xref: /titanic_50/usr/src/uts/sun4/os/intr.c (revision dfb96a4f56fb431b915bc67e5d9d5c8d4f4f6679)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/sysmacros.h>
29 #include <sys/stack.h>
30 #include <sys/cpuvar.h>
31 #include <sys/ivintr.h>
32 #include <sys/intreg.h>
33 #include <sys/membar.h>
34 #include <sys/kmem.h>
35 #include <sys/intr.h>
36 #include <sys/sunndi.h>
37 #include <sys/cmn_err.h>
38 #include <sys/privregs.h>
39 #include <sys/systm.h>
40 #include <sys/archsystm.h>
41 #include <sys/machsystm.h>
42 #include <sys/x_call.h>
43 #include <vm/seg_kp.h>
44 #include <sys/debug.h>
45 #include <sys/cyclic.h>
46 
47 #include <sys/cpu_sgnblk_defs.h>
48 
49 /* Global locks which protect the interrupt distribution lists */
50 static kmutex_t intr_dist_lock;
51 static kmutex_t intr_dist_cpu_lock;
52 
53 /* Head of the interrupt distribution lists */
54 static struct intr_dist *intr_dist_head = NULL;
55 static struct intr_dist *intr_dist_whead = NULL;
56 
57 uint64_t siron_inum;
58 uint64_t poke_cpu_inum;
59 uint_t poke_cpu_intr(caddr_t arg1, caddr_t arg2);
60 
61 /*
62  * Note:-
63  * siron_pending was originally created to prevent a resource over consumption
64  * bug in setsoftint(exhaustion of interrupt pool free list).
65  * It's original intention is obsolete with the use of iv_pending in
66  * setsoftint. However, siron_pending stayed around, acting as a second
67  * gatekeeper preventing soft interrupts from being queued. In this capacity,
68  * it can lead to hangs on MP systems, where due to global visibility issues
69  * it can end up set while iv_pending is reset, preventing soft interrupts from
70  * ever being processed. In addition to its gatekeeper role, init_intr also
71  * uses it to flag the situation where siron() was called before siron_inum has
72  * been defined.
73  *
74  * siron() does not need an extra gatekeeper; any cpu that wishes should be
75  * allowed to queue a soft interrupt. It is softint()'s job to ensure
76  * correct handling of the queues. Therefore, siron_pending has been
77  * stripped of its gatekeeper task, retaining only its intr_init job, where
78  * it indicates that there is a pending need to call siron().
79  */
80 int siron_pending;
81 
82 int intr_policy = INTR_WEIGHTED_DIST;	/* interrupt distribution policy */
83 int intr_dist_debug = 0;
84 int32_t intr_dist_weight_max = 1;
85 int32_t intr_dist_weight_maxmax = 1000;
86 int intr_dist_weight_maxfactor = 2;
87 #define	INTR_DEBUG(args) if (intr_dist_debug) cmn_err args
88 
89 /*
90  * intr_init() - Interrupt initialization
91  *	Initialize the system's interrupt vector table.
92  */
93 void
94 intr_init(cpu_t *cp)
95 {
96 	extern uint_t softlevel1();
97 
98 	init_ivintr();
99 	REGISTER_BBUS_INTR();
100 
101 	siron_inum = add_softintr(PIL_1, softlevel1, 0, SOFTINT_ST);
102 	poke_cpu_inum = add_softintr(PIL_13, poke_cpu_intr, 0, SOFTINT_MT);
103 	cp->cpu_m.poke_cpu_outstanding = B_FALSE;
104 
105 	mutex_init(&intr_dist_lock, NULL, MUTEX_DEFAULT, NULL);
106 	mutex_init(&intr_dist_cpu_lock, NULL, MUTEX_DEFAULT, NULL);
107 
108 	/*
109 	 * A soft interrupt may have been requested prior to the initialization
110 	 * of soft interrupts.  Soft interrupts can't be dispatched until after
111 	 * init_intr(), so we have to wait until now before we can dispatch the
112 	 * pending soft interrupt (if any).
113 	 */
114 	if (siron_pending) {
115 		siron_pending = 0;
116 		siron();
117 	}
118 }
119 
120 /*
121  * poke_cpu_intr - fall through when poke_cpu calls
122  */
123 /* ARGSUSED */
124 uint_t
125 poke_cpu_intr(caddr_t arg1, caddr_t arg2)
126 {
127 	CPU->cpu_m.poke_cpu_outstanding = B_FALSE;
128 	membar_stld_stst();
129 	return (1);
130 }
131 
132 /*
133  * siron - primitive for sun/os/softint.c
134  */
135 void
136 siron(void)
137 {
138 	if (siron_inum != 0)
139 		setsoftint(siron_inum);
140 	else
141 		siron_pending = 1;
142 }
143 
144 /*
145  * no_ivintr()
146  * 	called by setvecint_tl1() through sys_trap()
147  *	vector interrupt received but not valid or not
148  *	registered in intr_vec_table
149  *	considered as a spurious mondo interrupt
150  */
151 /* ARGSUSED */
152 void
153 no_ivintr(struct regs *rp, int inum, int pil)
154 {
155 	cmn_err(CE_WARN, "invalid vector intr: number 0x%x, pil 0x%x",
156 	    inum, pil);
157 
158 #ifdef DEBUG_VEC_INTR
159 	prom_enter_mon();
160 #endif /* DEBUG_VEC_INTR */
161 }
162 
163 void
164 intr_dequeue_req(uint_t pil, uint64_t inum)
165 {
166 	intr_vec_t	*iv, *next, *prev;
167 	struct machcpu	*mcpu;
168 	uint32_t	clr;
169 	processorid_t	cpu_id;
170 	extern uint_t	getpstate(void);
171 
172 	ASSERT((getpstate() & PSTATE_IE) == 0);
173 
174 	mcpu = &CPU->cpu_m;
175 	cpu_id = CPU->cpu_id;
176 
177 	iv = (intr_vec_t *)inum;
178 	prev = NULL;
179 	next = mcpu->intr_head[pil];
180 
181 	/* Find a matching entry in the list */
182 	while (next != NULL) {
183 		if (next == iv)
184 			break;
185 		prev = next;
186 		next = IV_GET_PIL_NEXT(next, cpu_id);
187 	}
188 
189 	if (next != NULL) {
190 		intr_vec_t	*next_iv = IV_GET_PIL_NEXT(next, cpu_id);
191 
192 		/* Remove entry from list */
193 		if (prev != NULL)
194 			IV_SET_PIL_NEXT(prev, cpu_id, next_iv); /* non-head */
195 		else
196 			mcpu->intr_head[pil] = next_iv; /* head */
197 
198 		if (next_iv == NULL)
199 			mcpu->intr_tail[pil] = prev; /* tail */
200 	}
201 
202 	/* Clear pending interrupts at this level if the list is empty */
203 	if (mcpu->intr_head[pil] == NULL) {
204 		clr = 1 << pil;
205 		if (pil == PIL_14)
206 			clr |= (TICK_INT_MASK | STICK_INT_MASK);
207 		wr_clr_softint(clr);
208 	}
209 }
210 
211 
212 /*
213  * Send a directed interrupt of specified interrupt number id to a cpu.
214  */
215 void
216 send_dirint(
217 	int cpuix,		/* cpu to be interrupted */
218 	int intr_id)		/* interrupt number id */
219 {
220 	xt_one(cpuix, setsoftint_tl1, intr_id, 0);
221 }
222 
223 /*
224  * Take the specified CPU out of participation in interrupts.
225  *	Called by p_online(2) when a processor is being taken off-line.
226  *	This allows interrupt threads being handled on the processor to
227  *	complete before the processor is idled.
228  */
229 int
230 cpu_disable_intr(struct cpu *cp)
231 {
232 	ASSERT(MUTEX_HELD(&cpu_lock));
233 
234 	/*
235 	 * Turn off the CPU_ENABLE flag before calling the redistribution
236 	 * function, since it checks for this in the cpu flags.
237 	 */
238 	cp->cpu_flags &= ~CPU_ENABLE;
239 
240 	intr_redist_all_cpus();
241 
242 	return (0);
243 }
244 
245 /*
246  * Allow the specified CPU to participate in interrupts.
247  *	Called by p_online(2) if a processor could not be taken off-line
248  *	because of bound threads, in order to resume processing interrupts.
249  *	Also called after starting a processor.
250  */
251 void
252 cpu_enable_intr(struct cpu *cp)
253 {
254 	ASSERT(MUTEX_HELD(&cpu_lock));
255 
256 	cp->cpu_flags |= CPU_ENABLE;
257 
258 	intr_redist_all_cpus();
259 }
260 
261 /*
262  * Add function to callback list for intr_redist_all_cpus.  We keep two lists,
263  * one for weighted callbacks and one for normal callbacks. Weighted callbacks
264  * are issued to redirect interrupts of a specified weight, from heavy to
265  * light.  This allows all the interrupts of a given weight to be redistributed
266  * for all weighted nexus drivers prior to those of less weight.
267  */
268 static void
269 intr_dist_add_list(struct intr_dist **phead, void (*func)(void *), void *arg)
270 {
271 	struct intr_dist *new = kmem_alloc(sizeof (*new), KM_SLEEP);
272 	struct intr_dist *iptr;
273 	struct intr_dist **pptr;
274 
275 	ASSERT(func);
276 	new->func = func;
277 	new->arg = arg;
278 	new->next = NULL;
279 
280 	/* Add to tail so that redistribution occurs in original order. */
281 	mutex_enter(&intr_dist_lock);
282 	for (iptr = *phead, pptr = phead; iptr != NULL;
283 	    pptr = &iptr->next, iptr = iptr->next) {
284 		/* check for problems as we locate the tail */
285 		if ((iptr->func == func) && (iptr->arg == arg)) {
286 			cmn_err(CE_PANIC, "intr_dist_add_list(): duplicate");
287 			/*NOTREACHED*/
288 		}
289 	}
290 	*pptr = new;
291 
292 	mutex_exit(&intr_dist_lock);
293 }
294 
295 void
296 intr_dist_add(void (*func)(void *), void *arg)
297 {
298 	intr_dist_add_list(&intr_dist_head, (void (*)(void *))func, arg);
299 }
300 
301 void
302 intr_dist_add_weighted(void (*func)(void *, int32_t, int32_t), void *arg)
303 {
304 	intr_dist_add_list(&intr_dist_whead, (void (*)(void *))func, arg);
305 }
306 
307 /*
308  * Search for the interrupt distribution structure with the specified
309  * mondo vec reg in the interrupt distribution list. If a match is found,
310  * then delete the entry from the list. The caller is responsible for
311  * modifying the mondo vector registers.
312  */
313 static void
314 intr_dist_rem_list(struct intr_dist **headp, void (*func)(void *), void *arg)
315 {
316 	struct intr_dist *iptr;
317 	struct intr_dist **vect;
318 
319 	mutex_enter(&intr_dist_lock);
320 	for (iptr = *headp, vect = headp;
321 	    iptr != NULL; vect = &iptr->next, iptr = iptr->next) {
322 		if ((iptr->func == func) && (iptr->arg == arg)) {
323 			*vect = iptr->next;
324 			kmem_free(iptr, sizeof (struct intr_dist));
325 			mutex_exit(&intr_dist_lock);
326 			return;
327 		}
328 	}
329 
330 	if (!panicstr)
331 		cmn_err(CE_PANIC, "intr_dist_rem_list: not found");
332 	mutex_exit(&intr_dist_lock);
333 }
334 
335 void
336 intr_dist_rem(void (*func)(void *), void *arg)
337 {
338 	intr_dist_rem_list(&intr_dist_head, (void (*)(void *))func, arg);
339 }
340 
341 void
342 intr_dist_rem_weighted(void (*func)(void *, int32_t, int32_t), void *arg)
343 {
344 	intr_dist_rem_list(&intr_dist_whead, (void (*)(void *))func, arg);
345 }
346 
347 /*
348  * Initiate interrupt redistribution.  Redistribution improves the isolation
349  * associated with interrupt weights by ordering operations from heavy weight
350  * to light weight.  When a CPUs orientation changes relative to interrupts,
351  * there is *always* a redistribution to accommodate this change (call to
352  * intr_redist_all_cpus()).  As devices (not CPUs) attach/detach it is possible
353  * that a redistribution could improve the quality of an initialization. For
354  * example, if you are not using a NIC it may not be attached with s10 (devfs).
355  * If you then configure the NIC (ifconfig), this may cause the NIC to attach
356  * and plumb interrupts.  The CPU assignment for the NIC's interrupts is
357  * occurring late, so optimal "isolation" relative to weight is not occurring.
358  * The same applies to detach, although in this case doing the redistribution
359  * might improve "spread" for medium weight devices since the "isolation" of
360  * a higher weight device may no longer be present.
361  *
362  * NB: We should provide a utility to trigger redistribution (ala "intradm -r").
363  *
364  * NB: There is risk associated with automatically triggering execution of the
365  * redistribution code at arbitrary times. The risk comes from the fact that
366  * there is a lot of low-level hardware interaction associated with a
367  * redistribution.  At some point we may want this code to perform automatic
368  * redistribution (redistribution thread; trigger timeout when add/remove
369  * weight delta is large enough, and call cv_signal from timeout - causing
370  * thead to call i_ddi_intr_redist_all_cpus()) but this is considered too
371  * risky at this time.
372  */
373 void
374 i_ddi_intr_redist_all_cpus()
375 {
376 	mutex_enter(&cpu_lock);
377 	INTR_DEBUG((CE_CONT, "intr_dist: i_ddi_intr_redist_all_cpus\n"));
378 	intr_redist_all_cpus();
379 	mutex_exit(&cpu_lock);
380 }
381 
382 /*
383  * Redistribute all interrupts
384  *
385  * This function redistributes all interrupting devices, running the
386  * parent callback functions for each node.
387  */
388 void
389 intr_redist_all_cpus(void)
390 {
391 	struct cpu *cp;
392 	struct intr_dist *iptr;
393 	int32_t weight, max_weight;
394 
395 	ASSERT(MUTEX_HELD(&cpu_lock));
396 	mutex_enter(&intr_dist_lock);
397 
398 	/*
399 	 * zero cpu_intr_weight on all cpus - it is safe to traverse
400 	 * cpu_list since we hold cpu_lock.
401 	 */
402 	cp = cpu_list;
403 	do {
404 		cp->cpu_intr_weight = 0;
405 	} while ((cp = cp->cpu_next) != cpu_list);
406 
407 	/*
408 	 * Assume that this redistribution may encounter a device weight
409 	 * via driver.conf tuning of "ddi-intr-weight" that is at most
410 	 * intr_dist_weight_maxfactor times larger.
411 	 */
412 	max_weight = intr_dist_weight_max * intr_dist_weight_maxfactor;
413 	if (max_weight > intr_dist_weight_maxmax)
414 		max_weight = intr_dist_weight_maxmax;
415 	intr_dist_weight_max = 1;
416 
417 	INTR_DEBUG((CE_CONT, "intr_dist: "
418 	    "intr_redist_all_cpus: %d-0\n", max_weight));
419 
420 	/*
421 	 * Redistribute weighted, from heavy to light.  The callback that
422 	 * specifies a weight equal to weight_max should redirect all
423 	 * interrupts of weight weight_max or greater [weight_max, inf.).
424 	 * Interrupts of lesser weight should be processed on the call with
425 	 * the matching weight. This allows all the heaver weight interrupts
426 	 * on all weighted busses (multiple pci busses) to be redirected prior
427 	 * to any lesser weight interrupts.
428 	 */
429 	for (weight = max_weight; weight >= 0; weight--)
430 		for (iptr = intr_dist_whead; iptr != NULL; iptr = iptr->next)
431 			((void (*)(void *, int32_t, int32_t))iptr->func)
432 			    (iptr->arg, max_weight, weight);
433 
434 	/* redistribute normal (non-weighted) interrupts */
435 	for (iptr = intr_dist_head; iptr != NULL; iptr = iptr->next)
436 		((void (*)(void *))iptr->func)(iptr->arg);
437 	mutex_exit(&intr_dist_lock);
438 }
439 
440 void
441 intr_redist_all_cpus_shutdown(void)
442 {
443 	intr_policy = INTR_CURRENT_CPU;
444 	intr_redist_all_cpus();
445 }
446 
447 /*
448  * Determine what CPU to target, based on interrupt policy.
449  *
450  * INTR_FLAT_DIST: hold a current CPU pointer in a static variable and
451  *	advance through interrupt enabled cpus (round-robin).
452  *
453  * INTR_WEIGHTED_DIST: search for an enabled CPU with the lowest
454  *	cpu_intr_weight, round robin when all equal.
455  *
456  *	Weighted interrupt distribution provides two things: "spread" of weight
457  *	(associated with algorithm itself) and "isolation" (associated with a
458  *	particular device weight). A redistribution is what provides optimal
459  *	"isolation" of heavy weight interrupts, optimal "spread" of weight
460  *	(relative to what came before) is always occurring.
461  *
462  *	An interrupt weight is a subjective number that represents the
463  *	percentage of a CPU required to service a device's interrupts: the
464  *	default weight is 0% (however the algorithm still maintains
465  *	round-robin), a network interface controller (NIC) may have a large
466  *	weight (35%). Interrupt weight only has meaning relative to the
467  *	interrupt weight of other devices: a CPU can be weighted more than
468  *	100%, and a single device might consume more than 100% of a CPU.
469  *
470  *	A coarse interrupt weight can be defined by the parent nexus driver
471  *	based on bus specific information, like pci class codes. A nexus
472  *	driver that supports device interrupt weighting for its children
473  *	should call intr_dist_cpuid_add/rem_device_weight(), which adds
474  *	and removes the weight of a device from the CPU that an interrupt
475  *	is directed at.  The quality of initialization improves when the
476  *	device interrupt weights more accuracy reflect actual run-time weights,
477  *	and as the assignments are ordered from is heavy to light.
478  *
479  *	The implementation also supports interrupt weight being specified in
480  *	driver.conf files via the property "ddi-intr-weight", which takes
481  *	precedence over the nexus supplied weight.  This support is added to
482  *	permit possible tweaking in the product in response to customer
483  *	problems. This is not a formal or committed interface.
484  *
485  *	While a weighted approach chooses the CPU providing the best spread
486  *	given past weights, less than optimal isolation can result in cases
487  *	where heavy weight devices show up last. The nexus driver's interrupt
488  *	redistribution logic should use intr_dist_add/rem_weighted so that
489  *	interrupts can be redistributed heavy first for optimal isolation.
490  */
491 uint32_t
492 intr_dist_cpuid(void)
493 {
494 	static struct cpu	*curr_cpu;
495 	struct cpu		*start_cpu;
496 	struct cpu		*new_cpu;
497 	struct cpu		*cp;
498 	int			cpuid = -1;
499 
500 	/* Establish exclusion for curr_cpu and cpu_intr_weight manipulation */
501 	mutex_enter(&intr_dist_cpu_lock);
502 
503 	switch (intr_policy) {
504 	case INTR_CURRENT_CPU:
505 		cpuid = CPU->cpu_id;
506 		break;
507 
508 	case INTR_BOOT_CPU:
509 		panic("INTR_BOOT_CPU no longer supported.");
510 		/*NOTREACHED*/
511 
512 	case INTR_FLAT_DIST:
513 	case INTR_WEIGHTED_DIST:
514 	default:
515 		/*
516 		 * Ensure that curr_cpu is valid - cpu_next will be NULL if
517 		 * the cpu has been deleted (cpu structs are never freed).
518 		 */
519 		if (curr_cpu == NULL || curr_cpu->cpu_next == NULL)
520 			curr_cpu = CPU;
521 
522 		/*
523 		 * Advance to online CPU after curr_cpu (round-robin). For
524 		 * INTR_WEIGHTED_DIST we choose the cpu with the lightest
525 		 * weight.  For a nexus that does not support weight the
526 		 * default weight of zero is used. We degrade to round-robin
527 		 * behavior among equal weightes.  The default weight is zero
528 		 * and round-robin behavior continues.
529 		 *
530 		 * Disable preemption while traversing cpu_next_onln to
531 		 * ensure the list does not change.  This works because
532 		 * modifiers of this list and other lists in a struct cpu
533 		 * call pause_cpus() before making changes.
534 		 */
535 		kpreempt_disable();
536 		cp = start_cpu = curr_cpu->cpu_next_onln;
537 		new_cpu = NULL;
538 		do {
539 			/* Skip CPUs with interrupts disabled */
540 			if ((cp->cpu_flags & CPU_ENABLE) == 0)
541 				continue;
542 
543 			if (intr_policy == INTR_FLAT_DIST) {
544 				/* select CPU */
545 				new_cpu = cp;
546 				break;
547 			} else if ((new_cpu == NULL) ||
548 			    (cp->cpu_intr_weight < new_cpu->cpu_intr_weight)) {
549 				/* Choose if lighter weight */
550 				new_cpu = cp;
551 			}
552 		} while ((cp = cp->cpu_next_onln) != start_cpu);
553 		ASSERT(new_cpu);
554 		cpuid = new_cpu->cpu_id;
555 
556 		INTR_DEBUG((CE_CONT, "intr_dist: cpu %2d weight %3d: "
557 		    "targeted\n", cpuid, new_cpu->cpu_intr_weight));
558 
559 		/* update static pointer for next round-robin */
560 		curr_cpu = new_cpu;
561 		kpreempt_enable();
562 		break;
563 	}
564 	mutex_exit(&intr_dist_cpu_lock);
565 	return (cpuid);
566 }
567 
568 /*
569  * Add or remove the the weight of a device from a CPUs interrupt weight.
570  *
571  * We expect nexus drivers to call intr_dist_cpuid_add/rem_device_weight for
572  * their children to improve the overall quality of interrupt initialization.
573  *
574  * If a nexues shares the CPU returned by a single intr_dist_cpuid() call
575  * among multiple devices (sharing ino) then the nexus should call
576  * intr_dist_cpuid_add/rem_device_weight for each device separately. Devices
577  * that share must specify the same cpuid.
578  *
579  * If a nexus driver is unable to determine the cpu at remove_intr time
580  * for some of its interrupts, then it should not call add_device_weight -
581  * intr_dist_cpuid will still provide round-robin.
582  *
583  * An established device weight (from dev_info node) takes precedence over
584  * the weight passed in.  If a device weight is not already established
585  * then the passed in nexus weight is established.
586  */
587 void
588 intr_dist_cpuid_add_device_weight(uint32_t cpuid,
589     dev_info_t *dip, int32_t nweight)
590 {
591 	int32_t		eweight;
592 
593 	/*
594 	 * For non-weighted policy everything has weight of zero (and we get
595 	 * round-robin distribution from intr_dist_cpuid).
596 	 * NB: intr_policy is limited to this file. A weighted nexus driver is
597 	 * calls this rouitne even if intr_policy has been patched to
598 	 * INTR_FLAG_DIST.
599 	 */
600 	ASSERT(dip);
601 	if (intr_policy != INTR_WEIGHTED_DIST)
602 		return;
603 
604 	eweight = i_ddi_get_intr_weight(dip);
605 	INTR_DEBUG((CE_CONT, "intr_dist: cpu %2d weight %3d: +%2d/%2d for "
606 	    "%s#%d/%s#%d\n", cpuid, cpu[cpuid]->cpu_intr_weight,
607 	    nweight, eweight, ddi_driver_name(ddi_get_parent(dip)),
608 	    ddi_get_instance(ddi_get_parent(dip)),
609 	    ddi_driver_name(dip), ddi_get_instance(dip)));
610 
611 	/* if no establish weight, establish nexus weight */
612 	if (eweight < 0) {
613 		if (nweight > 0)
614 			(void) i_ddi_set_intr_weight(dip, nweight);
615 		else
616 			nweight = 0;
617 	} else
618 		nweight = eweight;	/* use established weight */
619 
620 	/* Establish exclusion for cpu_intr_weight manipulation */
621 	mutex_enter(&intr_dist_cpu_lock);
622 	cpu[cpuid]->cpu_intr_weight += nweight;
623 
624 	/* update intr_dist_weight_max */
625 	if (nweight > intr_dist_weight_max)
626 		intr_dist_weight_max = nweight;
627 	mutex_exit(&intr_dist_cpu_lock);
628 }
629 
630 void
631 intr_dist_cpuid_rem_device_weight(uint32_t cpuid, dev_info_t *dip)
632 {
633 	struct cpu	*cp;
634 	int32_t		weight;
635 
636 	ASSERT(dip);
637 	if (intr_policy != INTR_WEIGHTED_DIST)
638 		return;
639 
640 	/* remove weight of device from cpu */
641 	weight = i_ddi_get_intr_weight(dip);
642 	if (weight < 0)
643 		weight = 0;
644 	INTR_DEBUG((CE_CONT, "intr_dist: cpu %2d weight %3d: -%2d    for "
645 	    "%s#%d/%s#%d\n", cpuid, cpu[cpuid]->cpu_intr_weight, weight,
646 	    ddi_driver_name(ddi_get_parent(dip)),
647 	    ddi_get_instance(ddi_get_parent(dip)),
648 	    ddi_driver_name(dip), ddi_get_instance(dip)));
649 
650 	/* Establish exclusion for cpu_intr_weight manipulation */
651 	mutex_enter(&intr_dist_cpu_lock);
652 	cp = cpu[cpuid];
653 	cp->cpu_intr_weight -= weight;
654 	if (cp->cpu_intr_weight < 0)
655 		cp->cpu_intr_weight = 0;	/* sanity */
656 	mutex_exit(&intr_dist_cpu_lock);
657 }
658