xref: /titanic_50/usr/src/uts/sun4/os/startup.c (revision 257873cfc1dd3337766407f80397db60a56f2f5a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/machsystm.h>
28 #include <sys/archsystm.h>
29 #include <sys/vm.h>
30 #include <sys/cpu.h>
31 #include <sys/atomic.h>
32 #include <sys/reboot.h>
33 #include <sys/kdi.h>
34 #include <sys/bootconf.h>
35 #include <sys/memlist_plat.h>
36 #include <sys/memlist_impl.h>
37 #include <sys/prom_plat.h>
38 #include <sys/prom_isa.h>
39 #include <sys/autoconf.h>
40 #include <sys/intreg.h>
41 #include <sys/ivintr.h>
42 #include <sys/fpu/fpusystm.h>
43 #include <sys/iommutsb.h>
44 #include <vm/vm_dep.h>
45 #include <vm/seg_dev.h>
46 #include <vm/seg_kmem.h>
47 #include <vm/seg_kpm.h>
48 #include <vm/seg_map.h>
49 #include <vm/seg_kp.h>
50 #include <sys/sysconf.h>
51 #include <vm/hat_sfmmu.h>
52 #include <sys/kobj.h>
53 #include <sys/sun4asi.h>
54 #include <sys/clconf.h>
55 #include <sys/platform_module.h>
56 #include <sys/panic.h>
57 #include <sys/cpu_sgnblk_defs.h>
58 #include <sys/clock.h>
59 #include <sys/cmn_err.h>
60 #include <sys/promif.h>
61 #include <sys/prom_debug.h>
62 #include <sys/traptrace.h>
63 #include <sys/memnode.h>
64 #include <sys/mem_cage.h>
65 #include <sys/mmu.h>
66 
67 extern void setup_trap_table(void);
68 extern int cpu_intrq_setup(struct cpu *);
69 extern void cpu_intrq_register(struct cpu *);
70 extern void contig_mem_init(void);
71 extern caddr_t contig_mem_prealloc(caddr_t, pgcnt_t);
72 extern void mach_dump_buffer_init(void);
73 extern void mach_descrip_init(void);
74 extern void mach_descrip_startup_fini(void);
75 extern void mach_memscrub(void);
76 extern void mach_fpras(void);
77 extern void mach_cpu_halt_idle(void);
78 extern void mach_hw_copy_limit(void);
79 extern void load_mach_drivers(void);
80 extern void load_tod_module(void);
81 #pragma weak load_tod_module
82 
83 extern int ndata_alloc_mmfsa(struct memlist *ndata);
84 #pragma weak ndata_alloc_mmfsa
85 
86 extern void cif_init(void);
87 #pragma weak cif_init
88 
89 extern void parse_idprom(void);
90 extern void add_vx_handler(char *, int, void (*)(cell_t *));
91 extern void mem_config_init(void);
92 extern void memseg_remap_init(void);
93 
94 extern void mach_kpm_init(void);
95 extern void pcf_init();
96 extern int size_pse_array(pgcnt_t, int);
97 
98 /*
99  * External Data:
100  */
101 extern int vac_size;	/* cache size in bytes */
102 extern uint_t vac_mask;	/* VAC alignment consistency mask */
103 extern uint_t vac_colors;
104 
105 /*
106  * Global Data Definitions:
107  */
108 
109 /*
110  * XXX - Don't port this to new architectures
111  * A 3rd party volume manager driver (vxdm) depends on the symbol romp.
112  * 'romp' has no use with a prom with an IEEE 1275 client interface.
113  * The driver doesn't use the value, but it depends on the symbol.
114  */
115 void *romp;		/* veritas driver won't load without romp 4154976 */
116 /*
117  * Declare these as initialized data so we can patch them.
118  */
119 pgcnt_t physmem = 0;	/* memory size in pages, patch if you want less */
120 pgcnt_t segkpsize =
121     btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
122 uint_t segmap_percent = 12; /* Size of segmap segment */
123 
124 int use_cache = 1;		/* cache not reliable (605 bugs) with MP */
125 int vac_copyback = 1;
126 char *cache_mode = NULL;
127 int use_mix = 1;
128 int prom_debug = 0;
129 
130 caddr_t boot_tba;		/* %tba at boot - used by kmdb */
131 uint_t	tba_taken_over = 0;
132 
133 caddr_t s_text;			/* start of kernel text segment */
134 caddr_t e_text;			/* end of kernel text segment */
135 caddr_t s_data;			/* start of kernel data segment */
136 caddr_t e_data;			/* end of kernel data segment */
137 
138 caddr_t modtext;		/* beginning of module text */
139 size_t	modtext_sz;		/* size of module text */
140 caddr_t moddata;		/* beginning of module data reserve */
141 caddr_t e_moddata;		/* end of module data reserve */
142 
143 /*
144  * End of first block of contiguous kernel in 32-bit virtual address space
145  */
146 caddr_t		econtig32;	/* end of first blk of contiguous kernel */
147 
148 caddr_t		ncbase;		/* beginning of non-cached segment */
149 caddr_t		ncend;		/* end of non-cached segment */
150 
151 size_t	ndata_remain_sz;	/* bytes from end of data to 4MB boundary */
152 caddr_t	nalloc_base;		/* beginning of nucleus allocation */
153 caddr_t nalloc_end;		/* end of nucleus allocatable memory */
154 caddr_t valloc_base;		/* beginning of kvalloc segment	*/
155 
156 caddr_t kmem64_base;		/* base of kernel mem segment in 64-bit space */
157 caddr_t kmem64_end;		/* end of kernel mem segment in 64-bit space */
158 size_t	kmem64_sz;		/* bytes in kernel mem segment, 64-bit space */
159 caddr_t kmem64_aligned_end;	/* end of large page, overmaps 64-bit space */
160 int	kmem64_szc;		/* page size code */
161 uint64_t kmem64_pabase = (uint64_t)-1;	/* physical address of kmem64_base */
162 
163 uintptr_t shm_alignment;	/* VAC address consistency modulus */
164 struct memlist *phys_install;	/* Total installed physical memory */
165 struct memlist *phys_avail;	/* Available (unreserved) physical memory */
166 struct memlist *virt_avail;	/* Available (unmapped?) virtual memory */
167 struct memlist *nopp_list;	/* pages with no backing page structs */
168 struct memlist ndata;		/* memlist of nucleus allocatable memory */
169 int memexp_flag;		/* memory expansion card flag */
170 uint64_t ecache_flushaddr;	/* physical address used for flushing E$ */
171 pgcnt_t obp_pages;		/* Physical pages used by OBP */
172 
173 /*
174  * VM data structures
175  */
176 long page_hashsz;		/* Size of page hash table (power of two) */
177 struct page *pp_base;		/* Base of system page struct array */
178 size_t pp_sz;			/* Size in bytes of page struct array */
179 struct page **page_hash;	/* Page hash table */
180 pad_mutex_t *pse_mutex;		/* Locks protecting pp->p_selock */
181 size_t pse_table_size;		/* Number of mutexes in pse_mutex[] */
182 int pse_shift;			/* log2(pse_table_size) */
183 struct seg ktextseg;		/* Segment used for kernel executable image */
184 struct seg kvalloc;		/* Segment used for "valloc" mapping */
185 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
186 struct seg ktexthole;		/* Segment used for nucleus text hole */
187 struct seg kmapseg;		/* Segment used for generic kernel mappings */
188 struct seg kpmseg;		/* Segment used for physical mapping */
189 struct seg kdebugseg;		/* Segment used for the kernel debugger */
190 
191 void *kpm_pp_base;		/* Base of system kpm_page array */
192 size_t	kpm_pp_sz;		/* Size of system kpm_page array */
193 pgcnt_t	kpm_npages;		/* How many kpm pages are managed */
194 
195 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
196 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
197 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
198 
199 int segzio_fromheap = 0;	/* zio allocations occur from heap */
200 caddr_t segzio_base;		/* Base address of segzio */
201 pgcnt_t segziosize = 0;		/* size of zio segment in pages */
202 
203 /*
204  * debugger pages (if allocated)
205  */
206 struct vnode kdebugvp;
207 
208 /*
209  * VA range available to the debugger
210  */
211 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
212 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
213 
214 /*
215  * Segment for relocated kernel structures in 64-bit large RAM kernels
216  */
217 struct seg kmem64;
218 
219 struct memseg *memseg_free;
220 
221 struct vnode unused_pages_vp;
222 
223 /*
224  * VM data structures allocated early during boot.
225  */
226 size_t pagehash_sz;
227 uint64_t memlist_sz;
228 
229 char tbr_wr_addr_inited = 0;
230 
231 caddr_t	mpo_heap32_buf = NULL;
232 size_t	mpo_heap32_bufsz = 0;
233 
234 /*
235  * Static Routines:
236  */
237 static int ndata_alloc_memseg(struct memlist *, size_t);
238 static void memlist_new(uint64_t, uint64_t, struct memlist **);
239 static void memlist_add(uint64_t, uint64_t,
240 	struct memlist **, struct memlist **);
241 static void kphysm_init(void);
242 static void kvm_init(void);
243 static void install_kmem64_tte(void);
244 
245 static void startup_init(void);
246 static void startup_memlist(void);
247 static void startup_modules(void);
248 static void startup_bop_gone(void);
249 static void startup_vm(void);
250 static void startup_end(void);
251 static void setup_cage_params(void);
252 static void startup_create_io_node(void);
253 
254 static pgcnt_t npages;
255 static struct memlist *memlist;
256 void *memlist_end;
257 
258 static pgcnt_t bop_alloc_pages;
259 static caddr_t hblk_base;
260 uint_t hblk_alloc_dynamic = 0;
261 uint_t hblk1_min = H1MIN;
262 
263 
264 /*
265  * Hooks for unsupported platforms and down-rev firmware
266  */
267 int iam_positron(void);
268 #pragma weak iam_positron
269 static void do_prom_version_check(void);
270 
271 /*
272  * After receiving a thermal interrupt, this is the number of seconds
273  * to delay before shutting off the system, assuming
274  * shutdown fails.  Use /etc/system to change the delay if this isn't
275  * large enough.
276  */
277 int thermal_powerdown_delay = 1200;
278 
279 /*
280  * Used to hold off page relocations into the cage until OBP has completed
281  * its boot-time handoff of its resources to the kernel.
282  */
283 int page_relocate_ready = 0;
284 
285 /*
286  * Indicate if kmem64 allocation was done in small chunks
287  */
288 int kmem64_smchunks = 0;
289 
290 /*
291  * Enable some debugging messages concerning memory usage...
292  */
293 #ifdef  DEBUGGING_MEM
294 static int debugging_mem;
295 static void
296 printmemlist(char *title, struct memlist *list)
297 {
298 	if (!debugging_mem)
299 		return;
300 
301 	printf("%s\n", title);
302 
303 	while (list) {
304 		prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n",
305 		    (uint32_t)(list->address >> 32), (uint32_t)list->address,
306 		    (uint32_t)(list->size >> 32), (uint32_t)(list->size));
307 		list = list->next;
308 	}
309 }
310 
311 void
312 printmemseg(struct memseg *memseg)
313 {
314 	if (!debugging_mem)
315 		return;
316 
317 	printf("memseg\n");
318 
319 	while (memseg) {
320 		prom_printf("\tpage = 0x%p, epage = 0x%p, "
321 		    "pfn = 0x%x, epfn = 0x%x\n",
322 		    memseg->pages, memseg->epages,
323 		    memseg->pages_base, memseg->pages_end);
324 		memseg = memseg->next;
325 	}
326 }
327 
328 #define	debug_pause(str)	halt((str))
329 #define	MPRINTF(str)		if (debugging_mem) prom_printf((str))
330 #define	MPRINTF1(str, a)	if (debugging_mem) prom_printf((str), (a))
331 #define	MPRINTF2(str, a, b)	if (debugging_mem) prom_printf((str), (a), (b))
332 #define	MPRINTF3(str, a, b, c) \
333 	if (debugging_mem) prom_printf((str), (a), (b), (c))
334 #else	/* DEBUGGING_MEM */
335 #define	MPRINTF(str)
336 #define	MPRINTF1(str, a)
337 #define	MPRINTF2(str, a, b)
338 #define	MPRINTF3(str, a, b, c)
339 #endif	/* DEBUGGING_MEM */
340 
341 
342 /*
343  *
344  *                    Kernel's Virtual Memory Layout.
345  *                       /-----------------------\
346  * 0xFFFFFFFF.FFFFFFFF  -|                       |-
347  *                       |   OBP's virtual page  |
348  *                       |        tables         |
349  * 0xFFFFFFFC.00000000  -|-----------------------|-
350  *                       :                       :
351  *                       :                       :
352  *                      -|-----------------------|-
353  *                       |       segzio          | (base and size vary)
354  * 0xFFFFFE00.00000000  -|-----------------------|-
355  *                       |                       |  Ultrasparc I/II support
356  *                       |    segkpm segment     |  up to 2TB of physical
357  *                       | (64-bit kernel ONLY)  |  memory, VAC has 2 colors
358  *                       |                       |
359  * 0xFFFFFA00.00000000  -|-----------------------|- 2TB segkpm alignment
360  *                       :                       :
361  *                       :                       :
362  * 0xFFFFF810.00000000  -|-----------------------|- hole_end
363  *                       |                       |      ^
364  *                       |  UltraSPARC I/II call |      |
365  *                       | bug requires an extra |      |
366  *                       | 4 GB of space between |      |
367  *                       |   hole and used RAM   |	|
368  *                       |                       |      |
369  * 0xFFFFF800.00000000  -|-----------------------|-     |
370  *                       |                       |      |
371  *                       | Virtual Address Hole  |   UltraSPARC
372  *                       |  on UltraSPARC I/II   |  I/II * ONLY *
373  *                       |                       |      |
374  * 0x00000800.00000000  -|-----------------------|-     |
375  *                       |                       |      |
376  *                       |  UltraSPARC I/II call |      |
377  *                       | bug requires an extra |      |
378  *                       | 4 GB of space between |      |
379  *                       |   hole and used RAM   |      |
380  *                       |                       |      v
381  * 0x000007FF.00000000  -|-----------------------|- hole_start -----
382  *                       :                       :		   ^
383  *                       :                       :		   |
384  *                       |-----------------------|                 |
385  *                       |                       |                 |
386  *                       |  ecache flush area    |                 |
387  *                       |  (twice largest e$)   |                 |
388  *                       |                       |                 |
389  * 0x00000XXX.XXX00000  -|-----------------------|- kmem64_	   |
390  *                       | overmapped area       |   alignend_end  |
391  *                       | (kmem64_alignsize     |		   |
392  *                       |  boundary)            |		   |
393  * 0x00000XXX.XXXXXXXX  -|-----------------------|- kmem64_end	   |
394  *                       |                       |		   |
395  *                       |   64-bit kernel ONLY  |		   |
396  *                       |                       |		   |
397  *                       |    kmem64 segment     |		   |
398  *                       |                       |		   |
399  *                       | (Relocated extra HME  |	     Approximately
400  *                       |   block allocations,  |	    1 TB of virtual
401  *                       |   memnode freelists,  |	     address space
402  *                       |    HME hash buckets,  |		   |
403  *                       | mml_table, kpmp_table,|		   |
404  *                       |  page_t array and     |		   |
405  *                       |  hashblock pool to    |		   |
406  *                       |   avoid hard-coded    |		   |
407  *                       |     32-bit vaddr      |		   |
408  *                       |     limitations)      |		   |
409  *                       |                       |		   v
410  * 0x00000700.00000000  -|-----------------------|- SYSLIMIT (kmem64_base)
411  *                       |                       |
412  *                       |  segkmem segment      | (SYSLIMIT - SYSBASE = 4TB)
413  *                       |                       |
414  * 0x00000300.00000000  -|-----------------------|- SYSBASE
415  *                       :                       :
416  *                       :                       :
417  *                      -|-----------------------|-
418  *                       |                       |
419  *                       |  segmap segment       |   SEGMAPSIZE (1/8th physmem,
420  *                       |                       |               256G MAX)
421  * 0x000002a7.50000000  -|-----------------------|- SEGMAPBASE
422  *                       :                       :
423  *                       :                       :
424  *                      -|-----------------------|-
425  *                       |                       |
426  *                       |       segkp           |    SEGKPSIZE (2GB)
427  *                       |                       |
428  *                       |                       |
429  * 0x000002a1.00000000  -|-----------------------|- SEGKPBASE
430  *                       |                       |
431  * 0x000002a0.00000000  -|-----------------------|- MEMSCRUBBASE
432  *                       |                       |       (SEGKPBASE - 0x400000)
433  * 0x0000029F.FFE00000  -|-----------------------|- ARGSBASE
434  *                       |                       |       (MEMSCRUBBASE - NCARGS)
435  * 0x0000029F.FFD80000  -|-----------------------|- PPMAPBASE
436  *                       |                       |       (ARGSBASE - PPMAPSIZE)
437  * 0x0000029F.FFD00000  -|-----------------------|- PPMAP_FAST_BASE
438  *                       |                       |
439  * 0x0000029F.FF980000  -|-----------------------|- PIOMAPBASE
440  *                       |                       |
441  * 0x0000029F.FF580000  -|-----------------------|- NARG_BASE
442  *                       :                       :
443  *                       :                       :
444  * 0x00000000.FFFFFFFF  -|-----------------------|- OFW_END_ADDR
445  *                       |                       |
446  *                       |         OBP           |
447  *                       |                       |
448  * 0x00000000.F0000000  -|-----------------------|- OFW_START_ADDR
449  *                       |         kmdb          |
450  * 0x00000000.EDD00000  -|-----------------------|- SEGDEBUGBASE
451  *                       :                       :
452  *                       :                       :
453  * 0x00000000.7c000000  -|-----------------------|- SYSLIMIT32
454  *                       |                       |
455  *                       |  segkmem32 segment    | (SYSLIMIT32 - SYSBASE32 =
456  *                       |                       |    ~64MB)
457  * 0x00000000.70002000  -|-----------------------|
458  *                       |     panicbuf          |
459  * 0x00000000.70000000  -|-----------------------|- SYSBASE32
460  *                       |       boot-time       |
461  *                       |    temporary space    |
462  * 0x00000000.4C000000  -|-----------------------|- BOOTTMPBASE
463  *                       :                       :
464  *                       :                       :
465  *                       |                       |
466  *                       |-----------------------|- econtig32
467  *                       |    vm structures      |
468  * 0x00000000.01C00000   |-----------------------|- nalloc_end
469  *                       |         TSBs          |
470  *                       |-----------------------|- end/nalloc_base
471  *                       |   kernel data & bss   |
472  * 0x00000000.01800000  -|-----------------------|
473  *                       :   nucleus text hole   :
474  * 0x00000000.01400000  -|-----------------------|
475  *                       :                       :
476  *                       |-----------------------|
477  *                       |      module text      |
478  *                       |-----------------------|- e_text/modtext
479  *                       |      kernel text      |
480  *                       |-----------------------|
481  *                       |    trap table (48k)   |
482  * 0x00000000.01000000  -|-----------------------|- KERNELBASE
483  *                       | reserved for trapstat |} TSTAT_TOTAL_SIZE
484  *                       |-----------------------|
485  *                       |                       |
486  *                       |        invalid        |
487  *                       |                       |
488  * 0x00000000.00000000  _|_______________________|
489  *
490  *
491  *
492  *                   32-bit User Virtual Memory Layout.
493  *                       /-----------------------\
494  *                       |                       |
495  *                       |        invalid        |
496  *                       |                       |
497  *          0xFFC00000  -|-----------------------|- USERLIMIT
498  *                       |       user stack      |
499  *                       :                       :
500  *                       :                       :
501  *                       :                       :
502  *                       |       user data       |
503  *                      -|-----------------------|-
504  *                       |       user text       |
505  *          0x00002000  -|-----------------------|-
506  *                       |       invalid         |
507  *          0x00000000  _|_______________________|
508  *
509  *
510  *
511  *                   64-bit User Virtual Memory Layout.
512  *                       /-----------------------\
513  *                       |                       |
514  *                       |        invalid        |
515  *                       |                       |
516  *  0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT
517  *                       |       user stack      |
518  *                       :                       :
519  *                       :                       :
520  *                       :                       :
521  *                       |       user data       |
522  *                      -|-----------------------|-
523  *                       |       user text       |
524  *  0x00000000.01000000 -|-----------------------|-
525  *                       |       invalid         |
526  *  0x00000000.00000000 _|_______________________|
527  */
528 
529 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base);
530 extern uint64_t ecache_flush_address(void);
531 
532 #pragma weak load_platform_modules
533 #pragma weak plat_startup_memlist
534 #pragma weak ecache_init_scrub_flush_area
535 #pragma weak ecache_flush_address
536 
537 
538 /*
539  * By default the DR Cage is enabled for maximum OS
540  * MPSS performance.  Users needing to disable the cage mechanism
541  * can set this variable to zero via /etc/system.
542  * Disabling the cage on systems supporting Dynamic Reconfiguration (DR)
543  * will result in loss of DR functionality.
544  * Platforms wishing to disable kernel Cage by default
545  * should do so in their set_platform_defaults() routine.
546  */
547 int	kernel_cage_enable = 1;
548 
549 static void
550 setup_cage_params(void)
551 {
552 	void (*func)(void);
553 
554 	func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0);
555 	if (func != NULL) {
556 		(*func)();
557 		return;
558 	}
559 
560 	if (kernel_cage_enable == 0) {
561 		return;
562 	}
563 	kcage_range_init(phys_avail, KCAGE_DOWN, total_pages / 256);
564 
565 	if (kcage_on) {
566 		cmn_err(CE_NOTE, "!Kernel Cage is ENABLED");
567 	} else {
568 		cmn_err(CE_NOTE, "!Kernel Cage is DISABLED");
569 	}
570 
571 }
572 
573 /*
574  * Machine-dependent startup code
575  */
576 void
577 startup(void)
578 {
579 	startup_init();
580 	if (&startup_platform)
581 		startup_platform();
582 	startup_memlist();
583 	startup_modules();
584 	setup_cage_params();
585 	startup_bop_gone();
586 	startup_vm();
587 	startup_end();
588 }
589 
590 struct regs sync_reg_buf;
591 uint64_t sync_tt;
592 
593 void
594 sync_handler(void)
595 {
596 	struct  panic_trap_info 	ti;
597 	int i;
598 
599 	/*
600 	 * Prevent trying to talk to the other CPUs since they are
601 	 * sitting in the prom and won't reply.
602 	 */
603 	for (i = 0; i < NCPU; i++) {
604 		if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) {
605 			cpu[i]->cpu_flags &= ~CPU_READY;
606 			cpu[i]->cpu_flags |= CPU_QUIESCED;
607 			CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
608 		}
609 	}
610 
611 	/*
612 	 * We've managed to get here without going through the
613 	 * normal panic code path. Try and save some useful
614 	 * information.
615 	 */
616 	if (!panicstr && (curthread->t_panic_trap == NULL)) {
617 		ti.trap_type = sync_tt;
618 		ti.trap_regs = &sync_reg_buf;
619 		ti.trap_addr = NULL;
620 		ti.trap_mmu_fsr = 0x0;
621 
622 		curthread->t_panic_trap = &ti;
623 	}
624 
625 	/*
626 	 * If we're re-entering the panic path, update the signature
627 	 * block so that the SC knows we're in the second part of panic.
628 	 */
629 	if (panicstr)
630 		CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
631 
632 	nopanicdebug = 1; /* do not perform debug_enter() prior to dump */
633 	panic("sync initiated");
634 }
635 
636 
637 static void
638 startup_init(void)
639 {
640 	/*
641 	 * We want to save the registers while we're still in OBP
642 	 * so that we know they haven't been fiddled with since.
643 	 * (In principle, OBP can't change them just because it
644 	 * makes a callback, but we'd rather not depend on that
645 	 * behavior.)
646 	 */
647 	char		sync_str[] =
648 	    "warning @ warning off : sync "
649 	    "%%tl-c %%tstate h# %p x! "
650 	    "%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! "
651 	    "%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! "
652 	    "%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! "
653 	    "%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! "
654 	    "%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! "
655 	    "%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! "
656 	    "%%y h# %p l! %%tl-c %%tt h# %p x! "
657 	    "sync ; warning !";
658 
659 	/*
660 	 * 20 == num of %p substrings
661 	 * 16 == max num of chars %p will expand to.
662 	 */
663 	char 		bp[sizeof (sync_str) + 16 * 20];
664 
665 	/*
666 	 * Initialize ptl1 stack for the 1st CPU.
667 	 */
668 	ptl1_init_cpu(&cpu0);
669 
670 	/*
671 	 * Initialize the address map for cache consistent mappings
672 	 * to random pages; must be done after vac_size is set.
673 	 */
674 	ppmapinit();
675 
676 	/*
677 	 * Initialize the PROM callback handler.
678 	 */
679 	init_vx_handler();
680 
681 	/*
682 	 * have prom call sync_callback() to handle the sync and
683 	 * save some useful information which will be stored in the
684 	 * core file later.
685 	 */
686 	(void) sprintf((char *)bp, sync_str,
687 	    (void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1,
688 	    (void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3,
689 	    (void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5,
690 	    (void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7,
691 	    (void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1,
692 	    (void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3,
693 	    (void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5,
694 	    (void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7,
695 	    (void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc,
696 	    (void *)&sync_reg_buf.r_y, (void *)&sync_tt);
697 	prom_interpret(bp, 0, 0, 0, 0, 0);
698 	add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler);
699 }
700 
701 
702 size_t
703 calc_pp_sz(pgcnt_t npages)
704 {
705 
706 	return (npages * sizeof (struct page));
707 }
708 
709 size_t
710 calc_kpmpp_sz(pgcnt_t npages)
711 {
712 
713 	kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT;
714 	kpm_pgsz = 1ull << kpm_pgshft;
715 	kpm_pgoff = kpm_pgsz - 1;
716 	kpmp2pshft = kpm_pgshft - PAGESHIFT;
717 	kpmpnpgs = 1 << kpmp2pshft;
718 
719 	if (kpm_smallpages == 0) {
720 		/*
721 		 * Avoid fragmentation problems in kphysm_init()
722 		 * by allocating for all of physical memory
723 		 */
724 		kpm_npages = ptokpmpr(physinstalled);
725 		return (kpm_npages * sizeof (kpm_page_t));
726 	} else {
727 		kpm_npages = npages;
728 		return (kpm_npages * sizeof (kpm_spage_t));
729 	}
730 }
731 
732 size_t
733 calc_pagehash_sz(pgcnt_t npages)
734 {
735 
736 	/*
737 	 * The page structure hash table size is a power of 2
738 	 * such that the average hash chain length is PAGE_HASHAVELEN.
739 	 */
740 	page_hashsz = npages / PAGE_HASHAVELEN;
741 	page_hashsz = 1 << highbit(page_hashsz);
742 	return (page_hashsz * sizeof (struct page *));
743 }
744 
745 int testkmem64_smchunks = 0;
746 
747 int
748 alloc_kmem64(caddr_t base, caddr_t end)
749 {
750 	int i;
751 	caddr_t aligned_end = NULL;
752 
753 	if (testkmem64_smchunks)
754 		return (1);
755 
756 	/*
757 	 * Make one large memory alloc after figuring out the 64-bit size. This
758 	 * will enable use of the largest page size appropriate for the system
759 	 * architecture.
760 	 */
761 	ASSERT(mmu_exported_pagesize_mask & (1 << TTE8K));
762 	ASSERT(IS_P2ALIGNED(base, TTEBYTES(max_bootlp_tteszc)));
763 	for (i = max_bootlp_tteszc; i >= TTE8K; i--) {
764 		size_t alloc_size, alignsize;
765 #if !defined(C_OBP)
766 		unsigned long long pa;
767 #endif	/* !C_OBP */
768 
769 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0)
770 			continue;
771 		alignsize = TTEBYTES(i);
772 		kmem64_szc = i;
773 
774 		/* limit page size for small memory */
775 		if (mmu_btop(alignsize) > (npages >> 2))
776 			continue;
777 
778 		aligned_end = (caddr_t)roundup((uintptr_t)end, alignsize);
779 		alloc_size = aligned_end - base;
780 #if !defined(C_OBP)
781 		if (prom_allocate_phys(alloc_size, alignsize, &pa) == 0) {
782 			if (prom_claim_virt(alloc_size, base) != (caddr_t)-1) {
783 				kmem64_pabase = pa;
784 				kmem64_aligned_end = aligned_end;
785 				install_kmem64_tte();
786 				break;
787 			} else {
788 				prom_free_phys(alloc_size, pa);
789 			}
790 		}
791 #else	/* !C_OBP */
792 		if (prom_alloc(base, alloc_size, alignsize) == base) {
793 			kmem64_pabase = va_to_pa(kmem64_base);
794 			kmem64_aligned_end = aligned_end;
795 			break;
796 		}
797 #endif	/* !C_OBP */
798 		if (i == TTE8K) {
799 #ifdef sun4v
800 			/* return failure to try small allocations */
801 			return (1);
802 #else
803 			prom_panic("kmem64 allocation failure");
804 #endif
805 		}
806 	}
807 	ASSERT(aligned_end != NULL);
808 	return (0);
809 }
810 
811 static prom_memlist_t *boot_physinstalled, *boot_physavail, *boot_virtavail;
812 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len;
813 
814 #define	IVSIZE	roundup(((MAXIVNUM * sizeof (intr_vec_t *)) + \
815 			(MAX_RSVD_IV * sizeof (intr_vec_t)) + \
816 			(MAX_RSVD_IVX * sizeof (intr_vecx_t))), PAGESIZE)
817 
818 #if !defined(C_OBP)
819 /*
820  * Install a temporary tte handler in OBP for kmem64 area.
821  *
822  * We map kmem64 area with large pages before the trap table is taken
823  * over. Since OBP makes 8K mappings, it can create 8K tlb entries in
824  * the same area. Duplicate tlb entries with different page sizes
825  * cause unpredicatble behavior.  To avoid this, we don't create
826  * kmem64 mappings via BOP_ALLOC (ends up as prom_alloc() call to
827  * OBP).  Instead, we manage translations with a temporary va>tte-data
828  * handler (kmem64-tte).  This handler is replaced by unix-tte when
829  * the trap table is taken over.
830  *
831  * The temporary handler knows the physical address of the kmem64
832  * area. It uses the prom's pgmap@ Forth word for other addresses.
833  *
834  * We have to use BOP_ALLOC() method for C-OBP platforms because
835  * pgmap@ is not defined in C-OBP. C-OBP is only used on serengeti
836  * sun4u platforms. On sun4u we flush tlb after trap table is taken
837  * over if we use large pages for kernel heap and kmem64. Since sun4u
838  * prom (unlike sun4v) calls va>tte-data first for client address
839  * translation prom's ttes for kmem64 can't get into TLB even if we
840  * later switch to prom's trap table again. C-OBP uses 4M pages for
841  * client mappings when possible so on all platforms we get the
842  * benefit from large mappings for kmem64 area immediately during
843  * boot.
844  *
845  * pseudo code:
846  * if (context != 0) {
847  * 	return false
848  * } else if (miss_va in range[kmem64_base, kmem64_end)) {
849  *	tte = tte_template +
850  *		(((miss_va & pagemask) - kmem64_base));
851  *	return tte, true
852  * } else {
853  *	return pgmap@ result
854  * }
855  */
856 char kmem64_obp_str[] =
857 	"h# %lx constant kmem64-base "
858 	"h# %lx constant kmem64-end "
859 	"h# %lx constant kmem64-pagemask "
860 	"h# %lx constant kmem64-template "
861 
862 	": kmem64-tte ( addr cnum -- false | tte-data true ) "
863 	"    if                                       ( addr ) "
864 	"       drop false exit then                  ( false ) "
865 	"    dup  kmem64-base kmem64-end  within  if  ( addr ) "
866 	"	kmem64-pagemask and                   ( addr' ) "
867 	"	kmem64-base -                         ( addr' ) "
868 	"	kmem64-template +                     ( tte ) "
869 	"	true                                  ( tte true ) "
870 	"    else                                     ( addr ) "
871 	"	pgmap@                                ( tte ) "
872 	"       dup 0< if true else drop false then   ( tte true  |  false ) "
873 	"    then                                     ( tte true  |  false ) "
874 	"; "
875 
876 	"' kmem64-tte is va>tte-data "
877 ;
878 
879 static void
880 install_kmem64_tte()
881 {
882 	char b[sizeof (kmem64_obp_str) + (4 * 16)];
883 	tte_t tte;
884 
885 	PRM_DEBUG(kmem64_pabase);
886 	PRM_DEBUG(kmem64_szc);
887 	sfmmu_memtte(&tte, kmem64_pabase >> MMU_PAGESHIFT,
888 	    PROC_DATA | HAT_NOSYNC | HAT_ATTR_NOSOFTEXEC, kmem64_szc);
889 	PRM_DEBUG(tte.ll);
890 	(void) sprintf(b, kmem64_obp_str,
891 	    kmem64_base, kmem64_end, TTE_PAGEMASK(kmem64_szc), tte.ll);
892 	ASSERT(strlen(b) < sizeof (b));
893 	prom_interpret(b, 0, 0, 0, 0, 0);
894 }
895 #endif	/* !C_OBP */
896 
897 /*
898  * As OBP takes up some RAM when the system boots, pages will already be "lost"
899  * to the system and reflected in npages by the time we see it.
900  *
901  * We only want to allocate kernel structures in the 64-bit virtual address
902  * space on systems with enough RAM to make the overhead of keeping track of
903  * an extra kernel memory segment worthwhile.
904  *
905  * Since OBP has already performed its memory allocations by this point, if we
906  * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map
907  * memory in the 64-bit virtual address space; otherwise keep allocations
908  * contiguous with we've mapped so far in the 32-bit virtual address space.
909  */
910 #define	MINMOVE_RAM_MB	((size_t)1900)
911 #define	MB_TO_BYTES(mb)	((mb) * 1048576ul)
912 #define	BYTES_TO_MB(b) ((b) / 1048576ul)
913 
914 pgcnt_t	tune_npages = (pgcnt_t)
915 	(MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE);
916 
917 #pragma weak page_set_colorequiv_arr_cpu
918 extern void page_set_colorequiv_arr_cpu(void);
919 extern void page_set_colorequiv_arr(void);
920 
921 static pgcnt_t ramdisk_npages;
922 static struct memlist *old_phys_avail;
923 
924 kcage_dir_t kcage_startup_dir = KCAGE_DOWN;
925 
926 static void
927 startup_memlist(void)
928 {
929 	size_t hmehash_sz, pagelist_sz, tt_sz;
930 	size_t psetable_sz;
931 	caddr_t alloc_base;
932 	caddr_t memspace;
933 	struct memlist *cur;
934 	size_t syslimit = (size_t)SYSLIMIT;
935 	size_t sysbase = (size_t)SYSBASE;
936 
937 	/*
938 	 * Initialize enough of the system to allow kmem_alloc to work by
939 	 * calling boot to allocate its memory until the time that
940 	 * kvm_init is completed.  The page structs are allocated after
941 	 * rounding up end to the nearest page boundary; the memsegs are
942 	 * initialized and the space they use comes from the kernel heap.
943 	 * With appropriate initialization, they can be reallocated later
944 	 * to a size appropriate for the machine's configuration.
945 	 *
946 	 * At this point, memory is allocated for things that will never
947 	 * need to be freed, this used to be "valloced".  This allows a
948 	 * savings as the pages don't need page structures to describe
949 	 * them because them will not be managed by the vm system.
950 	 */
951 
952 	/*
953 	 * We're loaded by boot with the following configuration (as
954 	 * specified in the sun4u/conf/Mapfile):
955 	 *
956 	 * 	text:		4 MB chunk aligned on a 4MB boundary
957 	 * 	data & bss:	4 MB chunk aligned on a 4MB boundary
958 	 *
959 	 * These two chunks will eventually be mapped by 2 locked 4MB
960 	 * ttes and will represent the nucleus of the kernel.  This gives
961 	 * us some free space that is already allocated, some or all of
962 	 * which is made available to kernel module text.
963 	 *
964 	 * The free space in the data-bss chunk is used for nucleus
965 	 * allocatable data structures and we reserve it using the
966 	 * nalloc_base and nalloc_end variables.  This space is currently
967 	 * being used for hat data structures required for tlb miss
968 	 * handling operations.  We align nalloc_base to a l2 cache
969 	 * linesize because this is the line size the hardware uses to
970 	 * maintain cache coherency.
971 	 * 512K is carved out for module data.
972 	 */
973 
974 	moddata = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE);
975 	e_moddata = moddata + MODDATA;
976 	nalloc_base = e_moddata;
977 
978 	nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M);
979 	valloc_base = nalloc_base;
980 
981 	/*
982 	 * Calculate the start of the data segment.
983 	 */
984 	if (((uintptr_t)e_moddata & MMU_PAGEMASK4M) != (uintptr_t)s_data)
985 		prom_panic("nucleus data overflow");
986 
987 	PRM_DEBUG(moddata);
988 	PRM_DEBUG(nalloc_base);
989 	PRM_DEBUG(nalloc_end);
990 
991 	/*
992 	 * Remember any slop after e_text so we can give it to the modules.
993 	 */
994 	PRM_DEBUG(e_text);
995 	modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE);
996 	if (((uintptr_t)e_text & MMU_PAGEMASK4M) != (uintptr_t)s_text)
997 		prom_panic("nucleus text overflow");
998 	modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) -
999 	    modtext;
1000 	PRM_DEBUG(modtext);
1001 	PRM_DEBUG(modtext_sz);
1002 
1003 	init_boot_memlists();
1004 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1005 	    &boot_physavail, &boot_physavail_len,
1006 	    &boot_virtavail, &boot_virtavail_len);
1007 
1008 	/*
1009 	 * Remember what the physically available highest page is
1010 	 * so that dumpsys works properly, and find out how much
1011 	 * memory is installed.
1012 	 */
1013 	installed_top_size_memlist_array(boot_physinstalled,
1014 	    boot_physinstalled_len, &physmax, &physinstalled);
1015 	PRM_DEBUG(physinstalled);
1016 	PRM_DEBUG(physmax);
1017 
1018 	/* Fill out memory nodes config structure */
1019 	startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len);
1020 
1021 	/*
1022 	 * npages is the maximum of available physical memory possible.
1023 	 * (ie. it will never be more than this)
1024 	 *
1025 	 * When we boot from a ramdisk, the ramdisk memory isn't free, so
1026 	 * using phys_avail will underestimate what will end up being freed.
1027 	 * A better initial guess is just total memory minus the kernel text
1028 	 */
1029 	npages = physinstalled - btop(MMU_PAGESIZE4M);
1030 
1031 	/*
1032 	 * First allocate things that can go in the nucleus data page
1033 	 * (fault status, TSBs, dmv, CPUs)
1034 	 */
1035 	ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end);
1036 
1037 	if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0))
1038 		cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc");
1039 
1040 	if (ndata_alloc_tsbs(&ndata, npages) != 0)
1041 		cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc");
1042 
1043 	if (ndata_alloc_dmv(&ndata) != 0)
1044 		cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc");
1045 
1046 	if (ndata_alloc_page_mutexs(&ndata) != 0)
1047 		cmn_err(CE_PANIC,
1048 		    "no more nucleus memory after page free lists alloc");
1049 
1050 	if (ndata_alloc_hat(&ndata, npages) != 0)
1051 		cmn_err(CE_PANIC, "no more nucleus memory after hat alloc");
1052 
1053 	if (ndata_alloc_memseg(&ndata, boot_physavail_len) != 0)
1054 		cmn_err(CE_PANIC, "no more nucleus memory after memseg alloc");
1055 
1056 	/*
1057 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
1058 	 *
1059 	 * There are comments all over the SFMMU code warning of dire
1060 	 * consequences if the TSBs are moved out of 32-bit space.  This
1061 	 * is largely because the asm code uses "sethi %hi(addr)"-type
1062 	 * instructions which will not provide the expected result if the
1063 	 * address is a 64-bit one.
1064 	 *
1065 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
1066 	 */
1067 	alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE);
1068 	PRM_DEBUG(alloc_base);
1069 
1070 	alloc_base = sfmmu_ktsb_alloc(alloc_base);
1071 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1072 	PRM_DEBUG(alloc_base);
1073 
1074 	/*
1075 	 * Allocate IOMMU TSB array.  We do this here so that the physical
1076 	 * memory gets deducted from the PROM's physical memory list.
1077 	 */
1078 	alloc_base = iommu_tsb_init(alloc_base);
1079 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1080 	PRM_DEBUG(alloc_base);
1081 
1082 	/*
1083 	 * Allow for an early allocation of physically contiguous memory.
1084 	 */
1085 	alloc_base = contig_mem_prealloc(alloc_base, npages);
1086 
1087 	/*
1088 	 * Platforms like Starcat and OPL need special structures assigned in
1089 	 * 32-bit virtual address space because their probing routines execute
1090 	 * FCode, and FCode can't handle 64-bit virtual addresses...
1091 	 */
1092 	if (&plat_startup_memlist) {
1093 		alloc_base = plat_startup_memlist(alloc_base);
1094 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1095 		    ecache_alignsize);
1096 		PRM_DEBUG(alloc_base);
1097 	}
1098 
1099 	/*
1100 	 * Save off where the contiguous allocations to date have ended
1101 	 * in econtig32.
1102 	 */
1103 	econtig32 = alloc_base;
1104 	PRM_DEBUG(econtig32);
1105 	if (econtig32 > (caddr_t)KERNEL_LIMIT32)
1106 		cmn_err(CE_PANIC, "econtig32 too big");
1107 
1108 	pp_sz = calc_pp_sz(npages);
1109 	PRM_DEBUG(pp_sz);
1110 	if (kpm_enable) {
1111 		kpm_pp_sz = calc_kpmpp_sz(npages);
1112 		PRM_DEBUG(kpm_pp_sz);
1113 	}
1114 
1115 	hmehash_sz = calc_hmehash_sz(npages);
1116 	PRM_DEBUG(hmehash_sz);
1117 
1118 	pagehash_sz = calc_pagehash_sz(npages);
1119 	PRM_DEBUG(pagehash_sz);
1120 
1121 	pagelist_sz = calc_free_pagelist_sz();
1122 	PRM_DEBUG(pagelist_sz);
1123 
1124 #ifdef	TRAPTRACE
1125 	tt_sz = calc_traptrace_sz();
1126 	PRM_DEBUG(tt_sz);
1127 #else
1128 	tt_sz = 0;
1129 #endif	/* TRAPTRACE */
1130 
1131 	/*
1132 	 * Place the array that protects pp->p_selock in the kmem64 wad.
1133 	 */
1134 	pse_shift = size_pse_array(npages, max_ncpus);
1135 	PRM_DEBUG(pse_shift);
1136 	pse_table_size = 1 << pse_shift;
1137 	PRM_DEBUG(pse_table_size);
1138 	psetable_sz = roundup(
1139 	    pse_table_size * sizeof (pad_mutex_t), ecache_alignsize);
1140 	PRM_DEBUG(psetable_sz);
1141 
1142 	/*
1143 	 * Now allocate the whole wad
1144 	 */
1145 	kmem64_sz = pp_sz + kpm_pp_sz + hmehash_sz + pagehash_sz +
1146 	    pagelist_sz + tt_sz + psetable_sz;
1147 	kmem64_sz = roundup(kmem64_sz, PAGESIZE);
1148 	kmem64_base = (caddr_t)syslimit;
1149 	kmem64_end = kmem64_base + kmem64_sz;
1150 	if (alloc_kmem64(kmem64_base, kmem64_end)) {
1151 		/*
1152 		 * Attempt for kmem64 to allocate one big
1153 		 * contiguous chunk of memory failed.
1154 		 * We get here because we are sun4v.
1155 		 * We will proceed by breaking up
1156 		 * the allocation into two attempts.
1157 		 * First, we allocate kpm_pp_sz, hmehash_sz,
1158 		 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz as
1159 		 * one contiguous chunk. This is a much smaller
1160 		 * chunk and we should get it, if not we panic.
1161 		 * Note that hmehash and tt need to be physically
1162 		 * (in the real address sense) contiguous.
1163 		 * Next, we use bop_alloc_chunk() to
1164 		 * to allocate the page_t structures.
1165 		 * This will allow the page_t to be allocated
1166 		 * in multiple smaller chunks.
1167 		 * In doing so, the assumption that page_t is
1168 		 * physically contiguous no longer hold, this is ok
1169 		 * for sun4v but not for sun4u.
1170 		 */
1171 		size_t  tmp_size;
1172 		caddr_t tmp_base;
1173 
1174 		pp_sz  = roundup(pp_sz, PAGESIZE);
1175 
1176 		/*
1177 		 * Allocate kpm_pp_sz, hmehash_sz,
1178 		 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz
1179 		 */
1180 		tmp_base = kmem64_base + pp_sz;
1181 		tmp_size = roundup(kpm_pp_sz + hmehash_sz + pagehash_sz +
1182 		    pagelist_sz + tt_sz + psetable_sz, PAGESIZE);
1183 		if (prom_alloc(tmp_base, tmp_size, PAGESIZE) == 0)
1184 			prom_panic("kmem64 prom_alloc contig failed");
1185 		PRM_DEBUG(tmp_base);
1186 		PRM_DEBUG(tmp_size);
1187 
1188 		/*
1189 		 * Allocate the page_ts
1190 		 */
1191 		if (bop_alloc_chunk(kmem64_base, pp_sz, PAGESIZE) == 0)
1192 			prom_panic("kmem64 bop_alloc_chunk page_t failed");
1193 		PRM_DEBUG(kmem64_base);
1194 		PRM_DEBUG(pp_sz);
1195 
1196 		kmem64_aligned_end = kmem64_base + pp_sz + tmp_size;
1197 		ASSERT(kmem64_aligned_end >= kmem64_end);
1198 
1199 		kmem64_smchunks = 1;
1200 	} else {
1201 
1202 		/*
1203 		 * We need to adjust pp_sz for the normal
1204 		 * case where kmem64 can allocate one large chunk
1205 		 */
1206 		if (kpm_smallpages == 0) {
1207 			npages -= kmem64_sz / (PAGESIZE + sizeof (struct page));
1208 		} else {
1209 			npages -= kmem64_sz / (PAGESIZE + sizeof (struct page) +
1210 			    sizeof (kpm_spage_t));
1211 		}
1212 		pp_sz = npages * sizeof (struct page);
1213 	}
1214 
1215 	if (kmem64_aligned_end > (hole_start ? hole_start : kpm_vbase))
1216 		cmn_err(CE_PANIC, "not enough kmem64 space");
1217 	PRM_DEBUG(kmem64_base);
1218 	PRM_DEBUG(kmem64_end);
1219 	PRM_DEBUG(kmem64_aligned_end);
1220 
1221 	/*
1222 	 * ... and divy it up
1223 	 */
1224 	alloc_base = kmem64_base;
1225 
1226 	pp_base = (page_t *)alloc_base;
1227 	alloc_base += pp_sz;
1228 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1229 	PRM_DEBUG(pp_base);
1230 	PRM_DEBUG(npages);
1231 
1232 	if (kpm_enable) {
1233 		kpm_pp_base = alloc_base;
1234 		if (kpm_smallpages == 0) {
1235 			/* kpm_npages based on physinstalled, don't reset */
1236 			kpm_pp_sz = kpm_npages * sizeof (kpm_page_t);
1237 		} else {
1238 			kpm_npages = ptokpmpr(npages);
1239 			kpm_pp_sz = kpm_npages * sizeof (kpm_spage_t);
1240 		}
1241 		alloc_base += kpm_pp_sz;
1242 		alloc_base =
1243 		    (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1244 		PRM_DEBUG(kpm_pp_base);
1245 	}
1246 
1247 	alloc_base = alloc_hmehash(alloc_base);
1248 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1249 	PRM_DEBUG(alloc_base);
1250 
1251 	page_hash = (page_t **)alloc_base;
1252 	alloc_base += pagehash_sz;
1253 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1254 	PRM_DEBUG(page_hash);
1255 
1256 	alloc_base = alloc_page_freelists(alloc_base);
1257 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1258 	PRM_DEBUG(alloc_base);
1259 
1260 #ifdef	TRAPTRACE
1261 	ttrace_buf = alloc_base;
1262 	alloc_base += tt_sz;
1263 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1264 	PRM_DEBUG(alloc_base);
1265 #endif	/* TRAPTRACE */
1266 
1267 	pse_mutex = (pad_mutex_t *)alloc_base;
1268 	alloc_base += psetable_sz;
1269 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1270 	PRM_DEBUG(alloc_base);
1271 
1272 	/*
1273 	 * Note that if we use small chunk allocations for
1274 	 * kmem64, we need to ensure kmem64_end is the same as
1275 	 * kmem64_aligned_end to prevent subsequent logic from
1276 	 * trying to reuse the overmapping.
1277 	 * Otherwise we adjust kmem64_end to what we really allocated.
1278 	 */
1279 	if (kmem64_smchunks) {
1280 		kmem64_end = kmem64_aligned_end;
1281 	} else {
1282 		kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base, PAGESIZE);
1283 	}
1284 	kmem64_sz = kmem64_end - kmem64_base;
1285 
1286 	if (&ecache_init_scrub_flush_area) {
1287 		alloc_base = ecache_init_scrub_flush_area(kmem64_aligned_end);
1288 		ASSERT(alloc_base <= (hole_start ? hole_start : kpm_vbase));
1289 	}
1290 
1291 	/*
1292 	 * If physmem is patched to be non-zero, use it instead of
1293 	 * the monitor value unless physmem is larger than the total
1294 	 * amount of memory on hand.
1295 	 */
1296 	if (physmem == 0 || physmem > npages)
1297 		physmem = npages;
1298 
1299 	/*
1300 	 * root_is_ramdisk is set via /etc/system when the ramdisk miniroot
1301 	 * is mounted as root. This memory is held down by OBP and unlike
1302 	 * the stub boot_archive is never released.
1303 	 *
1304 	 * In order to get things sized correctly on lower memory
1305 	 * machines (where the memory used by the ramdisk represents
1306 	 * a significant portion of memory), physmem is adjusted.
1307 	 *
1308 	 * This is done by subtracting the ramdisk_size which is set
1309 	 * to the size of the ramdisk (in Kb) in /etc/system at the
1310 	 * time the miniroot archive is constructed.
1311 	 */
1312 	if (root_is_ramdisk == B_TRUE) {
1313 		ramdisk_npages = (ramdisk_size * 1024) / PAGESIZE;
1314 		physmem -= ramdisk_npages;
1315 	}
1316 
1317 	if (kpm_enable && (ndata_alloc_kpm(&ndata, kpm_npages) != 0))
1318 		cmn_err(CE_PANIC, "no more nucleus memory after kpm alloc");
1319 
1320 	/*
1321 	 * Allocate space for the interrupt vector table.
1322 	 */
1323 	memspace = prom_alloc((caddr_t)intr_vec_table, IVSIZE, MMU_PAGESIZE);
1324 	if (memspace != (caddr_t)intr_vec_table)
1325 		prom_panic("interrupt vector table allocation failure");
1326 
1327 	/*
1328 	 * Between now and when we finish copying in the memory lists,
1329 	 * allocations happen so the space gets fragmented and the
1330 	 * lists longer.  Leave enough space for lists twice as
1331 	 * long as we have now; then roundup to a pagesize.
1332 	 */
1333 	memlist_sz = sizeof (struct memlist) * (prom_phys_installed_len() +
1334 	    prom_phys_avail_len() + prom_virt_avail_len());
1335 	memlist_sz *= 2;
1336 	memlist_sz = roundup(memlist_sz, PAGESIZE);
1337 	memspace = ndata_alloc(&ndata, memlist_sz, ecache_alignsize);
1338 	if (memspace == NULL)
1339 		cmn_err(CE_PANIC, "no more nucleus memory after memlist alloc");
1340 
1341 	memlist = (struct memlist *)memspace;
1342 	memlist_end = (char *)memspace + memlist_sz;
1343 	PRM_DEBUG(memlist);
1344 	PRM_DEBUG(memlist_end);
1345 
1346 	PRM_DEBUG(sysbase);
1347 	PRM_DEBUG(syslimit);
1348 	kernelheap_init((void *)sysbase, (void *)syslimit,
1349 	    (caddr_t)sysbase + PAGESIZE, NULL, NULL);
1350 
1351 	/*
1352 	 * Take the most current snapshot we can by calling mem-update.
1353 	 */
1354 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1355 	    &boot_physavail, &boot_physavail_len,
1356 	    &boot_virtavail, &boot_virtavail_len);
1357 
1358 	/*
1359 	 * Remove the space used by prom_alloc from the kernel heap
1360 	 * plus the area actually used by the OBP (if any)
1361 	 * ignoring virtual addresses in virt_avail, above syslimit.
1362 	 */
1363 	virt_avail = memlist;
1364 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1365 
1366 	for (cur = virt_avail; cur->next; cur = cur->next) {
1367 		uint64_t range_base, range_size;
1368 
1369 		if ((range_base = cur->address + cur->size) < (uint64_t)sysbase)
1370 			continue;
1371 		if (range_base >= (uint64_t)syslimit)
1372 			break;
1373 		/*
1374 		 * Limit the range to end at syslimit.
1375 		 */
1376 		range_size = MIN(cur->next->address,
1377 		    (uint64_t)syslimit) - range_base;
1378 		(void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE,
1379 		    0, 0, (void *)range_base, (void *)(range_base + range_size),
1380 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1381 	}
1382 
1383 	phys_avail = memlist;
1384 	copy_memlist(boot_physavail, boot_physavail_len, &memlist);
1385 
1386 	/*
1387 	 * Add any extra memory at the end of the ndata region if there's at
1388 	 * least a page to add.  There might be a few more pages available in
1389 	 * the middle of the ndata region, but for now they are ignored.
1390 	 */
1391 	nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE, nalloc_end);
1392 	if (nalloc_base == NULL)
1393 		nalloc_base = nalloc_end;
1394 	ndata_remain_sz = nalloc_end - nalloc_base;
1395 
1396 	/*
1397 	 * Copy physinstalled list into kernel space.
1398 	 */
1399 	phys_install = memlist;
1400 	copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist);
1401 
1402 	/*
1403 	 * Create list of physical addrs we don't need pp's for:
1404 	 * kernel text 4M page
1405 	 * kernel data 4M page - ndata_remain_sz
1406 	 * kmem64 pages
1407 	 *
1408 	 * NB if adding any pages here, make sure no kpm page
1409 	 * overlaps can occur (see ASSERTs in kphysm_memsegs)
1410 	 */
1411 	nopp_list = memlist;
1412 	memlist_new(va_to_pa(s_text), MMU_PAGESIZE4M, &memlist);
1413 	memlist_add(va_to_pa(s_data), MMU_PAGESIZE4M - ndata_remain_sz,
1414 	    &memlist, &nopp_list);
1415 
1416 	/* Don't add to nopp_list if kmem64 was allocated in smchunks */
1417 	if (!kmem64_smchunks)
1418 		memlist_add(kmem64_pabase, kmem64_sz, &memlist, &nopp_list);
1419 
1420 	if ((caddr_t)memlist > (memspace + memlist_sz))
1421 		prom_panic("memlist overflow");
1422 
1423 	/*
1424 	 * Size the pcf array based on the number of cpus in the box at
1425 	 * boot time.
1426 	 */
1427 	pcf_init();
1428 
1429 	/*
1430 	 * Initialize the page structures from the memory lists.
1431 	 */
1432 	kphysm_init();
1433 
1434 	availrmem_initial = availrmem = freemem;
1435 	PRM_DEBUG(availrmem);
1436 
1437 	/*
1438 	 * Some of the locks depend on page_hashsz being set!
1439 	 * kmem_init() depends on this; so, keep it here.
1440 	 */
1441 	page_lock_init();
1442 
1443 	/*
1444 	 * Initialize kernel memory allocator.
1445 	 */
1446 	kmem_init();
1447 
1448 	/*
1449 	 * Factor in colorequiv to check additional 'equivalent' bins
1450 	 */
1451 	if (&page_set_colorequiv_arr_cpu != NULL)
1452 		page_set_colorequiv_arr_cpu();
1453 	else
1454 		page_set_colorequiv_arr();
1455 
1456 	/*
1457 	 * Initialize bp_mapin().
1458 	 */
1459 	bp_init(shm_alignment, HAT_STRICTORDER);
1460 
1461 	/*
1462 	 * Reserve space for panicbuf, intr_vec_table, reserved interrupt
1463 	 * vector data structures and MPO mblock structs from the 32-bit heap.
1464 	 */
1465 	(void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0,
1466 	    panicbuf, panicbuf + PANICBUFSIZE,
1467 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1468 
1469 	(void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0,
1470 	    intr_vec_table, (caddr_t)intr_vec_table + IVSIZE,
1471 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1472 
1473 	if (mpo_heap32_bufsz > (size_t)0) {
1474 		(void) vmem_xalloc(heap32_arena, mpo_heap32_bufsz,
1475 		    PAGESIZE, 0, 0, mpo_heap32_buf,
1476 		    mpo_heap32_buf + mpo_heap32_bufsz,
1477 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1478 	}
1479 	mem_config_init();
1480 }
1481 
1482 static void
1483 startup_modules(void)
1484 {
1485 	int nhblk1, nhblk8;
1486 	size_t  nhblksz;
1487 	pgcnt_t pages_per_hblk;
1488 	size_t hme8blk_sz, hme1blk_sz;
1489 
1490 	/*
1491 	 * Let the platforms have a chance to change default
1492 	 * values before reading system file.
1493 	 */
1494 	if (&set_platform_defaults)
1495 		set_platform_defaults();
1496 
1497 	/*
1498 	 * Calculate default settings of system parameters based upon
1499 	 * maxusers, yet allow to be overridden via the /etc/system file.
1500 	 */
1501 	param_calc(0);
1502 
1503 	mod_setup();
1504 
1505 	/*
1506 	 * If this is a positron, complain and halt.
1507 	 */
1508 	if (&iam_positron && iam_positron()) {
1509 		cmn_err(CE_WARN, "This hardware platform is not supported"
1510 		    " by this release of Solaris.\n");
1511 #ifdef DEBUG
1512 		prom_enter_mon();	/* Type 'go' to resume */
1513 		cmn_err(CE_WARN, "Booting an unsupported platform.\n");
1514 		cmn_err(CE_WARN, "Booting with down-rev firmware.\n");
1515 
1516 #else /* DEBUG */
1517 		halt(0);
1518 #endif /* DEBUG */
1519 	}
1520 
1521 	/*
1522 	 * If we are running firmware that isn't 64-bit ready
1523 	 * then complain and halt.
1524 	 */
1525 	do_prom_version_check();
1526 
1527 	/*
1528 	 * Initialize system parameters
1529 	 */
1530 	param_init();
1531 
1532 	/*
1533 	 * maxmem is the amount of physical memory we're playing with.
1534 	 */
1535 	maxmem = physmem;
1536 
1537 	/* Set segkp limits. */
1538 	ncbase = kdi_segdebugbase;
1539 	ncend = kdi_segdebugbase;
1540 
1541 	/*
1542 	 * Initialize the hat layer.
1543 	 */
1544 	hat_init();
1545 
1546 	/*
1547 	 * Initialize segment management stuff.
1548 	 */
1549 	seg_init();
1550 
1551 	/*
1552 	 * Create the va>tte handler, so the prom can understand
1553 	 * kernel translations.  The handler is installed later, just
1554 	 * as we are about to take over the trap table from the prom.
1555 	 */
1556 	create_va_to_tte();
1557 
1558 	/*
1559 	 * Load the forthdebugger (optional)
1560 	 */
1561 	forthdebug_init();
1562 
1563 	/*
1564 	 * Create OBP node for console input callbacks
1565 	 * if it is needed.
1566 	 */
1567 	startup_create_io_node();
1568 
1569 	if (modloadonly("fs", "specfs") == -1)
1570 		halt("Can't load specfs");
1571 
1572 	if (modloadonly("fs", "devfs") == -1)
1573 		halt("Can't load devfs");
1574 
1575 	if (modloadonly("misc", "swapgeneric") == -1)
1576 		halt("Can't load swapgeneric");
1577 
1578 	(void) modloadonly("sys", "lbl_edition");
1579 
1580 	dispinit();
1581 
1582 	/*
1583 	 * Infer meanings to the members of the idprom buffer.
1584 	 */
1585 	parse_idprom();
1586 
1587 	/* Read cluster configuration data. */
1588 	clconf_init();
1589 
1590 	setup_ddi();
1591 
1592 	/*
1593 	 * Lets take this opportunity to load the root device.
1594 	 */
1595 	if (loadrootmodules() != 0)
1596 		debug_enter("Can't load the root filesystem");
1597 
1598 	/*
1599 	 * Load tod driver module for the tod part found on this system.
1600 	 * Recompute the cpu frequency/delays based on tod as tod part
1601 	 * tends to keep time more accurately.
1602 	 */
1603 	if (&load_tod_module)
1604 		load_tod_module();
1605 
1606 	/*
1607 	 * Allow platforms to load modules which might
1608 	 * be needed after bootops are gone.
1609 	 */
1610 	if (&load_platform_modules)
1611 		load_platform_modules();
1612 
1613 	setcpudelay();
1614 
1615 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1616 	    &boot_physavail, &boot_physavail_len,
1617 	    &boot_virtavail, &boot_virtavail_len);
1618 
1619 	/*
1620 	 * Calculation and allocation of hmeblks needed to remap
1621 	 * the memory allocated by PROM till now.
1622 	 * Overestimate the number of hblk1 elements by assuming
1623 	 * worst case of TTE64K mappings.
1624 	 * sfmmu_hblk_alloc will panic if this calculation is wrong.
1625 	 */
1626 	bop_alloc_pages = btopr(kmem64_end - kmem64_base);
1627 	pages_per_hblk = btop(HMEBLK_SPAN(TTE64K));
1628 	bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1629 	nhblk1 = bop_alloc_pages / pages_per_hblk + hblk1_min;
1630 
1631 	bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len);
1632 
1633 	/* sfmmu_init_nucleus_hblks expects properly aligned data structures */
1634 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
1635 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
1636 
1637 	bop_alloc_pages += btopr(nhblk1 * hme1blk_sz);
1638 
1639 	pages_per_hblk = btop(HMEBLK_SPAN(TTE8K));
1640 	nhblk8 = 0;
1641 	while (bop_alloc_pages > 1) {
1642 		bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1643 		nhblk8 += bop_alloc_pages /= pages_per_hblk;
1644 		bop_alloc_pages *= hme8blk_sz;
1645 		bop_alloc_pages = btopr(bop_alloc_pages);
1646 	}
1647 	nhblk8 += 2;
1648 
1649 	/*
1650 	 * Since hblk8's can hold up to 64k of mappings aligned on a 64k
1651 	 * boundary, the number of hblk8's needed to map the entries in the
1652 	 * boot_virtavail list needs to be adjusted to take this into
1653 	 * consideration.  Thus, we need to add additional hblk8's since it
1654 	 * is possible that an hblk8 will not have all 8 slots used due to
1655 	 * alignment constraints.  Since there were boot_virtavail_len entries
1656 	 * in that list, we need to add that many hblk8's to the number
1657 	 * already calculated to make sure we don't underestimate.
1658 	 */
1659 	nhblk8 += boot_virtavail_len;
1660 	nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz;
1661 
1662 	/* Allocate in pagesize chunks */
1663 	nhblksz = roundup(nhblksz, MMU_PAGESIZE);
1664 	hblk_base = kmem_zalloc(nhblksz, KM_SLEEP);
1665 	sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1);
1666 }
1667 
1668 static void
1669 startup_bop_gone(void)
1670 {
1671 
1672 	/*
1673 	 * Destroy the MD initialized at startup
1674 	 * The startup initializes the MD framework
1675 	 * using prom and BOP alloc free it now.
1676 	 */
1677 	mach_descrip_startup_fini();
1678 
1679 	/*
1680 	 * We're done with prom allocations.
1681 	 */
1682 	bop_fini();
1683 
1684 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1685 	    &boot_physavail, &boot_physavail_len,
1686 	    &boot_virtavail, &boot_virtavail_len);
1687 
1688 	/*
1689 	 * setup physically contiguous area twice as large as the ecache.
1690 	 * this is used while doing displacement flush of ecaches
1691 	 */
1692 	if (&ecache_flush_address) {
1693 		ecache_flushaddr = ecache_flush_address();
1694 		if (ecache_flushaddr == (uint64_t)-1) {
1695 			cmn_err(CE_PANIC,
1696 			    "startup: no memory to set ecache_flushaddr");
1697 		}
1698 	}
1699 
1700 	/*
1701 	 * Virtual available next.
1702 	 */
1703 	ASSERT(virt_avail != NULL);
1704 	memlist_free_list(virt_avail);
1705 	virt_avail = memlist;
1706 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1707 
1708 }
1709 
1710 
1711 /*
1712  * startup_fixup_physavail - called from mach_sfmmu.c after the final
1713  * allocations have been performed.  We can't call it in startup_bop_gone
1714  * since later operations can cause obp to allocate more memory.
1715  */
1716 void
1717 startup_fixup_physavail(void)
1718 {
1719 	struct memlist *cur;
1720 	size_t kmem64_overmap_size = kmem64_aligned_end - kmem64_end;
1721 
1722 	PRM_DEBUG(kmem64_overmap_size);
1723 
1724 	/*
1725 	 * take the most current snapshot we can by calling mem-update
1726 	 */
1727 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1728 	    &boot_physavail, &boot_physavail_len,
1729 	    &boot_virtavail, &boot_virtavail_len);
1730 
1731 	/*
1732 	 * Copy phys_avail list, again.
1733 	 * Both the kernel/boot and the prom have been allocating
1734 	 * from the original list we copied earlier.
1735 	 */
1736 	cur = memlist;
1737 	copy_memlist(boot_physavail, boot_physavail_len, &memlist);
1738 
1739 	/*
1740 	 * Add any unused kmem64 memory from overmapped page
1741 	 * (Note: va_to_pa does not work for kmem64_end)
1742 	 */
1743 	if (kmem64_overmap_size) {
1744 		memlist_add(kmem64_pabase + (kmem64_end - kmem64_base),
1745 		    kmem64_overmap_size, &memlist, &cur);
1746 	}
1747 
1748 	/*
1749 	 * Add any extra memory after e_data we added to the phys_avail list
1750 	 * back to the old list.
1751 	 */
1752 	if (ndata_remain_sz >= MMU_PAGESIZE)
1753 		memlist_add(va_to_pa(nalloc_base),
1754 		    (uint64_t)ndata_remain_sz, &memlist, &cur);
1755 
1756 	/*
1757 	 * There isn't any bounds checking on the memlist area
1758 	 * so ensure it hasn't overgrown.
1759 	 */
1760 	if ((caddr_t)memlist > (caddr_t)memlist_end)
1761 		cmn_err(CE_PANIC, "startup: memlist size exceeded");
1762 
1763 	/*
1764 	 * The kernel removes the pages that were allocated for it from
1765 	 * the freelist, but we now have to find any -extra- pages that
1766 	 * the prom has allocated for it's own book-keeping, and remove
1767 	 * them from the freelist too. sigh.
1768 	 */
1769 	sync_memlists(phys_avail, cur);
1770 
1771 	ASSERT(phys_avail != NULL);
1772 
1773 	old_phys_avail = phys_avail;
1774 	phys_avail = cur;
1775 }
1776 
1777 void
1778 update_kcage_ranges(uint64_t addr, uint64_t len)
1779 {
1780 	pfn_t base = btop(addr);
1781 	pgcnt_t num = btop(len);
1782 	int rv;
1783 
1784 	rv = kcage_range_add(base, num, kcage_startup_dir);
1785 
1786 	if (rv == ENOMEM) {
1787 		cmn_err(CE_WARN, "%ld megabytes not available to kernel cage",
1788 		    (len == 0 ? 0 : BYTES_TO_MB(len)));
1789 	} else if (rv != 0) {
1790 		/* catch this in debug kernels */
1791 		ASSERT(0);
1792 
1793 		cmn_err(CE_WARN, "unexpected kcage_range_add"
1794 		    " return value %d", rv);
1795 	}
1796 }
1797 
1798 static void
1799 startup_vm(void)
1800 {
1801 	size_t	i;
1802 	struct segmap_crargs a;
1803 	struct segkpm_crargs b;
1804 
1805 	uint64_t avmem;
1806 	caddr_t va;
1807 	pgcnt_t	max_phys_segkp;
1808 	int	mnode;
1809 
1810 	extern int use_brk_lpg, use_stk_lpg;
1811 
1812 	/*
1813 	 * get prom's mappings, create hments for them and switch
1814 	 * to the kernel context.
1815 	 */
1816 	hat_kern_setup();
1817 
1818 	/*
1819 	 * Take over trap table
1820 	 */
1821 	setup_trap_table();
1822 
1823 	/*
1824 	 * Install the va>tte handler, so that the prom can handle
1825 	 * misses and understand the kernel table layout in case
1826 	 * we need call into the prom.
1827 	 */
1828 	install_va_to_tte();
1829 
1830 	/*
1831 	 * Set a flag to indicate that the tba has been taken over.
1832 	 */
1833 	tba_taken_over = 1;
1834 
1835 	/* initialize MMU primary context register */
1836 	mmu_init_kcontext();
1837 
1838 	/*
1839 	 * The boot cpu can now take interrupts, x-calls, x-traps
1840 	 */
1841 	CPUSET_ADD(cpu_ready_set, CPU->cpu_id);
1842 	CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS);
1843 
1844 	/*
1845 	 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR.
1846 	 */
1847 	tbr_wr_addr_inited = 1;
1848 
1849 	/*
1850 	 * Initialize VM system, and map kernel address space.
1851 	 */
1852 	kvm_init();
1853 
1854 	ASSERT(old_phys_avail != NULL && phys_avail != NULL);
1855 	if (kernel_cage_enable) {
1856 		diff_memlists(phys_avail, old_phys_avail, update_kcage_ranges);
1857 	}
1858 	memlist_free_list(old_phys_avail);
1859 
1860 	/*
1861 	 * If the following is true, someone has patched
1862 	 * phsymem to be less than the number of pages that
1863 	 * the system actually has.  Remove pages until system
1864 	 * memory is limited to the requested amount.  Since we
1865 	 * have allocated page structures for all pages, we
1866 	 * correct the amount of memory we want to remove
1867 	 * by the size of the memory used to hold page structures
1868 	 * for the non-used pages.
1869 	 */
1870 	if (physmem + ramdisk_npages < npages) {
1871 		pgcnt_t diff, off;
1872 		struct page *pp;
1873 		struct seg kseg;
1874 
1875 		cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem);
1876 
1877 		off = 0;
1878 		diff = npages - (physmem + ramdisk_npages);
1879 		diff -= mmu_btopr(diff * sizeof (struct page));
1880 		kseg.s_as = &kas;
1881 		while (diff--) {
1882 			pp = page_create_va(&unused_pages_vp, (offset_t)off,
1883 			    MMU_PAGESIZE, PG_WAIT | PG_EXCL,
1884 			    &kseg, (caddr_t)off);
1885 			if (pp == NULL)
1886 				cmn_err(CE_PANIC, "limited physmem too much!");
1887 			page_io_unlock(pp);
1888 			page_downgrade(pp);
1889 			availrmem--;
1890 			off += MMU_PAGESIZE;
1891 		}
1892 	}
1893 
1894 	/*
1895 	 * When printing memory, show the total as physmem less
1896 	 * that stolen by a debugger.
1897 	 */
1898 	cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n",
1899 	    (ulong_t)(physinstalled) << (PAGESHIFT - 10),
1900 	    (ulong_t)(physinstalled) << (PAGESHIFT - 12));
1901 
1902 	avmem = (uint64_t)freemem << PAGESHIFT;
1903 	cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem);
1904 
1905 	/*
1906 	 * For small memory systems disable automatic large pages.
1907 	 */
1908 	if (physmem < privm_lpg_min_physmem) {
1909 		use_brk_lpg = 0;
1910 		use_stk_lpg = 0;
1911 	}
1912 
1913 	/*
1914 	 * Perform platform specific freelist processing
1915 	 */
1916 	if (&plat_freelist_process) {
1917 		for (mnode = 0; mnode < max_mem_nodes; mnode++)
1918 			if (mem_node_config[mnode].exists)
1919 				plat_freelist_process(mnode);
1920 	}
1921 
1922 	/*
1923 	 * Initialize the segkp segment type.  We position it
1924 	 * after the configured tables and buffers (whose end
1925 	 * is given by econtig) and before V_WKBASE_ADDR.
1926 	 * Also in this area is segkmap (size SEGMAPSIZE).
1927 	 */
1928 
1929 	/* XXX - cache alignment? */
1930 	va = (caddr_t)SEGKPBASE;
1931 	ASSERT(((uintptr_t)va & PAGEOFFSET) == 0);
1932 
1933 	max_phys_segkp = (physmem * 2);
1934 
1935 	if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) {
1936 		segkpsize = btop(SEGKPDEFSIZE);
1937 		cmn_err(CE_WARN, "Illegal value for segkpsize. "
1938 		    "segkpsize has been reset to %ld pages", segkpsize);
1939 	}
1940 
1941 	i = ptob(MIN(segkpsize, max_phys_segkp));
1942 
1943 	rw_enter(&kas.a_lock, RW_WRITER);
1944 	if (seg_attach(&kas, va, i, segkp) < 0)
1945 		cmn_err(CE_PANIC, "startup: cannot attach segkp");
1946 	if (segkp_create(segkp) != 0)
1947 		cmn_err(CE_PANIC, "startup: segkp_create failed");
1948 	rw_exit(&kas.a_lock);
1949 
1950 	/*
1951 	 * kpm segment
1952 	 */
1953 	segmap_kpm = kpm_enable &&
1954 	    segmap_kpm && PAGESIZE == MAXBSIZE;
1955 
1956 	if (kpm_enable) {
1957 		rw_enter(&kas.a_lock, RW_WRITER);
1958 
1959 		/*
1960 		 * The segkpm virtual range range is larger than the
1961 		 * actual physical memory size and also covers gaps in
1962 		 * the physical address range for the following reasons:
1963 		 * . keep conversion between segkpm and physical addresses
1964 		 *   simple, cheap and unambiguous.
1965 		 * . avoid extension/shrink of the the segkpm in case of DR.
1966 		 * . avoid complexity for handling of virtual addressed
1967 		 *   caches, segkpm and the regular mapping scheme must be
1968 		 *   kept in sync wrt. the virtual color of mapped pages.
1969 		 * Any accesses to virtual segkpm ranges not backed by
1970 		 * physical memory will fall through the memseg pfn hash
1971 		 * and will be handled in segkpm_fault.
1972 		 * Additional kpm_size spaces needed for vac alias prevention.
1973 		 */
1974 		if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors,
1975 		    segkpm) < 0)
1976 			cmn_err(CE_PANIC, "cannot attach segkpm");
1977 
1978 		b.prot = PROT_READ | PROT_WRITE;
1979 		b.nvcolors = shm_alignment >> MMU_PAGESHIFT;
1980 
1981 		if (segkpm_create(segkpm, (caddr_t)&b) != 0)
1982 			panic("segkpm_create segkpm");
1983 
1984 		rw_exit(&kas.a_lock);
1985 
1986 		mach_kpm_init();
1987 	}
1988 
1989 	if (!segzio_fromheap) {
1990 		size_t size;
1991 		size_t physmem_b = mmu_ptob(physmem);
1992 
1993 		/* size is in bytes, segziosize is in pages */
1994 		if (segziosize == 0) {
1995 			size = physmem_b;
1996 		} else {
1997 			size = mmu_ptob(segziosize);
1998 		}
1999 
2000 		if (size < SEGZIOMINSIZE) {
2001 			size = SEGZIOMINSIZE;
2002 		} else if (size > SEGZIOMAXSIZE) {
2003 			size = SEGZIOMAXSIZE;
2004 			/*
2005 			 * On 64-bit x86, we only have 2TB of KVA.  This exists
2006 			 * for parity with x86.
2007 			 *
2008 			 * SEGZIOMAXSIZE is capped at 512gb so that segzio
2009 			 * doesn't consume all of KVA.  However, if we have a
2010 			 * system that has more thant 512gb of physical memory,
2011 			 * we can actually consume about half of the difference
2012 			 * between 512gb and the rest of the available physical
2013 			 * memory.
2014 			 */
2015 			if (physmem_b > SEGZIOMAXSIZE) {
2016 				size += (physmem_b - SEGZIOMAXSIZE) / 2;
2017 		}
2018 		}
2019 		segziosize = mmu_btop(roundup(size, MMU_PAGESIZE));
2020 		/* put the base of the ZIO segment after the kpm segment */
2021 		segzio_base = kpm_vbase + (kpm_size * vac_colors);
2022 		PRM_DEBUG(segziosize);
2023 		PRM_DEBUG(segzio_base);
2024 
2025 		/*
2026 		 * On some platforms, kvm_init is called after the kpm
2027 		 * sizes have been determined.  On SPARC, kvm_init is called
2028 		 * before, so we have to attach the kzioseg after kvm is
2029 		 * initialized, otherwise we'll try to allocate from the boot
2030 		 * area since the kernel heap hasn't yet been configured.
2031 		 */
2032 		rw_enter(&kas.a_lock, RW_WRITER);
2033 
2034 		(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2035 		    &kzioseg);
2036 		(void) segkmem_zio_create(&kzioseg);
2037 
2038 		/* create zio area covering new segment */
2039 		segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2040 
2041 		rw_exit(&kas.a_lock);
2042 	}
2043 
2044 
2045 	/*
2046 	 * Now create generic mapping segment.  This mapping
2047 	 * goes SEGMAPSIZE beyond SEGMAPBASE.  But if the total
2048 	 * virtual address is greater than the amount of free
2049 	 * memory that is available, then we trim back the
2050 	 * segment size to that amount
2051 	 */
2052 	va = (caddr_t)SEGMAPBASE;
2053 
2054 	/*
2055 	 * 1201049: segkmap base address must be MAXBSIZE aligned
2056 	 */
2057 	ASSERT(((uintptr_t)va & MAXBOFFSET) == 0);
2058 
2059 	/*
2060 	 * Set size of segmap to percentage of freemem at boot,
2061 	 * but stay within the allowable range
2062 	 * Note we take percentage  before converting from pages
2063 	 * to bytes to avoid an overflow on 32-bit kernels.
2064 	 */
2065 	i = mmu_ptob((freemem * segmap_percent) / 100);
2066 
2067 	if (i < MINMAPSIZE)
2068 		i = MINMAPSIZE;
2069 
2070 	if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem)))
2071 		i = MIN(SEGMAPSIZE, mmu_ptob(freemem));
2072 
2073 	i &= MAXBMASK;	/* 1201049: segkmap size must be MAXBSIZE aligned */
2074 
2075 	rw_enter(&kas.a_lock, RW_WRITER);
2076 	if (seg_attach(&kas, va, i, segkmap) < 0)
2077 		cmn_err(CE_PANIC, "cannot attach segkmap");
2078 
2079 	a.prot = PROT_READ | PROT_WRITE;
2080 	a.shmsize = shm_alignment;
2081 	a.nfreelist = 0;	/* use segmap driver defaults */
2082 
2083 	if (segmap_create(segkmap, (caddr_t)&a) != 0)
2084 		panic("segmap_create segkmap");
2085 	rw_exit(&kas.a_lock);
2086 
2087 	segdev_init();
2088 }
2089 
2090 static void
2091 startup_end(void)
2092 {
2093 	if ((caddr_t)memlist > (caddr_t)memlist_end)
2094 		panic("memlist overflow 2");
2095 	memlist_free_block((caddr_t)memlist,
2096 	    ((caddr_t)memlist_end - (caddr_t)memlist));
2097 	memlist = NULL;
2098 
2099 	/* enable page_relocation since OBP is now done */
2100 	page_relocate_ready = 1;
2101 
2102 	/*
2103 	 * Perform tasks that get done after most of the VM
2104 	 * initialization has been done but before the clock
2105 	 * and other devices get started.
2106 	 */
2107 	kern_setup1();
2108 
2109 	/*
2110 	 * Intialize the VM arenas for allocating physically
2111 	 * contiguus memory chunk for interrupt queues snd
2112 	 * allocate/register boot cpu's queues, if any and
2113 	 * allocate dump buffer for sun4v systems to store
2114 	 * extra crash information during crash dump
2115 	 */
2116 	contig_mem_init();
2117 	mach_descrip_init();
2118 
2119 	if (cpu_intrq_setup(CPU)) {
2120 		cmn_err(CE_PANIC, "cpu%d: setup failed", CPU->cpu_id);
2121 	}
2122 	cpu_intrq_register(CPU);
2123 	mach_htraptrace_setup(CPU->cpu_id);
2124 	mach_htraptrace_configure(CPU->cpu_id);
2125 	mach_dump_buffer_init();
2126 
2127 	/*
2128 	 * Initialize interrupt related stuff
2129 	 */
2130 	cpu_intr_alloc(CPU, NINTR_THREADS);
2131 
2132 	(void) splzs();			/* allow hi clock ints but not zs */
2133 
2134 	/*
2135 	 * Initialize errors.
2136 	 */
2137 	error_init();
2138 
2139 	/*
2140 	 * Note that we may have already used kernel bcopy before this
2141 	 * point - but if you really care about this, adb the use_hw_*
2142 	 * variables to 0 before rebooting.
2143 	 */
2144 	mach_hw_copy_limit();
2145 
2146 	/*
2147 	 * Install the "real" preemption guards before DDI services
2148 	 * are available.
2149 	 */
2150 	(void) prom_set_preprom(kern_preprom);
2151 	(void) prom_set_postprom(kern_postprom);
2152 	CPU->cpu_m.mutex_ready = 1;
2153 
2154 	/*
2155 	 * Initialize segnf (kernel support for non-faulting loads).
2156 	 */
2157 	segnf_init();
2158 
2159 	/*
2160 	 * Configure the root devinfo node.
2161 	 */
2162 	configure();		/* set up devices */
2163 	mach_cpu_halt_idle();
2164 }
2165 
2166 
2167 void
2168 post_startup(void)
2169 {
2170 #ifdef	PTL1_PANIC_DEBUG
2171 	extern void init_ptl1_thread(void);
2172 #endif	/* PTL1_PANIC_DEBUG */
2173 	extern void abort_sequence_init(void);
2174 
2175 	/*
2176 	 * Set the system wide, processor-specific flags to be passed
2177 	 * to userland via the aux vector for performance hints and
2178 	 * instruction set extensions.
2179 	 */
2180 	bind_hwcap();
2181 
2182 	/*
2183 	 * Startup memory scrubber (if any)
2184 	 */
2185 	mach_memscrub();
2186 
2187 	/*
2188 	 * Allocate soft interrupt to handle abort sequence.
2189 	 */
2190 	abort_sequence_init();
2191 
2192 	/*
2193 	 * Configure the rest of the system.
2194 	 * Perform forceloading tasks for /etc/system.
2195 	 */
2196 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2197 	/*
2198 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2199 	 * ON4.0: This must be fixed or restated in /etc/systems.
2200 	 */
2201 	(void) modload("fs", "procfs");
2202 
2203 	/* load machine class specific drivers */
2204 	load_mach_drivers();
2205 
2206 	/* load platform specific drivers */
2207 	if (&load_platform_drivers)
2208 		load_platform_drivers();
2209 
2210 	/* load vis simulation module, if we are running w/fpu off */
2211 	if (!fpu_exists) {
2212 		if (modload("misc", "vis") == -1)
2213 			halt("Can't load vis");
2214 	}
2215 
2216 	mach_fpras();
2217 
2218 	maxmem = freemem;
2219 
2220 #ifdef	PTL1_PANIC_DEBUG
2221 	init_ptl1_thread();
2222 #endif	/* PTL1_PANIC_DEBUG */
2223 }
2224 
2225 #ifdef	PTL1_PANIC_DEBUG
2226 int		ptl1_panic_test = 0;
2227 int		ptl1_panic_xc_one_test = 0;
2228 int		ptl1_panic_xc_all_test = 0;
2229 int		ptl1_panic_xt_one_test = 0;
2230 int		ptl1_panic_xt_all_test = 0;
2231 kthread_id_t	ptl1_thread_p = NULL;
2232 kcondvar_t	ptl1_cv;
2233 kmutex_t	ptl1_mutex;
2234 int		ptl1_recurse_count_threshold = 0x40;
2235 int		ptl1_recurse_trap_threshold = 0x3d;
2236 extern void	ptl1_recurse(int, int);
2237 extern void	ptl1_panic_xt(int, int);
2238 
2239 /*
2240  * Called once per second by timeout() to wake up
2241  * the ptl1_panic thread to see if it should cause
2242  * a trap to the ptl1_panic() code.
2243  */
2244 /* ARGSUSED */
2245 static void
2246 ptl1_wakeup(void *arg)
2247 {
2248 	mutex_enter(&ptl1_mutex);
2249 	cv_signal(&ptl1_cv);
2250 	mutex_exit(&ptl1_mutex);
2251 }
2252 
2253 /*
2254  * ptl1_panic cross call function:
2255  *     Needed because xc_one() and xc_some() can pass
2256  *	64 bit args but ptl1_recurse() expects ints.
2257  */
2258 static void
2259 ptl1_panic_xc(void)
2260 {
2261 	ptl1_recurse(ptl1_recurse_count_threshold,
2262 	    ptl1_recurse_trap_threshold);
2263 }
2264 
2265 /*
2266  * The ptl1 thread waits for a global flag to be set
2267  * and uses the recurse thresholds to set the stack depth
2268  * to cause a ptl1_panic() directly via a call to ptl1_recurse
2269  * or indirectly via the cross call and cross trap functions.
2270  *
2271  * This is useful testing stack overflows and normal
2272  * ptl1_panic() states with a know stack frame.
2273  *
2274  * ptl1_recurse() is an asm function in ptl1_panic.s that
2275  * sets the {In, Local, Out, and Global} registers to a
2276  * know state on the stack and just prior to causing a
2277  * test ptl1_panic trap.
2278  */
2279 static void
2280 ptl1_thread(void)
2281 {
2282 	mutex_enter(&ptl1_mutex);
2283 	while (ptl1_thread_p) {
2284 		cpuset_t	other_cpus;
2285 		int		cpu_id;
2286 		int		my_cpu_id;
2287 		int		target_cpu_id;
2288 		int		target_found;
2289 
2290 		if (ptl1_panic_test) {
2291 			ptl1_recurse(ptl1_recurse_count_threshold,
2292 			    ptl1_recurse_trap_threshold);
2293 		}
2294 
2295 		/*
2296 		 * Find potential targets for x-call and x-trap,
2297 		 * if any exist while preempt is disabled we
2298 		 * start a ptl1_panic if requested via a
2299 		 * globals.
2300 		 */
2301 		kpreempt_disable();
2302 		my_cpu_id = CPU->cpu_id;
2303 		other_cpus = cpu_ready_set;
2304 		CPUSET_DEL(other_cpus, CPU->cpu_id);
2305 		target_found = 0;
2306 		if (!CPUSET_ISNULL(other_cpus)) {
2307 			/*
2308 			 * Pick the first one
2309 			 */
2310 			for (cpu_id = 0; cpu_id < NCPU; cpu_id++) {
2311 				if (cpu_id == my_cpu_id)
2312 					continue;
2313 
2314 				if (CPU_XCALL_READY(cpu_id)) {
2315 					target_cpu_id = cpu_id;
2316 					target_found = 1;
2317 					break;
2318 				}
2319 			}
2320 			ASSERT(target_found);
2321 
2322 			if (ptl1_panic_xc_one_test) {
2323 				xc_one(target_cpu_id,
2324 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2325 			}
2326 			if (ptl1_panic_xc_all_test) {
2327 				xc_some(other_cpus,
2328 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2329 			}
2330 			if (ptl1_panic_xt_one_test) {
2331 				xt_one(target_cpu_id,
2332 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2333 			}
2334 			if (ptl1_panic_xt_all_test) {
2335 				xt_some(other_cpus,
2336 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2337 			}
2338 		}
2339 		kpreempt_enable();
2340 		(void) timeout(ptl1_wakeup, NULL, hz);
2341 		(void) cv_wait(&ptl1_cv, &ptl1_mutex);
2342 	}
2343 	mutex_exit(&ptl1_mutex);
2344 }
2345 
2346 /*
2347  * Called during early startup to create the ptl1_thread
2348  */
2349 void
2350 init_ptl1_thread(void)
2351 {
2352 	ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0,
2353 	    &p0, TS_RUN, 0);
2354 }
2355 #endif	/* PTL1_PANIC_DEBUG */
2356 
2357 
2358 static void
2359 memlist_new(uint64_t start, uint64_t len, struct memlist **memlistp)
2360 {
2361 	struct memlist *new;
2362 
2363 	new = *memlistp;
2364 	new->address = start;
2365 	new->size = len;
2366 	*memlistp = new + 1;
2367 }
2368 
2369 /*
2370  * Add to a memory list.
2371  * start = start of new memory segment
2372  * len = length of new memory segment in bytes
2373  * memlistp = pointer to array of available memory segment structures
2374  * curmemlistp = memory list to which to add segment.
2375  */
2376 static void
2377 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp,
2378 	struct memlist **curmemlistp)
2379 {
2380 	struct memlist *new = *memlistp;
2381 
2382 	memlist_new(start, len, memlistp);
2383 	memlist_insert(new, curmemlistp);
2384 }
2385 
2386 static int
2387 ndata_alloc_memseg(struct memlist *ndata, size_t avail)
2388 {
2389 	int nseg;
2390 	size_t memseg_sz;
2391 	struct memseg *msp;
2392 
2393 	/*
2394 	 * The memseg list is for the chunks of physical memory that
2395 	 * will be managed by the vm system.  The number calculated is
2396 	 * a guess as boot may fragment it more when memory allocations
2397 	 * are made before kphysm_init().
2398 	 */
2399 	memseg_sz = (avail + 10) * sizeof (struct memseg);
2400 	memseg_sz = roundup(memseg_sz, PAGESIZE);
2401 	nseg = memseg_sz / sizeof (struct memseg);
2402 	msp = ndata_alloc(ndata, memseg_sz, ecache_alignsize);
2403 	if (msp == NULL)
2404 		return (1);
2405 	PRM_DEBUG(memseg_free);
2406 
2407 	while (nseg--) {
2408 		msp->next = memseg_free;
2409 		memseg_free = msp;
2410 		msp++;
2411 	}
2412 	return (0);
2413 }
2414 
2415 /*
2416  * In the case of architectures that support dynamic addition of
2417  * memory at run-time there are two cases where memsegs need to
2418  * be initialized and added to the memseg list.
2419  * 1) memsegs that are constructed at startup.
2420  * 2) memsegs that are constructed at run-time on
2421  *    hot-plug capable architectures.
2422  * This code was originally part of the function kphysm_init().
2423  */
2424 
2425 static void
2426 memseg_list_add(struct memseg *memsegp)
2427 {
2428 	struct memseg **prev_memsegp;
2429 	pgcnt_t num;
2430 
2431 	/* insert in memseg list, decreasing number of pages order */
2432 
2433 	num = MSEG_NPAGES(memsegp);
2434 
2435 	for (prev_memsegp = &memsegs; *prev_memsegp;
2436 	    prev_memsegp = &((*prev_memsegp)->next)) {
2437 		if (num > MSEG_NPAGES(*prev_memsegp))
2438 			break;
2439 	}
2440 
2441 	memsegp->next = *prev_memsegp;
2442 	*prev_memsegp = memsegp;
2443 
2444 	if (kpm_enable) {
2445 		memsegp->nextpa = (memsegp->next) ?
2446 		    va_to_pa(memsegp->next) : MSEG_NULLPTR_PA;
2447 
2448 		if (prev_memsegp != &memsegs) {
2449 			struct memseg *msp;
2450 			msp = (struct memseg *)((caddr_t)prev_memsegp -
2451 			    offsetof(struct memseg, next));
2452 			msp->nextpa = va_to_pa(memsegp);
2453 		} else {
2454 			memsegspa = va_to_pa(memsegs);
2455 		}
2456 	}
2457 }
2458 
2459 /*
2460  * PSM add_physmem_cb(). US-II and newer processors have some
2461  * flavor of the prefetch capability implemented. We exploit
2462  * this capability for optimum performance.
2463  */
2464 #define	PREFETCH_BYTES	64
2465 
2466 void
2467 add_physmem_cb(page_t *pp, pfn_t pnum)
2468 {
2469 	extern void	 prefetch_page_w(void *);
2470 
2471 	pp->p_pagenum = pnum;
2472 
2473 	/*
2474 	 * Prefetch one more page_t into E$. To prevent future
2475 	 * mishaps with the sizeof(page_t) changing on us, we
2476 	 * catch this on debug kernels if we can't bring in the
2477 	 * entire hpage with 2 PREFETCH_BYTES reads. See
2478 	 * also, sun4u/cpu/cpu_module.c
2479 	 */
2480 	/*LINTED*/
2481 	ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES);
2482 	prefetch_page_w((char *)pp);
2483 }
2484 
2485 /*
2486  * Find memseg with given pfn
2487  */
2488 static struct memseg *
2489 memseg_find(pfn_t base, pfn_t *next)
2490 {
2491 	struct memseg *seg;
2492 
2493 	if (next != NULL)
2494 		*next = LONG_MAX;
2495 	for (seg = memsegs; seg != NULL; seg = seg->next) {
2496 		if (base >= seg->pages_base && base < seg->pages_end)
2497 			return (seg);
2498 		if (next != NULL && seg->pages_base > base &&
2499 		    seg->pages_base < *next)
2500 			*next = seg->pages_base;
2501 	}
2502 	return (NULL);
2503 }
2504 
2505 extern struct vnode prom_ppages;
2506 
2507 /*
2508  * Put page allocated by OBP on prom_ppages
2509  */
2510 static void
2511 kphysm_erase(uint64_t addr, uint64_t len)
2512 {
2513 	struct page *pp;
2514 	struct memseg *seg;
2515 	pfn_t base = btop(addr), next;
2516 	pgcnt_t num = btop(len);
2517 
2518 	while (num != 0) {
2519 		pgcnt_t off, left;
2520 
2521 		seg = memseg_find(base, &next);
2522 		if (seg == NULL) {
2523 			if (next == LONG_MAX)
2524 				break;
2525 			left = MIN(next - base, num);
2526 			base += left, num -= left;
2527 			continue;
2528 		}
2529 		off = base - seg->pages_base;
2530 		pp = seg->pages + off;
2531 		left = num - MIN(num, (seg->pages_end - seg->pages_base) - off);
2532 		while (num != left) {
2533 			/*
2534 			 * init it, lock it, and hashin on prom_pages vp.
2535 			 *
2536 			 * XXX	vnode offsets on the prom_ppages vnode
2537 			 *	are page numbers (gack) for >32 bit
2538 			 *	physical memory machines.
2539 			 */
2540 			add_physmem_cb(pp, base);
2541 			if (page_trylock(pp, SE_EXCL) == 0)
2542 				cmn_err(CE_PANIC, "prom page locked");
2543 			(void) page_hashin(pp, &prom_ppages,
2544 			    (offset_t)base, NULL);
2545 			(void) page_pp_lock(pp, 0, 1);
2546 			pp++, base++, num--;
2547 		}
2548 	}
2549 }
2550 
2551 static page_t *ppnext;
2552 static pgcnt_t ppleft;
2553 
2554 static void *kpm_ppnext;
2555 static pgcnt_t kpm_ppleft;
2556 
2557 /*
2558  * Create a memseg
2559  */
2560 static void
2561 kphysm_memseg(uint64_t addr, uint64_t len)
2562 {
2563 	pfn_t base = btop(addr);
2564 	pgcnt_t num = btop(len);
2565 	struct memseg *seg;
2566 
2567 	seg = memseg_free;
2568 	memseg_free = seg->next;
2569 	ASSERT(seg != NULL);
2570 
2571 	seg->pages = ppnext;
2572 	seg->epages = ppnext + num;
2573 	seg->pages_base = base;
2574 	seg->pages_end = base + num;
2575 	ppnext += num;
2576 	ppleft -= num;
2577 
2578 	if (kpm_enable) {
2579 		pgcnt_t kpnum = ptokpmpr(num);
2580 
2581 		if (kpnum > kpm_ppleft)
2582 			panic("kphysm_memseg: kpm_pp overflow");
2583 		seg->pagespa = va_to_pa(seg->pages);
2584 		seg->epagespa = va_to_pa(seg->epages);
2585 		seg->kpm_pbase = kpmptop(ptokpmp(base));
2586 		seg->kpm_nkpmpgs = kpnum;
2587 		/*
2588 		 * In the kpm_smallpage case, the kpm array
2589 		 * is 1-1 wrt the page array
2590 		 */
2591 		if (kpm_smallpages) {
2592 			kpm_spage_t *kpm_pp = kpm_ppnext;
2593 
2594 			kpm_ppnext = kpm_pp + kpnum;
2595 			seg->kpm_spages = kpm_pp;
2596 			seg->kpm_pagespa = va_to_pa(seg->kpm_spages);
2597 		} else {
2598 			kpm_page_t *kpm_pp = kpm_ppnext;
2599 
2600 			kpm_ppnext = kpm_pp + kpnum;
2601 			seg->kpm_pages = kpm_pp;
2602 			seg->kpm_pagespa = va_to_pa(seg->kpm_pages);
2603 			/* ASSERT no kpm overlaps */
2604 			ASSERT(
2605 			    memseg_find(base - pmodkpmp(base), NULL) == NULL);
2606 			ASSERT(memseg_find(
2607 			    roundup(base + num, kpmpnpgs) - 1, NULL) == NULL);
2608 		}
2609 		kpm_ppleft -= num;
2610 	}
2611 
2612 	memseg_list_add(seg);
2613 }
2614 
2615 /*
2616  * Add range to free list
2617  */
2618 void
2619 kphysm_add(uint64_t addr, uint64_t len, int reclaim)
2620 {
2621 	struct page *pp;
2622 	struct memseg *seg;
2623 	pfn_t base = btop(addr);
2624 	pgcnt_t num = btop(len);
2625 
2626 	seg = memseg_find(base, NULL);
2627 	ASSERT(seg != NULL);
2628 	pp = seg->pages + (base - seg->pages_base);
2629 
2630 	if (reclaim) {
2631 		struct page *rpp = pp;
2632 		struct page *lpp = pp + num;
2633 
2634 		/*
2635 		 * page should be locked on prom_ppages
2636 		 * unhash and unlock it
2637 		 */
2638 		while (rpp < lpp) {
2639 			ASSERT(PAGE_EXCL(rpp) && rpp->p_vnode == &prom_ppages);
2640 			page_pp_unlock(rpp, 0, 1);
2641 			page_hashout(rpp, NULL);
2642 			page_unlock(rpp);
2643 			rpp++;
2644 		}
2645 	}
2646 
2647 	/*
2648 	 * add_physmem() initializes the PSM part of the page
2649 	 * struct by calling the PSM back with add_physmem_cb().
2650 	 * In addition it coalesces pages into larger pages as
2651 	 * it initializes them.
2652 	 */
2653 	add_physmem(pp, num, base);
2654 }
2655 
2656 /*
2657  * kphysm_init() tackles the problem of initializing physical memory.
2658  */
2659 static void
2660 kphysm_init(void)
2661 {
2662 	struct memlist *pmem;
2663 
2664 	ASSERT(page_hash != NULL && page_hashsz != 0);
2665 
2666 	ppnext = pp_base;
2667 	ppleft = npages;
2668 	kpm_ppnext = kpm_pp_base;
2669 	kpm_ppleft = kpm_npages;
2670 
2671 	/*
2672 	 * installed pages not on nopp_memlist go in memseg list
2673 	 */
2674 	diff_memlists(phys_install, nopp_list, kphysm_memseg);
2675 
2676 	/*
2677 	 * Free the avail list
2678 	 */
2679 	for (pmem = phys_avail; pmem != NULL; pmem = pmem->next)
2680 		kphysm_add(pmem->address, pmem->size, 0);
2681 
2682 	/*
2683 	 * Erase pages that aren't available
2684 	 */
2685 	diff_memlists(phys_install, phys_avail, kphysm_erase);
2686 
2687 	build_pfn_hash();
2688 }
2689 
2690 /*
2691  * Kernel VM initialization.
2692  * Assumptions about kernel address space ordering:
2693  *	(1) gap (user space)
2694  *	(2) kernel text
2695  *	(3) kernel data/bss
2696  *	(4) gap
2697  *	(5) kernel data structures
2698  *	(6) gap
2699  *	(7) debugger (optional)
2700  *	(8) monitor
2701  *	(9) gap (possibly null)
2702  *	(10) dvma
2703  *	(11) devices
2704  */
2705 static void
2706 kvm_init(void)
2707 {
2708 	/*
2709 	 * Put the kernel segments in kernel address space.
2710 	 */
2711 	rw_enter(&kas.a_lock, RW_WRITER);
2712 	as_avlinit(&kas);
2713 
2714 	(void) seg_attach(&kas, (caddr_t)KERNELBASE,
2715 	    (size_t)(e_moddata - KERNELBASE), &ktextseg);
2716 	(void) segkmem_create(&ktextseg);
2717 
2718 	(void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M),
2719 	    (size_t)(MMU_PAGESIZE4M), &ktexthole);
2720 	(void) segkmem_create(&ktexthole);
2721 
2722 	(void) seg_attach(&kas, (caddr_t)valloc_base,
2723 	    (size_t)(econtig32 - valloc_base), &kvalloc);
2724 	(void) segkmem_create(&kvalloc);
2725 
2726 	if (kmem64_base) {
2727 		(void) seg_attach(&kas, (caddr_t)kmem64_base,
2728 		    (size_t)(kmem64_end - kmem64_base), &kmem64);
2729 		(void) segkmem_create(&kmem64);
2730 	}
2731 
2732 	/*
2733 	 * We're about to map out /boot.  This is the beginning of the
2734 	 * system resource management transition. We can no longer
2735 	 * call into /boot for I/O or memory allocations.
2736 	 */
2737 	(void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg);
2738 	(void) segkmem_create(&kvseg);
2739 	hblk_alloc_dynamic = 1;
2740 
2741 	/*
2742 	 * we need to preallocate pages for DR operations before enabling large
2743 	 * page kernel heap because of memseg_remap_init() hat_unload() hack.
2744 	 */
2745 	memseg_remap_init();
2746 
2747 	/* at this point we are ready to use large page heap */
2748 	segkmem_heap_lp_init();
2749 
2750 	(void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32,
2751 	    &kvseg32);
2752 	(void) segkmem_create(&kvseg32);
2753 
2754 	/*
2755 	 * Create a segment for the debugger.
2756 	 */
2757 	(void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2758 	(void) segkmem_create(&kdebugseg);
2759 
2760 	rw_exit(&kas.a_lock);
2761 }
2762 
2763 char obp_tte_str[] =
2764 	"h# %x constant MMU_PAGESHIFT "
2765 	"h# %x constant TTE8K "
2766 	"h# %x constant SFHME_SIZE "
2767 	"h# %x constant SFHME_TTE "
2768 	"h# %x constant HMEBLK_TAG "
2769 	"h# %x constant HMEBLK_NEXT "
2770 	"h# %x constant HMEBLK_MISC "
2771 	"h# %x constant HMEBLK_HME1 "
2772 	"h# %x constant NHMENTS "
2773 	"h# %x constant HBLK_SZMASK "
2774 	"h# %x constant HBLK_RANGE_SHIFT "
2775 	"h# %x constant HMEBP_HBLK "
2776 	"h# %x constant HMEBLK_ENDPA "
2777 	"h# %x constant HMEBUCKET_SIZE "
2778 	"h# %x constant HTAG_SFMMUPSZ "
2779 	"h# %x constant HTAG_BSPAGE_SHIFT "
2780 	"h# %x constant HTAG_REHASH_SHIFT "
2781 	"h# %x constant SFMMU_INVALID_SHMERID "
2782 	"h# %x constant mmu_hashcnt "
2783 	"h# %p constant uhme_hash "
2784 	"h# %p constant khme_hash "
2785 	"h# %x constant UHMEHASH_SZ "
2786 	"h# %x constant KHMEHASH_SZ "
2787 	"h# %p constant KCONTEXT "
2788 	"h# %p constant KHATID "
2789 	"h# %x constant ASI_MEM "
2790 	"h# %x constant SOFTEXEC "
2791 	"h# %x constant EXECPRM "
2792 
2793 	": PHYS-X@ ( phys -- data ) "
2794 	"   ASI_MEM spacex@ "
2795 	"; "
2796 
2797 	": PHYS-W@ ( phys -- data ) "
2798 	"   ASI_MEM spacew@ "
2799 	"; "
2800 
2801 	": PHYS-L@ ( phys -- data ) "
2802 	"   ASI_MEM spaceL@ "
2803 	"; "
2804 
2805 	": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) "
2806 	"   3 * MMU_PAGESHIFT + "
2807 	"; "
2808 
2809 	": TTE_IS_VALID ( ttep -- flag ) "
2810 	"   PHYS-X@ 0< "
2811 	"; "
2812 
2813 	": HME_HASH_SHIFT ( ttesz -- hmeshift ) "
2814 	"   dup TTE8K =  if "
2815 	"      drop HBLK_RANGE_SHIFT "
2816 	"   else "
2817 	"      TTE_PAGE_SHIFT "
2818 	"   then "
2819 	"; "
2820 
2821 	": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) "
2822 	"   tuck >> swap MMU_PAGESHIFT - << "
2823 	"; "
2824 
2825 	": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) "
2826 	"   >> over xor swap                    ( hash sfmmup ) "
2827 	"   KHATID <>  if                       ( hash ) "
2828 	"      UHMEHASH_SZ and                  ( bucket ) "
2829 	"      HMEBUCKET_SIZE * uhme_hash +     ( hmebp ) "
2830 	"   else                                ( hash ) "
2831 	"      KHMEHASH_SZ and                  ( bucket ) "
2832 	"      HMEBUCKET_SIZE * khme_hash +     ( hmebp ) "
2833 	"   then                                ( hmebp ) "
2834 	"; "
2835 
2836 	": HME_HASH_TABLE_SEARCH "
2837 	"       ( sfmmup hmebp hblktag --  sfmmup null | sfmmup hmeblkp ) "
2838 	"   >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) "
2839 	"      dup HMEBLK_ENDPA <> if     ( sfmmup hmeblkp ) ( r: hblktag ) "
2840 	"         dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp )	  "
2841 	"	     dup hmeblk_tag + 8 + phys-x@ 2 pick = if		  "
2842 	"		  true 	( sfmmup hmeblkp true ) ( r: hblktag )	  "
2843 	"	     else						  "
2844 	"	     	  hmeblk_next + phys-x@ false 			  "
2845 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2846 	"	     then  						  "
2847 	"	  else							  "
2848 	"	     hmeblk_next + phys-x@ false 			  "
2849 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2850 	"	  then 							  "
2851 	"      else							  "
2852 	"         drop 0 true 						  "
2853 	"      then  							  "
2854 	"   until r> drop 						  "
2855 	"; "
2856 
2857 	": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) "
2858 	"   over HME_HASH_SHIFT HME_HASH_BSPAGE  ( sfmmup rehash bspage ) "
2859 	"   HTAG_BSPAGE_SHIFT <<		 ( sfmmup rehash htag-bspage )"
2860 	"   swap HTAG_REHASH_SHIFT << or	 ( sfmmup htag-bspage-rehash )"
2861 	"   SFMMU_INVALID_SHMERID or nip	 ( hblktag ) "
2862 	"; "
2863 
2864 	": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) "
2865 	"   over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and  ( hmeblkp addr ttesz ) "
2866 	"   TTE8K =  if                            ( hmeblkp addr ) "
2867 	"      MMU_PAGESHIFT >> NHMENTS 1- and     ( hmeblkp hme-index ) "
2868 	"   else                                   ( hmeblkp addr ) "
2869 	"      drop 0                              ( hmeblkp 0 ) "
2870 	"   then                                   ( hmeblkp hme-index ) "
2871 	"   SFHME_SIZE * + HMEBLK_HME1 +           ( hmep ) "
2872 	"   SFHME_TTE +                            ( ttep ) "
2873 	"; "
2874 
2875 	": unix-tte ( addr cnum -- false | tte-data true ) "
2876 	"    KCONTEXT = if                   ( addr ) "
2877 	"	KHATID                       ( addr khatid ) "
2878 	"    else                            ( addr ) "
2879 	"       drop false exit              ( false ) "
2880 	"    then "
2881 	"      ( addr khatid ) "
2882 	"      mmu_hashcnt 1+ 1  do           ( addr sfmmup ) "
2883 	"         2dup swap i HME_HASH_SHIFT  "
2884 					"( addr sfmmup sfmmup addr hmeshift ) "
2885 	"         HME_HASH_FUNCTION           ( addr sfmmup hmebp ) "
2886 	"         over i 4 pick               "
2887 				"( addr sfmmup hmebp sfmmup rehash addr ) "
2888 	"         HME_HASH_TAG                ( addr sfmmup hmebp hblktag ) "
2889 	"         HME_HASH_TABLE_SEARCH       "
2890 					"( addr sfmmup { null | hmeblkp } ) "
2891 	"         ?dup  if                    ( addr sfmmup hmeblkp ) "
2892 	"            nip swap HBLK_TO_TTEP    ( ttep ) "
2893 	"            dup TTE_IS_VALID  if     ( valid-ttep ) "
2894 	"               PHYS-X@               ( tte-data ) "
2895 	"               dup SOFTEXEC and 0> if  ( tte-data ) "
2896 	"                 SOFTEXEC - EXECPRM or ( tte-data ) "
2897 	"               then                    ( tte-data ) "
2898 	"               true                  ( tte-data true ) "
2899 	"            else                     ( invalid-tte ) "
2900 	"               drop false            ( false ) "
2901 	"            then                     ( false | tte-data true ) "
2902 	"            unloop exit              ( false | tte-data true ) "
2903 	"         then                        ( addr sfmmup ) "
2904 	"      loop                           ( addr sfmmup ) "
2905 	"      2drop false                    ( false ) "
2906 	"; "
2907 ;
2908 
2909 void
2910 create_va_to_tte(void)
2911 {
2912 	char *bp;
2913 	extern int khmehash_num, uhmehash_num;
2914 	extern struct hmehash_bucket *khme_hash, *uhme_hash;
2915 
2916 #define	OFFSET(type, field)	((uintptr_t)(&((type *)0)->field))
2917 
2918 	bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP);
2919 
2920 	/*
2921 	 * Teach obp how to parse our sw ttes.
2922 	 */
2923 	(void) sprintf(bp, obp_tte_str,
2924 	    MMU_PAGESHIFT,
2925 	    TTE8K,
2926 	    sizeof (struct sf_hment),
2927 	    OFFSET(struct sf_hment, hme_tte),
2928 	    OFFSET(struct hme_blk, hblk_tag),
2929 	    OFFSET(struct hme_blk, hblk_nextpa),
2930 	    OFFSET(struct hme_blk, hblk_misc),
2931 	    OFFSET(struct hme_blk, hblk_hme),
2932 	    NHMENTS,
2933 	    HBLK_SZMASK,
2934 	    HBLK_RANGE_SHIFT,
2935 	    OFFSET(struct hmehash_bucket, hmeh_nextpa),
2936 	    HMEBLK_ENDPA,
2937 	    sizeof (struct hmehash_bucket),
2938 	    HTAG_SFMMUPSZ,
2939 	    HTAG_BSPAGE_SHIFT,
2940 	    HTAG_REHASH_SHIFT,
2941 	    SFMMU_INVALID_SHMERID,
2942 	    mmu_hashcnt,
2943 	    (caddr_t)va_to_pa((caddr_t)uhme_hash),
2944 	    (caddr_t)va_to_pa((caddr_t)khme_hash),
2945 	    UHMEHASH_SZ,
2946 	    KHMEHASH_SZ,
2947 	    KCONTEXT,
2948 	    KHATID,
2949 	    ASI_MEM,
2950 	    icache_is_coherent ? 0 : TTE_SOFTEXEC_INT,
2951 	    TTE_EXECPRM_INT);
2952 	prom_interpret(bp, 0, 0, 0, 0, 0);
2953 
2954 	kobj_free(bp, MMU_PAGESIZE);
2955 }
2956 
2957 void
2958 install_va_to_tte(void)
2959 {
2960 	/*
2961 	 * advise prom that he can use unix-tte
2962 	 */
2963 	prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0);
2964 }
2965 
2966 /*
2967  * Here we add "device-type=console" for /os-io node, for currently
2968  * our kernel console output only supports displaying text and
2969  * performing cursor-positioning operations (through kernel framebuffer
2970  * driver) and it doesn't support other functionalities required for a
2971  * standard "display" device as specified in 1275 spec. The main missing
2972  * interface defined by the 1275 spec is "draw-logo".
2973  * also see the comments above prom_stdout_is_framebuffer().
2974  */
2975 static char *create_node =
2976 	"\" /\" find-device "
2977 	"new-device "
2978 	"\" os-io\" device-name "
2979 	"\" "OBP_DISPLAY_CONSOLE"\" device-type "
2980 	": cb-r/w  ( adr,len method$ -- #read/#written ) "
2981 	"   2>r swap 2 2r> ['] $callback  catch  if "
2982 	"      2drop 3drop 0 "
2983 	"   then "
2984 	"; "
2985 	": read ( adr,len -- #read ) "
2986 	"       \" read\" ['] cb-r/w catch  if  2drop 2drop -2 exit then "
2987 	"       ( retN ... ret1 N ) "
2988 	"       ?dup  if "
2989 	"               swap >r 1-  0  ?do  drop  loop  r> "
2990 	"       else "
2991 	"               -2 "
2992 	"       then "
2993 	";    "
2994 	": write ( adr,len -- #written ) "
2995 	"       \" write\" ['] cb-r/w catch  if  2drop 2drop 0 exit  then "
2996 	"       ( retN ... ret1 N ) "
2997 	"       ?dup  if "
2998 	"               swap >r 1-  0  ?do  drop  loop  r> "
2999 	"        else "
3000 	"               0 "
3001 	"       then "
3002 	"; "
3003 	": poll-tty ( -- ) ; "
3004 	": install-abort  ( -- )  ['] poll-tty d# 10 alarm ; "
3005 	": remove-abort ( -- )  ['] poll-tty 0 alarm ; "
3006 	": cb-give/take ( $method -- ) "
3007 	"       0 -rot ['] $callback catch  ?dup  if "
3008 	"               >r 2drop 2drop r> throw "
3009 	"       else "
3010 	"               0  ?do  drop  loop "
3011 	"       then "
3012 	"; "
3013 	": give ( -- )  \" exit-input\" cb-give/take ; "
3014 	": take ( -- )  \" enter-input\" cb-give/take ; "
3015 	": open ( -- ok? )  true ; "
3016 	": close ( -- ) ; "
3017 	"finish-device "
3018 	"device-end ";
3019 
3020 /*
3021  * Create the OBP input/output node (FCode serial driver).
3022  * It is needed for both USB console keyboard and for
3023  * the kernel terminal emulator.  It is too early to check for a
3024  * kernel console compatible framebuffer now, so we create this
3025  * so that we're ready if we need to enable kernel terminal emulation.
3026  *
3027  * When the USB software takes over the input device at the time
3028  * consconfig runs, OBP's stdin is redirected to this node.
3029  * Whenever the FORTH user interface is used after this switch,
3030  * the node will call back into the kernel for console input.
3031  * If a serial device such as ttya or a UART with a Type 5 keyboard
3032  * attached is used, OBP takes over the serial device when the system
3033  * goes to the debugger after the system is booted.  This sharing
3034  * of the relatively simple serial device is difficult but possible.
3035  * Sharing the USB host controller is impossible due its complexity.
3036  *
3037  * Similarly to USB keyboard input redirection, after consconfig_dacf
3038  * configures a kernel console framebuffer as the standard output
3039  * device, OBP's stdout is switched to to vector through the
3040  * /os-io node into the kernel terminal emulator.
3041  */
3042 static void
3043 startup_create_io_node(void)
3044 {
3045 	prom_interpret(create_node, 0, 0, 0, 0, 0);
3046 }
3047 
3048 
3049 static void
3050 do_prom_version_check(void)
3051 {
3052 	int i;
3053 	pnode_t node;
3054 	char buf[64];
3055 	static char drev[] = "Down-rev firmware detected%s\n"
3056 	    "\tPlease upgrade to the following minimum version:\n"
3057 	    "\t\t%s\n";
3058 
3059 	i = prom_version_check(buf, sizeof (buf), &node);
3060 
3061 	if (i == PROM_VER64_OK)
3062 		return;
3063 
3064 	if (i == PROM_VER64_UPGRADE) {
3065 		cmn_err(CE_WARN, drev, "", buf);
3066 
3067 #ifdef	DEBUG
3068 		prom_enter_mon();	/* Type 'go' to continue */
3069 		cmn_err(CE_WARN, "Booting with down-rev firmware\n");
3070 		return;
3071 #else
3072 		halt(0);
3073 #endif
3074 	}
3075 
3076 	/*
3077 	 * The other possibility is that this is a server running
3078 	 * good firmware, but down-rev firmware was detected on at
3079 	 * least one other cpu board. We just complain if we see
3080 	 * that.
3081 	 */
3082 	cmn_err(CE_WARN, drev, " on one or more CPU boards", buf);
3083 }
3084 
3085 
3086 /*
3087  * Must be defined in platform dependent code.
3088  */
3089 extern caddr_t modtext;
3090 extern size_t modtext_sz;
3091 extern caddr_t moddata;
3092 
3093 #define	HEAPTEXT_ARENA(addr)	\
3094 	((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \
3095 	(((uintptr_t)(addr) - HEAPTEXT_BASE) / \
3096 	(HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1))
3097 
3098 #define	HEAPTEXT_OVERSIZED(addr)	\
3099 	((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE)
3100 
3101 #define	HEAPTEXT_IN_NUCLEUSDATA(addr) \
3102 	(((uintptr_t)(addr) >= KERNELBASE + 2 * MMU_PAGESIZE4M) && \
3103 	((uintptr_t)(addr) < KERNELBASE + 3 * MMU_PAGESIZE4M))
3104 
3105 vmem_t *texthole_source[HEAPTEXT_NARENAS];
3106 vmem_t *texthole_arena[HEAPTEXT_NARENAS];
3107 kmutex_t texthole_lock;
3108 
3109 char kern_bootargs[OBP_MAXPATHLEN];
3110 char kern_bootfile[OBP_MAXPATHLEN];
3111 
3112 void
3113 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3114 {
3115 	uintptr_t addr, limit;
3116 
3117 	addr = HEAPTEXT_BASE;
3118 	limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE;
3119 
3120 	/*
3121 	 * Before we initialize the text_arena, we want to punch holes in the
3122 	 * underlying heaptext_arena.  This guarantees that for any text
3123 	 * address we can find a text hole less than HEAPTEXT_MAPPED away.
3124 	 */
3125 	for (; addr + HEAPTEXT_UNMAPPED <= limit;
3126 	    addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) {
3127 		(void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE,
3128 		    0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED),
3129 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3130 	}
3131 
3132 	/*
3133 	 * Allocate one page at the oversize to break up the text region
3134 	 * from the oversized region.
3135 	 */
3136 	(void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0,
3137 	    (void *)limit, (void *)(limit + PAGESIZE),
3138 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3139 
3140 	*text_arena = vmem_create("module_text", modtext_sz ? modtext : NULL,
3141 	    modtext_sz, sizeof (uintptr_t), segkmem_alloc, segkmem_free,
3142 	    heaptext_arena, 0, VM_SLEEP);
3143 	*data_arena = vmem_create("module_data", moddata, MODDATA, 1,
3144 	    segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3145 }
3146 
3147 caddr_t
3148 kobj_text_alloc(vmem_t *arena, size_t size)
3149 {
3150 	caddr_t rval, better;
3151 
3152 	/*
3153 	 * First, try a sleeping allocation.
3154 	 */
3155 	rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT);
3156 
3157 	if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval))
3158 		return (rval);
3159 
3160 	/*
3161 	 * We didn't get the area that we wanted.  We're going to try to do an
3162 	 * allocation with explicit constraints.
3163 	 */
3164 	better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL,
3165 	    (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE),
3166 	    VM_NOSLEEP | VM_BESTFIT);
3167 
3168 	if (better != NULL) {
3169 		/*
3170 		 * That worked.  Free our first attempt and return.
3171 		 */
3172 		vmem_free(arena, rval, size);
3173 		return (better);
3174 	}
3175 
3176 	/*
3177 	 * That didn't work; we'll have to return our first attempt.
3178 	 */
3179 	return (rval);
3180 }
3181 
3182 caddr_t
3183 kobj_texthole_alloc(caddr_t addr, size_t size)
3184 {
3185 	int arena = HEAPTEXT_ARENA(addr);
3186 	char c[30];
3187 	uintptr_t base;
3188 
3189 	if (HEAPTEXT_OVERSIZED(addr) || HEAPTEXT_IN_NUCLEUSDATA(addr)) {
3190 		/*
3191 		 * If this is an oversized allocation or it is allocated in
3192 		 * the nucleus data page, there is no text hole available for
3193 		 * it; return NULL.
3194 		 */
3195 		return (NULL);
3196 	}
3197 
3198 	mutex_enter(&texthole_lock);
3199 
3200 	if (texthole_arena[arena] == NULL) {
3201 		ASSERT(texthole_source[arena] == NULL);
3202 
3203 		if (arena == 0) {
3204 			texthole_source[0] = vmem_create("module_text_holesrc",
3205 			    (void *)(KERNELBASE + MMU_PAGESIZE4M),
3206 			    MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL,
3207 			    0, VM_SLEEP);
3208 		} else {
3209 			base = HEAPTEXT_BASE +
3210 			    (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED);
3211 
3212 			(void) snprintf(c, sizeof (c),
3213 			    "heaptext_holesrc_%d", arena);
3214 
3215 			texthole_source[arena] = vmem_create(c, (void *)base,
3216 			    HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL,
3217 			    0, VM_SLEEP);
3218 		}
3219 
3220 		(void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena);
3221 
3222 		texthole_arena[arena] = vmem_create(c, NULL, 0,
3223 		    sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free,
3224 		    texthole_source[arena], 0, VM_SLEEP);
3225 	}
3226 
3227 	mutex_exit(&texthole_lock);
3228 
3229 	ASSERT(texthole_arena[arena] != NULL);
3230 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3231 	return (vmem_alloc(texthole_arena[arena], size,
3232 	    VM_BESTFIT | VM_NOSLEEP));
3233 }
3234 
3235 void
3236 kobj_texthole_free(caddr_t addr, size_t size)
3237 {
3238 	int arena = HEAPTEXT_ARENA(addr);
3239 
3240 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3241 	ASSERT(texthole_arena[arena] != NULL);
3242 	vmem_free(texthole_arena[arena], addr, size);
3243 }
3244 
3245 void
3246 release_bootstrap(void)
3247 {
3248 	if (&cif_init)
3249 		cif_init();
3250 }
3251