1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * sun4 specific DDI implementation 31 */ 32 #include <sys/cpuvar.h> 33 #include <sys/ddi_subrdefs.h> 34 #include <sys/machsystm.h> 35 #include <sys/sunndi.h> 36 #include <sys/sysmacros.h> 37 #include <sys/ontrap.h> 38 #include <vm/seg_kmem.h> 39 #include <sys/membar.h> 40 #include <sys/dditypes.h> 41 #include <sys/ndifm.h> 42 #include <sys/fm/io/ddi.h> 43 #include <sys/ivintr.h> 44 #include <sys/bootconf.h> 45 #include <sys/conf.h> 46 #include <sys/ethernet.h> 47 #include <sys/idprom.h> 48 #include <sys/promif.h> 49 #include <sys/prom_plat.h> 50 #include <sys/systeminfo.h> 51 #include <sys/fpu/fpusystm.h> 52 #include <sys/vm.h> 53 #include <sys/fs/dv_node.h> 54 #include <sys/fs/snode.h> 55 #include <sys/ddi_isa.h> 56 #include <sys/modhash.h> 57 58 dev_info_t *get_intr_parent(dev_info_t *, dev_info_t *, 59 ddi_intr_handle_impl_t *); 60 #pragma weak get_intr_parent 61 62 int process_intr_ops(dev_info_t *, dev_info_t *, ddi_intr_op_t, 63 ddi_intr_handle_impl_t *, void *); 64 #pragma weak process_intr_ops 65 66 void cells_1275_copy(prop_1275_cell_t *, prop_1275_cell_t *, int32_t); 67 prop_1275_cell_t *cells_1275_cmp(prop_1275_cell_t *, prop_1275_cell_t *, 68 int32_t len); 69 #pragma weak cells_1275_copy 70 71 /* 72 * Wrapper for ddi_prop_lookup_int_array(). 73 * This is handy because it returns the prop length in 74 * bytes which is what most of the callers require. 75 */ 76 77 static int 78 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen) 79 { 80 int ret; 81 82 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di, 83 DDI_PROP_DONTPASS, pname, pval, plen)) == DDI_PROP_SUCCESS) { 84 *plen = (*plen) * (uint_t)sizeof (int); 85 } 86 return (ret); 87 } 88 89 /* 90 * SECTION: DDI Node Configuration 91 */ 92 93 /* 94 * init_regspec_64: 95 * 96 * If the parent #size-cells is 2, convert the upa-style or 97 * safari-style reg property from 2-size cells to 1 size cell 98 * format, ignoring the size_hi, which must be zero for devices. 99 * (It won't be zero in the memory list properties in the memory 100 * nodes, but that doesn't matter here.) 101 */ 102 struct ddi_parent_private_data * 103 init_regspec_64(dev_info_t *dip) 104 { 105 struct ddi_parent_private_data *pd; 106 dev_info_t *parent; 107 int size_cells; 108 109 /* 110 * If there are no "reg"s in the child node, return. 111 */ 112 pd = ddi_get_parent_data(dip); 113 if ((pd == NULL) || (pd->par_nreg == 0)) { 114 return (pd); 115 } 116 parent = ddi_get_parent(dip); 117 118 size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, 119 DDI_PROP_DONTPASS, "#size-cells", 1); 120 121 if (size_cells != 1) { 122 123 int n, j; 124 struct regspec *irp; 125 struct reg_64 { 126 uint_t addr_hi, addr_lo, size_hi, size_lo; 127 }; 128 struct reg_64 *r64_rp; 129 struct regspec *rp; 130 uint_t len = 0; 131 int *reg_prop; 132 133 ASSERT(size_cells == 2); 134 135 /* 136 * We already looked the property up once before if 137 * pd is non-NULL. 138 */ 139 (void) ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, 140 DDI_PROP_DONTPASS, OBP_REG, ®_prop, &len); 141 ASSERT(len != 0); 142 143 n = sizeof (struct reg_64) / sizeof (int); 144 n = len / n; 145 146 /* 147 * We're allocating a buffer the size of the PROM's property, 148 * but we're only using a smaller portion when we assign it 149 * to a regspec. We do this so that in the 150 * impl_ddi_sunbus_removechild function, we will 151 * always free the right amount of memory. 152 */ 153 irp = rp = (struct regspec *)reg_prop; 154 r64_rp = (struct reg_64 *)pd->par_reg; 155 156 for (j = 0; j < n; ++j, ++rp, ++r64_rp) { 157 ASSERT(r64_rp->size_hi == 0); 158 rp->regspec_bustype = r64_rp->addr_hi; 159 rp->regspec_addr = r64_rp->addr_lo; 160 rp->regspec_size = r64_rp->size_lo; 161 } 162 163 ddi_prop_free((void *)pd->par_reg); 164 pd->par_nreg = n; 165 pd->par_reg = irp; 166 } 167 return (pd); 168 } 169 170 /* 171 * Create a ddi_parent_private_data structure from the ddi properties of 172 * the dev_info node. 173 * 174 * The "reg" is required if the driver wishes to create mappings on behalf 175 * of the device. The "reg" property is assumed to be a list of at least 176 * one triplet 177 * 178 * <bustype, address, size>*1 179 * 180 * The "interrupt" property is no longer part of parent private data on 181 * sun4u. The interrupt parent is may not be the device tree parent. 182 * 183 * The "ranges" property describes the mapping of child addresses to parent 184 * addresses. 185 * 186 * N.B. struct rangespec is defined for the following default values: 187 * parent child 188 * #address-cells 2 2 189 * #size-cells 1 1 190 * This function doesn't deal with non-default cells and will not create 191 * ranges in such cases. 192 */ 193 void 194 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd) 195 { 196 struct ddi_parent_private_data *pdptr; 197 int *reg_prop, *rng_prop; 198 uint_t reg_len = 0, rng_len = 0; 199 dev_info_t *parent; 200 int parent_addr_cells, parent_size_cells; 201 int child_addr_cells, child_size_cells; 202 203 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP); 204 205 /* 206 * root node has no parent private data, so *ppd should 207 * be initialized for naming to work properly. 208 */ 209 if ((parent = ddi_get_parent(child)) == NULL) 210 return; 211 212 /* 213 * Set reg field of parent data from "reg" property 214 */ 215 if ((get_prop_int_array(child, OBP_REG, ®_prop, ®_len) 216 == DDI_PROP_SUCCESS) && (reg_len != 0)) { 217 pdptr->par_nreg = (int)(reg_len / sizeof (struct regspec)); 218 pdptr->par_reg = (struct regspec *)reg_prop; 219 } 220 221 /* 222 * "ranges" property ... 223 * 224 * This function does not handle cases where #address-cells != 2 225 * and * min(parent, child) #size-cells != 1 (see bugid 4211124). 226 * 227 * Nexus drivers with such exceptions (e.g. pci ranges) 228 * should either create a separate function for handling 229 * ranges or not use parent private data to store ranges. 230 */ 231 232 /* root node has no ranges */ 233 if ((parent = ddi_get_parent(child)) == NULL) 234 return; 235 236 child_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child, 237 DDI_PROP_DONTPASS, "#address-cells", 2); 238 child_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child, 239 DDI_PROP_DONTPASS, "#size-cells", 1); 240 parent_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, 241 DDI_PROP_DONTPASS, "#address-cells", 2); 242 parent_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, 243 DDI_PROP_DONTPASS, "#size-cells", 1); 244 if (child_addr_cells != 2 || parent_addr_cells != 2 || 245 (child_size_cells != 1 && parent_size_cells != 1)) { 246 NDI_CONFIG_DEBUG((CE_NOTE, "!ranges not made in parent data; " 247 "#address-cells or #size-cells have non-default value")); 248 return; 249 } 250 251 if (get_prop_int_array(child, OBP_RANGES, &rng_prop, &rng_len) 252 == DDI_PROP_SUCCESS) { 253 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec)); 254 pdptr->par_rng = (struct rangespec *)rng_prop; 255 } 256 } 257 258 /* 259 * Free ddi_parent_private_data structure 260 */ 261 void 262 impl_free_ddi_ppd(dev_info_t *dip) 263 { 264 struct ddi_parent_private_data *pdptr = ddi_get_parent_data(dip); 265 266 if (pdptr == NULL) 267 return; 268 269 if (pdptr->par_nrng != 0) 270 ddi_prop_free((void *)pdptr->par_rng); 271 272 if (pdptr->par_nreg != 0) 273 ddi_prop_free((void *)pdptr->par_reg); 274 275 kmem_free(pdptr, sizeof (*pdptr)); 276 ddi_set_parent_data(dip, NULL); 277 } 278 279 /* 280 * Name a child of sun busses based on the reg spec. 281 * Handles the following properties: 282 * 283 * Property value 284 * Name type 285 * 286 * reg register spec 287 * interrupts new (bus-oriented) interrupt spec 288 * ranges range spec 289 * 290 * This may be called multiple times, independent of 291 * initchild calls. 292 */ 293 static int 294 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen) 295 { 296 struct ddi_parent_private_data *pdptr; 297 struct regspec *rp; 298 299 /* 300 * Fill in parent-private data and this function returns to us 301 * an indication if it used "registers" to fill in the data. 302 */ 303 if (ddi_get_parent_data(child) == NULL) { 304 make_ddi_ppd(child, &pdptr); 305 ddi_set_parent_data(child, pdptr); 306 } 307 308 /* 309 * No reg property, return null string as address 310 * (e.g. root node) 311 */ 312 name[0] = '\0'; 313 if (sparc_pd_getnreg(child) == 0) { 314 return (DDI_SUCCESS); 315 } 316 317 rp = sparc_pd_getreg(child, 0); 318 (void) snprintf(name, namelen, "%x,%x", 319 rp->regspec_bustype, rp->regspec_addr); 320 return (DDI_SUCCESS); 321 } 322 323 324 /* 325 * Called from the bus_ctl op of some drivers. 326 * to implement the DDI_CTLOPS_INITCHILD operation. 327 * 328 * NEW drivers should NOT use this function, but should declare 329 * there own initchild/uninitchild handlers. (This function assumes 330 * the layout of the parent private data and the format of "reg", 331 * "ranges", "interrupts" properties and that #address-cells and 332 * #size-cells of the parent bus are defined to be default values.) 333 */ 334 int 335 impl_ddi_sunbus_initchild(dev_info_t *child) 336 { 337 char name[MAXNAMELEN]; 338 339 (void) impl_sunbus_name_child(child, name, MAXNAMELEN); 340 ddi_set_name_addr(child, name); 341 342 /* 343 * Try to merge .conf node. If successful, return failure to 344 * remove this child. 345 */ 346 if ((ndi_dev_is_persistent_node(child) == 0) && 347 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) { 348 impl_ddi_sunbus_removechild(child); 349 return (DDI_FAILURE); 350 } 351 return (DDI_SUCCESS); 352 } 353 354 /* 355 * A better name for this function would be impl_ddi_sunbus_uninitchild() 356 * It does not remove the child, it uninitializes it, reclaiming the 357 * resources taken by impl_ddi_sunbus_initchild. 358 */ 359 void 360 impl_ddi_sunbus_removechild(dev_info_t *dip) 361 { 362 impl_free_ddi_ppd(dip); 363 ddi_set_name_addr(dip, NULL); 364 /* 365 * Strip the node to properly convert it back to prototype form 366 */ 367 impl_rem_dev_props(dip); 368 } 369 370 /* 371 * SECTION: DDI Interrupt 372 */ 373 374 void 375 cells_1275_copy(prop_1275_cell_t *from, prop_1275_cell_t *to, int32_t len) 376 { 377 int i; 378 for (i = 0; i < len; i++) 379 *to = *from; 380 } 381 382 prop_1275_cell_t * 383 cells_1275_cmp(prop_1275_cell_t *cell1, prop_1275_cell_t *cell2, int32_t len) 384 { 385 prop_1275_cell_t *match_cell = 0; 386 int32_t i; 387 388 for (i = 0; i < len; i++) 389 if (cell1[i] != cell2[i]) { 390 match_cell = &cell1[i]; 391 break; 392 } 393 394 return (match_cell); 395 } 396 397 /* 398 * get_intr_parent() is a generic routine that process a 1275 interrupt 399 * map (imap) property. This function returns a dev_info_t structure 400 * which claims ownership of the interrupt domain. 401 * It also returns the new interrupt translation within this new domain. 402 * If an interrupt-parent or interrupt-map property are not found, 403 * then we fallback to using the device tree's parent. 404 * 405 * imap entry format: 406 * <reg>,<interrupt>,<phandle>,<translated interrupt> 407 * reg - The register specification in the interrupts domain 408 * interrupt - The interrupt specification 409 * phandle - PROM handle of the device that owns the xlated interrupt domain 410 * translated interrupt - interrupt specifier in the parents domain 411 * note: <reg>,<interrupt> - The reg and interrupt can be combined to create 412 * a unique entry called a unit interrupt specifier. 413 * 414 * Here's the processing steps: 415 * step1 - If the interrupt-parent property exists, create the ispec and 416 * return the dip of the interrupt parent. 417 * step2 - Extract the interrupt-map property and the interrupt-map-mask 418 * If these don't exist, just return the device tree parent. 419 * step3 - build up the unit interrupt specifier to match against the 420 * interrupt map property 421 * step4 - Scan the interrupt-map property until a match is found 422 * step4a - Extract the interrupt parent 423 * step4b - Compare the unit interrupt specifier 424 */ 425 dev_info_t * 426 get_intr_parent(dev_info_t *pdip, dev_info_t *dip, ddi_intr_handle_impl_t *hdlp) 427 { 428 prop_1275_cell_t *imap, *imap_mask, *scan, *reg_p, *match_req; 429 int32_t imap_sz, imap_cells, imap_scan_cells, imap_mask_sz, 430 addr_cells, intr_cells, reg_len, i, j; 431 int32_t match_found = 0; 432 dev_info_t *intr_parent_dip = NULL; 433 uint32_t *intr = &hdlp->ih_vector; 434 uint32_t nodeid; 435 #ifdef DEBUG 436 static int debug = 0; 437 #endif 438 439 /* 440 * step1 441 * If we have an interrupt-parent property, this property represents 442 * the nodeid of our interrupt parent. 443 */ 444 if ((nodeid = ddi_getprop(DDI_DEV_T_ANY, dip, 0, 445 "interrupt-parent", -1)) != -1) { 446 intr_parent_dip = e_ddi_nodeid_to_dip(nodeid); 447 ASSERT(intr_parent_dip); 448 449 /* 450 * Attach the interrupt parent. 451 * 452 * N.B. e_ddi_nodeid_to_dip() isn't safe under DR. 453 * Also, interrupt parent isn't held. This needs 454 * to be revisited if DR-capable platforms implement 455 * interrupt redirection. 456 */ 457 if (i_ddi_attach_node_hierarchy(intr_parent_dip) 458 != DDI_SUCCESS) { 459 ndi_rele_devi(intr_parent_dip); 460 return (NULL); 461 } 462 463 return (intr_parent_dip); 464 } 465 466 /* 467 * step2 468 * Get interrupt map structure from PROM property 469 */ 470 if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS, 471 "interrupt-map", (caddr_t)&imap, &imap_sz) 472 != DDI_PROP_SUCCESS) { 473 /* 474 * If we don't have an imap property, default to using the 475 * device tree. 476 */ 477 478 ndi_hold_devi(pdip); 479 return (pdip); 480 } 481 482 /* Get the interrupt mask property */ 483 if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS, 484 "interrupt-map-mask", (caddr_t)&imap_mask, &imap_mask_sz) 485 != DDI_PROP_SUCCESS) { 486 /* 487 * If we don't find this property, we have to fail the request 488 * because the 1275 imap property wasn't defined correctly. 489 */ 490 ASSERT(intr_parent_dip == NULL); 491 goto exit2; 492 } 493 494 /* Get the address cell size */ 495 addr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0, 496 "#address-cells", 2); 497 498 /* Get the interrupts cell size */ 499 intr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0, 500 "#interrupt-cells", 1); 501 502 /* 503 * step3 504 * Now lets build up the unit interrupt specifier e.g. reg,intr 505 * and apply the imap mask. match_req will hold this when we're 506 * through. 507 */ 508 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg", 509 (caddr_t)®_p, ®_len) != DDI_SUCCESS) { 510 ASSERT(intr_parent_dip == NULL); 511 goto exit3; 512 } 513 514 match_req = kmem_alloc(CELLS_1275_TO_BYTES(addr_cells) + 515 CELLS_1275_TO_BYTES(intr_cells), KM_SLEEP); 516 517 for (i = 0; i < addr_cells; i++) 518 match_req[i] = (reg_p[i] & imap_mask[i]); 519 520 for (j = 0; j < intr_cells; i++, j++) 521 match_req[i] = (intr[j] & imap_mask[i]); 522 523 /* Calculate the imap size in cells */ 524 imap_cells = BYTES_TO_1275_CELLS(imap_sz); 525 526 #ifdef DEBUG 527 if (debug) 528 prom_printf("reg cell size 0x%x, intr cell size 0x%x, " 529 "match_request 0x%p, imap 0x%p\n", addr_cells, intr_cells, 530 match_req, imap); 531 #endif 532 533 /* 534 * Scan the imap property looking for a match of the interrupt unit 535 * specifier. This loop is rather complex since the data within the 536 * imap property may vary in size. 537 */ 538 for (scan = imap, imap_scan_cells = i = 0; 539 imap_scan_cells < imap_cells; scan += i, imap_scan_cells += i) { 540 int new_intr_cells; 541 542 /* Set the index to the nodeid field */ 543 i = addr_cells + intr_cells; 544 545 /* 546 * step4a 547 * Translate the nodeid field to a dip 548 */ 549 ASSERT(intr_parent_dip == NULL); 550 intr_parent_dip = e_ddi_nodeid_to_dip((uint_t)scan[i++]); 551 552 ASSERT(intr_parent_dip != 0); 553 #ifdef DEBUG 554 if (debug) 555 prom_printf("scan 0x%p\n", scan); 556 #endif 557 /* 558 * The tmp_dip describes the new domain, get it's interrupt 559 * cell size 560 */ 561 new_intr_cells = ddi_getprop(DDI_DEV_T_ANY, intr_parent_dip, 0, 562 "#interrupts-cells", 1); 563 564 /* 565 * step4b 566 * See if we have a match on the interrupt unit specifier 567 */ 568 if (cells_1275_cmp(match_req, scan, addr_cells + intr_cells) 569 == 0) { 570 uint32_t *intr; 571 572 match_found = 1; 573 574 /* 575 * If we have an imap parent whose not in our device 576 * tree path, we need to hold and install that driver. 577 */ 578 if (i_ddi_attach_node_hierarchy(intr_parent_dip) 579 != DDI_SUCCESS) { 580 ndi_rele_devi(intr_parent_dip); 581 intr_parent_dip = (dev_info_t *)NULL; 582 goto exit4; 583 } 584 585 /* 586 * We need to handcraft an ispec along with a bus 587 * interrupt value, so we can dup it into our 588 * standard ispec structure. 589 */ 590 /* Extract the translated interrupt information */ 591 intr = kmem_alloc( 592 CELLS_1275_TO_BYTES(new_intr_cells), KM_SLEEP); 593 594 for (j = 0; j < new_intr_cells; j++, i++) 595 intr[j] = scan[i]; 596 597 cells_1275_copy(intr, &hdlp->ih_vector, new_intr_cells); 598 599 kmem_free(intr, CELLS_1275_TO_BYTES(new_intr_cells)); 600 601 #ifdef DEBUG 602 if (debug) 603 prom_printf("dip 0x%p\n", intr_parent_dip); 604 #endif 605 break; 606 } else { 607 #ifdef DEBUG 608 if (debug) 609 prom_printf("dip 0x%p\n", intr_parent_dip); 610 #endif 611 ndi_rele_devi(intr_parent_dip); 612 intr_parent_dip = NULL; 613 i += new_intr_cells; 614 } 615 } 616 617 /* 618 * If we haven't found our interrupt parent at this point, fallback 619 * to using the device tree. 620 */ 621 if (!match_found) { 622 ndi_hold_devi(pdip); 623 ASSERT(intr_parent_dip == NULL); 624 intr_parent_dip = pdip; 625 } 626 627 ASSERT(intr_parent_dip != NULL); 628 629 exit4: 630 kmem_free(reg_p, reg_len); 631 kmem_free(match_req, CELLS_1275_TO_BYTES(addr_cells) + 632 CELLS_1275_TO_BYTES(intr_cells)); 633 634 exit3: 635 kmem_free(imap_mask, imap_mask_sz); 636 637 exit2: 638 kmem_free(imap, imap_sz); 639 640 return (intr_parent_dip); 641 } 642 643 /* 644 * process_intr_ops: 645 * 646 * Process the interrupt op via the interrupt parent. 647 */ 648 int 649 process_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t op, 650 ddi_intr_handle_impl_t *hdlp, void *result) 651 { 652 int ret = DDI_FAILURE; 653 654 if (NEXUS_HAS_INTR_OP(pdip)) { 655 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops-> 656 bus_intr_op)) (pdip, rdip, op, hdlp, result); 657 } else { 658 cmn_err(CE_WARN, "Failed to process interrupt " 659 "for %s%d due to down-rev nexus driver %s%d", 660 ddi_get_name(rdip), ddi_get_instance(rdip), 661 ddi_get_name(pdip), ddi_get_instance(pdip)); 662 } 663 664 return (ret); 665 } 666 667 /*ARGSUSED*/ 668 uint_t 669 softlevel1(caddr_t arg) 670 { 671 softint(); 672 return (1); 673 } 674 675 /* 676 * indirection table, to save us some large switch statements 677 * NOTE: This must agree with "INTLEVEL_foo" constants in 678 * <sys/avintr.h> 679 */ 680 struct autovec *const vectorlist[] = { 0 }; 681 682 /* 683 * This value is exported here for the functions in avintr.c 684 */ 685 const uint_t maxautovec = (sizeof (vectorlist) / sizeof (vectorlist[0])); 686 687 /* 688 * Check for machine specific interrupt levels which cannot be reassigned by 689 * settrap(), sun4u version. 690 * 691 * sun4u does not support V8 SPARC "fast trap" handlers. 692 */ 693 /*ARGSUSED*/ 694 int 695 exclude_settrap(int lvl) 696 { 697 return (1); 698 } 699 700 /* 701 * Check for machine specific interrupt levels which cannot have interrupt 702 * handlers added. We allow levels 1 through 15; level 0 is nonsense. 703 */ 704 /*ARGSUSED*/ 705 int 706 exclude_level(int lvl) 707 { 708 return ((lvl < 1) || (lvl > 15)); 709 } 710 711 /* 712 * Wrapper functions used by New DDI interrupt framework. 713 */ 714 715 /* 716 * i_ddi_intr_ops: 717 */ 718 int 719 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op, 720 ddi_intr_handle_impl_t *hdlp, void *result) 721 { 722 dev_info_t *pdip = ddi_get_parent(dip); 723 int ret = DDI_FAILURE; 724 725 /* 726 * The following check is required to address 727 * one of the test case of ADDI test suite. 728 */ 729 if (pdip == NULL) 730 return (DDI_FAILURE); 731 732 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 733 return (process_intr_ops(pdip, rdip, op, hdlp, result)); 734 735 if (hdlp->ih_vector == 0) 736 hdlp->ih_vector = i_ddi_get_inum(rdip, hdlp->ih_inum); 737 738 if (hdlp->ih_pri == 0) 739 hdlp->ih_pri = i_ddi_get_intr_pri(rdip, hdlp->ih_inum); 740 741 switch (op) { 742 case DDI_INTROP_ADDISR: 743 case DDI_INTROP_REMISR: 744 case DDI_INTROP_ENABLE: 745 case DDI_INTROP_DISABLE: 746 case DDI_INTROP_BLOCKENABLE: 747 case DDI_INTROP_BLOCKDISABLE: 748 /* 749 * Try and determine our parent and possibly an interrupt 750 * translation. intr parent dip returned held 751 */ 752 if ((pdip = get_intr_parent(pdip, dip, hdlp)) == NULL) 753 goto done; 754 } 755 756 ret = process_intr_ops(pdip, rdip, op, hdlp, result); 757 758 done: 759 switch (op) { 760 case DDI_INTROP_ADDISR: 761 case DDI_INTROP_REMISR: 762 case DDI_INTROP_ENABLE: 763 case DDI_INTROP_DISABLE: 764 case DDI_INTROP_BLOCKENABLE: 765 case DDI_INTROP_BLOCKDISABLE: 766 /* Release hold acquired in get_intr_parent() */ 767 if (pdip) 768 ndi_rele_devi(pdip); 769 } 770 771 hdlp->ih_vector = 0; 772 773 return (ret); 774 } 775 776 /* 777 * i_ddi_add_ivintr: 778 */ 779 /*ARGSUSED*/ 780 int 781 i_ddi_add_ivintr(ddi_intr_handle_impl_t *hdlp) 782 { 783 /* 784 * If the PIL was set and is valid use it, otherwise 785 * default it to 1 786 */ 787 if ((hdlp->ih_pri < 1) || (hdlp->ih_pri > PIL_MAX)) 788 hdlp->ih_pri = 1; 789 790 VERIFY(add_ivintr(hdlp->ih_vector, hdlp->ih_pri, 791 (intrfunc)hdlp->ih_cb_func, hdlp->ih_cb_arg1, 792 hdlp->ih_cb_arg2, NULL) == 0); 793 794 return (DDI_SUCCESS); 795 } 796 797 /* 798 * i_ddi_rem_ivintr: 799 */ 800 /*ARGSUSED*/ 801 void 802 i_ddi_rem_ivintr(ddi_intr_handle_impl_t *hdlp) 803 { 804 VERIFY(rem_ivintr(hdlp->ih_vector, hdlp->ih_pri) == 0); 805 } 806 807 /* 808 * i_ddi_get_inum - Get the interrupt number property from the 809 * specified device. Note that this function is called only for 810 * the FIXED interrupt type. 811 */ 812 uint32_t 813 i_ddi_get_inum(dev_info_t *dip, uint_t inumber) 814 { 815 int32_t intrlen, intr_cells, max_intrs; 816 prop_1275_cell_t *ip, intr_sz; 817 uint32_t intr = 0; 818 819 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | 820 DDI_PROP_CANSLEEP, 821 "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) { 822 823 intr_cells = ddi_getprop(DDI_DEV_T_ANY, dip, 0, 824 "#interrupt-cells", 1); 825 826 /* adjust for number of bytes */ 827 intr_sz = CELLS_1275_TO_BYTES(intr_cells); 828 829 /* Calculate the number of interrupts */ 830 max_intrs = intrlen / intr_sz; 831 832 if (inumber < max_intrs) { 833 prop_1275_cell_t *intrp = ip; 834 835 /* Index into interrupt property */ 836 intrp += (inumber * intr_cells); 837 838 cells_1275_copy(intrp, &intr, intr_cells); 839 } 840 841 kmem_free(ip, intrlen); 842 } 843 844 return (intr); 845 } 846 847 /* 848 * i_ddi_get_intr_pri - Get the interrupt-priorities property from 849 * the specified device. Note that this function is called only for 850 * the FIXED interrupt type. 851 */ 852 uint32_t 853 i_ddi_get_intr_pri(dev_info_t *dip, uint_t inumber) 854 { 855 uint32_t *intr_prio_p; 856 uint32_t pri = 0; 857 int32_t i; 858 859 /* 860 * Use the "interrupt-priorities" property to determine the 861 * the pil/ipl for the interrupt handler. 862 */ 863 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 864 "interrupt-priorities", (caddr_t)&intr_prio_p, 865 &i) == DDI_SUCCESS) { 866 if (inumber < (i / sizeof (int32_t))) 867 pri = intr_prio_p[inumber]; 868 kmem_free(intr_prio_p, i); 869 } 870 871 return (pri); 872 } 873 874 int 875 i_ddi_get_intx_nintrs(dev_info_t *dip) 876 { 877 int32_t intrlen; 878 prop_1275_cell_t intr_sz; 879 prop_1275_cell_t *ip; 880 int32_t ret = 0; 881 882 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | 883 DDI_PROP_CANSLEEP, 884 "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) { 885 886 intr_sz = ddi_getprop(DDI_DEV_T_ANY, dip, 0, 887 "#interrupt-cells", 1); 888 /* adjust for number of bytes */ 889 intr_sz = CELLS_1275_TO_BYTES(intr_sz); 890 891 ret = intrlen / intr_sz; 892 893 kmem_free(ip, intrlen); 894 } 895 896 return (ret); 897 } 898 899 /* 900 * i_ddi_add_softint - allocate and add a software interrupt. 901 * 902 * NOTE: All software interrupts that are registered through DDI 903 * should be triggered only on a single target or CPU. 904 */ 905 int 906 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp) 907 { 908 if ((hdlp->ih_private = (void *)add_softintr(hdlp->ih_pri, 909 hdlp->ih_cb_func, hdlp->ih_cb_arg1, SOFTINT_ST)) == NULL) 910 return (DDI_FAILURE); 911 912 return (DDI_SUCCESS); 913 } 914 915 /* 916 * i_ddi_remove_softint - remove and free a software interrupt. 917 */ 918 void 919 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp) 920 { 921 ASSERT(hdlp->ih_private != NULL); 922 923 if (rem_softintr((uint64_t)hdlp->ih_private) == 0) 924 hdlp->ih_private = NULL; 925 } 926 927 /* 928 * i_ddi_trigger_softint - trigger a software interrupt. 929 */ 930 int 931 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2) 932 { 933 int ret; 934 935 ASSERT(hdlp->ih_private != NULL); 936 937 /* Update the second argument for the software interrupt */ 938 if ((ret = update_softint_arg2((uint64_t)hdlp->ih_private, arg2)) == 0) 939 setsoftint((uint64_t)hdlp->ih_private); 940 941 return (ret ? DDI_EPENDING : DDI_SUCCESS); 942 } 943 944 /* 945 * i_ddi_set_softint_pri - change software interrupt priority. 946 */ 947 /* ARGSUSED */ 948 int 949 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri) 950 { 951 int ret; 952 953 ASSERT(hdlp->ih_private != NULL); 954 955 /* Update the interrupt priority for the software interrupt */ 956 ret = update_softint_pri((uint64_t)hdlp->ih_private, hdlp->ih_pri); 957 958 return (ret ? DDI_FAILURE : DDI_SUCCESS); 959 } 960 961 /*ARGSUSED*/ 962 void 963 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp) 964 { 965 } 966 967 /*ARGSUSED*/ 968 void 969 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp) 970 { 971 } 972 973 /* 974 * SECTION: DDI Memory/DMA 975 */ 976 977 /* set HAT endianess attributes from ddi_device_acc_attr */ 978 void 979 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp) 980 { 981 if (devaccp != NULL) { 982 if (devaccp->devacc_attr_endian_flags == DDI_STRUCTURE_LE_ACC) { 983 *hataccp &= ~HAT_ENDIAN_MASK; 984 *hataccp |= HAT_STRUCTURE_LE; 985 } 986 } 987 } 988 989 /* 990 * Check if the specified cache attribute is supported on the platform. 991 * This function must be called before i_ddi_cacheattr_to_hatacc(). 992 */ 993 boolean_t 994 i_ddi_check_cache_attr(uint_t flags) 995 { 996 /* 997 * The cache attributes are mutually exclusive. Any combination of 998 * the attributes leads to a failure. 999 */ 1000 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1001 if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0)) 1002 return (B_FALSE); 1003 1004 /* 1005 * On the sparc architecture, only IOMEM_DATA_CACHED is meaningful, 1006 * but others lead to a failure. 1007 */ 1008 if (cache_attr & IOMEM_DATA_CACHED) 1009 return (B_TRUE); 1010 else 1011 return (B_FALSE); 1012 } 1013 1014 /* set HAT cache attributes from the cache attributes */ 1015 void 1016 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp) 1017 { 1018 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1019 static char *fname = "i_ddi_cacheattr_to_hatacc"; 1020 #if defined(lint) 1021 *hataccp = *hataccp; 1022 #endif 1023 /* 1024 * set HAT attrs according to the cache attrs. 1025 */ 1026 switch (cache_attr) { 1027 /* 1028 * The cache coherency is always maintained on SPARC, and 1029 * nothing is required. 1030 */ 1031 case IOMEM_DATA_CACHED: 1032 break; 1033 /* 1034 * Both IOMEM_DATA_UC_WRITE_COMBINED and IOMEM_DATA_UNCACHED are 1035 * not supported on SPARC -- this case must not occur because the 1036 * cache attribute is scrutinized before this function is called. 1037 */ 1038 case IOMEM_DATA_UNCACHED: 1039 case IOMEM_DATA_UC_WR_COMBINE: 1040 default: 1041 cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.", 1042 fname, cache_attr); 1043 } 1044 } 1045 1046 static vmem_t *little_endian_arena; 1047 static vmem_t *big_endian_arena; 1048 1049 static void * 1050 segkmem_alloc_le(vmem_t *vmp, size_t size, int flag) 1051 { 1052 return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_LE, 1053 segkmem_page_create, NULL)); 1054 } 1055 1056 static void * 1057 segkmem_alloc_be(vmem_t *vmp, size_t size, int flag) 1058 { 1059 return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_BE, 1060 segkmem_page_create, NULL)); 1061 } 1062 1063 void 1064 ka_init(void) 1065 { 1066 little_endian_arena = vmem_create("little_endian", NULL, 0, 1, 1067 segkmem_alloc_le, segkmem_free, heap_arena, 0, VM_SLEEP); 1068 big_endian_arena = vmem_create("big_endian", NULL, 0, 1, 1069 segkmem_alloc_be, segkmem_free, heap_arena, 0, VM_SLEEP); 1070 } 1071 1072 /* 1073 * Allocate from the system, aligned on a specific boundary. 1074 * The alignment, if non-zero, must be a power of 2. 1075 */ 1076 static void * 1077 kalloca(size_t size, size_t align, int cansleep, uint_t endian_flags) 1078 { 1079 size_t *addr, *raddr, rsize; 1080 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */ 1081 1082 align = MAX(align, hdrsize); 1083 ASSERT((align & (align - 1)) == 0); 1084 1085 /* 1086 * We need to allocate 1087 * rsize = size + hdrsize + align - MIN(hdrsize, buffer_alignment) 1088 * bytes to be sure we have enough freedom to satisfy the request. 1089 * Since the buffer alignment depends on the request size, this is 1090 * not straightforward to use directly. 1091 * 1092 * kmem guarantees that any allocation of a 64-byte multiple will be 1093 * 64-byte aligned. Since rounding up the request could add more 1094 * than we save, we compute the size with and without alignment, and 1095 * use the smaller of the two. 1096 */ 1097 rsize = size + hdrsize + align; 1098 1099 if (endian_flags == DDI_STRUCTURE_LE_ACC) { 1100 raddr = vmem_alloc(little_endian_arena, rsize, 1101 cansleep ? VM_SLEEP : VM_NOSLEEP); 1102 } else { 1103 raddr = vmem_alloc(big_endian_arena, rsize, 1104 cansleep ? VM_SLEEP : VM_NOSLEEP); 1105 } 1106 1107 if (raddr == NULL) 1108 return (NULL); 1109 1110 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align); 1111 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize); 1112 1113 addr[-3] = (size_t)endian_flags; 1114 addr[-2] = (size_t)raddr; 1115 addr[-1] = rsize; 1116 1117 return (addr); 1118 } 1119 1120 static void 1121 kfreea(void *addr) 1122 { 1123 size_t *saddr = addr; 1124 1125 if (saddr[-3] == DDI_STRUCTURE_LE_ACC) 1126 vmem_free(little_endian_arena, (void *)saddr[-2], saddr[-1]); 1127 else 1128 vmem_free(big_endian_arena, (void *)saddr[-2], saddr[-1]); 1129 } 1130 1131 int 1132 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr, 1133 size_t length, int cansleep, int flags, 1134 ddi_device_acc_attr_t *accattrp, 1135 caddr_t *kaddrp, size_t *real_length, ddi_acc_hdl_t *handlep) 1136 { 1137 caddr_t a; 1138 int iomin, align, streaming; 1139 uint_t endian_flags = DDI_NEVERSWAP_ACC; 1140 1141 #if defined(lint) 1142 *handlep = *handlep; 1143 #endif 1144 1145 /* 1146 * Check legality of arguments 1147 */ 1148 if (length == 0 || kaddrp == NULL || attr == NULL) { 1149 return (DDI_FAILURE); 1150 } 1151 1152 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 || 1153 (attr->dma_attr_align & (attr->dma_attr_align - 1)) || 1154 (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) { 1155 return (DDI_FAILURE); 1156 } 1157 1158 /* 1159 * check if a streaming sequential xfer is requested. 1160 */ 1161 streaming = (flags & DDI_DMA_STREAMING) ? 1 : 0; 1162 1163 /* 1164 * Drivers for 64-bit capable SBus devices will encode 1165 * the burtsizes for 64-bit xfers in the upper 16-bits. 1166 * For DMA alignment, we use the most restrictive 1167 * alignment of 32-bit and 64-bit xfers. 1168 */ 1169 iomin = (attr->dma_attr_burstsizes & 0xffff) | 1170 ((attr->dma_attr_burstsizes >> 16) & 0xffff); 1171 /* 1172 * If a driver set burtsizes to 0, we give him byte alignment. 1173 * Otherwise align at the burtsizes boundary. 1174 */ 1175 if (iomin == 0) 1176 iomin = 1; 1177 else 1178 iomin = 1 << (ddi_fls(iomin) - 1); 1179 iomin = maxbit(iomin, attr->dma_attr_minxfer); 1180 iomin = maxbit(iomin, attr->dma_attr_align); 1181 iomin = ddi_iomin(dip, iomin, streaming); 1182 if (iomin == 0) 1183 return (DDI_FAILURE); 1184 1185 ASSERT((iomin & (iomin - 1)) == 0); 1186 ASSERT(iomin >= attr->dma_attr_minxfer); 1187 ASSERT(iomin >= attr->dma_attr_align); 1188 1189 length = P2ROUNDUP(length, iomin); 1190 align = iomin; 1191 1192 if (accattrp != NULL) 1193 endian_flags = accattrp->devacc_attr_endian_flags; 1194 1195 a = kalloca(length, align, cansleep, endian_flags); 1196 if ((*kaddrp = a) == 0) { 1197 return (DDI_FAILURE); 1198 } else { 1199 if (real_length) { 1200 *real_length = length; 1201 } 1202 if (handlep) { 1203 /* 1204 * assign handle information 1205 */ 1206 impl_acc_hdl_init(handlep); 1207 } 1208 return (DDI_SUCCESS); 1209 } 1210 } 1211 1212 /* 1213 * covert old DMA limits structure to DMA attribute structure 1214 * and continue 1215 */ 1216 int 1217 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits, 1218 size_t length, int cansleep, int streaming, 1219 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1220 uint_t *real_length, ddi_acc_hdl_t *ap) 1221 { 1222 ddi_dma_attr_t dma_attr, *attrp; 1223 size_t rlen; 1224 int ret; 1225 1226 ASSERT(limits); 1227 attrp = &dma_attr; 1228 attrp->dma_attr_version = DMA_ATTR_V0; 1229 attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo; 1230 attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi; 1231 attrp->dma_attr_count_max = (uint64_t)-1; 1232 attrp->dma_attr_align = 1; 1233 attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes; 1234 attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer; 1235 attrp->dma_attr_maxxfer = (uint64_t)-1; 1236 attrp->dma_attr_seg = (uint64_t)limits->dlim_cntr_max; 1237 attrp->dma_attr_sgllen = 1; 1238 attrp->dma_attr_granular = 1; 1239 attrp->dma_attr_flags = 0; 1240 1241 ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming, 1242 accattrp, kaddrp, &rlen, ap); 1243 if (ret == DDI_SUCCESS) { 1244 if (real_length) 1245 *real_length = (uint_t)rlen; 1246 } 1247 return (ret); 1248 } 1249 1250 /* ARGSUSED */ 1251 void 1252 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap) 1253 { 1254 kfreea(kaddr); 1255 } 1256 1257 /* 1258 * SECTION: DDI Data Access 1259 */ 1260 1261 static uintptr_t impl_acc_hdl_id = 0; 1262 1263 /* 1264 * access handle allocator 1265 */ 1266 ddi_acc_hdl_t * 1267 impl_acc_hdl_get(ddi_acc_handle_t hdl) 1268 { 1269 /* 1270 * Extract the access handle address from the DDI implemented 1271 * access handle 1272 */ 1273 return (&((ddi_acc_impl_t *)hdl)->ahi_common); 1274 } 1275 1276 ddi_acc_handle_t 1277 impl_acc_hdl_alloc(int (*waitfp)(caddr_t), caddr_t arg) 1278 { 1279 ddi_acc_impl_t *hp; 1280 on_trap_data_t *otp; 1281 int sleepflag; 1282 1283 sleepflag = ((waitfp == (int (*)())KM_SLEEP) ? KM_SLEEP : KM_NOSLEEP); 1284 1285 /* 1286 * Allocate and initialize the data access handle and error status. 1287 */ 1288 if ((hp = kmem_zalloc(sizeof (ddi_acc_impl_t), sleepflag)) == NULL) 1289 goto fail; 1290 if ((hp->ahi_err = (ndi_err_t *)kmem_zalloc( 1291 sizeof (ndi_err_t), sleepflag)) == NULL) { 1292 kmem_free(hp, sizeof (ddi_acc_impl_t)); 1293 goto fail; 1294 } 1295 if ((otp = (on_trap_data_t *)kmem_zalloc( 1296 sizeof (on_trap_data_t), sleepflag)) == NULL) { 1297 kmem_free(hp->ahi_err, sizeof (ndi_err_t)); 1298 kmem_free(hp, sizeof (ddi_acc_impl_t)); 1299 goto fail; 1300 } 1301 hp->ahi_err->err_ontrap = otp; 1302 hp->ahi_common.ah_platform_private = (void *)hp; 1303 1304 return ((ddi_acc_handle_t)hp); 1305 fail: 1306 if ((waitfp != (int (*)())KM_SLEEP) && 1307 (waitfp != (int (*)())KM_NOSLEEP)) 1308 ddi_set_callback(waitfp, arg, &impl_acc_hdl_id); 1309 return (NULL); 1310 } 1311 1312 void 1313 impl_acc_hdl_free(ddi_acc_handle_t handle) 1314 { 1315 ddi_acc_impl_t *hp; 1316 1317 /* 1318 * The supplied (ddi_acc_handle_t) is actually a (ddi_acc_impl_t *), 1319 * because that's what we allocated in impl_acc_hdl_alloc() above. 1320 */ 1321 hp = (ddi_acc_impl_t *)handle; 1322 if (hp) { 1323 kmem_free(hp->ahi_err->err_ontrap, sizeof (on_trap_data_t)); 1324 kmem_free(hp->ahi_err, sizeof (ndi_err_t)); 1325 kmem_free(hp, sizeof (ddi_acc_impl_t)); 1326 if (impl_acc_hdl_id) 1327 ddi_run_callback(&impl_acc_hdl_id); 1328 } 1329 } 1330 1331 #define PCI_GET_MP_PFN(mp, page_no) ((mp)->dmai_ndvmapages == 1 ? \ 1332 (pfn_t)(mp)->dmai_iopte:(((pfn_t *)(mp)->dmai_iopte)[page_no])) 1333 1334 /* 1335 * Function called after a dma fault occurred to find out whether the 1336 * fault address is associated with a driver that is able to handle faults 1337 * and recover from faults. 1338 */ 1339 /* ARGSUSED */ 1340 int 1341 impl_dma_check(dev_info_t *dip, const void *handle, const void *addr, 1342 const void *not_used) 1343 { 1344 ddi_dma_impl_t *mp = (ddi_dma_impl_t *)handle; 1345 pfn_t fault_pfn = mmu_btop(*(uint64_t *)addr); 1346 pfn_t comp_pfn; 1347 1348 /* 1349 * The driver has to set DDI_DMA_FLAGERR to recover from dma faults. 1350 */ 1351 int page; 1352 1353 ASSERT(mp); 1354 for (page = 0; page < mp->dmai_ndvmapages; page++) { 1355 comp_pfn = PCI_GET_MP_PFN(mp, page); 1356 if (fault_pfn == comp_pfn) 1357 return (DDI_FM_NONFATAL); 1358 } 1359 return (DDI_FM_UNKNOWN); 1360 } 1361 1362 /* 1363 * Function used to check if a given access handle owns the failing address. 1364 * Called by ndi_fmc_error, when we detect a PIO error. 1365 */ 1366 /* ARGSUSED */ 1367 static int 1368 impl_acc_check(dev_info_t *dip, const void *handle, const void *addr, 1369 const void *not_used) 1370 { 1371 pfn_t pfn, fault_pfn; 1372 ddi_acc_hdl_t *hp; 1373 1374 hp = impl_acc_hdl_get((ddi_acc_handle_t)handle); 1375 1376 ASSERT(hp); 1377 1378 if (addr != NULL) { 1379 pfn = hp->ah_pfn; 1380 fault_pfn = mmu_btop(*(uint64_t *)addr); 1381 if (fault_pfn >= pfn && fault_pfn < (pfn + hp->ah_pnum)) 1382 return (DDI_FM_NONFATAL); 1383 } 1384 return (DDI_FM_UNKNOWN); 1385 } 1386 1387 void 1388 impl_acc_err_init(ddi_acc_hdl_t *handlep) 1389 { 1390 int fmcap; 1391 ndi_err_t *errp; 1392 on_trap_data_t *otp; 1393 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handlep; 1394 1395 fmcap = ddi_fm_capable(handlep->ah_dip); 1396 1397 if (handlep->ah_acc.devacc_attr_version < DDI_DEVICE_ATTR_V1 || 1398 !DDI_FM_ACC_ERR_CAP(fmcap)) { 1399 handlep->ah_acc.devacc_attr_access = DDI_DEFAULT_ACC; 1400 } else if (DDI_FM_ACC_ERR_CAP(fmcap)) { 1401 if (handlep->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) { 1402 i_ddi_drv_ereport_post(handlep->ah_dip, DVR_EFMCAP, 1403 NULL, DDI_NOSLEEP); 1404 } else { 1405 errp = hp->ahi_err; 1406 otp = (on_trap_data_t *)errp->err_ontrap; 1407 otp->ot_handle = (void *)(hp); 1408 otp->ot_prot = OT_DATA_ACCESS; 1409 if (handlep->ah_acc.devacc_attr_access == 1410 DDI_CAUTIOUS_ACC) 1411 otp->ot_trampoline = 1412 (uintptr_t)&i_ddi_caut_trampoline; 1413 else 1414 otp->ot_trampoline = 1415 (uintptr_t)&i_ddi_prot_trampoline; 1416 errp->err_status = DDI_FM_OK; 1417 errp->err_expected = DDI_FM_ERR_UNEXPECTED; 1418 errp->err_cf = impl_acc_check; 1419 } 1420 } 1421 } 1422 1423 void 1424 impl_acc_hdl_init(ddi_acc_hdl_t *handlep) 1425 { 1426 ddi_acc_impl_t *hp; 1427 1428 ASSERT(handlep); 1429 1430 hp = (ddi_acc_impl_t *)handlep; 1431 1432 /* 1433 * check for SW byte-swapping 1434 */ 1435 hp->ahi_get8 = i_ddi_get8; 1436 hp->ahi_put8 = i_ddi_put8; 1437 hp->ahi_rep_get8 = i_ddi_rep_get8; 1438 hp->ahi_rep_put8 = i_ddi_rep_put8; 1439 if (handlep->ah_acc.devacc_attr_endian_flags & DDI_STRUCTURE_LE_ACC) { 1440 hp->ahi_get16 = i_ddi_swap_get16; 1441 hp->ahi_get32 = i_ddi_swap_get32; 1442 hp->ahi_get64 = i_ddi_swap_get64; 1443 hp->ahi_put16 = i_ddi_swap_put16; 1444 hp->ahi_put32 = i_ddi_swap_put32; 1445 hp->ahi_put64 = i_ddi_swap_put64; 1446 hp->ahi_rep_get16 = i_ddi_swap_rep_get16; 1447 hp->ahi_rep_get32 = i_ddi_swap_rep_get32; 1448 hp->ahi_rep_get64 = i_ddi_swap_rep_get64; 1449 hp->ahi_rep_put16 = i_ddi_swap_rep_put16; 1450 hp->ahi_rep_put32 = i_ddi_swap_rep_put32; 1451 hp->ahi_rep_put64 = i_ddi_swap_rep_put64; 1452 } else { 1453 hp->ahi_get16 = i_ddi_get16; 1454 hp->ahi_get32 = i_ddi_get32; 1455 hp->ahi_get64 = i_ddi_get64; 1456 hp->ahi_put16 = i_ddi_put16; 1457 hp->ahi_put32 = i_ddi_put32; 1458 hp->ahi_put64 = i_ddi_put64; 1459 hp->ahi_rep_get16 = i_ddi_rep_get16; 1460 hp->ahi_rep_get32 = i_ddi_rep_get32; 1461 hp->ahi_rep_get64 = i_ddi_rep_get64; 1462 hp->ahi_rep_put16 = i_ddi_rep_put16; 1463 hp->ahi_rep_put32 = i_ddi_rep_put32; 1464 hp->ahi_rep_put64 = i_ddi_rep_put64; 1465 } 1466 1467 /* Legacy fault flags and support */ 1468 hp->ahi_fault_check = i_ddi_acc_fault_check; 1469 hp->ahi_fault_notify = i_ddi_acc_fault_notify; 1470 hp->ahi_fault = 0; 1471 impl_acc_err_init(handlep); 1472 } 1473 1474 void 1475 i_ddi_acc_set_fault(ddi_acc_handle_t handle) 1476 { 1477 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle; 1478 1479 if (!hp->ahi_fault) { 1480 hp->ahi_fault = 1; 1481 (*hp->ahi_fault_notify)(hp); 1482 } 1483 } 1484 1485 void 1486 i_ddi_acc_clr_fault(ddi_acc_handle_t handle) 1487 { 1488 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle; 1489 1490 if (hp->ahi_fault) { 1491 hp->ahi_fault = 0; 1492 (*hp->ahi_fault_notify)(hp); 1493 } 1494 } 1495 1496 /* ARGSUSED */ 1497 void 1498 i_ddi_acc_fault_notify(ddi_acc_impl_t *hp) 1499 { 1500 /* Default version, does nothing */ 1501 } 1502 1503 /* 1504 * SECTION: Misc functions 1505 */ 1506 1507 /* 1508 * instance wrappers 1509 */ 1510 /*ARGSUSED*/ 1511 uint_t 1512 impl_assign_instance(dev_info_t *dip) 1513 { 1514 return ((uint_t)-1); 1515 } 1516 1517 /*ARGSUSED*/ 1518 int 1519 impl_keep_instance(dev_info_t *dip) 1520 { 1521 return (DDI_FAILURE); 1522 } 1523 1524 /*ARGSUSED*/ 1525 int 1526 impl_free_instance(dev_info_t *dip) 1527 { 1528 return (DDI_FAILURE); 1529 } 1530 1531 /*ARGSUSED*/ 1532 int 1533 impl_check_cpu(dev_info_t *devi) 1534 { 1535 return (DDI_SUCCESS); 1536 } 1537 1538 1539 static const char *nocopydevs[] = { 1540 "SUNW,ffb", 1541 "SUNW,afb", 1542 NULL 1543 }; 1544 1545 /* 1546 * Perform a copy from a memory mapped device (whose devinfo pointer is devi) 1547 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr. 1548 */ 1549 /*ARGSUSED*/ 1550 int 1551 e_ddi_copyfromdev(dev_info_t *devi, 1552 off_t off, const void *devaddr, void *kaddr, size_t len) 1553 { 1554 const char **argv; 1555 1556 for (argv = nocopydevs; *argv; argv++) 1557 if (strcmp(ddi_binding_name(devi), *argv) == 0) { 1558 bzero(kaddr, len); 1559 return (0); 1560 } 1561 1562 bcopy(devaddr, kaddr, len); 1563 return (0); 1564 } 1565 1566 /* 1567 * Perform a copy to a memory mapped device (whose devinfo pointer is devi) 1568 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr. 1569 */ 1570 /*ARGSUSED*/ 1571 int 1572 e_ddi_copytodev(dev_info_t *devi, 1573 off_t off, const void *kaddr, void *devaddr, size_t len) 1574 { 1575 const char **argv; 1576 1577 for (argv = nocopydevs; *argv; argv++) 1578 if (strcmp(ddi_binding_name(devi), *argv) == 0) 1579 return (1); 1580 1581 bcopy(kaddr, devaddr, len); 1582 return (0); 1583 } 1584 1585 /* 1586 * Boot Configuration 1587 */ 1588 idprom_t idprom; 1589 1590 /* 1591 * Configure the hardware on the system. 1592 * Called before the rootfs is mounted 1593 */ 1594 void 1595 configure(void) 1596 { 1597 extern void i_ddi_init_root(); 1598 1599 /* We better have released boot by this time! */ 1600 ASSERT(!bootops); 1601 1602 /* 1603 * Determine whether or not to use the fpu, V9 SPARC cpus 1604 * always have one. Could check for existence of a fp queue, 1605 * Ultra I, II and IIa do not have a fp queue. 1606 */ 1607 if (fpu_exists) 1608 fpu_probe(); 1609 else 1610 cmn_err(CE_CONT, "FPU not in use\n"); 1611 1612 #if 0 /* XXXQ - not necessary for sun4u */ 1613 /* 1614 * This following line fixes bugid 1041296; we need to do a 1615 * prom_nextnode(0) because this call ALSO patches the DMA+ 1616 * bug in Campus-B and Phoenix. The prom uncaches the traptable 1617 * page as a side-effect of devr_next(0) (which prom_nextnode calls), 1618 * so this *must* be executed early on. (XXX This is untrue for sun4u) 1619 */ 1620 (void) prom_nextnode((pnode_t)0); 1621 #endif 1622 1623 /* 1624 * Initialize devices on the machine. 1625 * Uses configuration tree built by the PROMs to determine what 1626 * is present, and builds a tree of prototype dev_info nodes 1627 * corresponding to the hardware which identified itself. 1628 */ 1629 i_ddi_init_root(); 1630 1631 #ifdef DDI_PROP_DEBUG 1632 (void) ddi_prop_debug(1); /* Enable property debugging */ 1633 #endif /* DDI_PROP_DEBUG */ 1634 } 1635 1636 /* 1637 * The "status" property indicates the operational status of a device. 1638 * If this property is present, the value is a string indicating the 1639 * status of the device as follows: 1640 * 1641 * "okay" operational. 1642 * "disabled" not operational, but might become operational. 1643 * "fail" not operational because a fault has been detected, 1644 * and it is unlikely that the device will become 1645 * operational without repair. no additional details 1646 * are available. 1647 * "fail-xxx" not operational because a fault has been detected, 1648 * and it is unlikely that the device will become 1649 * operational without repair. "xxx" is additional 1650 * human-readable information about the particular 1651 * fault condition that was detected. 1652 * 1653 * The absence of this property means that the operational status is 1654 * unknown or okay. 1655 * 1656 * This routine checks the status property of the specified device node 1657 * and returns 0 if the operational status indicates failure, and 1 otherwise. 1658 * 1659 * The property may exist on plug-in cards the existed before IEEE 1275-1994. 1660 * And, in that case, the property may not even be a string. So we carefully 1661 * check for the value "fail", in the beginning of the string, noting 1662 * the property length. 1663 */ 1664 int 1665 status_okay(int id, char *buf, int buflen) 1666 { 1667 char status_buf[OBP_MAXPROPNAME]; 1668 char *bufp = buf; 1669 int len = buflen; 1670 int proplen; 1671 static const char *status = "status"; 1672 static const char *fail = "fail"; 1673 size_t fail_len = strlen(fail); 1674 1675 /* 1676 * Get the proplen ... if it's smaller than "fail", 1677 * or doesn't exist ... then we don't care, since 1678 * the value can't begin with the char string "fail". 1679 * 1680 * NB: proplen, if it's a string, includes the NULL in the 1681 * the size of the property, and fail_len does not. 1682 */ 1683 proplen = prom_getproplen((pnode_t)id, (caddr_t)status); 1684 if (proplen <= fail_len) /* nonexistent or uninteresting len */ 1685 return (1); 1686 1687 /* 1688 * if a buffer was provided, use it 1689 */ 1690 if ((buf == (char *)NULL) || (buflen <= 0)) { 1691 bufp = status_buf; 1692 len = sizeof (status_buf); 1693 } 1694 *bufp = (char)0; 1695 1696 /* 1697 * Get the property into the buffer, to the extent of the buffer, 1698 * and in case the buffer is smaller than the property size, 1699 * NULL terminate the buffer. (This handles the case where 1700 * a buffer was passed in and the caller wants to print the 1701 * value, but the buffer was too small). 1702 */ 1703 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status, 1704 (caddr_t)bufp, len); 1705 *(bufp + len - 1) = (char)0; 1706 1707 /* 1708 * If the value begins with the char string "fail", 1709 * then it means the node is failed. We don't care 1710 * about any other values. We assume the node is ok 1711 * although it might be 'disabled'. 1712 */ 1713 if (strncmp(bufp, fail, fail_len) == 0) 1714 return (0); 1715 1716 return (1); 1717 } 1718 1719 1720 /* 1721 * We set the cpu type from the idprom, if we can. 1722 * Note that we just read out the contents of it, for the most part. 1723 */ 1724 void 1725 setcputype(void) 1726 { 1727 /* 1728 * We cache the idprom info early on so that we don't 1729 * rummage through the NVRAM unnecessarily later. 1730 */ 1731 (void) prom_getidprom((caddr_t)&idprom, sizeof (idprom)); 1732 } 1733 1734 /* 1735 * Here is where we actually infer meanings to the members of idprom_t 1736 */ 1737 void 1738 parse_idprom(void) 1739 { 1740 if (idprom.id_format == IDFORM_1) { 1741 uint_t i; 1742 1743 (void) localetheraddr((struct ether_addr *)idprom.id_ether, 1744 (struct ether_addr *)NULL); 1745 1746 i = idprom.id_machine << 24; 1747 i = i + idprom.id_serial; 1748 numtos((ulong_t)i, hw_serial); 1749 } else 1750 prom_printf("Invalid format code in IDprom.\n"); 1751 } 1752 1753 /* 1754 * Allow for implementation specific correction of PROM property values. 1755 */ 1756 /*ARGSUSED*/ 1757 void 1758 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len, 1759 caddr_t buffer) 1760 { 1761 /* 1762 * There are no adjustments needed in this implementation. 1763 */ 1764 } 1765 1766 /* 1767 * The following functions ready a cautious request to go up to the nexus 1768 * driver. It is up to the nexus driver to decide how to process the request. 1769 * It may choose to call i_ddi_do_caut_get/put in this file, or do it 1770 * differently. 1771 */ 1772 1773 static void 1774 i_ddi_caut_getput_ctlops( 1775 ddi_acc_impl_t *hp, uint64_t host_addr, uint64_t dev_addr, size_t size, 1776 size_t repcount, uint_t flags, ddi_ctl_enum_t cmd) 1777 { 1778 peekpoke_ctlops_t cautacc_ctlops_arg; 1779 1780 cautacc_ctlops_arg.size = size; 1781 cautacc_ctlops_arg.dev_addr = dev_addr; 1782 cautacc_ctlops_arg.host_addr = host_addr; 1783 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp; 1784 cautacc_ctlops_arg.repcount = repcount; 1785 cautacc_ctlops_arg.flags = flags; 1786 1787 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd, 1788 &cautacc_ctlops_arg, NULL); 1789 } 1790 1791 uint8_t 1792 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr) 1793 { 1794 uint8_t value; 1795 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1796 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK); 1797 1798 return (value); 1799 } 1800 1801 uint16_t 1802 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr) 1803 { 1804 uint16_t value; 1805 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1806 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK); 1807 1808 return (value); 1809 } 1810 1811 uint32_t 1812 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr) 1813 { 1814 uint32_t value; 1815 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1816 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK); 1817 1818 return (value); 1819 } 1820 1821 uint64_t 1822 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr) 1823 { 1824 uint64_t value; 1825 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1826 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK); 1827 1828 return (value); 1829 } 1830 1831 void 1832 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value) 1833 { 1834 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1835 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE); 1836 } 1837 1838 void 1839 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value) 1840 { 1841 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1842 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE); 1843 } 1844 1845 void 1846 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value) 1847 { 1848 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1849 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE); 1850 } 1851 1852 void 1853 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value) 1854 { 1855 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1856 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE); 1857 } 1858 1859 void 1860 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 1861 size_t repcount, uint_t flags) 1862 { 1863 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1864 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK); 1865 } 1866 1867 void 1868 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr, 1869 uint16_t *dev_addr, size_t repcount, uint_t flags) 1870 { 1871 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1872 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK); 1873 } 1874 1875 void 1876 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr, 1877 uint32_t *dev_addr, size_t repcount, uint_t flags) 1878 { 1879 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1880 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK); 1881 } 1882 1883 void 1884 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr, 1885 uint64_t *dev_addr, size_t repcount, uint_t flags) 1886 { 1887 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1888 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK); 1889 } 1890 1891 void 1892 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 1893 size_t repcount, uint_t flags) 1894 { 1895 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1896 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE); 1897 } 1898 1899 void 1900 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr, 1901 uint16_t *dev_addr, size_t repcount, uint_t flags) 1902 { 1903 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1904 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE); 1905 } 1906 1907 void 1908 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr, 1909 uint32_t *dev_addr, size_t repcount, uint_t flags) 1910 { 1911 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1912 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE); 1913 } 1914 1915 void 1916 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr, 1917 uint64_t *dev_addr, size_t repcount, uint_t flags) 1918 { 1919 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1920 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE); 1921 } 1922 1923 /* 1924 * This is called only to process peek/poke when the DIP is NULL. 1925 * Assume that this is for memory, as nexi take care of device safe accesses. 1926 */ 1927 int 1928 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args) 1929 { 1930 int err = DDI_SUCCESS; 1931 on_trap_data_t otd; 1932 1933 /* Set up protected environment. */ 1934 if (!on_trap(&otd, OT_DATA_ACCESS)) { 1935 uintptr_t tramp = otd.ot_trampoline; 1936 1937 if (cmd == DDI_CTLOPS_POKE) { 1938 otd.ot_trampoline = (uintptr_t)&poke_fault; 1939 err = do_poke(in_args->size, (void *)in_args->dev_addr, 1940 (void *)in_args->host_addr); 1941 } else { 1942 otd.ot_trampoline = (uintptr_t)&peek_fault; 1943 err = do_peek(in_args->size, (void *)in_args->dev_addr, 1944 (void *)in_args->host_addr); 1945 } 1946 otd.ot_trampoline = tramp; 1947 } else 1948 err = DDI_FAILURE; 1949 1950 /* Take down protected environment. */ 1951 no_trap(); 1952 1953 return (err); 1954 } 1955 1956 /* 1957 * Platform independent DR routines 1958 */ 1959 1960 static int 1961 ndi2errno(int n) 1962 { 1963 int err = 0; 1964 1965 switch (n) { 1966 case NDI_NOMEM: 1967 err = ENOMEM; 1968 break; 1969 case NDI_BUSY: 1970 err = EBUSY; 1971 break; 1972 case NDI_FAULT: 1973 err = EFAULT; 1974 break; 1975 case NDI_FAILURE: 1976 err = EIO; 1977 break; 1978 case NDI_SUCCESS: 1979 break; 1980 case NDI_BADHANDLE: 1981 default: 1982 err = EINVAL; 1983 break; 1984 } 1985 return (err); 1986 } 1987 1988 /* 1989 * Prom tree node list 1990 */ 1991 struct ptnode { 1992 pnode_t nodeid; 1993 struct ptnode *next; 1994 }; 1995 1996 /* 1997 * Prom tree walk arg 1998 */ 1999 struct pta { 2000 dev_info_t *pdip; 2001 devi_branch_t *bp; 2002 uint_t flags; 2003 dev_info_t *fdip; 2004 struct ptnode *head; 2005 }; 2006 2007 static void 2008 visit_node(pnode_t nodeid, struct pta *ap) 2009 { 2010 struct ptnode **nextp; 2011 int (*select)(pnode_t, void *, uint_t); 2012 2013 ASSERT(nodeid != OBP_NONODE && nodeid != OBP_BADNODE); 2014 2015 select = ap->bp->create.prom_branch_select; 2016 2017 ASSERT(select); 2018 2019 if (select(nodeid, ap->bp->arg, 0) == DDI_SUCCESS) { 2020 2021 for (nextp = &ap->head; *nextp; nextp = &(*nextp)->next) 2022 ; 2023 2024 *nextp = kmem_zalloc(sizeof (struct ptnode), KM_SLEEP); 2025 2026 (*nextp)->nodeid = nodeid; 2027 } 2028 2029 if ((ap->flags & DEVI_BRANCH_CHILD) == DEVI_BRANCH_CHILD) 2030 return; 2031 2032 nodeid = prom_childnode(nodeid); 2033 while (nodeid != OBP_NONODE && nodeid != OBP_BADNODE) { 2034 visit_node(nodeid, ap); 2035 nodeid = prom_nextnode(nodeid); 2036 } 2037 } 2038 2039 /*ARGSUSED*/ 2040 static int 2041 set_dip_offline(dev_info_t *dip, void *arg) 2042 { 2043 ASSERT(dip); 2044 2045 mutex_enter(&(DEVI(dip)->devi_lock)); 2046 if (!DEVI_IS_DEVICE_OFFLINE(dip)) 2047 DEVI_SET_DEVICE_OFFLINE(dip); 2048 mutex_exit(&(DEVI(dip)->devi_lock)); 2049 2050 return (DDI_WALK_CONTINUE); 2051 } 2052 2053 /*ARGSUSED*/ 2054 static int 2055 create_prom_branch(void *arg, int has_changed) 2056 { 2057 int circ, c; 2058 int exists, rv; 2059 pnode_t nodeid; 2060 struct ptnode *tnp; 2061 dev_info_t *dip; 2062 struct pta *ap = arg; 2063 devi_branch_t *bp; 2064 2065 ASSERT(ap); 2066 ASSERT(ap->fdip == NULL); 2067 ASSERT(ap->pdip && ndi_dev_is_prom_node(ap->pdip)); 2068 2069 bp = ap->bp; 2070 2071 nodeid = ddi_get_nodeid(ap->pdip); 2072 if (nodeid == OBP_NONODE || nodeid == OBP_BADNODE) { 2073 cmn_err(CE_WARN, "create_prom_branch: invalid " 2074 "nodeid: 0x%x", nodeid); 2075 return (EINVAL); 2076 } 2077 2078 ap->head = NULL; 2079 2080 nodeid = prom_childnode(nodeid); 2081 while (nodeid != OBP_NONODE && nodeid != OBP_BADNODE) { 2082 visit_node(nodeid, ap); 2083 nodeid = prom_nextnode(nodeid); 2084 } 2085 2086 if (ap->head == NULL) 2087 return (ENODEV); 2088 2089 rv = 0; 2090 while ((tnp = ap->head) != NULL) { 2091 ap->head = tnp->next; 2092 2093 ndi_devi_enter(ap->pdip, &circ); 2094 2095 /* 2096 * Check if the branch already exists. 2097 */ 2098 exists = 0; 2099 dip = e_ddi_nodeid_to_dip(tnp->nodeid); 2100 if (dip != NULL) { 2101 exists = 1; 2102 2103 /* Parent is held busy, so release hold */ 2104 ndi_rele_devi(dip); 2105 #ifdef DEBUG 2106 cmn_err(CE_WARN, "create_prom_branch: dip(%p) exists" 2107 " for nodeid 0x%x", (void *)dip, tnp->nodeid); 2108 #endif 2109 } else { 2110 dip = i_ddi_create_branch(ap->pdip, tnp->nodeid); 2111 } 2112 2113 kmem_free(tnp, sizeof (struct ptnode)); 2114 2115 if (dip == NULL) { 2116 ndi_devi_exit(ap->pdip, circ); 2117 rv = EIO; 2118 continue; 2119 } 2120 2121 ASSERT(ddi_get_parent(dip) == ap->pdip); 2122 2123 /* 2124 * Hold the branch if it is not already held 2125 */ 2126 if (!exists) 2127 e_ddi_branch_hold(dip); 2128 2129 ASSERT(e_ddi_branch_held(dip)); 2130 2131 /* 2132 * Set all dips in the branch offline so that 2133 * only a "configure" operation can attach 2134 * the branch 2135 */ 2136 (void) set_dip_offline(dip, NULL); 2137 2138 ndi_devi_enter(dip, &c); 2139 ddi_walk_devs(ddi_get_child(dip), set_dip_offline, NULL); 2140 ndi_devi_exit(dip, c); 2141 2142 ndi_devi_exit(ap->pdip, circ); 2143 2144 if (ap->flags & DEVI_BRANCH_CONFIGURE) { 2145 int error = e_ddi_branch_configure(dip, &ap->fdip, 0); 2146 if (error && rv == 0) 2147 rv = error; 2148 } 2149 2150 /* 2151 * Invoke devi_branch_callback() (if it exists) only for 2152 * newly created branches 2153 */ 2154 if (bp->devi_branch_callback && !exists) 2155 bp->devi_branch_callback(dip, bp->arg, 0); 2156 } 2157 2158 return (rv); 2159 } 2160 2161 static int 2162 sid_node_create(dev_info_t *pdip, devi_branch_t *bp, dev_info_t **rdipp) 2163 { 2164 int rv, circ, len; 2165 int i, flags; 2166 dev_info_t *dip; 2167 char *nbuf; 2168 static const char *noname = "<none>"; 2169 2170 ASSERT(pdip); 2171 ASSERT(DEVI_BUSY_OWNED(pdip)); 2172 2173 flags = 0; 2174 2175 /* 2176 * Creating the root of a branch ? 2177 */ 2178 if (rdipp) { 2179 *rdipp = NULL; 2180 flags = DEVI_BRANCH_ROOT; 2181 } 2182 2183 ndi_devi_alloc_sleep(pdip, (char *)noname, DEVI_SID_NODEID, &dip); 2184 rv = bp->create.sid_branch_create(dip, bp->arg, flags); 2185 2186 nbuf = kmem_alloc(OBP_MAXDRVNAME, KM_SLEEP); 2187 2188 if (rv == DDI_WALK_ERROR) { 2189 cmn_err(CE_WARN, "e_ddi_branch_create: Error setting" 2190 " properties on devinfo node %p", (void *)dip); 2191 goto fail; 2192 } 2193 2194 len = OBP_MAXDRVNAME; 2195 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, 2196 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "name", nbuf, &len) 2197 != DDI_PROP_SUCCESS) { 2198 cmn_err(CE_WARN, "e_ddi_branch_create: devinfo node %p has" 2199 "no name property", (void *)dip); 2200 goto fail; 2201 } 2202 2203 ASSERT(i_ddi_node_state(dip) == DS_PROTO); 2204 if (ndi_devi_set_nodename(dip, nbuf, 0) != NDI_SUCCESS) { 2205 cmn_err(CE_WARN, "e_ddi_branch_create: cannot set name (%s)" 2206 " for devinfo node %p", nbuf, (void *)dip); 2207 goto fail; 2208 } 2209 2210 kmem_free(nbuf, OBP_MAXDRVNAME); 2211 2212 /* 2213 * Ignore bind failures just like boot does 2214 */ 2215 (void) ndi_devi_bind_driver(dip, 0); 2216 2217 switch (rv) { 2218 case DDI_WALK_CONTINUE: 2219 case DDI_WALK_PRUNESIB: 2220 ndi_devi_enter(dip, &circ); 2221 2222 i = DDI_WALK_CONTINUE; 2223 for (; i == DDI_WALK_CONTINUE; ) { 2224 i = sid_node_create(dip, bp, NULL); 2225 } 2226 2227 ASSERT(i == DDI_WALK_ERROR || i == DDI_WALK_PRUNESIB); 2228 if (i == DDI_WALK_ERROR) 2229 rv = i; 2230 /* 2231 * If PRUNESIB stop creating siblings 2232 * of dip's child. Subsequent walk behavior 2233 * is determined by rv returned by dip. 2234 */ 2235 2236 ndi_devi_exit(dip, circ); 2237 break; 2238 case DDI_WALK_TERMINATE: 2239 /* 2240 * Don't create children and ask our parent 2241 * to not create siblings either. 2242 */ 2243 rv = DDI_WALK_PRUNESIB; 2244 break; 2245 case DDI_WALK_PRUNECHILD: 2246 /* 2247 * Don't create children, but ask parent to continue 2248 * with siblings. 2249 */ 2250 rv = DDI_WALK_CONTINUE; 2251 break; 2252 default: 2253 ASSERT(0); 2254 break; 2255 } 2256 2257 if (rdipp) 2258 *rdipp = dip; 2259 2260 /* 2261 * Set device offline - only the "configure" op should cause an attach 2262 */ 2263 (void) set_dip_offline(dip, NULL); 2264 2265 return (rv); 2266 fail: 2267 (void) ndi_devi_free(dip); 2268 kmem_free(nbuf, OBP_MAXDRVNAME); 2269 return (DDI_WALK_ERROR); 2270 } 2271 2272 static int 2273 create_sid_branch( 2274 dev_info_t *pdip, 2275 devi_branch_t *bp, 2276 dev_info_t **dipp, 2277 uint_t flags) 2278 { 2279 int rv = 0, state = DDI_WALK_CONTINUE; 2280 dev_info_t *rdip; 2281 2282 while (state == DDI_WALK_CONTINUE) { 2283 int circ; 2284 2285 ndi_devi_enter(pdip, &circ); 2286 2287 state = sid_node_create(pdip, bp, &rdip); 2288 if (rdip == NULL) { 2289 ndi_devi_exit(pdip, circ); 2290 ASSERT(state == DDI_WALK_ERROR); 2291 break; 2292 } 2293 2294 e_ddi_branch_hold(rdip); 2295 2296 ndi_devi_exit(pdip, circ); 2297 2298 if (flags & DEVI_BRANCH_CONFIGURE) { 2299 int error = e_ddi_branch_configure(rdip, dipp, 0); 2300 if (error && rv == 0) 2301 rv = error; 2302 } 2303 2304 /* 2305 * devi_branch_callback() is optional 2306 */ 2307 if (bp->devi_branch_callback) 2308 bp->devi_branch_callback(rdip, bp->arg, 0); 2309 } 2310 2311 ASSERT(state == DDI_WALK_ERROR || state == DDI_WALK_PRUNESIB); 2312 2313 return (state == DDI_WALK_ERROR ? EIO : rv); 2314 } 2315 2316 int 2317 e_ddi_branch_create( 2318 dev_info_t *pdip, 2319 devi_branch_t *bp, 2320 dev_info_t **dipp, 2321 uint_t flags) 2322 { 2323 int prom_devi, sid_devi, error; 2324 2325 if (pdip == NULL || bp == NULL || bp->type == 0) 2326 return (EINVAL); 2327 2328 prom_devi = (bp->type == DEVI_BRANCH_PROM) ? 1 : 0; 2329 sid_devi = (bp->type == DEVI_BRANCH_SID) ? 1 : 0; 2330 2331 if (prom_devi && bp->create.prom_branch_select == NULL) 2332 return (EINVAL); 2333 else if (sid_devi && bp->create.sid_branch_create == NULL) 2334 return (EINVAL); 2335 else if (!prom_devi && !sid_devi) 2336 return (EINVAL); 2337 2338 if (flags & DEVI_BRANCH_EVENT) 2339 return (EINVAL); 2340 2341 if (prom_devi) { 2342 struct pta pta = {0}; 2343 2344 pta.pdip = pdip; 2345 pta.bp = bp; 2346 pta.flags = flags; 2347 2348 error = prom_tree_access(create_prom_branch, &pta, NULL); 2349 2350 if (dipp) 2351 *dipp = pta.fdip; 2352 else if (pta.fdip) 2353 ndi_rele_devi(pta.fdip); 2354 } else { 2355 error = create_sid_branch(pdip, bp, dipp, flags); 2356 } 2357 2358 return (error); 2359 } 2360 2361 int 2362 e_ddi_branch_configure(dev_info_t *rdip, dev_info_t **dipp, uint_t flags) 2363 { 2364 int circ, rv; 2365 char *devnm; 2366 dev_info_t *pdip; 2367 2368 if (dipp) 2369 *dipp = NULL; 2370 2371 if (rdip == NULL || flags != 0 || (flags & DEVI_BRANCH_EVENT)) 2372 return (EINVAL); 2373 2374 pdip = ddi_get_parent(rdip); 2375 2376 ndi_devi_enter(pdip, &circ); 2377 2378 if (!e_ddi_branch_held(rdip)) { 2379 ndi_devi_exit(pdip, circ); 2380 cmn_err(CE_WARN, "e_ddi_branch_configure: " 2381 "dip(%p) not held", (void *)rdip); 2382 return (EINVAL); 2383 } 2384 2385 if (i_ddi_node_state(rdip) < DS_INITIALIZED) { 2386 /* 2387 * First attempt to bind a driver. If we fail, return 2388 * success (On some platforms, dips for some device 2389 * types (CPUs) may not have a driver) 2390 */ 2391 if (ndi_devi_bind_driver(rdip, 0) != NDI_SUCCESS) { 2392 ndi_devi_exit(pdip, circ); 2393 return (0); 2394 } 2395 2396 if (ddi_initchild(pdip, rdip) != DDI_SUCCESS) { 2397 rv = NDI_FAILURE; 2398 goto out; 2399 } 2400 } 2401 2402 ASSERT(i_ddi_node_state(rdip) >= DS_INITIALIZED); 2403 2404 devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP); 2405 2406 (void) ddi_deviname(rdip, devnm); 2407 2408 if ((rv = ndi_devi_config_one(pdip, devnm+1, &rdip, 2409 NDI_DEVI_ONLINE | NDI_CONFIG)) == NDI_SUCCESS) { 2410 /* release hold from ndi_devi_config_one() */ 2411 ndi_rele_devi(rdip); 2412 } 2413 2414 kmem_free(devnm, MAXNAMELEN + 1); 2415 out: 2416 if (rv != NDI_SUCCESS && dipp) { 2417 ndi_hold_devi(rdip); 2418 *dipp = rdip; 2419 } 2420 ndi_devi_exit(pdip, circ); 2421 return (ndi2errno(rv)); 2422 } 2423 2424 void 2425 e_ddi_branch_hold(dev_info_t *rdip) 2426 { 2427 if (e_ddi_branch_held(rdip)) { 2428 cmn_err(CE_WARN, "e_ddi_branch_hold: branch already held"); 2429 return; 2430 } 2431 2432 mutex_enter(&DEVI(rdip)->devi_lock); 2433 if ((DEVI(rdip)->devi_flags & DEVI_BRANCH_HELD) == 0) { 2434 DEVI(rdip)->devi_flags |= DEVI_BRANCH_HELD; 2435 DEVI(rdip)->devi_ref++; 2436 } 2437 ASSERT(DEVI(rdip)->devi_ref > 0); 2438 mutex_exit(&DEVI(rdip)->devi_lock); 2439 } 2440 2441 int 2442 e_ddi_branch_held(dev_info_t *rdip) 2443 { 2444 int rv = 0; 2445 2446 mutex_enter(&DEVI(rdip)->devi_lock); 2447 if ((DEVI(rdip)->devi_flags & DEVI_BRANCH_HELD) && 2448 DEVI(rdip)->devi_ref > 0) { 2449 rv = 1; 2450 } 2451 mutex_exit(&DEVI(rdip)->devi_lock); 2452 2453 return (rv); 2454 } 2455 void 2456 e_ddi_branch_rele(dev_info_t *rdip) 2457 { 2458 mutex_enter(&DEVI(rdip)->devi_lock); 2459 DEVI(rdip)->devi_flags &= ~DEVI_BRANCH_HELD; 2460 DEVI(rdip)->devi_ref--; 2461 mutex_exit(&DEVI(rdip)->devi_lock); 2462 } 2463 2464 int 2465 e_ddi_branch_unconfigure( 2466 dev_info_t *rdip, 2467 dev_info_t **dipp, 2468 uint_t flags) 2469 { 2470 int circ, rv; 2471 int destroy; 2472 char *devnm; 2473 uint_t nflags; 2474 dev_info_t *pdip; 2475 2476 if (dipp) 2477 *dipp = NULL; 2478 2479 if (rdip == NULL) 2480 return (EINVAL); 2481 2482 pdip = ddi_get_parent(rdip); 2483 2484 ASSERT(pdip); 2485 2486 /* 2487 * Check if caller holds pdip busy - can cause deadlocks during 2488 * devfs_clean() 2489 */ 2490 if (DEVI_BUSY_OWNED(pdip)) { 2491 cmn_err(CE_WARN, "e_ddi_branch_unconfigure: failed: parent" 2492 " devinfo node(%p) is busy held", (void *)pdip); 2493 return (EINVAL); 2494 } 2495 2496 destroy = (flags & DEVI_BRANCH_DESTROY) ? 1 : 0; 2497 2498 devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP); 2499 2500 ndi_devi_enter(pdip, &circ); 2501 (void) ddi_deviname(rdip, devnm); 2502 ndi_devi_exit(pdip, circ); 2503 2504 /* 2505 * ddi_deviname() returns a component name with / prepended. 2506 */ 2507 (void) devfs_clean(pdip, devnm + 1, DV_CLEAN_FORCE); 2508 2509 ndi_devi_enter(pdip, &circ); 2510 2511 /* 2512 * Recreate device name as it may have changed state (init/uninit) 2513 * when parent busy lock was dropped for devfs_clean() 2514 */ 2515 (void) ddi_deviname(rdip, devnm); 2516 2517 if (!e_ddi_branch_held(rdip)) { 2518 kmem_free(devnm, MAXNAMELEN + 1); 2519 ndi_devi_exit(pdip, circ); 2520 cmn_err(CE_WARN, "e_ddi_%s_branch: dip(%p) not held", 2521 destroy ? "destroy" : "unconfigure", (void *)rdip); 2522 return (EINVAL); 2523 } 2524 2525 /* 2526 * Release hold on the branch. This is ok since we are holding the 2527 * parent busy. If rdip is not removed, we must do a hold on the 2528 * branch before returning. 2529 */ 2530 e_ddi_branch_rele(rdip); 2531 2532 nflags = NDI_DEVI_OFFLINE; 2533 if (destroy || (flags & DEVI_BRANCH_DESTROY)) { 2534 nflags |= NDI_DEVI_REMOVE; 2535 destroy = 1; 2536 } else { 2537 nflags |= NDI_UNCONFIG; /* uninit but don't remove */ 2538 } 2539 2540 if (flags & DEVI_BRANCH_EVENT) 2541 nflags |= NDI_POST_EVENT; 2542 2543 if (i_ddi_devi_attached(pdip) && 2544 (i_ddi_node_state(rdip) >= DS_INITIALIZED)) { 2545 rv = ndi_devi_unconfig_one(pdip, devnm+1, dipp, nflags); 2546 } else { 2547 rv = e_ddi_devi_unconfig(rdip, dipp, nflags); 2548 if (rv == NDI_SUCCESS) { 2549 ASSERT(!destroy || ddi_get_child(rdip) == NULL); 2550 rv = ndi_devi_offline(rdip, nflags); 2551 } 2552 } 2553 2554 if (!destroy || rv != NDI_SUCCESS) { 2555 /* The dip still exists, so do a hold */ 2556 e_ddi_branch_hold(rdip); 2557 } 2558 out: 2559 kmem_free(devnm, MAXNAMELEN + 1); 2560 ndi_devi_exit(pdip, circ); 2561 return (ndi2errno(rv)); 2562 } 2563 2564 int 2565 e_ddi_branch_destroy(dev_info_t *rdip, dev_info_t **dipp, uint_t flag) 2566 { 2567 return (e_ddi_branch_unconfigure(rdip, dipp, 2568 flag|DEVI_BRANCH_DESTROY)); 2569 } 2570 2571 /* 2572 * Number of chains for hash table 2573 */ 2574 #define NUMCHAINS 17 2575 2576 /* 2577 * Devinfo busy arg 2578 */ 2579 struct devi_busy { 2580 int dv_total; 2581 int s_total; 2582 mod_hash_t *dv_hash; 2583 mod_hash_t *s_hash; 2584 int (*callback)(dev_info_t *, void *, uint_t); 2585 void *arg; 2586 }; 2587 2588 static int 2589 visit_dip(dev_info_t *dip, void *arg) 2590 { 2591 uintptr_t sbusy, dvbusy, ref; 2592 struct devi_busy *bsp = arg; 2593 2594 ASSERT(bsp->callback); 2595 2596 /* 2597 * A dip cannot be busy if its reference count is 0 2598 */ 2599 if ((ref = e_ddi_devi_holdcnt(dip)) == 0) { 2600 return (bsp->callback(dip, bsp->arg, 0)); 2601 } 2602 2603 if (mod_hash_find(bsp->dv_hash, dip, (mod_hash_val_t *)&dvbusy)) 2604 dvbusy = 0; 2605 2606 /* 2607 * To catch device opens currently maintained on specfs common snodes. 2608 */ 2609 if (mod_hash_find(bsp->s_hash, dip, (mod_hash_val_t *)&sbusy)) 2610 sbusy = 0; 2611 2612 #ifdef DEBUG 2613 if (ref < sbusy || ref < dvbusy) { 2614 cmn_err(CE_WARN, "dip(%p): sopen = %lu, dvopen = %lu " 2615 "dip ref = %lu\n", (void *)dip, sbusy, dvbusy, ref); 2616 } 2617 #endif 2618 2619 dvbusy = (sbusy > dvbusy) ? sbusy : dvbusy; 2620 2621 return (bsp->callback(dip, bsp->arg, dvbusy)); 2622 } 2623 2624 static int 2625 visit_snode(struct snode *sp, void *arg) 2626 { 2627 uintptr_t sbusy; 2628 dev_info_t *dip; 2629 int count; 2630 struct devi_busy *bsp = arg; 2631 2632 ASSERT(sp); 2633 2634 /* 2635 * The stable lock is held. This prevents 2636 * the snode and its associated dip from 2637 * going away. 2638 */ 2639 dip = NULL; 2640 count = spec_devi_open_count(sp, &dip); 2641 2642 if (count <= 0) 2643 return (DDI_WALK_CONTINUE); 2644 2645 ASSERT(dip); 2646 2647 if (mod_hash_remove(bsp->s_hash, dip, (mod_hash_val_t *)&sbusy)) 2648 sbusy = count; 2649 else 2650 sbusy += count; 2651 2652 if (mod_hash_insert(bsp->s_hash, dip, (mod_hash_val_t)sbusy)) { 2653 cmn_err(CE_WARN, "%s: s_hash insert failed: dip=0x%p, " 2654 "sbusy = %lu", "e_ddi_branch_referenced", 2655 (void *)dip, sbusy); 2656 } 2657 2658 bsp->s_total += count; 2659 2660 return (DDI_WALK_CONTINUE); 2661 } 2662 2663 static void 2664 visit_dvnode(struct dv_node *dv, void *arg) 2665 { 2666 uintptr_t dvbusy; 2667 uint_t count; 2668 struct vnode *vp; 2669 struct devi_busy *bsp = arg; 2670 2671 ASSERT(dv && dv->dv_devi); 2672 2673 vp = DVTOV(dv); 2674 2675 mutex_enter(&vp->v_lock); 2676 count = vp->v_count; 2677 mutex_exit(&vp->v_lock); 2678 2679 if (!count) 2680 return; 2681 2682 if (mod_hash_remove(bsp->dv_hash, dv->dv_devi, 2683 (mod_hash_val_t *)&dvbusy)) 2684 dvbusy = count; 2685 else 2686 dvbusy += count; 2687 2688 if (mod_hash_insert(bsp->dv_hash, dv->dv_devi, 2689 (mod_hash_val_t)dvbusy)) { 2690 cmn_err(CE_WARN, "%s: dv_hash insert failed: dip=0x%p, " 2691 "dvbusy=%lu", "e_ddi_branch_referenced", 2692 (void *)dv->dv_devi, dvbusy); 2693 } 2694 2695 bsp->dv_total += count; 2696 } 2697 2698 /* 2699 * Returns reference count on success or -1 on failure. 2700 */ 2701 int 2702 e_ddi_branch_referenced( 2703 dev_info_t *rdip, 2704 int (*callback)(dev_info_t *dip, void *arg, uint_t ref), 2705 void *arg) 2706 { 2707 int circ; 2708 char *path; 2709 dev_info_t *pdip; 2710 struct devi_busy bsa = {0}; 2711 2712 ASSERT(rdip); 2713 2714 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2715 2716 ndi_hold_devi(rdip); 2717 2718 pdip = ddi_get_parent(rdip); 2719 2720 ASSERT(pdip); 2721 2722 /* 2723 * Check if caller holds pdip busy - can cause deadlocks during 2724 * devfs_walk() 2725 */ 2726 if (!e_ddi_branch_held(rdip) || DEVI_BUSY_OWNED(pdip)) { 2727 cmn_err(CE_WARN, "e_ddi_branch_referenced: failed: " 2728 "devinfo branch(%p) not held or parent busy held", 2729 (void *)rdip); 2730 ndi_rele_devi(rdip); 2731 kmem_free(path, MAXPATHLEN); 2732 return (-1); 2733 } 2734 2735 ndi_devi_enter(pdip, &circ); 2736 (void) ddi_pathname(rdip, path); 2737 ndi_devi_exit(pdip, circ); 2738 2739 bsa.dv_hash = mod_hash_create_ptrhash("dv_node busy hash", NUMCHAINS, 2740 mod_hash_null_valdtor, sizeof (struct dev_info)); 2741 2742 bsa.s_hash = mod_hash_create_ptrhash("snode busy hash", NUMCHAINS, 2743 mod_hash_null_valdtor, sizeof (struct snode)); 2744 2745 if (devfs_walk(path, visit_dvnode, &bsa)) { 2746 cmn_err(CE_WARN, "e_ddi_branch_referenced: " 2747 "devfs walk failed for: %s", path); 2748 kmem_free(path, MAXPATHLEN); 2749 bsa.s_total = bsa.dv_total = -1; 2750 goto out; 2751 } 2752 2753 kmem_free(path, MAXPATHLEN); 2754 2755 /* 2756 * Walk the snode table to detect device opens, which are currently 2757 * maintained on specfs common snodes. 2758 */ 2759 spec_snode_walk(visit_snode, &bsa); 2760 2761 if (callback == NULL) 2762 goto out; 2763 2764 bsa.callback = callback; 2765 bsa.arg = arg; 2766 2767 if (visit_dip(rdip, &bsa) == DDI_WALK_CONTINUE) { 2768 ndi_devi_enter(rdip, &circ); 2769 ddi_walk_devs(ddi_get_child(rdip), visit_dip, &bsa); 2770 ndi_devi_exit(rdip, circ); 2771 } 2772 2773 out: 2774 ndi_rele_devi(rdip); 2775 mod_hash_destroy_ptrhash(bsa.s_hash); 2776 mod_hash_destroy_ptrhash(bsa.dv_hash); 2777 return (bsa.s_total > bsa.dv_total ? bsa.s_total : bsa.dv_total); 2778 } 2779