xref: /titanic_50/usr/src/uts/sun4/io/trapstat.c (revision f3b88bd264fc74b4befab18c4ba4329a388ddcb7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/systm.h>
30 #include <sys/conf.h>
31 #include <sys/stat.h>
32 #include <sys/ddi.h>
33 #include <sys/sunddi.h>
34 #include <sys/modctl.h>
35 #include <sys/cpu_module.h>
36 #include <vm/hat_sfmmu.h>
37 #include <vm/seg_kmem.h>
38 #include <vm/seg_kpm.h>
39 #include <vm/vm_dep.h>
40 #include <sys/machsystm.h>
41 #include <sys/machasi.h>
42 #include <sys/sysmacros.h>
43 #include <sys/callb.h>
44 #include <sys/archsystm.h>
45 #include <sys/trapstat.h>
46 #ifdef sun4v
47 #include <sys/hypervisor_api.h>
48 #endif
49 
50 /* BEGIN CSTYLED */
51 /*
52  * trapstat:  Trap Statistics through Dynamic Trap Table Interposition
53  * -------------------------------------------------------------------
54  *
55  * Motivation and Overview
56  *
57  * Despite being a fundamental indicator of system behavior, there has
58  * historically been very little insight provided into the frequency and cost
59  * of machine-specific traps.  The lack of insight has been especially acute
60  * on UltraSPARC microprocessors:  because these microprocessors handle TLB
61  * misses as software traps, the frequency and duration of traps play a
62  * decisive role in the performance of the memory system.  As applications have
63  * increasingly outstripped TLB reach, this has become increasingly true.
64  *
65  * Part of the difficulty of observing trap behavior is that the trap handlers
66  * are so frequently called (e.g. millions of times per second) that any
67  * permanently enabled instrumentation would induce an unacceptable performance
68  * degradation.  Thus, it is a constraint on any trap observability
69  * infrastructure that it have no probe effect when not explicitly enabled.
70  *
71  * The basic idea, then, is to create an interposing trap table in which each
72  * entry increments a per-trap, in-memory counter and then jumps to the actual,
73  * underlying trap table entry.  To enable trapstat, we atomically write to the
74  * trap base address (%tba) register to point to our interposing trap table.
75  * (Note that per-CPU statistics fall out by creating a different trap table
76  * for each CPU.)
77  *
78  * Implementation Details
79  *
80  * While the idea is straight-forward, a nuance of SPARC V9 slightly
81  * complicates the implementation.  Unlike its predecessors, SPARC V9 supports
82  * the notion of nested traps.  The trap level is kept in the TL register:
83  * during normal operation it is 0; when a trap is taken, the TL register is
84  * incremented by 1.  To aid system software, SPARC V9 breaks the trap table
85  * into two halves:  the lower half contains the trap handlers for traps taken
86  * when TL is 0; the upper half contains the trap handlers for traps taken
87  * when TL is greater than 0.  Each half is further subdivided into two
88  * subsequent halves:  the lower half contains the trap handlers for traps
89  * other than those induced by the trap instruction (Tcc variants); the upper
90  * half contains the trap handlers for traps induced by the trap instruction.
91  * This gives a total of four ranges, with each range containing 256 traps:
92  *
93  *       +--------------------------------+- 3ff
94  *       |                                |   .
95  *       |     Trap instruction, TL>0     |   .
96  *       |                                |   .
97  *       |- - - - - - - - - - - - - - - - +- 300
98  *       |- - - - - - - - - - - - - - - - +- 2ff
99  *       |                                |   .
100  *       |   Non-trap instruction, TL>0   |   .
101  *       |                                |   .
102  *       |- - - - - - - - - - - - - - - - +- 200
103  *       |- - - - - - - - - - - - - - - - +- 1ff
104  *       |                                |   .
105  *       |     Trap instruction, TL=0     |   .
106  *       |                                |   .
107  *       |- - - - - - - - - - - - - - - - +- 100
108  *       |- - - - - - - - - - - - - - - - +- 0ff
109  *       |                                |   .
110  *       |   Non-trap instruction, TL=0   |   .
111  *       |                                |   .
112  *       +--------------------------------+- 000
113  *
114  *
115  * Solaris, however, doesn't have reason to support trap instructions when
116  * TL>0 (only privileged code may execute at TL>0; not supporting this only
117  * constrains our own implementation).  The trap table actually looks like:
118  *
119  *       +--------------------------------+- 2ff
120  *       |                                |   .
121  *       |   Non-trap instruction, TL>0   |   .
122  *       |                                |   .
123  *       |- - - - - - - - - - - - - - - - +- 200
124  *       |- - - - - - - - - - - - - - - - +- 1ff
125  *       |                                |   .
126  *       |     Trap instruction, TL=0     |   .
127  *       |                                |   .
128  *       |- - - - - - - - - - - - - - - - +- 100
129  *       |- - - - - - - - - - - - - - - - +- 0ff
130  *       |                                |   .
131  *       |   Non-trap instruction, TL=0   |   .
132  *       |                                |   .
133  *       +--------------------------------+- 000
134  *
135  * Putatively to aid system software, SPARC V9 has the notion of multiple
136  * sets of global registers.  UltraSPARC defines four sets of global
137  * registers:
138  *
139  *    Normal Globals
140  *    Alternate Globals (AGs)
141  *    MMU Globals (MGs)
142  *    Interrupt Globals (IGs)
143  *
144  * The set of globals in use is controlled by bits in PSTATE; when TL is 0
145  * (and PSTATE has not been otherwise explicitly modified), the Normal Globals
146  * are in use.  When a trap is issued, PSTATE is modified to point to a set of
147  * globals corresponding to the trap type.  Most traps correspond to the
148  * Alternate Globals, with a minority corresponding to the MMU Globals, and
149  * only the interrupt-vector trap (vector 0x60) corresponding to the Interrupt
150  * Globals.  (The complete mapping can be found in the UltraSPARC I&II User's
151  * Manual.)
152  *
153  * Note that the sets of globals are per trap _type_, not per trap _level_.
154  * Thus, when executing a TL>0 trap handler, one may not have registers
155  * available (for example, both trap-instruction traps and spill traps execute
156  * on the alternate globals; if a trap-instruction trap induces a window spill,
157  * the window spill handler has no available globals).  For trapstat, this is
158  * problematic:  a register is required to transfer control from one arbitrary
159  * location (in the interposing trap table) to another (in the actual trap
160  * table).
161  *
162  * We solve this problem by exploiting the trap table's location at the bottom
163  * of valid kernel memory (i.e. at KERNELBASE).  We locate the interposing trap
164  * tables just below KERNELBASE -- thereby allowing us to use a branch-always
165  * instruction (ba) instead of a jump instruction (jmp) to transfer control
166  * from the TL>0 entries in the interposing trap table to the TL>0 entries in
167  * the actual trap table.  (N.B. while this allows trap table interposition to
168  * work, it necessarily limits trapstat to only recording information about
169  * TL=0 traps -- there is no way to increment a counter without using a
170  * register.)  Diagrammatically:
171  *
172  *  Actual trap table:
173  *
174  *       +--------------------------------+- 2ff
175  *       |                                |   .
176  *       |   Non-trap instruction, TL>0   |   .   <-----------------------+
177  *       |                                |   .   <-----------------------|-+
178  *       |- - - - - - - - - - - - - - - - +- 200  <-----------------------|-|-+
179  *       |- - - - - - - - - - - - - - - - +- 1ff                          | | |
180  *       |                                |   .                           | | |
181  *       |     Trap instruction, TL=0     |   .   <-----------------+     | | |
182  *       |                                |   .   <-----------------|-+   | | |
183  *       |- - - - - - - - - - - - - - - - +- 100  <-----------------|-|-+ | | |
184  *       |- - - - - - - - - - - - - - - - +- 0ff                    | | | | | |
185  *       |                                |   .                     | | | | | |
186  *       |   Non-trap instruction, TL=0   |   .   <-----------+     | | | | | |
187  *       |                                |   .   <-----------|-+   | | | | | |
188  *       +--------------------------------+- 000  <-----------|-|-+ | | | | | |
189  *        KERNELBASE                                          | | | | | | | | |
190  *                                                            | | | | | | | | |
191  *                                                            | | | | | | | | |
192  *  Interposing trap table:                                   | | | | | | | | |
193  *                                                            | | | | | | | | |
194  *       +--------------------------------+- 2ff              | | | | | | | | |
195  *       |  ...                           |   .               | | | | | | | | |
196  *       |  ...                           |   .               | | | | | | | | |
197  *       |  ...                           |   .               | | | | | | | | |
198  *       |- - - - - - - - - - - - - - - - +- 203              | | | | | | | | |
199  *       |  ba,a                          |      -------------|-|-|-|-|-|-+ | |
200  *       |- - - - - - - - - - - - - - - - +- 202              | | | | | |   | |
201  *       |  ba,a                          |      -------------|-|-|-|-|-|---+ |
202  *       |- - - - - - - - - - - - - - - - +- 201              | | | | | |     |
203  *       |  ba,a                          |      -------------|-|-|-|-|-|-----+
204  *       |- - - - - - - - - - - - - - - - +- 200              | | | | | |
205  *       |  ...                           |   .               | | | | | |
206  *       |  ...                           |   .               | | | | | |
207  *       |  ...                           |   .               | | | | | |
208  *       |- - - - - - - - - - - - - - - - +- 103              | | | | | |
209  *       |  (Increment counter)           |                   | | | | | |
210  *       |  ba,a                          |      -------------------+ | |
211  *       |- - - - - - - - - - - - - - - - +- 102              | | |   | |
212  *       |  (Increment counter)           |                   | | |   | |
213  *       |  ba,a                          |      ---------------------+ |
214  *       |- - - - - - - - - - - - - - - - +- 101              | | |     |
215  *       |  (Increment counter)           |                   | | |     |
216  *       |  ba,a                          |      -----------------------+
217  *       |- - - - - - - - - - - - - - - - +- 100              | | |
218  *       |  ...                           |   .               | | |
219  *       |  ...                           |   .               | | |
220  *       |  ...                           |   .               | | |
221  *       |- - - - - - - - - - - - - - - - +- 003              | | |
222  *       |  (Increment counter)           |                   | | |
223  *       |  ba,a                          |      -------------+ | |
224  *       |- - - - - - - - - - - - - - - - +- 002                | |
225  *       |  (Increment counter)           |                     | |
226  *       |  ba,a                          |      ---------------+ |
227  *       |- - - - - - - - - - - - - - - - +- 001                  |
228  *       |  (Increment counter)           |                       |
229  *       |  ba,a                          |      -----------------+
230  *       +--------------------------------+- 000
231  *        KERNELBASE - tstat_total_size
232  *
233  * tstat_total_size is the number of pages required for each trap table.  It
234  * must be true that KERNELBASE - tstat_total_size is less than the maximum
235  * branch displacement; if each CPU were to consume a disjoint virtual range
236  * below KERNELBASE for its trap table, we could support at most
237  * (maximum_branch_displacement / tstat_total_size) CPUs.  The maximum branch
238  * displacement for Bicc variants is just under eight megabytes, and (because
239  * the %tba must be 32K aligned), tstat_total_size must be at least 32K; if
240  * each CPU were to consume a disjoint virtual range, we would have an
241  * unacceptably low upper bound of 256 CPUs.
242  *
243  * While there are tricks that one could use to address this constraint (e.g.,
244  * creating trampolines every maximum_branch_displacement bytes), we instead
245  * solve this by not permitting each CPU to consume a disjoint virtual range.
246  * Rather, we have each CPU's interposing trap table use the _same_ virtual
247  * range, but we back the trap tables with disjoint physical memory.  Normally,
248  * such one-to-many virtual-to-physical mappings are illegal; this is
249  * permissible here only because the pages for the interposing trap table are
250  * necessarily locked in the TLB.  (The CPUs thus never have the opportunity to
251  * discover that they have conflicting translations.)
252  *
253  * On CMT architectures in which CPUs can share MMUs, the above trick will not
254  * work: two CPUs that share an MMU cannot have the same virtual address map
255  * to disjoint physical pages.  On these architectures, any CPUs sharing the
256  * same MMU must consume a disjoint 32K virtual address range -- limiting the
257  * number of CPUs sharing an MMU on these architectures to 256 due to the
258  * branch displacement limitation described above.  On the sun4v architecture,
259  * there is a further limitation: a guest may not have more than eight locked
260  * TLB entries per MMU.  To allow operation under this restriction, the
261  * interposing trap table and the trap statistics are each accessed through
262  * a single 4M TLB entry.  This limits the footprint to two locked entries
263  * (one for the I-TLB and one for the D-TLB), but further restricts the number
264  * of CPUs to 128 per MMU.  However, support for more than 128 CPUs can easily
265  * be added via a hybrid scheme, where the same 4M virtual address is used
266  * on different MMUs.
267  *
268  *
269  * TLB Statistics
270  *
271  * Because TLB misses are an important component of system performance, we wish
272  * to know much more about these traps than simply the number received.
273  * Specifically, we wish to know:
274  *
275  *  (a)	The amount of time spent executing the TLB miss handler
276  *  (b)	TLB misses versus TSB misses
277  *  (c) Kernel-level misses versus user-level misses
278  *  (d) Misses per pagesize
279  *
280  * TLB Statistics: Time Spent Executing
281  *
282  * To accurately determine the amount of time spent executing the TLB miss
283  * handler, one must get a timestamp on trap entry and trap exit, subtract the
284  * latter from the former, and add the result to an accumulating count.
285  * Consider flow of control during normal TLB miss processing (where "ldx
286  * [%g2], %g2" is an arbitrary TLB-missing instruction):
287  *
288  * + - - - - - - - -+
289  * :                :
290  * : ldx [%g2], %g2 :<-------------------------------------------------------+
291  * :                :              Return from trap:                         |
292  * + - - - - - - - -+                TL <- TL - 1 (0)                        |
293  *	  |                          %pc <- TSTATE[TL].TPC (address of load) |
294  *	  | TLB miss:                                                        |
295  *        |   TL <- TL + 1 (1)                                               |
296  *        |   %pc <- TLB-miss-trap-handler                                   |
297  *        |                                                                  |
298  *        v                                                                  |
299  * + - - - - - - - - - - - - - - - +                                         |
300  * :                               :                                         |
301  * : Lookup VA in TSB              :                                         |
302  * : If (hit)                      :                                         |
303  * :     Fill TLB                  :                                         |
304  * : Else                          :                                         |
305  * :     Lookup VA (hme hash table :                                         |
306  * :                or segkpm)     :                                         |
307  * :     Fill TLB                  :                                         |
308  * : Endif                         :                                         |
309  * : Issue "retry"  ---------------------------------------------------------+
310  * :                               :
311  * + - - - - - - - - - - - - - - - +
312  *  TLB-miss-trap-handler
313  *
314  *
315  * As the above diagram indicates, interposing on the trap table allows one
316  * only to determine a timestamp on trap _entry_:  when the TLB miss handler
317  * has completed filling the TLB, a "retry" will be issued, and control will
318  * transfer immediately back to the missing %pc.
319  *
320  * To obtain a timestamp on trap exit, we must then somehow interpose between
321  * the "retry" and the subsequent control transfer to the TLB-missing
322  * instruction.  To do this, we _push_ a trap level.  The basic idea is to
323  * spoof a TLB miss by raising TL, setting the %tpc to be within text
324  * controlled by trapstat (the "TLB return entry") and branching to the
325  * underlying TLB miss handler.  When the TLB miss handler issues its "retry",
326  * control will transfer not to the TLB-missing instruction, but rather to the
327  * TLB return entry.  This code can then obtain a timestamp, and issue its own
328  * "retry" -- thereby correctly returning to the TLB-missing instruction.
329  * Here is the above TLB miss flow control diagram modified to reflect
330  * trapstat's operation:
331  *
332  * + - - - - - - - -+
333  * :                :
334  * : ldx [%g2], %g2 :<-------------------------------------------------------+
335  * :                :             Return from trap:                          |
336  * + - - - - - - - -+               TL <- TL - 1 (0)                         |
337  *	  |                         %pc <- TSTATE[TL].TPC (address of load)  |
338  *	  | TLB miss:                                                        |
339  *        |   TL <- TL + 1 (1)                                               |
340  *        |   %pc <- TLB-miss-trap-handler (trapstat)                        |
341  *        |                                                                  |
342  *        v                                    TLB-return-entry (trapstat)   |
343  * + - - - - - - - - - - - - - - - - - - +    + - - - - - - - - - - - - - +  |
344  * :                                     :    :                           :  |
345  * : Record timestamp                    :    : Record timestamp          :  |
346  * : TL <- 2                             :    : Take timestamp difference :  |
347  * : TSTATE[1].TPC <- TLB-return-entry   :    : Add to running total      :  |
348  * : ba,a TLB-miss-trap-handler -----------+  : Issue "retry"  --------------+
349  * :                                     : |  :                           :
350  * + - - - - - - - - - - - - - - - - - - + |  + - - - - - - - - - - - - - +
351  *  TLB-miss-trap-handler	           |                  ^
352  *  (trapstat)                             |                  |
353  *                                         |                  |
354  *                                         |                  |
355  *                 +-----------------------+                  |
356  *                 |                                          |
357  *                 |                                          |
358  *                 v                                          |
359  * + - - - - - - - - - - - - - - - +                          |
360  * :                               :                          |
361  * : Lookup VA in TSB              :                          |
362  * : If (hit)                      :                          |
363  * :     Fill TLB                  :                          |
364  * : Else                          :                          |
365  * :     Lookup VA (hme hash table :                          |
366  * :                or segkpm)     :                          |
367  * :     Fill TLB                  :                          |
368  * : Endif                         :                          |
369  * : Issue "retry"  ------------------------------------------+
370  * :                               : Return from trap:
371  * + - - - - - - - - - - - - - - - +   TL <- TL - 1 (1)
372  *  TLB-miss-trap-handler              %pc <- TSTATE[TL].TPC (TLB-return-entry)
373  *
374  *
375  * A final subterfuge is required to complete our artifice:  if we miss in
376  * the TLB, the TSB _and_ the subsequent hash or segkpm lookup (that is, if
377  * there is no valid translation for the TLB-missing address), common system
378  * software will need to accurately determine the %tpc as part of its page
379  * fault handling. We therefore modify the kernel to check the %tpc in this
380  * case: if the %tpc falls within the VA range controlled by trapstat and
381  * the TL is 2, TL is simply lowered back to 1 (this check is implemented
382  * by the TSTAT_CHECK_TL1 macro).  Lowering TL to 1 has the effect of
383  * discarding the state pushed by trapstat.
384  *
385  * TLB Statistics: TLB Misses versus TSB Misses
386  *
387  * Distinguishing TLB misses from TSB misses requires further interposition
388  * on the TLB miss handler:  we cannot know a priori or a posteriori if a
389  * given VA will or has hit in the TSB.
390  *
391  * We achieve this distinction by adding a second TLB return entry almost
392  * identical to the first -- differing only in the address to which it
393  * stores its results.  We then modify the TLB miss handlers of the kernel
394  * such that they check the %tpc when they determine that a TLB miss has
395  * subsequently missed in the TSB:  if the %tpc lies within trapstat's VA
396  * range and TL is 2 (that is, if trapstat is running), the TLB miss handler
397  * _increments_ the %tpc by the size of the TLB return entry.  The ensuing
398  * "retry" will thus transfer control to the second TLB return entry, and
399  * the time spent in the handler will be accumulated in a memory location
400  * specific to TSB misses.
401  *
402  * N.B.:  To minimize the amount of knowledge the kernel must have of trapstat,
403  * we do not allow the kernel to hard-code the size of the TLB return entry.
404  * Rather, the actual tsbmiss handler executes a known instruction at the
405  * corresponding tsbmiss patch points (see the tstat_tsbmiss_patch_table) with
406  * the %tpc in %g7:  when trapstat is not running, these points contain the
407  * harmless TSTAT_TSBMISS_INSTR instruction ("add %g7, 0, %g7"). Before
408  * running, trapstat modifies the instructions at these patch points such
409  * that the simm13 equals the size of the TLB return entry.
410  *
411  * TLB Statistics: Kernel-level Misses versus User-level Misses
412  *
413  * Differentiating user-level misses from kernel-level misses employs a
414  * similar technique, but is simplified by the ability to distinguish a
415  * user-level miss from a kernel-level miss a priori by reading the context
416  * register:  we implement kernel-/user-level differentiation by again doubling
417  * the number of TLB return entries, and setting the %tpc to the appropriate
418  * TLB return entry in trapstat's TLB miss handler.  Together with the doubling
419  * of entries required for TLB-miss/TSB-miss differentiation, this yields a
420  * total of four TLB return entries:
421  *
422  *	Level		TSB hit?	Structure member
423  *	------------------------------------------------------------
424  *	Kernel		Yes		tstat_tlbret_t.ttlbr_ktlb
425  *	Kernel		No		tstat_tlbret_t.ttlbr_ktsb
426  *	User		Yes		tstat_tlbret_t.ttlbr_utlb
427  *	User		No		tstat_tlbret_t.ttlbr_utsb
428  *
429  * TLB Statistics: Misses per Pagesize
430  *
431  * As with the TLB-/TSB-miss differentiation, we have no way of determining
432  * pagesize a priori.  This is therefore implemented by mandating a new rule:
433  * whenever the kernel fills the TLB in its TLB miss handler, the TTE
434  * corresponding to the TLB-missing VA must be in %g5 when the handler
435  * executes its "retry".  This allows the TLB return entry to determine
436  * pagesize by simply looking at the pagesize field in the TTE stored in
437  * %g5.
438  *
439  * TLB Statistics: Probe Effect
440  *
441  * As one might imagine, gathering TLB statistics by pushing a trap level
442  * induces significant probe effect.  To account for this probe effect,
443  * trapstat attempts to observe it by executing a code sequence with a known
444  * number of TLB misses both before and after interposing on the trap table.
445  * This allows trapstat to determine a per-trap probe effect which can then be
446  * factored into the "%tim" fields of the trapstat command.
447  *
448  * Note that on sun4v platforms, TLB misses are normally handled by the
449  * hypervisor or the hardware TSB walker. Thus no fast MMU miss information
450  * is reported for normal operation. However, when trapstat is invoked
451  * with -t or -T option to collect detailed TLB statistics, kernel takes
452  * over TLB miss handling. This results in significantly more overhead
453  * and TLB statistics may not be as accurate as on sun4u platforms.
454  * On some processors, hypervisor or hardware may provide a low overhead
455  * interface to collect TSB hit statistics. This support is exposed via
456  * a well defined CPU module interface (cpu_trapstat_conf to enable this
457  * interface and cpu_trapstat_data to get detailed TSB hit statistics).
458  * In this scenario, TSB miss statistics is collected by intercepting the
459  * IMMU_miss and DMMU_miss traps using above mentioned trap interposition
460  * approach.
461  *
462  * Locking
463  *
464  * The implementation uses two locks:  tstat_lock (a local lock) and the global
465  * cpu_lock.  tstat_lock is used to assure trapstat's consistency in the
466  * presence of multithreaded /dev/trapstat consumers (while as of this writing
467  * the only consumer of /dev/trapstat is single threaded, it is obviously
468  * necessary to correctly support multithreaded access).  cpu_lock is held
469  * whenever CPUs are being manipulated directly, to prevent them from
470  * disappearing in the process.  Because trapstat's DR callback
471  * (trapstat_cpu_setup()) must grab tstat_lock and is called with cpu_lock
472  * held, the lock ordering is necessarily cpu_lock before tstat_lock.
473  *
474  */
475 /* END CSTYLED */
476 
477 static dev_info_t	*tstat_devi;	/* saved in xxattach() for xxinfo() */
478 static int		tstat_open;	/* set if driver is open */
479 static kmutex_t		tstat_lock;	/* serialize access */
480 static vmem_t		*tstat_arena;	/* arena for TLB-locked pages */
481 static tstat_percpu_t	*tstat_percpu;	/* per-CPU data */
482 static int		tstat_running;	/* set if trapstat is running */
483 static tstat_data_t	*tstat_buffer;	/* staging buffer for outgoing data */
484 static int		tstat_options;	/* bit-wise indication of options */
485 static int		*tstat_enabled;	/* map of enabled trap entries */
486 static int		tstat_tsbmiss_patched; /* tsbmiss patch flag */
487 static callb_id_t	tstat_cprcb;	/* CPR callback */
488 static char		*tstat_probe_area; /* VA range used for probe effect */
489 static caddr_t		tstat_probe_phys; /* physical to back above VA */
490 static hrtime_t		tstat_probe_time; /* time spent on probe effect */
491 static hrtime_t		tstat_probe_before[TSTAT_PROBE_NLAPS];
492 static hrtime_t		tstat_probe_after[TSTAT_PROBE_NLAPS];
493 static uint_t		tstat_pgszs;		/* # of kernel page sizes */
494 static uint_t		tstat_user_pgszs;	/* # of user page sizes */
495 
496 /*
497  * sizeof tstat_data_t + pgsz data for the kernel.  For simplicity's sake, when
498  * we collect data, we do it based upon szc, but when we report data back to
499  * userland, we have to do it based upon the userszc which may not match.
500  * So, these two variables are for internal use and exported use respectively.
501  */
502 static size_t		tstat_data_t_size;
503 static size_t		tstat_data_t_exported_size;
504 
505 static size_t		tstat_data_pages;  /* number of pages of tstat data */
506 static size_t		tstat_data_size;   /* tstat data size in bytes */
507 static size_t		tstat_total_pages; /* #data pages + #instr pages */
508 static size_t		tstat_total_size;  /* tstat data size + instr size */
509 #ifdef sun4v
510 static caddr_t		tstat_va;	/* VA of memory reserved for TBA */
511 static pfn_t		tstat_pfn;	/* PFN of memory reserved for TBA */
512 static boolean_t	tstat_fast_tlbstat = B_FALSE;
513 #endif
514 
515 /*
516  * In the above block comment, see "TLB Statistics: TLB Misses versus
517  * TSB Misses" for an explanation of the tsbmiss patch points.
518  */
519 extern uint32_t		tsbmiss_trapstat_patch_point;
520 extern uint32_t		tsbmiss_trapstat_patch_point_kpm;
521 extern uint32_t		tsbmiss_trapstat_patch_point_kpm_small;
522 
523 /*
524  * Trapstat tsbmiss patch table
525  */
526 tstat_tsbmiss_patch_entry_t tstat_tsbmiss_patch_table[] = {
527 	{(uint32_t *)&tsbmiss_trapstat_patch_point, 0},
528 	{(uint32_t *)&tsbmiss_trapstat_patch_point_kpm, 0},
529 	{(uint32_t *)&tsbmiss_trapstat_patch_point_kpm_small, 0},
530 	{(uint32_t *)NULL, 0}
531 };
532 
533 /*
534  * We define some general SPARC-specific constants to allow more readable
535  * relocations.
536  */
537 #define	NOP	0x01000000
538 #define	HI22(v) ((uint32_t)(v) >> 10)
539 #define	LO10(v) ((uint32_t)(v) & 0x3ff)
540 #define	LO12(v) ((uint32_t)(v) & 0xfff)
541 #define	DISP22(from, to) \
542 	((((uintptr_t)(to) - (uintptr_t)(from)) >> 2) & 0x3fffff)
543 #define	ASI(asi)	((asi) << 5)
544 
545 /*
546  * The interposing trap table must be locked in the I-TLB, and any data
547  * referred to in the interposing trap handler must be locked in the D-TLB.
548  * This function locks these pages in the appropriate TLBs by creating TTEs
549  * from whole cloth, and manually loading them into the TLB.  This function is
550  * called from cross call context.
551  *
552  * On sun4v platforms, we use 4M page size mappings to minimize the number
553  * of locked down entries (i.e. permanent mappings). Each CPU uses a
554  * reserved portion of that 4M page for its TBA and data.
555  */
556 static void
557 trapstat_load_tlb(void)
558 {
559 #ifndef sun4v
560 	int i;
561 #else
562 	uint64_t ret;
563 #endif
564 	tte_t tte;
565 	tstat_percpu_t *tcpu = &tstat_percpu[CPU->cpu_id];
566 	caddr_t va = tcpu->tcpu_vabase;
567 
568 	ASSERT(tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED);
569 	ASSERT(!(tcpu->tcpu_flags & TSTAT_CPU_ENABLED));
570 
571 #ifndef sun4v
572 	for (i = 0; i < tstat_total_pages; i++, va += MMU_PAGESIZE) {
573 		tte.tte_inthi = TTE_VALID_INT | TTE_SZ_INT(TTE8K) |
574 			TTE_PFN_INTHI(tcpu->tcpu_pfn[i]);
575 		if (i < TSTAT_INSTR_PAGES) {
576 			tte.tte_intlo = TTE_PFN_INTLO(tcpu->tcpu_pfn[i]) |
577 				TTE_LCK_INT | TTE_CP_INT | TTE_PRIV_INT;
578 			sfmmu_itlb_ld(va, KCONTEXT, &tte);
579 		} else {
580 			tte.tte_intlo = TTE_PFN_INTLO(tcpu->tcpu_pfn[i]) |
581 				TTE_LCK_INT | TTE_CP_INT | TTE_CV_INT |
582 				TTE_PRIV_INT | TTE_HWWR_INT;
583 			sfmmu_dtlb_ld(va, KCONTEXT, &tte);
584 		}
585 	}
586 #else /* sun4v */
587 	tte.tte_inthi = TTE_VALID_INT | TTE_PFN_INTHI(tstat_pfn);
588 	tte.tte_intlo = TTE_PFN_INTLO(tstat_pfn) | TTE_CP_INT |
589 		TTE_CV_INT | TTE_PRIV_INT | TTE_HWWR_INT |
590 		TTE_SZ_INTLO(TTE4M);
591 	ret = hv_mmu_map_perm_addr(va, KCONTEXT, *(uint64_t *)&tte,
592 		MAP_ITLB | MAP_DTLB);
593 
594 	if (ret != H_EOK)
595 		cmn_err(CE_PANIC, "trapstat: cannot map new TBA "
596 		    "for cpu %d  (error: 0x%lx)", CPU->cpu_id, ret);
597 #endif /* sun4v */
598 }
599 
600 /*
601  * As mentioned in the "TLB Statistics: TLB Misses versus TSB Misses" section
602  * of the block comment, TLB misses are differentiated from TSB misses in
603  * part by hot-patching the instructions at the tsbmiss patch points (see
604  * tstat_tsbmiss_patch_table). This routine is used both to initially patch
605  * the instructions, and to patch them back to their original values upon
606  * restoring the original trap table.
607  */
608 static void
609 trapstat_hotpatch()
610 {
611 	uint32_t instr;
612 	uint32_t simm13;
613 	tstat_tsbmiss_patch_entry_t *ep;
614 
615 	ASSERT(MUTEX_HELD(&tstat_lock));
616 
617 	if (!(tstat_options & TSTAT_OPT_TLBDATA))
618 		return;
619 
620 	if (!tstat_tsbmiss_patched) {
621 		/*
622 		 * We haven't patched the TSB paths; do so now.
623 		 */
624 		/*CONSTCOND*/
625 		ASSERT(offsetof(tstat_tlbret_t, ttlbr_ktsb) -
626 		    offsetof(tstat_tlbret_t, ttlbr_ktlb) ==
627 		    offsetof(tstat_tlbret_t, ttlbr_utsb) -
628 		    offsetof(tstat_tlbret_t, ttlbr_utlb));
629 
630 		simm13 = offsetof(tstat_tlbret_t, ttlbr_ktsb) -
631 		    offsetof(tstat_tlbret_t, ttlbr_ktlb);
632 
633 		for (ep = tstat_tsbmiss_patch_table; ep->tpe_addr; ep++) {
634 			ASSERT(ep->tpe_instr == 0);
635 			instr = ep->tpe_instr = *ep->tpe_addr;
636 
637 			/*
638 			 * Assert that the instruction we're about to patch is
639 			 * "add %g7, 0, %g7" (0x8e01e000).
640 			 */
641 			ASSERT(instr == TSTAT_TSBMISS_INSTR);
642 
643 			instr |= simm13;
644 			hot_patch_kernel_text((caddr_t)ep->tpe_addr,
645 			    instr, sizeof (instr));
646 		}
647 
648 		tstat_tsbmiss_patched = 1;
649 
650 	} else {
651 		/*
652 		 * Remove patches from the TSB paths.
653 		 */
654 		for (ep = tstat_tsbmiss_patch_table; ep->tpe_addr; ep++) {
655 			ASSERT(ep->tpe_instr == TSTAT_TSBMISS_INSTR);
656 			hot_patch_kernel_text((caddr_t)ep->tpe_addr,
657 			    ep->tpe_instr, sizeof (instr));
658 			ep->tpe_instr = 0;
659 		}
660 
661 		tstat_tsbmiss_patched = 0;
662 	}
663 }
664 
665 /*
666  * This is the routine executed to clock the performance of the trap table,
667  * executed both before and after interposing on the trap table to attempt to
668  * determine probe effect.  The probe effect is used to adjust the "%tim"
669  * fields of trapstat's -t and -T output; we only use TLB misses to clock the
670  * trap table.  We execute the inner loop (which is designed to exceed the
671  * TLB's reach) nlaps times, taking the best time as our time (thereby
672  * factoring out the effects of interrupts, cache misses or other perturbing
673  * events.
674  */
675 static hrtime_t
676 trapstat_probe_laps(int nlaps, hrtime_t *buf)
677 {
678 	int i, j = 0;
679 	hrtime_t ts, best = INT64_MAX;
680 
681 	while (nlaps--) {
682 		ts = rdtick();
683 
684 		for (i = 0; i < TSTAT_PROBE_SIZE; i += MMU_PAGESIZE)
685 			*((volatile char *)&tstat_probe_area[i]);
686 
687 		if ((ts = rdtick() - ts) < best)
688 			best = ts;
689 		buf[j++] = ts;
690 	}
691 
692 	return (best);
693 }
694 
695 /*
696  * This routine determines the probe effect by calling trapstat_probe_laps()
697  * both without and with the interposing trap table.  Note that this is
698  * called from a cross call on the desired CPU, and that it is called on
699  * every CPU (this is necessary because the probe effect may differ from
700  * one CPU to another).
701  */
702 static void
703 trapstat_probe()
704 {
705 	tstat_percpu_t *tcpu = &tstat_percpu[CPU->cpu_id];
706 	hrtime_t before, after;
707 
708 	if (!(tcpu->tcpu_flags & TSTAT_CPU_SELECTED))
709 		return;
710 
711 	if (tstat_probe_area == NULL || (tstat_options & TSTAT_OPT_NOGO))
712 		return;
713 
714 	/*
715 	 * We very much expect the %tba to be KERNELBASE; this is a
716 	 * precautionary measure to assure that trapstat doesn't melt the
717 	 * machine should the %tba point unexpectedly elsewhere.
718 	 */
719 	if (get_tba() != (caddr_t)KERNELBASE)
720 		return;
721 
722 	/*
723 	 * Preserve this CPU's data before destroying it by enabling the
724 	 * interposing trap table.  We can safely use tstat_buffer because
725 	 * the caller of the trapstat_probe() cross call is holding tstat_lock.
726 	 */
727 	bcopy(tcpu->tcpu_data, tstat_buffer, tstat_data_t_size);
728 
729 	tstat_probe_time = gethrtime();
730 
731 	before = trapstat_probe_laps(TSTAT_PROBE_NLAPS, tstat_probe_before);
732 	(void) set_tba(tcpu->tcpu_ibase);
733 
734 	after = trapstat_probe_laps(TSTAT_PROBE_NLAPS, tstat_probe_after);
735 	(void) set_tba((caddr_t)KERNELBASE);
736 
737 	tstat_probe_time = gethrtime() - tstat_probe_time;
738 
739 	bcopy(tstat_buffer, tcpu->tcpu_data, tstat_data_t_size);
740 	tcpu->tcpu_data->tdata_peffect = (after - before) / TSTAT_PROBE_NPAGES;
741 }
742 
743 static void
744 trapstat_probe_alloc()
745 {
746 	pfn_t pfn;
747 	caddr_t va;
748 	int i;
749 
750 	ASSERT(MUTEX_HELD(&tstat_lock));
751 	ASSERT(tstat_probe_area == NULL);
752 	ASSERT(tstat_probe_phys == NULL);
753 
754 	if (!(tstat_options & TSTAT_OPT_TLBDATA))
755 		return;
756 
757 	/*
758 	 * Grab some virtual from the heap arena.
759 	 */
760 	tstat_probe_area = vmem_alloc(heap_arena, TSTAT_PROBE_SIZE, VM_SLEEP);
761 	va = tstat_probe_area;
762 
763 	/*
764 	 * Grab a single physical page.
765 	 */
766 	tstat_probe_phys = vmem_alloc(tstat_arena, MMU_PAGESIZE, VM_SLEEP);
767 	pfn = hat_getpfnum(kas.a_hat, tstat_probe_phys);
768 
769 	/*
770 	 * Now set the translation for every page in our virtual range
771 	 * to be our allocated physical page.
772 	 */
773 	for (i = 0; i < TSTAT_PROBE_NPAGES; i++) {
774 		hat_devload(kas.a_hat, va, MMU_PAGESIZE, pfn, PROT_READ,
775 		    HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
776 		va += MMU_PAGESIZE;
777 	}
778 }
779 
780 static void
781 trapstat_probe_free()
782 {
783 	caddr_t va;
784 	int i;
785 
786 	ASSERT(MUTEX_HELD(&tstat_lock));
787 
788 	if ((va = tstat_probe_area) == NULL)
789 		return;
790 
791 	for (i = 0; i < TSTAT_PROBE_NPAGES; i++) {
792 		hat_unload(kas.a_hat, va, MMU_PAGESIZE, HAT_UNLOAD_UNLOCK);
793 		va += MMU_PAGESIZE;
794 	}
795 
796 	vmem_free(tstat_arena, tstat_probe_phys, MMU_PAGESIZE);
797 	vmem_free(heap_arena, tstat_probe_area, TSTAT_PROBE_SIZE);
798 
799 	tstat_probe_phys = NULL;
800 	tstat_probe_area = NULL;
801 }
802 
803 /*
804  * This routine actually enables a CPU by setting its %tba to be the
805  * CPU's interposing trap table.  It is called out of cross call context.
806  */
807 static void
808 trapstat_enable()
809 {
810 	tstat_percpu_t *tcpu = &tstat_percpu[CPU->cpu_id];
811 
812 	if (!(tcpu->tcpu_flags & TSTAT_CPU_SELECTED))
813 		return;
814 
815 	ASSERT(tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED);
816 	ASSERT(!(tcpu->tcpu_flags & TSTAT_CPU_ENABLED));
817 
818 	if (get_tba() != (caddr_t)KERNELBASE)
819 		return;
820 
821 	if (!(tstat_options & TSTAT_OPT_NOGO))
822 		(void) set_tba(tcpu->tcpu_ibase);
823 	tcpu->tcpu_flags |= TSTAT_CPU_ENABLED;
824 #ifdef sun4v
825 	if ((tstat_options & TSTAT_OPT_TLBDATA) &&
826 	    !(tstat_options & TSTAT_OPT_NOGO)) {
827 		if (tstat_fast_tlbstat) {
828 			/*
829 			 * Invoke processor specific interface to enable
830 			 * collection of TSB hit statistics.
831 			 */
832 			cpu_trapstat_conf(CPU_TSTATCONF_ENABLE);
833 		} else {
834 			/*
835 			 * Collect TLB miss statistics by taking over
836 			 * TLB miss handling from the hypervisor. This
837 			 * is done by telling the hypervisor that there
838 			 * is no TSB configured. Also set TSTAT_TLB_STATS
839 			 * flag so that no user TSB is configured during
840 			 * context switch time.
841 			 */
842 			cpu_t *cp = CPU;
843 
844 			cp->cpu_m.cpu_tstat_flags |= TSTAT_TLB_STATS;
845 			(void) hv_set_ctx0(NULL, NULL);
846 			(void) hv_set_ctxnon0(NULL, NULL);
847 		}
848 	}
849 #endif
850 }
851 
852 /*
853  * This routine disables a CPU (vis a vis trapstat) by setting its %tba to be
854  * the actual, underlying trap table.  It is called out of cross call context.
855  */
856 static void
857 trapstat_disable()
858 {
859 	tstat_percpu_t *tcpu = &tstat_percpu[CPU->cpu_id];
860 
861 	if (!(tcpu->tcpu_flags & TSTAT_CPU_ENABLED))
862 		return;
863 
864 	ASSERT(tcpu->tcpu_flags & TSTAT_CPU_SELECTED);
865 	ASSERT(tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED);
866 
867 	if (!(tstat_options & TSTAT_OPT_NOGO))
868 		(void) set_tba((caddr_t)KERNELBASE);
869 
870 	tcpu->tcpu_flags &= ~TSTAT_CPU_ENABLED;
871 
872 #ifdef sun4v
873 	if ((tstat_options & TSTAT_OPT_TLBDATA) &&
874 	    !(tstat_options & TSTAT_OPT_NOGO)) {
875 		if (tstat_fast_tlbstat) {
876 			/*
877 			 * Invoke processor specific interface to disable
878 			 * collection of TSB hit statistics on each processor.
879 			 */
880 			cpu_trapstat_conf(CPU_TSTATCONF_DISABLE);
881 		} else {
882 			/*
883 			 * As part of collecting TLB miss statistics, we took
884 			 * over TLB miss handling from the hypervisor by
885 			 * telling the hypervisor that NO TSB is configured.
886 			 * We need to restore that by communicating proper
887 			 * kernel/user TSB information so that TLB misses
888 			 * can be handled by the hypervisor or the hardware
889 			 * more efficiently.
890 			 *
891 			 * We restore kernel TSB information right away.
892 			 * However, to minimize any locking dependency, we
893 			 * don't restore user TSB information right away.
894 			 * Instead, we simply clear the TSTAT_TLB_STATS flag
895 			 * so that the user TSB information is automatically
896 			 * restored on next context switch.
897 			 *
898 			 * Note that the call to restore kernel TSB information
899 			 * will normally not fail, unless wrong information is
900 			 * passed here. In that scenario, system will still
901 			 * continue to function properly with the exception of
902 			 * kernel handling all the TLB misses.
903 			 */
904 			struct hv_tsb_block *hvbp = &ksfmmup->sfmmu_hvblock;
905 			cpu_t *cp = CPU;
906 
907 			cp->cpu_m.cpu_tstat_flags &= ~TSTAT_TLB_STATS;
908 			(void) hv_set_ctx0(hvbp->hv_tsb_info_cnt,
909 			    hvbp->hv_tsb_info_pa);
910 		}
911 	}
912 #endif
913 }
914 
915 /*
916  * We use %tick as the time base when recording the time spent executing
917  * the trap handler.  %tick, however, is not necessarily kept in sync
918  * across CPUs (indeed, different CPUs may have different %tick frequencies).
919  * We therefore cross call onto a CPU to get a snapshot of its data to
920  * copy out; this is the routine executed out of that cross call.
921  */
922 static void
923 trapstat_snapshot()
924 {
925 	tstat_percpu_t *tcpu = &tstat_percpu[CPU->cpu_id];
926 	tstat_data_t *data = tcpu->tcpu_data;
927 
928 	ASSERT(tcpu->tcpu_flags & TSTAT_CPU_SELECTED);
929 	ASSERT(tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED);
930 	ASSERT(tcpu->tcpu_flags & TSTAT_CPU_ENABLED);
931 
932 	data->tdata_snapts = gethrtime();
933 	data->tdata_snaptick = rdtick();
934 	bcopy(data, tstat_buffer, tstat_data_t_size);
935 #ifdef sun4v
936 	/*
937 	 * Invoke processor specific interface to collect TSB hit
938 	 * statistics on each processor.
939 	 */
940 	if ((tstat_options & TSTAT_OPT_TLBDATA) && tstat_fast_tlbstat)
941 		cpu_trapstat_data((void *) tstat_buffer->tdata_pgsz,
942 		    tstat_pgszs);
943 #endif
944 }
945 
946 /*
947  * The TSTAT_RETENT_* constants define offsets in the TLB return entry.
948  * They are used only in trapstat_tlbretent() (below) and #undef'd
949  * immediately afterwards.  Any change to "retent" in trapstat_tlbretent()
950  * will likely require changes to these constants.
951  */
952 
953 #ifndef sun4v
954 #define	TSTAT_RETENT_STATHI	1
955 #define	TSTAT_RETENT_STATLO	2
956 #define	TSTAT_RETENT_SHIFT	11
957 #define	TSTAT_RETENT_COUNT_LD	13
958 #define	TSTAT_RETENT_COUNT_ST	15
959 #define	TSTAT_RETENT_TMPTSHI	16
960 #define	TSTAT_RETENT_TMPTSLO	17
961 #define	TSTAT_RETENT_TIME_LD	19
962 #define	TSTAT_RETENT_TIME_ST	21
963 #else /* sun4v */
964 #define	TSTAT_RETENT_STATHI	1
965 #define	TSTAT_RETENT_STATLO	2
966 #define	TSTAT_RETENT_SHIFT	5
967 #define	TSTAT_RETENT_COUNT_LD	7
968 #define	TSTAT_RETENT_COUNT_ST	9
969 #define	TSTAT_RETENT_TMPTSHI	10
970 #define	TSTAT_RETENT_TMPTSLO	11
971 #define	TSTAT_RETENT_TIME_LD	13
972 #define	TSTAT_RETENT_TIME_ST	15
973 #endif /* sun4v */
974 
975 static void
976 trapstat_tlbretent(tstat_percpu_t *tcpu, tstat_tlbretent_t *ret,
977     tstat_missdata_t *data)
978 {
979 	uint32_t *ent = ret->ttlbrent_instr, shift;
980 	uintptr_t base, tmptick = TSTAT_DATA_OFFS(tcpu, tdata_tmptick);
981 
982 	/*
983 	 * This is the entry executed upon return from the TLB/TSB miss
984 	 * handler (i.e. the code interpositioned between the "retry" and
985 	 * the actual return to the TLB-missing instruction).  Detail on its
986 	 * theory of operation can be found in the "TLB Statistics" section
987 	 * of the block comment.  Note that we expect the TTE just loaded
988 	 * into the TLB to be in %g5; all other globals are available as
989 	 * scratch.  Finally, note that the page size information in sun4v is
990 	 * located in the lower bits of the TTE -- requiring us to have a
991 	 * different return entry on sun4v.
992 	 */
993 	static const uint32_t retent[TSTAT_TLBRET_NINSTR] = {
994 #ifndef sun4v
995 	    0x87410000,		/* rd    %tick, %g3			*/
996 	    0x03000000, 	/* sethi %hi(stat), %g1			*/
997 	    0x82106000,		/* or    %g1, %lo(stat), %g1		*/
998 	    0x89297001,		/* sllx  %g5, 1, %g4			*/
999 	    0x8931303e,		/* srlx  %g4, 62, %g4			*/
1000 	    0x8531702e,		/* srlx  %g5, 46, %g2			*/
1001 	    0x8408a004,		/* and   %g2, 4, %g2			*/
1002 	    0x88110002,		/* or    %g4, %g2, %g4			*/
1003 	    0x80a12005,		/* cmp   %g4, 5				*/
1004 	    0x34400002,		/* bg,a,pn %icc, +8			*/
1005 	    0x88102004,		/* mov   4, %g4				*/
1006 	    0x89292000,		/* sll   %g4, shift, %g4		*/
1007 	    0x82004004,		/* add   %g1, %g4, %g1			*/
1008 	    0xc4586000,		/* ldx   [%g1 + tmiss_count], %g2	*/
1009 	    0x8400a001,		/* add   %g2, 1, %g2			*/
1010 	    0xc4706000,		/* stx   %g2, [%g1 + tmiss_count]	*/
1011 	    0x0d000000, 	/* sethi %hi(tdata_tmptick), %g6	*/
1012 	    0xc459a000, 	/* ldx   [%g6 + %lo(tdata_tmptick)], %g2 */
1013 	    0x8620c002,		/* sub   %g3, %g2, %g3			*/
1014 	    0xc4586000,		/* ldx   [%g1 + tmiss_time], %g2	*/
1015 	    0x84008003,		/* add   %g2, %g3, %g2			*/
1016 	    0xc4706000,		/* stx   %g2, [%g1 + tmiss_time]	*/
1017 	    0x83f00000		/* retry				*/
1018 #else /* sun4v */
1019 	    0x87410000,		/* rd    %tick, %g3			*/
1020 	    0x03000000, 	/* sethi %hi(stat), %g1			*/
1021 	    0x82106000,		/* or    %g1, %lo(stat), %g1		*/
1022 	    0x8929703d,		/* sllx  %g5, 61, %g4			*/
1023 	    0x8931303d,		/* srlx  %g4, 61, %g4			*/
1024 	    0x89292000,		/* sll   %g4, shift, %g4		*/
1025 	    0x82004004,		/* add   %g1, %g4, %g1			*/
1026 	    0xc4586000,		/* ldx   [%g1 + tmiss_count], %g2	*/
1027 	    0x8400a001,		/* add   %g2, 1, %g2			*/
1028 	    0xc4706000,		/* stx   %g2, [%g1 + tmiss_count]	*/
1029 	    0x0d000000, 	/* sethi %hi(tdata_tmptick), %g6	*/
1030 	    0xc459a000, 	/* ldx   [%g6 + %lo(tdata_tmptick)], %g2 */
1031 	    0x8620c002,		/* sub   %g3, %g2, %g3			*/
1032 	    0xc4586000,		/* ldx   [%g1 + tmiss_time], %g2	*/
1033 	    0x84008003,		/* add   %g2, %g3, %g2			*/
1034 	    0xc4706000,		/* stx   %g2, [%g1 + tmiss_time]	*/
1035 	    0x83f00000		/* retry				*/
1036 #endif /* sun4v */
1037 	};
1038 
1039 	ASSERT(MUTEX_HELD(&tstat_lock));
1040 	/*CONSTCOND*/
1041 	ASSERT(offsetof(tstat_missdata_t, tmiss_count) <= LO10(-1));
1042 	/*CONSTCOND*/
1043 	ASSERT(offsetof(tstat_missdata_t, tmiss_time) <= LO10(-1));
1044 	/*CONSTCOND*/
1045 	ASSERT(!((sizeof (tstat_pgszdata_t) - 1) & sizeof (tstat_pgszdata_t)));
1046 
1047 	for (shift = 1; (1 << shift) != sizeof (tstat_pgszdata_t); shift++)
1048 		continue;
1049 
1050 	base = (uintptr_t)tcpu->tcpu_dbase +
1051 	    ((uintptr_t)data - (uintptr_t)tcpu->tcpu_data);
1052 
1053 	bcopy(retent, ent, sizeof (retent));
1054 
1055 	ent[TSTAT_RETENT_STATHI] |= HI22(base);
1056 	ent[TSTAT_RETENT_STATLO] |= LO10(base);
1057 	ent[TSTAT_RETENT_SHIFT] |= shift;
1058 	/* LINTED E_EXPR_NULL_EFFECT */
1059 	ent[TSTAT_RETENT_COUNT_LD] |= offsetof(tstat_missdata_t, tmiss_count);
1060 	/* LINTED E_EXPR_NULL_EFFECT */
1061 	ent[TSTAT_RETENT_COUNT_ST] |= offsetof(tstat_missdata_t, tmiss_count);
1062 	ent[TSTAT_RETENT_TMPTSHI] |= HI22(tmptick);
1063 	ent[TSTAT_RETENT_TMPTSLO] |= LO10(tmptick);
1064 	ent[TSTAT_RETENT_TIME_LD] |= offsetof(tstat_missdata_t, tmiss_time);
1065 	ent[TSTAT_RETENT_TIME_ST] |= offsetof(tstat_missdata_t, tmiss_time);
1066 }
1067 
1068 #undef TSTAT_RETENT_STATHI
1069 #undef TSTAT_RETENT_STATLO
1070 #undef TSTAT_RETENT_SHIFT
1071 #undef TSTAT_RETENT_COUNT_LD
1072 #undef TSTAT_RETENT_COUNT_ST
1073 #undef TSTAT_RETENT_TMPTSHI
1074 #undef TSTAT_RETENT_TMPTSLO
1075 #undef TSTAT_RETENT_TIME_LD
1076 #undef TSTAT_RETENT_TIME_ST
1077 
1078 /*
1079  * The TSTAT_TLBENT_* constants define offsets in the TLB entry.  They are
1080  * used only in trapstat_tlbent() (below) and #undef'd immediately afterwards.
1081  * Any change to "tlbent" in trapstat_tlbent() will likely require changes
1082  * to these constants.
1083  */
1084 
1085 #ifndef sun4v
1086 #define	TSTAT_TLBENT_STATHI	0
1087 #define	TSTAT_TLBENT_STATLO_LD	1
1088 #define	TSTAT_TLBENT_STATLO_ST	3
1089 #define	TSTAT_TLBENT_MMUASI	15
1090 #define	TSTAT_TLBENT_TPCHI	18
1091 #define	TSTAT_TLBENT_TPCLO_USER	19
1092 #define	TSTAT_TLBENT_TPCLO_KERN	21
1093 #define	TSTAT_TLBENT_TSHI	25
1094 #define	TSTAT_TLBENT_TSLO	27
1095 #define	TSTAT_TLBENT_BA		28
1096 #else /* sun4v */
1097 #define	TSTAT_TLBENT_STATHI	0
1098 #define	TSTAT_TLBENT_STATLO_LD	1
1099 #define	TSTAT_TLBENT_STATLO_ST	3
1100 #define	TSTAT_TLBENT_TAGTARGET	19
1101 #define	TSTAT_TLBENT_TPCHI	21
1102 #define	TSTAT_TLBENT_TPCLO_USER	22
1103 #define	TSTAT_TLBENT_TPCLO_KERN	24
1104 #define	TSTAT_TLBENT_TSHI	28
1105 #define	TSTAT_TLBENT_TSLO	30
1106 #define	TSTAT_TLBENT_BA		31
1107 #endif /* sun4v */
1108 
1109 static void
1110 trapstat_tlbent(tstat_percpu_t *tcpu, int entno)
1111 {
1112 	uint32_t *ent;
1113 	uintptr_t orig, va, baoffs;
1114 #ifndef sun4v
1115 	int itlb = entno == TSTAT_ENT_ITLBMISS;
1116 #else
1117 	int itlb = (entno == TSTAT_ENT_IMMUMISS || entno == TSTAT_ENT_ITLBMISS);
1118 #endif
1119 	int entoffs = entno << TSTAT_ENT_SHIFT;
1120 	uintptr_t tmptick, stat, tpc, utpc;
1121 	tstat_pgszdata_t *data = &tcpu->tcpu_data->tdata_pgsz[0];
1122 	tstat_tlbdata_t *udata, *kdata;
1123 	tstat_tlbret_t *ret;
1124 #ifndef sun4v
1125 	uint32_t asi = itlb ? ASI(ASI_IMMU) : ASI(ASI_DMMU);
1126 #else
1127 	uint32_t tagtarget_off = itlb ? MMFSA_I_CTX : MMFSA_D_CTX;
1128 #endif
1129 
1130 	/*
1131 	 * When trapstat is run with TLB statistics, this is the entry for
1132 	 * both I- and D-TLB misses; this code performs trap level pushing,
1133 	 * as described in the "TLB Statistics" section of the block comment.
1134 	 * This code is executing at TL 1; %tstate[0] contains the saved
1135 	 * state at the time of the TLB miss.  Pushing trap level 1 (and thus
1136 	 * raising TL to 2) requires us to fill in %tstate[1] with our %pstate,
1137 	 * %cwp and %asi.  We leave %tt unchanged, and we set %tpc and %tnpc to
1138 	 * the appropriate TLB return entry (based on the context of the miss).
1139 	 * Finally, we sample %tick, and stash it in the tdata_tmptick member
1140 	 * the per-CPU tstat_data structure.  tdata_tmptick will be used in
1141 	 * the TLB return entry to determine the amount of time spent in the
1142 	 * TLB miss handler.
1143 	 *
1144 	 * Note that on sun4v platforms, we must obtain the context information
1145 	 * from the MMU fault status area. (The base address of this MMU fault
1146 	 * status area is kept in the scratchpad register 0.)
1147 	 */
1148 	static const uint32_t tlbent[] = {
1149 #ifndef sun4v
1150 	    0x03000000, 		/* sethi %hi(stat), %g1		*/
1151 	    0xc4586000,			/* ldx   [%g1 + %lo(stat)], %g2	*/
1152 	    0x8400a001,			/* add   %g2, 1, %g2		*/
1153 	    0xc4706000,			/* stx   %g2, [%g1 + %lo(stat)]	*/
1154 	    0x85524000,			/* rdpr  %cwp, %g2		*/
1155 	    0x87518000,			/* rdpr  %pstate, %g3		*/
1156 	    0x8728f008,			/* sllx  %g3, 8, %g3		*/
1157 	    0x84108003,			/* or    %g2, %g3, %g2		*/
1158 	    0x8740c000,			/* rd    %asi, %g3		*/
1159 	    0x8728f018,			/* sllx  %g3, 24, %g3		*/
1160 	    0x84108003,			/* or    %g2, %g3, %g2		*/
1161 	    0x8350c000,			/* rdpr  %tt, %g1		*/
1162 	    0x8f902002,			/* wrpr  %g0, 2, %tl		*/
1163 	    0x85908000,			/* wrpr  %g2, %g0, %tstate	*/
1164 	    0x87904000,			/* wrpr  %g1, %g0, %tt		*/
1165 	    0xc2d80000,			/* ldxa  [%g0]ASI_MMU, %g1	*/
1166 	    0x83307030,			/* srlx  %g1, CTXSHIFT, %g1	*/
1167 	    0x02c04004,			/* brz,pn %g1, .+0x10		*/
1168 	    0x03000000, 		/* sethi %hi(new_tpc), %g1	*/
1169 	    0x82106000,			/* or    %g1, %lo(new_tpc), %g1	*/
1170 	    0x30800002,			/* ba,a  .+0x8			*/
1171 	    0x82106000,			/* or    %g1, %lo(new_tpc), %g1	*/
1172 	    0x81904000,			/* wrpr  %g1, %g0, %tpc		*/
1173 	    0x82006004,			/* add   %g1, 4, %g1		*/
1174 	    0x83904000,			/* wrpr  %g1, %g0, %tnpc	*/
1175 	    0x03000000, 		/* sethi %hi(tmptick), %g1	*/
1176 	    0x85410000,			/* rd    %tick, %g2		*/
1177 	    0xc4706000,			/* stx   %g2, [%g1 + %lo(tmptick)] */
1178 	    0x30800000,			/* ba,a  addr			*/
1179 	    NOP, NOP, NOP
1180 #else /* sun4v */
1181 	    0x03000000, 		/* sethi %hi(stat), %g1		*/
1182 	    0xc4586000,			/* ldx   [%g1 + %lo(stat)], %g2	*/
1183 	    0x8400a001,			/* add   %g2, 1, %g2		*/
1184 	    0xc4706000,			/* stx   %g2, [%g1 + %lo(stat)]	*/
1185 	    0x85524000,			/* rdpr  %cwp, %g2		*/
1186 	    0x87518000,			/* rdpr  %pstate, %g3		*/
1187 	    0x8728f008,			/* sllx  %g3, 8, %g3		*/
1188 	    0x84108003,			/* or    %g2, %g3, %g2		*/
1189 	    0x8740c000,			/* rd    %asi, %g3		*/
1190 	    0x8728f018,			/* sllx  %g3, 24, %g3		*/
1191 	    0x83540000,			/* rdpr  %gl, %g1		*/
1192 	    0x83287028,			/* sllx  %g1, 40, %g1		*/
1193 	    0x86104003,			/* or    %g1, %g3, %g3		*/
1194 	    0x84108003,			/* or    %g2, %g3, %g2		*/
1195 	    0x8350c000,			/* rdpr  %tt, %g1		*/
1196 	    0x8f902002,			/* wrpr  %g0, 2, %tl		*/
1197 	    0x85908000,			/* wrpr  %g2, %g0, %tstate	*/
1198 	    0x87904000,			/* wrpr  %g1, %g0, %tt		*/
1199 	    0xc2d80400,			/* ldxa  [%g0]ASI_SCRATCHPAD, %g1 */
1200 	    0xc2586000,			/* ldx  [%g1 + MMFSA_?_CTX], %g1 */
1201 	    0x02c04004,			/* brz,pn %g1, .+0x10		*/
1202 	    0x03000000, 		/* sethi %hi(new_tpc), %g1	*/
1203 	    0x82106000,			/* or    %g1, %lo(new_tpc), %g1	*/
1204 	    0x30800002,			/* ba,a  .+0x8			*/
1205 	    0x82106000,			/* or    %g1, %lo(new_tpc), %g1	*/
1206 	    0x81904000,			/* wrpr  %g1, %g0, %tpc		*/
1207 	    0x82006004,			/* add   %g1, 4, %g1		*/
1208 	    0x83904000,			/* wrpr  %g1, %g0, %tnpc	*/
1209 	    0x03000000, 		/* sethi %hi(tmptick), %g1	*/
1210 	    0x85410000,			/* rd    %tick, %g2		*/
1211 	    0xc4706000,			/* stx   %g2, [%g1 + %lo(tmptick)] */
1212 	    0x30800000			/* ba,a  addr			*/
1213 #endif /* sun4v */
1214 	};
1215 
1216 	ASSERT(MUTEX_HELD(&tstat_lock));
1217 #ifndef sun4v
1218 	ASSERT(entno == TSTAT_ENT_ITLBMISS || entno == TSTAT_ENT_DTLBMISS);
1219 #else
1220 	ASSERT(entno == TSTAT_ENT_ITLBMISS || entno == TSTAT_ENT_DTLBMISS ||
1221 	    entno == TSTAT_ENT_IMMUMISS || entno == TSTAT_ENT_DMMUMISS);
1222 #endif
1223 
1224 	stat = TSTAT_DATA_OFFS(tcpu, tdata_traps) + entoffs;
1225 	tmptick = TSTAT_DATA_OFFS(tcpu, tdata_tmptick);
1226 
1227 	if (itlb) {
1228 		ret = &tcpu->tcpu_instr->tinst_itlbret;
1229 		udata = &data->tpgsz_user.tmode_itlb;
1230 		kdata = &data->tpgsz_kernel.tmode_itlb;
1231 		tpc = TSTAT_INSTR_OFFS(tcpu, tinst_itlbret.ttlbr_ktlb);
1232 	} else {
1233 		ret = &tcpu->tcpu_instr->tinst_dtlbret;
1234 		udata = &data->tpgsz_user.tmode_dtlb;
1235 		kdata = &data->tpgsz_kernel.tmode_dtlb;
1236 		tpc = TSTAT_INSTR_OFFS(tcpu, tinst_dtlbret.ttlbr_ktlb);
1237 	}
1238 
1239 	utpc = tpc + offsetof(tstat_tlbret_t, ttlbr_utlb) -
1240 	    offsetof(tstat_tlbret_t, ttlbr_ktlb);
1241 
1242 	ASSERT(HI22(tpc) == HI22(utpc));
1243 
1244 	ent = (uint32_t *)((uintptr_t)tcpu->tcpu_instr + entoffs);
1245 	orig = KERNELBASE + entoffs;
1246 	va = (uintptr_t)tcpu->tcpu_ibase + entoffs;
1247 	baoffs = TSTAT_TLBENT_BA * sizeof (uint32_t);
1248 
1249 #ifdef sun4v
1250 	if (entno == TSTAT_ENT_IMMUMISS || entno == TSTAT_ENT_DMMUMISS) {
1251 		/*
1252 		 * Because of lack of space, interposing tlbent trap
1253 		 * handler for IMMU_miss and DMMU_miss traps cannot be
1254 		 * placed in-line. Instead, we copy it to the space set
1255 		 * aside for these traps in per CPU trapstat area and
1256 		 * invoke it by placing a branch in the trap table itself.
1257 		 */
1258 		static const uint32_t mmumiss[TSTAT_ENT_NINSTR] = {
1259 		    0x30800000,			/* ba,a addr */
1260 		    NOP, NOP, NOP, NOP, NOP, NOP, NOP
1261 		};
1262 		uint32_t *tent = ent;		/* trap vector entry */
1263 		uintptr_t tentva = va;		/* trap vector entry va */
1264 
1265 		if (itlb) {
1266 			ent = (uint32_t *)((uintptr_t)
1267 				&tcpu->tcpu_instr->tinst_immumiss);
1268 			va = TSTAT_INSTR_OFFS(tcpu, tinst_immumiss);
1269 		} else {
1270 			ent = (uint32_t *)((uintptr_t)
1271 				&tcpu->tcpu_instr->tinst_dmmumiss);
1272 			va = TSTAT_INSTR_OFFS(tcpu, tinst_dmmumiss);
1273 		}
1274 		bcopy(mmumiss, tent, sizeof (mmumiss));
1275 		tent[0] |= DISP22(tentva, va);
1276 	}
1277 #endif /* sun4v */
1278 
1279 	bcopy(tlbent, ent, sizeof (tlbent));
1280 
1281 	ent[TSTAT_TLBENT_STATHI] |= HI22(stat);
1282 	ent[TSTAT_TLBENT_STATLO_LD] |= LO10(stat);
1283 	ent[TSTAT_TLBENT_STATLO_ST] |= LO10(stat);
1284 #ifndef sun4v
1285 	ent[TSTAT_TLBENT_MMUASI] |= asi;
1286 #else
1287 	ent[TSTAT_TLBENT_TAGTARGET] |= tagtarget_off;
1288 #endif
1289 	ent[TSTAT_TLBENT_TPCHI] |= HI22(tpc);
1290 	ent[TSTAT_TLBENT_TPCLO_USER] |= LO10(utpc);
1291 	ent[TSTAT_TLBENT_TPCLO_KERN] |= LO10(tpc);
1292 	ent[TSTAT_TLBENT_TSHI] |= HI22(tmptick);
1293 	ent[TSTAT_TLBENT_TSLO] |= LO10(tmptick);
1294 	ent[TSTAT_TLBENT_BA] |= DISP22(va + baoffs, orig);
1295 
1296 	/*
1297 	 * And now set up the TLB return entries.
1298 	 */
1299 	trapstat_tlbretent(tcpu, &ret->ttlbr_ktlb, &kdata->ttlb_tlb);
1300 	trapstat_tlbretent(tcpu, &ret->ttlbr_ktsb, &kdata->ttlb_tsb);
1301 	trapstat_tlbretent(tcpu, &ret->ttlbr_utlb, &udata->ttlb_tlb);
1302 	trapstat_tlbretent(tcpu, &ret->ttlbr_utsb, &udata->ttlb_tsb);
1303 }
1304 
1305 #undef TSTAT_TLBENT_STATHI
1306 #undef TSTAT_TLBENT_STATLO_LD
1307 #undef TSTAT_TLBENT_STATLO_ST
1308 #ifndef sun4v
1309 #undef TSTAT_TLBENT_MMUASI
1310 #else
1311 #undef TSTAT_TLBENT_TAGTARGET
1312 #endif
1313 #undef TSTAT_TLBENT_TPCHI
1314 #undef TSTAT_TLBENT_TPCLO_USER
1315 #undef TSTAT_TLBENT_TPCLO_KERN
1316 #undef TSTAT_TLBENT_TSHI
1317 #undef TSTAT_TLBENT_TSLO
1318 #undef TSTAT_TLBENT_BA
1319 
1320 /*
1321  * The TSTAT_ENABLED_* constants define offsets in the enabled entry; the
1322  * TSTAT_DISABLED_BA constant defines an offset in the disabled entry.  Both
1323  * sets of constants are used only in trapstat_make_traptab() (below) and
1324  * #undef'd immediately afterwards.  Any change to "enabled" or "disabled"
1325  * in trapstat_make_traptab() will likely require changes to these constants.
1326  */
1327 #define	TSTAT_ENABLED_STATHI	0
1328 #define	TSTAT_ENABLED_STATLO_LD	1
1329 #define	TSTAT_ENABLED_STATLO_ST 3
1330 #define	TSTAT_ENABLED_BA	4
1331 #define	TSTAT_DISABLED_BA	0
1332 
1333 static void
1334 trapstat_make_traptab(tstat_percpu_t *tcpu)
1335 {
1336 	uint32_t *ent;
1337 	uint64_t *stat;
1338 	uintptr_t orig, va, en_baoffs, dis_baoffs;
1339 	int nent;
1340 
1341 	/*
1342 	 * This is the entry in the interposing trap table for enabled trap
1343 	 * table entries.  It loads a counter, increments it and stores it
1344 	 * back before branching to the actual trap table entry.
1345 	 */
1346 	static const uint32_t enabled[TSTAT_ENT_NINSTR] = {
1347 	    0x03000000, 		/* sethi %hi(stat), %g1		*/
1348 	    0xc4586000,			/* ldx   [%g1 + %lo(stat)], %g2	*/
1349 	    0x8400a001,			/* add   %g2, 1, %g2		*/
1350 	    0xc4706000,			/* stx   %g2, [%g1 + %lo(stat)]	*/
1351 	    0x30800000,			/* ba,a addr			*/
1352 	    NOP, NOP, NOP
1353 	};
1354 
1355 	/*
1356 	 * This is the entry in the interposing trap table for disabled trap
1357 	 * table entries.  It simply branches to the actual, underlying trap
1358 	 * table entry.  As explained in the "Implementation Details" section
1359 	 * of the block comment, all TL>0 traps _must_ use the disabled entry;
1360 	 * additional entries may be explicitly disabled through the use
1361 	 * of TSTATIOC_ENTRY/TSTATIOC_NOENTRY.
1362 	 */
1363 	static const uint32_t disabled[TSTAT_ENT_NINSTR] = {
1364 	    0x30800000,			/* ba,a addr			*/
1365 	    NOP, NOP, NOP, NOP, NOP, NOP, NOP,
1366 	};
1367 
1368 	ASSERT(MUTEX_HELD(&tstat_lock));
1369 
1370 	ent = tcpu->tcpu_instr->tinst_traptab;
1371 	stat = (uint64_t *)TSTAT_DATA_OFFS(tcpu, tdata_traps);
1372 	orig = KERNELBASE;
1373 	va = (uintptr_t)tcpu->tcpu_ibase;
1374 	en_baoffs = TSTAT_ENABLED_BA * sizeof (uint32_t);
1375 	dis_baoffs = TSTAT_DISABLED_BA * sizeof (uint32_t);
1376 
1377 	for (nent = 0; nent < TSTAT_TOTAL_NENT; nent++) {
1378 		if (tstat_enabled[nent]) {
1379 			bcopy(enabled, ent, sizeof (enabled));
1380 			ent[TSTAT_ENABLED_STATHI] |= HI22((uintptr_t)stat);
1381 			ent[TSTAT_ENABLED_STATLO_LD] |= LO10((uintptr_t)stat);
1382 			ent[TSTAT_ENABLED_STATLO_ST] |= LO10((uintptr_t)stat);
1383 			ent[TSTAT_ENABLED_BA] |= DISP22(va + en_baoffs, orig);
1384 		} else {
1385 			bcopy(disabled, ent, sizeof (disabled));
1386 			ent[TSTAT_DISABLED_BA] |= DISP22(va + dis_baoffs, orig);
1387 		}
1388 
1389 		stat++;
1390 		orig += sizeof (enabled);
1391 		ent += sizeof (enabled) / sizeof (*ent);
1392 		va += sizeof (enabled);
1393 	}
1394 }
1395 
1396 #undef TSTAT_ENABLED_STATHI
1397 #undef TSTAT_ENABLED_STATLO_LD
1398 #undef TSTAT_ENABLED_STATLO_ST
1399 #undef TSTAT_ENABLED_BA
1400 #undef TSTAT_DISABLED_BA
1401 
1402 static void
1403 trapstat_setup(processorid_t cpu)
1404 {
1405 	tstat_percpu_t *tcpu = &tstat_percpu[cpu];
1406 #ifndef sun4v
1407 	int i;
1408 	caddr_t va;
1409 	pfn_t *pfn;
1410 #endif
1411 
1412 	ASSERT(tcpu->tcpu_pfn == NULL);
1413 	ASSERT(tcpu->tcpu_instr == NULL);
1414 	ASSERT(tcpu->tcpu_data == NULL);
1415 	ASSERT(tcpu->tcpu_flags & TSTAT_CPU_SELECTED);
1416 	ASSERT(!(tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED));
1417 	ASSERT(MUTEX_HELD(&cpu_lock));
1418 	ASSERT(MUTEX_HELD(&tstat_lock));
1419 
1420 	/*
1421 	 * The lower fifteen bits of the %tba are always read as zero; we must
1422 	 * align our instruction base address appropriately.
1423 	 */
1424 #ifndef sun4v
1425 	tcpu->tcpu_ibase = (caddr_t)((KERNELBASE - tstat_total_size)
1426 		& TSTAT_TBA_MASK);
1427 	tcpu->tcpu_dbase = tcpu->tcpu_ibase + TSTAT_INSTR_SIZE;
1428 	tcpu->tcpu_vabase = tcpu->tcpu_ibase;
1429 
1430 	tcpu->tcpu_pfn = vmem_alloc(tstat_arena, tstat_total_pages, VM_SLEEP);
1431 	bzero(tcpu->tcpu_pfn, tstat_total_pages);
1432 	pfn = tcpu->tcpu_pfn;
1433 
1434 	tcpu->tcpu_instr = vmem_alloc(tstat_arena, TSTAT_INSTR_SIZE, VM_SLEEP);
1435 
1436 	va = (caddr_t)tcpu->tcpu_instr;
1437 	for (i = 0; i < TSTAT_INSTR_PAGES; i++, va += MMU_PAGESIZE)
1438 		*pfn++ = hat_getpfnum(kas.a_hat, va);
1439 
1440 	/*
1441 	 * We must be sure that the pages that we will use to examine the data
1442 	 * have the same virtual color as the pages to which the data is being
1443 	 * recorded, hence the alignment and phase constraints on the
1444 	 * allocation.
1445 	 */
1446 	tcpu->tcpu_data = vmem_xalloc(tstat_arena, tstat_data_size,
1447 	    shm_alignment, (uintptr_t)tcpu->tcpu_dbase & (shm_alignment - 1),
1448 	    0, 0, NULL, VM_SLEEP);
1449 	bzero(tcpu->tcpu_data, tstat_data_size);
1450 	tcpu->tcpu_data->tdata_cpuid = cpu;
1451 
1452 	va = (caddr_t)tcpu->tcpu_data;
1453 	for (i = 0; i < tstat_data_pages; i++, va += MMU_PAGESIZE)
1454 		*pfn++ = hat_getpfnum(kas.a_hat, va);
1455 #else /* sun4v */
1456 	ASSERT(!(tstat_total_size > (1 + ~TSTAT_TBA_MASK)));
1457 	tcpu->tcpu_vabase = (caddr_t)(KERNELBASE - MMU_PAGESIZE4M);
1458 	tcpu->tcpu_ibase = tcpu->tcpu_vabase + (cpu * (1 + ~TSTAT_TBA_MASK));
1459 	tcpu->tcpu_dbase = tcpu->tcpu_ibase + TSTAT_INSTR_SIZE;
1460 
1461 	tcpu->tcpu_pfn = &tstat_pfn;
1462 	tcpu->tcpu_instr = (tstat_instr_t *)(tstat_va + (cpu *
1463 		(1 + ~TSTAT_TBA_MASK)));
1464 	tcpu->tcpu_data = (tstat_data_t *)(tstat_va + (cpu *
1465 		(1 + ~TSTAT_TBA_MASK)) + TSTAT_INSTR_SIZE);
1466 	bzero(tcpu->tcpu_data, tstat_data_size);
1467 	tcpu->tcpu_data->tdata_cpuid = cpu;
1468 #endif /* sun4v */
1469 
1470 	/*
1471 	 * Now that we have all of the instruction and data pages allocated,
1472 	 * make the trap table from scratch.
1473 	 */
1474 	trapstat_make_traptab(tcpu);
1475 
1476 	if (tstat_options & TSTAT_OPT_TLBDATA) {
1477 		/*
1478 		 * TLB Statistics have been specified; set up the I- and D-TLB
1479 		 * entries and corresponding TLB return entries.
1480 		 */
1481 #ifndef sun4v
1482 		trapstat_tlbent(tcpu, TSTAT_ENT_ITLBMISS);
1483 		trapstat_tlbent(tcpu, TSTAT_ENT_DTLBMISS);
1484 #else
1485 		if (tstat_fast_tlbstat) {
1486 			trapstat_tlbent(tcpu, TSTAT_ENT_IMMUMISS);
1487 			trapstat_tlbent(tcpu, TSTAT_ENT_DMMUMISS);
1488 		} else {
1489 			trapstat_tlbent(tcpu, TSTAT_ENT_ITLBMISS);
1490 			trapstat_tlbent(tcpu, TSTAT_ENT_DTLBMISS);
1491 		}
1492 #endif
1493 	}
1494 
1495 	tcpu->tcpu_flags |= TSTAT_CPU_ALLOCATED;
1496 
1497 	/*
1498 	 * Finally, get the target CPU to load the locked pages into its TLBs.
1499 	 */
1500 	xc_one(cpu, (xcfunc_t *)trapstat_load_tlb, 0, 0);
1501 }
1502 
1503 static void
1504 trapstat_teardown(processorid_t cpu)
1505 {
1506 	tstat_percpu_t *tcpu = &tstat_percpu[cpu];
1507 #ifndef sun4v
1508 	int i;
1509 #endif
1510 	caddr_t va = tcpu->tcpu_vabase;
1511 
1512 	ASSERT(tcpu->tcpu_pfn != NULL);
1513 	ASSERT(tcpu->tcpu_instr != NULL);
1514 	ASSERT(tcpu->tcpu_data != NULL);
1515 	ASSERT(tcpu->tcpu_flags & TSTAT_CPU_SELECTED);
1516 	ASSERT(tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED);
1517 	ASSERT(!(tcpu->tcpu_flags & TSTAT_CPU_ENABLED));
1518 	ASSERT(MUTEX_HELD(&cpu_lock));
1519 	ASSERT(MUTEX_HELD(&tstat_lock));
1520 
1521 #ifndef sun4v
1522 	vmem_free(tstat_arena, tcpu->tcpu_pfn, tstat_total_pages);
1523 	vmem_free(tstat_arena, tcpu->tcpu_instr, TSTAT_INSTR_SIZE);
1524 	vmem_free(tstat_arena, tcpu->tcpu_data, tstat_data_size);
1525 
1526 	for (i = 0; i < tstat_total_pages; i++, va += MMU_PAGESIZE) {
1527 		xt_one(cpu, vtag_flushpage_tl1, (uint64_t)va, KCONTEXT);
1528 	}
1529 #else
1530 	xt_one(cpu, vtag_unmap_perm_tl1, (uint64_t)va, KCONTEXT);
1531 #endif
1532 
1533 	tcpu->tcpu_pfn = NULL;
1534 	tcpu->tcpu_instr = NULL;
1535 	tcpu->tcpu_data = NULL;
1536 	tcpu->tcpu_flags &= ~TSTAT_CPU_ALLOCATED;
1537 }
1538 
1539 static int
1540 trapstat_go()
1541 {
1542 	cpu_t *cp;
1543 
1544 	mutex_enter(&cpu_lock);
1545 	mutex_enter(&tstat_lock);
1546 
1547 	if (tstat_running) {
1548 		mutex_exit(&tstat_lock);
1549 		mutex_exit(&cpu_lock);
1550 		return (EBUSY);
1551 	}
1552 
1553 #ifdef sun4v
1554 	/*
1555 	 * Allocate large page to hold interposing tables.
1556 	 */
1557 	tstat_va = contig_mem_alloc(MMU_PAGESIZE4M);
1558 	tstat_pfn = va_to_pfn(tstat_va);
1559 	if (tstat_pfn == PFN_INVALID)
1560 		return (EAGAIN);
1561 
1562 	/*
1563 	 * For detailed TLB statistics, invoke CPU specific interface
1564 	 * to see if it supports a low overhead interface to collect
1565 	 * TSB hit statistics. If so, make set tstat_fast_tlbstat flag
1566 	 * to reflect that.
1567 	 */
1568 	if (tstat_options & TSTAT_OPT_TLBDATA) {
1569 		int error;
1570 
1571 		error = cpu_trapstat_conf(CPU_TSTATCONF_INIT);
1572 		if (error == 0)
1573 			tstat_fast_tlbstat = B_TRUE;
1574 		else if (error != ENOTSUP) {
1575 			contig_mem_free(tstat_va, MMU_PAGESIZE4M);
1576 			return (error);
1577 		}
1578 	}
1579 #endif
1580 
1581 	/*
1582 	 * First, perform any necessary hot patching.
1583 	 */
1584 	trapstat_hotpatch();
1585 
1586 	/*
1587 	 * Allocate the resources we'll need to measure probe effect.
1588 	 */
1589 	trapstat_probe_alloc();
1590 
1591 
1592 	cp = cpu_list;
1593 	do {
1594 		if (!(tstat_percpu[cp->cpu_id].tcpu_flags & TSTAT_CPU_SELECTED))
1595 			continue;
1596 
1597 		trapstat_setup(cp->cpu_id);
1598 
1599 		/*
1600 		 * Note that due to trapstat_probe()'s use of global data,
1601 		 * we determine the probe effect on each CPU serially instead
1602 		 * of in parallel with an xc_all().
1603 		 */
1604 		xc_one(cp->cpu_id, (xcfunc_t *)trapstat_probe, 0, 0);
1605 	} while ((cp = cp->cpu_next) != cpu_list);
1606 
1607 	xc_all((xcfunc_t *)trapstat_enable, 0, 0);
1608 
1609 	trapstat_probe_free();
1610 	tstat_running = 1;
1611 	mutex_exit(&tstat_lock);
1612 	mutex_exit(&cpu_lock);
1613 
1614 	return (0);
1615 }
1616 
1617 static int
1618 trapstat_stop()
1619 {
1620 	int i;
1621 
1622 	mutex_enter(&cpu_lock);
1623 	mutex_enter(&tstat_lock);
1624 	if (!tstat_running) {
1625 		mutex_exit(&tstat_lock);
1626 		mutex_exit(&cpu_lock);
1627 		return (ENXIO);
1628 	}
1629 
1630 	xc_all((xcfunc_t *)trapstat_disable, 0, 0);
1631 
1632 	for (i = 0; i <= max_cpuid; i++) {
1633 		if (tstat_percpu[i].tcpu_flags & TSTAT_CPU_ALLOCATED)
1634 			trapstat_teardown(i);
1635 	}
1636 
1637 #ifdef sun4v
1638 	if (tstat_options & TSTAT_OPT_TLBDATA)
1639 		cpu_trapstat_conf(CPU_TSTATCONF_FINI);
1640 	contig_mem_free(tstat_va, MMU_PAGESIZE4M);
1641 #endif
1642 	trapstat_hotpatch();
1643 	tstat_running = 0;
1644 	mutex_exit(&tstat_lock);
1645 	mutex_exit(&cpu_lock);
1646 
1647 	return (0);
1648 }
1649 
1650 /*
1651  * This is trapstat's DR CPU configuration callback.  It's called (with
1652  * cpu_lock held) to unconfigure a newly powered-off CPU, or to configure a
1653  * powered-off CPU that is to be brought into the system.  We need only take
1654  * action in the unconfigure case:  because a powered-off CPU will have its
1655  * trap table restored to KERNELBASE if it is ever powered back on, we must
1656  * update the flags to reflect that trapstat is no longer enabled on the
1657  * powered-off CPU.  Note that this means that a TSTAT_CPU_ENABLED CPU that
1658  * is unconfigured/powered off and later powered back on/reconfigured will
1659  * _not_ be re-TSTAT_CPU_ENABLED.
1660  */
1661 static int
1662 trapstat_cpu_setup(cpu_setup_t what, processorid_t cpu)
1663 {
1664 	tstat_percpu_t *tcpu = &tstat_percpu[cpu];
1665 
1666 	ASSERT(MUTEX_HELD(&cpu_lock));
1667 	mutex_enter(&tstat_lock);
1668 
1669 	if (!tstat_running) {
1670 		mutex_exit(&tstat_lock);
1671 		return (0);
1672 	}
1673 
1674 	switch (what) {
1675 	case CPU_CONFIG:
1676 		ASSERT(!(tcpu->tcpu_flags & TSTAT_CPU_ENABLED));
1677 		break;
1678 
1679 	case CPU_UNCONFIG:
1680 		if (tcpu->tcpu_flags & TSTAT_CPU_ENABLED)
1681 			tcpu->tcpu_flags &= ~TSTAT_CPU_ENABLED;
1682 		break;
1683 
1684 	default:
1685 		break;
1686 	}
1687 
1688 	mutex_exit(&tstat_lock);
1689 	return (0);
1690 }
1691 
1692 /*
1693  * This is called before a CPR suspend and after a CPR resume.  We don't have
1694  * anything to do before a suspend, but after a restart we must restore the
1695  * trap table to be our interposing trap table.  However, we don't actually
1696  * know whether or not the CPUs have been powered off -- this routine may be
1697  * called while restoring from a failed CPR suspend.  We thus run through each
1698  * TSTAT_CPU_ENABLED CPU, and explicitly destroy and reestablish its
1699  * interposing trap table.  This assures that our state is correct regardless
1700  * of whether or not the CPU has been newly powered on.
1701  */
1702 /*ARGSUSED*/
1703 static boolean_t
1704 trapstat_cpr(void *arg, int code)
1705 {
1706 	cpu_t *cp;
1707 
1708 	if (code == CB_CODE_CPR_CHKPT)
1709 		return (B_TRUE);
1710 
1711 	ASSERT(code == CB_CODE_CPR_RESUME);
1712 
1713 	mutex_enter(&cpu_lock);
1714 	mutex_enter(&tstat_lock);
1715 
1716 	if (!tstat_running) {
1717 		mutex_exit(&tstat_lock);
1718 		mutex_exit(&cpu_lock);
1719 		return (B_TRUE);
1720 	}
1721 
1722 	cp = cpu_list;
1723 	do {
1724 		tstat_percpu_t *tcpu = &tstat_percpu[cp->cpu_id];
1725 
1726 		if (!(tcpu->tcpu_flags & TSTAT_CPU_ENABLED))
1727 			continue;
1728 
1729 		ASSERT(tcpu->tcpu_flags & TSTAT_CPU_SELECTED);
1730 		ASSERT(tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED);
1731 
1732 		xc_one(cp->cpu_id, (xcfunc_t *)trapstat_disable, 0, 0);
1733 		ASSERT(!(tcpu->tcpu_flags & TSTAT_CPU_ENABLED));
1734 
1735 		/*
1736 		 * Preserve this CPU's data in tstat_buffer and rip down its
1737 		 * interposing trap table.
1738 		 */
1739 		bcopy(tcpu->tcpu_data, tstat_buffer, tstat_data_t_size);
1740 		trapstat_teardown(cp->cpu_id);
1741 		ASSERT(!(tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED));
1742 
1743 		/*
1744 		 * Reestablish the interposing trap table and restore the old
1745 		 * data.
1746 		 */
1747 		trapstat_setup(cp->cpu_id);
1748 		ASSERT(tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED);
1749 		bcopy(tstat_buffer, tcpu->tcpu_data, tstat_data_t_size);
1750 
1751 		xc_one(cp->cpu_id, (xcfunc_t *)trapstat_enable, 0, 0);
1752 	} while ((cp = cp->cpu_next) != cpu_list);
1753 
1754 	mutex_exit(&tstat_lock);
1755 	mutex_exit(&cpu_lock);
1756 
1757 	return (B_TRUE);
1758 }
1759 
1760 /*ARGSUSED*/
1761 static int
1762 trapstat_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
1763 {
1764 	int i;
1765 
1766 	mutex_enter(&cpu_lock);
1767 	mutex_enter(&tstat_lock);
1768 	if (tstat_open != 0) {
1769 		mutex_exit(&tstat_lock);
1770 		mutex_exit(&cpu_lock);
1771 		return (EBUSY);
1772 	}
1773 
1774 	/*
1775 	 * Register this in open() rather than in attach() to prevent deadlock
1776 	 * with DR code. During attach, I/O device tree locks are grabbed
1777 	 * before trapstat_attach() is invoked - registering in attach
1778 	 * will result in the lock order: device tree lock, cpu_lock.
1779 	 * DR code however requires that cpu_lock be acquired before
1780 	 * device tree locks.
1781 	 */
1782 	ASSERT(!tstat_running);
1783 	register_cpu_setup_func((cpu_setup_func_t *)trapstat_cpu_setup, NULL);
1784 
1785 	/*
1786 	 * Clear all options.  And until specific CPUs are specified, we'll
1787 	 * mark all CPUs as selected.
1788 	 */
1789 	tstat_options = 0;
1790 
1791 	for (i = 0; i <= max_cpuid; i++)
1792 		tstat_percpu[i].tcpu_flags |= TSTAT_CPU_SELECTED;
1793 
1794 	/*
1795 	 * By default, all traps at TL=0 are enabled.  Traps at TL>0 must
1796 	 * be disabled.
1797 	 */
1798 	for (i = 0; i < TSTAT_TOTAL_NENT; i++)
1799 		tstat_enabled[i] = i < TSTAT_NENT ? 1 : 0;
1800 
1801 	tstat_open = 1;
1802 	mutex_exit(&tstat_lock);
1803 	mutex_exit(&cpu_lock);
1804 
1805 	return (0);
1806 }
1807 
1808 /*ARGSUSED*/
1809 static int
1810 trapstat_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
1811 {
1812 	(void) trapstat_stop();
1813 
1814 	ASSERT(!tstat_running);
1815 
1816 	mutex_enter(&cpu_lock);
1817 	unregister_cpu_setup_func((cpu_setup_func_t *)trapstat_cpu_setup, NULL);
1818 	mutex_exit(&cpu_lock);
1819 
1820 	tstat_open = 0;
1821 	return (DDI_SUCCESS);
1822 }
1823 
1824 static int
1825 trapstat_option(int option)
1826 {
1827 	mutex_enter(&tstat_lock);
1828 
1829 	if (tstat_running) {
1830 		mutex_exit(&tstat_lock);
1831 		return (EBUSY);
1832 	}
1833 
1834 	tstat_options |= option;
1835 	mutex_exit(&tstat_lock);
1836 
1837 	return (0);
1838 }
1839 
1840 /*ARGSUSED*/
1841 static int
1842 trapstat_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *crd, int *rval)
1843 {
1844 	int i, j, out;
1845 	size_t dsize;
1846 
1847 	switch (cmd) {
1848 	case TSTATIOC_GO:
1849 		return (trapstat_go());
1850 
1851 	case TSTATIOC_NOGO:
1852 		return (trapstat_option(TSTAT_OPT_NOGO));
1853 
1854 	case TSTATIOC_STOP:
1855 		return (trapstat_stop());
1856 
1857 	case TSTATIOC_CPU:
1858 		if (arg < 0 || arg > max_cpuid)
1859 			return (EINVAL);
1860 		/*FALLTHROUGH*/
1861 
1862 	case TSTATIOC_NOCPU:
1863 		mutex_enter(&tstat_lock);
1864 
1865 		if (tstat_running) {
1866 			mutex_exit(&tstat_lock);
1867 			return (EBUSY);
1868 		}
1869 
1870 		/*
1871 		 * If this is the first CPU to be specified (or if we are
1872 		 * being asked to explicitly de-select CPUs), disable all CPUs.
1873 		 */
1874 		if (!(tstat_options & TSTAT_OPT_CPU) || cmd == TSTATIOC_NOCPU) {
1875 			tstat_options |= TSTAT_OPT_CPU;
1876 
1877 			for (i = 0; i <= max_cpuid; i++) {
1878 				tstat_percpu_t *tcpu = &tstat_percpu[i];
1879 
1880 				ASSERT(cmd == TSTATIOC_NOCPU ||
1881 				    (tcpu->tcpu_flags & TSTAT_CPU_SELECTED));
1882 				tcpu->tcpu_flags &= ~TSTAT_CPU_SELECTED;
1883 			}
1884 		}
1885 
1886 		if (cmd == TSTATIOC_CPU)
1887 			tstat_percpu[arg].tcpu_flags |= TSTAT_CPU_SELECTED;
1888 
1889 		mutex_exit(&tstat_lock);
1890 
1891 		return (0);
1892 
1893 	case TSTATIOC_ENTRY:
1894 		mutex_enter(&tstat_lock);
1895 
1896 		if (tstat_running) {
1897 			mutex_exit(&tstat_lock);
1898 			return (EBUSY);
1899 		}
1900 
1901 		if (arg >= TSTAT_NENT || arg < 0) {
1902 			mutex_exit(&tstat_lock);
1903 			return (EINVAL);
1904 		}
1905 
1906 		if (!(tstat_options & TSTAT_OPT_ENTRY)) {
1907 			/*
1908 			 * If this is the first entry that we are explicitly
1909 			 * enabling, explicitly disable every TL=0 entry.
1910 			 */
1911 			for (i = 0; i < TSTAT_NENT; i++)
1912 				tstat_enabled[i] = 0;
1913 
1914 			tstat_options |= TSTAT_OPT_ENTRY;
1915 		}
1916 
1917 		tstat_enabled[arg] = 1;
1918 		mutex_exit(&tstat_lock);
1919 		return (0);
1920 
1921 	case TSTATIOC_NOENTRY:
1922 		mutex_enter(&tstat_lock);
1923 
1924 		if (tstat_running) {
1925 			mutex_exit(&tstat_lock);
1926 			return (EBUSY);
1927 		}
1928 
1929 		for (i = 0; i < TSTAT_NENT; i++)
1930 			tstat_enabled[i] = 0;
1931 
1932 		mutex_exit(&tstat_lock);
1933 		return (0);
1934 
1935 	case TSTATIOC_READ:
1936 		mutex_enter(&tstat_lock);
1937 
1938 		if (tstat_options & TSTAT_OPT_TLBDATA) {
1939 			dsize = tstat_data_t_exported_size;
1940 		} else {
1941 			dsize = sizeof (tstat_data_t);
1942 		}
1943 
1944 		for (i = 0, out = 0; i <= max_cpuid; i++) {
1945 			tstat_percpu_t *tcpu = &tstat_percpu[i];
1946 
1947 			if (!(tcpu->tcpu_flags & TSTAT_CPU_ENABLED))
1948 				continue;
1949 
1950 			ASSERT(tcpu->tcpu_flags & TSTAT_CPU_SELECTED);
1951 			ASSERT(tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED);
1952 
1953 			tstat_buffer->tdata_cpuid = -1;
1954 			xc_one(i, (xcfunc_t *)trapstat_snapshot, 0, 0);
1955 
1956 			if (tstat_buffer->tdata_cpuid == -1) {
1957 				/*
1958 				 * This CPU is not currently responding to
1959 				 * cross calls; we have caught it while it is
1960 				 * being unconfigured.  We'll drop tstat_lock
1961 				 * and pick up and drop cpu_lock.  By the
1962 				 * time we acquire cpu_lock, the DR operation
1963 				 * will appear consistent and we can assert
1964 				 * that trapstat_cpu_setup() has cleared
1965 				 * TSTAT_CPU_ENABLED.
1966 				 */
1967 				mutex_exit(&tstat_lock);
1968 				mutex_enter(&cpu_lock);
1969 				mutex_exit(&cpu_lock);
1970 				mutex_enter(&tstat_lock);
1971 				ASSERT(!(tcpu->tcpu_flags & TSTAT_CPU_ENABLED));
1972 				continue;
1973 			}
1974 
1975 			/*
1976 			 * Need to compensate for the difference between page
1977 			 * sizes exported to users and page sizes available
1978 			 * within the kernel.
1979 			 */
1980 			if ((tstat_options & TSTAT_OPT_TLBDATA) &&
1981 			    (tstat_pgszs != tstat_user_pgszs)) {
1982 				tstat_pgszdata_t *tp;
1983 				uint_t szc;
1984 
1985 				tp = &tstat_buffer->tdata_pgsz[0];
1986 				for (j = 0; j < tstat_user_pgszs; j++) {
1987 					if ((szc = USERSZC_2_SZC(j)) != j) {
1988 						bcopy(&tp[szc], &tp[j],
1989 						    sizeof (tstat_pgszdata_t));
1990 					}
1991 				}
1992 			}
1993 
1994 			if (copyout(tstat_buffer, (void *)arg, dsize) != 0) {
1995 				mutex_exit(&tstat_lock);
1996 				return (EFAULT);
1997 			}
1998 
1999 			out++;
2000 			arg += dsize;
2001 		}
2002 
2003 		if (out != max_cpuid + 1) {
2004 			processorid_t cpuid = -1;
2005 			arg += offsetof(tstat_data_t, tdata_cpuid);
2006 
2007 			if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) {
2008 				mutex_exit(&tstat_lock);
2009 				return (EFAULT);
2010 			}
2011 		}
2012 
2013 		mutex_exit(&tstat_lock);
2014 
2015 		return (0);
2016 
2017 	case TSTATIOC_TLBDATA:
2018 		return (trapstat_option(TSTAT_OPT_TLBDATA));
2019 
2020 	default:
2021 		break;
2022 	}
2023 
2024 	return (ENOTTY);
2025 }
2026 
2027 /*ARGSUSED*/
2028 static int
2029 trapstat_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2030 {
2031 	int error;
2032 
2033 	switch (infocmd) {
2034 	case DDI_INFO_DEVT2DEVINFO:
2035 		*result = (void *)tstat_devi;
2036 		error = DDI_SUCCESS;
2037 		break;
2038 	case DDI_INFO_DEVT2INSTANCE:
2039 		*result = (void *)0;
2040 		error = DDI_SUCCESS;
2041 		break;
2042 	default:
2043 		error = DDI_FAILURE;
2044 	}
2045 	return (error);
2046 }
2047 
2048 static int
2049 trapstat_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
2050 {
2051 	switch (cmd) {
2052 	case DDI_ATTACH:
2053 		break;
2054 
2055 	case DDI_RESUME:
2056 		return (DDI_SUCCESS);
2057 
2058 	default:
2059 		return (DDI_FAILURE);
2060 	}
2061 
2062 	if (ddi_create_minor_node(devi, "trapstat", S_IFCHR,
2063 	    0, DDI_PSEUDO, 0) == DDI_FAILURE) {
2064 		ddi_remove_minor_node(devi, NULL);
2065 		return (DDI_FAILURE);
2066 	}
2067 
2068 	ddi_report_dev(devi);
2069 	tstat_devi = devi;
2070 
2071 	tstat_pgszs = page_num_pagesizes();
2072 	tstat_user_pgszs = page_num_user_pagesizes();
2073 	tstat_data_t_size = sizeof (tstat_data_t) +
2074 	    (tstat_pgszs - 1) * sizeof (tstat_pgszdata_t);
2075 	tstat_data_t_exported_size = sizeof (tstat_data_t) +
2076 	    (tstat_user_pgszs - 1) * sizeof (tstat_pgszdata_t);
2077 #ifndef sun4v
2078 	tstat_data_pages = (tstat_data_t_size >> MMU_PAGESHIFT) + 1;
2079 	tstat_total_pages = TSTAT_INSTR_PAGES + tstat_data_pages;
2080 	tstat_data_size = tstat_data_pages * MMU_PAGESIZE;
2081 	tstat_total_size = TSTAT_INSTR_SIZE + tstat_data_size;
2082 #else
2083 	tstat_data_pages = 0;
2084 	tstat_data_size = tstat_data_t_size;
2085 	tstat_total_pages = ((TSTAT_INSTR_SIZE + tstat_data_size) >>
2086 		MMU_PAGESHIFT) + 1;
2087 	tstat_total_size = tstat_total_pages * MMU_PAGESIZE;
2088 #endif
2089 
2090 	tstat_percpu = kmem_zalloc((max_cpuid + 1) *
2091 	    sizeof (tstat_percpu_t), KM_SLEEP);
2092 
2093 	/*
2094 	 * Create our own arena backed by segkmem to assure a source of
2095 	 * MMU_PAGESIZE-aligned allocations.  We allocate out of the
2096 	 * heap32_arena to assure that we can address the allocated memory with
2097 	 * a single sethi/simm13 pair in the interposing trap table entries.
2098 	 */
2099 	tstat_arena = vmem_create("trapstat", NULL, 0, MMU_PAGESIZE,
2100 	    segkmem_alloc_permanent, segkmem_free, heap32_arena, 0, VM_SLEEP);
2101 
2102 	tstat_enabled = kmem_alloc(TSTAT_TOTAL_NENT * sizeof (int), KM_SLEEP);
2103 	tstat_buffer = kmem_alloc(tstat_data_t_size, KM_SLEEP);
2104 
2105 	/*
2106 	 * CB_CL_CPR_POST_USER is the class that executes from cpr_resume()
2107 	 * after user threads can be restarted.  By executing in this class,
2108 	 * we are assured of the availability of system services needed to
2109 	 * resume trapstat (specifically, we are assured that all CPUs are
2110 	 * restarted and responding to cross calls).
2111 	 */
2112 	tstat_cprcb =
2113 	    callb_add(trapstat_cpr, NULL, CB_CL_CPR_POST_USER, "trapstat");
2114 
2115 	return (DDI_SUCCESS);
2116 }
2117 
2118 static int
2119 trapstat_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
2120 {
2121 	int rval;
2122 
2123 	ASSERT(devi == tstat_devi);
2124 
2125 	switch (cmd) {
2126 	case DDI_DETACH:
2127 		break;
2128 
2129 	case DDI_SUSPEND:
2130 		return (DDI_SUCCESS);
2131 
2132 	default:
2133 		return (DDI_FAILURE);
2134 	}
2135 
2136 	ASSERT(!tstat_running);
2137 
2138 	rval = callb_delete(tstat_cprcb);
2139 	ASSERT(rval == 0);
2140 
2141 	kmem_free(tstat_buffer, tstat_data_t_size);
2142 	kmem_free(tstat_enabled, TSTAT_TOTAL_NENT * sizeof (int));
2143 	vmem_destroy(tstat_arena);
2144 	kmem_free(tstat_percpu, (max_cpuid + 1) * sizeof (tstat_percpu_t));
2145 	ddi_remove_minor_node(devi, NULL);
2146 
2147 	return (DDI_SUCCESS);
2148 }
2149 
2150 /*
2151  * Configuration data structures
2152  */
2153 static struct cb_ops trapstat_cb_ops = {
2154 	trapstat_open,		/* open */
2155 	trapstat_close,		/* close */
2156 	nulldev,		/* strategy */
2157 	nulldev,		/* print */
2158 	nodev,			/* dump */
2159 	nodev,			/* read */
2160 	nodev,			/* write */
2161 	trapstat_ioctl,		/* ioctl */
2162 	nodev,			/* devmap */
2163 	nodev,			/* mmap */
2164 	nodev,			/* segmap */
2165 	nochpoll,		/* poll */
2166 	ddi_prop_op,		/* cb_prop_op */
2167 	0,			/* streamtab */
2168 	D_MP | D_NEW		/* Driver compatibility flag */
2169 };
2170 
2171 static struct dev_ops trapstat_ops = {
2172 	DEVO_REV,		/* devo_rev, */
2173 	0,			/* refcnt */
2174 	trapstat_info,		/* getinfo */
2175 	nulldev,		/* identify */
2176 	nulldev,		/* probe */
2177 	trapstat_attach,	/* attach */
2178 	trapstat_detach,	/* detach */
2179 	nulldev,		/* reset */
2180 	&trapstat_cb_ops,	/* cb_ops */
2181 	(struct bus_ops *)0,	/* bus_ops */
2182 };
2183 
2184 static struct modldrv modldrv = {
2185 	&mod_driverops,		/* Type of module.  This one is a driver */
2186 	"Trap Statistics",	/* name of module */
2187 	&trapstat_ops,		/* driver ops */
2188 };
2189 
2190 static struct modlinkage modlinkage = {
2191 	MODREV_1, (void *)&modldrv, NULL
2192 };
2193 
2194 int
2195 _init(void)
2196 {
2197 	return (mod_install(&modlinkage));
2198 }
2199 
2200 int
2201 _fini(void)
2202 {
2203 	return (mod_remove(&modlinkage));
2204 }
2205 
2206 int
2207 _info(struct modinfo *modinfop)
2208 {
2209 	return (mod_info(&modlinkage, modinfop));
2210 }
2211