2560 { 2561 struct page *pp; 2562 struct memseg *seg; 2563 pfn_t base = btop(addr), next; 2564 pgcnt_t num = btop(len); 2565 2566 while (num != 0) { 2567 pgcnt_t off, left; 2568 2569 seg = memseg_find(base, &next); 2570 if (seg == NULL) { 2571 if (next == LONG_MAX) 2572 break; 2573 left = MIN(next - base, num); 2574 base += left, num -= left; 2575 continue; 2576 } 2577 off = base - seg->pages_base; 2578 pp = seg->pages + off; 2579 left = num - MIN(num, (seg->pages_end - seg->pages_base) - off); 2580 while (num != left) { 2581 /* 2582 * init it, lock it, and hashin on prom_pages vp. 2583 * 2584 * Mark it as NONRELOC to let DR know the page 2585 * is locked long term, otherwise DR hangs when 2586 * trying to remove those pages. 2587 * 2588 * XXX vnode offsets on the prom_ppages vnode 2589 * are page numbers (gack) for >32 bit 2590 * physical memory machines. 2591 */ 2592 PP_SETNORELOC(pp); 2593 add_physmem_cb(pp, base); 2594 if (page_trylock(pp, SE_EXCL) == 0) 2595 cmn_err(CE_PANIC, "prom page locked"); 2596 (void) page_hashin(pp, &promvp, 2597 (offset_t)base, NULL); 2598 (void) page_pp_lock(pp, 0, 1); 2599 pp++, base++, num--; 2600 } 2601 } 2602 } 2603 2604 static page_t *ppnext; 2605 static pgcnt_t ppleft; 2606 2607 static void *kpm_ppnext; 2608 static pgcnt_t kpm_ppleft; 2609 2610 /* 2611 * Create a memseg 2612 */ 2613 static void 2614 kphysm_memseg(uint64_t addr, uint64_t len) 2615 { 2616 pfn_t base = btop(addr); 2617 pgcnt_t num = btop(len); 2618 struct memseg *seg; 2619 2620 seg = memseg_free; 2621 memseg_free = seg->next; 2622 ASSERT(seg != NULL); 2623 2624 seg->pages = ppnext; 2625 seg->epages = ppnext + num; 2626 seg->pages_base = base; 2627 seg->pages_end = base + num; 2628 ppnext += num; 2629 ppleft -= num; 2630 2631 if (kpm_enable) { 2632 pgcnt_t kpnum = ptokpmpr(num); 2633 2634 if (kpnum > kpm_ppleft) 2635 panic("kphysm_memseg: kpm_pp overflow"); 2636 seg->pagespa = va_to_pa(seg->pages); 2637 seg->epagespa = va_to_pa(seg->epages); 2638 seg->kpm_pbase = kpmptop(ptokpmp(base)); 2639 seg->kpm_nkpmpgs = kpnum; 2640 /* 2641 * In the kpm_smallpage case, the kpm array 2642 * is 1-1 wrt the page array 2643 */ 2644 if (kpm_smallpages) { 2645 kpm_spage_t *kpm_pp = kpm_ppnext; 2646 2647 kpm_ppnext = kpm_pp + kpnum; 2648 seg->kpm_spages = kpm_pp; 2649 seg->kpm_pagespa = va_to_pa(seg->kpm_spages); 2650 } else { 2651 kpm_page_t *kpm_pp = kpm_ppnext; 2652 2653 kpm_ppnext = kpm_pp + kpnum; 2654 seg->kpm_pages = kpm_pp; 2655 seg->kpm_pagespa = va_to_pa(seg->kpm_pages); 2656 /* ASSERT no kpm overlaps */ 2657 ASSERT( 2658 memseg_find(base - pmodkpmp(base), NULL) == NULL); 2659 ASSERT(memseg_find( 2660 roundup(base + num, kpmpnpgs) - 1, NULL) == NULL); 2661 } 2662 kpm_ppleft -= kpnum; 2663 } 2664 2665 memseg_list_add(seg); 2666 } 2667 2668 /* 2669 * Add range to free list 2670 */ 2671 void 2672 kphysm_add(uint64_t addr, uint64_t len, int reclaim) 2673 { 2674 struct page *pp; 2675 struct memseg *seg; 2676 pfn_t base = btop(addr); 2677 pgcnt_t num = btop(len); 2678 2679 seg = memseg_find(base, NULL); 2680 ASSERT(seg != NULL); 2681 pp = seg->pages + (base - seg->pages_base); 2682 2683 if (reclaim) { 2684 struct page *rpp = pp; 2685 struct page *lpp = pp + num; 2686 2687 /* 2688 * page should be locked on prom_ppages 2689 * unhash and unlock it 2690 */ 2691 while (rpp < lpp) { 2692 ASSERT(PAGE_EXCL(rpp) && rpp->p_vnode == &promvp); 2693 ASSERT(PP_ISNORELOC(rpp)); 2694 PP_CLRNORELOC(rpp); 2695 page_pp_unlock(rpp, 0, 1); 2696 page_hashout(rpp, NULL); 2697 page_unlock(rpp); 2698 rpp++; 2699 } 2700 } 2701 2702 /* 2703 * add_physmem() initializes the PSM part of the page 2704 * struct by calling the PSM back with add_physmem_cb(). 2705 * In addition it coalesces pages into larger pages as 2706 * it initializes them. 2707 */ 2708 add_physmem(pp, num, base); 2709 } 2710 2711 /* 2712 * kphysm_init() tackles the problem of initializing physical memory. 2713 */ 2714 static void 2715 kphysm_init(void) 2716 { 2717 struct memlist *pmem; 2718 2719 ASSERT(page_hash != NULL && page_hashsz != 0); 2720 2721 ppnext = pp_base; 2722 ppleft = npages; 2723 kpm_ppnext = kpm_pp_base; 2724 kpm_ppleft = kpm_npages; 2725 2726 /* 2727 * installed pages not on nopp_memlist go in memseg list 2728 */ 2729 diff_memlists(phys_install, nopp_list, kphysm_memseg); 2730 2731 /* 2732 * Free the avail list 2733 */ 2734 for (pmem = phys_avail; pmem != NULL; pmem = pmem->next) 2735 kphysm_add(pmem->address, pmem->size, 0); 2736 2737 /* 2738 * Erase pages that aren't available 2739 */ 2740 diff_memlists(phys_install, phys_avail, kphysm_erase); 2741 2742 build_pfn_hash(); 2743 } 2744 2745 /* 2746 * Kernel VM initialization. 2747 * Assumptions about kernel address space ordering: 2748 * (1) gap (user space) 2749 * (2) kernel text 2750 * (3) kernel data/bss 2751 * (4) gap 2752 * (5) kernel data structures 2753 * (6) gap 2754 * (7) debugger (optional) 2755 * (8) monitor 2756 * (9) gap (possibly null) 2757 * (10) dvma 2758 * (11) devices 2759 */ 2760 static void 2761 kvm_init(void) 2762 { 2763 /* 2764 * Put the kernel segments in kernel address space. 2765 */ 2766 rw_enter(&kas.a_lock, RW_WRITER); 2767 as_avlinit(&kas); 2768 2769 (void) seg_attach(&kas, (caddr_t)KERNELBASE, 2770 (size_t)(e_moddata - KERNELBASE), &ktextseg); 2771 (void) segkmem_create(&ktextseg); 2772 2773 (void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M), 2774 (size_t)(MMU_PAGESIZE4M), &ktexthole); 2775 (void) segkmem_create(&ktexthole); 2776 2777 (void) seg_attach(&kas, (caddr_t)valloc_base, 2778 (size_t)(econtig32 - valloc_base), &kvalloc); 2779 (void) segkmem_create(&kvalloc); 2780 2781 if (kmem64_base) { 2782 (void) seg_attach(&kas, (caddr_t)kmem64_base, 2783 (size_t)(kmem64_end - kmem64_base), &kmem64); 2784 (void) segkmem_create(&kmem64); 2785 } 2786 2787 /* 2788 * We're about to map out /boot. This is the beginning of the 2789 * system resource management transition. We can no longer 2790 * call into /boot for I/O or memory allocations. 2791 */ 2792 (void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg); 2793 (void) segkmem_create(&kvseg); 2794 hblk_alloc_dynamic = 1; 2795 2796 /* 2797 * we need to preallocate pages for DR operations before enabling large 2798 * page kernel heap because of memseg_remap_init() hat_unload() hack. 2799 */ 2800 memseg_remap_init(); 2801 2802 /* at this point we are ready to use large page heap */ 2803 segkmem_heap_lp_init(); 2804 2805 (void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32, 2806 &kvseg32); 2807 (void) segkmem_create(&kvseg32); 2808 2809 /* 2810 * Create a segment for the debugger. 2811 */ 2812 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2813 (void) segkmem_create(&kdebugseg); 2814 2815 rw_exit(&kas.a_lock); 2816 } 2817 2818 char obp_tte_str[] = 2819 "h# %x constant MMU_PAGESHIFT " 2820 "h# %x constant TTE8K " 2821 "h# %x constant SFHME_SIZE " 2822 "h# %x constant SFHME_TTE " 2823 "h# %x constant HMEBLK_TAG " 2824 "h# %x constant HMEBLK_NEXT " 2825 "h# %x constant HMEBLK_MISC " 2826 "h# %x constant HMEBLK_HME1 " 2827 "h# %x constant NHMENTS " 2828 "h# %x constant HBLK_SZMASK " 2829 "h# %x constant HBLK_RANGE_SHIFT " 2830 "h# %x constant HMEBP_HBLK " 2831 "h# %x constant HMEBLK_ENDPA " 2832 "h# %x constant HMEBUCKET_SIZE " 2833 "h# %x constant HTAG_SFMMUPSZ " 2834 "h# %x constant HTAG_BSPAGE_SHIFT " 2835 "h# %x constant HTAG_REHASH_SHIFT " 2836 "h# %x constant SFMMU_INVALID_SHMERID " 2837 "h# %x constant mmu_hashcnt " 2838 "h# %p constant uhme_hash " 2839 "h# %p constant khme_hash " 2840 "h# %x constant UHMEHASH_SZ " 2841 "h# %x constant KHMEHASH_SZ " 2842 "h# %p constant KCONTEXT " 2843 "h# %p constant KHATID " 2844 "h# %x constant ASI_MEM " 2845 2846 ": PHYS-X@ ( phys -- data ) " 2847 " ASI_MEM spacex@ " 2848 "; " 2849 2850 ": PHYS-W@ ( phys -- data ) " 2851 " ASI_MEM spacew@ " 2852 "; " 2853 2854 ": PHYS-L@ ( phys -- data ) " 2855 " ASI_MEM spaceL@ " 2856 "; " 2857 2858 ": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) " 2859 " 3 * MMU_PAGESHIFT + " 2860 "; " 2861 2862 ": TTE_IS_VALID ( ttep -- flag ) " 2863 " PHYS-X@ 0< " 2864 "; " 2865 2866 ": HME_HASH_SHIFT ( ttesz -- hmeshift ) " 2867 " dup TTE8K = if " 2868 " drop HBLK_RANGE_SHIFT " 2869 " else " 2870 " TTE_PAGE_SHIFT " 2871 " then " 2872 "; " 2873 2874 ": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) " 2875 " tuck >> swap MMU_PAGESHIFT - << " 2876 "; " 2877 2878 ": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) " 2879 " >> over xor swap ( hash sfmmup ) " 2880 " KHATID <> if ( hash ) " 2881 " UHMEHASH_SZ and ( bucket ) " 2882 " HMEBUCKET_SIZE * uhme_hash + ( hmebp ) " 2883 " else ( hash ) " 2884 " KHMEHASH_SZ and ( bucket ) " 2885 " HMEBUCKET_SIZE * khme_hash + ( hmebp ) " 2886 " then ( hmebp ) " 2887 "; " 2888 2889 ": HME_HASH_TABLE_SEARCH " 2890 " ( sfmmup hmebp hblktag -- sfmmup null | sfmmup hmeblkp ) " 2891 " >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) " 2892 " dup HMEBLK_ENDPA <> if ( sfmmup hmeblkp ) ( r: hblktag ) " 2893 " dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp ) " 2894 " dup hmeblk_tag + 8 + phys-x@ 2 pick = if " 2895 " true ( sfmmup hmeblkp true ) ( r: hblktag ) " 2896 " else " 2897 " hmeblk_next + phys-x@ false " 2898 " ( sfmmup hmeblkp false ) ( r: hblktag ) " 2899 " then " 2900 " else " 2901 " hmeblk_next + phys-x@ false " 2902 " ( sfmmup hmeblkp false ) ( r: hblktag ) " 2903 " then " 2904 " else " 2905 " drop 0 true " 2906 " then " 2907 " until r> drop " 2908 "; " 2909 2910 ": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) " 2911 " over HME_HASH_SHIFT HME_HASH_BSPAGE ( sfmmup rehash bspage ) " 2912 " HTAG_BSPAGE_SHIFT << ( sfmmup rehash htag-bspage )" 2913 " swap HTAG_REHASH_SHIFT << or ( sfmmup htag-bspage-rehash )" 2914 " SFMMU_INVALID_SHMERID or nip ( hblktag ) " 2915 "; " 2916 2917 ": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) " 2918 " over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and ( hmeblkp addr ttesz ) " 2919 " TTE8K = if ( hmeblkp addr ) " 2920 " MMU_PAGESHIFT >> NHMENTS 1- and ( hmeblkp hme-index ) " 2921 " else ( hmeblkp addr ) " 2922 " drop 0 ( hmeblkp 0 ) " 2923 " then ( hmeblkp hme-index ) " 2924 " SFHME_SIZE * + HMEBLK_HME1 + ( hmep ) " 2925 " SFHME_TTE + ( ttep ) " 2926 "; " 2927 2928 ": unix-tte ( addr cnum -- false | tte-data true ) " 2929 " KCONTEXT = if ( addr ) " 2930 " KHATID ( addr khatid ) " 2931 " else ( addr ) " 2932 " drop false exit ( false ) " 2933 " then " 2934 " ( addr khatid ) " 2935 " mmu_hashcnt 1+ 1 do ( addr sfmmup ) " 2936 " 2dup swap i HME_HASH_SHIFT " 2937 "( addr sfmmup sfmmup addr hmeshift ) " 2938 " HME_HASH_FUNCTION ( addr sfmmup hmebp ) " 2939 " over i 4 pick " 2940 "( addr sfmmup hmebp sfmmup rehash addr ) " 2941 " HME_HASH_TAG ( addr sfmmup hmebp hblktag ) " 2942 " HME_HASH_TABLE_SEARCH " 2943 "( addr sfmmup { null | hmeblkp } ) " 2944 " ?dup if ( addr sfmmup hmeblkp ) " 2945 " nip swap HBLK_TO_TTEP ( ttep ) " 2946 " dup TTE_IS_VALID if ( valid-ttep ) " 2947 " PHYS-X@ true ( tte-data true ) " 2948 " else ( invalid-tte ) " 2949 " drop false ( false ) " 2950 " then ( false | tte-data true ) " 2951 " unloop exit ( false | tte-data true ) " 2952 " then ( addr sfmmup ) " 2953 " loop ( addr sfmmup ) " 2954 " 2drop false ( false ) " 2955 "; " 2956 ; 2957 2958 void 2959 create_va_to_tte(void) 2960 { 2961 char *bp; 2962 extern int khmehash_num, uhmehash_num; 2963 extern struct hmehash_bucket *khme_hash, *uhme_hash; 2964 2965 #define OFFSET(type, field) ((uintptr_t)(&((type *)0)->field)) 2966 2967 bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP); 2968 2969 /* 2970 * Teach obp how to parse our sw ttes. 2971 */ 2972 (void) sprintf(bp, obp_tte_str, 2973 MMU_PAGESHIFT, 2974 TTE8K, 2975 sizeof (struct sf_hment), 2976 OFFSET(struct sf_hment, hme_tte), 2977 OFFSET(struct hme_blk, hblk_tag), 2978 OFFSET(struct hme_blk, hblk_nextpa), 2979 OFFSET(struct hme_blk, hblk_misc), 2980 OFFSET(struct hme_blk, hblk_hme), 2981 NHMENTS, 2982 HBLK_SZMASK, 2983 HBLK_RANGE_SHIFT, 2984 OFFSET(struct hmehash_bucket, hmeh_nextpa), 2985 HMEBLK_ENDPA, 2986 sizeof (struct hmehash_bucket), 2987 HTAG_SFMMUPSZ, 2988 HTAG_BSPAGE_SHIFT, 2989 HTAG_REHASH_SHIFT, 2990 SFMMU_INVALID_SHMERID, 2991 mmu_hashcnt, 2992 (caddr_t)va_to_pa((caddr_t)uhme_hash), 2993 (caddr_t)va_to_pa((caddr_t)khme_hash), 2994 UHMEHASH_SZ, 2995 KHMEHASH_SZ, 2996 KCONTEXT, 2997 KHATID, 2998 ASI_MEM); 2999 prom_interpret(bp, 0, 0, 0, 0, 0); 3000 3001 kobj_free(bp, MMU_PAGESIZE); 3002 } 3003 3004 void 3005 install_va_to_tte(void) 3006 { 3007 /* 3008 * advise prom that he can use unix-tte 3009 */ 3010 prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0); 3011 } 3012 3013 /* 3014 * Here we add "device-type=console" for /os-io node, for currently 3015 * our kernel console output only supports displaying text and 3016 * performing cursor-positioning operations (through kernel framebuffer 3017 * driver) and it doesn't support other functionalities required for a 3018 * standard "display" device as specified in 1275 spec. The main missing 3019 * interface defined by the 1275 spec is "draw-logo". 3020 * also see the comments above prom_stdout_is_framebuffer(). 3021 */ 3022 static char *create_node = 3023 "\" /\" find-device " 3024 "new-device " 3025 "\" os-io\" device-name " 3026 "\" "OBP_DISPLAY_CONSOLE"\" device-type " 3027 ": cb-r/w ( adr,len method$ -- #read/#written ) " 3028 " 2>r swap 2 2r> ['] $callback catch if " 3029 " 2drop 3drop 0 " 3030 " then " 3031 "; " 3032 ": read ( adr,len -- #read ) " 3033 " \" read\" ['] cb-r/w catch if 2drop 2drop -2 exit then " 3034 " ( retN ... ret1 N ) " 3035 " ?dup if " 3036 " swap >r 1- 0 ?do drop loop r> " 3037 " else " 3038 " -2 " 3039 " then " 3040 "; " 3041 ": write ( adr,len -- #written ) " 3042 " \" write\" ['] cb-r/w catch if 2drop 2drop 0 exit then " 3043 " ( retN ... ret1 N ) " 3044 " ?dup if " 3045 " swap >r 1- 0 ?do drop loop r> " 3046 " else " 3047 " 0 " 3048 " then " 3049 "; " 3050 ": poll-tty ( -- ) ; " 3051 ": install-abort ( -- ) ['] poll-tty d# 10 alarm ; " 3052 ": remove-abort ( -- ) ['] poll-tty 0 alarm ; " 3053 ": cb-give/take ( $method -- ) " 3054 " 0 -rot ['] $callback catch ?dup if " 3055 " >r 2drop 2drop r> throw " 3056 " else " 3057 " 0 ?do drop loop " 3058 " then " 3059 "; " 3060 ": give ( -- ) \" exit-input\" cb-give/take ; " 3061 ": take ( -- ) \" enter-input\" cb-give/take ; " 3062 ": open ( -- ok? ) true ; " 3063 ": close ( -- ) ; " 3064 "finish-device " 3065 "device-end "; 3066 3067 /* 3068 * Create the OBP input/output node (FCode serial driver). 3069 * It is needed for both USB console keyboard and for 3070 * the kernel terminal emulator. It is too early to check for a 3071 * kernel console compatible framebuffer now, so we create this 3072 * so that we're ready if we need to enable kernel terminal emulation. 3073 * 3074 * When the USB software takes over the input device at the time 3075 * consconfig runs, OBP's stdin is redirected to this node. 3076 * Whenever the FORTH user interface is used after this switch, 3077 * the node will call back into the kernel for console input. 3078 * If a serial device such as ttya or a UART with a Type 5 keyboard 3079 * attached is used, OBP takes over the serial device when the system 3080 * goes to the debugger after the system is booted. This sharing 3081 * of the relatively simple serial device is difficult but possible. 3082 * Sharing the USB host controller is impossible due its complexity. 3083 * 3084 * Similarly to USB keyboard input redirection, after consconfig_dacf 3085 * configures a kernel console framebuffer as the standard output 3086 * device, OBP's stdout is switched to to vector through the 3087 * /os-io node into the kernel terminal emulator. 3088 */ 3089 static void 3090 startup_create_io_node(void) 3091 { 3092 prom_interpret(create_node, 0, 0, 0, 0, 0); 3093 } 3094 3095 3096 static void 3097 do_prom_version_check(void) 3098 { 3099 int i; 3100 pnode_t node; 3101 char buf[64]; 3102 static char drev[] = "Down-rev firmware detected%s\n" 3103 "\tPlease upgrade to the following minimum version:\n" 3104 "\t\t%s\n"; 3105 3106 i = prom_version_check(buf, sizeof (buf), &node); 3107 3108 if (i == PROM_VER64_OK) 3109 return; 3110 3111 if (i == PROM_VER64_UPGRADE) { 3112 cmn_err(CE_WARN, drev, "", buf); 3113 3114 #ifdef DEBUG 3115 prom_enter_mon(); /* Type 'go' to continue */ 3116 cmn_err(CE_WARN, "Booting with down-rev firmware\n"); 3117 return; 3118 #else 3119 halt(0); 3120 #endif 3121 } 3122 3123 /* 3124 * The other possibility is that this is a server running 3125 * good firmware, but down-rev firmware was detected on at 3126 * least one other cpu board. We just complain if we see 3127 * that. 3128 */ 3129 cmn_err(CE_WARN, drev, " on one or more CPU boards", buf); 3130 } 3131 3132 3133 /* 3134 * Must be defined in platform dependent code. 3135 */ 3136 extern caddr_t modtext; 3137 extern size_t modtext_sz; 3138 extern caddr_t moddata; 3139 3140 #define HEAPTEXT_ARENA(addr) \ 3141 ((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \ 3142 (((uintptr_t)(addr) - HEAPTEXT_BASE) / \ 3143 (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1)) 3144 3145 #define HEAPTEXT_OVERSIZED(addr) \ 3146 ((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE) 3147 3148 #define HEAPTEXT_IN_NUCLEUSDATA(addr) \ 3149 (((uintptr_t)(addr) >= KERNELBASE + 2 * MMU_PAGESIZE4M) && \ 3150 ((uintptr_t)(addr) < KERNELBASE + 3 * MMU_PAGESIZE4M)) 3151 3152 vmem_t *texthole_source[HEAPTEXT_NARENAS]; 3153 vmem_t *texthole_arena[HEAPTEXT_NARENAS]; 3154 kmutex_t texthole_lock; 3155 3156 char kern_bootargs[OBP_MAXPATHLEN]; 3157 char kern_bootfile[OBP_MAXPATHLEN]; 3158 3159 void 3160 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 3161 { 3162 uintptr_t addr, limit; 3163 3164 addr = HEAPTEXT_BASE; 3165 limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE; 3166 3167 /* 3168 * Before we initialize the text_arena, we want to punch holes in the 3169 * underlying heaptext_arena. This guarantees that for any text 3170 * address we can find a text hole less than HEAPTEXT_MAPPED away. 3171 */ 3172 for (; addr + HEAPTEXT_UNMAPPED <= limit; 3173 addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) { 3174 (void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE, 3175 0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED), 3176 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 3177 } 3178 3179 /* 3180 * Allocate one page at the oversize to break up the text region 3181 * from the oversized region. 3182 */ 3183 (void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0, 3184 (void *)limit, (void *)(limit + PAGESIZE), 3185 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 3186 3187 *text_arena = vmem_create("module_text", modtext_sz ? modtext : NULL, 3188 modtext_sz, sizeof (uintptr_t), segkmem_alloc, segkmem_free, 3189 heaptext_arena, 0, VM_SLEEP); 3190 *data_arena = vmem_create("module_data", moddata, MODDATA, 1, 3191 segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 3192 } 3193 3194 caddr_t 3195 kobj_text_alloc(vmem_t *arena, size_t size) 3196 { 3197 caddr_t rval, better; 3198 3199 /* 3200 * First, try a sleeping allocation. 3201 */ 3202 rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT); 3203 3204 if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval)) 3205 return (rval); 3206 3207 /* 3208 * We didn't get the area that we wanted. We're going to try to do an 3209 * allocation with explicit constraints. 3210 */ 3211 better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL, 3212 (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE), 3213 VM_NOSLEEP | VM_BESTFIT); 3214 3215 if (better != NULL) { 3216 /* 3217 * That worked. Free our first attempt and return. 3218 */ 3219 vmem_free(arena, rval, size); 3220 return (better); 3221 } 3222 3223 /* 3224 * That didn't work; we'll have to return our first attempt. 3225 */ 3226 return (rval); 3227 } 3228 3229 caddr_t 3230 kobj_texthole_alloc(caddr_t addr, size_t size) 3231 { 3232 int arena = HEAPTEXT_ARENA(addr); 3233 char c[30]; 3234 uintptr_t base; 3235 3236 if (HEAPTEXT_OVERSIZED(addr) || HEAPTEXT_IN_NUCLEUSDATA(addr)) { 3237 /* 3238 * If this is an oversized allocation or it is allocated in 3239 * the nucleus data page, there is no text hole available for 3240 * it; return NULL. 3241 */ 3242 return (NULL); 3243 } 3244 3245 mutex_enter(&texthole_lock); 3246 3247 if (texthole_arena[arena] == NULL) { 3248 ASSERT(texthole_source[arena] == NULL); 3249 3250 if (arena == 0) { 3251 texthole_source[0] = vmem_create("module_text_holesrc", 3252 (void *)(KERNELBASE + MMU_PAGESIZE4M), 3253 MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL, 3254 0, VM_SLEEP); 3255 } else { 3256 base = HEAPTEXT_BASE + 3257 (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED); 3258 3259 (void) snprintf(c, sizeof (c), 3260 "heaptext_holesrc_%d", arena); 3261 3262 texthole_source[arena] = vmem_create(c, (void *)base, 3263 HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL, 3264 0, VM_SLEEP); 3265 } 3266 3267 (void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena); 3268 3269 texthole_arena[arena] = vmem_create(c, NULL, 0, 3270 sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free, 3271 texthole_source[arena], 0, VM_SLEEP); 3272 } 3273 3274 mutex_exit(&texthole_lock); 3275 3276 ASSERT(texthole_arena[arena] != NULL); 3277 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS); 3278 return (vmem_alloc(texthole_arena[arena], size, 3279 VM_BESTFIT | VM_NOSLEEP)); 3280 } 3281 3282 void 3283 kobj_texthole_free(caddr_t addr, size_t size) 3284 { 3285 int arena = HEAPTEXT_ARENA(addr); 3286 3287 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS); 3288 ASSERT(texthole_arena[arena] != NULL); 3289 vmem_free(texthole_arena[arena], addr, size); 3290 } 3291 3292 void 3293 release_bootstrap(void) 3294 { 3295 if (&cif_init) 3296 cif_init(); 3297 } 3298